

1 High-Quality Nuclei Isolation from Postmortem Human Heart Muscle Tissues for Single-Cell
2 Studies

3

4 Sarah Araten¹, Ronald Mathieu², Anushka Jetly^{1,3}, Hoon Shin^{1,3}, Nazia Hilal^{1,7}, Bo Zhang^{4,5},
5 Katherine Morillo¹, Deepa Nandan¹, Indu Sivankutty^{1,7}, Ming Hui Chen^{1,6,7*}, Sangita
6 Choudhury^{1,7, 8*}

7

8

9 1. Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital,
10 Boston, MA, USA

11 2. Flow Cytometry Core Facility, Boston Children's Hospital, Boston, MA, USA

12 3. Harvard College, Cambridge, MA, USA

13 4. Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston,
14 Massachusetts, USA

15 5. Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational
16 Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts,
17 USA

18 6. Department of Cardiology, Boston Children's Hospital, Boston, MA, USA

19 7. Harvard Medical School, Boston, MA, USA

20 8. Broad Institute of MIT and Harvard, Cambridge, MA, USA

21 * Corresponding authors

22

23

24 Abstract:

25 Single-cell approaches have become an increasingly popular way of understanding the genetic
26 factors behind disease. Isolation of DNA and RNA from human tissues is necessary to analyze
27 multi-omic data sets, providing information on the single-cell genome, transcriptome, and
28 epigenome. Here, we isolated high-quality single-nuclei from postmortem human heart tissues
29 for DNA and RNA analysis. Postmortem human tissues were obtained from 106 individuals, 33
30 with a history of myocardial disease, diabetes, or smoking, and 73 controls without heart disease.
31 We demonstrated that the Qiagen EZ1 instrument and kit consistently isolated genomic DNA of
32 high yield, which can be used for checking DNA quality before conducting single-cell
33 experiments. Here, we provide a method for single-nuclei isolation from cardiac tissue,
34 otherwise known as the SoNIC method, which allows for the isolation of single cardiomyocyte
35 nuclei from postmortem tissue by nuclear ploidy status. We also provide a detailed quality
36 control measure for single-nuclei whole genome amplification and a pre-amplification method
37 for confirming genomic integrity.

38

39

40 Key Words: heart, single-nuclei, single cardiomyocyte, postmortem tissue, RNA sequencing,
41 whole genome sequencing

42

43

44

45

46 Introduction:

47 The field of cardiovascular disease previously has been dominated by studies that focus on the
48 inherited genetic origins of disease, which have been accomplished by analyzing DNA that is
49 typically isolated from easily accessible whole blood and sequenced with the use of whole
50 exome sequencing or targeted gene panels¹⁻⁴. However, these methods mask mutations with low
51 variant allele frequencies, and new high-throughput sequencing methods and single-cell muti-
52 omics studies can uncover the impact of somatic mutations in cardiovascular disease⁵. These
53 recent technological developments have led to increased capability, and the accessibility of
54 information obtainable from a single biological sample has been expanded^{6,7}. Omics
55 technologies, such as genomics, epigenomics, and transcriptomics, are increasingly employed in
56 parallel to construct a more comprehensive picture of development and disease^{8,9}.

57 Accompanying the rise in multi-omic studies is an increased demand for efficient single-nuclei
58 isolation for high-yield, high-quality biomolecules, with sample quality well established for
59 downstream analysis leading to the detection of biologically meaningful signals. To perform
60 these studies, the tissue collection methods need revision along with the methodology for
61 assessing tissue quality and establishing quality thresholds¹⁰. Furthermore, fresh tissue is rarely
62 obtainable for the non-diseased human heart due to its inaccessibility and unavailability for
63 biopsy. Non-diseased tissues are mainly collected from postmortem autopsies. The postmortem
64 tissue quality has been thought to be impacted by the postmortem interval field (PMI)¹¹, defined
65 as the time between donor death and tissue preservation. These postmortem tissues are crucial in
66 the biomedical field for the implementation of essential laboratory findings on human heart
67 diseases and aging¹⁰. This is particularly pertinent in the case of postmortem human tissues
68 where sample availability is limited, and tissue heterogeneity may mask associations between

69 diseased and non-diseased tissue. Our laboratory's primary focus is on cardiac aging, and we
70 found that the NIH NeuroBioBank had availability of non-diseased human heart tissues.
71 However, many of the tissues did not have an RNA integrity number (RIN) or DNA integrity
72 number (DIN) that was specific to the heart or a documented postmortem interval (PMI). This
73 led us to investigate the tissue quality collected from the biobank. In this study, we provide a
74 detailed strategy to select superior-quality heart tissue and a method for simultaneous isolation of
75 single-nuclei DNA and RNA from human postmortem tissue, with resultant nucleotides meeting
76 the high-yield and high-quality requirements for whole genome amplification and omics
77 analyses. Notably, we determined that our Single-Nuclei Isolation from Cardiac tissue (SoNIC)
78 methodology was essential to extracting high-quality single-nuclei, DNA, and RNA from heart
79 muscle tissue. We report comprehensive details of nucleic acid yield and quality and consider the
80 utility of covariates. We have established tissue quality determination markers from the collected
81 human heart tissue cohort, recorded their PMI values, and analyzed them for association of RNA
82 and DNA quality. We demonstrate through single-nuclei whole genome sequencing (WGS) and
83 RNA sequencing (RNA-seq) based gene expression profile analyses that our protocol for
84 isolating DNA and RNA from single-nuclei from postmortem tissue is appropriate for WGS,
85 RNA-seq, and multi-omic studies.

86

87 Methods:

88 *Human tissue collection and sample preparation*

89 All human tissues have been obtained from the NIH NeuroBioBank at the University of
90 Maryland. Samples were processed according to a standardized protocol under the supervision of
91 the NIH NeuroBioBank ethics guidelines. This study was approved by the Boston Children's

92 Hospital Institutional Review Board (IRB, S07-02-0087). Tissue from 106 humans formed our
93 cohort: 33 from individuals with a history of myocardial disease, diabetes, or smoking, and 73
94 controls without cardiovascular disease. Healthy cases had no previous history of cardiovascular
95 disorder, and the cause of death was unrelated to any cardiovascular disease condition.
96 Pathological assessment of healthy subjects reported no disease-related pathology beyond that
97 expected in aged individuals, and clinical diagnosis of disease cases were confirmed through
98 medical records. Diagnosis, age, sex, and postmortem interval (PMI) of the specimens utilized
99 are detailed in Table 1.

