

1 **Title: H3K27me3 dictates atypical genome-nuclear lamina interactions and allelic
2 asymmetry during early embryogenesis**

3

4 **Author list**

5 Isabel Guerreiro ^{1,2,6*}, Franka J. Rang ^{1,2,6}, Yumiko K. Kawamura ³, Femke C. Groenveld ^{1,2,4},
6 Ramada E. van Beek ^{1,2}, Silke J. A. Lochs ^{1,2}, Ellen Boele ^{1,2}, Antoine H. M. F. Peters ^{3,5}, Jop
7 Kind ^{1,2,4*}

8

9 1: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and
10 University Medical Center Utrecht, Utrecht, the Netherlands

11 2: Oncode Institute, the Netherlands

12 3: Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland

13 4: Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life
14 Sciences, Radboud University Nijmegen, the Netherlands

15 5: Faculty of Sciences, University of Basel, Basel, Switzerland

16 6: These authors contributed equally

17

18 *Correspondence: j.kind@hubrecht.eu, i.guerreiro@hubrecht.eu

19

20

21

22 **Abstract**

23 The very first days of mammalian embryonic development are accompanied by epigenetic
24 reprogramming and extensive changes in nuclear organization. In particular, genomic regions
25 located at the periphery of the nucleus, termed lamina-associated domains (LADs), undergo
26 major rearrangements after fertilization. However, the role of LADs in regulating gene
27 expression as well as the interplay with various chromatin marks during preimplantation
28 development remains elusive. In this study, we obtained single-cell LAD profiles coupled with
29 the corresponding gene expression readout throughout the first days of mouse development.
30 We detect extensive cell-cell LAD variability at the 2-cell stage, which surprisingly does not
31 seem to functionally affect gene expression. This suggests an unusual uncoupling between 3D-
32 nuclear genome organization and gene expression during totipotent developmental stages. By
33 analyzing LAD dynamics and chromatin states across early developmental stages in an allelic-
34 specific manner, we identify genomic regions that transiently detach from the nuclear lamina
35 and are enriched by non-canonical H3K27me3. Upon maternal knock-out of a component of
36 the Polycomb repressive complex 2 and concomitant loss of H3K27me3 during early
37 embryogenesis, these regions relocate to the lamina at the 2-cell stage. Our results suggest that
38 H3K27me3 is the prime determinant in establishing the atypical distribution of the genome at
39 the nuclear periphery during the first days of embryonic development. This study provides
40 insight into the molecular mechanisms regulating nuclear organization of parental genomes
41 during very early mammalian development.

42

43

44

45 **Main**

46

47 Mammalian development begins with the fusion of two differentiated cells, the gametes, that
48 give rise to a totipotent zygote. The embryo subsequently undergoes multiple cycles of cell
49 division, with inner cells progressively transitioning to a pluripotent state while outer cells
50 commit to becoming extra-embryonic tissue by the time of implantation in the uterus. After
51 fertilization, maternal transcripts are progressively degraded as embryonic genes become
52 active. All these events occur within the first three days of mouse development and are
53 accompanied by extensive epigenetic reprogramming as well as major changes in spatial
54 genome organization (reviewed in ^{1,2}).

55 One important feature of nuclear organization is the localization of genomic regions at the
56 nuclear lamina (NL). These genomic regions, termed lamina-associated domains (LADs), have
57 been extensively studied and are characterized by being gene-poor, having low gene expression
58 and high repeat content as well as other features of constitutive heterochromatin. Importantly,
59 in addition to their architectural function, LADs have been shown to play a role in gene
60 expression (reviewed in ^{3,4,5}). LADs are typically detected using the DamID technique⁶. This
61 technique allows for the profiling of protein-DNA interactions by fusing a protein of interest
62 to the Dam DNA methyltransferase, a DNA methyltransferase that methylates adenines in a
63 GATC context of genomic regions it comes into contact with. Fusing Dam to a component of
64 the nuclear lamina (NL), typically Lamin B1, thus results in the specific methylation of LADs
65 that can subsequently be sequenced and mapped to the genome.

66 Previous work studying LADs in the context of preimplantation development has shown
67 atypical lamina association patterns at these stages. Maternal LADs have been found to be
68 established *de novo* following fertilization, while paternal LADs undergo massive

69 rearrangements between the zygote and 2-cell stages. Consequently, maternal and paternal
70 genomes show differences in lamina association up until the 8-cell stage¹.
71 The positioning of the genome at the NL or other locations within nuclear space is non-random
72 and is associated with specific chromatin and transcriptional states⁷. Therefore, it is essential
73 to study LADs within the wider context of epigenetics and gene expression. Profiling histone
74 post-translational modifications (PTMs) in early embryogenesis is challenging and recent work
75 has started to shed light on the epigenetic features and dynamics of the early mouse embryo⁸⁻
76 ¹⁴. Trimethylation at histone 3 lysine 27 (H3K27me3), a histone modification that is associated
77 with the repression of developmental genes, is deposited by the Polycomb repressive complex
78 (PRC) 2. After fertilization, H3K27me3 has been shown to lose its typical distribution at
79 promoters of developmental genes at maternal and paternal genomes while retaining non-
80 canonical broad distal domains along the maternal genome at regions devoid of developmental
81 genes¹⁴. Trimethylation at histone 3 lysine 9 (H3K9me3), a mark often found in LADs, also
82 shows unusual enrichment and allelic asymmetry in early mouse development. ChIP-seq data
83 has shown that H3K9me3 and H3K27me3 extensively overlap during early developmental
84 stages across the genome, in contrast to what has been reported in other biological systems¹².
85 Although low-input technologies have recently shed light on the chromatin state and nuclear
86 architecture of the early mouse embryo, the underlying mechanisms and the relationship
87 between the different layers of epigenetic features remains largely unexplored. Additionally,
88 while cell-cell variability in gene expression and chromatin modifiers is proposed to contribute
89 to early cell fate choices¹⁵⁻¹⁷, the role of variable genome-NL interactions during
90 preimplantation development remains largely unexplored. Here, we profile single-cell LADs
91 throughout a range of developmental stages in early development and study their cell-cell
92 variability and dynamics over time in the wider context of chromatin state and transcription.

93

94 **Genome-nuclear lamina association is highly variable among single cells of 2-cell embryos**

95 Our previous work profiling LADs in preimplantation development has suggested that cell-cell
96 variability in LADs may be particularly high between single cells in the early developmental
97 stages¹. To address this finding in more detail we have made use of scDam&T-seq, a newly
98 developed single-cell DamID technique¹⁸ which: 1) provides improved signal-noise ratio, 2)
99 increases the throughput, 3) allows to keep track of the embryo each cell comes from and 4)
100 can be coupled with the corresponding transcriptional output from the same cell (Extended
101 Data Figure 1a-b). Using this technique we obtained a total of 754 single-cell LAD profiles
102 that passed quality control thresholds (see Methods): 107 zygote cells, 196 2-cell stage cells,
103 183 8-cell stage cells and 268 mES cells (Extended Data Figure 1b-c). Average LAD profiles
104 per stage showed high concordance with previously published data (Extended Data Figure 1e-
105 f). For each collected cell we obtained the LAD profile and the corresponding gene expression
106 read-out (Figure 1a and Extended Data Figure 2a). Plotting all single cells by uniform manifold
107 approximation and projection (UMAP) based on DamID (i.e. Dam-LMNB1 value) shows clear
108 clustering according to stage (Figure 1b), similarly to the UMAP visualization obtained from
109 the gene expression information of the same cells (Figure 1c). Thus, consistent stage-specific
110 LAD patterns are observed between individual cells of the same cleavage stage. The percentage
111 of the genome that contacts the nuclear lamina was similar across stages and comparable to
112 mouse embryonic stem cells (mESCs) with the exception of the zygote which had a markedly
113 lower proportion of the genome located at the NL (Extended Data Figure 2b).

114 To understand whether there were differences in cell-cell LAD variability across stages, we
115 converted single-cell LMNB1 values to an aggregate contact frequency (CF) which refers to
116 the proportion of cells for which a genomic bin is contacting the NL¹⁹.
117 CF distributions per stage revealed more intermediate CF values for 2-cell and 8-cell stages,
118 indicating more variability in lamina association (Extended Data Figure 2c). To more precisely

119 quantify LAD variability, we calculated the Yule's Q coefficient which provides a measure of
120 similarity between single-cell LADs. To control for the different levels of sparsity and noise
121 per stage, we corrected Yule's Q values using the same metric on randomised single-cell
122 profiles (Methods and Extended Data Figure 2h). This approach allows us to discern true
123 single-cell variability from noise-driven variability and showed that 2-cell LADs are
124 particularly heterogeneous among single cells compared to other stages (Figure 1d and
125 Extended Data Figure 2d). Strikingly, we also found that cells from the same embryo tend to
126 have more similar LAD profiles, especially at the 2-cell stage (Extended Data Figure 2e). This
127 could potentially be due to restraints dictated by nuclear organization and chromatin states
128 present in the zygote prior to cell division. However, we cannot completely exclude a technical
129 component since the volume of injected Dam construct per embryo may slightly vary.
130 Lastly, to determine whether the level of variability was constant throughout the linear
131 chromosome, we plotted the distribution of CFs across all autosomal chromosomes at the 2-
132 cell stage and found that genomic regions proximal to the centromere showed unusually high
133 CF values (Figure 1e and Extended Data Figure 2f). Similarly, contacts with the nuclear lamina
134 in the first 30 Mb (centromeric) were significantly higher at the 2-cell stage compared to CF
135 values along the remaining portion of the chromosome (non-centromeric), unlike mESCs
136 which showed no significant difference in nuclear lamina-contacts between centromeric and
137 non-centromeric regions (Extended Data Figure 2g). These results suggest that despite high
138 levels of LAD variability, centromeric regions tend to associate with the lamina in a more
139 uniform manner across cells. This is a feature uniquely observed at the 2-cell stage, which
140 coincides with the moment in development where centromeric regions dramatically change
141 their organization in the nucleus, beginning to relocate from the border of nucleolar precursor
142 bodies to cluster into chromocenters²⁰.

143 Having found a pattern in the LAD variability along the chromosome we next asked whether
144 LADs would vary independently of each other. Previous work on a human cell line has shown
145 that genomic regions that are in close spatial proximity coordinately attach and detach from the
146 NL in single cells. As a result, LAD coordination measurements show a similar pattern to
147 genome interactions visualized by Hi-C DNA-DNA matrices¹⁹. After fertilization, chromatin
148 is mostly unorganized and progressively acquires higher-order chromatin structure as
149 development progresses²¹. Interestingly, LADs were shown to be established already in the
150 zygote as big domains of high A/T content, thus preceding the establishment of 3D-genome
151 topology¹. This fact prompted us to ask what the interrelationship is between 3D-genome
152 topology and LAD coordination at these early stages of development. By calculating the
153 coordination between lamina-association values per single cell, we found that although LADs
154 are clearly present at the zygote stage, the coordination values are very low and tend to increase
155 over developmental time (Figure 1f). This suggests that LAD coordination and 3D-genome
156 organization are interconnected. Indeed, when we performed a principal component (PC)
157 analysis for both measurements, PC1 of the Hi-C showed high correlation with either PC1 or
158 PC2 of the LAD coordination matrix (Figure 1f and Extended Data Figure 2j).
159 Previously, we also found that genome-NL contacts interact multivalently over long stretches
160 in single cells of a human cell line¹⁹. We thus wondered if this would also be the case during
161 preimplantation development, in the near absence of higher-order chromatin organization. We
162 found that, at all stages, longer stretches of the genome are in contact with the nuclear lamina
163 when compared to a randomized control, including the zygotic stage (Extended Data Figure
164 2i). This shows that unlike LAD coordination, multivalent genome-NL contacts appear to be
165 established largely independent of 3D-genome topology.
166 These results indicate that LADs may be established through multivalent interactions just after
167 fertilization independent of higher order chromatin organization, but that the mechanisms

168 driving 3D-genome topology are tightly interconnected with LAD coordination from the 2-cell
169 stage onwards.

170

171 **Cell-cell LAD variability at the 2-cell stage is higher in the paternal allele**

172 Previous work has reported parental differences in genome-lamina association up to the 8-cell
173 stage¹. This prompted us to investigate single-cell LAD variability in the maternal and paternal
174 alleles by using a hybrid cross between mice of two different strains (CBAxC57BL/6J females
175 and CAST/EiJ males). For mESCs a hybrid strain of Cast/EiJx129Sv was used. We could
176 confirm the previously reported LAD differences between alleles, which are apparent even at
177 the single-cell level (Figure 2a and Extended Data Figure 3a and b). Visualization of all single-
178 cell allele-specific LAD profiles by UMAP showed a clear allelic separation at the zygote and
179 2-cell stages in contrast to the intermingling of the paternal and maternal LADs in ESCs
180 (Extended Data Figure 3d). Paternal and maternal LADs at the zygote stage clustered
181 separately from each other. Interestingly, paternal LADs grouped closer to mESC LADs
182 implying that paternal genome displays more canonical lamina association at the zygote stage.
183 After cell division, at the 2-cell stage, paternal genome-NL interactions are largely rearranged¹.
184 Both in zygote and 2-cell stages, the paternal genome contacts the NL significantly more than
185 the maternal counterpart, while in ESCs LAD coverage was comparable between the two
186 alleles (Figure 2b). Interestingly, while at the zygote stage maternal LADs are more variable
187 than paternal LADs, this trend is clearly inverted at the 2-cell stage (Figure 2c).
188 Due to the asymmetry in LAD content and variability between the two parental alleles, we
189 wondered whether the tendency for high CF values at centromeric regions of chromosomes at
190 the 2-cell stage was a feature of both alleles. Indeed, the maternal as well as the paternal Dam-
191 LMNB1 CF values were higher in centromeric regions of chromosomes at the 2-cell stage
192 compared to zygote and mESCs (Extended Data Figure 3e). However, the difference in CF

193 between centromeric and non-centromeric regions was more noticeable in the maternal genome
194 (Extended Data Figure 3f), presumably as a result of the paternal genome having generally
195 higher NL association. Interestingly, even though the maternal zygotic LAD profile has been
196 shown to resemble that of the 2-cell stage¹, centromere-specific lamina associations were not
197 present at this stage.

198 Overall, these results indicate that the parental genomes do not locate evenly to the nuclear
199 periphery and that paternal LADs contribute the most to the unusually high cell-cell variability
200 observed at the 2-cell stage (Figure 1d).

201

202 **LAD variability at the 2-cell stage is not accompanied by major changes in chromatin
203 state and transcription**

204 The localization of genomic regions at the NL is typically associated with heterochromatic
205 features and low gene expression. Since LAD cell-cell variability is unusually high at the 2-
206 cell stage, we hypothesized that differential NL association may impact chromatin state or gene
207 expression. For this, we employed EpiDamID²², a single-cell DamID-based technique that has
208 been adapted to detect histone marks through the fusion of either single-chain variable
209 fragments (scFv) or chromatin reader domains to the Dam methylase. We chose to profile 1)
210 H3K9me3 that is often present in LADs, 2) H3K27me3 which plays an essential role in
211 repressing genes during embryonic development and 3) open chromatin that tends to anti-
212 correlate with LADs. To this end, the fusion constructs Dam-Cbx1 (chromodomain tuple) and
213 Dam-H3K27me3 (scFv)²² as well as the untethered Dam were used, respectively. The profiles
214 obtained with these constructs were comparable to published 2-cell stage ChIP-seq and ATAC-
215 seq data (Figure 3a and Extended Data Figure 4a). Importantly, a mutant version of the Dam-
216 H3K27me3 construct²², which loses binding affinity to the histone mark, showed no specific
217 enrichment in contrast to the non-mutant construct (Extended Data Figure 4c). The DamID

218 datasets had high genome-wide correlations with the corresponding publicly available dataset,
219 which further validated their genome-wide similarity (Figure 3b).

220 Strikingly, when inspecting highly variable regions with respect to genome-NL interactions,
221 H3K27me3, H3K9me3 and open chromatin appeared to have a more uniform distribution
222 among single cells (Figure 3c). In order to quantify and compare the levels of cell-cell
223 variability among the different measurements, we again controlled for construct-specific
224 sparsity and noise by normalizing the Yule's Q of our data to the same metric from a
225 randomized dataset (Extended Data Figure 4a and Methods). Visual comparison of the single-
226 cell LAD profiles with the corresponding randomized data revealed clear differences that were
227 less evident for the other constructs (Extended Data Figure 4a). The normalized cell-cell
228 similarity measurement confirmed these observations as LADs showed a lower similarity score
229 compared to H3K9me3, H3K27me3 and accessible chromatin (Figure 3d and Extended Data
230 Figure 4d). These results indicate that LAD variability among single cells at the 2-cell stage is
231 not accompanied by changes in chromatin state.

