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Abstract

Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications
due in part to their ability to modulate immune cells. However, MSCs demonstrate significant
functional heterogeneity in terms of their immunomodulatory function because of differences in
MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC
metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we
comprehensively profiled intracellular and extracellular metabolites throughout the expansion
process to identify predictors of immunomodulatory function (T cell modulation and indoleamine-
2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive
manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC
intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust
consensus machine learning approach, we were able to identify panels of metabolites predictive
of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of
identifying metabolites in 2 or more machine learning models and then building consensus models
based on these consensus metabolite panels. Consensus intracellular metabolites with high
predictive value included multiple lipid classes (such as phosphatidylcholines,
phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included
proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways
significantly associated with MSC function such as sphingolipid signaling and metabolism,
arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable
framework for identifying consensus predictive metabolites that predict MSC function, as well as
guiding future MSC manufacturing efforts through identification of high potency MSC lines and
metabolic engineering.
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INTRODUCTION

Preclinical and clinical studies have demonstrated evidence of promising therapeutic
effects from the use of mesenchymal stromal cells (MSCs) for a broad range of applications
including autoimmune, neurodegenerative, and inflammatory diseases." MSCs are derived from
various tissues of the body, most commonly bone marrow, adipose, and umbilical cord,*” and
can be administered directly as cell therapies or used to create cell-derived products (e.g.,
secretome and extracellular vesicles).®'° The secretory repertoire of MSCs is rich in cytokines,
chemokines and growth factors that, combined with the fact that MSCs lack or possess low
expression of self-antigens (thus permitting allogeneic use), renders MSCs a potential cell therapy
for a large patient population with life-altering conditions.>'® However, efficacy outcomes from
clinical trials are inconsistent and pose a major roadblock to the approval of MSCs as cell
therapies despite a well-established safety record.” One major challenge that must be addressed
to facilitate clinical translation is MSC functional heterogeneity, which can be attributed to different
donors, tissue sources and culture conditions (i.e., ‘manufacturing’) introduced during MSC ex
vivo expansion.” 2" MSCs require ex vivo expansion to yield a sufficient cell supply to meet the
needs for clinical dosages, which are typically on the order of hundreds of millions of cells.™
Relatedly, a lack of standard cell culture practices and processes is another challenge that
contributes to poor reproducibility and inconsistent clinical outcomes.'® Better understanding of
MSC functional heterogeneity will lead to critical quality attributes (CQAs), which are part of a
comprehensive analytical assay suite to be used for MSC release criteria, ultimately improving
their clinical translation.

CQAs predictive of MSC immunomodulatory potency serve as a quantitative and
reproducible measure for assessing MSC quality, thus enabling rational approaches to both
identify high quality MSC lines (donors), as well as optimize culture conditions that facilitate
scaling to larger manufacturing formats such as bioreactors. Several approaches to identify CQAs
correlative to MSC functional potency have been reported.'®'” Based on previous work '*'®, MSC
potency assays often assess MSC immunomodulatory functions such as indoleamine 2.3-
dioxygenase (IDO) activity, as well as MSC modulation of activated immune cells (e.g. T cells and
macrophages). These functions are relevant to a broad range of diseases and have been
associated with MSC secretion of anti-inflammatory, mitogenic, and tissue reparative factors.%?°
19202122 priming MSCs with stimulatory molecules (e.g., interferon-y (IFN- y) or tumor necrosis
factor-a (TNF- a)) promotes the increased secretion of paracrine mediators such as IDO and anti-
inflammatory molecules (e.g., interleukin-10) that are relevant in the context of MSC
immunomodulation (e.g., suppress T cell proliferation, induce regulatory phenotypes of T cells
and macrophages).?"? Not only can these MSC-mediated effects related to immunomodulatory
potency establish a set of CQAs, they shed light on metabolic activities that are vital to the basic
understanding of MSC functions that can be leveraged for therapeutic use.?® However, the
reproducibility and robustness of these potency assay formats reduce their appeal for assessing
CQAs in a manufacturing setting.

Robust multi-omic approaches coupled with computational modeling to identify
correlations to functional potency have been leveraged to identify predictive markers in cell
therapies.?*2® Metabolomics is an emerging field due to the abundance of metabolites and their
reflection of the cellular phenotype which allows for non-targeted approaches for important
biomarker discovery.?”?® Well established techniques such as nuclear magnetic resonance
(NMR) and mass spectrometry (MS) are often used to measure both cellular and extracellular
metabolites.? *°In terms of MSC metabolism, it has been shown that MSCs preferentially utilize
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glycolysis over oxidative phosphorylation (OXPHOS) in vivo, but shift towards OXPHOS from
extended culture and expansion.®' Greater OXPHOS metabolism has also been shown to lead to
a decrease in T cell suppression by MSCs.? Previously, our group assessed end of expansion
intracellular metabolites as candidate predictive markers, and putative CQAs, using three
independent MSC lines at three passages. Partial least squares regression (PLSR) was used to
determine predictive markers based on their variable importance projection (VIP) score.?® Several
amino acids, small molecule metabolites (e.g. myo-inositol), and phosphatidylcholines (PCs) were
shown to be correlative to MSC functional potency (measured in terms of both T cell modulation
and IDO activity).

In this study, we expanded on our previous work by applying a novel CQA discovery
framework whereby metabolomic data generated both in-process (during the first three days of
MSC expansions) and at end of production (intracellular metabolites from harvested MSCs) were
input into a suite of models to predict MSC immunomodulatory potency. For this study, we
generated ten MSC lines consisting of the following: the same three cell lines as our previous
study, six additional MSC lines, and a repeat expansion of one of the MSC lines.?® For each MSC
line, unsupervised analysis of media metabolites and intracellular metabolome of MSCs were
correlated to a functional composite score (based off T cell suppression and IDO activity) using
several machine learming (ML) models. CQAs were resolved across a total of 7 models (for both
extracellular and intracellular inputs) to identify consensus metabolites that were subsequently
related using metabolic pathway analysis. Top consensus media metabolites predictive of MSC
potency include several amino acids (proline, arginine, aspartate), pyruvate and fructose. Top
consensus intracellular metabolites predictive of MSC potency include several lipid classes such
as PCs, phosphatidylethanolamines (PEs), and sphingomyelins (SMs). These were then mapped
to several metabolic pathways to infer their potential biological roles as they relate to MSC
immunomodulation. This study establishes a generalizable framework for identifying predictive
markers from early stage culture media and intracellular metabolomic analyses that can ultimately
be used to select for MSC lines with desired properties and guide future MSC manufacturing
strategies.