100

Table 1a. Characteristics of Heart Tissue Samples (n=106)

case ID	age (years)	PMI	RIN*	DIN	Race	Gender	Control / Diseased
11	1	24	7.2		White	Female	Control
64	15	13	N/A	9.6	African American (AA)	Male	Control
103	2	11	8.4		Black or AA	Female	Control
104	15	16	N/A		Black or AA	Female	Control
105	14	16	N/A		White	Male	Control
111	0.1	18	N/A		Black or AA	Male	Control
285	30	20	8.5		African American	Male	Control
604	43	15	7.5	8.3	Caucasian	Male	Smoking
605	25	19	N/A		Black or AA	Male	Control
771	2	14	N/A	9.2	African American	Male	Diseased
797	9	13	7.7		White	Male	Control
921	23	30	N/A		White	Male	Control
936	49	7	7.8	9.4	Black or AA	Female	Control
1007	0.1	3	N/A		Black or AA	Male	Control
1013	18	27	7.3		White	Male	Control
1025	21	7	N/A		Black or AA	Male	Control
1027	22	9	N/A		White	Male	Control
1028	39	14	N/A		White	Male	Control
1029	29	12	N/A		Unknown	Male	Smoking
1031	0.1	2	N/A		White	Female	Control
1033	0.1	1	N/A		Black or AA	Male	Fetal

1036	47	10	N/A		White	Male	Diseased
1039	49	9	7.4		White	Male	Control
1052	45	5	7.1	9.6	Black or AA	Male	Diseased
1054	35	15	N/A		White	Female	Control
1055	0.1	12	7.9		White	Male	Control
1061	0.1	17	N/A		White	Male	Control
1064	40	19	7.7		White	Female	Control
1065	15	12	N/A		White	Male	Control
1072	0	1	N/A		White	Male	Control
1078	17	12	N/A		White	Female	Control
1079	19	16	N/A		White	Female	Control
1102	0.1	22	7.3		White	Male	Control
1103	21	7	N/A	9.6	Caucasian	Male	Control
1104	35	12	8.3	9.6	White	Male	Control
1105	16	17	9.1		White	Male	Control
1110	0	2	N/A		Black or AA	Unknown	Control
1111	34	24	N/A		White	Male	Diseased
1112	16	26	N/A		White	Female	Control
1113	56	17	7.7		White	Male	Smoking
1115	41	9	N/A		White	Female	Control
1117	0.1	2	N/A		Black or AA	Male	Control
1119	0.1	2	N/A		Black or AA	Male	Control
1156	45	14	N/A	7.1	Black or AA	Female	Smoking
1278	0.4	8	N/A	8.4	White	Male	Control
1363	40	14	N/A	8.7	White	Female	Diseased
1441	51	28	6.6		White	Male	Smoking
1455	25	7	N/A	9.7	White	Female	Control
1465	17	4	N/A	9.7	White	Male	Control
1534	34	25	7.7		Black or AA	Female	Control
1540	28	7	N/A	9.8	White	Male	Control
1578	53	17	8.4	7.1	Caucasian	Male	Diseased
1673	42	11	7.7		Black or AA	Male	Diseased
1743	44	23	7.1	7.1	White	Female	Smoking
1863	30	7	8.8		Black or AA	Female	Control
1864	2	8	7.2		White	Female	Control
1932	0.1	20	10		Caucasian	Male	Diseased
1933	0.1	N/A	N/A		Caucasian	Male	Diseased

1940	57	20	7.5	8.3	Caucasian	Male	Control
4402	66d	25	6.7		African American	Male	Control
4428	142d	13	8		White	Male	Control
4638	15	5	N/A	9.6	White	Female	Control
4643	42	4	8.2		White	Female	Smoking
4668	25	12	N/A		Black or AA	Female	Diseased
4671	4	13	7.3	9.2	Black or AA	Female	Control
4849	7	20	6.7	9	Black or AA	Male	Control
4899	14	9	6.5		White	Male	Control
5080	61	14	7.3		Black or AA	Female	Smoking
5084	75	22	N/A		Caucasian	Female	Control
5087	44	4	8.1		White	Male	Control
5111	48	9	5.7		White	Female	Smoking
5115	46	29	7.3		White	Male	Control
5116	48	14	8		White	Male	Smoking
5117	56	5	8.3		White	Male	Smoking
5144	7	3	7.7		White	Male	Control
5173	10	10	5.3	9.8	Caucasian	Female	Control
5176	22	18	6.8	7	Black or AA	Male	Control
5332	38	3	N/A	7.5	White	Female	Smoking
5364	47	10	N/A	6.4	White	Male	Smoking
5403	16	35	5.5		White	Male	Control
5419	19	22	8.4		White	Female	Control
5532	18	4	6.6		White	Male	Control
5537	59	18	7.3		Caucasian	Male	Control
5540	53	11	7		White	Female	Diseased
5574	23	14	3.1	8.8	Black or AA	Male	Control
5604	73	20	7.9	7.4	White	Female	Control
5609	54	6	8.8		Caucasian	Female	Diseased
5613	72	24	N/A	8.7	White	Male	Control
5652	1	26	N/A	9.2	African American	Female	Control
5657	82	22	8.4	8.8	White	Male	Diseased
5664	51	27	7.9		Black or AA	Male	Control
5695	50	30	7.8		White	Male	Control
5703	61	20	N/A	8.1	White	Female	Diseased
5718	64	25	6.7	8.2	Caucasian	Male	Diseased
5755	72	15	N/A	7.6	White	Male	Control

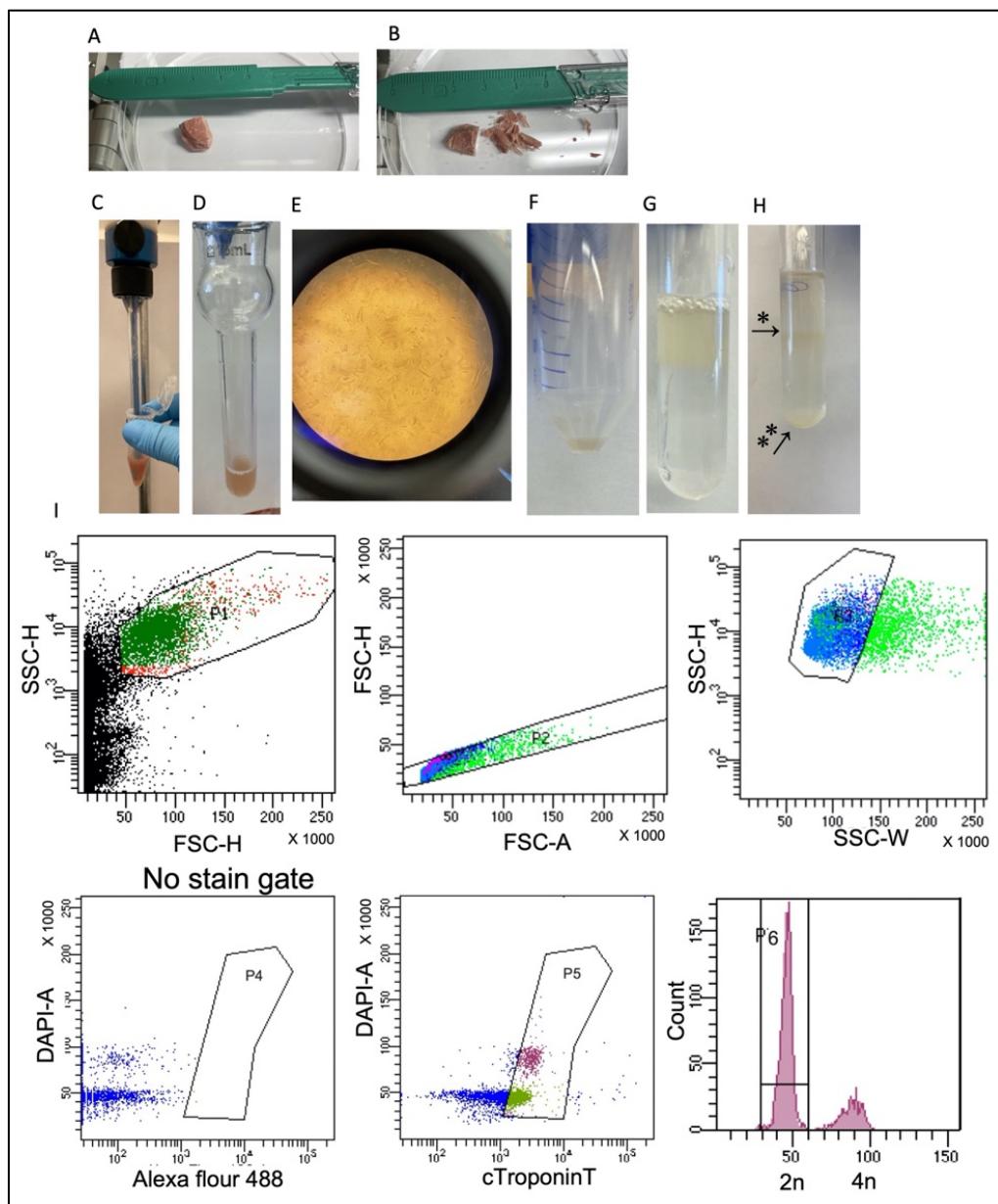
5760	38	20	N/A		African American	Male	Control
5828	66	25	8.2	5.8	White	Female	Control
5840	75	17	7.8	9.1	White	Male	Diseased
5874	63	25	6.5		White	Female	Control
5887	49	26	7.5	6.3	Not reported	Female	Diseased
5919	63	24	6.1	8.4	White	Male	Control
5992	54	28	4.8		White	Male	Diseased
5996	48	25	7.6	7.4	Black or AA	Male	Diseased
6032	4	25	7	8.3	White	Male	Control
6271	62	27	6.1		White	Male	Diseased
M3895	71	12	N/A		White	Male	Control

