

1 Integrated control of non-motor and motor 2 efforts during decision between actions 3

4 Élise Leroy, Éric Koun and David Thura

5 Lyon Neuroscience Research Center – ImpAct team
6 Inserm U1028 – CNRS UMR5292 – Lyon 1 University
7 16 avenue du Doyen Jean Lépine – 69676 Bron – France
8

9

10 *Corresponding author:*

11 David Thura

12 E-mail: david.thura@inserm.fr

13

14

15

16

17

18

Manuscript information:

19 Abstract: 209 words; Introduction, Methods, Results and Discussion: ~7000 words

20 24 pages – 5 main figures – 3 supplementary figures

21

22

Keywords:

23 Decision-making, Motor control, Resources management, Effort, Arm movement

24

25

Acknowledgements/Funding:

26 This work is supported by a CNRS/Inserm ATIP/Avenir grant to David Thura. The authors thank
27 Fadila Hadj-Bouziane and Clara Saleri Lunazzi for their valuable comments on the manuscript.

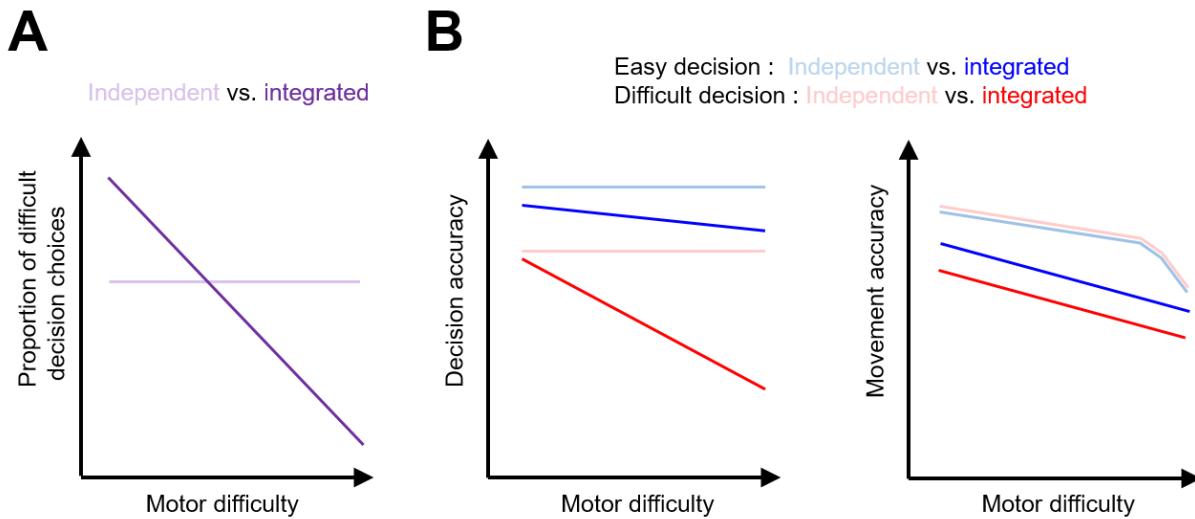
28

29

30 ABSTRACT

31 Humans daily life is characterized by a succession of voluntary actions. Since energy resources
32 are limited, the ability to invest the appropriate amount of effort for selecting and executing these
33 actions is a hallmark of adapted behavior. Recent studies indicate that decisions and actions share
34 important principles, including the exchange of temporal resources when the context requires it.
35 In the present study, we test the hypothesis that the management of energy resources is shared
36 between decision and action too. Healthy human subjects performed a perceptual decision task
37 where they had to choose between two levels of effort to invest in making the decision, and report
38 it with a reaching movement. Crucially, motor difficulty gradually increased from trial to trial
39 depending on participants' decision performance. Results indicate a relatively mild impact of the
40 increasing motor difficulty on the choice of the non-motor (decision) effort to invest in each trial
41 and on decision performance. By contrast, motor performance strongly decreased depending on
42 both the motor and decisional difficulties. Together, the results support the hypothesis of an
43 integrated management of energy resources between decision and action. They also suggest that
44 in the context of the present task, the mutualized resources are primarily allocated to the decision-
45 making process to the detriment of movements.

