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Abstract  
 
Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications 
due in part to their ability to modulate immune cells. However, MSCs demonstrate significant 
functional heterogeneity in terms of their immunomodulatory function because of differences in 
MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC 
metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we 
comprehensively profiled intracellular and extracellular metabolites throughout the expansion 
process to identify predictors of immunomodulatory function (T cell modulation and indoleamine-
2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive 
manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC 
intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust 
consensus machine learning approach, we were able to identify panels of metabolites predictive 
of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of 
identifying metabolites in 2 or more machine learning models and then building consensus models 
based on these consensus metabolite panels. Consensus intracellular metabolites with high 
predictive value included multiple lipid classes (such as phosphatidylcholines, 
phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included 
proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways 
significantly associated with MSC function such as sphingolipid signaling and metabolism, 
arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable 
framework for identifying consensus predictive metabolites that predict MSC function, as well as 
guiding future MSC manufacturing efforts through identification of high potency MSC lines and 
metabolic engineering. 
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INTRODUCTION 
 

Preclinical and clinical studies have demonstrated evidence of promising therapeutic 
effects from the use of mesenchymal stromal cells (MSCs) for a broad range of applications 
including autoimmune, neurodegenerative, and inflammatory diseases.1–3 MSCs are derived from 
various tissues of the body, most commonly bone marrow, adipose, and umbilical cord,4–7 and 
can be administered directly as cell therapies or used to create cell-derived products (e.g., 
secretome and extracellular vesicles).8–10 The secretory repertoire of MSCs is rich in cytokines, 
chemokines and growth factors that, combined with the fact that MSCs lack or possess low 
expression of self-antigens (thus permitting allogeneic use), renders MSCs a potential cell therapy 
for a large patient population with life-altering conditions.9,10 However, efficacy outcomes from 
clinical trials are inconsistent and pose a major roadblock to the approval of MSCs as cell 
therapies despite a well-established safety record.11 One major challenge that must be addressed 
to facilitate clinical translation is MSC functional heterogeneity, which can be attributed to different 
donors, tissue sources and culture conditions (i.e., ‘manufacturing’) introduced during MSC ex 
vivo expansion.1,12,13 MSCs require ex vivo expansion to yield a sufficient cell supply to meet the 
needs for clinical dosages, which are typically on the order of hundreds of millions of cells.14 
Relatedly, a lack of standard cell culture practices and processes is another challenge that 
contributes to poor reproducibility and inconsistent clinical outcomes.15 Better understanding of 
MSC functional heterogeneity will lead to critical quality attributes (CQAs), which are part of a 
comprehensive analytical assay suite to be used for MSC release criteria, ultimately improving  
their clinical translation. 

CQAs predictive of MSC immunomodulatory potency serve as a quantitative and 
reproducible measure for assessing MSC quality, thus enabling rational approaches to both 
identify high quality MSC lines (donors), as well as optimize culture conditions that facilitate 
scaling to larger manufacturing formats such as bioreactors. Several approaches to identify CQAs 
correlative to MSC functional potency have been reported.16,17 Based on previous work 10,18, MSC 
potency assays often assess MSC immunomodulatory functions such as indoleamine 2.3-
dioxygenase (IDO) activity, as well as MSC modulation of activated immune cells (e.g. T cells and 
macrophages). These functions are relevant to a broad range of diseases and have been 
associated with MSC secretion of anti-inflammatory, mitogenic, and tissue reparative factors.19,20 
19,2021,22 Priming MSCs with stimulatory molecules (e.g., interferon-γ (IFN- γ) or tumor necrosis 
factor-α (TNF- α)) promotes the increased secretion of paracrine mediators such as IDO and anti-
inflammatory molecules (e.g., interleukin-10) that are relevant in the context of MSC 
immunomodulation (e.g., suppress T cell proliferation, induce regulatory phenotypes of T cells 
and macrophages).21,22 Not only can these MSC-mediated effects related to immunomodulatory 
potency establish a set of CQAs, they shed light on metabolic activities that are vital to the basic 
understanding of MSC functions that can be leveraged for therapeutic use.23 However, the 
reproducibility and robustness of these potency assay formats reduce their appeal for assessing 
CQAs in a manufacturing setting.   

Robust multi-omic approaches coupled with computational modeling to identify 
correlations to functional potency have been leveraged to identify predictive markers in cell 
therapies.24–26 Metabolomics is an emerging field due to the abundance of metabolites and their 
reflection of the cellular phenotype which allows for non-targeted approaches for important 
biomarker discovery.27,28 Well established techniques such as nuclear magnetic resonance 
(NMR) and mass spectrometry (MS) are often used to measure both cellular and extracellular 
metabolites.29 30In terms of MSC metabolism, it has been shown that MSCs preferentially utilize 
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glycolysis over oxidative phosphorylation (OXPHOS) in vivo, but shift towards OXPHOS from 
extended culture and expansion.31 Greater OXPHOS metabolism has also been shown to lead to 
a decrease in T cell suppression by MSCs.23 Previously, our group assessed end of expansion 
intracellular metabolites as candidate predictive markers, and putative CQAs, using three 
independent MSC lines at three passages. Partial least squares regression (PLSR) was used to 
determine predictive markers based on their variable importance projection (VIP) score.26 Several 
amino acids, small molecule metabolites (e.g. myo-inositol), and phosphatidylcholines (PCs) were 
shown to be correlative to MSC functional potency (measured in terms of both T cell modulation 
and IDO activity). 

In this study, we expanded on our previous work by applying a novel CQA discovery 
framework whereby metabolomic data generated both in-process (during the first three days of 
MSC expansions) and at end of production (intracellular metabolites from harvested MSCs) were 
input into a suite of models to predict MSC immunomodulatory potency. For this study, we 
generated ten MSC lines consisting of the following: the same three cell lines as our previous 
study, six additional MSC lines, and a repeat expansion of one of the MSC lines.26  For each MSC 
line, unsupervised analysis of media metabolites and intracellular metabolome of MSCs were 
correlated to a functional composite score (based off T cell suppression and IDO activity) using 
several machine learning (ML) models. CQAs were resolved across a total of 7 models (for both 
extracellular and intracellular inputs) to identify consensus metabolites that were subsequently 
related using metabolic pathway analysis. Top consensus media metabolites predictive of MSC 
potency include several amino acids (proline, arginine, aspartate), pyruvate and fructose. Top 
consensus intracellular metabolites predictive of MSC potency include several lipid classes such 
as PCs, phosphatidylethanolamines (PEs),  and sphingomyelins (SMs). These were then mapped 
to several metabolic pathways to infer their potential biological roles as they relate to MSC 
immunomodulation. This study establishes a generalizable framework for identifying predictive 
markers from early stage culture media and intracellular metabolomic analyses that can ultimately 
be used to select for MSC lines with desired properties and guide future MSC manufacturing 
strategies. 