232 We hypothesized that variable lamina association could result in transcriptional differences
233 among single cells. To test this, we made use of the combined genomic and transcriptomic
234 read-out of our single-cell data (Figure 1a). We validated our gene expression data by
235 calculating enrichment of genes known to be activated at different timepoints along the first
236 days of development. The results showed stage-specific upregulation of the different categories
237 of genes at the correct developmental time (Extended Data Figure 4e). However, when
238 comparing the gene expression of genomic regions when they reside at the lamina versus when
239 they are dissociated, we observe no noticeable differences (Figure 3e).

240 Together these results indicate that while genome-NL associations show high cell-cell
241 variability at the 2-cell stage, this does not result in large changes in chromatin state or gene
242 expression.

243

244

245 **Regions that dissociate from the NL at the 2-cell stage are high in H3K27me3**

246 LADs in somatic cells typically display features of constitutive heterochromatin²³.

247 Interestingly, most chromatin marks show an atypical distribution during the first days of

248 embryonic development^{9,10,12-14}. This fact motivated us to investigate the relationship between

249 LADs and histone PTMs during preimplantation development. To that end we performed

250 clustering of genomic bins based on their Dam-LMNB1 and histone PTM values across stages

251 (Methods). We could assign 8 clusters (Extended Data Figure 5a-c) that are characterized by

252 different levels of lamina association and histone PTMs. We focused on the four clusters that

253 showed high Dam-LMNB1 levels at least in one of the stages (Figure 4a). Clusters 1 and 2

254 include LADs that can be observed in all stages - constitutive LADs – and show mild

255 enrichment for maternal H3K9me3 (cLADs-K9) and H3K4me3 (cLADs-K4), respectively

256 (Figure 4a, Extended Data Figure 5c). Cluster 3 contains genomic regions that preferentially

257 associate to the NL at the 2-cell stage and to a lesser degree at the 8-cell stage, which we termed

258 embryonic transient LADs or ET-LADs. ET-LADs were the only LAD clusters to show low

259 LINE L1 density and higher gene density, contrary to the features that typically characterise

260 LADs (Extended Data Figure 5e-f). In addition, ET-LADs appear to be enriched in H3K27me3

261 in ESCs, where these regions have mostly lost lamina association (Extended Data Figure 5b).

262 Cluster 4 represented genomic regions in the maternal genome that are associated to the NL in

263 mESCs but not during early developmental stages, namely zygote and 2-cell stage (Figure 4b

264 and Extended Data Figure 5c, upper panel). We therefore termed these regions embryonic

265 transient iLADs or ET-iLADs. Although these regions are not LADs in the maternal zygotic

266 genome, they do show strong lamina association in the paternal zygotic genome (Extended

267 figure 5c, bottom panel). At the 8-cell stage these regions appear to show mild lamina

268 association values suggesting an intermediate state of NL attachment (Figure 4b).
269 Interestingly, ET-iLADs showed strong H3K27me3 signal at stages with reduced lamina
270 association levels (Figure 4a, c and Extended Data Figure 5b). These genomic regions display
271 an inverse relationship between lamina association and the non-canonical H3K27me3
272 (ncH3K27me3) that is found in early development up to implantation stages ¹⁴. Indeed, we
273 found that regions that had high lamina association values in mESCs but not at the 2-cell stage,
274 were instead H3K27me3-enriched at the 2-cell stage (Figure 4d-f). Additionally, we found a
275 depletion of Dam-LMNB1 signal over maternal 2-cell ncH3K27me3 domains at the two-cell
276 stage which was in contrast with the enrichment observed in mESCs and zygote (Extended
277 Data Figure 5d). Altogether these results indicate that a group of genomic regions specifically
278 detach from the NL during the first days of embryonic development while being enriched with
279 non-canonical H3K27me3. These observations point towards a link between NL-association
280 and Polycomb regulation during preimplantation development.

281

282 **H3K27me3 sequesters genomic regions away from the NL at the 2-cell stage**

283 Having observed an apparent inverse relationship between NL association and H3K27me3, we
284 proceeded to deplete H3K27me3 in early development using a maternal knockout of *Eed* (*Eed*
285 mKO), an essential component of Polycomb repressive complex 2 (PRC2) that deposits
286 H3K27me3. This mutation is acquired in growing oocytes of *Eed*^{fl/fl};Gdf9^{Cre} female mice and
287 results in H3K27me3 loss from the oocyte stage up to the 8-cell stage^{21,24}. Embryos obtained
288 from crosses with *Eed*^{fl/fl} mothers are used as control. To obtain allelic-resolved data we
289 performed hybrid crosses between C57BL/6J females and JF1/MsJ males.

290 We performed scDamD&T-seq with the Dam-LMNB1 construct on both *Eed* mKO and control
291 2-cell embryos to uncover the effect of H3K27me3 absence on LADs. We obtained 95 and 120
292 single-cell LAD profiles passing quality control thresholds for the mKO and control genotypes

293 (Extended Data Figure 6a). Comparison of LAD profiles between the two conditions showed
294 extensive differences in NL association upon H3K27me3 depletion (Figure 5a). To understand
295 these differences in the context of NL association throughout preimplantation development,
296 we visualized the LAD data together with previously collected samples using UMAP. While
297 *wt* 2-cell maternal and paternal LADs cluster apart, parental LAD profiles from *Eed* mKO
298 embryos cluster closely together as well as with the 2-cell paternal LADs. This suggests that
299 H3K27me3 depletion nearly equalizes allelic differences in LADs. This result is caused by the
300 maternal allele acquiring paternal-like NL association patterns in the absence of H3K27me3
301 (Figure 5b, and Extended Data Figure 6a).

302 We then asked how the different genomic clusters identified above were affected by *Eed*
303 depletion. We also included cluster 5 in this analysis. This cluster is typified by constitutive
304 H3K27me3 enrichment throughout all stages and we therefore refer to these regions as
305 cH3K27me3 (Figure 4a and Extended Data Figure 5b and c). Strikingly, the clusters that gained
306 association to the nuclear lamina were, for both the maternal and paternal alleles, regions rich
307 in H3K27me3 in the *wt* 2-cell embryo (Figure 5c). Those changes resulted in NL association
308 values that resembled those in mESCs (Figure 5c), suggesting that the H3K27me3 absence
309 reverts genome-NL positioning back to its canonical state.

310 We then called H3K27me3 2-cell maternal and paternal domains over which we plotted the
311 corresponding *Eed* mKO and control LMNB1 enrichment values. While the control showed a
312 clear depletion of NL association at H3K27me3 domains, the *Eed* mKO condition showed
313 LMNB1 enrichment at these regions, indicating that for both alleles, H3K27me3 regions are
314 relocated to the lamina in the mKO condition (Figure 5d). Similarly, genomic bins that gain
315 NL association in the *Eed* mKO condition corresponded to H3K27me3-rich regions in the *wt*
316 context, both for the allele-separated and non-separated data (Figure 5e). The same positive
317 association with NL association gain was found for 2-cell H3K9me3 and mESC Dam-LMNB1

318 CF but not 2-cell H2AK119ub1 a histone mark deposited by Polycomb repressive complex 1
319 (PRC1) (Extended Data Figure 6b). This is not surprising as H2AK119ub1 has been described
320 to progressively re-establish canonical distributions starting from the 2-cell stage, unlike non-
321 canonical H3K27me3 which persists until implantation has occurred¹¹. Together these results
322 suggest that H3K27me3 or PRC2 play a key role in determining the atypical LAD
323 organizations during early developmental stages.

324

325 **Allelic LAD differences are reduced in the absence of H3K27me3**

326 Following our observation that paternal and maternal LAD differences at the 2-cell stage
327 appeared to be reduced in the *Eed* mKO condition, we hypothesized that H3K27me3 could be
328 related to the pronounced LAD asymmetry typical of early developmental stages¹. Comparison
329 of control Dam-LMNB1 values in maternal vs paternal allele showed that regions that had
330 stronger lamina association in the paternal allele, were H3K27me3-rich in the maternal allele
331 (Figure 5f). A similar trend was also seen in the converse situation although to a lesser extent,
332 likely due to overall low levels of H3K27me3 (Figure 5f).

333 We then wondered if removing H3K27me3 would have an effect on LAD allelic differences.
334 Visual inspection of LAD tracks indicated a reduction of LAD allelic asymmetry upon *Eed* and
335 H3K27me3 loss (Extended Data Figure 6a and c). This was confirmed by the clear increase in
336 correlation between allelic Dam-LMNB1 values upon *Eed* mKO (Figure 5g and Extended Data
337 Figure 6d). This increase in correlation was only scored in regions with H3K27me3 as regions
338 with no H3K27me3 showed no change in correlation between maternal and paternal LAD
339 values (Extended Data Figure 6e).

340 Finally, we used the single-cell LAD data to determine whether H3K27me3 depletion also
341 played a role in LAD heterogeneity across single cells of the 2-cell stage (Figure 1d). Indeed,
342 we found that *Eed* mKO profiles showed higher Yule's Q values compared to the control and

343 thus higher cell-cell similarity (Figure 5h). This reduction in LAD heterogeneity between
344 single cells upon H3K27me3 depletion was seemingly exclusive to the paternal allele. As a
345 consequence, paternal LADs showed similar levels of cell-cell variability to the ones observed
346 in the maternal genome (Extended Data Figure 6f).

347

348 Collectively, our results show that the non-canonical distributions of H3K27me3 prevents
349 conventional NL-contacts from forming, contributes to paternal cell-cell LAD variability and
350 dictates allelic LAD asymmetry during early mouse development (Figure 5i).

351

352 **Discussion**

353 Here, we have profiled LADs across preimplantation stages and mESCs in single cells and
354 identified a potential mechanism for the atypical distribution of the genome at the nuclear
355 periphery during early development.

356 **High cell-cell variability of genome-NL contacts at the 2-cell stage**

357 We show that the 2-cell stage genome varies extensively in its localization at the periphery of
358 the nucleus among single cells. While some level of LAD single-cell variability is expected^{18,19},
359 the unusually high LAD heterogeneity in early development could be due to the totipotent
360 nature of these stages. Interestingly, paternal zygotic LADs are not as variable, potentially due
361 to either *de novo* establishment of LAD patterns in the absence of paternally inherited
362 chromatin modifications or to maintenance of LAD patterns carried over from sperm, which
363 are yet to be profiled.

364 Genomic regions on the centromeric end of the chromosome associated to the nuclear lamina
365 in a high proportion of cells at the 2-cell stage, which could be a result of centromeres locating
366 at the periphery of nucleus. 3D-FISH experiments at the late 2-cell stage report on
367 pericentromeric repeats localizing to nucleolar precursor bodies and, although not reported, the

368 published images also suggest proximity to the nuclear periphery²⁵. Specific nuclear lamina
369 association along chromosomes has also been described during the G1 cell cycle phase and in
370 the context of oncogene-induced senescence although in these cases the enrichment was seen
371 at the telomeres^{26,27}.

372 Genomic association to the nuclear lamina has been shown to precede chromatin topology in
373 early development¹. In addition, LADs are known to vary in a coordinated fashion according
374 to DNA-DNA interactions in nuclear 3D space¹⁹. At the zygote stage, in a context where 3D-
375 genome topology is mostly absent, we have shown that LADs, although present, show little
376 coordination in their variability. A recent publication revealed single-cell structures in the
377 paternal zygotic genome that vary extensively from cell to cell, thereby obscuring the existence
378 of structure in the allele-combined data²⁸. These single-cell domains were shown to relate to
379 lamina association indicating that, at the zygote stage, LAD cell-cell variability and
380 heterogeneity in zygote chromatin topology could be linked.

381 Variability in NL-association patterns at the 2-cell stage seem to be highest in the paternal
382 genome. This may be due to the reduced level of histone modifications reported for the paternal
383 allele² which could reduce its affinity for specific nuclear compartments.

384 **Uncoupling between 3D-nuclear genome organization and gene expression at the 2-cell
385 stage**

386 We did not observe variability of histone PTMs and open chromatin at the same scale as
387 variability in nuclear lamina association. However, we do not exclude that there might be
388 heterogeneity across single cells at a smaller genomic scale (for example at the level of
389 promoters or genes). LAD cell-cell variability having little impact on chromatin state and gene
390 expression levels at the 2-cell stage is a very surprising finding. We hypothesize that the
391 totipotent cells that populate the early embryo show unusual uncoupling between 3D-genome
392 organization within the nucleus and gene regulation. It remains unclear whether regions that

393 don't contact the lamina locate to nuclear precursor bodies similar to what has been seen in a
394 human cell line after cell division²⁹.

395 **Non-LADs at the 2-cell stage are instead enriched in H3K27me3**

396 Non-canonical H3K27me3 broad domains have been described to locate in distal regions – not
397 in the vicinity of gene promoters - and these domains form during oogenesis persisting until
398 post-implantation stages¹⁴. Here, we find that these non-canonical H3K27me3 regions have a
399 strong correspondence with mESC LADs but show decreased NL-association at the 2-cell stage
400 compared to mESCs or zygotic paternal genomes. Depletion of H3K27me3 via maternal KO
401 of a component of PRC2 prompts these same regions to become LADs. Our study thus
402 indicates that non-canonical H3K27me3 promotes dissociation from the NL during
403 preimplantation development (Figure 5i).

404 Following fertilization, histone PTMs in the paternal genome are mostly established *de novo*
405 while the maternal chromatin tends to retain a large part of the epigenetic information from the
406 oocyte^{8,12-14}. This leads to extensive allelic epigenetic asymmetry in early developmental
407 stages, which in the case of H3K27me3 is retained up until implantation when canonical
408 distributions are recovered¹⁴. In this study, we have shown that removal of H3K27me3 in early
409 stages reduces allelic asymmetry in genome-NL interactions at the 2-cell stage, implicating
410 this histone PTM in establishing allelic LAD asymmetry (Figure 5i). These results demonstrate
411 that allele-specific epigenetic features can determine distinct nuclear localizations of the
412 maternal and paternal genomes.

413 H3K27me3 depletion also had an effect on cell-cell variability in genome-lamina association
414 that is particularly high at the 2-cell stage. Strikingly, only paternal LADs seemed to become
415 less variable. The uniformity in H3K27me3 signal observed across single cells (Figure 3a and
416 d) is mostly a readout from the maternal allele and obscures possible H3K27me3 variability in
417 the paternal allele. We thus speculate that the constant H3K27me3 signal on the maternal

418 genome consistently segregates the genome into H3K27me3 domains and LADs across single
419 cells. The low and possibly variable H3K27me3 signal on the paternal genome, on the other
420 hand, may cause a “tug-of-war” between the antagonistic effect of H3K27me3 on lamina
421 association and the mechanisms that drive conventional LAD formation such as A/T content
422 and multivalency. Removal of H3K27me3 on both alleles in the *Eed* mKO embryos would thus
423 result in the predominance of only LAD-driven mechanisms leading to more typical LAD
424 conformations and reduced cell-to-cell heterogeneity.

425

426 Conclusion

427 The study of epigenetics, nuclear organization and transcription during the first days of
428 embryonic development has greatly benefited from the development of novel low-input
429 technologies. These have brought much needed insight into the nuclear events that occur from
430 the moment gametes fuse to form a totipotent zygote until implantation⁹⁻¹⁴. An overall view of
431 non-canonical epigenetic features and major restructuring of genomic organization has
432 emerged but little is known about how these processes are connected and what their role in
433 embryonic development may be. Here, we propose a model whereby H3K27me3 antagonizes
434 genome-NL association during preimplantation development causing both atypical NL
435 association and allelic LAD asymmetry (Figure 5i). In support of our findings, a recent study
436 reported increased nuclear lamina interactions of B compartment regions rich in H3K27me3
437 upon inhibition of another PRC2 component – Ezh2 – in K562 cells³⁰. In the present study, we
438 demonstrate that this interplay between Polycomb and genome-NL association is likely
439 mechanistically involved in the processes that so dramatically reorganize the nuclear
440 architecture during preimplantation development.