46 INTRODUCTION


47 Human daily behavior is characterized by a succession of decisions ultimately expressed by
48 movements. This requires the expenditure of energy resources, whose amount vary depending on
49 the difficulty of the task and on the effort that one is willing to invest in carrying out this interactive
50 behavior ¹. The notion that effort is costly is supported by extensive experimental data. For
51 example, activities requiring effort increase the response of the sympathetic nervous system,
52 particularly in relation to blood pressure and pupil dilation, and induce the release of
53 norepinephrine ². As a result, individuals usually tend to avoid cognitive or motor effort when
54 possible (but see ^{3,4}). In other words, if a task offers the same amount of reward but imposes
55 different levels of effort to obtain it, subjects typically choose the option associated with the
56 minimum level of effort ⁵⁻⁷. Importantly, the willingness of individuals to exert effort during an
57 activity decreases with the amount of effort already invested in this activity ⁸. This indicates that
58 the energy resources necessary for the production of a costly behavior are limited, and that the
59 choice of the level of effort to invest in the decision and in the action is crucial to guarantee an
60 adapted and effective behavior.

61 Although decisions are always ultimately expressed via actions, cognitive and motor efforts are
62 most often studied separately from each other. Recent behavioral studies, including ours, indicate
63 however that decision and action are closely linked, sharing important principles and showing a
64 high level of integration during goal-directed behavior ⁹⁻¹⁹. For instance, human subjects decide
65 faster and with less precision in order to focus on their actions when the motor context in which a
66 choice is made is demanding ¹⁶. Similarly, when the temporal cost of a movement is larger than
67 usual, humans can shorten the duration of their decisions to limit the impact of these time-
68 consuming movements ¹⁸. Conversely, if the sensory information guiding the choice is weak and
69 the decision takes time, humans and monkeys shorten the duration of the movements expressing
70 this choice ^{12,17,20}. Individuals thus seem capable of sharing temporal resources, movement time
71 for decision time, and vice versa, in order to determine a global behavior duration rather than
72 optimizing the durations of decisions and actions separately. This mechanism is conducive to
73 reward rate optimization ²¹⁻²³.

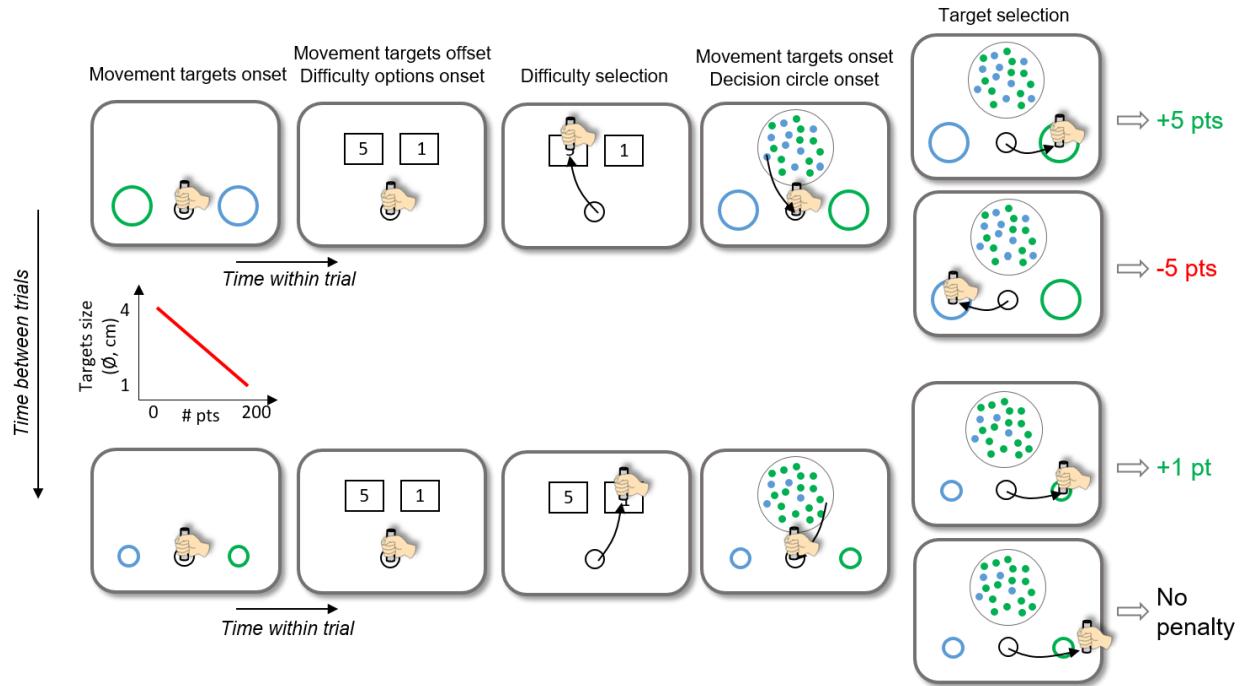
74 The present study aims to test a complementary aspect of this hypothesis of an integrated control
75 of decision and action. We propose that during decision between actions, the management of the