 
MATERIALS AND METHODS 
 
MSC Expansion and MSC/MSC-Conditioned Medium Sample Preparation 

 
Bone marrow-derived MSCs (BMMSCs) were purchased from RoosterBio, Inc. (Frederick, 

MD), and iMSCs were purchased from Fujifilm Cellular Dynamics Inc (Madison, WI). Prior to this 
study’s expansion, MSCs were previously expanded to an initial population doubling level (PDL0) 
reported in Supporting Information Table 1. Additional information for each MSC cell line 
including final PDL, donor demographic information, and final cell yield is also reported in this 
table. Cryopreserved vials from each donor were thawed, and 106 MSCs were seeded into an 
initial T-150 tissue culture flask in complete media containing Gibco™ Minimum Essential Media 
α with nucleosides (Thermo Fisher Scientific, Waltham, MA), 10% fetal bovine serum (FBS; 
HyClone Laboratories, Logan, UT), and 1% penicillin-streptomycin solution (10,000 U/mL; Sigma-
Aldrich, St. Louis, MO) for a culture rescue period of 48 hr. The same lot of FBS was used 
throughout the study. MSCs were then washed with endotoxin-free Dulbecco’s phosphate 
buffered saline (PBS) without calcium and magnesium (Millipore Sigma), harvested using 1X 
TrypLE™ Express Enzyme (Thermo Fisher Scientific), neutralized with complete media, and 
centrifuged 300g to create a cell pellet. MSCs were then resuspended in complete media and 
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counted. Next, MSCs from each donor were seeded at 500 cells/cm2 into 10 T-75 flasks 
containing 10 mL complete media. Control flasks containing 10 mL complete media only were 
also prepared. All flasks were then transferred to a humidified incubator set to 37° C and 5% CO2.  

MSC conditioned medium (CM) sample collection of 300 µl was performed for each flask 
at approximately the same time each day (±1 hr) and total complete media exchange was 
performed every 3 days until MSCs achieved 70-80% confluence. All media samples were placed 
directly into –80° C storage until further analysis by NMR. MSCs were then harvested using the 
same procedure described above. Cell pellets were split for cryopreservation (and functional 
analysis, see below) or preparation for intracellular lipidomic/metabolic analysis. Cell pellets 
designated for cryopreservation were prepared into cryovials containing 106 MSCs in 1 mL 
CryoStor® CS 10 (Sigma-Aldrich) and stored at –80° C for 24 hr using controlled rate freezing 
containers. Vials were then transferred to the vapor phase in a liquid nitrogen cryogenic freezer 
until further analysis. For intracellular lipidomic/metabolomic analysis, cell pellets were washed 
twice by resuspending in PBS and centrifuged at 10,000 rpm. All supernatant was removed and 
cell pellets were then stored at –80° C. 

 
MSC Functional Analysis - T cell Suppression Assay 

 
MSCs from each cell-line were thawed and allowed to recover for 48 hours with a media 

change at 24 hours. MSCs were harvested using TrypLE then seeded at a density of 10,000 
cells/well in a 96 well plate and cultured for 24 hours. Previously frozen peripheral blood 
mononuclear cells (PBMCs, AllCells, Alameda CA) were thawed in RPMI media (RPMI, 20% FBS, 
2mM L-glutamine, 50 U/mL penicillin, 50 μg/mL streptomycin) and cultured overnight at 37°C and 
5% CO2. Prior to co-culture, PBMCs were labeled with CFSE (Supporting Information Table 2, 
Biolegend, San Diego CA) according to the manufacturer’s protocol, and 100,000 PBMCs were 
added to each well at a final MSC:PBMC ratio of 1:10 as well as control wells containing only 
PBMCs. Following PBMC addition, stimulating anti-CD3/CD28 Dynabeads (Thermo Fisher 
Scientific, Waltham MA) were added at 100,000 beads per well to the appropriate wells (positive 
controls and all MSC groups). MSCs and PBMCs were co-cultured for 72 hours at 37°C, 5% CO2.  
Following co-culture, PBMCs were collected and stained using Brilliant Violet 711 anti-CD4 and 
APC anti-CD8 (Supporting Information Table 2) (Biolegend, San Diego CA). PBMCs were first 
washed and stained with Zombie Yellow (Supporting Information Table 2) (Biolegend, San 
Diego CA) viability dye and blocked using 2% FBS. PBMCs were then washed again and stained 
for CD4 and CD8 in the dark at room temperature. Following staining, the antibodies were blocked 
using 2% FBS and washed. PBMCs were then fixed with 4% PFA for 30 minutes at 4°C, washed 
and re-suspended in PBS containing 2% FBS, and finally stored overnight at 4°C in the dark until 
flow analysis. 

All flow cytometry experiments were performed using a Novocyte Quanteon flow 
cytometer (Agilent, Santa Clara CA) with 20,000 events collected per sample. All flow cytometry 
data were analyzed using FlowJo (Treestar, Inc., Ashland OR). Briefly, cell debris, doublets, and 
Dynabeads were gated out using scatter principles. Then, single stained controls were used for 
compensation, and fluorescence minus one controls were used to determine positive populations 
(Supporting Information Fig. S1). 
 
MSC Functional Analysis - Indoleamine 2,3 Dioxygenase (IDO) Activity Assay 
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MSCs from each cell-line were thawed and cultured for 48 hours with a media change at 
24 hours. MSCs were harvested using TryplE then seeded at a density of 40,000 cells/cm2 in a 
96 well plate. After 24 hours, the medium was replaced in each well with complete medium 
containing 10 ng/mL IFN-γ (Life Technologies). After an additional 24 hours, conditioned medium 
was collected and frozen at -20°C, and cells were fixed with 4% PFA. Each medium sample was 
thawed and 100 µL transferred into a 96 well plate. Trichloroacetic acid was used to precipitate 
excess protein. 75 µL of the supernatant was collected and transferred to a separate 96 well plate. 
Ehrlich’s Reagent was then added to each well to detect L-kynurenine levels using a SpectraMax 
iD5 (Molecular Devices) plate reader. Levels of L-kynurenine were determined using a standard 
curve. To normalize L-kynurenine values to cell numbers for each replicate well (n=5 wells) within 
an experimental group, we performed automated image analysis to quantify cell nuclei in the wells 
from which conditioned medium was collected. Following fixation, MSCs were washed with PBS 
twice, and stained with Hoechst (10µg/mL) in 0.1% Tween20 PBS solution for 1hr. Cells were 
then imaged on a Cytation 5 high content imaging system (Biotek, Winooski VT) and cell counts 
determined using CellProfiler to normalize the amount of L-kynurenine per cell. 
 