441

442

443 **Methods**

444 **RNA synthesis**

445 All constructs were cloned into an *in vitro* transcription vector previously described in ¹,
446 linearized, purified using the QIAquick PCR Purification Kit (Qiagen) and transcribed using
447 the T3 mMessage mMachine kit (Invitrogen, AM1348) according to manufacturer instructions.
448 The synthesized RNA was purified using the MEGAclear kit (Invitrogen, AM1908) and eluted
449 in 10 mM Tris-HCl pH 7.5 and 0.1 mM EDTA.

450

451 **Animal care and zygote injection**

452 All animal experiments were approved by the animal ethics committee of the Royal
453 Netherlands Academy of Arts and Sciences (KNAW) under project license
454 AVD801002016728 and study dossiers HI173301 and HI213301. Embryos were collected
455 from B6CBAF1/J females crossed with CAST/EiJ males for the hybrid experiments and
456 B6CBAF1/J males for non-hybrid experiments. The *Eed* floxed mouse (*Eed*^{fl/fl}) was provided
457 by Prof. Stuart H. Orkin. To obtain *Eed* maternal KO embryos, we crossed *Eed*^{fl/fl}; *Gdf9-cre*
458 females (on a C57BL/6J background) with JF1/MsJ males.

459 For all crosses, 7- to 10-week-old females were superovulated by injecting pregnant mare
460 serum gonadotropin (PMSG, 5IU, MSD, Cat#A207A01) and human chorionic gonadotropin
461 (hCG, 5IU, MSD, Cat#A201A01). For *in vitro* fertilization (IVF), spermatozoa from JF1/MsJ
462 males were capacitated in Human Tubal Fluid medium (Merck Millipore, Cat#MR-070-D)
463 supplemented with 10 mg ml⁻¹ Albumin (Sigma, Cat#A-3311) (HTF-BSA) for 1h preceding
464 insemination. MII oocytes were collected in the insemination medium (HTF-BSA) and
465 capacitated spermatozoa were added for fertilization. The insemination starting time point was
466 termed as 0 hours post-fertilization (hpf).

467 When using standard mating, zygotes were injected about 24h post-hCG.

468 For both IVF and normal mating mRNA was microinjected in the cytosol of the zygote at
469 10hpf. A full description of constructs used, corresponding concentrations and induction
470 conditions is described in Extended Data Table 1.

471 Injected zygotes were cultured in KSOM for hybrid crosses (Sigma, Cat#MR-106-D) or M16
472 medium (Sigma, Cat#M7292) for non-hybrid crosses covered with mineral oil (Sigma Cat#
473 M8410) at 37°C with 5% CO₂ and 5% O₂ air.

474 To increase the quality of DamID signal, untethered Dam and Dam-Cbx1 constructs were fused
475 to an ERT2 domain so that the fusion protein would be translocated to the nucleus upon 4-
476 Hydroxytamoxifen addition (4-OHT, Sigma, Cat#SML1666) (Extended Data Table 1).

477 **Embryo collection and dissociation and scDam&T-seq processing**

478 Embryos were collected by mouth pipetting at 29-31 hours post-hCG for the zygote stage, 52-
479 55 hours post-hCG for the 2-cell stage and 75-78 hours post-hCG for the 8-cell stage (Extended
480 Data Table 1). The zona pellucida was removed using Tyrode's acid (Sigma, Cat#T1788),
481 washed in M2 medium (Sigma, Cat#MR-015) and placed in TrypLE (Gibco, Cat#12605010)
482 where embryos were dissociated into single cells one by one and placed in M2 medium before
483 single-cell collection into a 384-well plate containing 5uL of mineral oil and 100nL of barcoded
484 polyadenylated primers. All scDam&T-seq steps were performed as previously described³¹.
485 Briefly, cells were lysed and reverse transcription was performed followed by second-strand
486 synthesis in order to convert the RNA of the cell into cDNA. After a proteinase K step,
487 methylated GATCs resulting from Dam enzyme activity were specifically digested with DpnI
488 and double-stranded adapters containing cell-specific barcodes were ligated. At this point, cells
489 with non-overlapping barcodes were pooled together to undergo in vitro transcription which
490 amplifies both the transcriptional and genomic product in a linear manner due to a T7 promoter
491 to both the double-stranded DamID adapters and the polyadenylated primers. The resulting
492 amplified RNA (aRNA) was reverse transcribed and library preparation was performed as

493 previously described³². Libraries were sequenced on the Illumina NextSeq500 (75-bp reads) or
494 NextSeq2000 (100-bp reads) platform. For scDam&T-seq processing of mESC cells
495 specifically, half volumes were used in all reactions to reduce overall processing costs.

496

497 **Cell culture**

498 Cell lines were grown in a humidified chamber at 37 °C in 5% CO₂ and were routinely tested
499 for mycoplasma. Mouse F1 hybrid Cast/EiJ (paternal) x 129SvJae (maternal) embryonic stem
500 cells (mESCs; a gift from the Joost Gribnau laboratory) were cultured on 6-well plates with
501 irradiated primary mouse embryonic fibroblasts (MEFs) in mESC culture media (CM) defined
502 as follows: Glasgow's MEM (G-MEM, Gibco, 11710035) supplemented with 10% FBS, 1%
503 Pen/Strep, 1x GlutaMAX (Gibco, 35050061), 1x MEM non-essential amino acids (Gibco,
504 11140050), 1 mM sodium pyruvate (Gibco, 11360070), 0.1 mM β-mercaptoethanol (Sigma,
505 M3148) and 1000 U/mL ESGROmLIF (EMD Millipore, ESG1107). mESCs were alternatively
506 cultured in feeder-free conditions on gelatin coated plates (0.1% gelatin, in house) in 60%-
507 BRL medium, defined as a mix of 40% CM medium (as defined) and 60% conditioned CM
508 medium (incubated 1 week on Buffalo Rat Liver cells), supplemented with 10% FBS, 1%
509 Pen/Strep, 1x GlutaMAX, 1x MEM non-essential amino acids, 0.1 mM β-mercaptoethanol and
510 1000 U/mL ESGROmLIF. Cells were split every 2-3 days and medium was changed every 1-
511 2 days. This mESC cell line does not contain a Y chromosome.

512

513 **Generation of mouse embryonic stem cell lines**

514 The stable clonal F1 hybrid mESC line expressing the Dam-LaminB1 fusion protein was
515 generated from an EF1α-Tir1-IRES-neo expressing mother line (generated with lentiviral
516 transduction)¹⁸. The Dam construct was CRISPR targeted into this line by knocking in mAID-
517 Dam in the N terminus of the LMNB1 locus. The donor vector (designed in house, generated

518 by GeneWiz) carried the Blasticidin-p2A-HA-mAID-Dam cassette, flanked on each side by
519 1000-bp homology arms of the endogenous LMNB1 locus (pUC57-BSD-p2A-HA-mAID-
520 Dam). The Cas9/guide vector was the p225A-LmnB1-spCas9-gRNA vector, with a guide RNA
521 inserted to target the 5'UTR of the LMNB1 locus (sgRNA: 5'
522 CACGGGGTCGCGGTGCCA 3'). For transfections in general, cells were cultured on
523 gelatin-coated 6-well plates in 60% BRL-medium at 70%–90% confluency. Cells were
524 transfected with Lipofectamin2000 (Invitrogen, 11668030) according to the supplier protocol
525 with 1.5 µg donor vector and 1.5 µg Cas9/guide vector. At 24 hours after transfection, GFP
526 positive cells were sorted on a BD FACSJazz Cell sorter and seeded on gelatin-coated plates in
527 60% BRL-medium. 48 hours after sorting, cells were started on antibiotic selection with 60%
528 BRL-medium containing 3.0 µg/mL Blasticidin (ThermoFisher, A1113903) and 0.5 mM
529 indole-3-acetic acid (IAA, Sigma, I5148) and cells were refreshed every 2-3 days. From this
530 point onwards, 0.5 mM IAA is added to the medium during normal culturing conditions to
531 degrade the mAID-Dam-Lamin B1 fusion protein via the auxin protein degradation system³³.
532 After 6 days of antibiotic selection, single cells were sorted into 96-well plates containing
533 MEFs using the BD FACSInflux Cell sorter and grown without antibiotic selection in CM
534 medium with 0.5 mM IAA. Clones grew out in approximately 10 days and were screened for
535 correct integration by PCR with primers from Dam to the LMNB1 locus downstream of
536 targeting construct; fw-TTCAACAAAAGCCAGGATCC and rev-
537 TAAGGAATCTGGTGCACAGAACACC. The heterozygous expression of the Dam-Lamin
538 B1 fusion protein was further confirmed by Western blot using an anti-HA antibody at 1 in
539 5000 dilution (Abcam, ab9110) and an anti-LaminB1 antibody at 1 in 5000 dilution (Abcam,
540 ab16048). To prevent silencing of the EF1 α -Tir1-IRES-neo construct due to the flanking
541 lentiviral construct sequences, the Tir1 construct was additionally knocked-in into the TIGRE
542 locus using CRISPR targeting. This integration was generated by co-transfection of the donor

543 vector pEN396-pCAGGS-Tir1-V5-2A-PuroR TIGRE (Addgene plasmid, #92142) and Cas9-
544 gRNA plasmid pX459-EN1201 (backbone from Addgene plasmid #62988, guide from Addgene
545 plasmid #92144³⁴, sgRNA: 5' ACTGCCATAACACCTAACCTT 3'). Cells were transfected
546 with Lipofectamine3000 (ThermoFisher, L3000008) according to the supplier protocol with 2
547 µg donor vector and 1 µg Cas9-gRNA vector. At 24 hours after transfection, GFP positive cells
548 were sorted on a BD FACsJazz Cell sorter and seeded on gelatin-coated plates in 60% BRL-
549 medium. 48 hours after sorting, cells were started on antibiotic selection with 60% BRL-
550 medium containing 0.8 µg/mL Puromycin (Sigma, P9620) and 0.5 mM IAA. Cells were
551 refreshed every 2-3 days and selected for 5-10 days. The Tir1-puro clones were screened for
552 the presence of Tir1 by PCR from the CAGG promoter to Tir1 with the primers fw-
553 CCTCTGCTAACCATGTTCATG and rev-TCCTTCACAGCTGATCAGCACC, followed by
554 screening for correct integration in the TIGRE locus by PCR from the polyA to the TIGRE
555 locus with primers fw-GGGAAGAGAATAGCAGGCATGCT and rev-
556 ACCAGCCACTTCAAAGTGGTACC. The Tir1 expression was further confirmed by
557 Western blot using a V5 antibody (Invitrogen R960-25). Upon further characterization of the
558 best clone, a 70-bp deletion was found directly after the transcription start site the wildtype
559 LMNB1 allele, causing frameshift, which was most likely the result of the CRISPR targeting.
560 Cell viability and growth rates were not visibly affected. This deletion was repaired using 200
561 bp ssDNA utramere oligo's (IDT) with 65 bp homology arms on each side of the deletion as
562 donor and a p225A-LmnB1-repair-spCas9-gRNA vector (sgRNA: 5'
563 GCGGGGGCGCTACAAACAC 3'). Cells were transfected with Lipofectamine 3000
564 according to the supplier protocol with 1.5 µg donor oligo and 1 µg Cas9-gRNA vector. At 24
565 hours after transfection, GFP positive cells were sorted into 96-well plates containing MEFs
566 using the BD FACsJazz Cell sorter and grown without antibiotic selection in CM medium.
567 Clones were screened for correct repair of the wildtype LMNB1 allele by PCR around the

568 original deletion with the primers fw- ACTCACAAAGGGCGTCTGGC and rev-
569 GTGACAATCGAGCCGGTACTC. Correct expression of the mAID-Dam-Lamin B1 fusion
570 protein as well as the wildtype Lamin B1 protein was confirmed using Immunofluorescence
571 staining using an anti-HA antibody at 1 in 500 dilution (Cell Signaling Technologies, C29F4)
572 and an anti-LaminB1 antibody at 1 in 500 dilution (Abcam, ab16048), followed by confocal
573 imaging. All successfully repaired clones were subsequently screened for their level of
574 induction upon IAA removal by m6A-PCR, evaluated by gel electrophoresis^{6,35}, followed by
575 DamID2 sequencing in bulk^{31,35}, to select a heterozygous clone with a correct karyotype with
576 the best signal-to-noise ratio of enrichment over LAD regions. This clone is labelled as F1ES
577 mAID-Dam-LaminB1 #2B4.

578

579 **mESC Dam-Lamin B1 induction and FACS sorting for single-cell experiments**

580 Expression of the mAID-Dam-Lamin B1 fusion protein in the F1ES cell line was suppressed
581 by addition of 0.5 mM IAA during standard culturing. When plated for scDam&T-seq
582 experiments, the cells were passaged at least two times in feeder-free conditions on 6-well
583 plates coated with 0.1% gelatin in 60%-BRL medium. Cells were kept at 1 mM IAA for the
584 final 48 hours before the start of the experiment. 6 hours before harvesting of cells, the IAA
585 was removed by washing three times with PBS and refreshing with 60%-BRL medium without
586 IAA. FACS was performed on BD FACSJazz or BD FACSIflux Cell Sorter systems with BD
587 Software. mESCs were harvested by trypsinization, centrifuged at 300 g, resuspended in 60%-
588 BRL medium containing 10 mg/mL Hoechst 34580 (Sigma, 63493) per 1x10⁶ cells and
589 incubated for 45 min at °C in 5% CO₂. Prior to sorting, cells were passed through a 40-mm cell
590 strainer. Propidium iodide (1 mg/mL) was used as a live/dead discriminant. Single cells were
591 gated on forward and side scatters and Hoechst cell cycle profiles. Index information was
592 recorded for all sorts. One cell per well was sorted into 384-well hard-shell plates (Biorad,

593 HSP3801) containing 5 μ L of filtered mineral oil (Sigma, 69794) and 50 nL of 1.5 mM
594 barcoded CEL-Seq2 primer^{18,31}.

595

596 **Processing of scDamID and scDam&T-seq data**

597 Data generated by the DamID and scDam&T-seq protocols was largely processed with the
598 workflow and scripts described in Markodimitraki et al. (2020)³¹(see also
599 www.github.com/KindLab/scDamAndTools). The procedure is described in short below.

600

601 *Demultiplexing*

602 All reads are demultiplexed based on the barcode present at the start of R1 using a reference
603 list of barcodes. In the case of scDam&T-seq data, the reference barcodes contain both DamID-
604 specific and CEL-Seq2-specific barcodes. In the case of the scDamID data, the reference
605 barcodes only contain DamID-specific barcodes. Zero mismatches are allowed between the
606 observed barcode and reference. The UMI information, also present at the start of R1, is
607 appended to the read name.

608

609 *DamID data processing*

610 DamID reads are aligned using bowtie2 (v. 2.3.3.1)³⁶ with the following parameters: “--seed
611 42 --very-sensitive -N 1” to the mm10 reference genome. In the case of paired-end data
612 (scDam&T-seq), only R1 is used as that contains the digested GATC site. The resulting
613 alignments are then converted to UMI-unique GATC counts by matching each alignment to
614 known strand-specific GATC positions in the reference genome. Any reads that do not align
615 to a known GATC position or have a mapping quality smaller than 10 are removed. Up to 4
616 unique UMIs are allowed for single-cell samples to account for the maximum number of alleles
617 in G2. Finally, counts are binned at the desired resolution.

618

619 *CEL-Seq2 data processing*

620 CEL-Seq2 reads are aligned using hisat2 (v. 2.1.0)³⁷ with the following parameters: “--mp ‘2,0’
621 --sp ‘4,0’”. For the alignment, only R2 is used, as R1 contains the sample barcode, UMI and
622 poly-A tail, which have already been processed during demultiplexing. As reference, the mm10
623 reference genome and the GRCm38 (v. 89) transcript models are used. Alignments are
624 subsequently converted to transcript counts per gene with custom scripts that assign reads to
625 genes similar to HTSeq’s³⁸ htseq-count with mode “intersection_strict”.