101 Abbreviations: PMI, postmortem interval; RIN, RNA integrity number; DIN, DNA integrity
102 number; AA, African American. (PMI) of the specimens utilized are detailed in Table 1.
103 *RIN value is not organ specific

Table 1b. Characteristics of Tissue from Other Organs

case ID	age (years)	PMI	RIN*	DIN	Organ
604	43	15	7.5	8.3	Heart
604	43	15	7.5	8.5	Liver
604	43	15	7.5	9.0	Kidney
936	49	7	7.8	9.4	Heart
936	49	7	7.8	7.9	Liver
936	49	7	7.8	8.9	Kidney
1278	0.4	8	N/A	8.4	Heart
1278	0.4	8	N/A	5.9	Liver
5657	82	22	8.4	8.8	Heart
5657	82	22	8.4	6.3	Liver

*RIN value is not organ specific


104

105 *DNA Extraction*

106 Upon receipt of the tissue from the NeuroBioBank, DNA degradation was evaluated by isolating
107 DNA from the tissue using the Qiagen EZ1 Advanced XL machine (Qiagen Catalog No.
108 9001875) and EZ1 DNA Tissue Kit (Qiagen Catalog No. 953034). Briefly, tissue was dissected
109 with a scalpel on a cold block to produce approximately 34 mg of tissue. Then, 190 μ l of G2

110 buffer (Qiagen Catalog No. 1014636) and 10 μ l Proteinase K solution (Qiagen Material No.
111 101406) was added to the tissue. These samples were then vortexed for 15 seconds, briefly
112 centrifuged for 15 seconds at maximum speed on the benchtop centrifuge and placed onto the
113 thermo-mixer at 56°C until the tissue was dissolved (approximately 2 hours). Subsequently, all
114 samples were pipette mixed, briefly centrifuged for 15 seconds at maximum speed on the
115 benchtop centrifuge, and loaded onto the Qiagen EZ1 machine for extraction, with use of the
116 EZ1 DNA Reagent Cartridge for tissue (from Qiagen Catalog No. 953034). The elution value
117 was set as 200 μ l for each of the extraction methods, and once extracted, all samples were stored
118 at -20°C until quantification was carried out. Genomic DNA Screen Tape (Agilent Catalog No.
119 5067-5365) was used to determine DNA length. Tissues with fragmented DNA were not selected
120 for further studies.

121
122 *Single-Nuclei Isolation from Cardiac tissue (SoNIC) methodology*
123 To isolate single cardiomyocyte nuclei from frozen postmortem human tissue, we modified the
124 protocol from Bergmann et al.^{12,13}, as we started with a very small tissue sample. Briefly, 100 mg
125 of tissue was dissected from the left ventricle of the heart (Figure 1a) with a scalpel on a cold
126 block (Figure 1b) and resuspended on ice in 1 ml of lysis buffer containing 0.32 M Sucrose
127 (VWR Catalog No. 97061-432), 10 mM Tris-HCl pH 8 (Invitrogen REF 15568-025), 5 mM
128 Calcium Chloride (Sigma-Aldrich 21115-100ML), 5 mM Magnesium Acetate (Sigma-Aldrich
129 63052-100ML), 2 mM EDTA (Invitrogen REF AM9260G), 0.5 mM EGTA, and 1 mM DTT
130 (Promega REF V3151). Resuspended tissue was transferred to a 5 ml Eppendorf tube (Fisher
131 Catalog No. 14-282-301) and homogenized with a mechanical dissociator with use of reusable
132 tips (Omni 30750H) at 24,000 rpm with 2 \times 30 sec pulses per sample (Figure 1c).

133 **Figure 1. SoNIC method for the isolation of single-cell cardiomyocyte nuclei for use in downstream DNA**
134 **and RNA analysis.** (a) Tissue sample from the left ventricle of the heart (b) was dissected using a scalpel and
135 transferred into lysis buffer for (c) mechanical dissociation and then transferred to (d) a douncer to break the
136 cardiomyocytes (e) and free the nuclei. The sample was filtered and spun at 700xg for 10 minutes (f) and then
137 the pellet was resuspended in lysis buffer and (g) laid on top of 5 mL of a sucrose buffer and then centrifuged
138 at 13,000xg for 40 minutes (h) at which point a debris layer formed (*) and nuclei were pelleted on the bottom
139 (**). The bottom pellet was resuspended in nuclei storage buffer and stained using a Cardiac Troponin T
140 antibody and DAPI, after which the sample was filtered through the top of a falcon tube and sorted. (i) Cells
141 were sorted based on Cardiac Troponin T (cTroponinT) status and/or DAPI intensity.

142

143 Tissue lysate was further diluted on ice with 2 ml of lysis buffer and dounced by hand with a 15
144 ml glass douncer and B pestle (Kontes Catalog No. 885300-0015) for 40-60 strokes (Figure 1d)