MATERIALS AND METHODS
MSC Expansion and MSC/MSC-Conditioned Medium Sample Preparation

Bone marrow-derived MSCs (BMMSCs) were purchased from RoosterBio, Inc. (Frederick,
MD), and iIMSCs were purchased from Fuijifilm Cellular Dynamics Inc (Madison, WI). Prior to this
study’s expansion, MSCs were previously expanded to an initial population doubling level (PDLo)
reported in Supporting Information Table 1. Additional information for each MSC cell line
including final PDL, donor demographic information, and final cell yield is also reported in this
table. Cryopreserved vials from each donor were thawed, and 10° MSCs were seeded into an
initial T-150 tissue culture flask in complete media containing Gibco™ Minimum Essential Media
a with nucleosides (Thermo Fisher Scientific, Waltham, MA), 10% fetal bovine serum (FBS;
HyClone Laboratories, Logan, UT), and 1% penicillin-streptomycin solution (10,000 U/mL; Sigma-
Aldrich, St. Louis, MO) for a culture rescue period of 48 hr. The same lot of FBS was used
throughout the study. MSCs were then washed with endotoxin-free Dulbecco’s phosphate
buffered saline (PBS) without calcium and magnesium (Millipore Sigma), harvested using 1X
TrypLE™ Express Enzyme (Thermo Fisher Scientific), neutralized with complete media, and
centrifuged 300g to create a cell pellet. MSCs were then resuspended in complete media and
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counted. Next, MSCs from each donor were seeded at 500 cells/cm? into 10 T-75 flasks
containing 10 mL complete media. Control flasks containing 10 mL complete media only were
also prepared. All flasks were then transferred to a humidified incubator set to 37° C and 5% CO..

MSC conditioned medium (CM) sample collection of 300 pl was performed for each flask
at approximately the same time each day (£1 hr) and total complete media exchange was
performed every 3 days until MSCs achieved 70-80% confluence. All media samples were placed
directly into —80° C storage until further analysis by NMR. MSCs were then harvested using the
same procedure described above. Cell pellets were split for cryopreservation (and functional
analysis, see below) or preparation for intracellular lipidomic/metabolic analysis. Cell pellets
designated for cryopreservation were prepared into cryovials containing 10° MSCs in 1 mL
CryoStor® CS 10 (Sigma-Aldrich) and stored at —80° C for 24 hr using controlled rate freezing
containers. Vials were then transferred to the vapor phase in a liquid nitrogen cryogenic freezer
until further analysis. For intracellular lipidomic/metabolomic analysis, cell pellets were washed
twice by resuspending in PBS and centrifuged at 10,000 rpm. All supernatant was removed and
cell pellets were then stored at —80° C.

MSC Functional Analysis - T cell Suppression Assay

MSCs from each cell-line were thawed and allowed to recover for 48 hours with a media
change at 24 hours. MSCs were harvested using TrypLE then seeded at a density of 10,000
cells/well in a 96 well plate and cultured for 24 hours. Previously frozen peripheral blood
mononuclear cells (PBMCs, AllCells, Alameda CA) were thawed in RPMI media (RPMI, 20% FBS,
2mM L-glutamine, 50 U/mL penicillin, 50 ug/mL streptomycin) and cultured overnight at 37°C and
5% COa. Prior to co-culture, PBMCs were labeled with CFSE (Supporting Information Table 2,
Biolegend, San Diego CA) according to the manufacturer’s protocol, and 100,000 PBMCs were
added to each well at a final MSC:PBMC ratio of 1:10 as well as control wells containing only
PBMCs. Following PBMC addition, stimulating anti-CD3/CD28 Dynabeads (Thermo Fisher
Scientific, Waltham MA) were added at 100,000 beads per well to the appropriate wells (positive
controls and all MSC groups). MSCs and PBMCs were co-cultured for 72 hours at 37°C, 5% CO..
Following co-culture, PBMCs were collected and stained using Brilliant Violet 711 anti-CD4 and
APC anti-CD8 (Supporting Information Table 2) (Biolegend, San Diego CA). PBMCs were first
washed and stained with Zombie Yellow (Supporting Information Table 2) (Biolegend, San
Diego CA) viability dye and blocked using 2% FBS. PBMCs were then washed again and stained
for CD4 and CD8 in the dark at room temperature. Following staining, the antibodies were blocked
using 2% FBS and washed. PBMCs were then fixed with 4% PFA for 30 minutes at 4°C, washed
and re-suspended in PBS containing 2% FBS, and finally stored overnight at 4°C in the dark until
flow analysis.

All flow cytometry experiments were performed using a Novocyte Quanteon flow
cytometer (Agilent, Santa Clara CA) with 20,000 events collected per sample. All flow cytometry
data were analyzed using FlowJo (Treestar, Inc., Ashland OR). Briefly, cell debris, doublets, and
Dynabeads were gated out using scatter principles. Then, single stained controls were used for
compensation, and fluorescence minus one controls were used to determine positive populations
(Supporting Information Fig. S1).