Generation of a Composite Score of MSC Potency 

 
Using the results from functional assays, a composite functional score was generated to 

use as an overall potency metric. The averages of the percentage of CFSE dilution of CD4 and 
CD8 T cells from two PBMC donors and IDO activity were subject to principal component analysis 
(PCA) using JMP software (V9.2). The first principal component (PC1) value of each cell line was 
taken as the respective composite functional score and represented 74.5% of the total variance 
of the data. 
 
NMR Media Analysis of MSC Culture 

 
Frozen media samples were transported on dry ice for NMR analysis. Samples were 

prepared in batches for each rack of 96 1.7 mm SampleJet NMR tubes (Bruker BioSpin). Briefly, 
samples were pulled and sorted on dry ice, then thawed at 4°C. A solution of 3.33 mM DSS-D6 
in deuterium oxide (Cambridge Isotope Laboratories) were mixed into media samples to a final 
concentration of 10% deuterium oxide. Samples were then centrifuged @ 2990 g for 20 min at 
4°C to pellet any debris that may have been collected with the media. 60 μl were transferred from 
each sample tube to NMR tubes using Bruker SamplePro liquid handling system (Bruker BioSpin). 
Ten μl of remaining volume from each sample in the rack was combined to create an internal pool 
used within each rack. These internal pooled samples were placed throughout the rack as quality 
control during data acquisition. 

 NMR spectra were collected on a Bruker Avance NEO spectrometer at 800 MHz using a 
1.7 mm TCI cryogenic probe and TopSpin software (Bruker BioSpin). One-dimensional spectra 
were collected on all samples using the noesypr1d pulse sequence under automation using 
IconNMR software. After one-dimensional data acquisition of all samples, 10 samples of each 
media type were selected at random, material collected from the NMR tubes, and combined to 
form a media specific pool used for two-dimensional (2D) spectral acquisition. 2D HSQC and 
TOCSY spectra were collected on pooled samples for metabolite annotation. One-dimensional 
spectra were automatically phase and baseline corrected using a batch script executed in 
MestreNova software (MestreLab Research). 2D spectra were processed in NMRpipe.32  
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One dimensional spectra were referenced, water/end regions removed, aligned and 
normalized using an in-house MATLAB (The MathWorks, Inc.) toolbox established by Robinette, 
et. al and implemented within NMRbox.33,34 Spectral features that were sufficiently well aligned 
across spectra were semi-automatically integrated using an interactive MATLAB function to obtain 
feature intensity values. These feature intensity values were batch corrected across the two 
batches of data collection using the ComBat algorithm35 implemented in Metaboanalyst36. The 
feature values for the first timepoint of each replicate was subtracted from the values of the second 
and third timepoints, to produce features representing the differences between them. To reduce 
the total number of feature differences used for machine learning analyses, a variance filter was 
applied to select a subset of spectral features with highest variance as previously described.25 
For each timepoint differences being assessed, the top percentage of variable features was 
determined by the subset which provided the best partial least squares regression R2 when used 
as input. This resulted in 69 features used for the features for Day 3 minus Day 1 values, and 21 
features for Day 2 minus Day 1 values.  
 
Intracellular Metabolite Analysis of MSCs Using LC-MS  

 
Approximately one million MSCs were analyzed for each sample. Frozen cell pellets were 

thawed and washed prior to undergoing a modified Bligh-Dyer extraction to yield two phases. 
Extraction solvent (2:2:1 chloroform:methanol:water) and glass beads (400-600 µm) were added 
to cell pellets for extraction and homogenization in a TissueLyser II to 30 Hz for 6 minutes. 
Samples were then sonicated and centrifuged. Following extraction, 300 µL aliquots from each 
layer were transferred to new microcentrifuge tubes and solvent was dried using vacuum 
centrifugation. Dried organic phase samples were re-constituted in isopropyl alcohol, while dried 
aqueous phase samples were re-constituted in 80% methanol. Re-constitution was followed by 
sonication, centrifugation, and transfer to liquid chromatography (LC) vials for ultrahigh 
performance liquid chromatography mass spectrometry (UHPLC-MS) analysis (Supporting 
Information Table 3). Media samples without cells were also analyzed as blanks to remove any 
features corresponding to remaining media components on the cells. Ten µL of media was subject 
to the same Bligh-Dyer extraction as above and extracts were run according to the instrumental 
methods listed above. A quality control (QC) sample for hydrophilic interaction chromatography 
(HILIC) and reverse phase datasets was created by pooling 20 µL from each experimental 
sample. The pooled QC injections were used for drift correction of peak areas. Sample queue 
was randomized with a mix of samples, QCs, and blanks. 

Metabolomic analysis was performed on all aqueous extracts using UHPLC-MS on an 
Orbitrap ID-X Tribrid mass spectrometer (ThermoFisher Scientific). HILIC separation was 
employed with a Waters ACQUITY UPLC BEH amide column (2.1×150 mm, 1.7 µm particle size) 
on a Vanquish (ThermoFisher Scientific) chromatograph. Lipidomic analysis was performed on 
all organic extracts using UHPLC-MS on a Q Exactive HF Hybrid Quadrupole-Orbitrap mass 
spectrometer system (ThermoFisher Scientific). Reverse Phase separation was employed with 
an AccucoreTM C30 column (2.1 × 150 mm, 2.6 µm particle size) on a Vanquish (ThermoFisher 
Scientific) chromatograph. Data dependent acquisition (DDA) was employed in both instrument 
methods to yield fragmentation information for detected metabolites and lipids. DDA methods 
collected full scan data at resolution of 120,000 in the orbitrap. This was followed by collection of 
fragmentation spectra (MS2) of selected precursors collected in the ion trap with an isolation 
window of 0.4 m/z with a cycle time of 1.25 s. Dynamic exclusion was set to exclude MS2 collection 
of precursors within a 6 s window with a 10 ppm mass tolerance for the precursor ion. Stepped 
normalized collision energies of 15%, 30%, and 45% were employed with HCD and CID 35% to 
collect MS2 spectra.    
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Data was preprocessed in Compound Discoverer 3.2 (Thermo Fisher Scientific). This 
included drift correction and blank removal. All features with at least 5x the signal in the blanks 
and were present in at least 50% of all pooled QC injections were kept for analysis. This resulted 
in a dataset with a total of 8,388 features. Further data filtering was used to remove features with 
relative standard deviations lower than 25% between all samples, features with poor 
chromatographic peak shape, and features with no MS2 spectral data. Because the experimental 
samples were prepared at two distinct times, a batch correction (Supporting Information Fig. 
S2) was employed to harmonize the data. Feature peak areas were corrected across the two 
batches using the ComBat algorithm3,4 implemented in Metaboanalyst3,5. Annotations were 
performed based on exact mass matches, MS2 spectra fragmentation patterns, and MS2 spectral 
library database matches. The final datasets used for machine learning included 436 annotated 
lipids and 43 annotated small polar analytes. The peak areas in these datasets were median 
normalized and autoscaled prior to machine learning workflow. 
 