76 effort-related energy resources is also integrated at the decision and action level in order to insure
77 proficient behavioral performances. Such integrated control can take several forms, leading to
78 different predictions. For instance, a simple yet intuitive possibility is that available energy
79 resources are equitably allocated between decision and action depending on the respective effort
80 context in which the behavior takes place. In such case, choosing to devote a large amount of effort
81 on a decision will impact the performance of movements executed to express this choice and,
82 conversely, if the effort required to perform an accurate movement is increased, the choice to
83 engage in a difficult decision and the performance on that decision should decrease (figure 1).
84 Alternatively, if decision and action effort-related energy resources are managed independently
85 from each other, one should observe weak interactions between variations of decisional and motor
86 difficulties and subjects' decisional and motor performances (figure 1).

87

88

89 **Figure 1:** Predictions about the behavioral effects of an independent or integrated management of the
90 decisional and motor effort-related energy resources. **A.** An independent management of resources predicts
91 that the choice to engage in a difficult decision should not vary as a function of the effort required to perform
92 an accurate movement. Alternatively, an integrated management of resources predicts that the choice to
93 engage in a difficult decision will decrease if the effort required to perform an accurate movement increases.
94 **B.** An independent management of resources predicts that decision performance should not vary depending
95 on motor difficulty, regardless of the decision difficulty, easy (blue) or difficult (red). Similarly, motor
96 performance should be only mildly impacted by an increased motor difficulty, because increasing resources
97 can be allocated to the motor process when needed. In case of an integrated management of resources


98 however, decisional performances should decrease if motor difficulty increases, especially for difficult
99 decisions. Additionally, motor performance should be impacted by both motor and decisional difficulty.