MSC Functional Analysis - Indoleamine 2,3 Dioxygenase (IDO) Activity Assay
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MSCs from each cell-line were thawed and cultured for 48 hours with a media change at
24 hours. MSCs were harvested using TryplE then seeded at a density of 40,000 cells/cm? in a
96 well plate. After 24 hours, the medium was replaced in each well with complete medium
containing 10 ng/mL IFN-y (Life Technologies). After an additional 24 hours, conditioned medium
was collected and frozen at -20°C, and cells were fixed with 4% PFA. Each medium sample was
thawed and 100 pL transferred into a 96 well plate. Trichloroacetic acid was used to precipitate
excess protein. 75 uL of the supernatant was collected and transferred to a separate 96 well plate.
Ehrlich’s Reagent was then added to each well to detect L-kynurenine levels using a SpectraMax
iD5 (Molecular Devices) plate reader. Levels of L-kynurenine were determined using a standard
curve. To normalize L-kynurenine values to cell numbers for each replicate well (n=5 wells) within
an experimental group, we performed automated image analysis to quantify cell nuclei in the wells
from which conditioned medium was collected. Following fixation, MSCs were washed with PBS
twice, and stained with Hoechst (10ug/mL) in 0.1% Tween20 PBS solution for 1hr. Cells were
then imaged on a Cytation 5 high content imaging system (Biotek, Winooski VT) and cell counts
determined using CellProfiler to normalize the amount of L-kynurenine per cell.

Generation of a Composite Score of MSC Potency

Using the results from functional assays, a composite functional score was generated to
use as an overall potency metric. The averages of the percentage of CFSE dilution of CD4 and
CD8 T cells from two PBMC donors and IDO activity were subject to principal component analysis
(PCA) using JMP software (V9.2). The first principal component (PC1) value of each cell line was
taken as the respective composite functional score and represented 74.5% of the total variance
of the data.

NMR Media Analysis of MSC Culture

Frozen media samples were transported on dry ice for NMR analysis. Samples were
prepared in batches for each rack of 96 1.7 mm SampleJet NMR tubes (Bruker BioSpin). Briefly,
samples were pulled and sorted on dry ice, then thawed at 4°C. A solution of 3.33 mM DSS-D6
in deuterium oxide (Cambridge Isotope Laboratories) were mixed into media samples to a final
concentration of 10% deuterium oxide. Samples were then centrifuged @ 2990 g for 20 min at
4°C to pellet any debris that may have been collected with the media. 60 ul were transferred from
each sample tube to NMR tubes using Bruker SamplePro liquid handling system (Bruker BioSpin).
Ten pl of remaining volume from each sample in the rack was combined to create an internal pool
used within each rack. These internal pooled samples were placed throughout the rack as quality
control during data acquisition.

NMR spectra were collected on a Bruker Avance NEO spectrometer at 800 MHz using a
1.7 mm TCI cryogenic probe and TopSpin software (Bruker BioSpin). One-dimensional spectra
were collected on all samples using the noesyprid pulse sequence under automation using
IconNMR software. After one-dimensional data acquisition of all samples, 10 samples of each
media type were selected at random, material collected from the NMR tubes, and combined to
form a media specific pool used for two-dimensional (2D) spectral acquisition. 2D HSQC and
TOCSY spectra were collected on pooled samples for metabolite annotation. One-dimensional
spectra were automatically phase and baseline corrected using a batch script executed in
MestreNova software (MestreLab Research). 2D spectra were processed in NMRpipe.*2
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One dimensional spectra were referenced, water/end regions removed, aligned and
normalized using an in-house MATLAB (The MathWorks, Inc.) toolbox established by Robinette,
et. al and implemented within NMRbox.>*** Spectral features that were sufficiently well aligned
across spectra were semi-automatically integrated using an interactive MATLAB function to obtain
feature intensity values. These feature intensity values were batch corrected across the two
batches of data collection using the ComBat algorithm® implemented in Metaboanalyst®®. The
feature values for the first timepoint of each replicate was subtracted from the values of the second
and third timepoints, to produce features representing the differences between them. To reduce
the total number of feature differences used for machine learning analyses, a variance filter was
applied to select a subset of spectral features with highest variance as previously described.?®
For each timepoint differences being assessed, the top percentage of variable features was
determined by the subset which provided the best partial least squares regression R? when used
as input. This resulted in 69 features used for the features for Day 3 minus Day 1 values, and 21
features for Day 2 minus Day 1 values.

Intracellular Metabolite Analysis of MSCs Using LC-MS

Approximately one million MSCs were analyzed for each sample. Frozen cell pellets were
thawed and washed prior to undergoing a modified Bligh-Dyer extraction to yield two phases.
Extraction solvent (2:2:1 chloroform:methanol:water) and glass beads (400-600 um) were added
to cell pellets for extraction and homogenization in a TissueLyser Il to 30 Hz for 6 minutes.
Samples were then sonicated and centrifuged. Following extraction, 300 pL aliquots from each
layer were transferred to new microcentrifuge tubes and solvent was dried using vacuum
centrifugation. Dried organic phase samples were re-constituted in isopropyl alcohol, while dried
aqueous phase samples were re-constituted in 80% methanol. Re-constitution was followed by
sonication, centrifugation, and transfer to liquid chromatography (LC) vials for ultrahigh
performance liquid chromatography mass spectrometry (UHPLC-MS) analysis (Supporting
Information Table 3). Media samples without cells were also analyzed as blanks to remove any
features corresponding to remaining media components on the cells. Ten yL of media was subject
to the same Bligh-Dyer extraction as above and extracts were run according to the instrumental
methods listed above. A quality control (QC) sample for hydrophilic interaction chromatography
(HILIC) and reverse phase datasets was created by pooling 20 uL from each experimental
sample. The pooled QC injections were used for drift correction of peak areas. Sample queue
was randomized with a mix of samples, QCs, and blanks.