Computational Analysis and Statistical Methods 
 

Identification of features predictive of the functional composite score across MSC donors 
was based on methods described previously25 using multiple machine learning methods. In brief, 
the ML regression methods utilized were random forest (RF), gradient boosted regression (GBR), 
decision tree regression (DTR), least absolute shrinkage and selection operator (LASSO), partial-
least squares regression (PLSR), support vector regression (SVR), and symbolic regression (SR). 
These models were used to extract predictive variables (or variable combinations). SR was 
performed using Evolved Analytics' Data Modeler software (Evolved Analytics LLC). All other 
models were generated with the LinearSVR, PLSRegression, RandomForestRegressor, 
DecisionTreeRegressor, Lasso, and GradientBoostingRegressor functions as part of the sklearn 
software package implemented in Python.37 Parameter tuning was done for all sklearn models in 
a grid search manner using the GridSearchCV function with 5-fold cross validation (CV) and using 
R2 as the scoring criteria. For each regression model, feature selection was performed using the 
same regression type (i.e., LASSO). Final prediction performance was measured by calculating 
leave-one-out R2 (LOO-R2) values on final models with CV-optimized parameters. Model specific 
parameters and parameter ranges that were used are available in code.   

Consensus analysis of the relevant variables extracted from each ML model was done to 
identify consistent predictive features of function using both in-process media features (measured 
by NMR) and end-product cellular lipids and metabolites (measured by LC-MS). For RF, GBR, 
DTR, LASSO, PLSR, SVR models, features that ranked in the top 20% of feature importance 
were selected, while for SR variables present in ≥10% of the top-performing SR models from Data 
Modeler (R2 ≥ 90%, complexity ≤300) were chosen to investigate consensus. Those variables 
that appeared as important in 2 or more ML methods were deemed consensus features and 
included for further annotation (NMR) and pathway analysis (NMR and MS). 

Because the iMSC sample was the only non-bone marrow derived line, this could be an 
outlier. To determine the importance of the iMSC sample on the models, the final metabolite 
panels in the consensus models were used to create models without the iMSC sample.  All 
modeling parameters were kept the same with the exception of changing the 5-fold cross 
validation to 3-fold to accommodate 9 samples. The success of these models was evaluated using 
LOO-R2. All statistics were performed in Python or Prism (GraphPad Software, San Diego CA). 
Metabolite Pathway Analysis  

Enrichment analysis of consensus metabolites from both NMR and MS was performed 
using Metaboanalyst. Specifically, the list of consensus metabolites was submitted to perform 
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over representation analysis by mapping to all pathways in the small molecule pathway database 
(SMPDB) From the list of consensus NMR metabolites, 6 out of 7 consensus metabolites were 
able to be mapped by Metaboanalyst, while all 16 MS consensus metabolites were mapped. Lipid 
pathway enrichment was performed with LIPEA, using the default background for Homo sapiens. 
16 out of 33 submitted consensus lipid species were mapped to KEGG lipids used by the LIPEA 
program. Final lists of mapped metabolites/lipids used for pathway enrichment are included in 
Supporting Information Table 4.38 
 
RESULTS 
 
Cell-line Dependent Differences in 
MSC Potency. 

Following expansion and 
cryopreservation of all MSC lines, 
MSCs were thawed to determine their 
functional capacity. Proliferation of 
CD4+ and CD8+ T cells (based on 
%CFSE dilution) from two PBMC 
donors and IDO activity (L-kynurenine 
production) were used to evaluate 
each MSC functional capacity between 
MSC lines and create a functional 
composite score (Fig. 1A). Similar 
trends were observed for CD4+ (Fig. 
1B, D) and CD8+ (Fig. 1C, E) 
proliferation for both PBMC donors 
with MSCs suppressing T cells in a 
broad range from 46.8-67.4% (CD4+) 
and 54.2-77.0% (CD8+) for PBMC 
Donor 1 and 10.7-46.2% (CD4+) and 
14.8-38.1% (CD8+) for PBMC Donor 2.  
This observation was evident by 
regressing CD4+ vs CD8+ T cell 
proliferation results for both PBMC 
Donor 1 and PBMC Donor 2 (R2=0.86 
and R2=0.90, respectively) 
(Supporting Information Fig.S3). 
The iMSC line had the highest 
suppression of CD4+ and CD8+ T cell 
proliferation in both PBMC donors. 
RB182 was not significantly different 
from the iMSCs for CD4+ and CD8+ T 
cell proliferation in PBMC donor 1 but 
was for PBMC donor 2. RB71 
consistently had the least amount of 
CD4+ and CD8+ T cell suppression 

 
Figure 1. Functional analysis of MSCs at the end of expansion. 
(A) Schematic of functional assays used to generate functional 
composite score. CD4 (B) and CD8 (C) T cell proliferation of PBMC 
donor 1 and CD4 (D) and CD8 (E) T cell proliferation of PBMC 
donor 2 based on %CFSE dilution. (F) IDO activity measured by 
levels of L-kynurenine in terms of pg/cell/day. (G) Functional 
composite score based on results of all assays (B-F). All statistics 
were calculated using a one-way ANOVA with Tukey’s post hoc 
test. Differences in letters indicate a significant difference (P<0.05) 
between MSC lines.  
 

A)

B) C)

G)F)

D) E)

Figure 1. Functional analysis of MSCs at the end of expansion. (A) Schematic of functional 
assays used to generate functional composite score. CD4 (B) and CD8 (C) T cell proliferation of 
PBMC donor 1 and CD4 (D) and CD8 (E) T cell proliferation of PBMC donor 2 based on %CFSE 
dilution. (F) IDO activity measured by levels of L-kynurenine in terms of pg/cell/day. (G) 
Functional composite score based on results of all assays (B-F). All statistics were calculated 
using a one-way ANOVA with Tukey’s post hoc test. Differences in letters indicate a significant 
difference (P<0.05) between MSC lines. 
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from both donors. All MSC lines were significantly different from the positive control (dotted line). 
The MSC lines with the highest T cell suppression function (iMSC, RB177, and RB182) were also 
high in IDO activity (Figure 1F). While MSC line RB71 had the lowest observed T cell 
suppression, its IDO activity was not the lowest of the 10 MSC lines as its activity was 
approximately in the middle range (46.3 pg/cell/day) of all observed IDO activity values (20.5-80.6 
pg/cell/day). During cell expansion, a repeat line, derived from RB174, was used to compare 
different expansion dates (i.e. batches). Functional comparison between these two expansions 
(termed RB174_1 and RB174_2 for batch 1 and 2, respectively) showed no significant difference 
within any assay. A functional composite score was generated with PCA using all the functional 
assay results. As PC1 comprised 74.5% of the variance in the dataset, we used PC1 values for 
the composite score (Figure 1G). This functional composite score displays a wide range of 
immunomodulatory function between all MSC lines with lower PC1 scores indicating MSC lines 
with the highest potency i.e. high T cell suppression and IDO activity. 