626

627 *Allele-specific alignment of DamID and CEL-seq2 reads*

628 In the case of samples derived from hybrid crosses, we used strain-specific SNPs to assign
629 reads to a parent. For this, we obtained SNP information from the Mouse Genomes Project of
630 the Sanger Wellcome Institute for all used strains except for JF1/Ms, which were obtained from
631 the MoG+ website of the RIKEN BioResource Center
632 (<https://molossinus.brc.riken.jp/mogplus/#JF1>). These SNPs were subsequently substituted in
633 the mm10 reference genome to generate strain-specific reference files. DamID and CEL-seq2
634 reads were subsequently aligned to the reference files of both strains as described above. Since
635 all hybrid data was generated with scDam&T-seq, paired-end data was available for the DamID
636 readout and both R1 and R2 were used in aligning to maximize SNP coverage. Using a custom
637 script, the alignments of each read to the two genotypes were subsequently evaluated w.r.t.
638 number of mismatches and alignment score. The read was then attributed to the better scoring
639 genotype. In the case of a tie (i.e. equal number of mismatches and same alignment score), the
640 read was considered to be ambiguous. This procedure results in three files for each sample: one
641 alignment file for each genotype and one file with ambiguous reads. For the samples derived
642 from the B6CBAF1/J x CAST/EiJ cross, SNPs from three different backgrounds can be

643 present: CBA/J and C57BL/6J SNPs from the B6CBAF1/J mother and CAST/EiJ from the
644 father. Reads derived from this cross were thus aligned to the three reference genomes
645 representing these strains and split based on their alignment scores as described. Reads
646 attributed to CBA/J and/or C57BL/6J were considered as maternal reads, reads attributed to
647 CAST/EiJ as paternal reads, and reads tying between CAST/EiJ and CBA/J or C57BL/6J as
648 ambiguous.

649

650 *Processing allele-specific DamID and CEL-seq2 read to UMI-unique counts*

651 For both CEL-seq2-derived and DamID-derived reads information from R2 is used to attribute
652 them to a genotype. However, in both cases, the IVT and fragmentation steps in the scDam&T-
653 seq protocol can result in copies of the original mRNA/DNA molecule of different lengths and
654 thus different R2 sequence content. As a result, different copies of the same molecule
655 sometimes overlap SNPs and sometimes do not. For this reason, it is import to perform UMI
656 flattening per gene or GATC position for all alignment files (both genotypes and ambiguous)
657 simultaneously. Per gene or GATC position, only one unique UMI is allowed across the
658 genotypes. If a UMI was observed for one genotype and in the ambiguous reads, the unique
659 count was attributed to the genotype. If a UMI was observed for both genotypes, the unique
660 count was considered to be ambiguous. For this procedure, modified versions of the DamID
661 and CEL-seq2 counting scripts were used that consider all three alignment files in parallel.
662 Counting was otherwise performed as described above.

663

664 *Filtering of DamID data*

665 Samples were filtered w.r.t. their DamID readout based on the number of observed unique
666 GATCs and their information content (IC). The IC is a measure for the amount of true signal
667 present in a sample relative to the amount of background. The background is determined based

668 on a comparison of the observed signal with the density of mappable GATCs in the genome.
669 The procedure is explained in detail in Rang and de Luca (2022)²² and the code can be found
670 on GitHub (<https://github.com/KindLab/EpiDamID2022>). Since the fraction of the Dam-
671 methylated genome varies per Dam-construct and per embryonic stage, the thresholds for the
672 number of unique GATCs and IC were fine-tuned per dataset (Extended Data Table 2).
673 In the case of samples derived from hybrid crosses, DamID data was additionally filtered based
674 on the presence of both a maternal and paternal allele. In particular, at least 25% of allele-
675 specific counts should come from each parent. In practice, this resulted in the removal of
676 samples that exclusively had maternal-derived material, likely due to the presence of
677 unfertilized oocytes undergoing spontaneous parthenogenesis. We observed no samples
678 containing >75% paternal-derived material. For analyses using data of the combined alleles the
679 same filtering on unique GATCs and IC was applied. For analyses using allele-specific data,
680 only samples were used that had a total number of allele-specific GATC counts equal to the
681 general depth threshold of that condition. We performed this additional select to prevent high
682 levels of noise due to sparsity in allele-specific data. The numbers of cells that passed the
683 aforementioned thresholds are documented in Extended Data Figures 1c, 3c and 4b and unique
684 number of GATC distribution of DamLMNB1-expressing cells that passed those thresholds is
685 illustrated in Extended Data Figure 1d.

686
687 For genome-wide analyses, we additionally performed filtering on the genomic bins that were
688 included. For analyses that were not allele-specific, we excluded all genomic bins that contain
689 fewer than 1 mappable GATC per kb. For allele-specific analyses, we additionally removed
690 bins for which less than 10% of the contained GATCs could be attributed to an allele. In
691 addition, we removed bins for which we empirically observed that 98% of allele-specific
692 DamID counts were attributed to only one allele.

693

694 *Filtering of CEL-seq2 data*

695 Samples were filtered w.r.t. their CEL-seq2 readout based on the observed number of unique
696 transcripts ($\geq 3,000$), the percentage of mitochondrial transcripts ($< 15\%$), and the percentage of
697 ERCC spike-in derived reads ($< 0.5\%$). For all stages and constructs these thresholds were the
698 same. In addition, hybrid samples that were suspected to have undergone spontaneous
699 parthenogenesis based on their DamID readout (see above) were also excluded from
700 transcriptional analyses. This filtering could not be performed based on the transcriptional
701 readout, since the vast majority of transcripts at the zygote and 2-cell stage are maternally
702 contributed.

703

704 *Computing DamID binary contacts*

705 Single-cell count tables were further processed to binary contacts, which give an indication for
706 each genomic bin whether a sample had an observed contact with the Dam construct. To
707 determine binary contacts, samples were binned at 100,000-bp resolution and depth normalized
708 by $\log\left(\frac{\text{sample}}{\text{total}_{GATC}} * 10,000 + 1\right)$. Allele-specific files were normalized for the total number of
709 counts attributed to *either* allele. Subsequently, the samples were smoothed with a Gaussian
710 kernel (s.d. 150 kb). Both the large bin size and smoothing minimize noise that may occur in
711 sparse single-cell samples. The observed signal was subsequently compared with a control,
712 which has been depth normalized and smoothed in a similar manner. In the case of the Dam-
713 LMNB1 and Dam-only constructs, the control is the density of mappable GATCs. In the case
714 of Dam-H3K27me3, Dam-H3K27me3mut, and Dam-Cbx1, the control is the average single-
715 cell signal of all Dam-only samples of the same embryonic stage, since these constructs are
716 free-floating in the nucleus and are more prone to accessibility biases²². Contacts were then

717 called when the difference between the observed signal and the control was bigger than 0 for
718 Dam-LMNB1 and Dam-only, or bigger than $\log(1.1) \approx 0.095$ for the remaining constructs.

719

720 *Contact frequency and in silico population profiles*

721 Contact frequency (CF) was determined for each genomic bin as the fraction of single-cell
722 samples with an observed contact in that bin. As a result, CF values range between 0 and 1.
723 Since binary contacts are only determined at a 100-kb resolution, CF profiles are only available
724 at this resolution. For analyses requiring higher resolutions, we generated *in silico* population
725 profiles by combining the count data of all single-cell samples per condition. The *in silico*
726 population profiles were subsequently depth normalized (RPKM) and normalized for a control.
727 Allele-specific files were depth normalized for the total number of counts attributed to *either*
728 allele. In the case of Dam-LMNB1 and Dam-only, the control is the density of mappable
729 GATCs. For the other constructs, the control is the *in silico* population data of the Dam-only
730 samples.

731

732 **Processing of published data**

733 Accession numbers of all public datasets used are described in Extended Data Table 3.

734

735 *ATAC-seq, ChIP-seq, and CUT&RUN*

736 Reads were aligned using bowtie2 (v. 2.3.3.1) with the following parameters: “--seed 42 --
737 very-sensitive -N 1”. For paired-end ATAC-seq files, the following additional parameters were
738 used: “-X 1000 --no-mixed --no-discordant”. Indexes for the alignments were then generated
739 using “samtools index” and genome coverage tracks were computed using the “bamCoverage”
740 utility from DeepTools (v. 3.3.2)³⁹ with the following parameters: “--ignoreDuplicates --
741 minMappingQuality 10”. For samples derived from hybrid crosses, a similar strategy was used

742 as for our own scDam&T-seq data to attribute reads to alleles: SNPs were incorporated into
743 the mm10 reference genome to generate parental-specific references. Reads were aligned to
744 both genomes, after which reads were attributed to a specific parent or ambiguous alignment
745 files based on the number of mismatches and alignment scores. These three alignment files
746 were then separately processed with DeepTools.

747

748 *DamID*

749 Data from our previous study (Borsos et al., 2019; available on GEO under GSE112551) was
750 reprocessed using the same procedures as used for the current data. Since this data was
751 generated with the first version of the scDamID protocol¹⁹, no UMIs are present to identify
752 PCR duplicates. To limit amplification artefacts only 1 count per strand-specific GATC
753 position was maintained.

754

755 *Hi-C*

756 Published Hi-C data was obtained from GEO (GSE82185) and processed from raw sequencing
757 reads to interaction matrices using Hi-C Pro (v. 2.11.4) using the recommended workflows for
758 non-allelic and allele-separated data. The obtained interaction matrices were subsequently
759 converted to “.cool” format using the “hicConvertFormat” command from HiCExplorer (v.
760 2.2.1.1). The matrices were subsequently normalized and corrected for biases using the “cooler
761 balance” functionality from Cooler (v. 0.8.11)⁴⁰. Further processing and visualization of the
762 normalized Hi-C matrices was performed using CoolTools (v. 0.5.1)⁴¹. Compartment scores
763 were computed with cooltools using normalized interaction matrices at a resolution of 100 kb.

764

765 *Methyl-seq*

766 Processed files were downloaded from GEO (GSE56697). To generate binned genomic tracks,
767 the average fraction of methylated CpGs was computed.

768

769 **Single-cell DamID analyses**

770 *Single-cell DamID UMAP*

771 The UMAPs based on the single-cell DamID readout in Figure 1b, 5b and Extended Data
772 Figure 3d were generated by performing a PCA on the data and selected the top PCs based on
773 the explained variance ratio (PC1-10). These PCs were used as an input to compute the UMAP.

774 In the case of Figure 5b and Extended Data Figure 3d, the maternal and paternal readouts of
775 all samples were treated as separate samples. Consequently, each cell appears twice in the
776 UMAP: once with the maternal readout and once with the paternal readout.

777

778 *Cell-cell similarity*

779 Cell-cell similarity between cells was computed based on the binary contact data of all
780 autosomal chromosomes. We used Yule's Q as a metric of similarity between cells:

781 $\frac{N_{00}N_{11} - N_{01}N_{10}}{N_{00}N_{11} + N_{01}N_{10}}$, where N_{11} is the number of genomic bins where both samples had a contact,

782 N_{00} the number of bins where neither sample had a contact, and N_{01} and N_{10} the number of
783 bins where one sample had a contact and the other did not. Since different experimental
784 conditions (i.e. different embryonic stages or different Dam constructs) can have different data
785 quality (i.e. higher coverage or depth, higher signal-to-noise ratio), we devised a control for
786 each condition that simulated the expected Yule's Q scores based on technical variability alone.

787 For this, we combined the data of each condition per batch (i.e. per sequencing library) and
788 subsequently subsampled the data to generate mock single-cell samples with a number of
789 unique GATCs equal to the actual single-cell data. We subsequently normalized and binarized
790 the simulated single-cell data in an identical manner to the original data. The simulated dataset

791 should thus represent samples that display the same level of technical variability (i.e. due to
792 differences in depth and signal quality) as the original sample, without showing any true
793 biological variation. As for the original data, we computed the Yule's Q between all possible
794 sample pairs to get a quantification of the cell-cell similarity. In Extended Data Figures 1e and
795 4e, the results for the original and simulated datasets are shown. The difference in mean
796 between the two datasets was tested with Wilcoxon's Rank Sum test (Extended Data Table 4).
797 In Figures 1d and 3d, the differential Yule's Q of all sample pairs is shown. No simulated
798 dataset was used for the comparison between alleles (Figure 2c), since the data of the two
799 alleles is derived from the same sample and thus has the same technical characteristics.

800

801 *Contact run-length analysis*

802 The contact run-length analysis was performed as in Kind et al. (2015)¹⁹. In short, for each cell
803 all stretches of continuous contacts were identified based on the 100-kb binarized data.
804 Subsequently, the number of stretches of at least length L were determined for L ranging from
805 1 to the maximum contact length. The average frequency of contact run-lengths was then
806 computed per stage, as well as the standard deviation. As a control, we compared the observed
807 contact run-lengths to those observed in the shuffled binary contact tables. This shuffling was
808 performed in such a way that both marginals (i.e. the CF of each 100-kb bin and the total
809 number of contacts in each cell) remained intact, using a published algorithm⁴².

810

811 *Bin-bin coordination matrices*

812 To quantify the coordinated association of genomic bins with the NL, we computed the Pearson
813 correlation between all pairs of genomic bins, as previously described¹⁹. Since these bin-bin
814 correlations are influenced by several factors, including the number of contacts per cell and
815 contact frequency, we once again employed randomly shuffled binary matrices as a control

816 (see above). For each condition, we performed 1,000 randomizations of the binary contact
817 matrix and computed the bin-bin correlations of the resulting matrices. The observed mean and
818 standard deviation of the correlation matrices were then used to standardize the true bin-bin
819 correlation matrix.

820

821 *Clustering of genomic bins*

822 Datasets used for genomic bin clustering (100 kb) was based on the datasets described in
823 Extended Data Table 5.

824 Only data of autosomal chromosomes was included. Furthermore, genomic bins were excluded
825 from the analyses if they did not meet all of the following criteria: 1) contains at least 1
826 mappable GATC per kb; 2) for all allele-specific samples, at least 10% of all obtained
827 reads/counts could be attributed to either the maternal or paternal allele; 3) for the DamID data,
828 at least 2.5% of the observed allele-specific data of each hybrid cross can be attributed to each
829 allele; 4) does not overlap a region annotated in the ENCODE mm10 blacklist as a “High Signal
830 Region”; 5) does not overlap for >10% regions annotated in the ENCODE mm10 blacklist as
831 “Low Mappability”. Criterion 1 ensures reliable DamID data; criteria 2 and 3 ensure that
832 allele-specific resolution can be achieved; criterion 4 and 5 ensure that ChIP-seq data is
833 reliable. For the autosomal chromosomes, this left ~76.8% of the genomic bins to be included
834 in the clustering.

835

836 Allele-specific LMNB1 DamID data is normalized for a control (density of allelically separable
837 GATC motifs) that automatically corrects for biases in signal strength that are due to
838 differential SNP density in the genome. However, allele-separated ChIP-seq data lacking an
839 input-control are not corrected for this. As a result, allele-specific ChIP-seq RPKM values will
840 be artificially higher in regions with high SNP density, as a higher fraction of reads could be

841 attributed to an allele. To prevent these biases from influencing the clustering, the allele-
842 specific RPKM values were normalized for the total fraction of reads in that bin that could be
843 attributed to an allele. After this correction, the data of all samples were subsequently
844 standardized and values were clipped to a range from -2.5 to 2.5.

845

846 Prior to clustering, a PCA was performed to remove redundancy in the data. The top PCs were
847 selected based on the explained variance ratio (PC1-5), which collectively accounted for 80.5%
848 of variance in the data. These PCs were subsequently used to compute UMAPs representing
849 the genomic bins, as well as for K-means clustering of all bins. For the K-means clustering, a
850 number of 8 clusters was chosen. Decreasing the number of clusters resulted in the merging of
851 distinct clusters, while increasing the number of clusters resulted in two or more clusters with
852 very similar behaviors.

853

854 *Visualization of clustering*

855 Visualization of data in the different clusters as seen in Figure 4a and Extended Data Figure 5b
856 and c was performed as follows. For the full bin clustering (Extended Data Figure 5b and c),
857 the datasets were grouped into the 8 different clusters. Allele-specific signal without a control
858 dataset was corrected for biases caused by SNP density as described above. For some samples,
859 the allelic separation of signal was very poor in a subset of bins, resulting in invalid or
860 unreliable values in these bins. Therefore, we replaced the values of bins in which <10% of
861 reads could be attributed to an allele with the average signal of that cluster. This mostly affected
862 the ATAC-seq data, as most other samples were either included in the clustering (and thus bins
863 with poor allelic separation were filtered out) and/or were based on crosses with more
864 homogenous SNP coverage across the genome. For the heatmaps showing the average signal

865 per cluster (Figure 4a), the average of all genomic bins (with sufficient allele separation) was
866 taken for each cluster.