Metabolomic analysis was performed on all aqueous extracts using UHPLC-MS on an
Orbitrap ID-X Tribrid mass spectrometer (ThermoFisher Scientific). HILIC separation was
employed with a Waters ACQUITY UPLC BEH amide column (2.1%x150 mm, 1.7 uym particle size)
on a Vanquish (ThermoFisher Scientific) chromatograph. Lipidomic analysis was performed on
all organic extracts using UHPLC-MS on a Q Exactive HF Hybrid Quadrupole-Orbitrap mass
spectrometer system (ThermoFisher Scientific). Reverse Phase separation was employed with
an Accucore™ C30 column (2.1 x 150 mm, 2.6 ym particle size) on a Vanquish (ThermoFisher
Scientific) chromatograph. Data dependent acquisition (DDA) was employed in both instrument
methods to yield fragmentation information for detected metabolites and lipids. DDA methods
collected full scan data at resolution of 120,000 in the orbitrap. This was followed by collection of
fragmentation spectra (MS?) of selected precursors collected in the ion trap with an isolation
window of 0.4 m/z with a cycle time of 1.25 s. Dynamic exclusion was set to exclude MS? collection
of precursors within a 6 s window with a 10 ppm mass tolerance for the precursor ion. Stepped
normalized collision energies of 15%, 30%, and 45% were employed with HCD and CID 35% to
collect MS? spectra.
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Data was preprocessed in Compound Discoverer 3.2 (Thermo Fisher Scientific). This
included drift correction and blank removal. All features with at least 5x the signal in the blanks
and were present in at least 50% of all pooled QC injections were kept for analysis. This resulted
in a dataset with a total of 8,388 features. Further data filtering was used to remove features with
relative standard deviations lower than 25% between all samples, features with poor
chromatographic peak shape, and features with no MS? spectral data. Because the experimental
samples were prepared at two distinct times, a batch correction (Supporting Information Fig.
S$2) was employed to harmonize the data. Feature peak areas were corrected across the two
batches using the ComBat algorithm* implemented in Metaboanalyst®°. Annotations were
performed based on exact mass matches, MS? spectra fragmentation patterns, and MS? spectral
library database matches. The final datasets used for machine learning included 436 annotated
lipids and 43 annotated small polar analytes. The peak areas in these datasets were median
normalized and autoscaled prior to machine learning workflow.

Computational Analysis and Statistical Method's

Identification of features predictive of the functional composite score across MSC donors
was based on methods described previously? using multiple machine learning methods. In brief,
the ML regression methods utilized were random forest (RF), gradient boosted regression (GBR),
decision tree regression (DTR), least absolute shrinkage and selection operator (LASSO), partial-
least squares regression (PLSR), support vector regression (SVR), and symbolic regression (SR).
These models were used to extract predictive variables (or variable combinations). SR was
performed using Evolved Analytics' Data Modeler software (Evolved Analytics LLC). All other
models were generated with the LinearSVR, PLSRegression, RandomForestRegressor,
DecisionTreeRegressor, Lasso, and GradientBoostingRegressor functions as part of the sklearn
software package implemented in Python.?” Parameter tuning was done for all sklearn models in
a grid search manner using the GridSearchCV function with 5-fold cross validation (CV) and using
R? as the scoring criteria. For each regression model, feature selection was performed using the
same regression type (i.e., LASSO). Final prediction performance was measured by calculating
leave-one-out R? (LOO-R?) values on final models with CV-optimized parameters. Model specific
parameters and parameter ranges that were used are available in code.

Consensus analysis of the relevant variables extracted from each ML model was done to
identify consistent predictive features of function using both in-process media features (measured
by NMR) and end-product cellular lipids and metabolites (measured by LC-MS). For RF, GBR,
DTR, LASSO, PLSR, SVR models, features that ranked in the top 20% of feature importance
were selected, while for SR variables present in 210% of the top-performing SR models from Data
Modeler (R? =2 90%, complexity <300) were chosen to investigate consensus. Those variables
that appeared as important in 2 or more ML methods were deemed consensus features and
included for further annotation (NMR) and pathway analysis (NMR and MS).

Because the iIMSC sample was the only non-bone marrow derived line, this could be an
outlier. To determine the importance of the IMSC sample on the models, the final metabolite
panels in the consensus models were used to create models without the iIMSC sample. All
modeling parameters were kept the same with the exception of changing the 5-fold cross
validation to 3-fold to accommodate 9 samples. The success of these models was evaluated using
LOO-R?. Al statistics were performed in Python or Prism (GraphPad Software, San Diego CA).
Metabolite Pathway Analysis

Enrichment analysis of consensus metabolites from both NMR and MS was performed
using Metaboanalyst. Specifically, the list of consensus metabolites was submitted to perform
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over representation analysis by mapping to all pathways in the small molecule pathway database
(SMPDB) From the list of consensus NMR metabolites, 6 out of 7 consensus metabolites were
able to be mapped by Metaboanalyst, while all 16 MS consensus metabolites were mapped. Lipid
pathway enrichment was performed with LIPEA, using the default background for Homo sapiens.
16 out of 33 submitted consensus lipid species were mapped to KEGG lipids used by the LIPEA
program. Final lists of mapped metabolites/lipids used for pathway enrichment are included in
Supporting Information Table 4.3
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Donor 1 and 10.7-46.2% (CD4") and
14.8-38.1% (CD8") for PBMC Donor 2.
This observation was evident by
regressing CD4" vs CD8" T cell
proliferation results for both PBMC
Donor 1 and PBMC Donor 2 (R?=0.86
and R?=0.90, respectively)
(Supporting Information Fig.S3).