100

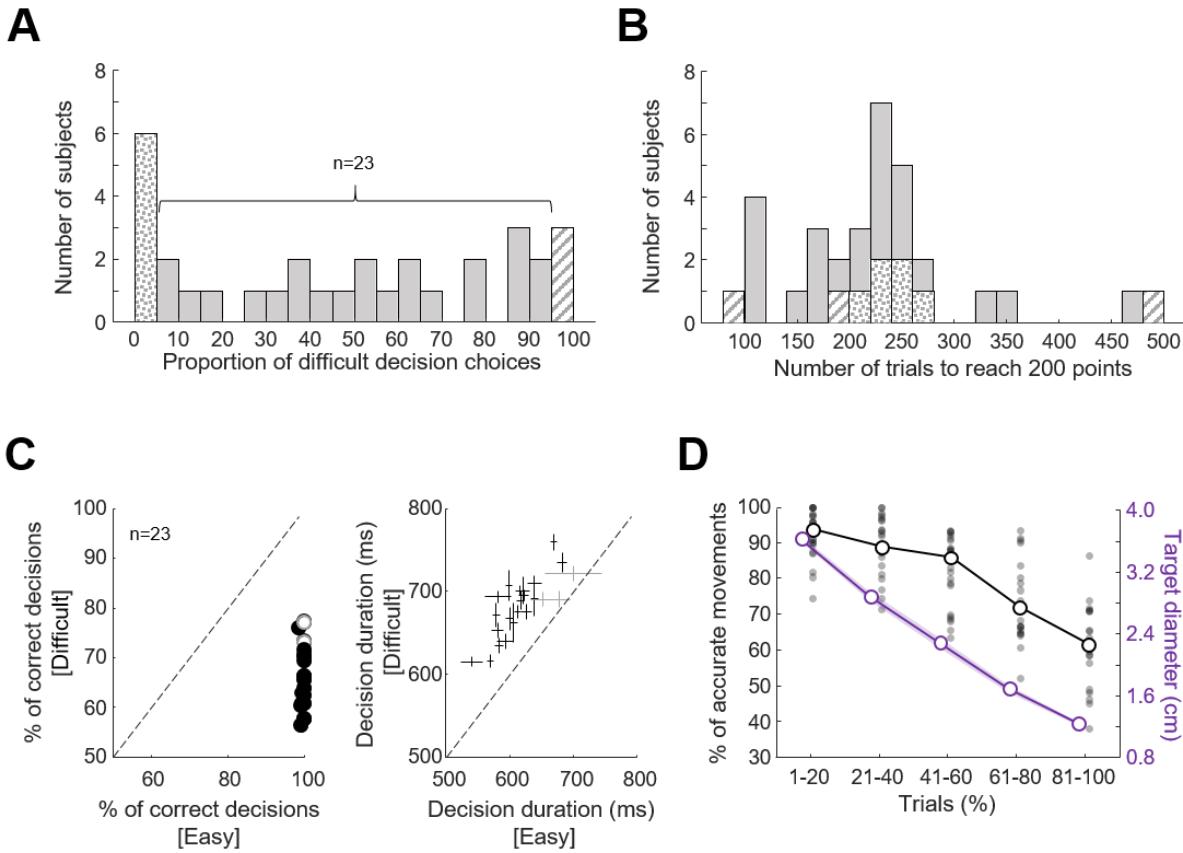
101 **RESULTS**

102 Thirty-two healthy human participants performed a new behavioral paradigm (figure 2) during a
103 single experimental session. The goal of the subjects was to accumulate a total of 200 points to
104 complete the session. To earn points, they had to choose at the beginning of each trial the amount
105 of effort they wanted to invest in making a perceptual decision: either an effortful decision,
106 potentially earning 5 points if correct, or an easy decision, earning only 1 point if correct. After
107 making that choice, they had to make the corresponding perceptual decision and report it by
108 executing an arm movement toward a visual target. Crucially and unknown to the subjects, the size
109 of the movement targets was linearly and inversely indexed to the number of accumulated points
110 during the session, progressively increasing the required motor control during the session.
111 Importantly too, the points (5 or 1) that subjects chose to engage at the beginning of the trial were
112 lost in case of a perceptual decision error, but not in case of an inaccurate movement, i.e. if they
113 failed to reach the chosen target and stay in it within the required time windows. This task therefore
114 allowed us to first observe the effect of the progressive increase of the motor accuracy requirement
115 (or motor effort) on subjects' choice of the non-motor effort to invest in a perceptual decision, and
116 on their performance on that decisional process. Reciprocally, the task also allowed us to assess
117 the effect of the perceptual decision difficulty on participants' motor performance. Six additional
118 participants performed the same procedure as the one described above except that the target size
119 was smaller at the beginning of the session and did not evolve with the accumulation of points
120 during the session. These subjects were tested to control that the reported effects were not due to
121 fatigue or learning.

122

123

124 **Figure 2.** The top row illustrates the time course of a trial at the beginning of the session. Movement targets
 125 (a blue and a green circle) are first displayed to inform the subject about the accuracy requirement of the
 126 arm movement to execute later in the trial. The color of the targets at this stage is not informative of their
 127 color at the time of the perceptual decision. The diameter of the targets is 4cm during the first trial of the
 128 session. Difficulty options are then displayed. In this example the subject chooses “5”, which corresponds
 129 to a difficult (low coherence) perceptual decision to make. The decision circle containing 100 blue and
 130 green tokens, and the blue and green movement targets then appear. The dominant color among the tokens
 131 determines the correct target to select. The subject reports the decision by moving the handle in the target
 132 whose color corresponds to her/his choice. The subject earns the amount of points she/he chose (“5” in this
 133 example) if she/he accurately reaches to the correct target. She/he loses the points if she/he accurately
 134 reaches the target corresponding to the wrong decision. After the first trial, the size of the movement targets
 135 evolves from trial to trial, being linearly and inversely indexed to the number of points accumulated during
 136 the session. As a consequence, at the end of the session (bottom row), when the subject gets close to 200
 137 points, the target size is small (diameter close to 1cm) and the required motor control is high. As illustrated
 138 in this example, an integrated control of resources between decision and action predicts that subjects would
 139 choose in this situation an easy decision (“1”) more frequently than at the beginning of the session, when
 140 the required motor control was low. If the subject fails to reach or stop in the chosen target (whether correct
 141 or not), points are not deducted.


