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Abstract 14 

Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) 15 

homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion 16 

receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype 17 

remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced 18 

by the scaffold protein IQ motif containing GTPase activating protein 2 (IQGAP2). In mice and zebrafish, 19 

we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under 20 

homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we 21 

further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including 22 

extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses 23 

also reveal that Alzheimer’s disease is associated with reduced hippocampal IQGAP2. Overall, our results 24 

implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS. 25 

26 
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Introduction 27 

Maintenance of central nervous system (CNS) homeostasis is crucial for ensuring normal functions in 28 

neurons and glial cells, which are sensitive to exogenous molecules in circulation (1). The brain is insulated 29 

from these factors with the help of a specialized partition known as the blood-brain barrier (BBB). The 30 

BBB is composed of barrier-forming brain endothelial cells (BECs) with unique cellular machinery that 31 

regulate the entry of macromolecules and solutes into the brain (2), including transporters that control the 32 

bidirectional exchange of nutrients and waste and tight junctions that prevent passive leakage of blood 33 

components into the brain (3).  34 

In addition to modulating molecular transport, BECs also act as a selective interface between the peripheral 35 

immune system and the brain (4). Until recently, the CNS was considered to be completely isolated from 36 

the peripheral immune system and therefore an immune-privileged organ (5, 6). However, recent evidence 37 

shows that the CNS is under constant immune surveillance to identify and resolve mediators of injury (7, 38 

8). For example, microglia are tissue resident innate immune cells that continually inspect the CNS 39 

parenchyma (9, 10). Further, interstitial fluid and cerebrospinal fluid provide drainage pathways for 40 

prospective antigens to reach the periphery and stimulate immune cells (11–14). As such, initiation of an 41 

inflammatory response in the CNS can lead to recruitment of leukocytes across the BBB. BECs facilitate 42 

this process through the expression of various receptors, such as leukocyte adhesion molecules (LAMs), 43 

that allow interactions with and extravasation of leukocytes into tissue beds (15, 16). In addition, BEC 44 

chemokine signaling and antigen presentation (17–19) also play a key role in orchestrating leukocyte 45 

extravasation. While the underlying molecular mechanisms of leukocyte extravasation are similar across 46 

all organs, BECs have been shown to express very low levels of LAMs under homeostatic conditions, 47 

making them refractory to mild inflammatory cues (1, 20). However, despite several exquisite single-cell 48 

RNA sequencing (scRNA-seq) studies identifying differentially expressed genes between BECs and 49 

peripheral endothelial cells (21–26), as well as scRNA-seq profiles of different cell types in the 50 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2024. ; https://doi.org/10.1101/2023.02.07.527394doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.527394
http://creativecommons.org/licenses/by-nc-nd/4.0/


neurovascular unit (24, 25), the mechanisms underlying suppression of LAM expression in BECs and 51 

general limitation of immune cell extravasation across the BBB remain poorly understood.  52 

IQ motif containing GTPase activating protein 1 (IQGAP1), a ubiquitously expressed scaffolding protein, 53 

has been recently implicated in facilitating leukocyte trafficking across peripheral endothelium (27, 28). 54 

Historically, IQGAP1 was known as a regulator of cellular signaling due to its role as a scaffolding protein 55 

(29). It also acts as an oncogene driving hepatocellular carcinogenesis (30, 31). Interestingly, IQ motif 56 

containing GTPase activating protein 2 ( IQGAP2), a related member of the same scaffolding protein 57 

family, acts as a tumor suppressor to counteract the oncogenic effects of IQGAP1 (32, 33). Since IQGAP2 58 

is believed to suppress IQGAP1 function, and IQGAP2 expression is predicted in multiple neurovascular 59 

support cells such as astrocytes and microglia (21, 34–36), we hypothesized that IQGAP2 may influence 60 

inflammatory responses and leukocyte extravasation at the BBB. Herein, using multiple in vivo models, we 61 

show that loss of Iqgap2 increases leukocyte infiltration into the CNS under various conditions. scRNA-62 

seq of BECs from wildtype and Iqgap2-/- mice further reveals an upregulation of multiple inflammatory 63 

genes and signaling pathways involved in BBB-immune cell interactions. Further, using postmortem human 64 

brain tissue, we determined that IQGAP2 was reduced in the hippocampus of patients with AD. Overall, 65 

our results benchmark IQGAP2 as a key molecular player involved in BBB-immune crosstalk and 66 

leukocyte entry into the CNS. 67 

68 
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Results 69 

Global loss of Iqgap2 increases peripheral immune cell infiltration into the brain in a mouse model 70 

of acute neuroinflammation 71 

To initially assess whether murine Iqgap2 influences leukocyte infiltration into the brain, we delivered 72 

interleukin 1-beta (IL1β) into the lateral ventricles of wildtype and Iqgap2-/- mice (129S background) to 73 

induce acute neuroinflammation (37, 38). After 24 hours, infiltration of leukocytes was assessed by 74 

immunohistochemical labeling of CD45+ cells in cortical brain sections. We measured a significant 75 

increase in the number of CD45+ cells in the cortex of Iqgap2-/- mice as compared to their wildtype 76 

littermates (Figure 1). We also confirmed that delivery of saline to the lateral ventricles in a similar fashion 77 

did not stimulate CD45+ cell infiltration into the brains of both wildtype and Iqgap2-/- mice (Figure 1B). 78 

These data suggest that Iqgap2 constrains leukocyte infiltration into the mouse CNS following a central 79 

inflammatory challenge. 80 

 81 

Global loss of Iqgap2 increases immune cell infiltration in experimental autoimmune 82 

encephalomyelitis 83 

As dysregulated immune cell infiltration is a hallmark of several neurodegenerative conditions (39–45), we 84 

sought to next evaluate whether loss of Iqgap2 affects immune cell access to the CNS in the presence of an 85 

inflammatory neurodegenerative condition. As such, to monitor the effects of Iqgap2 loss under a chronic 86 

inflammatory insult (46), we induced experimental autoimmune encephalomyelitis (EAE) in wildtype and 87 

Iqgap2-/- 129S mice (Figure 2A). To validate our experimental strategy, we concurrently induced EAE in 88 