Cell-line Differences in 
Intracellular MSC Metabolome.  

 
UHPLC-MS analysis by 

reverse phase and HILIC 
chromatography high-resolution 
mass spectrometry (Supporting 
Information Table 3) of MSC cell 
pellets yielded a rich 
metabolomic dataset with a total 
of 479 annotated features. 
Annotations were assigned using 
exact mass and MS2 spectral 
library matches. This feature list 
and the corresponding 
abundances were used to 
conduct unsupervised clustering 
to observe metabolic differences 
in the 10 MSC lines examined in 
this study. Sample clustering with 
the metabolites measured in this 
dataset showed that the iMSC 
sample had significant metabolic 
differences from all the bone-
marrow derived cell lines using 
both Ward clustering (Fig. 2A) 
and PCA (Fig. 2B). Little 
clustering was observed 
according to potency except in 
the case of the middle performing 
cell lines, which have more 
metabolic similarity. However, 
the MSC lines with highest potency (iMSC) and lowest potency (RB71) were maximally separated 
based on their metabolic signatures using both Ward clustering and PCA. 

We initially sought to find single metabolites that could predict MSC potency by examining 
linear correlations of metabolite abundances with the composite score. Simple linear regressions 

Figure 2. Mass spectrometry metabolomics analysis of MSC 
lines. Heatmap (A) and PCA scores plot (B) of ten MSC pellet samples 
with all 479 annotated features in the UHPLC-MS dataset that fed into the 
ML regression workflow. Samples are color coded according to the 
composite functional score determined from the functional assay results 
(Figure 1G). Red indicates a higher score (i.e. lower function) in 
immunomodulatory assays. Green indicates a lower score (i.e. higher 
function). Heatmap uses Euclidean distance measure and Ward 
clustering. Simple linear regressions of the abundances of lipids PI 
(18:1/18:1) (C) and PE (O-18:1/22:6) (D) against the functional composite 
score for 10 MSC samples.  
 

Figure 2. Mass spectrometry metabolomics analysis of MSC lines. Heatmap (A) and PCA 
scores plot (B) of ten MSC pellet samples with all 479 annotated features in the UHPLC-MS 
dataset that fed into the ML regression workflow. Samples are color coded according to the 
composite functional score determined from the functional assay results (Figure 1G). Red 
indicates a higher score (i.e. lower function) in immunomodulatory assays. Green indicates a 
lower score (i.e. higher function). Heatmap uses Euclidean distance measure and Ward 
clustering. Simple linear regressions of the abundances of lipids PI (18:1/18:1) (C) and PE (O-
18:1/22:6) (D) against the functional composite score for 10 MSC samples.

A) B)

C) D)
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were made for each analyte in the dataset and ordered according to R2 (Supporting Information 
Table 4C). There were 18 annotated metabolites with R2 above 0.5 in the dataset. Two of these, 
PI (18:1/18:1) and PE (O-18:1/22:6), are shown in Fig. 2C and 2D, respectively. As few of the 
individual metabolites were predictive of MSC potency after multiple testing correction it was 
determined that a panel of metabolites identified through machine learning (ML) based regressive 
methods would yield higher predictive power, as well as elucidate possible pathways involved in 
the regulation of these metabolites.  
  
Single In-process Media NMR Features Do Not Correlate with Potency Measures  

 
Media samples collected at daily intervals during cell expansions were analyzed by 1D 

1H-NMR. In addition, 2D NMR spectra were collected on pooled material to aid in annotation of 
spectral features in the 1D spectrum. After spectral processing and alignments, a total of 138 
spectral features were semi-automatically selected and quantified across all samples. These 
spectral features correspond to a smaller number of metabolites, each metabolite having one too 
many spectral features based upon its chemical structure. These features were initially left 
unannotated in order to not exclude features corresponding to unknown metabolites that may 
have useful value in downstream analyses.  To avoid the assumptions of linear or monotonic 
relationships of feature intensity over time in downstream analyses, feature values at Day 1 were 
subtracted from Days 2 and 3 to create two datasets representing the net change in feature 

Figure 3. NMR analysis on daily media samples. A) Heatmap clustergram of Day 2-Day 1 highly variable feature intensities (21) 
and Day 3-Day 1 highly variable feature intensities (69). B) PCA scores plot of all samples from days 1-3, using all spectral features 
(138) as input. n=10 datapoints for each cell-line/timepoint with each cell-line represented by different color and each day by different 
shape. C) Regression of average donor Day 3 – Day 1 differences of feature at 2.26 ppm with composite functional score. D) 
Regression of average donor Day 3 – Day 1 differences of feature at 8.46 ppm with composite functional score.  
 

Figure 3. NMR analysis on daily media samples. A) Heatmap clustergram of Day 2-Day
1 highly variable feature intensities (21) and Day 3-Day 1 highly variable feature intensities
(69). B) PCA scores plot of all samples from days 1-3, using all spectral features (138) as
input. n=10 datapoints for each cell-line/timepoint with each cell-line represented by
different color and each day by different shape. C) Regression of average donor Day 3 –
Day 1 differences of feature at 2.26 ppm with composite functional score. D) Regression of
average donor Day 3 – Day 1 differences of feature at 8.46 ppm with composite functional
score.
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intensity over each time period (1 and 2 days, respectively). Notably, clustering analyses of these 
values do not show any clear patterns between donors or potency measures. (Fig. 3A). PCA of 
all samples from expansion days 1, 2 and 3 also showed no strong clustering corresponding to 
donor, but rather a pattern of samples clustering by the day of culture (Fig. 3B). Similar to the MS 
data analysis, linear regression was performed between each average spectral feature intensity 
and composite score for each MSC line. The top performing features (in terms of R2) are shown 
in Fig. 3C, D. Again, the changes in these individual spectral features showed reasonable 
correlation to the potency score, but after false discovery rate correction, these correlations were 
not significant. Particularly given the observed non-linear dynamics of many of these spectral 
features, it was hypothesized that identifying a panel of spectral features predictive of potency 
would be aided using diverse ML methods. 
  
Modeling Approach and Identification of Consensus Predictive Metabolites. 
 
Evaluation of machine 
learning models.  
 