145 to break the cardiomyocytes (Figure 1e) and free the nuclei. The crude lysate was consecutively
146 filtered through 100 μ m and 70 μ m cell strainers (Corning Catalog No. 431752 and 431752).
147 The filtered lysate was centrifuged at 700xg for 10 minutes at 4°C. In advance of the next step,
148 Ultra-Clear Ultracentrifuge Tubes (Beckman Coulter Catalog No. 344061) were pre-coated with
149 10 mL of 1% BSA (Sigma Catalog No. A7409-50ML) in PBS (Life Technologies Catalog No.
150 10010072), inverted once, and stored for 40 minutes on ice, after which the solution was
151 removed. The tubes were filled with 5 ml of a sucrose buffer containing 2.1 M Sucrose, 10 mM
152 Tris-HCl pH 8, 5 mM Magnesium Acetate, and 1 mM DTT and the tubes were saved for use in
153 the next step. After centrifugation, the supernatant was removed. The pellet (Figure 1f) was
154 resuspended in 1 ml lysis buffer, added on top of the sucrose buffer (Figure 1g), and centrifuged
155 at 13,000xg for 40 minutes at 4°C. After centrifugation (Figure 1h), the supernatant was removed
156 and the nuclei were resuspended in Nuclei Storage Buffer containing 10 mM Tris-HCl pH 8, 70
157 mM KCl, 10 mM Magnesium Chloride (Sigma-Aldrich M1028-100ML), and 1.5 mM spermine
158 (Sigma-Aldrich S3256-5G). Isolated nuclei were first stained for 40 minutes at 4°C with Cardiac
159 Troponin T (Novus Biological NB120-10214AF488) at a 1:100 dilution in 0.01% BSA, and then
160 stained with DAPI (Thermo Scientific REF 62248) at a 1:100 dilution for 5 minutes. Nuclei were
161 strained through the 35 μ m filter on the Falcon round bottom 5 ml polystyrene test tubes
162 (Corning Catalog No. 08-771-23) and sorted with use of the fluorescence activated cell sorter
163 FACS AriaIII (20 psi, 100- μ m nozzle, Becton Dickenson Biosciences). The identity of heart
164 muscle nuclei was determined by single-cell RNAseq and the quality of single-nuclei DNA was
165 measured by multiplex polymeric chain reaction (PCR) and median absolute pairwise difference
166 (MAPD) score after whole genome amplification.
167

168 *Evaluation of heart cell markers from single-nuclei RNAseq*

169 The quality of heart tissue was also measured by single-nuclei RNAseq. Single heart nuclei were
170 isolated using the SoNIC method as described. Each sample was transferred into a 5 ml
171 polystyrene flow cytometry tube and sorted with the use of the 100- μ M nozzle on the FACSaria
172 III Cell Sorter (BD Biosciences Inc., Franklin Lakes, NJ, USA). The sorting strategy included
173 doublet discrimination and selection of intact nuclei by sub-gating on DAPI-positive nuclei
174 (Figure 1i). Doublet exclusion was performed by plotting the area for forward scatter (FSC) and
175 side scatter (SSC) against the height (H) or width (W) or area (A); H versus W or A allows the
176 separation of doublets from single-nuclei that are tetraploid and therefore contain more, 4n,
177 amounts of DNA. Tetraploid nuclei containing 4n amounts of DNA have double the A and H
178 values, whereas W is roughly the same as diploid cells containing 2n amounts of DNA. DAPI-
179 positive nuclei were chosen based on ploidy (2n or 4n) and were sorted directly into a PCR tube
180 containing a master mix as suggested by the 10X user guide. 3' single-nuclei libraries were
181 generated using the 10X Genomics Chromium Controller and following the manufacturer's
182 protocol for 3' V3.1 chemistry with NextGEM Chip G reagents (10X Genomics Inc., Pleasanton,
183 CA, USA). Final library quality was assessed with use of the Tapestation 4200 (Agilent Inc.,
184 Santa Clara, CA USA).

185 *Cell-type identification from 10X RNAseq data*

186 After sequencing, the resulting sample FASTQ files from all samples were processed using
187 CellRanger (v2.1.1) and Seurat package (v3.1.5) pipeline. Using the “mkfastq” and “count”
188 commands we generate raw gene-barcode matrices and align them to GRCh38 Ensembl (v1.2.0).
189 Combining multiple strategies, we compile a list of genes that are expressed in each type of cell
190 in a specific way. By categorizing each nucleus as either coming from the type of target cell or

191 not, we first estimated an AUC at the nuclei level and then predicted this class using the
192 normalized expression of each gene. Using the edgeR function^{14,15} (filterByExpr (group=cell
193 type), we eliminated genes whose counts were too low for testing. To determine marker genes,
194 we selected protein-coding genes that were expressed in at least 25% of nuclei from the target
195 cell type, with AUC for the target cell type greater than 0.60, a log-fold change, and an FDR
196 adjusted P-value < 0.01¹⁶. The cell-type labels for each cluster were assigned based on enriched
197 ontologies. Based on the mean expression of the top 1,000 most variable genes (the top 10 genes
198 are shown in Table 2), cell-type centroids were grouped together.

199

200 *Single-Nuclei Quality Measure*

201 DNA quality from single cardiac nuclei was measured by multiplex PCR after whole genome
202 amplification¹⁷. Whole genome amplification was done using Multiple Displacement
203 Amplification (MDA)^{18,19} (Qiagen REPLI-g kit catalog no. 150345) and the BioSkryb Primary
204 Template Amplification (PTA) Kit^{20,21} (Catalog No. PN10013N). Amplification success was
205 determined by Quant-It dsDNA quantification (Thermo Fisher Catalog No. Q33120) in Corning
206 96-well black absorbance plates (Corning Catalog No. 07-200-590) as well as a multiplexed PCR
207 reaction to assess for even amplification across the genome, with primers targeting regions of
208 chromosomes 5, 10, 15 and 20. Multiplex PCR was performed utilizing 20 ng of DNA with 1x
209 Phusion HF buffer (Thermofisher Catalog No. F549L), 10 mM dNTP, 0.5 U Phusion Hot Start II
210 High Fidelity Polymerase (Thermofisher Catalog No. F549L), and 5-10 μ M of the Multiplex
211 Primer Mix (Figure 5e). To further confirm even amplification of each single nucleus, amplified
212 DNA was sequenced (0.5x), and the reads were divided into bins with variable lengths, with each
213 bin having the same number of uniquely mapped reads. Then the differences between copy

214 number ratios of neighboring bins were calculated, and single-nuclei were assigned median
215 absolute pairwise difference (MAPD) scores algorithm^{22,23}, where lower values represent even
216 amplification¹⁹. Higher MAPD scores reflect greater noise. MAPD provides significant
217 advantages over other standard sample deviation measures such as SD, median absolute
218 deviation, and interquartile range. In the present study, based on the observed MAPD score from
219 the 45 single-nuclei, we selected nuclei with MAPD scores of 1.2 or lower for further analysis.

220

221 *Cardiomyocyte isolation from frozen tissue and immunostaining for cardiomyocytes and*
222 *myocardium*

223 Single cardiomyocytes were isolated from the left ventricle of the frozen human heart tissue as
224 described before²⁴. Briefly, 100 mg of heart tissue was dissected with a scalpel into small cubes
225 and resuspended in a 1 ml tube containing 500ul of oxygenated cardiomyocyte (CM) isolation
226 buffer containing 130 mM NaCl, 5 mM KCl, 1.2 mM, KH₂PO₄, 6 mM HEPES, 1 mM MgCl₂, 5
227 mM Glucose, and the sample was swirled gently at room temperature. The buffer was changed to
228 fresh buffer after 3 minutes and the process was repeated twice. Tissue fragments were
229 transferred into a 1 ml tube containing enzymatic buffer (250 μ l collagenase (5 mg/ml) and 750
230 μ l CM isolation buffer and 5 μ l CaCl₂) and swirled gently. The sample was incubated while
231 rocking in the enzyme solution at 37°C for 10 minutes, and the digested cells were collected.
232 This process was repeated with undigested tissue until all the cells were dissociated from the
233 tissue blocks. Cells were filtered through a 100 μ m filter and centrifuged at 300xg for 2 minutes
234 to pellet the cardiomyocytes. Pelleted cardiomyocytes were resuspended in 1–3 ml (depending
235 on the yield) of 1X PBS. Cells were fixed for 5 minutes, with 100% methanol precooled to -
236 20°C, and the volume was adjusted so that the final concentration was 95%. Fixed cells were