C57BL/6 mice and observed robust development of disease (Supplementary Figure 1). We measured a 89 

significant increase in CD45+ cells in the Iqgap2-/- lumbar spinal cord compared to wildtype 129S mice 30 90 

days after EAE induction (Figure 2B). Interestingly, this increase in infiltrating leukocytes did not produce 91 

significant differences in disease severity, probability of survival, or demyelination (Figure 2C-E), 92 
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suggesting the infiltration events may be decoupled from pathology. Overall, these data further indicate that 93 

loss of Iqgap2 contributes to increased leukocyte extravasation into the CNS under extended 94 

neuroinflammation. 95 

 96 

Loss of Iqgap2 increases infiltration of peripheral immune cells into the brain in zebrafish in the 97 

absence of inflammation 98 

Our data in multiple inflammatory mouse models suggest that Iqgap2 plays an important role in BBB 99 

immune privilege. To corroborate these findings in an additional species, we generated zebrafish crispants 100 

by direct injection of Cas9 protein with multiple sgRNAs to target genes of interest in single-cell embryos 101 

with both endothelial cells (kdrl:mCherry) and immune cells (mpeg1:EGFP) transgenically labeled. We 102 

specifically assessed the presence of mpeg+ macrophage lineage cells in the brains of 5 days post 103 

fertilization (dpf) zebrafish, which have a functional BBB (47), that were either uninjected or targeting tyr 104 

or iqgap2. While uninjected fish are expected to retain normal function of all genes, tyr crispants should 105 

have mosaic knockout of tyrosinase, a protein involved in pigment production that is not expected to affect 106 

leukocyte infiltration; this serves as an additional CRISPR injection control. Both controls displayed 107 

similarly low numbers of mpeg+ cells in the brain, while iqgap2 crispants displayed a significant increase 108 

in the number of mpeg+ cells (Figure 3B). Since mpeg also labels brain resident microglia, we used an 109 

established method to label microglia with Neutral Red dye (48) and distinguish these cells from infiltrating 110 

leukocytes. Uninjected controls and iqgap2 crispants were therefore treated with Neutral Red and all 111 

mpeg+/Neutral Red+ double-positive microglia and mpeg+/Neutral Red- infiltrating leukocytes were 112 

quantified throughout the entire zebrafish brain. We measured a significant increase in the total number of 113 

mpeg+ cells, similar to previous experiments, but not double-positive microglia in the iqgap2 crispants, 114 

and the number of mpeg+/Neutral Red- infiltrating leukocytes was significantly increased (Figure 3C). 115 

These data suggest that iqgap2 is essential for restricting the infiltration of leukocytes into the CNS under 116 
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homeostatic conditions in zebrafish, as its mosaic depletion enhanced the entry of peripheral leukocytes 117 

into the brain. 118 

 119 

Global loss of Iqgap2 yields a profound inflammatory transcriptomic profile in mouse BECs 120 

Our data indicate that Iqgap2 plays an important role in restricting peripheral immune access to the CNS 121 

and in modulating responses to inflammatory insults. Iqgap2 is a large scaffolding protein known to 122 

orchestrate many different cellular functions such as regulating cytoskeletal organization, cytokinesis, and 123 

carcinogenesis (29), suggesting it could govern many different signaling axes that would influence BBB 124 

function and cellular crosstalk within the neurovascular unit. After confirming general expression of Iqgap2 125 

in mouse brain and enriched vessel fractions (Supplementary Figure 2), we performed scRNA-seq on BECs 126 

isolated from wildtype and Iqgap2-/- mice to better understand how loss of Iqgap2 affects BBB function. 127 

Here, to generate an endothelial cell-enriched population for sequencing, we isolated antibody-labeled 128 

CD31+ cells from dissociated mouse brains using fluorescence-activated cell sorting (Figure 4A). After 129 

implementing quality control metrics, cells were first analyzed using dimension-reduction by uniform 130 

manifold approximation and projection (UMAP) and unsupervised clustering to obtain 12 unique identities: 131 

endothelial cells (EC), PLVAP-expressing endothelial cells (EC_plvap), hemoglobin-expressing 132 

endothelial cells (EC_hb), endothelial/stromal cells or pericyte-like cells (EC/PC), endothelial/stromal cells 133 

or astrocyte-like cells (EC/AC), astrocytes (AC), B cells, T cells, monocytes (MNC), microglia (MG), 134 

oligodendrocytes (OLG), and fibroblasts (Supplementary Figure 3). Endothelial cells were the largest 135 

represented cell type, followed by immune cells such as monocytes and T cells that are also predicted to 136 

express CD31 (Figure 4B and Supplementary Figure 3); other cell types likely represent some small 137 

contamination in the sorting process. Each cell type was annotated using previously established marker 138 

genes (49) and all non-endothelial clusters were filtered out of the dataset for these initial analyses. 139 

Wildtype (WT) and Iqgap2-/- (KO) genotypes were equally represented in the EC cluster (Figure 4C), and 140 

bulk gene expression comparisons between WT and KO BECs show 928 differentially regulated genes 141 
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(DEGs) (Figure 4D). Since leukocyte extravasation occurs predominantly at post-capillary venules (50–142 

52), we examined these DEGs along the neurovascular tree. We used unsupervised clustering to subcluster 143 

BECs into 6 sub-populations, and based on marker gene expression, these subclusters were further 144 

classified into arterial (A; genes Hey1, Bmx, and Sema3g), capillary (C; genes Slc16a2, Car4, and Mfsd2a), 145 

and venous (V; genes Icam1, Slc38a5, and Vwf) zonal identities (Figure 4E and Supplementary Figure 3) 146 

(21). Further analysis suggests that the strongest DEGs are shared among zonal identities and include genes 147 

involved in antigen presentation, interleukin receptor subunits, and adhesion molecules. Unique DEGs 148 

identified in the A and V zonal identities did not show any significant functional enrichment whereas a 149 

similar analysis of unique DEGs identified in the C zonal identity suggest subtle changes in BEC function 150 

(Figure 4F and Supplementary Table 1). 151 

Across these zones, we were able to confirm that loss of Iqgap2 does not significantly affect expression of 152 

most canonical BBB genes, including junction proteins and nutrient transporters such as Cdh5, Cldn5, Ocln, 153 

Tjp, and Slc2a1 (Supplementary Figure 4A). At the protein level, total vessel density was unchanged, and 154 

we found no obvious deficits in expression of claudin-5, occludin, ZO-1, and Glut1 in the Iqgap2-/- mice 155 