867

868 **Single-cell transcription analyses**

869 *Single-cell CEL-seq2 UMAP*

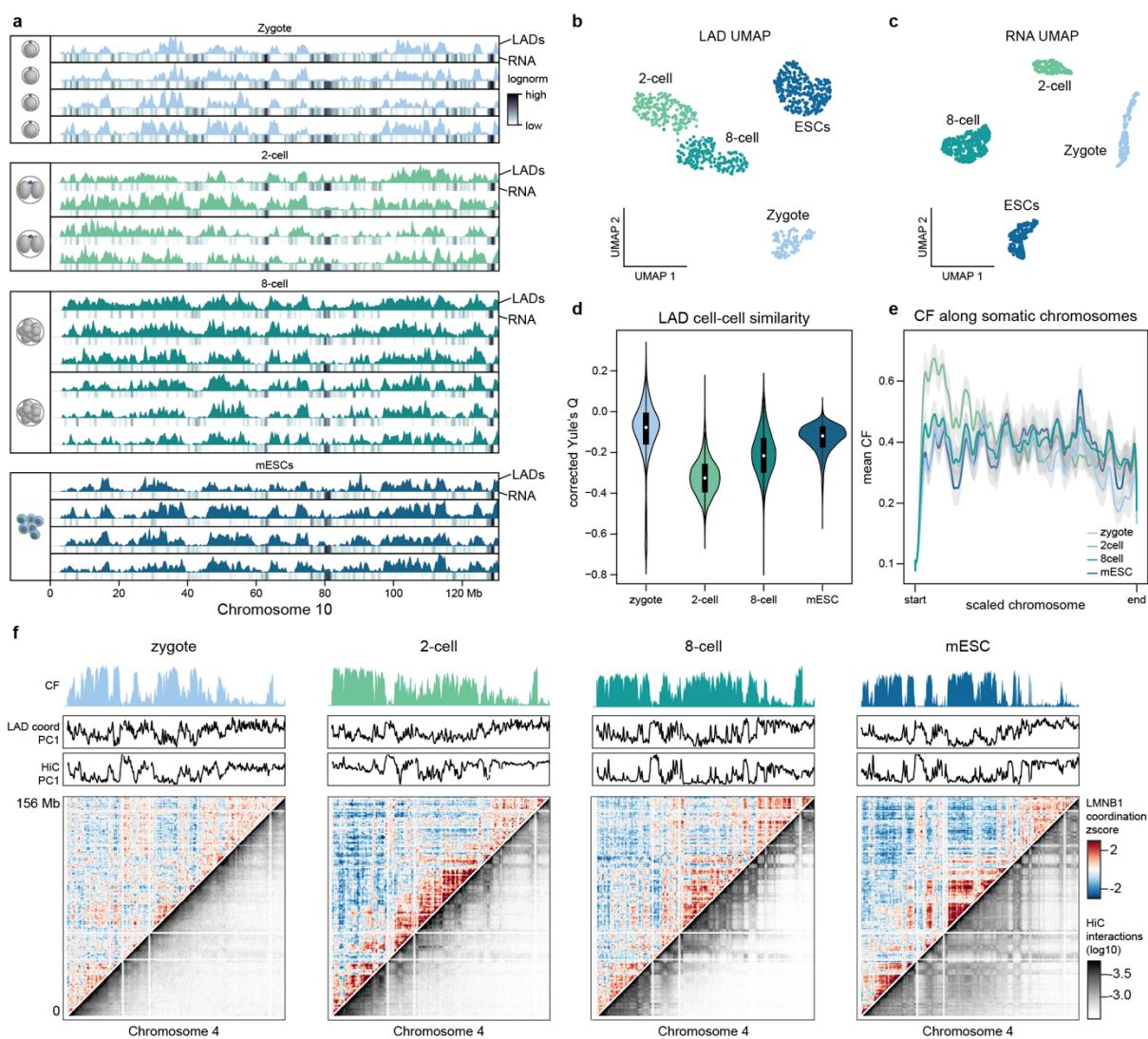
870 To generate the transcriptional UMAP (Figure 1c), single-cell transcript tables were processed
871 in R (v. 4.1.2) using Seurat (v. 4.1.0)⁴³. Only samples passing transcription thresholds were
872 included; only scDam&T-seq LMNB1 samples of embryos from homozygous crosses and the
873 mESC samples were used. Genes with counts observed in fewer than 10 cells were excluded
874 and data was normalized using the “NormalizeData” and “ScaleData” commands. The UMAP
875 was then generated using the “FindVariableFeatures”, “RunPCA” and “RunUMAP”
876 commands.

877

878 *EED mKO vs WT differential expression*

879 The transcriptional data of *EED* mKO and WT 2-cell embryos was processed separately for
880 the maternally-assigned transcript counts, and the paternally-assigned transcript counts. In both
881 cases, the data was processed using Seurat’s “NormalizeData” and “ScaleData” commands and
882 the total number of allele-assigned reads was used to normalize the data of each allele, rather
883 than the total maternal or paternal reads. Batch correction was performed using the “RunPCA”,
884 “FindIntegrationAnchors”, and “IntegrateData” commands, where each individual sequencing
885 run was considered a batch. The integrated data was then once again scaled and a PCA was
886 performed. UMAPs were generated using the “RunUMAP” command. Differentially
887 expressed genes between the *EED* mKO and control embryos were identified using the
888 “FindMarkers” command. Only genes with an adjusted p-value < 0.05 were considered as
889 differentially expressed.

890


891 *Transcription of genes in cells with versus without NL association*

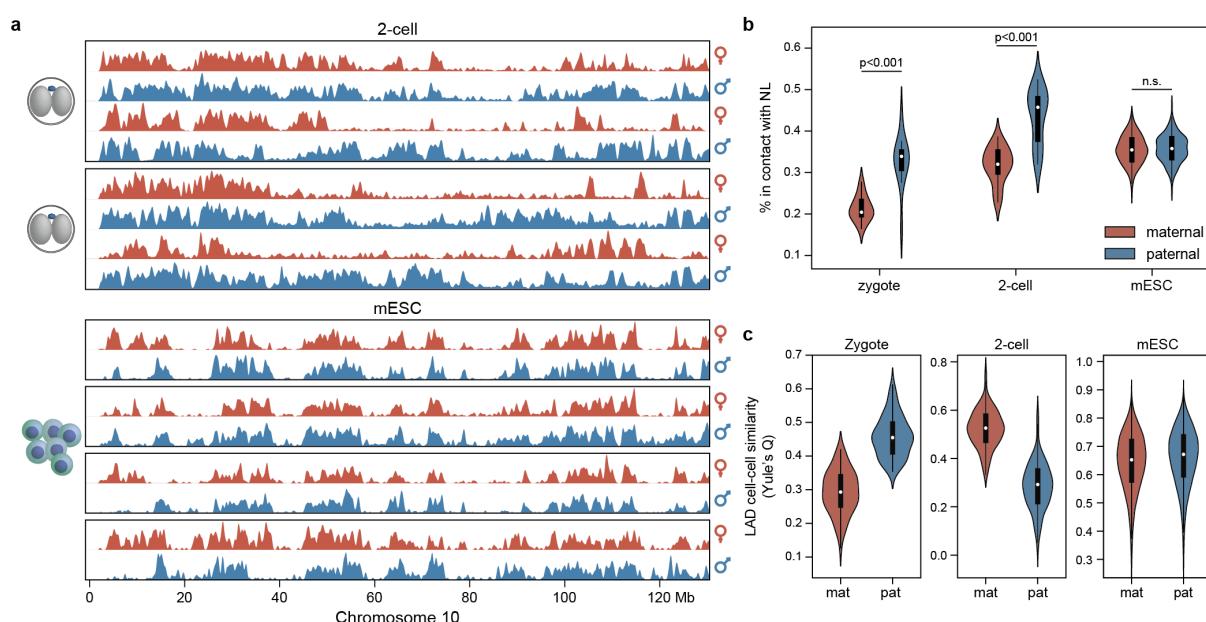
892 To determine the effect of NL association on the expression of a gene, we determined for each
893 gene the group of cells in which the 100kb genomic bin containing the gene TSS was in contact
894 with the NL (“contact”) and the group of cells in which it was not (“free”). This was done
895 separately per embryonic stage. The transcript counts of the gene and the total transcript counts
896 were then combined for the two groups, and the expression value (as $\log(RPM + 10)$) was
897 determined for each group. Genes were excluded from the analysis if either the contact or free
898 group contained fewer than 10 cells; if the gene was expressed in fewer than 10 cells across
899 both groups; if the gene was located on chrX or chrY; or if the gene was annotated as a maternal
900 mRNA transcript by Park et al. (2013)⁴⁴. In the case of allele-specific data, genes were also
901 excluded if their TSS fell within a genomic bin that did not show sufficient allele separation
902 (see above, *Filtering of DamID data*). The correlation in gene expression values between
903 contact and free states was computed using Spearman’s correlation.

904

905 **Figures**

906 **Figure 1**

907


908 **Figure 1 – Genome-nuclear lamina contacts at the two-cell stage are very variable among**
909 **single cells**

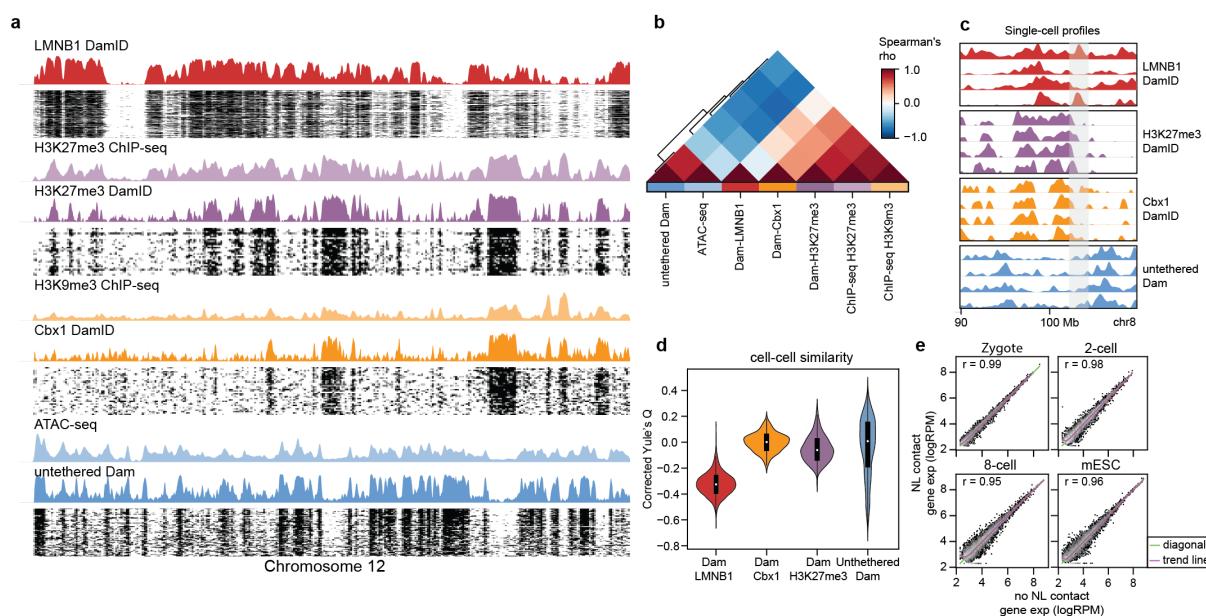
910 **a**, Examples of LAD single-cell profiles (RPKM) and corresponding gene expression track
911 (log-normalized RPKM scaled to maximum value per sample) across the entire chromosome
912 10 at different developmental stages and mESCs. **b**, UMAP based on Dam-LMNB1 single cell
913 readout. **c**, Single-cell UMAP based on transcriptional readout of the same cells as (b). **d**,
914 Distribution of corrected Yule's Q of the Dam-LMNB1 single-cell data providing a measure

915 for LAD cell-cell similarity per stage. **e**, Smoothed mean (1000-Mb Gaussian kernel) of
916 LMNB1 contact frequency (CF) distribution across all autosomal chromosomes scaled to the
917 same size per stage. **f**, comparison between LMNB1 coordination (red, white, blue scale) and
918 Hi-C interaction (grey scale) matrices along the entire chromosome 4 for all stages. Principal
919 component 1 for each of the metrics is shown above as well as LMNB1 CF.

920

921 **Figure 2**

922


923 **Figure 2 – Paternal LADs are more variable across single cells than maternal LADs at**
924 **the 2-cell stage**

925 **a**, 2-cell and mESC example single-cell LAD profiles split in maternal (red) and paternal
926 (blue) alleles. For the two-cell stage, allele-specific profiles from the same embryo (two cells)
927 are enclosed in a blackbox while for mESCs allele specific profiles of each single cell are
928 enclosed in a black-box. **b**, percentage of the genome that is in contact with the NL per allele
929 and per stage. Two-sided Wilcoxon rank-sum test was performed (zygote stage, n=14, p-
930 value=0.00014; 2-cell stage, n=26, p-value=1.83x10⁻⁷; mESC, n=268, p-value=0.33). **c**,
931 Violin plots with distribution of Yule's Q values as a measure of LAD cell-cell similarity for
932 the maternal (red) and paternal (blue) alleles. Two-sided Wilcoxon rank-sum test was
933 performed (zygote stage, n=14; 2-cell stage, n=26; mESC, n=268) (Extended Data Table 6).

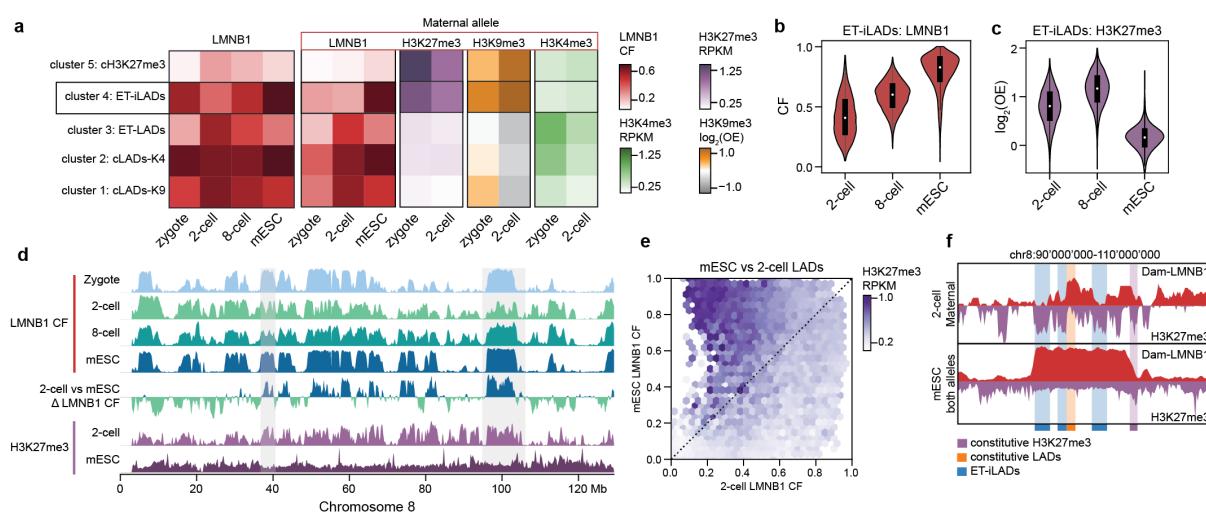
934

935

936 **Figure 3**

937

938 **Figure 3 – LAD variability in single-cells does not result in chromatin state or gene
939 expression changes at the 2-cell stage**