142

143 **General observations**

144 Among subjects who experienced the reduction of target size with the accumulation of points
145 (n=32), the median proportion of high effort choice during a session was 50%, with a large
146 variability between subjects (min: 0%; max: 100%; SD = 35%, figure 3A). An integrated control
147 of resources between decision and action predicted that subjects would adjust their choices of the
148 effort to invest in the perceptual decision through the session, choosing the most difficult
149 perceptual decision more frequently at the beginning of the session than at the end (as depicted in
150 figure 2). This is because the motor control requirement is the lowest at the beginning of the session
151 (movement targets being large) and the amount of points to earn to complete the session is high.
152 However, we observed that out of 32 participants, 9 almost did not vary their effort choices through
153 the session (6/32 subjects chose the easy option in more than 95% of the trials, 3/32 chose that
154 option in less than 5% of trials).

155 The median number of trials to reach 200 points across the population was 227, with a large
156 variability between subjects (min = 98; max = 481; SD = 88 trials, figure 3B). Subjects who did
157 not adjust their effort choices during their session showed a particularly large variability in terms
158 of the number of trials needed to complete the session (min = 98; max = 481; SD = 101 trials,
159 figure 3B).

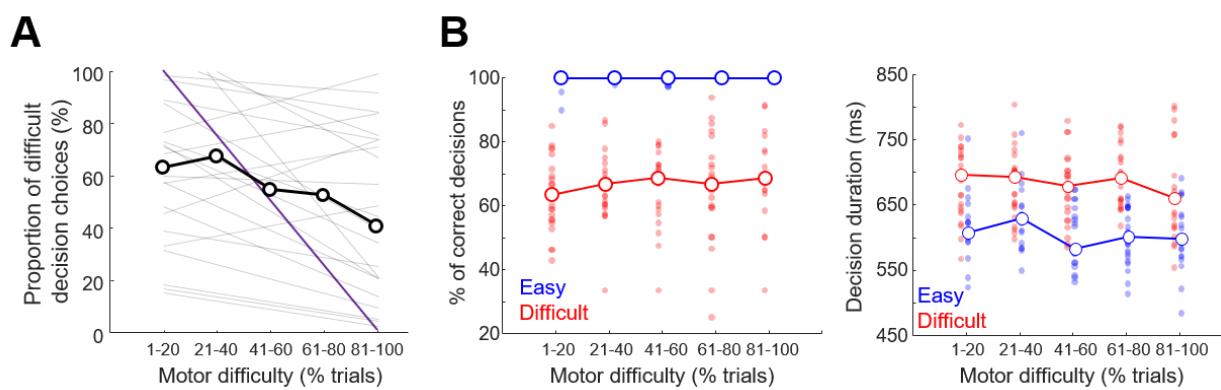
160 In the following analyses, we excluded the 9 subjects who systematically chose the same level of
161 non-motor effort through their experimental session, as they were likely either insensitive (for the
162 3 subjects who chose the high effort option in more than 95% of the trials) or too sensitive (for the
163 6 subjects who chose the high effort option in less than 5% of the trials) to the decisional and/or
164 motor difficulties manipulated in the experiment.

165

166 **Figure 3.** A. Distribution of the proportion of difficult perceptual decision choices (option “5”) among the
 167 32 subjects who performed the main version of the task. The striped (dotted) bar highlights subjects who
 168 chose the difficult option more (less) than 95% of the trials. B. Distribution of the number of trials executed
 169 by the 32 subjects to earn 200 points and complete the session. Same convention as in A. C. Left panel:
 170 Comparison of subjects’ decision accuracy as a function of decision difficulty (Difficult: ordinate; Easy:
 171 abscissa). Circles illustrates individual subjects’ data. Black circles highlight subjects for which the
 172 difference between conditions is statistically significant (Chi-squared test, $p < 0.05$). Right panel:
 173 Comparison of subjects’ decision duration as a function of decision difficulty (Difficult: ordinate; Easy:
 174 abscissa). Crosses illustrates individual subjects’ medians \pm SD. Black crosses highlight subjects for which
 175 the difference between conditions is statistically significant (rank-sum test, $p < 0.05$). D. Effect of the number
 176 of completed trials on subjects’ movement accuracy (black) and on target size (violet). Trials are sorted
 177 chronologically and a normalization is performed by grouping them in 5 quantiles. The open circles show
 178 median values for each quantile of trials across the population. The filled dots show individual subjects’
 179 data for each quantile of trials.