(Supplementary Figure 5). We did observe significant differences in gene expression for certain transporters 156 

that facilitate exchange of amino acids and metabolites across the BBB, such as Abcb1a, Slc7a1, Slc7a5, 157 

and Slc16a1 (Supplementary Figure 4B). In addition, major regulator genes involved in BBB functional 158 

development and maintenance like Mfsd2a (53) and Ctnnb1 (54–56) were significantly downregulated in 159 

the Iqgap2-/- BECs, suggesting possible connections to BBB dysfunction (Supplementary Figure 4C). 160 

Interestingly, we also saw significant upregulation of several LAMs and chemokine receptors. Although 161 

interaction with leukocytes and response to inflammation is primarily facilitated by venous ECs, we found 162 

that loss of Iqgap2 significantly upregulates expression of leukocyte receptors and signaling molecules like 163 

Vcam1, Icam1, and Ackr1 across multiple vascular zones (Figure 5A). Using immunohistochemistry, we 164 

confirmed upregulation of Vcam1 in cortical vasculature of Iqgap2-/- mice (Figure 5B). The widespread 165 

expression of vascular Vcam1 in Iqgap2-/- mice was particularly striking, given that Vcam1 expression on 166 
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BECs has been implicated in brain inflammation and cognitive decline in mice (57). We have also recently 167 

shown that vascular VCAM-1 expression is significantly increased in Alzheimer’s disease cortex relative 168 

to asymptomatic age-matched controls, further highlighting its links to human neurodegeneration (58). 169 

To extend our understanding of potential pathways in BECs affected by global loss of Iqgap2, we performed 170 

gene set enrichment analysis (GSEA) for KEGG signaling pathways. GSEA indicated that pathways 171 

involved in response to infections like Kaposi sarcoma-associated herpes virus infection (KSHV), human 172 

T-cell leukemia virus 1 infection (HTLV), human immunodeficiency virus 1 infection (HIV), and human 173 

papillomavirus infection (HPV) were upregulated. In addition, other pathways facilitating immune 174 

interactions like cell adhesion (Vcam1, Icam1), antigen processing and presentation (Psme2, Hspa5, Canx, 175 

Calr), and TNF signaling (Cxcl1, Csf1, Ptgs2) were also significantly upregulated in the Iqgap2-/- BECs 176 

(Figure 5C and Supplementary Figure 6). These results indicate that Iqgap2 loss shifts both the 177 

transcriptional profile and protein expression of BECs towards an activated, inflammatory state.  178 

Due to the significant upregulation of LAMs in the Iqgap2-/- BECs, we further analyzed cell-cell interactions 179 

between BECs and other cell types identified in the scRNA-seq dataset using CellChat (59). We found that 180 

BEC-immune cell interactions were overrepresented in Iqgap2-/- mice. Quantification of these results 181 

suggested an increase in cell-cell interactions between BECs and microglia as well as BECs and peripheral 182 

immune cells like monocytes, T cells, and B cells. We then assessed the predicted directionality of these 183 

interactions by analyzing known receptor-ligand pairs. BECs were predicted to be the “senders” whereas 184 

immune populations, especially monocytes, were the primary “receivers” (Supplementary Figure 7). To 185 

understand whether these changes were due to Iqgap2 loss in a specific cell type, we performed DEG 186 

analyses in all clusters annotated as immune populations. Monocytes had the highest number of significant 187 

DEGs, followed by microglia and T cells (Supplementary Figure 8A). KEGG pathway analysis of DEGs 188 

in the monocytes indicated upregulation of pathways such as leukocyte transendothelial migration and 189 

regulation of actin cytoskeleton (Supplementary Figure 8B). These data indicate that Iqgap2 may also play 190 
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an important role in modulating BEC-monocyte communication, which could additionally contribute to the 191 

overall inflammatory phenotype observed in the BECs in Iqgap2-/- mice. 192 

 193 

IQGAP2 in postmortem human brain tissue 194 

To putatively assess connections between IQGAP2 and human disease states, we evaluated IQGAP2 195 

protein distribution patterns in postmortem human hippocampal tissue from patients with Alzheimer’s 196 

disease (AD) and in cases without AD. Using a custom polyclonal antibody raised against a peptide with 197 

selective homology to human IQGAP2, we immunostained and quantified vascular-associated and 198 

parenchymal IQGAP2 signal in human hippocampal sections. IQGAP2 staining was strongly detected 199 

along blood vessels (identified by collagen expression), with more diffuse and punctate signal observed in 200 

the parenchyma (Figure 6). A significant decrease in IQGAP2 levels was found in parenchymal tissue (non-201 

vascular regions) in AD patients (Figure 6). Connections between immune cell entry into the brain and 202 

neurodegeneration are becoming increasingly scrutinized (60, 61), highlighting the potential importance of 203 

this finding.  204 

205 
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Discussion 206 

Peripheral endothelial cells display high levels of LAMs and can respond swiftly to local and systemic 207 

inflammatory cues (62). This is followed by rapid infiltration of leukocytes into surrounding tissue beds. In 208 

comparison, BECs are comparably immune quiescent under homeostatic conditions and generally express 209 

low levels of LAMs. This allows the BBB to more selectively control the activation of downstream 210 

inflammatory pathways and extravasation of leukocytes into the CNS (63, 64). Although peripheral immune 211 

responses are essential for the resolution of CNS injury, it is well established that age-related neurological 212 

deficits and chronic neurodegeneration may be exacerbated in part by unwarranted entry of leukocytes into 213 

the brain (39, 41, 65–67). Further, BECs upregulate transcriptional signatures of inflammatory responses 214 

during aging and neurological disease (24, 25, 68). As such, identifying mechanisms that regulate BEC 215 

inflammatory responses is critical for understanding the pathological progression of these diseases and 216 

developing strategies to decrease leukocyte extravasation. Our study provides evidence that IQGAP2 plays 217 

an important role in BBB immune dynamics and the propensity of leukocytes to enter the CNS after immune 218 

stimulation. 219 

To our knowledge, the role of IQGAP proteins in BBB integrity has not been studied. IQGAP2 belongs to 220 

the IQGAP family of scaffolding proteins involved in orchestrating a wide array of intracellular signaling 221 

and cytoskeleton dynamics (29). The multidomain structure of these proteins acts as a framework for 222 

complex formation of signaling proteins, thus influencing many downstream cellular processes. IQGAPs 223 

were historically considered to be modulators of cytoskeletal architecture. However, it has become apparent 224 

that their role extends into other physiological processes like glomerular filtration in the kidney, 225 

cardiomyocyte function in the heart, smooth muscle cell contraction in lung airways, and metabolism in the 226 

liver  (29, 69, 70). IQGAP2 has also been studied in the context of its tumor-suppressive characteristics 227 