To find potency-
related patterns in the data, 
several ML regression types 
were used for potency 
modeling (Table 1). Most 
models had comparable 
performance in both NMR and 
MS datasets based on LOO-
R2, which indicates there are 
potency-related metabolic 
differences. This is reflected 
in metabolite abundances 
both intracellularly and in the 
cell media. Because the 
annotated metabolites and 
metabolite features identified 
in each model were not 
identical, we sought to 
develop a consensus 
modeling strategy to ensure 
metabolites of interest were 
robust and not unique to a 
particular ML approach. This 
strategy consisted of 
selecting only metabolites or features present in more than one of the initial models within a 
particular dataset – MS lipids, MS small polars (MS metabolite panel in Supporting Information 
Table 4A, B), NMR Day 2, or NMR Day 3 models were included in the consensus models. Most 
of the consensus models have comparable performance to the initial non-consensus models (in 
terms of LOO-R2), which underscores the robustness and predictive value of our consensus 
metabolite panels. To confirm these consensus models were not highly dependent on the iMSC 
sample, the final consensus metabolite panels were used to create another set of consensus 
models built and cross-validated on only the nine bone-marrow derived lines. The performance 
of these models, evaluated using LOO-R2, was comparable for MS models (LOO-R2 range from 
0.72 to 0.99) while removal of iMSC from NMR consensus models resulted in lower LOO-R2 for 

Table 1. Summary of Machine Learning Models to Predict MSC Potency. 
Machine learning (ML) models using various regression types – symbolic 
regression (SR), partial-least-squares regression (PLSR), support vector 
machine (SVM), gradient-boosted regression (GBR), least absolute shrinkage 
and selection operator (LASSO), random forest (RF), and decision tree (DT). 
Models created using four different input datasets: MS lipids, MS metabolites, 
NMR Day 3 – Day 1, and NMR Day 2 – Day 1 feature abundances. Consensus 
models created from only metabolites present in more than one of the initial 
models for both intracellular and extracellular metabolite datasets (using all 10 
MSC lines). Final panels for the consensus models were used to create 
additional models trained and cross-validated on only the bone marrow derived 
lines (Consensus w/o iMSC, 9 total MSC lines).  

 
 

Input dataset ML Regression Model - LOO-R2

Intracellular SR PLSR SVM GBR LASSO RF DT

MS Lipids 0.98 0.90 0.98 0.87 1.00 0.78 0.84

MS Small 
Polars

0.99 0.89 0.96 0.88 0.83 0.79 0.84

Consensus 0.99 0.89 1.00 0.88 0.92 0.83 0.60

Consensus 
w/o iMSC

0.99 0.94 0.89 0.86 0.88 0.80 0.72

Extracellular SR PLSR SVM GBR LASSO RF DT

NMR Day 3 –
Day 1

0.99 0.90 0.99 0.88 0.93 0.71 0.91

NMR Day 2 –
Day 1

0.99 0.53 0.96 0.85 0.57 0.71 0.86

Consensus 0.99 0.87 0.82 0.89 0.72 0.60 0.86

Consensus 
w/o iMSC

0.96 0.64 0.42 0.75 0.31 0.50 0.68

Table 1. Summary of Machine Learning Models to Predict MSC Potency. Machine 
learning (ML) models using various regression types – symbolic regression (SR), partial-least-
squares regression (PLSR), support vector machine (SVM), gradient-boosted regression 
(GBR), least absolute shrinkage and selection operator (LASSO), random forest (RF), and 
decision tree (DT). Models created using four different input datasets: MS lipids, MS 
metabolites, NMR Day 3 – Day 1, and NMR Day 2 – Day 1 feature abundances. Consensus 
models created from only metabolites present in more than one of the initial models for both 
intracellular and extracellular metabolite datasets (using all 10 MSC lines). Final panels for the 
consensus models were used to create additional models trained and cross-validated on only 
the bone marrow derived lines (Consensus w/o iMSC, 9 total MSC lines).
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most models (PLSR, SVM, GBR, LASSO, RF and DT). However, the NMR consensus model 
constructed using symbolic regression was highly predictive of MSC potency (LOO-R2=0.96).   
  

 
Figure 4.  Mass Spectrometry Models to Predict MSC Potency. Radar plot (A) displaying the number of detected 
lipids in the annotated dataset organized according to lipid class. Bar plot (B) displaying the relative variable 
importance, calculated using the variable weights in the models, of each lipid class in each model type. Radar plot 
(C) displaying the number of detected small polar metabolites in the annotated dataset organized according to class. 
Bar plot (D) displaying the relative variable importance, calculated using the variable weights in the models, of 
molecule class in each model type. Radar plot (E) displaying the numbers of metabolites that presented in more 
than one initial model organized according to class. This list of consensus metabolites was used to create the 
consensus models. Bar plot (F) displaying the relative variable importance, calculated using the variable weights in 
the models, of each metabolite in the consensus models.  
 

Figure 4. Mass Spectrometry Models to Predict MSC Potency. Radar plot (A) displaying the number of 
detected lipids in the annotated dataset organized according to lipid class. Bar plot (B) displaying the relative 
variable importance, calculated using the variable weights in the models, of each lipid class in each model type. 
Radar plot (C) displaying the number of detected small polar metabolites in the annotated dataset organized 
according to class. Bar plot (D) displaying the relative variable importance, calculated using the variable weights 
in the models, of molecule class in each model type. Radar plot (E) displaying the numbers of metabolites that 
presented in more than one initial model organized according to class. This list of consensus metabolites was 
used to create the consensus models. Bar plot (F) displaying the relative variable importance, calculated using 
the variable weights in the models, of each metabolite in the consensus models.
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Intracellular Metabolite Class Patterns in Modeling Results.  
 

Phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sphingomyelins (SM) 
make up a large portion of the annotated dataset and show high importance in the models (Fig. 
4 A, B). Interestingly, ether-linked phosphatidylethanolamines (PE-O) made up a smaller portion 
of the overall dataset compared to other lipid classes but were still among the top contributors to 
the models. Based on the weights applied to these lipid abundances in the regression models, 
they were highly important for model building. The over-representation of them in the models 
compared to the overall dataset is evidence that their abundances are related to MSC potency as 
measured by the composite score. This indicates a possible role in MSC functionality for members 
of this lipid class. 

Amino acids and their analogues make up the majority of the small polar annotated 
dataset and showed importance in regression models (Fig. 4 C, D). Similar to PC in the lipid 
dataset, as they make up the largest portion of the data and contribute the most significantly to 
the models, no strong conclusions based on over-representation can be made. A hexose was 
detected in this dataset that was in the final panel for several of the models. However, there was 
only one sugar in the final annotated dataset meaning that class coverage for sugars was low. 
Given this finding, no strong conclusions about biological role or over-representation should be 
made.   

The consensus metabolite list was made up of all metabolites that were in the final panel, 
following variable selection, of more than one initial model – lipid or small polar. This consensus 
list (Supporting Information Table 4A,B) was primarily composed of PC, amino acids and 
analogues, PE-O, and phosphatidylserines (PS) (Fig. 4E). These 41 metabolites from 15 classes 
(Fig. 4E) all showed importance in the models and were later investigated in pathway analysis. 
The variable presence plots for SR (Supporting Information Figure S4) indicate the following 
metabolites as having high occurrence in the final suite of models used for SR: acetyllysine, 
glucose isomer, hydroxykynurenamine, PE (O-32:1), PC(31:0), PE (O-38:2), and PI (36:2).  In 
terms of the decision tree (DT) model, there was one ceramide (Cer(d33:1)) that was the sole 
contributor (Fig. 4F). Small changes in the data can cause large differences in DT models, making 
them relatively unstable compared to other types of models. It was also observed in this workflow 
that the DT regression models often selected a small number of predictive features. Since this 
particular lipid was not significantly important in other models as well, the large importance in the 
DT regression model may or may not be significant.  