180

181 **Effect of decision difficulty on subjects' decision behavior**


182 We first verified that the two difficulty levels of the perceptual decision impacted the decision
183 behavior of the 23 remaining subjects. To do so, we analyzed their decision duration and accuracy
184 as a function of these two levels. As expected, we found that participants' decision accuracy was
185 usually lower when they made a difficult perceptual decision compared to when they had to make
186 an easy one (medians: 65 versus 100%; Chi-square test for independence on the population: $\chi^2 =$
187 1124, $p < 0.0001$; Chi-square tests for independence on individual subjects, 21/23 with $p < 0.05$,
188 figure 3C, left panel). Unsurprisingly too, subjects were overall slower to decide when faced with
189 difficult perceptual decisions compared to when decisions were easy (medians: 662 versus 588ms,
190 respectively; Wilcoxon rank-sum test on the population: $Z=4.4$, $p < 0.0001$; Wilcoxon rank-sum
191 tests on individual subjects, 20/23 with $p < 0.05$, figure 3C, right panel). Given these results, we
192 make the assumption in the following paragraphs that difficult decisions required the subjects to
193 invest more non-motor effort compared to easy decisions.

194 **Effect of motor difficulty on subjects' motor behavior**

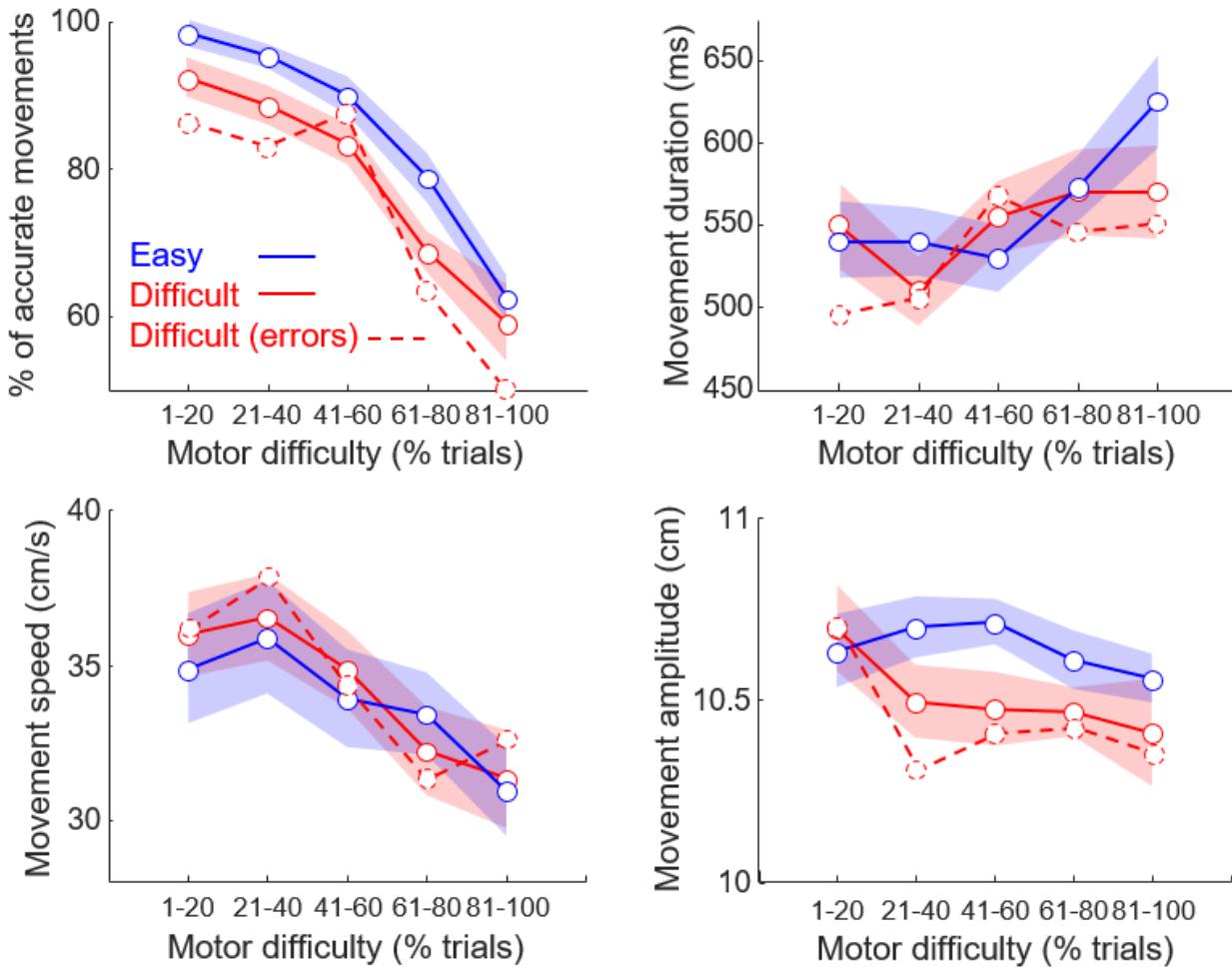
195 We then verified whether or not the motor accuracy requirement that increases with the number of
196 accumulated points in this task impacted participants' motor behavior. To do so, we analyzed their
197 movement kinematics and accuracy as a function of the size of the targets. Because target size
198 continuously varied from trial to trial, we normalized the number of trials performed by each
199 subject by chronologically grouping them in 5 quantiles. As shown in figure 3D, the first 20% of
200 trials were trials for which target size was the largest (because subjects' scores were the lowest);
201 Conversely, the last 20% of trials were the trials for which the target size was the smallest. As
202 expected, the proportion of correct movements across the population significantly decreased
203 depending on the number of trials performed during the session (Kruskal-Wallis test on the
204 population, $\chi^2 = 67.1$, $p < 0.0001$). There was also a trend for movement speed to decrease and
205 duration to increase with the number of trials performed, but without reaching the level of
206 significance (Kruskal-Wallis tests, $\chi^2 = 5.6$, $p = 0.22$; $\chi^2 = 4.6$, $p = 0.33$, respectively,
207 supplementary figure 1, see also figure 5 for an analysis with trials grouped by decision difficulty).
208 Given these results, we make the assumption in the following paragraphs that the smaller the target
209 size, the more motor effort the subjects had to invest to execute accurate movements.