(71). Previous studies identified IQGAP2 as a novel tumor suppressor gene specifically linked to the 228 

development of hepatocellular carcinoma. More recently, IQGAP2 inactivation has been linked to other 229 

malignancies like gastric cancer (72), prostate cancer (73), and bladder cancer (74). Moreover, reduced 230 
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expression of IQGAP2 is associated with worsened cancer pathology and poor clinical outcomes (73, 75, 231 

76). Our study provides new context for the role of IQGAP2 in physiological processes related to immune 232 

cell trafficking.  233 

One limitation of our study is that we cannot exclusively ascribe the observed CNS leukocyte infiltration 234 

to loss of Iqgap2 expression in a particular cell type. IQGAP2 has generally high expression in many 235 

immune cell subtypes (77), but this has not previously been associated with specific phenotypes like tissue 236 

extravasation and responsiveness to inflammatory cytokines. Our current data may suggest that cell-to-cell 237 

communication between BECs and immune cells plays a role in BBB inflammation when Iqgap2 is lost. 238 

However, more extensive scRNA-seq profiling of the neurovascular unit in Iqgap2-/- mice, as well as 239 

lineage-specific Iqgap2 knockout models, will be necessary in future studies to fully clarify cell-intrinsic 240 

and cell-extrinsic effects of IQGAP2 on BBB immune privilege. 241 

An additional unanswered question is whether changes in IQGAP2 expression contribute to human 242 

neurodegenerative disease progression through modulation of immune cell recruitment to the CNS. In the 243 

acute and chronic inflammatory animal models used in this study, we did not observe significant differences 244 

in pathology. In the EAE model, it is possible that the 30-day timepoint does not reflect increased damage 245 

caused by infiltrating leukocytes due to other compensatory mechanisms (e.g. significant damage could 246 

occur at an earlier time point followed by regeneration), especially when considering the biphasic disease 247 

severity in the Iqgap2-/- mice and that deaths generally occurred during periods where disease severity 248 

worsened. In human hippocampal tissue, we observed a decrease in IQGAP2 in patients with AD. Single-249 

cell datasets indicate parenchymal IQGAP2 expression is restricted to microglia, while vascular IQGAP2 250 

expression could potentially be localized to perivascular macrophages or fibroblasts (21, 24, 36). 251 

Interestingly, microglia have been recently connected to T cell infiltration in mouse models of tauopathy 252 

(78) and general aging (79), and T cell infiltration and resultant activation of microglia has been shown to 253 

exacerbate neurodegeneration in engineered human cell-based models of AD (80). In the context of our 254 
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study, these findings motivate future exploration into whether loss of Iqgap2 influences pathology and 255 

immune cell infiltration in mouse and human models of AD.  256 

Overall, our work reveals a novel role for IQGAP2 in regulating BBB immune dynamics. While the cell-257 

specific effects of IQGAP2 are currently unclear, our collective data suggest that this protein plays an 258 

important conserved and previously unrecognized role in suppressing BEC inflammatory responses and 259 

regulating immune cell trafficking to the CNS through non-cell autonomous mechanisms. Future work will 260 

determine these mechanisms of action and their relevance to brain disorders.  261 
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Methods 262 

 263 

Mouse maintenance and procedures 264 

Colony maintenance: All mouse protocols were approved by the Institutional Animal Care and Use 265 

Committee at Vanderbilt University. Iqgap2-/- mice (129S background) were obtained from Jackson 266 

Laboratory (strain 025452). Male and female Iqgap2-/- mice and wildtype littermate controls were used for 267 

all experiments. Mice were at least 8 weeks of age at the time of use and were housed continuously in an 268 

environmentally controlled facility in a 12-hour light/dark cycle with ad libitum access to food and water.  269 

Genotyping: Mice were ear-tagged and tail snips were collected at approximately 2 weeks of age. Genomic 270 

DNA was extracted using an Extracta DNA Prep kit for tissue (Quantabio) per manufacturer instructions. 271 

DNA was extracted in the Extraction buffer at 95°C for 30 minutes, cooled to room temperature and mixed 272 

with Stabilization buffer before being stored at -20°C. The reactions were performed using the Apex Hot 273 

Start Taq BLUE Master Mix (Apex Bioresearch) on a ProFlex PCR system (Applied Biosystems). A 274 

touchdown cycling protocol was used with an initial annealing temperature of 65°C gradually lowered to 275 

60°C over the course of 10 cycles. Genotyping primers used were as follows: Mutant Reverse–276 

ATTTGTCACGTCCTGCACGACG, Wildtype Reverse–TGGCCTTCCTCCCTTAAAGT, and Common 277 

Forward–TGACTCAGAGGGCACATGGT. PCR products were run on a 2% agarose-TAE buffered gel 278 

supplemented with SYBR Safe DNA Gel Stain (Invitrogen) and imaged using a LI-COR Odyssey Fc gel 279 

imager (Supplementary Figure 9). 280 

Tissue collection: Mice were deeply anesthetized using high-dose isoflurane and euthanized by transcardial 281 

perfusion of 1X DPBS (Gibco), followed by 4% paraformaldehyde (PFA, Thermo Fisher Scientific). Brains 282 

and lumbar segment of spinal cords were extracted and postfixed in 4% PFA overnight followed by 283 

cryopreservation in sucrose gradient solutions (15% and 30%, respectively). The tissue was then embedded 284 
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in OCT medium (Tissue-Tek) and 15 µm (brain) and 25 µm (spinal cord) thick sections were cut and stored 285 

at -80⁰C. 286 

Microvessel isolation: Mice were deeply anesthetized using high-dose isoflurane and euthanized by 287 

decapitation. Brains were extracted and collected in ice-cold PBS. Microvessels from the cortex were 288 

isolated as previously described (81). In brief, cortices were dissected from remaining brain tissue, 289 

homogenized in PBS using a tissue homogenizer (Wheaton), and collected by centrifugation. Homogenized 290 

tissue was resuspended in a 15% dextran solution (~70,000 kDa, Sigma) and centrifuged at 10,000xg to 291 

separate the vessel fraction from the remaining tissue. The vessel fraction was washed with PBS and filtered 292 

using a 40 µm cell strainer (Corning). For protein extraction, the vessel fraction was incubated in RIPA 293 

buffer (Sigma) supplemented with 1% v/v protease and phosphatase inhibitor cocktails (Sigma) for 30-60 294 

minutes on ice. Cell debris was separated by centrifugation (12,000xg for 15 minutes at 4⁰C) and the 295 

supernatant was stored at -20⁰C. Protein concentration was quantified using a Pierce BCA Protein Assay 296 