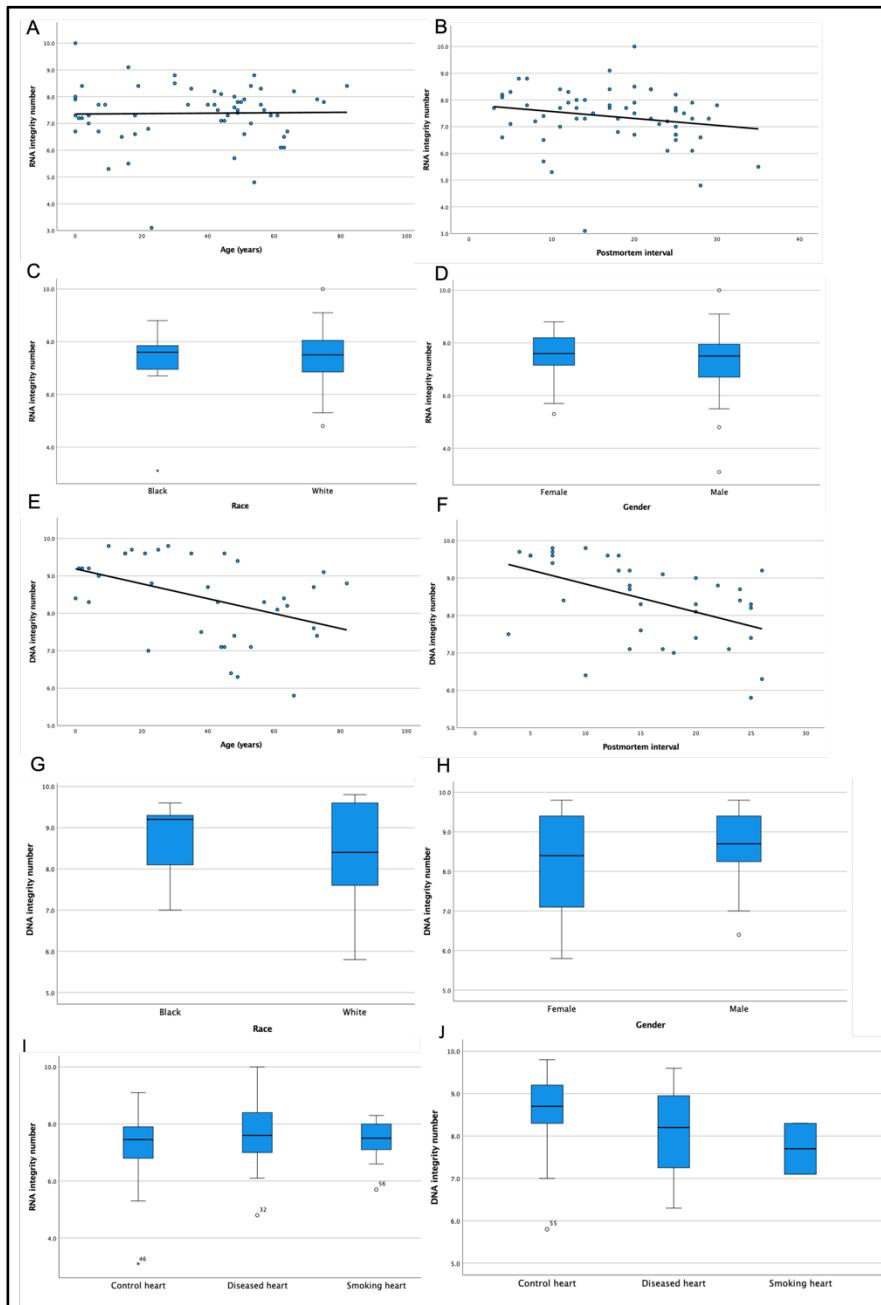
237 centrifuged at 300xg for 5 minutes and the supernatant was discarded. Cardiomyocytes were
238 permeabilized with 0.5% Triton X-100 in 1X PBS at room temperature for 10 minutes and
239 centrifuged at 300xg for 5 minutes, blocked with 1% BSA for 30 minutes at room temperature.
240 The cells were incubated with α -actinin as the primary antibody for 2 hours at room temperature
241 and washed in 1% BSA in PBS twice. Secondary antibody incubation was done for 2 hours at
242 room temperature, and cells were washed twice after incubation with 1% BSA in PBS. For
243 evaluating the myocardium tissue quality, we also performed immunostaining on intact
244 myocardium. The tissue was fixed and embedded in a paraffin block. After deparaffinization,
245 tissues were heated in citrate buffer pH 6.0 (Millipore Sigma) for 20 minutes, permeabilized
246 using 1% donkey serum in PBS plus 0.5% Triton X100, blocked in PBS-T containing 5%
247 donkey serum for 30 minutes at room temperature and incubated with a monoclonal antibody
248 against α -actinin at 1:500 dilution overnight at 4°C. After rinsing in PBST (PBS plus 0.1%
249 Tween-20), sections were incubated with secondary donkey IgG Alexa Fluor 647-conjugated
250 antibody for 1 hour and stained with Wheat Germ Agglutinin and Syto 13 at 1:1000 dilutions for
251 30 minutes at room temperature. Images were captured on an LSM 880 confocal microscope
252 (Zeiss) and processed using ImageJ (NIH).

253

254 *Statistical analysis*

255 Linear regression analysis was conducted to assess the association between DIN or RIN and PMI
256 or age. The Mann-Whitney U test was performed to assess the association between DIN or RIN
257 and gender or race. The Kruskal-Wallis test was performed to assess the association between
258 DIN or RIN and disease status. Scatterplots and boxplots were also created.

259


260 Results:

261 *Quality assessment of heart muscle tissue*

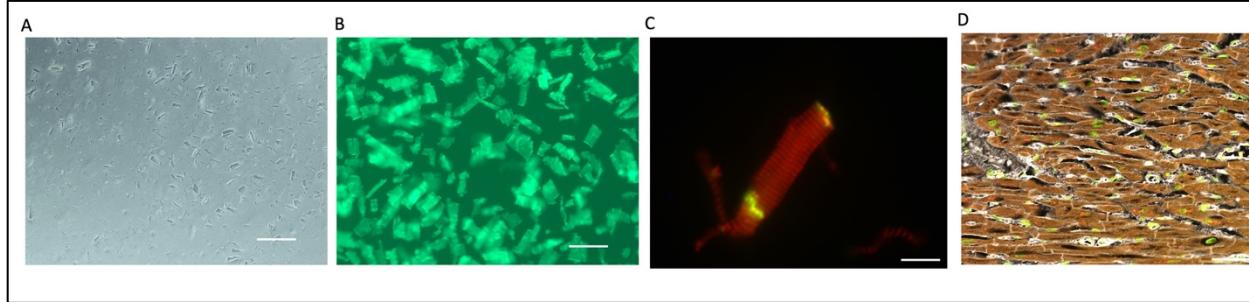
262 We evaluated the tissue quality from 106 collected human heart muscle tissues. The tissues
263 collected were from donors aged .43 to 82 years old, with PMI intervals ranging from 1 to 35
264 hours, RIN from 4.8 to 9.1, and DIN from 5.8 to 9.8 (Table 1), with higher RIN and DIN values
265 indicating greater nucleic acid integrity. Many of the collected postmortem human heart tissues
266 did not have an associated RIN number when we received the tissue from the NeuroBioBank.