The IMSC line had the highest
suppression of CD4* and CD8" T cell Figure 1. Functional analysis of MSCs at the end of expansion.

roliferation in both PBMC donor (A) Schematic of functional assays used to generate functional
proliteratio 0 . _0 ors. composite score. CD4 (B) and CD8 (C) T cell proliferation of PBMC
RB182 was not significantly different |donor 1 and CD4 (D) and CD8 (E) T cell proliferation of PBMC
from the iIMSCs for CD4* and CD8* T |donor 2 based on %CFSE dilution. (F) IDO activity measured by

: : : levels of L-kynurenine in terms of pg/cell/day. (G) Functional
cell proliferation in PBMC donor 1 but composite score based on results of all assays (B-F). All statistics

was for PBMC donor 2. RB71 |were calculated using a one-way ANOVA with Tukey’s post hoc
consistently had the least amount of | test. Differences in letters indicate a significant difference (P<0.05)

CD4* and CD8" T cell suppression |PetweenMSCines.
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from both donors. All MSC lines were significantly different from the positive control (dotted line).
The MSC lines with the highest T cell suppression function (iMSC, RB177, and RB182) were also
high in IDO activity (Figure 1F). While MSC line RB71 had the lowest observed T cell
suppression, its IDO activity was not the lowest of the 10 MSC lines as its activity was
approximately in the middle range (46.3 pg/cell/day) of all observed IDO activity values (20.5-80.6
pg/cell/day). During cell expansion, a repeat line, derived from RB174, was used to compare
different expansion dates (i.e. batches). Functional comparison between these two expansions
(termed RB174_1 and RB174_2 for batch 1 and 2, respectively) showed no significant difference
within any assay. A functional composite score was generated with PCA using all the functional
assay results. As PC1 comprised 74.5% of the variance in the dataset, we used PC1 values for
the composite score (Figure 1G). This functional composite score displays a wide range of
immunomodulatory function between all MSC lines with lower PC1 scores indicating MSC lines
with the highest potency i.e. high T cell suppression and IDO activity.

Cell-line Differences in A)  FeatureAbundances B) - Scores Plot
Intracellular MSC Metabolome. wsc [T TR : . Ocni7e
RB183 |H w q\ | Hl) A %k rRe139”  RB175
UHPLC-MS ana|ysis by '2 E;?im\ml R | m' ‘ ”5‘ = F{B17zi§71
reverse phase and HILIC | | rsi3] HIH \ \\ I 1 - = . | Re177
chromatography high-resolution | . RB174 WL B poteney 7 ™° RB179
mass spectrometry (Supporting | |- g:};g% i HHIIHIII g+
Information Table 3) of MSC cell RB177 ”N ’ 1 / | 5 Lo RR82
pellets  yielded a  rich re71 ] g Rets
metabolomic dataset with a total T Be1giw "
of 479 annotated features. C) D)
Annotations were assigned using P1(18:1/18:1) PE (0-18:1/22:6)
exact mass and MS? spectral ’ 3
library matches. This feature list g 2 '\\ o? o
and the corresponding | 4 .., 3 R
abundances were used to g0 < §o —=
conduct unsupervised clustering 5 . N\ Re=07778 £ .
to observe metabolic differences 52 N S A R = 0.5445
in the 10 MSC lines examined in €3 \\\ g4
this study. Sample clustering with £ N 54
the metabolites measured in this 5 * S0
dataset showed that the IMSC e ite ek Area " Metabolite Peak Area
sample had significant metabolic |Figure 2. Mass spectrometry metabolomics analysis of MSC
differences from all the bone- |lines. Heatmap (A) and PCA scores plot (B) of ten MSC pellet samples
marrow derived cell lines using with all 479 annotated features in the UHPLC-MS dataset that fed into the
both Ward clustering (Fig. 2A) ML regression .workflow. Sample§ are color coded. according to the
composite functional score determined from the functional assay results
and PCA (Fig- ZB)- Little (Figure 1G). Red indicates a higher score (i.e. lower function) in
clustering was observed |immunomodulatory assays. Green indicates a lower score (i.e. higher
sccording to polency except in |(ren, Heanie, 1 Sikies s o e T
the Ca.se of the ”.“dd'e performing ?1%5:1/18:91.) © gnd PE (0-18?1/22:6) (D) against the functional corrr)1posite
cell lines, which have more |gcore for 10 MSC samples.

metabolic similarity. However,
the MSC lines with highest potency (iMSC) and lowest potency (RB71) were maximally separated
based on their metabolic signatures using both Ward clustering and PCA.

We initially sought to find single metabolites that could predict MSC potency by examining
linear correlations of metabolite abundances with the composite score. Simple linear regressions
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were made for each analyte in the dataset and ordered according to R? (Supporting Information
Table 4C). There were 18 annotated metabolites with R? above 0.5 in the dataset. Two of these,
Pl (18:1/18:1) and PE (O-18:1/22:6), are shown in Fig. 2C and 2D, respectively. As few of the
individual metabolites were predictive of MSC potency after multiple testing correction it was
determined that a panel of metabolites identified through machine learning (ML) based regressive
methods would yield higher predictive power, as well as elucidate possible pathways involved in
the regulation of these metabolites.

Single In-process Media NMR Features Do Not Correlate with Potency Measures

Media samples collected at daily intervals during cell expansions were analyzed by 1D
"H-NMR. In addition, 2D NMR spectra were collected on pooled material to aid in annotation of
spectral features in the 1D spectrum. After spectral processing and alignments, a total of 138
spectral features were semi-automatically selected and quantified across all samples. These
spectral features correspond to a smaller number of metabolites, each metabolite having one too
many spectral features based upon its chemical structure. These features were initially left
unannotated in order to not exclude features corresponding to unknown metabolites that may
have useful value in downstream analyses. To avoid the assumptions of linear or monotonic
relationships of feature intensity over time in downstream analyses, feature values at Day 1 were
subtracted from Days 2 and 3 to create two datasets representing the net change in feature
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Figure 3. NMR analysis on daily media samples. A) Heatmap clustergram of Day 2-Day 1 highly variable feature intensities (21)
and Day 3-Day 1 highly variable feature intensities (69). B) PCA scores plot of all samples from days 1-3, using all spectral features
(138) as input. n=10 datapoints for each cell-line/timepoint with each cell-line represented by different color and each day by different
shape. C) Regression of average donor Day 3 — Day 1 differences of feature at 2.26 ppm with composite functional score. D)
Regression of average donor Day 3 — Day 1 differences of feature at 8.46 ppm with composite functional score.
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intensity over each time period (1 and 2 days, respectively). Notably, clustering analyses of these
values do not show any clear patterns between donors or potency measures. (Fig. 3A). PCA of
all samples from expansion days 1, 2 and 3 also showed no strong clustering corresponding to
donor, but rather a pattern of samples clustering by the day of culture (Fig. 3B). Similar to the MS
data analysis, linear regression was performed between each average spectral feature intensity
and composite score for each MSC line. The top performing features (in terms of R?) are shown
in Fig. 3C, D. Again, the changes in these individual spectral features showed reasonable
correlation to the potency score, but after false discovery rate correction, these correlations were
not significant. Particularly given the observed non-linear dynamics of many of these spectral
features, it was hypothesized that identifying a panel of spectral features predictive of potency
would be aided using diverse ML methods.