(Thermo Fisher Scientific) according to the manufacturer instructions. For immunohistochemical analysis, 297 

microvessel suspension was placed on glass slides and allowed to dry at room temperature. Dried 298 

microvessels were then fixed with 4% parafolmaldehyde solution and labelled with Lectin DyLight 488 for 299 

30 minutes at room temperature before mounting in Prolong Gold Antifade Mountant (Invitrogen). 300 

Intracerebroventricular injection of IL1β: Male and female Iqgap2-/- mice and wildtype littermates were 301 

used as experimental animals. All animals were at least 12 weeks old at the time of the surgery. Under 302 

isoflurane anesthesia, mice were unilaterally injected into the lateral ventricle using a stereotactic apparatus 303 

at coordinates of AP = -0.3 mm, ML = -1 mm, and DV = -3 mm. After injections, mice were returned to 304 

prewarmed home cages for recovery. Each mouse received 20 ng/µL of IL1β solution (20 ng in 1 µL PBS) 305 

or an equivalent volume of sterile PBS. 24 hours after surgery, mice were transcardially perfused with PBS 306 

followed by 4% paraformaldehyde and brains were extracted for immunohistological analysis. For 307 

quantification, CD45+ cells were manually counted in each section under blinded conditions. Vasculature 308 
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was labelled using a fluorescence-conjugated GLUT1 antibody to solely quantify CD45+ cells that had 309 

extravasated out of the vessels into the brain parenchyma. 310 

Experimental autoimmune encephalomyelitis (EAE): Female Iqgap2-/- mice and wildtype littermates were 311 

used as experimental animals. All animals were between 9 and 13 weeks of age at the time of induction. 312 

EAE kits (Hooke Laboratories) targeting MOG35-55 antigen were used. 100 µL of MOG35-55/Complete 313 

Freund’s Adjuvant emulsion was injected subcutaneously at the scruff of the neck and near the base of the 314 

tail resulting in a total injection volume of 200 µL into each mouse. At 2 and 24 hours post injection of 315 

emulsion, 100 µL of pertussis toxin (4 µg/mL) was injected intraperitoneally. Clinical scores were evaluated 316 

starting 7 days post induction as follows: score 1, flaccid tail; score 2, weak hind limbs; score 3, hind limb 317 

paralysis; score 4, quadriplegia. Clinical scores were recorded every day for the first week after 318 

development of symptoms followed by every other day thereafter. Premature deaths were recorded. 30 days 319 

following induction, mice were transcardially perfused with PBS followed by 4% paraformaldehyde. Brains 320 

and spinal cords were extracted for immunohistological analysis. For quantification, CD45+ cells were 321 

manually counted in each section under blinded conditions. Vasculature was labelled using a fluorescence-322 

conjugated GLUT1 antibody to ensure that CD45+ cells had extravasated out of the vessels. For quantifying 323 

EAE pathology in spinal cord, total area and demyelination area were calculated using the “Measure” tool 324 

in ImageJ by manually outlining regions of interest as indicated by Luxol Fast Blue stain. 325 

 326 

Zebrafish maintenance and procedures 327 

Zebrafish were maintained at 28.5°C following standard protocols (82). All zebrafish work was approved 328 

by the Harvard Medical Area Standing Committee on Animals under protocol number IS00001263-3. Adult 329 

fish were maintained on a standard light-dark cycle from 8 am to 10 pm. Adult fish, aged 3 months to 1.5 330 

years, were crossed to produce embryos and larvae. For imaging live larvae, 0.003% phenylthiourea (PTU) 331 

was used beginning at 1 dpf to inhibit melanin production. These studies used the AB wildtype strains and 332 
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the transgenic reporter strains (Tg(kdrl:HRAS-mCherry)s896 (83), abbreviated as Tg(kdrl:mCherry), and 333 

Tg(mpeg1:EGFP)gl22 (84), abbreviated as Tg(mpeg1:EGFP). Mosaic iqgap2 crispants were generated by 334 

injection of 7 µM Cas9 protein complexed with four sgRNAs (5’-AGTAGCCTCGATTTACAGG-3’, 5’-335 

GCACTTTGTCAGTCACGGAA-3’, 5’-CAGGACAGCGCGAGCACTG-3’, and 5’-AAAGTCCGCGCG 336 

CAGTTTA-3’) to target multiple sites in the iqgap2 transcript, and tyr control crispants were similarly 337 

targeted with four sgRNAs (5’-GCCGCACACAGAGCCGTCGC-3’, 5’-GGATGCATTATTACGTGTCC 338 

-3’, 5’- GACTCTACATCGGCGGATGT-3’, and 5’-GTATCCGTCGTTGTGTCCGA-3’). To distinguish 339 

between microglia and macrophages, 4 dpf larvae were exposed to 2.5 μg/ml of Neutral Red (Millipore 340 

Sigma: N7005) in embryo water for 3 hours at 28.5°C. Larvae were washed at least three times to remove 341 

the residual dye and then microglia were assessed the next day as previously described (48). Zebrafish 342 

larvae were immobilized by tricaine exposure and live imaged on a Leica SP8 line scanning confocal 343 

microscope. Quantification of mpeg+ and Neutral Red+ cells was manually performed on blinded z-stack 344 

images that spanned the entire larval head using ImageJ.  345 

 346 

Human brain tissue and preparation 347 

Human brain tissue was obtained at autopsy and prepared as previously described (85). De-identified brain 348 

tissue was obtained from the Vanderbilt Brain and Biospecimen Bank at Vanderbilt University Medical 349 