267 For that reason, along with RIN, we evaluated the tissue DNA quality when analyzing sample fit
268 for further single-cell analysis. In our study to evaluate the correlation between RIN, PMI, and
269 age, we performed regression analysis between DIN or RIN and PMI or age in 60 collected heart
270 tissue samples. A Mann-Whitney U test was performed to assess the association between DIN or
271 RIN and gender or race. A Kruskal-Wallis test was performed to assess the association between
272 DIN or RIN and disease status. We found that RIN had no association with age (Figure 2a, p-
273 value=0.140), PMI (Figure 2b, p-value=0.894), race (Figure 2c, p-value=0.937), or gender
274 (Figure 2d, p-value=0.588). Further, we checked for DIN by DNA gel electrophoresis using
275 Genomic DNA Screen Tape. Our study of 37 postmortem fresh frozen heart tissue samples
276 (Table 1a) had an average DIN of 8.39, ranging from 5.8 to 9.8. The DIN value was calculated
277 by the Tapestation 2200 and 4200 by determining the amount of sample degradation present, and
278 DIN values could range from 1 to 10²⁵. Previous studies have established a DIN of greater than
279 7 to be an optimal quality of tissue for further biological work²⁵. We also tested the DIN from
280 multiple other organs (heart, liver, kidney) for a small number of cases (n=4). Our analysis
281 indicates liver tissue from the same case had a trend of lower DIN with some less than the
282 optimal DIN value of 7 (Table 1b). We found that decreased DIN value was associated with

283 increased age (Figure 2e, p-value=0.007) and increased PMI (Figure 2f, p-value=0.002) using
284 linear regression analysis.

285 **Figure 2. Donor characteristics can impact the quality of heart tissues.** (a) Donor age, (b) postmortem
286 interval, (c) race, and (d) gender do not significantly impact the RIN values for heart tissues. However,
287 there is a significant decrease in DIN values of hearts from (e) older donors and (f) from tissues with
288 increased PMI values. (g) Race and (h) gender do not impact DIN values. Disease status does not impact
289 (i) RIN or (j) DIN values.

290


291 Analysis of the same sample set for other demographic values such as race and sex showed no
292 association with DIN values for Black/African American versus White/Caucasian donors (Figure
293 2g, p-value=0.570), or for female versus male donors (Figure 2h, p-value=0.551). Furthermore,
294 we tested the association of RIN and DIN with disease status, characterized as donors with
295 history of atherosclerosis or hypertension as compared to control members; of note, all the DIN
296 values were greater than 7 (Table 1a). We performed the Kruskal–Wallis test for testing the
297 dependence of disease status versus RIN/DIN (Figure 2i, 2j) and found no association (p-
298 value=0.924 and p-value=0.467, respectively). This is notable because many single-cell analysis
299 experiments aim to compare the presence of genome level mutations in control versus disease
300 tissues. If researchers run into problems with their sample preparation, including unsuccessful
301 attempts at whole genome amplification, lack of sufficient amplified sample concentration, or
302 uneven amplification across loci, it is possible that the tissue quality has exacerbated these
303 problems. Therefore, it may be prudent to check the DNA integrity prior to sample preparation to
304 help ensure better results for downstream analysis.

305

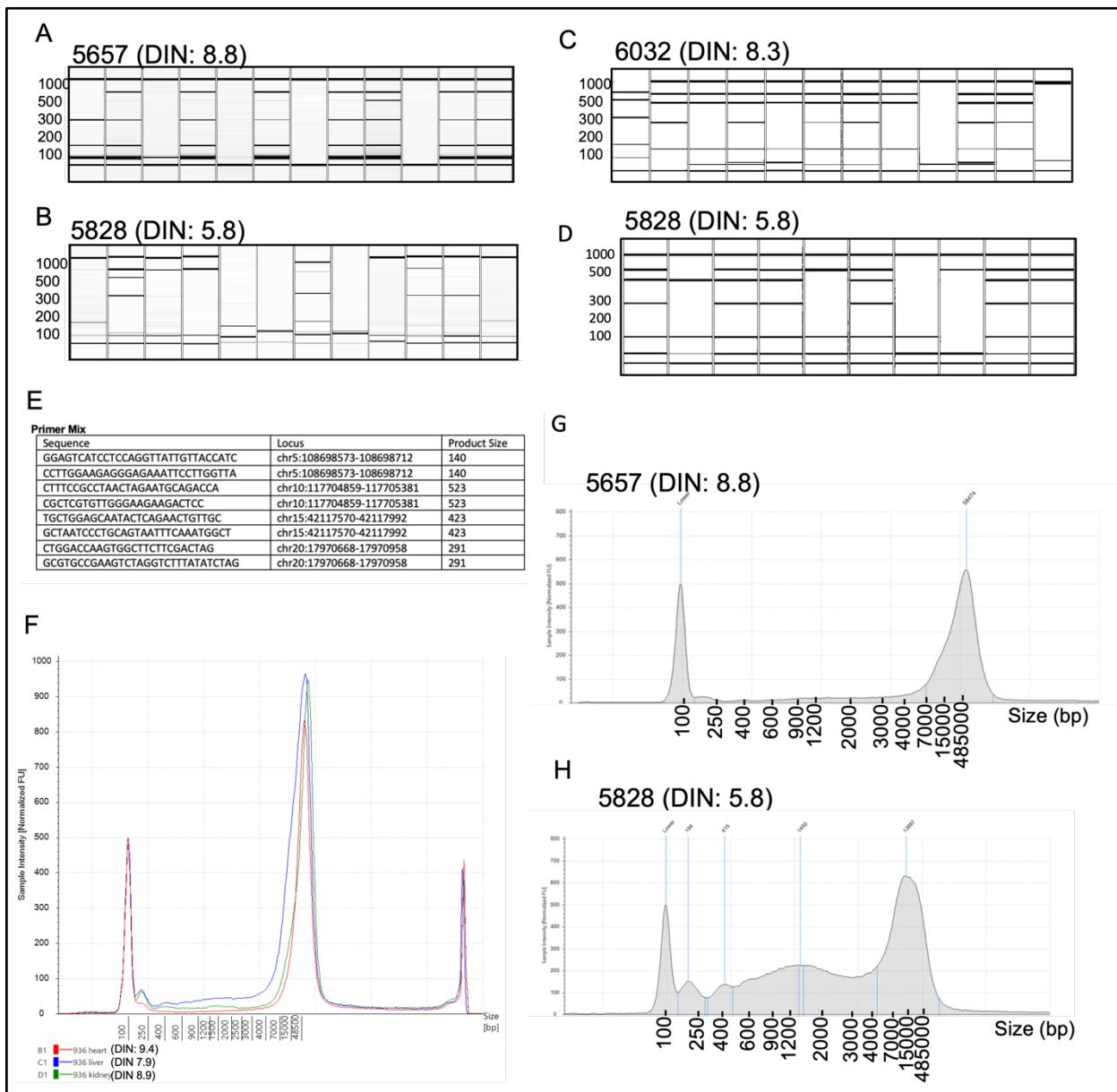
306 *Determination of quality of cardiomyocytes following single-cell isolation*

307 In this study, the heart tissues we used were collected from the NeuroBioBank. Thus, it was
308 important to evaluate the quality of the heart muscle cells from the tissue bank, where the heart is
309 not the main organ collected in the tissue bank. We tested the quality of isolated cardiomyocytes
310 (Figure 3a, b) from frozen tissue by staining with α -actinin (Millipore-Sigma Catalog No.
311 A7811) as well as a GAP junction protein, connexin 43 (Abcam Catalog No. ab87645). Our
312 immunofluorescence staining with intact connexin in cardiomyocytes (Figure 3c) and α -actinin
313 (Figure 3d) indicated superior quality heart cells could be isolated from these postmortem heart

314 tissues that were collected at the NeuroBioBank. These isolated cardiomyocytes are not for live
315 culture, but they could be used for cell-specific protein expression analysis.