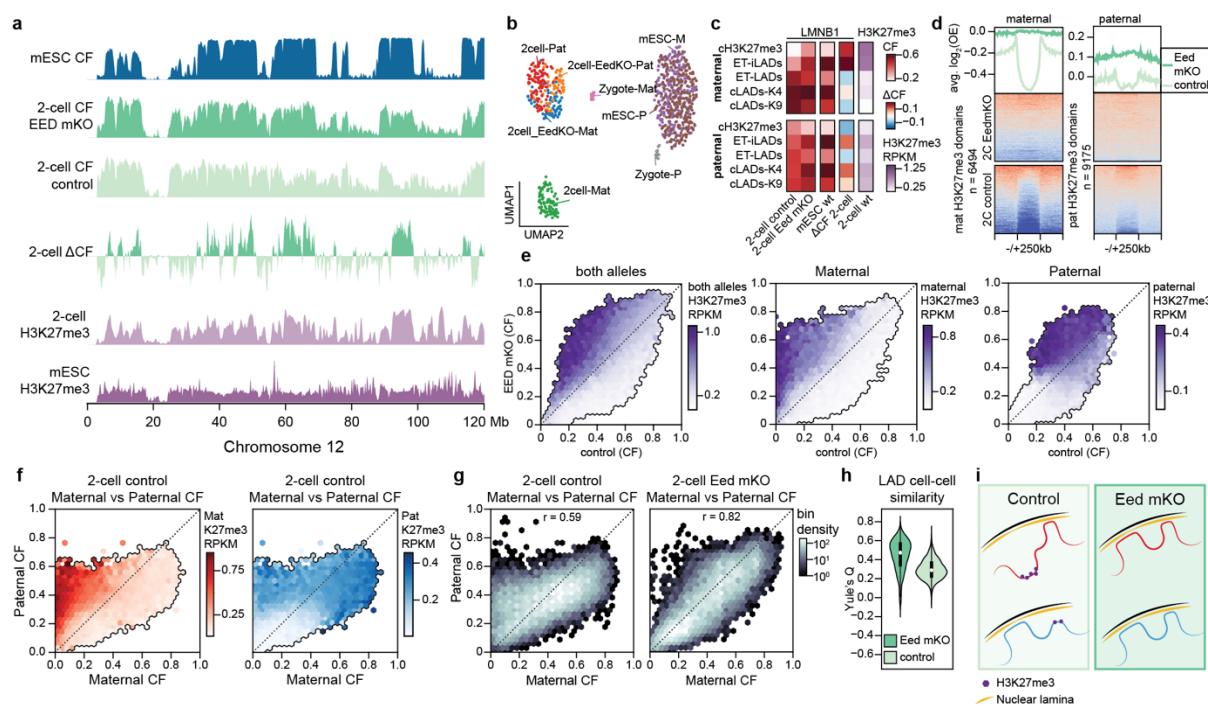

940 **a**, Heatmap of binarized single-cell profiles for Dam-LMNB1, Dam-H3K27me3, Dam-Cbx1
941 across the entire chromosome 12 ordered by decreasing unique number of GATCs. All cells
942 that passed quality control thresholds are plotted and corresponding CF values are shown above
943 each heatmap. When available, the corresponding ChIP-seq publicly available dataset (RPKM)
944 was plotted on top of the DamID track. All data originates from the 2-cell stage. **b**, Spearman
945 correlation heatmap relating DamID (present study) and corresponding ChIP-seq (previous
946 studies) measurements at the 2-cell stage. **c**, Genome browser view of four example single cells
947 per construct over a selected region in chromosome 8. A particularly variable region is
948 highlighted with a grey shading. **d**, Distribution of corrected Yule's Q of the single-cell data
949 providing a measure for cell-cell similarity per construct. **e**, Gene expression comparison
950 between cells that have a genomic region at the NL and cells for which that same genomic
951 region does not contact the NL. Correlation was calculated using Pearson's r. The trend line of

952 the data is in purple and the diagonal expected for a one-to-one correspondence of the data is

953 in green.

954

955 **Figure 4**


956

957 **Figure 4 – ET-iLADs that specifically detach from the NL in early embryos are enriched
958 in H3K27me3**

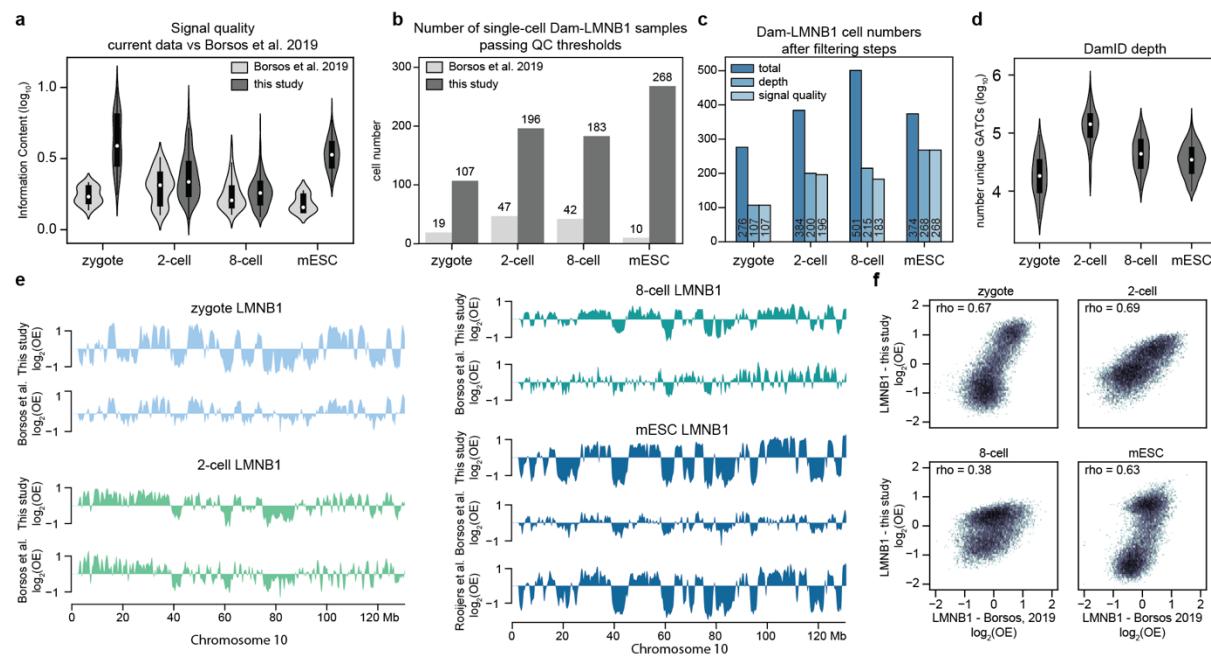
959 **a**, Clustering of genomic regions based on their NL attachment and epigenetic features.
960 Average values per identified cluster was calculated for each stage. Five of the eight clusters
961 are depicted in this panel. On the left are the LMNB1 CF values from both alleles combined
962 and on the right maternal LMNB1 CF, H3K27me3, H3K9me3 and H3K4me3 values from the
963 maternal allele are plotted. An extended version of this plot is shown in Extended Data Figures
964 5b and c. **b**, Violin plot showing the LMNB1 CF values in ET-iLADs per stage. **c**, Violin plot
965 showing the H3K27me3 RPKM values in ET-iLADs per stage. **d**, Dam-LMNB1 CF profiles
966 of all stages and differential CF profile between mESC and 2-cell stage values along
967 chromosome 8. H3K27me3 profiles of the 2-cell stage and mESCs are also plotted. **e**, Genome-
968 wide comparison between mESC and 2-cell LMNB1 CFs. Color intensity refers to H3K27me3
969 RPKM values. **f**, Example genomic region where three of the genomic clusters identified in (a)
970 can be visualized. Mirror profiles show LAD values on top and H3K27me3 on the bottom for
971 the 2-cell stage (maternal allele) and mESCs (both alleles).

972

973 **Figure 5**

974

975 **Figure 5 – H3K27me3 antagonizes genome-NL association during early development**

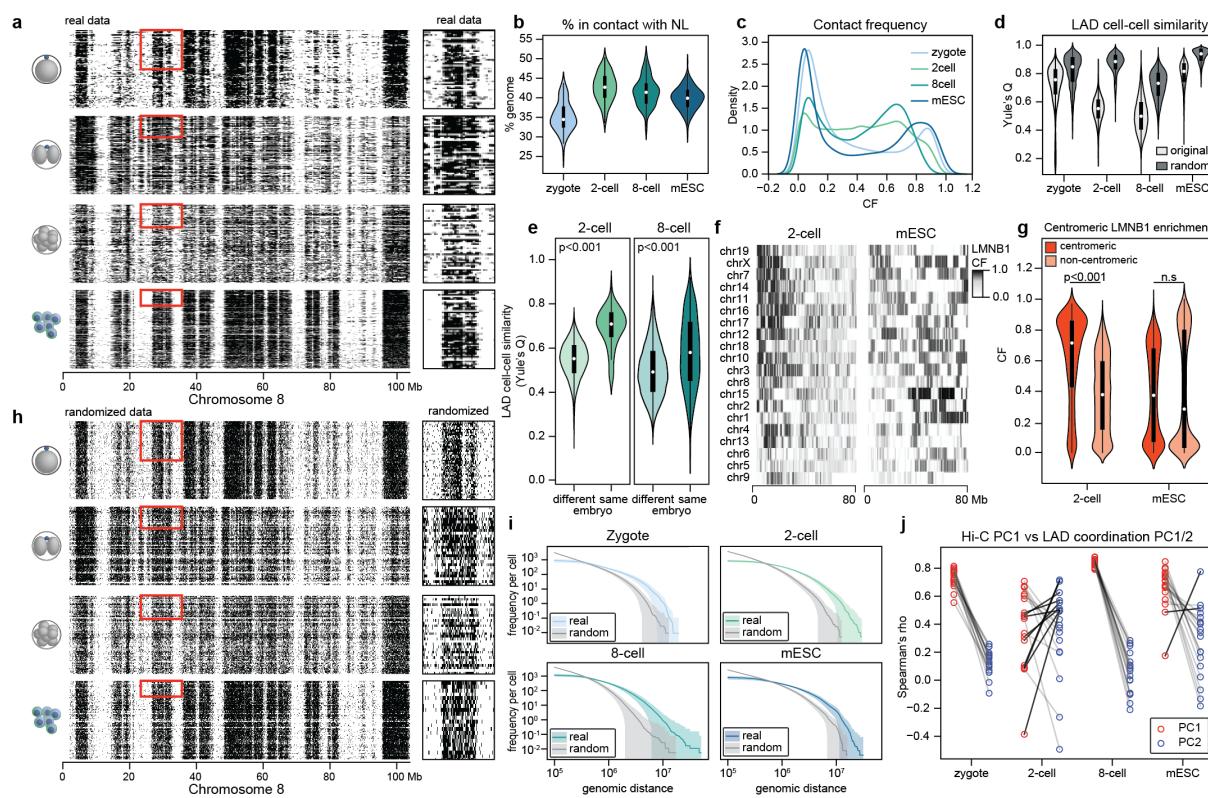

976 **a**, LAD profiles of control and *Eed* mKO 2-cell embryos, differential LMNB1 enrichment
 977 between the two conditions, mESC LAD profile and H3K27me3 profiles over chromosome
 978 12. **b**, UMAP from all allelic-separated single-cell LAD data. Each cell is represented twice in
 979 the UMAP, once for each allele. **c**, Heatmap showing *Eed* mKO and control LMNB1 average
 980 enrichment at the 2-cell stage as well as mESC average LMNB1 enrichment and differential
 981 LAD values between the two conditions for each of the 5 genomic clusters depicted in Figure
 982 4a. H3K27me3 average enrichment at the 2-cell stage is also plotted. **d**, Enrichment plot
 983 showing maternal (left) and paternal (right) LMNB1 enrichment at the 2-cell stage for either
 984 the *Eed* mKO or control condition over maternal H3K27me3 domains and surrounding 250 kb.
 985 Heatmaps show LMNB1 signal per domain while line plots show average enrichment per
 986 condition. **e**, Correspondence between LMNB1 values in the *Eed* mKO condition and the
 987 control condition for both alleles (left), or maternal and paternal alleles separately (right). The
 988 color scale refers to the corresponding combined or allele-specific H3K27me3 values. **f**,

989 Correspondence between maternal and paternal Dam-LMNB1 CF. The color within the plot
990 refers to allelic specific H3K27me3 RPKM values: maternal on the left (red) and paternal on
991 the right (blue), **g**, Correspondence between Paternal and Maternal LMNB1 CF in control (left)
992 or *Eed* mKO conditions (right) **h**, Violin plots with distribution of Yule's Q values as a measure
993 of LAD cell-cell similarity for *Eed* mKO (dark green) and control (light green). **i**, Model of the
994 relationship between H3K27me3 and genome-nuclear lamina association during early
995 development. Non-canonical broad H3K27me3 domains are present in regions that particularly
996 in early developmental stages are not located at the nuclear lamina. Upon H3K27me3 depletion
997 using the *Eed* mKO these regions relocate to the nuclear periphery. In addition, H3K27me3 is
998 enriched in regions that show differential lamina association between the paternal and maternal
999 allele. In the absence of H3K27me3 allelic LAD differences are reduced.

1000

1001 **Extended Data Figures**

1002 **Extended Data Figure 1**

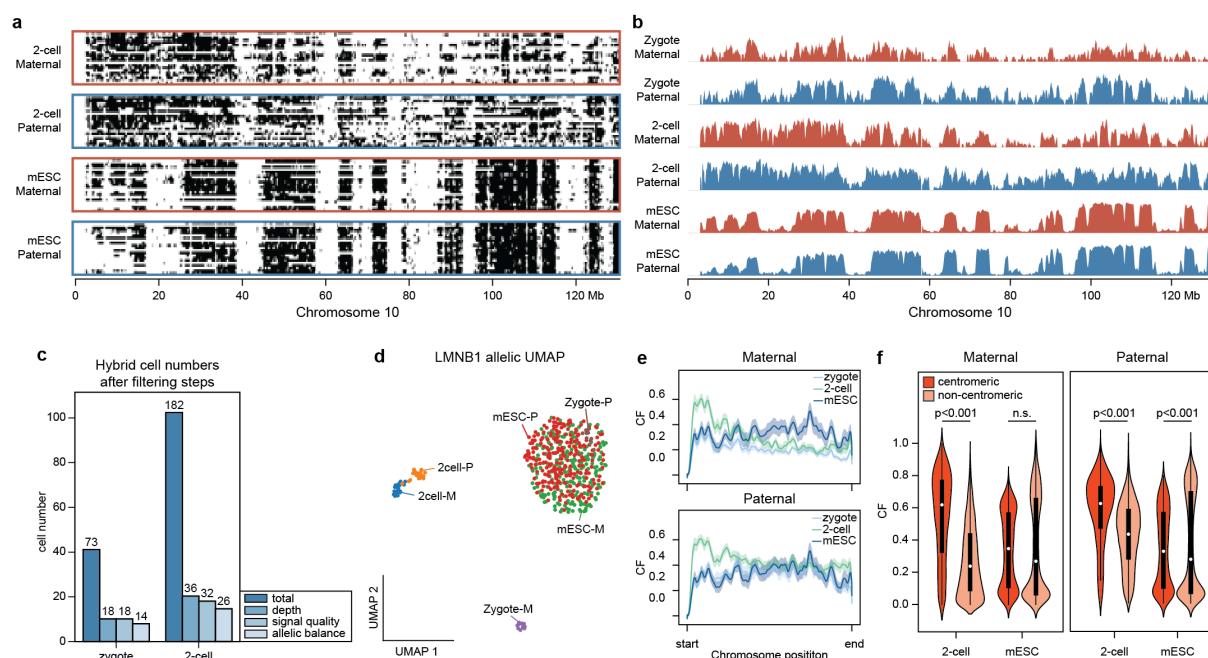

1004 **Extended Data Figure 1 – Validation of single-cell LAD data during preimplantation**
1005 **stages**

1006 **a**, Information content, a measure of signal quality plotted for both for the present study and
1007 Borsos et al. (2019)¹. **b**, Comparison of cell number that pass quality thresholds for the present
1008 study and Borsos et al. (2019)¹. **c**, Cell numbers that pass sequential filtering steps: unique
1009 number of GATCs and signal quality. **d**, Violin plot depicting the distribution of the number
1010 of unique GATCs per stage. **e**, Single-cell average LAD profiles normalized to mappability
1011 ($\log_2(OE)$) of this work compared to previous studies over the entire chromosome 10. **f**,
1012 Comparison between single-cell averages from our study and Borsos et al, 2019 for each stage
1013 using mappability normalized values ($\log_2(OE)$). Correlation value was obtained by calculating
1014 the Spearman rho.