Center. Written informed consent for brain donation was obtained from patients or their surrogate decision 350 

makers. All brain tissue collection was authorized by the Institutional Review Board at Vanderbilt 351 

University Medical Center. Demographics and neuropathological information for each donor are listed in 352 

Supplementary Table 2.  353 

Human brain tissue was obtained at autopsy and immersion fixed in 10% formalin (Thermo Fisher 354 

Scientific) at 4oC for 1-3 days. The fixative solution was then removed and the tissued rinsed with 1x TBS 355 

(Corning) three times for 5 minutes each. The tissue was placed in sterile 10% sucrose (Millipore Sigma) 356 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2024. ; https://doi.org/10.1101/2023.02.07.527394doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.07.527394
http://creativecommons.org/licenses/by-nc-nd/4.0/


/1x TBS/0.02% sodium azide (NaN3, Millipore Sigma) until tissue sank and then 30% sucrose/1x 357 

TBS/0.02% NaN3 for overnight at 4oC or until the tissue sank. The tissue block was affixed to the stage of 358 

vibratome using cyanoacrylate cement and fully submerged in 1x TBS. Hippocampal sections were 359 

prepared at 50 µm thickness. Floating tissue sections were transferred to 15 mL Falcon tubes with antigen 360 

retrieval buffer (10 mM citric acid pH 6.0, Millipore Sigma) containing 0.05% Tween-20 (Millipore Sigma) 361 

and heated to 95˚C for 20 minutes in a block heater. Hippocampal sections were then washed with 100 mM 362 

glycine (Millipore Sigma)/1x TBS/0.1% Triton X-100 (Millipore Sigma) buffer for 30 minutes followed 363 

by permeabilization with 0.3% Triton X-100/1x TBS buffer for 30 minutes and two washes for 5 minutes 364 

each with 1x TBS at room temperature.  365 

 366 

Development of a custom antibody against human IQGAP2 protein 367 

A peptide corresponding to amino acid residues 1460-1474 of human IQGAP2 (RSIKLDGKGEPKGAK) 368 

was synthesized with an amino-terminal cysteine and conjugated to maleimide-activated Keyhole Limpet 369 

Haemocyanin (KLH), maleimide-activated bovine serum albumin (BSA), and SulfoLink resin using 370 

manufacturer protocols (Thermo Fisher). The peptide-KLH conjugate was used to immunize rabbits 371 

(Cocalico Biologicals). Rabbit antisera were tested for the presence of antibodies recognizing the IQGAP2 372 

peptide by dot blot analysis using the peptide-BSA conjugate. The rabbit antibodies were affinity-purified 373 

from the antisera using the peptide-SulfoLink resin, where 5 mL of rabbit sera was diluted 1:1 with PBS 374 

and passed over a 2 mL peptide-SulfoLink column. After extensive washing with PBS, bound antibodies 375 

were eluted with 8.5 mL 0.1 M Glycine (pH 2.2) and collected in a tube containing 1.5 mL of 1 M Tris (pH 376 

8). Antibody solution was stored at -80°C.  377 

 378 

Immunofluorescent staining 379 
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Mouse tissue: Tissue slices were retrieved from the -80⁰C freezer and allowed to thaw at room temperature 380 

for 10-15 minutes. Sections were washed with 1X PBS with 0.03% Triton X-100 to remove the OCT 381 

medium. Sections were then blocked using a goat serum blocking buffer and incubated in primary antibody 382 

solution overnight at 4°C. After incubation, primary antibody solution was thoroughly washed off and 383 

sections were incubated in secondary antibody solution for 2 hours at room temperature. All antibodies and 384 

corresponding dilutions used for immunohistochemistry are listed in Supplementary Tables 3-4.  Following 385 

final washes, tissue was mounted in Prolong Gold Antifade Mountant with DAPI (Invitrogen) and slides 386 

were allowed to dry overnight before imaging on a Leica DMi8 epifluorescence microscope. All acquired 387 

images were processed and quantified using ImageJ software. For quantification of vascular Vcam1 388 

expression, mean Vcam1 intensity was calculated within CD31+ vessels using ImageJ.  389 

Human tissue: Immunohistochemical labeling in hippocampal tissue slices was performed as previously 390 

described (85, 86) with minor modifications. Tissue slices were incubated with primary antibodies for 48 391 

hours at 4oC followed by secondary antibodies for 2 hours at room temperature. All antibodies and 392 

corresponding dilutions used for immunohistochemistry are listed in Supplementary Tables 3-4. Neuritic 393 

plaques, neurofibrillary tangles and related AD pathological structures were additionally stained using 1 394 

µM 4,4'-[(2-methoxy-1,4-phenylene) di-(1E)-2,1-ethenediyl] bisphenol (MX-04) (Tocris) for 15 minutes 395 

at room temperature. Confocal images were acquired using the Zeiss LSM 710 confocal laser-scanning 396 

microscope (Carl Zeiss AG) with a 20× air/dry or 63× oil objective and 10 μm z-stack scanning projections 397 

with a step interval of 1 μm or one scanning projection, with a minimum resolution of 1500 x 1500 pixels. 398 

Vascular IQGAP2 expression was quantified using mean IQGAP2 intensity within Collagen+ area and 399 

parenchymal IQGAP2 expression was quantified by gating Collagen- area using ImageJ. 400 

 401 

Luxol Fast Blue staining 402 
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Tissue slices were retrieved from the -80⁰C freezer and allowed to thaw at room temperature for 10-15 403 

minutes. Sections were first allowed to dry overnight at room temperature and then immersed in a 70% 404 

ethanol solution overnight to facilitate defatting. Luxol Fast Blue stain (Abcam) was applied to the sections 405 

and incubated for 5 to 6 hours at 60⁰C. Excess stain was washed off by consecutive dipping in fresh absolute 406 

ethanol. Slides were differentiated briefly using lithium carbonate solution and washed with distilled water 407 

and alcohol solution. Lastly, sections were counterstained with Cresyl Etch Violet, washed with distilled 408 

water, dehydrated with absolute alcohol and mounted in DPX mounting medium (Sigma-Aldrich). 409 

Mounting medium was cured overnight before imaging on a Leica DMi8 inverted microscope. 410 