Modeling Approach and ldentification of Consensus Predictive Metabolites.

. . Table 1. Summary of Machine Learning Models to Predict MSC Potency.
Evaluation of machine | Machine learning (ML) models using various regression types — symbolic
learning models. regression (SR), partial-least-squares regression (PLSR), support vector
machine (SVM), gradient-boosted regression (GBR), least absolute shrinkage
. and selection operator (LASSO), random forest (RF), and decision tree (DT).
To ﬂnd, potency- Models created using four different input datasets: MS lipids, MS metabolites,
related patterns in the data, | NMRDay 3 - Day 1, and NMR Day 2 — Day 1 feature abundances. Consensus
several ML regression types |models created from only metabolites present in more than one of the initial
were used for potency |models for both intracellular and extracellular metabolite datasets (using all 10
modeling (Table 1). Most MSC lines). Final panels for the consensus models were used to create
additional models trained and cross-validated on only the bone marrow derived

models had comparable lines (Consensus w/o iIMSC, 9 total MSC lines).
performance in both NMR and

Input dataset ML Regression Model - LOO-R2
MS datasets based on LOO- . ‘
R2, which indicates there are Intracellular SR PLSR SVM GBR LASSO RF DT
potency-related  metabolic | s ipigs 098 090 098 087 100 078 084
differences. This is reflected S S 0.6 056 0.6 058 083 076 04
H H mal . . . . . . .
in metabolite abundances | g
both intracellularly and in the | o 0.99 0.89 1.00 0.88 0.92 0.83 0.60

cell media. Because the

H Consensus 0.99 0.94 0.89 0.86 0.88 0.80 0.72
anrl[o’;)atﬁfl fmt—itabolljcdes t.?.ng woiMse
,me abolite features identiie Extracellular SR PLSR SVM GBR LASSO RF DT
in each model were not
’ Day 1
develop a consensus
. NMR Day 2 — 0.99 0.53 0.96 0.85 0.57 0.71 0.86
modeling strategy to ensure Day 1
metabolites of Interest were Consensus 0.99 0.87 0.82 0.89 0.72 0.60 0.86
robust and not unique to a
Consensus 0.96 0.64 0.42 0.75 0.31 0.50 0.68

particular ML approach. This | ,/ivsc
strategy consisted of
selecting only metabolites or features present in more than one of the initial models within a
particular dataset — MS lipids, MS small polars (MS metabolite panel in Supporting Information
Table 4A, B), NMR Day 2, or NMR Day 3 models were included in the consensus models. Most
of the consensus models have comparable performance to the initial non-consensus models (in
terms of LOO-R?), which underscores the robustness and predictive value of our consensus
metabolite panels. To confirm these consensus models were not highly dependent on the iIMSC
sample, the final consensus metabolite panels were used to create another set of consensus
models built and cross-validated on only the nine bone-marrow derived lines. The performance
of these models, evaluated using LOO-R?, was comparable for MS models (LOO-R? range from
0.72 to 0.99) while removal of iIMSC from NMR consensus models resulted in lower LOO-R? for
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Figure 4. Mass Spectrometry Models to Predict MSC Potency. Radar plot (A) displaying the number of detected
lipids in the annotated dataset organized according to lipid class. Bar plot (B) displaying the relative variable
importance, calculated using the variable weights in the models, of each lipid class in each model type. Radar plot
(C) displaying the number of detected small polar metabolites in the annotated dataset organized according to class.
Bar plot (D) displaying the relative variable importance, calculated using the variable weights in the models, of
molecule class in each model type. Radar plot (E) displaying the numbers of metabolites that presented in more
than one initial model organized according to class. This list of consensus metabolites was used to create the
consensus models. Bar plot (F) displaying the relative variable importance, calculated using the variable weights in
the models, of each metabolite in the consensus models.

most models (PLSR, SVM, GBR, LASSO, RF and DT). However, the NMR consensus model
constructed using symbolic regression was highly predictive of MSC potency (LOO-R?=0.96).
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Intracellular Metabolite Class Patterns in Modeling Results.

Phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sphingomyelins (SM)
make up a large portion of the annotated dataset and show high importance in the models (Fig.
4 A, B). Interestingly, ether-linked phosphatidylethanolamines (PE-O) made up a smaller portion
of the overall dataset compared to other lipid classes but were still among the top contributors to
the models. Based on the weights applied to these lipid abundances in the regression models,
they were highly important for model building. The over-representation of them in the models
compared to the overall dataset is evidence that their abundances are related to MSC potency as
measured by the composite score. This indicates a possible role in MSC functionality for members
of this lipid class.

Amino acids and their analogues make up the majority of the small polar annotated
dataset and showed importance in regression models (Fig. 4 C, D). Similar to PC in the lipid
dataset, as they make up the largest portion of the data and contribute the most significantly to
the models, no strong conclusions based on over-representation can be made. A hexose was
detected in this dataset that was in the final panel for several of the models. However, there was
only one sugar in the final annotated dataset meaning that class coverage for sugars was low.
Given this finding, no strong conclusions about biological role or over-representation should be
made.