1015

1016

1017 **Extended Data Figure 2**

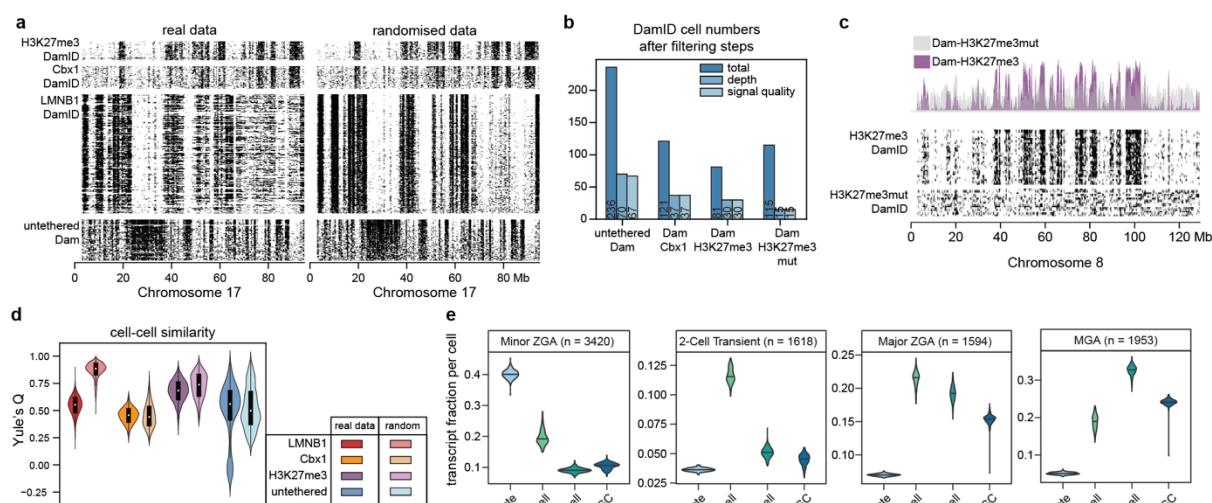

1018

1019 **Extended Data Figure 2 – Analysis of cell-cell LAD variability in preimplantation stages**
1020 **and mESCs**

1021 **a**, Heatmap with single-cell binarized profiles of all cells that passed quality thresholds along
1022 the entire chromosome 8 (left panel) ordered by unique number of GATCs (DamID depth) and
1023 grouped by stage. On the right side is a magnification of the region highlighted with a red
1024 rectangle in the left heatmap which captures the same number of cells per stage. **b**, Percentage
1025 of the genome in contact with the nuclear lamina (NL) at each stage. **c**, Distribution of contact
1026 frequency (CF) per stage. **d**, Violin plot showing Yule's Q for real data (depicted in a) and
1027 randomized data (depicted in h) per stage. Two-sided Wilcoxon rank-sum test was performed
(zygote, n=107; 2-cell, n=196; 8-cell, n=183; mESCs=268) (Extended Data Table 4). **e**, Violin
1028 plot showing cell-cell similarity using Yule's Q on cell pairs originating from the same embryo
1029 or from a different embryo at the two-cell stage (left) and at the eight-cell stage (right). Two-
1030 sided Wilcoxon rank-sum test was performed (2-cell different embryo, n=19025; 2-cell same
1031 embryo, n=19025) (Extended Data Table 4). **f**, Heatmap showing LAD cell-cell similarity for 2-cell
1032 and mESC stages. **g**, Violin plot showing LAD cell-cell similarity for 2-cell and mESC stages. **h**, Heatmap
1033 showing LAD cell-cell similarity for randomized data. **i**, Log-log plot showing the frequency of genomic
1034 distance for real (blue) and random (grey) data. **j**, Scatter plot showing the Spearman's correlation
1035 between Hi-C PC1 and LAD coordination PC1/2 for zygote, 2-cell, 8-cell, and mESC stages. Red circles
1036 represent PC1 and blue circles represent PC2.

1032 embryo, n=85, p-value=3.36x10⁻³⁵; 8-cell different embryo, n=14377, 8-cell same embryo:
1033 n=2276, p-value=8.00x10⁻³⁰). **f**, Heatmap with CF distribution along the first 80 Megabases
1034 (Mb) of each chromosome for both 2-cell stage (left) and mESCs (right). Chromosomes are
1035 ordered by CF value of the first 10 Mb at the 2-cell stage. **g**, Violin plot depicting CF values in
1036 the first 30 Mb versus the remaining of the chromosome for the 2-cell stage and mESCs. Two-
1037 sided Wilcoxon rank-sum test was performed (centromeric bins, n=570, p-value<2.225x10⁻³⁰⁸;
1038 non-centromeric bins, n=24048, p-value=0.0013). **h**, Heatmap with single-cell binarized
1039 profiles of randomized data based on stage CF and unique number of GATCs per cell in (a)
1040 along the entire chromosome 8 (left panel) ordered by unique number of GATCs (DamID
1041 depth) and grouped by stage. This randomized data allows to control for variability originating
1042 from differences in signal quality across stages. On the right side is a magnification of the
1043 region highlighted with a red rectangle in the left heatmap which captures the same number of
1044 cells per stage. **i**, Distribution of Dam-LMNB1 contact run lengths in single-cell datasets
1045 compared to randomized data (grey) that simulates the absence of coordination between
1046 neighboring genomic bins. **j**, Spearman correlation between principal component (PC) 1 of Hi-
1047 C contact matrices and PC1 (red) and PC2 (blue) calculated from LAD coordination matrices.
1048
1049

1050 **Extended Data Figure 3**

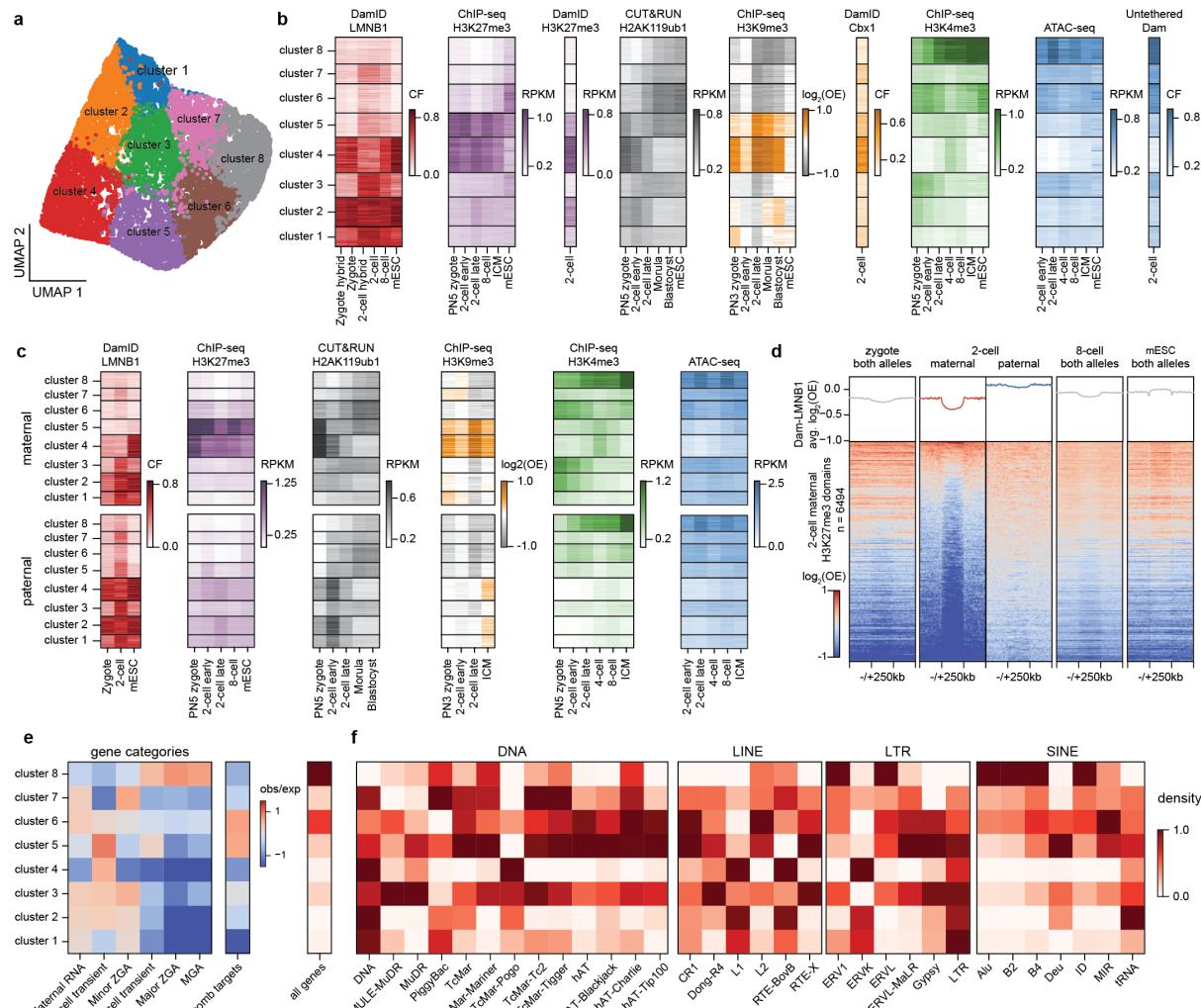

1051

1052 **Extended Data Figure 3 – Characterization of single-cell LAD profiles split by parental
1053 allele**

1054 **a**, Heatmap of binarized single-cell LAD profiles separated into maternal (red box) and paternal
1055 (blue box) allele for the 2-cell stage and mESCs along the entire chromosome 10 and ordered
1056 by unique number of GATCs (DamID depth). All 2-cell samples that passed quality thresholds
1057 are pictured while a selection of the same number of mESC samples with highest DamID depth
1058 was made for visualization purposes. **b**, Average LMNB1 CF for the maternal (red) and
1059 paternal (blue) alleles per stage along the entire chromosome 10. **c**, Cell numbers obtained from
1060 hybrid mouse crosses that pass sequential filtering steps: unique number of GATCs (depth),
1061 signal quality and allelic balance where the expectation is to recover a similar number of reads
1062 from each allele per single cell. **d**, UMAP based on Dam-LMNB1 single-cell readout separated
1063 by allele. **e**, Smoothed mean (1000-Mb Gaussian kernel) of LMNB1 contact frequency (CF)
1064 distribution across all autosomal chromosomes scaled to the same size per stage and split by
1065 allele (maternal - top and paternal – bottom). **f**, Violin plot depicting CF values separated by
1066 allele in the first 30 Mb versus the remaining of the chromosome for the 2-cell stage and

1067 mESCs. Two-sided Wilcoxon rank-sum test was performed (centromeric bins, n=570; non-
1068 centromeric bins, n=24048; maternal 2-cell p-value<2.225x10⁻³⁰⁸, maternal mESC, p-
1069 value=0.59, paternal 2-cell p-value<2.225x10⁻³⁰⁸, paternal mESC p-value=0.00024).
1070

1071 **Extended Data Figure 4**

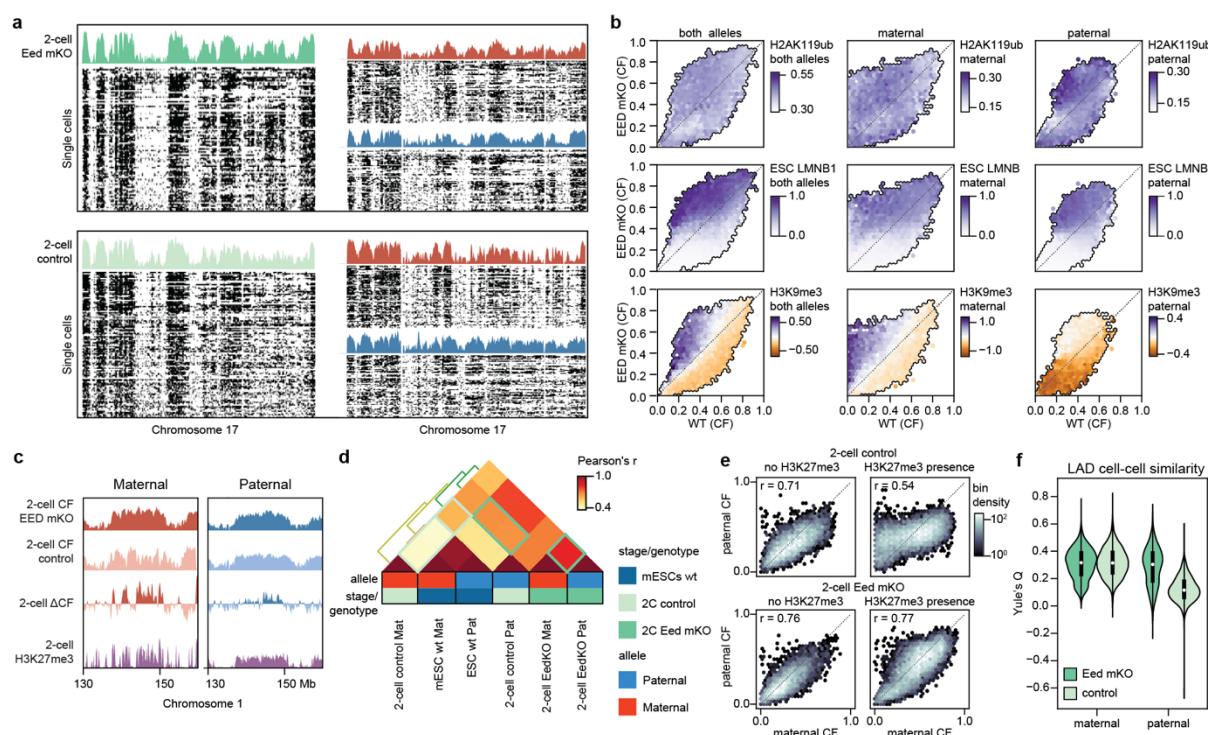

1072

1073 **Extended Data Figure 4 – Validation and analysis of single-cell epigenetic marks at the**
1074 **2-cell stage**

1075 **a**, Heatmap of binarized single-cell profiles for Dam-LMNB1, Dam-H3K27me3, Dam-Cbx1
1076 across the entire chromosome 17 ordered by decreasing unique number of GATCs. All cells
1077 that passed quality control thresholds are plotted with the size of the heatmap corresponding to
1078 relative sample size between constructs (left side). Corresponding randomized data is plotted
1079 on the right-side randomized data using the same strategy as in Extended Data Figure 2h. This
1080 data is used to correct cell-cell similarity calculations for construct-specific noise and sparsity
1081 levels. **b**, Cell numbers that pass sequential filtering steps: unique number of GATCs and signal
1082 quality per construct. **c**, Comparison between DamID performed with the Dam-H3K27me3
1083 construct or the mutant version that should not bind H3K27me3. Both binarized single-cell
1084 heatmaps (bottom) and corresponding CFs (top) are shown along the entire chromosome 8. **d**,
1085 Violin Plot showing Yule's Q for real data and randomized data (both depicted in a) per
1086 construct. Two-sided Wilcoxon rank-sum test was performed (LMNB1, n=196; Cbx1, n=37;
1087 H3K27me3, n=30; untagged, n=67) (Extended Data Table 4). **e**, Transcript fraction per cell
1088 of gene categories defined by their expression dynamics during early development as defined

1089 by Park et al. (2013)⁴⁴ and grouped by stage. ZGA, zygotic genome activation; MGA, mid-
1090 preimplantation gene activation.

1091 Extended Data Figure 5



1092
1093 **Extended Data Figure 5 – Characterization of genomic regions based on genome-NL**
1094 **association and chromatin marks**
1095 **a**, UMAP of genomic bins colored by cluster. **b**, Heatmap with LMNB1, H3K27me3, H2Aub,
1096 H3K9me3, H3K4me3 and ATAC-seq values per genomic bin grouped by genomic cluster. **c**,
1097 same as b split by allele: maternal on the top and paternal on the bottom. The scale of each
1098 measurement is the same for the two alleles. **d**, Enrichment of LMNB1 signal over H3K27me3
1099 maternal domains called from H3K27me3 2-cell stage ChIP-seq data and surrounding
1100 upstream and downstream 250 kb. Heatmaps at the bottom show LMNB1 enrichment per

1101 domain and line plots on top show average enrichment. **e**, Heatmap showing observed/expected
1102 values of different gene categories described in Park et al (2013)⁴⁴ , Polycomb targets⁴⁵ and
1103 coding gene density for each cluster. **f**, Heatmap showing repeat density of each genomic
1104 cluster split by repeat family.

1105

1106 **Extended Data Figure 6**

1107

1108 **Extended Data Figure 6 – Effect of *Eed* maternal KO on nuclear lamina association at**
1109 **the 2-cell stage**

1110 **a**, Single-cell heatmaps of binarized LMNB1 profiles of 2-cell *Eed* mKO (top) or control
1111 (bottom) with corresponding CF values per condition along chromosome 17 of both alleles
1112 (left) or separated alleles (right). **b**, Correspondence between LMNB1 values in the *Eed*-mKO
1113 condition and the control condition for both alleles (left), or maternal and paternal alleles
1114 separately (right). The color scale refers to the corresponding combined or allele-specific
1115 H2AK119ub1, mESC LMNB1 or H3K9me3 values. **c**, Example genomic region where
1116 genome-NL association changes upon *Eed* mKO. LMNB1 CF is plotted for both *Eed* mKO
1117 and control as well as the differential CF and H3K27me3 at the 2-cell stage on the maternal
1118 (left) and paternal (right) alleles. **d**, Heatmap of Pearson's correlation between allele-separated
1119 LMNB1 profiles of 2-cell *Eed* mKO, 2-cell control and wt mESCs. The KO condition shows
1120 higher correlation 1) between maternal and paternal LAD profiles and 2) with mESC LAD
1121 profiles as highlighted by green boxes. **e**, Correspondence between maternal and paternal CF

1122 in genomic regions containing H3K27me3 (right) or not (left) in either the control 2-cell
1123 condition (top) or in the *Eed* mKO (bottom). Color scale refers to density of genomic bins. **f**,
1124 Violin plots with distribution of Yule's Q values as a measure of LAD cell-cell similarity for
1125 *Eed* mKO (dark green) and control (light green) separated by allele.