210 **Effect of increasing motor difficulty on decision behavior**

211 Next, we investigated whether the increasing motor accuracy requirement (or motor effort)
212 impacted the subjects' willingness to invest effort in the perceptual decision-making. The
213 prediction of an integrated control of decision and action-related energy resources was that with
214 more motor effort, subjects would choose to make effortful perceptual decisions less frequently
215 since they would have to devote more resources to face the more challenging actions (figure 2).
216 However, we found at the group level that the proportion of difficult decision choices did not
217 significantly vary depending on the level of motor difficulty (Kruskal-Wallis test, $\chi^2 = 6.5$, $p =$
218 0.16), despite the fact that a tendency for a decrease of that proportion with the increase of motor
219 effort is visible (figure 4A). Indeed, at the individual level, we found that motor effort affected the
220 proportion of difficulty choices in 15 out of 23 subjects (Chi-squared tests for independence, $p <$
221 0.05). Among them, the vast majority (12/15) overall decreased their proportion of high effort
222 choices with the increase of motor effort. The duration of effort choices and the kinematics of
223 movements directed to the effort options are shown for each effort option and against the session
224 trials in supplementary figure 2.

225
226 **Figure 4. A.** Proportion of difficult decision choices as a function of motor difficulty. As in figure 3D, trials
227 are sorted chronologically and normalized by grouping them in 5 quantiles. Because target size strongly
228 co-varies with the number of completed trials (figure 3D), trial number is a proxy of the motor accuracy
229 requirement, and thus motor difficulty. Gray lines illustrate linear regressions through the data for each
230 individual subject. The open dots show the median values for each trial quantile across the population. The
231 violet line represents the hypothetical result of a perfectly shared management of resources between
232 decisions and actions (figure 1): resources are initially only devoted to the decision part of the task because
233 targets are big and movements easy; subjects thus only choose the difficult decision option; resources are

234 linearly devoted to the movements as targets get smaller, and the proportion of difficult decision choices
235 decreases; at the end of the session, resources are only devoted to movements because targets are small,
236 subjects thus only choose the easy decision option to prioritize their invested efforts in executing accurate
237 movements. *B.* Left panel: Proportion of correct perceptual decisions as a function of motor difficulty, with
238 trials sorted as a function of decision difficulty (blue: easy; red: difficult). Right panel: Perceptual decision
239 duration as a function of motor difficulty, with trials sorted as a function of decision difficulty (blue: easy;
240 red: difficult). Same conventions as in figure 3D.