The consensus metabolite list was made up of all metabolites that were in the final panel,
following variable selection, of more than one initial model — lipid or small polar. This consensus
list (Supporting Information Table 4A,B) was primarily composed of PC, amino acids and
analogues, PE-O, and phosphatidylserines (PS) (Fig. 4E). These 41 metabolites from 15 classes
(Fig. 4E) all showed importance in the models and were later investigated in pathway analysis.
The variable presence plots for SR (Supporting Information Figure S4) indicate the following
metabolites as having high occurrence in the final suite of models used for SR: acetyllysine,
glucose isomer, hydroxykynurenamine, PE (O-32:1), PC(31:0), PE (0-38:2), and PI (36:2). In
terms of the decision tree (DT) model, there was one ceramide (Cer(d33:1)) that was the sole
contributor (Fig. 4F). Small changes in the data can cause large differences in DT models, making
them relatively unstable compared to other types of models. It was also observed in this workflow
that the DT regression models often selected a small number of predictive features. Since this
particular lipid was not significantly important in other models as well, the large importance in the
DT regression model may or may not be significant.

Different Consensus Media Metabolites Exhibit Distinct Changes

A total of 23 unique spectral features were selected as consensus features from both NMR
timepoint datasets having been in top important features for at least two ML methods (Fig. 5A,
B). Two features were common to both timepoint datasets (5.53 ppm and 5.30 ppm). The average
trajectory over time for each of these consensus features is shown in Fig. 5C. As noted previously,
many of these features show non-linear and non-monotonic behavior over time, and different
changes between Day 1 and Day 2 or Day 3, accounting for some of the different features that
were selected as consensus between the two datasets. Of the selected consensus features from
both Day 3 and Day 2 NMR features, several were annotated to metabolites including proline,
arginine, fructose, phenylalanine, pyruvate and an unknown uridine diphosphate-sugar (Fig. 5D).
Of these metabolites, pyruvate and proline had some of the highest variable presence scores in
the SR suite of models (Supporting Information Figure S4) as well as several unknown,
unannotated metabolites. Several features that appeared as important in some ML methods were
not matched to spectral databases and may require further experimentation to confidently
annotate. Particularly, two of these unknown features at 5.53 ppm and 5.30 ppm appeared as
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Figure 5. Consensus NMR metabolite feature trends and annotation. A) Consensus features selected as
important across all modeling methods for Day 3- Day 1, and Day 2 — Day 1 datasets. Counts indicate for how many
models each feature was selected within top 10% of important variables for prediction. Names of features represent
approximate ppm of quantified spectral peak. B) Average spectral feature intensity trajectories over Days 1-3 (n=10
per donor per timepoint). Feature names indicate approximate chemical shift values of integrated peak. Intensity
values are in arbitrary units. * Indicates consensus features in both timepoint datasets. f indicates features identified
from SR consensus model. C) Putative metabolite annotations of consensus spectral features. UDP = uridine
diphosphate

consensus features in both timepoint datasets, suggesting that whatever metabolite(s) these
features correspond to may be a robust predictor of potency across time.

Interpretation of Consensus Metabolites Through Pathway Analysis.
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The consensus list from
each modeling set (Table S4A, B
for MS and Fig. 5D for NMR) was
used to search for potency-
associated changes in metabolism
on the pathway level. Of the top
enriched pathways, there were 7
with significant p-values (p<0.05)
for the NMR consensus metabolites
(Fig. 6A), 12 with significant p-
values (p<0.05) for MS lipidomic
analysis (Fig. 6B), and none for MS
small polar analysis (Fig. 6C). Top
lipid enriched pathways included
sphingolipid signaling pathway,
autophagy, and necroptosis,
indicating that these lipids could be
important in MSCs based on their
role in cell cycle. Approximately
10% of the small polar dataset was
able to be annotated, compared to
the lipid dataset which was 45%
annotated. Because enrichment
analysis relies on over-
representation of metabolites in
particular pathways, the lower
metabolite coverage of the small
polar dataset was likely a
contributing factor to the lack of
significance of the pathways
identified. Additionally, some of the
identified metabolites in this dataset
were not found in pathways in the
Small Molecule Pathway Database
used for pathway enrichment.
Despite the lack of significantly
enriched pathways in the MS
metabolite data, interestingly there
was some agreement between top
resulting pathways in the NMR and
MS small polar analyses. In
particular, aspartate metabolism,
arginine-proline metabolism,
glycine-serine metabolism, and
glucose-alanine metabolism
appeared in the top enriched
pathways for both datasets. This
points to some potential
consistency in similar metabolic
pathways responsible for predicting
MSC potency both early in-process
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and at end-process. This points to some potential consistency in similar metabolic pathways
responsible for predicting MSC potency both early in-process and at end-process.

DISCUSSION

The identification of CQAs correlative to immunomodulatory potency would enable
predictive approaches to address some of the grand challenges that hinder the approval and
clinical use of MSCs as cell therapies."®'” Donor-donor variability and different ex vivo
manufacturing procedures create inconsistencies in the therapeutic potency of MSCs, and
ultimately efficacy outcomes when evaluated in clinical trials."*"® In this study, we greatly
expanded on our previous work? through incorporation of additional cell-lines, assessment of in-
process and end-process metabolites, and development of comprehensive ML modeling
approach to identify predictive markers. The in-process media analysis might inform decisions
made early in cell expansion phase that if translated to a manufacturing setting would reduce
manufacturing cost due to identification of failed batches early in manufacturing. For the broad-
spectrum analysis of intracellular metabolomics, the discovery of small molecules and lipids
correlative to MSC immunomodulation, as a panel of CQAs, is of great interest and a means to
distinguish biological heterogeneity and predict the in vivo therapeutic potency of the MSC
product. Moreover, a composite score indicative of immunomodulatory potency was developed
based on cumulative results from multiple in vitro potency assays to enable correlations of top
features from media and intracellular metabolome. This robust approach accounts for the
variability in MSC functional responses and identifying consensus top features, i.e. potential
CQAs, using ML models.