316

317 **Figure 3. Heart cell and tissue quality assessment.** Postmortem heart tissue samples yield high quality
318 single-cell cardiomyocytes. (a) Single-cell cardiomyocytes isolation from postmortem tissue and (b)
319 stained with Cell Brite dye. (c) The single cardiomyocyte was stained with α -actinin (red) and Gap
320 Junction Protein, connexin 43 (green) to determine cell integrity. (d) Heart tissue sections were stained
321 with α -actinin (red) to check for intact myocardium before isolation methods.


322

323 *Determination of quality of cardiac nuclei following isolation*

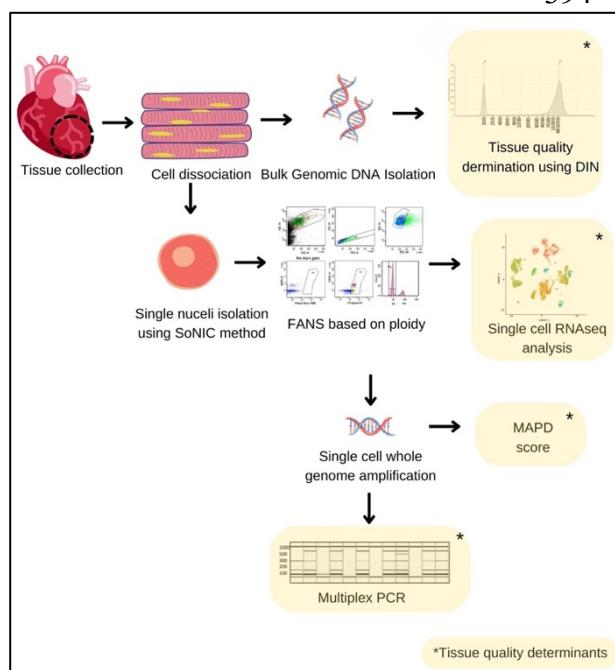
324 To evaluate the ability to isolate and identify all the different heart cell types from these brain-
325 bank-collected heart tissue, we performed 10X Genomics RNAseq (Figure 4a) from a
326 postmortem heart tissue sample with a DIN of 5.8, which was the lowest DIN in our collection,
327 and a heart tissue sample with a DIN of 9.6, which was one of the highest DIN values in our
328 collection (Table 1). We observed an average of 2,000 genes per nucleus and a comparable gene
329 expression profile between these two cases (Supplementary Tables 1 and 2). We identified major
330 cell types in the heart in both samples: cardiomyocytes, fibroblasts (FB), endothelial cells (EC),
331 pericytes, smooth muscle cells (SM), immune cells (myeloid), adipocytes, and neuronal cells
332 (Figure 4b, c). The cell types were identified by the gene expression profiles of the nucleus
333 (Table 2). We also showed the heart cell quality by RNAseq from a heart tissue when the DIN
334 was 9.6 (Figure 4b, Supplementary Table 1) versus when the DIN is 5.8 (Figure 4c,
335 Supplementary Table 2).

348 To determine the DNA quality of single-nuclei isolated by the SoNIC method, we performed
349 multiplexed PCR after whole genome amplification by MDA^{17,19} and PTA^{6,21}.
350

351
352 **Figure 5. Quality assessment of single cardiomyocyte nuclei and tissue DNA.** (a, b) Multiplex PCR
353 product from MDA and (c, d) PTA amplified nuclei are shown on a QIAxcel DNA gel, indicating
354 amplification of chromosome loci. Successful amplification is indicated by the presence of three to four
355 bands. (e) Multiplex PCR primer details with expected product size. (f, g) Tapestation DNA quality
356 analysis on samples with (g) DIN of 8.8 and (h) DIN of 5.8. (f) Comparison of DNA integrity in different
357 tissues from the same human donor.
358

359

360 Our analysis indicated successful amplification of all four loci of the selected chromosome
361 locations (Figure 5a, b, c, d) using the primer mix (Figure 5e) in 10-15% of MDA amplified
362 nuclei (Figure 5a, b) and 70-75% in PTA amplified nuclei (Figure 5c, d). The success rate of
363 multiplex PCR was independent of DIN (Figure 5b, d) for our tissue samples which included
364 human tissues with DIN values between 5.8 and 9.8. This finding also indicates that multiplex
365 PCR's success rate depends on the amplification method. Previous findings have shown
366 improved genome coverage and improved amplification uniformity with PTA^{20,21}. Additionally,
367 DIN analysis from multiple organs from the same donor indicated that different organs from the
368 same donor could have a different DIN value (Figure 5f, Table 1b). We also analyzed the median
369 absolute pairwise difference (MAPD) algorithm^{22,23} after a low coverage (0.5x) genome
370 amplification. Although MAPD was originally designed for microarray data, MAPD measures
371 the absolute difference between the log₂ copy number ratios of neighboring bins and then
372 calculates the median across all bins. Larger MAPD values indicate greater noise. We found that
373 when the DIN is higher (> 7) we had more amplified cell with MAPD ≤ 1.2 , which is considered
374 as the cutoff value for our study (Supplementary Table 3). MAPD analysis indicates that 84.8%
375 of nuclei amplified by MDA had even genome coverage for case 5657 where the DIN was 8.8
376 and 68.75% for case 5657 where the DIN was 5.8. Together our analysis indicates that SoNIC
377 method could be utilized to isolate superior-quality nuclei from postmortem heart tissue even
378 when the DIN score is 5.8, which is below-average tissue quality.


379 Conclusions:

380 Our modified single-nuclei isolation from cardiac tissue (SoNIC) method allowed for the
381 isolation of single cardiomyocyte nuclei from postmortem tissue for single-nuclei whole genome
382 amplification as well as RNAseq. Single-nuclei sorting criteria based on the ploidy of nuclei

383 provided a pure cardiomyocyte nuclei isolation strategy. Furthermore, this study provided
384 detailed quality control steps, summarized in Figure 6 for single-nuclei quality selection criteria
385 for whole genome amplification as well as single-nuclei RNAseq analysis for downstream
386 analysis. In our collected cardiac tissue, we found no association between RIN and PMI, age, or
387 race, whereas the same subset of tissue samples indicated a negative correlation between DIN
388 and PMI or age. Our study emphasizes the inclusion of DIN along with RIN for tissue quality
389 measures prior to the performance of whole genome amplification in human postmortem heart
390 tissue. Our study indicates that postmortem frozen tissue with a DIN over 5.8 could be used for
391 single-nuclei whole genome and RNAseq analysis without compromising the signals important
392 for understanding biological analysis.