 411 

Western blotting 412 

Protein samples from mouse tissue were prepared by diluting 20-40 μg of protein with 1X Laemmli buffer 413 

(Biorad) supplemented with beta-mercaptoethanol (Sigma) and Ultrapure water (Gibco) to a final volume 414 

of 20-30 μL. Samples were then boiled at 95⁰C for 5 minutes, cooled on ice, and centrifuged briefly. 415 

Samples were then loaded into 4-20% Criterion TGX Midi protein gels (Biorad) along with Precision Plus 416 

Dual Color Protein ladder (Biorad) and run at 80-120V. Protein gels were then transferred onto iBlot2 417 

Nitrocellulose membranes (Thermo Fisher Scientific) using an iBlot2 transfer device (Thermo Fisher 418 

Scientific). Membranes were cut to size and blocked for at least 30 minutes at room temperature in Intercept 419 

TBS Blocking buffer (LI-COR Biosciences) on a shaker. Membranes were submerged in primary 420 

antibodies diluted in blocking buffer with 0.05% Tween20 (Sigma) and incubated at 4⁰C overnight. 421 

Following primary antibody incubation, membranes were washed in wash buffer (1X tris buffered saline 422 

with 0.05% Tween-20). Membranes were incubated in secondary antibodies diluted in the wash buffer at 423 

room temperature for 2 hours. All primary and secondary antibody information is listed in Supplementary 424 

Tables 3-4. Blots were imaged using a LI-COR Odyssey Clx or Fc Imager and bands were quantified using 425 

Image Studio Lite software. 426 
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 427 

Single-cell RNA sequencing 428 

Fresh cortical tissue was homogenized and delipidated using an Adult Brain Dissociation Kit (Miltenyi 429 

Biotec) according to the manufacturer’s instructions. The resultant single-cell suspension was incubated 430 

with TruStain FcX (Biolegend) for 10 minutes at 4°C to prevent non-specific antibody binding of Fc 431 

receptors, labeled with a secondary conjugated CD31 antibody (1:2000, eBioscience) for 30 minutes, and 432 

counterstained with DAPI. Live CD31+ cells were flow sorted using a 4-laser FACS Aria III sorter (BD 433 

Biosciences) at the Vanderbilt Flow Cytometry Shared Resource. Live cells were resuspended in DMEM 434 

(Gibco) supplemented with 2% FBS to obtain a concentration of 700-1200 cells/μL. RNA extraction, 10X 435 

Genomics Chromium 5’ scRNAseq Library Prep, and sequencing on an Illumina NovaSeq6000 sequencer 436 

was performed at the VANTAGE core facility. 437 

 438 

Single-cell RNA sequencing analysis 439 

All gene by counts data were read into Seurat (v.4). The initial data were filtered to retain only cells with 440 

RNA counts between 1,200 and 20,000 (with less than 10% being mitochondrial). Within each biological 441 

experiment, data were log normalized. The top 2,000 variable features (as identified by variance) were 442 

selected. Samples were combined using CCA (Seurat v.4) and then standardized. UMAP based on the first 443 

50 principal components was used to reduce dimensionality for visualization and clustering (87). Predicted 444 

doublets were filtered out using DoubletFinder (88). Unsupervised clustering was achieved using the KNN-445 

graph approach in Seurat (89), and clusters were annotated with SingleR (90) based on previously published 446 

datasets (49). Predominantly endothelial clusters (0,2,4,5) were rescaled and clustered based on the first 15 447 

principal components. Clusters were annotated as arterial, capillary, or venous based on the expression of 448 

established marker gene sets (21). Approximately 2,000 ECs were analyzed per condition. Differentially 449 

expressed genes (DEGs) were computed in Seurat using the FindMarkers() function with built-in 450 
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Bonferroni correction. KEGG or Reactome gene set enrichment analysis (GSEA) was computed on 451 

significant DEGs using WebGestalt with a false discovery rate cutoff of 0.05 and weighted set cover 452 

redundancy reduction (91). Communication between cell types was predicted using the CellChat R 453 

packages (59). For visualization, EnhancedVolcano (92), UpSetR shiny app (93), iGraph (94), and ggvenn 454 

were employed.  455 

 456 

Statistical analysis 457 

Statistical analysis for single-cell RNA sequencing data was conducted in R. All other analysis was 458 

performed in GraphPad Prism 9.0.0. 459 

 460 

Data availability 461 

Raw sequencing data files have been deposited in the ArrayExpress collection under accession code E-462 

MTAB-12687. All code used for the single-cell RNA sequencing analyses is publicly available at: 463 

https://github.com/LippmannLab/IQGAP2_WT_KO_BEC_scRNAseq. 464 
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Figures  495 

 496 

 497 

Figure 1: Global loss of Iqgap2 increases infiltration of peripheral leukocytes in a mouse model of 498 

acute neuroinflammation. 499 

A) Schematic representation of experimental design for assessing leukocyte numbers in mouse brains 24 500 

hours after intracerebroventricular saline or IL1β delivery. 501 

B) Representative images and quantification of CD45+ immune cells (magenta) and vasculature (green) 502 

in wildtype (WT) and Iqgap2-/- (KO) mouse brain cortex following treatment with saline or IL1β. Data 503 

are represented as mean ± SD, and each data point represents an individual mouse, where at least 5 504 

images were quantified per mouse. For saline treatment, N=3 WT mice and N=3 KO mice, and for 505 
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IL1β treatment, N=4 WT mice and N=6 KO mice. Statistical significance was calculated using one-506 

way ANOVA with Tukey’s multiple comparison’s test (*, p<0.05, **, p<0.01, ****p<0.0001). 507 

508 
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 509 

Figure 2: Global loss of Iqgap2 increases infiltration of peripheral leukocytes in EAE. 510 

A) Schematic representation of experimental design for assessing response to EAE 30 days following 511 

induction. 512 
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B) Representative images and quantification of CD45+ immune cells (magenta) and vasculature (green) 513 

in wildtype (WT) and Iqgap2-/- (KO) lumbar spinal cord at 30 days following EAE induction. Data are 514 

represented as mean ± SD, and each data point represents an individual mouse. At least 8 images were 515 

quantified per mouse. N=8 WT mice, N=6 KO mice. Statistical significance was calculated using the 516 

unpaired student’s t-test (**, p<0.01). 517 

C) EAE score curve for wildtype (WT) and Iqgap2-/- (KO) mice following EAE induction. Data are 518 

presented as mean ± SEM. N=8 WT mice, N=6 KO mice. Statistical significance was calculated using 519 

the unpaired student’s t-test on area under the curve.  520 

D) Probability of survival in WT versus KO mice following EAE induction. N=10 WT and KO mice. 521 