 
Different Consensus Media Metabolites Exhibit Distinct Changes 
 

A total of 23 unique spectral features were selected as consensus features from both NMR 
timepoint datasets having been in top important features for at least two ML methods (Fig. 5A, 
B). Two features were common to both timepoint datasets (5.53 ppm and 5.30 ppm). The average 
trajectory over time for each of these consensus features is shown in Fig. 5C. As noted previously, 
many of these features show non-linear and non-monotonic behavior over time, and different 
changes between Day 1 and Day 2 or Day 3, accounting for some of the different features that 
were selected as consensus between the two datasets. Of the selected consensus features from 
both Day 3 and Day 2 NMR features, several were annotated to metabolites including proline, 
arginine, fructose, phenylalanine, pyruvate and an unknown uridine diphosphate-sugar (Fig. 5D). 
Of these metabolites, pyruvate and proline had some of the highest variable presence scores in 
the SR suite of models (Supporting Information Figure S4) as well as several unknown, 
unannotated metabolites. Several features that appeared as important in some ML methods were 
not matched to spectral databases and may require further experimentation to confidently 
annotate. Particularly, two of these unknown features at 5.53 ppm and 5.30 ppm appeared as 
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consensus features in both timepoint datasets, suggesting that whatever metabolite(s) these 
features correspond to may be a robust predictor of potency across time.  
  
Interpretation of Consensus Metabolites Through Pathway Analysis.  
 

 
Figure 5. Consensus NMR metabolite feature trends and annotation. A) Consensus features selected as 
important across all modeling methods for Day 3- Day 1, and Day 2 – Day 1 datasets. Counts indicate for how many 
models each feature was selected within top 10% of important variables for prediction. Names of features represent 
approximate ppm of quantified spectral peak. B) Average spectral feature intensity trajectories over Days 1-3 (n=10 
per donor per timepoint). Feature names indicate approximate chemical shift values of integrated peak. Intensity 
values are in arbitrary units. * Indicates consensus features in both timepoint datasets. ‡ indicates features identified 
from SR consensus model. C) Putative metabolite annotations of consensus spectral features. UDP = uridine 
diphosphate 
 

Figure 5. Consensus NMR metabolite feature trends and annotation. A) Consensus 
features selected as important across all modeling methods for Day 3- Day 1, and Day 2 – Day 1 
datasets. Counts indicate for how many models each feature was selected within top 10% of 
important variables for prediction. Names of features represent approximate ppm of quantified 
spectral peak. B) Average spectral feature intensity trajectories over Days 1-3 (n=10 per donor 
per timepoint). Feature names indicate approximate chemical shift values of integrated peak. 
Intensity values are in arbitrary units. * Indicates consensus features in both timepoint datasets. 
‡ indicates features identified from SR consensus model. C) Putative metabolite annotations of 
consensus spectral features. UDP = uridine diphosphate
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The consensus list from 
each modeling set (Table S4A, B 
for MS and Fig. 5D for NMR) was 
used to search for potency-
associated changes in metabolism 
on the pathway level. Of the top 
enriched pathways, there were 7 
with significant p-values (p<0.05) 
for the NMR consensus metabolites 
(Fig. 6A), 12 with significant p-
values (p<0.05) for MS lipidomic 
analysis (Fig. 6B), and none for MS 
small polar analysis (Fig. 6C). Top 
lipid enriched pathways included 
sphingolipid signaling pathway, 
autophagy, and necroptosis, 
indicating that these lipids could be 
important in MSCs based on their 
role in cell cycle. Approximately 
10% of the small polar dataset was 
able to be annotated, compared to 
the lipid dataset which was 45% 
annotated. Because enrichment 
analysis relies on over-
representation of metabolites in 
particular pathways, the lower 
metabolite coverage of the small 
polar dataset was likely a 
contributing factor to the lack of 
significance of the pathways 
identified.  Additionally, some of the 
identified metabolites in this dataset 
were not found in pathways in the 
Small Molecule Pathway Database 
used for pathway enrichment. 
Despite the lack of significantly 
enriched pathways in the MS 
metabolite data, interestingly there 
was some agreement between top 
resulting pathways in the NMR and 
MS small polar analyses. In 
particular, aspartate metabolism, 
arginine-proline metabolism, 
glycine-serine metabolism, and 
glucose-alanine metabolism 
appeared in the top enriched 
pathways for both datasets. This 
points to some potential 
consistency in similar metabolic 
pathways responsible for predicting 
MSC potency both early in-process 

 
Figure 6. Enriched pathways identified from MS and NMR 
consensus metabolite datasets. Pathway enrichments plots from 
NMR metabolite modeling consensus list with pathways and p-
values calculated using Metaboanalyst (A), MS lipid modeling 
consensus list with pathways and p-values calculated using LIPEA 
(B), and MS small polar consensus list with pathways and p-values 
calculated using Metaboanalyst (C). Size and color of markers 
scaled according to p-value. 

A)

Figure 6. Enriched pathways identified from MS and NMR consensus metabolite 
datasets. Pathway enrichments plots from NMR metabolite modeling consensus list with 
pathways and p-values calculated using Metaboanalyst (A), MS lipid modeling consensus list 
with pathways and p-values calculated using LIPEA (B), and MS small polar consensus list with 
pathways and p-values calculated using Metaboanalyst (C). Size and color of markers are 

scaled according to p-value.

B)
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and at end-process. This points to some potential consistency in similar metabolic pathways 
responsible for predicting MSC potency both early in-process and at end-process. 
 
DISCUSSION 
 

The identification of CQAs correlative to immunomodulatory potency would enable 
predictive approaches to address some of the grand challenges that hinder the approval and 
clinical use of MSCs as cell therapies.16,17 Donor-donor variability and different ex vivo 
manufacturing procedures create inconsistencies in the therapeutic potency of MSCs, and 
ultimately efficacy outcomes when evaluated in clinical trials.12,13 In this study, we greatly 
expanded on our previous work26 through incorporation of additional cell-lines, assessment of in-
process and end-process metabolites, and development of comprehensive ML modeling 
approach to identify predictive markers. The in-process media analysis might inform decisions 
made early in cell expansion phase that if translated to a manufacturing setting would reduce 
manufacturing cost due to identification of failed batches early in manufacturing. For the broad-
spectrum analysis of intracellular metabolomics, the discovery of small molecules and lipids 
correlative to MSC immunomodulation, as a panel of CQAs, is of great interest and a means to 
distinguish biological heterogeneity and predict the in vivo therapeutic potency of the MSC 
product. Moreover, a composite score indicative of immunomodulatory potency was developed 
based on cumulative results from multiple in vitro potency assays to enable correlations of top 
features from media and intracellular metabolome. This robust approach accounts for the 
variability in MSC functional responses and identifying consensus top features, i.e. potential 
CQAs, using ML models. 