393

394

Figure 6. Schematic of approach for tissue quality assessment. Tissue was dissected from the left ventricle of the human heart. Bulk DNA was isolated to check the DNA integrity by Tapestation or the tissue was dissociated to isolate nuclei. After FANS, the single-nuclei were tested for gene expression profile by RNAseq and nuclei were amplified by Φ 29 polymerase-mediated MDA for WGS. Successful amplification of single- nuclei was tested via multiplex PCR and genome coverage was evaluated by MAPD score after a low coverage sequencing.

411 Limitation of the study:

412 We restricted our analysis to available heart tissue from NIH NeuroBioBank, the University of
413 Maryland (between 2016-2020), which had a DIN value between 5.8 and 9.8.

414 Data Availability statement:

415 The original contributions presented in the study are included in the article/Supplementary
416 Material, and further inquiries can be directed to the corresponding author.

417 Ethics statement:

418 This study was reviewed and approved by the Boston Children's Hospital Human Participants
419 Ethics Committee. Postmortem human brain tissue was obtained from the University of
420 Maryland NeuroBioBank. Human tissue was donated there with consent from donors' families,
421 and its use in this project was approved by the Boston Children's Hospital IRB.

422 Author Contributions:

423 SC contributed to the conceptualization, methodology, analysis, writing, and editing. SA
424 contributed to the methodology, analysis, writing, and editing. RM, AJ, HS, BZ, NH, KM, DN,
425 and IS contributed to the analysis. MHC contributed to the study design, writing, and editing of
426 the manuscript. All authors contributed to the article and approved the submitted version.

427 Acknowledgments:

428 We thank R. Sean Hill, Jennifer N. Partlow, Dilenny Gonzalez, and Sonia Epstein for their
429 assistance. Human tissue was obtained from the NIH NeuroBioBank at the University of
430 Maryland, and we thank the donors and their families for their invaluable donations for the
431 advancement of science. SC is supported by American Heart Association (SDG) and NHLBI
432 (R01HL152063). MHC is supported by NHLBI (R01HL152063). AJ was supported by PRISE
433 and HCRP Fellowship Awards from Harvard College. HS was supported by HCRP Fellowship
434 Award from Harvard College.

435

436

437 References:

- 438 1. Geller, A. S. *et al.* Genetic and secondary causes of severe HDL deficiency and
439 cardiovascular disease1. *Journal of Lipid Research* **59**, 2421–2435 (2018).
- 440 2. Cirino, A. L. *et al.* Role of Genetic Testing in Inherited Cardiovascular Disease: A Review.
441 *JAMA Cardiology* **2**, 1153–1160 (2017).
- 442 3. Cash, H. L. *et al.* Cardiovascular disease risk factors and DNA methylation at the LINE-1
443 repeat region in peripheral blood from Samoan Islanders. *Epigenetics* **6**, 1257–1264 (2011).
- 444 4. Bashyam, M. D., Savithri, G. R., Kumar, M. S., Narasimhan, C. & Nallari, P. Molecular
445 genetics of familial hypertrophic cardiomyopathy (FHC). *J Hum Genet* **48**, 55–64 (2003).
- 446 5. Heimlich, J. B. & Bick, A. G. Somatic Mutations in Cardiovascular Disease. *Circulation*
447 *Research* **130**, 149–161 (2022).
- 448 6. Luquette, L. J. *et al.* Single-cell genome sequencing of human neurons identifies somatic
449 point mutation and indel enrichment in regulatory elements. *Nat Genet* **54**, 1564–1571
450 (2022).
- 451 7. Kim, J. *et al.* Prevalence and mechanisms of somatic deletions in single human neurons
452 during normal aging and in DNA repair disorders. *Nat Commun* **13**, 5918 (2022).
- 453 8. Zaccaria, A. *et al.* Multiomic Analyses of Dopaminergic Neurons Isolated from Human
454 Substantia Nigra in Parkinson’s Disease: A Descriptive and Exploratory Study. *Cell Mol*
455 *Neurobiol* **42**, 2805–2818 (2022).
- 456 9. Li, W. *et al.* Multi-omics research strategies in ischemic stroke: A multidimensional
457 perspective. *Ageing Res Rev* **81**, 101730 (2022).
- 458 10. Stan, A. D. *et al.* Human postmortem tissue: What quality markers matter? *Brain Research*
459 **1123**, 1–11 (2006).

460 11. Birdsill, A. C., Walker, D. G., Lue, L., Sue, L. I. & Beach, T. G. Postmortem interval effect
461 on RNA and gene expression in human brain tissue. *Cell Tissue Bank* **12**, 311–318 (2011).

462 12. Bergmann, O. & Jovinge, S. Isolation of Cardiomyocyte Nuclei from Post-mortem Tissue. *J
463 Vis Exp* 4205 (2012) doi:10.3791/4205.

464 13. Bergmann, O. *et al.* Identification of cardiomyocyte nuclei and assessment of ploidy for the
465 analysis of cell turnover. *Exp Cell Res* **317**, 188–194 (2011).

466 14. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
467 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140
468 (2010).

469 15. Chen, Y., Lun, A. T. L. & Smyth, G. K. From reads to genes to pathways: differential
470 expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
471 pipeline. *F1000Res* **5**, 1438 (2016).

472 16. Chaffin, M. *et al.* Single-nucleus profiling of human dilated and hypertrophic
473 cardiomyopathy. *Nature* **608**, 174–180 (2022).

474 17. Kim, J. *et al.* Prevalence and mechanisms of somatic deletions in single human neurons
475 during normal aging and in DNA repair disorders. *Nat Commun* **13**, 5918 (2022).

476 18. Lodato, M. A. *et al.* Somatic mutation in single human neurons tracks developmental and
477 transcriptional history. *Science* **350**, 94–98 (2015).

478 19. Choudhury, S. *et al.* Somatic mutations in single human cardiomyocytes reveal age-
479 associated DNA damage and widespread oxidative genotoxicity. *Nat Aging* 1–12 (2022)
480 doi:10.1038/s43587-022-00261-5.

481 20. Miller, M. B. *et al.* Somatic genomic changes in single Alzheimer's disease neurons. *Nature*
482 **604**, 714–722 (2022).

483 21. Gonzalez-Pena, V. *et al.* Accurate genomic variant detection in single cells with primary
484 template-directed amplification. *Proc Natl Acad Sci U S A* **118**, e2024176118 (2021).

485 22. Yim, S.-H. *et al.* Copy number variations in East-Asian population and their evolutionary
486 and functional implications. *Hum Mol Genet* **19**, 1001–1008 (2010).

487 23. Affymetrix Whitepaper: Median of the Absolute Values of all Pairwise Differences and
488 Quality Control on Affymetrix Genome-Wide Human SNP Array 6.0. Preprint at
489 https://tools.thermofisher.com/content/sfs/brochures/mapd_snp6_whitepaper.pdf (2008).

490 24. Polizzotti, B. D. *et al.* Neuregulin stimulation of cardiomyocyte regeneration in mice and
491 human myocardium reveals a therapeutic window. *Sci Transl Med* **7**, 281ra45 (2015).

492 25. Kong, N. *et al.* Integrating the DNA Integrity Number (DIN) to Assess Genomic DNA
493 (gDNA) Quality Control Using the Agilent 2200 TapeStation System. Preprint at
494 <https://doi.org/10.13140/RG.2.1.3616.8409> (2014).

495