Statistical significance was calculated using Log-rank (Mantel-Cox) test. 522 

E) Representative images and quantification of demyelinating lesions in WT and KO lumbar spinal cord 523 

section stained with Luxol Fast Blue at 30 days following EAE induction. Data are represented as mean 524 

± SD, and each data point represents an individual mouse, where 1 image was quantified per mouse. 525 

N=8 WT mice, N=6 KO mice. Statistical significance was calculated using the unpaired student’s t-526 

test.527 
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 528 

Figure 3: Mosaic loss of iqgap2 expression increases infiltration of peripheral immune cells into the 529 

zebrafish brain. 530 

A) Schematic representation of experimental design for assessing leukocyte numbers in the larval zebrafish 531 

brain. Double transgenic (kdrl:mCherry; mpeg:EGFP) single-cell embryos were injected with Cas9 532 

protein and sgRNAs to target genes of interest. These mosaic crispants were then allowed to develop 533 

normally, and mpeg+ leukocytes were quantified in the brain at 5 dpf. 534 
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B) Representative 100 µm thick maximum intensity projection images and quantification of macrophage 535 

lineage cells (mpeg:EGFP) in the brains of uninjected (UN) controls, tyr crispant controls, and iqgap2 536 

crispants. Vasculature is marked with the kdrl:mCherry transgene (magenta). N=30 fish (UN), 15 fish 537 

(tyr), and 52 fish (iqgap2). Data are represented as mean ± SD, and each data point represents an 538 

individual fish. Statistical significance was calculated using a one-way ANOVA with Tukey’s multiple 539 

comparison’s test (****, p<0.0001). 540 

C) Representative images and quantification of infiltrating leukocytes versus tissue-resident microglia in 541 

the brains of iqgap2 crispants versus uninjected (UN) controls. Representative 30 µm thick maximum 542 

intensity projection images of the dorsal (top) or ventral (bottom) brain regions and quantification of 543 

mpeg+ (green) macrophage lineage cells and mpeg+/Neutral Red+ (magenta) microglia. Yellow 544 

arrowheads indicate individual mpeg+/Neutral Red- infiltrating leukocytes in the ventral brain of 545 

iqgap2 crispants. N=16 fish (UN) and 20 fish (iqgap2). Data represented as mean ± SD, and each data 546 

point represents an individual fish. Statistical significance was calculated using an unpaired Student’s 547 

t-test (****, p<0.0001). 548 
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Figure 4: Global loss of Iqgap2 yields extensive transcriptional changes in BECs. 551 

A) Schematic representation of experimental design. Whole brain cortices were isolated from wildtype 552 

(WT) and Iqgap2-/- (KO) mice, dissociated to a single cell suspension using enzyme-based dissociation 553 

techniques, and sorted to enrich for CD31+ cells before sequencing. 554 

B) UMAP cell annotations based on unsupervised clustering. EC = endothelial cells, EC/PC = EC/stromal 555 

cells (pericytes), EC/AC = EC/stromal cells (astrocytes), MNC = monocytes, MG = microglia. 556 

C) UMAP comparison between WT (grey) and KO (pink) cells.  557 

D) Volcano plot highlighting differentially expressed genes in the EC cluster. 928 genes were significantly 558 

altered, with 584 upregulated and 344 downregulated by loss of Iqgap2. Red dots indicate genes with 559 

p<0.05 and >2-fold change in expression. 560 

E) UMAP of endothelial zonal identity based on unsupervised clustering. A = arterial, C = capillary, V = 561 

venous.  562 

F) Venn diagram showing number of DEGs shared between zonal identities.  563 

 564 
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 566 

Figure 5: Global loss of Iqgap2 produces a widespread inflammatory phenotype in BECs. 567 

A) Split violin plots indicating differential gene expression of select inflammatory markers across vascular 568 

zones between wildtype (WT) and Iqgap2-/- (KO) BECs. Statistical significance was calculated using 569 

Wilcox rank-order tests with Bonferroni correction (***, p<0.001). 570 

B) Representative images and quantification of vascular Vcam1 expression in WT versus KO mouse 571 

cortex. Quantification was performed across N=3 biological replicates. Data are represented as mean ± 572 

SD (black bars). Biological replicates are represented as squares and measurements from individual 573 

images are represented as circles color coded to each replicate. Statistical significance was calculated 574 

using the student’s unpaired t-test (*, p<0.05). 575 

C) GSEA analysis for signaling pathways upregulated in KO versus WT BECs. Each node represents an 576 

enriched gene set belonging to the labeled canonical pathway. Nodes are colored based on p-value, and 577 

thickness of the connecting lines indicates similarity of overlapping genes represented in connected 578 

gene sets. KSHV = Kaposi sarcoma-associated herpes virus infection, HTLV = Human T-cell leukemia 579 
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virus 1 infection, HIV = Human immunodeficiency virus 1 infection, PPER = Protein processing in 580 

endoplasmic reticulum, HPV = Human papillomavirus infection. 581 
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 583 

Figure 6: IQGAP2 distribution in human hippocampus. 584 

A) Representative confocal microscopy images of IQGAP2 (green) in human hippocampal tissue from 585 

AD and non-AD donors. Images were produced from 10 μm z-stack scanning projections with a 586 

step interval of 1 μm. Vasculature was stained with Collagen (red) and β-amyloid and neuritic 587 

plaques, neurofibrillary tangles and other tau aggregates were stained with Methoxy-X04 (blue).  588 

B) Mean IQGAP2 intensity in vascular regions was quantified solely one scanning projection in 589 

collagen+ area, while IQGAP2 intensity in parenchyma was quantified by gating samples to 590 
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exclude collagen+ area. Data are presented as mean ± SD, where each data point represents an 591 

individual donor with at least five images quantified per donor. N=7 non-AD donors and N=7 AD 592 

donors. Statistical significance was calculated using unpaired student’s t-test (**, p<0.01).  593 

594 
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