1126

1127

1128

1129 **Extended Data Tables**

1130 **Extended Data Table 1 - RNA concentrations of constructs for zygote injections**

1131

construct	dilution	stage collected	induction	collection (hours post hCG)
Dam-LMNB1	5ng/uL	zygote	no	29-31h
Dam-LMNB1	10ng/uL	2-cell	no	52-55h
Dam-LMNB1	<u>100, 150 or 200</u> ng/uL*	8-cell	no	75-78h
Dam-H3K27me3	5 or <u>10</u> ng/uL*	2-cell	no	52-55h
Dam-H3K27me3mut	10ng/uL	2-cell	no	52-55h
untethered Dam-ERT2	20ng/uL	2-cell	tamoxifen 20h	52-55h
Dam-Cbx1-ERT2	20ng/uL	2-cell	tamoxifen 20h	52-55h

*multiple concentrations were the result of optimizations: underlined is the most successful condition.

1132

1133 **Extended Data Table 2 – Filtering conditions for single-cell DamID data**

1134

Dam construct	Embryonic stage	# GATC threshold	IC threshold
Dam-LMNB1	Zygote	≥3,000	≥1.4
Dam-LMNB1	2-cell embryo	≥10,000	≥1.4
Dam-LMNB1	8-cell embryo	≥10,000	≥1.4
Dam-LMNB1	mESC	≥10,000	≥1.4
Dam-only	2-cell embryo	≥10,000	≥1.2
Dam-H3K27me3	2-cell embryo	≥10,000	≥1.2
Dam-H3K27me3mut	2-cell embryo	≥10,000	≥1.2
Dam-Cbx1	2-cell embryo	≥5,000	≥1.2

1135

1136

1137

1138

1139

1140 **Extended Data Table 3 – External dataset accession numbers**

1141

Accession	Technique
GEO: GSE56697	MethylC-seq (5mCpG)
GEO: GSE66390	ATAC-seq
GEO: GSE71434	ChIP-seq - H3K4me3
GEO: GSE73952	ChIP-seq - H3K4me3 & H3K27me3
GEO: GSE76687	ChIP-seq - H3K27me3
GEO: GSE82185	Hi-C
GEO: GSE97778	ChIP-seq - H3K9me3
GEO: GSE112551	DamID – LMNB1
GEO: GSE153496	CUT&RUN – H2AK119ub1
ENCODE: ENCSR857MYS	ChIP-seq – H3K9me3

1142

1143

1144 **Extended Data Table 4 – Wilcoxon test for original vs randomized data**

1145

Sample 1	Sample 2	Wilco x stat	pval	Mean S1	Mean S2	Median S1	Median S2
zygote - original	zygote - randomised	-42.50	0*	0.71	0.81	0.75	0.84
2cell - original	2cell - randomised	-167.8	0*	0.54	0.87	0.55	0.88
8cell - original	8cell - randomised	-129.2	0*	0.50	0.72	0.49	0.73
mESC - original	mESC - randomised	-202.3	0*	0.79	0.93	0.81	0.93
Dam-LMNB1 - original	Dam-LMNB1 - randomised	-167.8	0*	0.54	0.87	0.55	0.88
Dam-only - original	Dam-only - randomised	2.76	0.00 57	0.49	0.52	0.56	0.49
Dam-2E12 - original	Dam-2E12 - simulated	-7.20	5.80 E-13	0.67	0.72	0.68	0.74
Dam-CBX1_3 - original	Dam-CBX1_3 - simulated	1.51	0.13	0.45	0.45	0.46	0.44

1146 *p-values of 0 indicate a value lower than 2.225e-308

1147

1148

1149

1150 **Extended Data Table 5 – Data used for genomic bin clustering**

1151

Source	Technique	Stage	Allele	Normalization
GEO: GSE153496	CUT&RUN – H2AK119ub1	PN5 zygote	Maternal & paternal	Log RPKM
GEO: GSE153496	CUT&RUN – H2AK119ub1	Late 2-cell embryo	Maternal & paternal	Log RPKM
GEO: GSE153496	CUT&RUN – H2AK119ub1	mESC	combined	Log RPKM
GEO: GSE71434	ChIP-seq – H3K4me3	PN5 zygote	Maternal & paternal	Log RPKM
GEO: GSE71434	ChIP-seq – H3K4me3	Late 2-cell embryo	Maternal & paternal	Log RPKM
GEO: GSE71434	ChIP-seq – H3K4me3	mESC	combined	Log RPKM
GEO: GSE97778	ChIP-seq – H3K9me3	PN3 zygote	combined	Log2 input-normalized
GEO: GSE97778	ChIP-seq – H3K9me3	Late 2-cell embryo	combined	Log2 input-normalized
ENCODE: ENCSR857MYS	ChIP-seq – H3K9me3	mESC	combined	Log2 input-normalized
This study	DamID – LMNB1	PN5 zygote	Maternal & paternal	CF
This study	DamID – LMNB1	Late 2-cell embryo	Maternal & paternal	CF
This study	DamID – LMNB1	mESC	Maternal & paternal	CF

1152

1153

1154

Extended Data Table 6 – Wilcoxon test for maternal vs paternal cell-cell similarity

1155

stage	Sample 1	Sample 2	Wilcox stat	pval	Mean S1	Mean S2	Median S1	Median S2
Zygote	Mat	Pat	-10.30	7.04E-25	0.29	0.46	0.29	0.45
2-cell	Mat	Pat	16.62	4.60E-62	0.52	0.29	0.53	0.29
mESC	Mat	Pat	-21.26	2.50E-100	0.64	0.66	0.65	0.67

1156

1157

1158

1159

1160

1161 References

1162 1 Borsos, M. *et al.* Genome-lamina interactions are established de novo in the early
1163 mouse embryo. *Nature* **569**, 729-733, (2019).

1164 2 Burton, A. & Torres-Padilla, M. E. Chromatin dynamics in the regulation of cell fate
1165 allocation during early embryogenesis. *Nat Rev Mol Cell Biol* **15**, 723-734, (2014).

1166 3 Guerreiro, I. & Kind, J. Spatial chromatin organization and gene regulation at the
1167 nuclear lamina. *Curr Opin Genet Dev* **55**, 19-25, (2019).

1168 4 Kind, J. & van Steensel, B. Genome-nuclear lamina interactions and gene regulation.
1169 *Curr Opin Cell Biol* **22**, 320-325, (2010).

1170 5 van Steensel, B. & Belmont, A. S. Lamina-Associated Domains: Links with
1171 Chromosome Architecture, Heterochromatin, and Gene Repression. *Cell* **169**, 780-
1172 791, (2017).

1173 6 Vogel, M. J., Peric-Hupkes, D. & van Steensel, B. Detection of in vivo protein-DNA
1174 interactions using DamID in mammalian cells. *Nat Protoc* **2**, 1467-1478, (2007).

1175 7 Shachar, S. & Misteli, T. Causes and consequences of nuclear gene positioning. *J Cell
1176 Sci* **130**, 1501-1508, (2017).

1177 8 Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1
1178 and H3K27me3 in mouse preimplantation embryos. *Nat Genet* **53**, 551-563, (2021).

1179 9 Dahl, J. A. *et al.* Broad histone H3K4me3 domains in mouse oocytes modulate
1180 maternal-to-zygotic transition. *Nature* **537**, 548-552, (2016).

1181 10 Liu, X. *et al.* Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-
1182 implantation embryos. *Nature* **537**, 558-562, (2016).

1183 11 Mei, H. *et al.* H2AK119ub1 guides maternal inheritance and zygotic deposition of
1184 H3K27me3 in mouse embryos. *Nat Genet* **53**, 539-550, (2021).

1185 12 Wang, C. *et al.* Reprogramming of H3K9me3-dependent heterochromatin during
1186 mammalian embryo development. *Nat Cell Biol* **20**, 620-631, (2018).

1187 13 Zhang, B. *et al.* Allelic reprogramming of the histone modification H3K4me3 in early
1188 mammalian development. *Nature* **537**, 553-557, (2016).

1189 14 Zheng, H. *et al.* Resetting Epigenetic Memory by Reprogramming of Histone
1190 Modifications in Mammals. *Mol Cell* **63**, 1066-1079, (2016).

1191 15 Biase, F. H., Cao, X. & Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse
1192 embryos revealed by single-cell RNA sequencing. *Genome Res* **24**, 1787-1796, (2014).

1193 16 Shi, J. *et al.* Dynamic transcriptional symmetry-breaking in pre-implantation
1194 mammalian embryo development revealed by single-cell RNA-seq. *Development*
1195 **142**, 3468-3477, (2015).

1196 17 Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone
1197 arginine methylation regulates pluripotency in the early mouse embryo. *Nature* **445**,
1198 214-218, (2007).

1199 18 Rooijers, K. *et al.* Simultaneous quantification of protein-DNA contacts and
1200 transcriptomes in single cells. *bioRxiv*, 529388, (2019).

1201 19 Kind, J. *et al.* Genome-wide maps of nuclear lamina interactions in single human
1202 cells. *Cell* **163**, 134-147, (2015).

1203 20 Borsos, M. & Torres-Padilla, M. E. Building up the nucleus: nuclear organization in
1204 the establishment of totipotency and pluripotency during mammalian development.
1205 *Genes Dev* **30**, 611-621, (2016).

1206 21 Du, Z. *et al.* Allelic reprogramming of 3D chromatin architecture during early
1207 mammalian development. *Nature* **547**, 232-235, (2017).

1208 22 Rang, F. J. *et al.* Single-cell profiling of transcriptome and histone modifications with
1209 EpiDamID. *Molecular Cell* **82**, 1956-1970.e1914, (2022).

1210 23 Guelen, L. *et al.* Domain organization of human chromosomes revealed by mapping
1211 of nuclear lamina interactions. *Nature* **453**, 948-951, (2008).

1212 24 Inoue, A., Chen, Z., Yin, Q. & Zhang, Y. Maternal Eed knockout causes loss of
1213 H3K27me3 imprinting and random X inactivation in the extraembryonic cells. *Genes*
1214 *Dev* **32**, 1525-1536, (2018).

1215 25 Aguirre-Lavin, T. *et al.* 3D-FISH analysis of embryonic nuclei in mouse highlights
1216 several abrupt changes of nuclear organization during preimplantation development.
1217 *BMC Dev Biol* **12**, 30, (2012).

1218 26 van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P. & van Steensel, B. Cell cycle
1219 dynamics of lamina-associated DNA. *EMBO Rep* **21**, e50636, (2020).

1220 27 Lenain, C. *et al.* Massive reshaping of genome-nuclear lamina interactions during
1221 oncogene-induced senescence. *Genome Res* **27**, 1634-1644, (2017).

1222 28 Payne, A. C. *et al.* In situ genome sequencing resolves DNA sequence and structure in
1223 intact biological samples. *Science* **371**, (2021).

1224 29 Kind, J. *et al.* Single-cell dynamics of genome-nuclear lamina interactions. *Cell* **153**,
1225 178-192, (2013).

1226 30 Siegenfeld, A. P. *et al.* Polycomb-lamina antagonism partitions heterochromatin at
1227 the nuclear periphery. *Nat Commun* **13**, 4199, (2022).

1228 31 Markodimitraki, C. M. *et al.* Simultaneous quantification of protein-DNA interactions
1229 and transcriptomes in single cells with scDam&T-seq. *Nat Protoc* **15**, 1922-1953,
1230 (2020).

1231 32 Hashimshony, T. *et al.* CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq.
1232 *Genome Biol* **17**, 77, (2016).

1233 33 Kubota, T., Nishimura, K., Kanemaki, M. T. & Donaldson, A. D. The Elg1 replication
1234 factor C-like complex functions in PCNA unloading during DNA replication. *Molecular*
1235 *cell* **50**, 273-280, (2013).

1236 34 Nora, E. P. *et al.* Targeted degradation of CTCF decouples local insulation of
1237 chromosome domains from genomic compartmentalization. *Cell* **169**, 930-944. e922,
1238 (2017).

1239 35 Lochs, S. J. & Kind, J. in *Spatial Genome Organization* 215-241 (Springer, 2022).

1240 36 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat*
1241 *Methods* **9**, 357-359, (2012).

1242 37 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
1243 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**, 907-
1244 915, (2019).

1245 38 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-
1246 throughput sequencing data. *Bioinformatics* **31**, 166-169, (2015).

1247 39 Ramirez, F. *et al.* deepTools2: a next generation web server for deep-sequencing
1248 data analysis. *Nucleic Acids Res* **44**, W160-165, (2016).

1249 40 Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other
1250 genomically labeled arrays. *Bioinformatics* **36**, 311-316, (2020).

1251 41 Abdennur, N. *et al.* Cooltools: enabling high-resolution Hi-C analysis in Python.
1252 *bioRxiv*, 2022.2010.2031.514564, (2022).

1253 42 Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and
1254 unbiased procedure to randomize ecological binary matrices with fixed row and
1255 column totals. *Nat Commun* **5**, 4114, (2014).

1256 43 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
1257 e3529, (2021).

1258 44 Park, S. J. *et al.* Inferring the choreography of parental genomes during fertilization
1259 from ultralarge-scale whole-transcriptome analysis. *Genes Dev* **27**, 2736-2748,
1260 (2013).

1261 45 Gorkin, D. U. *et al.* An atlas of dynamic chromatin landscapes in mouse fetal
1262 development. *Nature* **583**, 744-751, (2020).

1263

1264

1265

1266 **Data availability**

1267 All genomic and transcriptomic data generated in this study has been deposited at the Gene
1268 Expression Omnibus under accession number GSE218598.

1269

1270 **Code Availability**

1271 All data analysis code is available upon request.

1272

1273 **Acknowledgements**

1274 We would like to thank all the members of the Kind laboratory for their comments throughout
1275 the project and their critical reading of the manuscript. We thank Evgeniy A. Ozonov for advice
1276 on data analysis. This work was supported by an ERC Starting grant EpiID (ERC Stg EpiID-
1277 678423) and ERC Consolidator grant FateID (ERC CoG-101002885) and an NWO-ENW
1278 VIDI grant (161.339). The Oncode Institute is partially funded by the KWF Dutch Cancer
1279 Society. I.G. was supported by an EMBO Long-Term Fellowship (ALTF1214-2016), Swiss
1280 National Science Fund grant (P400PB_186758) and NWO-ENW Veni grant
1281 (VI.Veni.202.073). The lab of A.H.M.F.P. has received funding from the Novartis Research
1282 Foundation and the European Research Council (ERC) under the European Union's Horizon
1283 2020 research and innovation programme (grant agreement ERC-AdG 695288 - Totipotency).
1284 In addition, we would like to thank the Hubrecht Sorting Facility as well as the Utrecht
1285 Sequencing Facility (USEQ), subsidized by the University Medical Center Utrecht.

1286

1287

1288 **Author contributions**

1289 I.G., F.J.R. and J.K. designed the study. F.J.R. performed all data analysis with input from I.G.
1290 All embryo and scDam&T-seq experiments were performed by I.G. unless otherwise stated
1291 with assistance from F.C.G. and R.E.v.B.. Y.K.K. performed the embryo experiments for the
1292 *Eed* mKO line and corresponding control with supervision from A.H.M.F.P.. S.J.A.L. and E.B.
1293 generated the mESC line expressing Dam-LMNB1 and performed the mESC scDam&T-seq
1294 experiment. I.G. wrote the first draft of the manuscript with editing by J.K. All authors
1295 reviewed and edited the manuscript.

1296

1297 **Competing interest declaration**

1298 The authors declare no competing interests.

1299 Correspondence and material requests should be addressed to Jop Kind (j.kind@hubrecht.eu)

1300 or Isabel Guerreiro (i.guerreiro@hubrecht.eu).

1301

1302

1303

1304