 An inherent limitation of relying on a single ML model to inform decisions or hypotheses 
about data can be intrinsic bias based on the specific framework and assumptions that go into 
using a specific method.39,40 By using a diverse array of ML regression methods, we avoid being 
biased too strongly by a single method in identifying features and metabolites predictive of MSC 
potency. Our consensus approach to identifying potential CQAs reduces the possibility of model 
specific results by ensuring that they are deemed important by multiple ML methods as illustrated 
previously.25 Ultimately the biggest limitation to this method is the size of our dataset, which is 
limited by the amount of cell material needed for both functional assays and analytical 
measurements. However, we attempt to mitigate the impact of overfitting on the interpretation of 
our results using cross-validated model tuning and leave-one-out model performance 
calculations, in addition to performing our ML analysis without our “outlier” iMSC donor to assess 
that unique group’s impact on our results. 

Lipid classes such as phosphatidylcholines (PC), phosphatidylethanolamines (PE), 
phosphatidylinositols (PI), and phosphatidylserines (PS) are all glycerophospholipids that were 
found as predictors in our ML models.4141 Differences in MSC glycerophospholipid composition 
has been shown between young and old MSC donors as well as early and late passage MSCs.42,43 
PC and PE were two of the most abundant lipid classes found in the ML models and are two of 
the most abundant glycerophospholipids found in mammalian cells.41 PC account for roughly 50% 
of all cellular phospholipids, and have been shown to be predictive of MSC 
immunomodulation.26,43,44 The majority of PE are found in the mitochondrial membrane, and MSC 
mitochondrial fitness is associated with its glycolytic potential.23,44,45 Greater glycolytic potential 
has been shown to be associated with greater MSC immunomodulation.23,45 PE have also been 
shown to positively regulate autophagy, which helps prevent cellular ageing.46 Several studies 
have shown that increased autophagy in MSCs can help prevent senescence, increase survival 
and engraftment, and increase immunomodulatory function.47,48 As mentioned previously, PI were 
also predictors of MSC immunomodulation and are precursors for the biosynthesis of 
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glycosylphosphatidylinositol (GPI) anchors.49 GPI anchored markers such as CD157, which aids 
in immunomodulation, is involved in migration, self-renewal, osteogenic differentiation, and 
mitochondrial transfer in MSCs.50–52 Another glycerophospholipid, PS, is an important molecule 
in apoptosis signaling, and in vivo studies have suggested that MSC apoptosis may be crucial for 
their therapeutic efficacy.53–55 Two other lipid classes found as predictors, sphingomyelins (SM) 
and ceramides (Cer), are closely related to one another via the sphingolipid metabolic pathway.56 
Increases in sphingomyelin from ceramide treatment has been shown to increase senescence in 
bone marrow MSC (BMMSC)s.57 Increased levels of acyl chain ceramides are also associated 
with decreased levels of IDO activity in BMMSCs.56 The sphingolipid signaling pathway, a 
significant pathway found in our results, also plays an important role in MSC migration and 
osteogenic differentiation.58,59 

Similarly, we sought to identify metabolites in the media during expansion that relate to 
immunomodulatory function as this represents a non-destructive, in-process approach for 
monitoring cell quality. In-process monitoring allows for greater control and quality assurance of 
cell therapies throughout the expansion process.60,61 In-process monitoring of parameters such 
oxygen diffusion, CO2, pH, temperature, and glucose and lactate consumption/production are well 
established in biomanufacturing.62 New methods such as gas chromatography mass 
spectrometry have been used to measure biomarkers predictive of MSC immunomodulation.63 
Here, we profiled media metabolites from the first three days of expansion to predict MSC function 
at the end of manufacturing. The amino acids proline, arginine, phenylalanine, and aspartate were 
all predictive of MSC immunomodulation. Arginine and proline metabolism has been associated 
with autophagy of MSCs, which was found as a significant pathway from our lipid analysis.64 
Increased ammonia is a by-product of protein and amino acid catabolism and is converted to urea 
through the urea cycle with arginine and aspartate being key amino acids in the urea cycle.65,66 
Aspartate metabolism is also associated with the TCA cycle which is increased from cellular 
OXPHOS with pyruvate being an intermediate of both OXPHOS and glycolysis.31 As mentioned 
previously, metabolic shifts in MSCs from glycolysis to OXPHOS is associated with a decrease in 
MSC immunomodulation.23 Similarly, IFN-γ and hypoxic conditioning increases glycolysis in 
MSCs and increases the capacity for glucose and fructose uptake.67 Additionally, arginine and 
proline metabolism, amino sugar metabolism, and galactose metabolism showed significant 
differences when comparing adipose-derived MSCs (ADMSCs) and BMMSCs.68 Upregulation of 
genes associated with galactose metabolism has also been associated with higher 
immunomodulation of MSCs.69 These results further emphasize the critical role of metabolism 
during MSC manufacturing and how our robust machine learning approach can identify pathways 
relevant to MSC therapeutic potential. 

 
CONCLUSION 

Overall, this study establishes a comprehensive framework for future studies to interrogate 
metabolites as predictive markers for MSCs when changing manufacturing parameters. A major 
example of a significant manufacturing change would be increasing manufacturing scale for 
clinical trials as the average dose for MSC based therapies is on the order of 108 cells for a single 
patient.14 Because of this, scaling up to bioreactors is necessary to produce enough cells for the 
clinic. Scaling up MSC manufacturing has a significant effect on parameters such as nutrient 
transport and MSC metabolism.31 Another parameter is the type of media used for the expansion 
of MSCs. Priming MSCs with inflammatory factors such as IFN-γ or TNF-α, as well as hypoxia, 
are also being explored for MSC therapies due to the potential of increasing their therapeutic 
potential.23,67,70 Priming conditions have significant effects on MSC metabolism and could 
potentially lead to greater therapeutic outcomes through a more homogeneous, potent MSC 
product.23,31,67 Lastly, MSC metabolism could further predict MSC engraftment and survivability in 
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vivo, which together have been linked to clinical outcomes.71 By using multiple MSC lines and ML 
models, this study sets the framework for rigorous predictive marker identification that can be 
used in future studies to help address potential manufacturing process hurdles for MSC 
therapeutics. Based on the metabolite classes identified in this work (both in-process and at the 
end of expansion), targeted assays can be developed for better MSC potency assessment and 
release criteria for immunomodulatory therapeutics. 
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