An inherent limitation of relying on a single ML model to inform decisions or hypotheses
about data can be intrinsic bias based on the specific framework and assumptions that go into
using a specific method.***° By using a diverse array of ML regression methods, we avoid being
biased too strongly by a single method in identifying features and metabolites predictive of MSC
potency. Our consensus approach to identifying potential CQAs reduces the possibility of model
specific results by ensuring that they are deemed important by multiple ML methods as illustrated
previously.? Ultimately the biggest limitation to this method is the size of our dataset, which is
limited by the amount of cell material needed for both functional assays and analytical
measurements. However, we attempt to mitigate the impact of overfitting on the interpretation of
our results using cross-validated model tuning and leave-one-out model performance
calculations, in addition to performing our ML analysis without our “outlier” iIMSC donor to assess
that unique group’s impact on our results.

Lipid classes such as phosphatidylcholines (PC), phosphatidylethanolamines (PE),
phosphatidylinositols (Pl), and phosphatidylserines (PS) are all glycerophospholipids that were
found as predictors in our ML models.*'*' Differences in MSC glycerophospholipid composition
has been shown between young and old MSC donors as well as early and late passage MSCs. 4?4
PC and PE were two of the most abundant lipid classes found in the ML models and are two of
the most abundant glycerophospholipids found in mammalian cells.*' PC account for roughly 50%
of all cellular phospholipids, and have been shown to be predictive of MSC
immunomodulation.?#*#4 The majority of PE are found in the mitochondrial membrane, and MSC
mitochondrial fitness is associated with its glycolytic potential.?>***> Greater glycolytic potential
has been shown to be associated with greater MSC immunomodulation.?**® PE have also been
shown to positively regulate autophagy, which helps prevent cellular ageing.*® Several studies
have shown that increased autophagy in MSCs can help prevent senescence, increase survival
and engraftment, and increase immunomodulatory function.*”*® As mentioned previously, Pl were
also predictors of MSC immunomodulation and are precursors for the biosynthesis of
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glycosylphosphatidylinositol (GPI) anchors.*® GPI anchored markers such as CD157, which aids
in immunomodulation, is involved in migration, self-renewal, osteogenic differentiation, and
mitochondrial transfer in MSCs.>*2 Another glycerophospholipid, PS, is an important molecule
in apoptosis signaling, and in vivo studies have suggested that MSC apoptosis may be crucial for
their therapeutic efficacy.’>>> Two other lipid classes found as predictors, sphingomyelins (SM)
and ceramides (Cer), are closely related to one another via the sphingolipid metabolic pathway.*®
Increases in sphingomyelin from ceramide treatment has been shown to increase senescence in
bone marrow MSC (BMMSC)s.*’ Increased levels of acyl chain ceramides are also associated
with decreased levels of IDO activity in BMMSCs.*® The sphingolipid signaling pathway, a
significant pathway found in our results, also plays an important role in MSC migration and
osteogenic differentiation. >

Similarly, we sought to identify metabolites in the media during expansion that relate to
immunomodulatory function as this represents a non-destructive, in-process approach for
monitoring cell quality. In-process monitoring allows for greater control and quality assurance of
cell therapies throughout the expansion process.®*®! In-process monitoring of parameters such
oxygen diffusion, CO2, pH, temperature, and glucose and lactate consumption/production are well
established in biomanufacturing.®> New methods such as gas chromatography mass
spectrometry have been used to measure biomarkers predictive of MSC immunomodulation.®®
Here, we profiled media metabolites from the first three days of expansion to predict MSC function
at the end of manufacturing. The amino acids proline, arginine, phenylalanine, and aspartate were
all predictive of MSC immunomodulation. Arginine and proline metabolism has been associated
with autophagy of MSCs, which was found as a significant pathway from our lipid analysis.®
Increased ammonia is a by-product of protein and amino acid catabolism and is converted to urea
through the urea cycle with arginine and aspartate being key amino acids in the urea cycle.®>
Aspartate metabolism is also associated with the TCA cycle which is increased from cellular
OXPHOS with pyruvate being an intermediate of both OXPHOS and glycolysis.®' As mentioned
previously, metabolic shifts in MSCs from glycolysis to OXPHOS is associated with a decrease in
MSC immunomodulation.?® Similarly, IFN-y and hypoxic conditioning increases glycolysis in
MSCs and increases the capacity for glucose and fructose uptake.®” Additionally, arginine and
proline metabolism, amino sugar metabolism, and galactose metabolism showed significant
differences when comparing adipose-derived MSCs (ADMSCs) and BMMSCs.%® Upregulation of
genes associated with galactose metabolism has also been associated with higher
immunomodulation of MSCs.%° These results further emphasize the critical role of metabolism
during MSC manufacturing and how our robust machine learning approach can identify pathways
relevant to MSC therapeutic potential.

CONCLUSION

Overall, this study establishes a comprehensive framework for future studies to interrogate
metabolites as predictive markers for MSCs when changing manufacturing parameters. A major
example of a significant manufacturing change would be increasing manufacturing scale for
clinical trials as the average dose for MSC based therapies is on the order of 10® cells for a single
patient.™ Because of this, scaling up to bioreactors is necessary to produce enough cells for the
clinic. Scaling up MSC manufacturing has a significant effect on parameters such as nutrient
transport and MSC metabolism.?' Another parameter is the type of media used for the expansion
of MSCs. Priming MSCs with inflammatory factors such as IFN-y or TNF-a, as well as hypoxia,
are also being explored for MSC therapies due to the potential of increasing their therapeutic
potential.>*¢”® Priming conditions have significant effects on MSC metabolism and could
potentially lead to greater therapeutic outcomes through a more homogeneous, potent MSC
product.?*>3*'¢" astly, MSC metabolism could further predict MSC engraftment and survivability in
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vivo, which together have been linked to clinical outcomes.”" By using multiple MSC lines and ML
models, this study sets the framework for rigorous predictive marker identification that can be
used in future studies to help address potential manufacturing process hurdles for MSC
therapeutics. Based on the metabolite classes identified in this work (both in-process and at the
end of expansion), targeted assays can be developed for better MSC potency assessment and
release criteria for immunomodulatory therapeutics.
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