241
242 An integrated control of decision and action-related energy resources also predicted that with the
243 increasing motor effort, the accuracy of the perceptual decisions would decrease and their duration
244 would increase, especially for the most difficult ones. This is again because subjects would have
245 to progressively devote more resources to face the increasingly challenging actions to execute to
246 report these decisions, and consequently less resources would have been available to accurately
247 make the perceptual decisions. Contrary to this prediction, we observed at the group level that
248 difficult and easy decision performances were not affected by the increasing motor effort (Kruskal-
249 Wallis test, $\chi^2 = 6.27$, $p = 0.18$; $\chi^2 = 2.37$, $p = 0.67$, respectively; figure 4B, left panel). Similarly,
250 decision durations were not significantly impacted by the increasing motor difficulty through the
251 session, regardless of the decision difficulty level (Kruskal-Wallis test, $\chi^2 = 6$, $p = 0.2$ for easy
252 decisions; $\chi^2 = 3.41$, $p = 0.49$ for difficult decisions; figure 4B, right panel).

253 [Effect of the categorical decision difficulty on motor behavior](#)

254 Finally, we analyzed the effect of the perceptual decision difficulty level on the way participants
255 reported these decisions by reaching to the visual targets. To this aim, we analyzed the effect of
256 motor difficulty on subjects' movement accuracy, duration, speed and amplitude by grouping trials
257 depending on the perceptual decision difficulty (figure 5). We observed more movement errors
258 when participants' reported a difficulty decision compared to when they expressed easy ones
259 (ANCOVA, Difficulty: $F=14.9$, $p = 0.0002$). This effect did not depend on the size of the target,
260 as no interaction between decision and action difficulties was observed (Difficulty x Trials:
261 $F=1.29$, $p=0.34$). Interestingly, the effect is even more pronounced when only error decisions are
262 included in the Difficult decision category (Difficulty x Trials: $F=18.9$, $p<0.0001$). We also
263 observed a significant decrease of amplitude when movements followed difficult decisions
264 compared to when they followed easy ones (Difficulty: $F=12.2$, $p = 0.006$), regardless of motor

265 difficulty (Difficulty x Trials: $F=0.23$, $p=0.63$). Decision difficulty did not significantly impact
266 movement speed (Difficulty: $F=0.01$, $p = 0.95$) nor duration (Difficulty: $F=0.02$, $p = 0.89$).

267

268

269 **Figure 5:** Effect of motor difficulty on subjects' movement accuracy (top-left panel), duration (top-right),
270 speed (bottom-left) and amplitude (bottom-right) with trials sorted according to the perceptual decision
271 difficulty (red: difficult; blue: easy) and outcome (dotted red: difficult, wrong decisions). Same conventions
272 as in Figure 4B, except that shaded areas illustrate the standard error around median values.

273

274 **Control subjects**

275 To control that the effects reported above were not confounded by fatigue and/or learning, we
276 describe in this last paragraph the behavior of 6 participants who performed the task in the exact

277 same conditions as those described above, except that for them movement targets were smaller
278 than those experienced by regular subjects at the beginning of the session and the size was kept
279 constant during the session (i.e. it was not inversely and linearly related to the points accumulated
280 during the session).

281 The median number of trials needed to reach 200 points across the six subjects was 194 ± 47 ,
282 which is close to the median session duration experienced by subjects who performed the main
283 experiment (227 ± 88 trials). The analysis of control subjects' movement accuracy as a function
284 of trials did not show any significant effect (Kruskal-Wallis test, $\chi^2 = 2.46$, $p = 0.65$), suggesting
285 that movement accuracy did not significantly suffer because of fatigue nor improved because of
286 practice (supplementary figure 3A). Similarly, we found that the proportion of high effort choices
287 did not significantly evolve as a function of session duration (Kruskal-Wallis test, $\chi^2 = 2.13$, $p =$
288 0.71 , supplementary figure 3B). Interestingly, control subjects overall chose the high effort option
289 less frequently at the beginning of their session compared to the 23 subjects who performed the
290 main experiment. This makes sense in the light of an integrated management of resources between
291 decision and action, as the size of the targets was smaller at session onset for the control subjects,
292 facing them with more demanding motor control, probably discouraging them to choose the most
293 effortful decision option.

294 Finally, we found that fatigue or learning did not impact the control subjects' perceptual capacities,
295 as their perceptual decision duration and accuracy did not significantly vary through the time
296 course of the sessions (Kruskal-Wallis tests, $\chi^2 = 4.6$, $p = 0.32$; $\chi^2 = 2.9$, $p = 0.57$, supplementary
297 figure 3C). Together, these analyzes on control subjects indicate that neither fatigue nor learning
298 were the main factors explaining the results obtained on the 23 subjects who performed the main
299 experiment.

300 DISCUSSION

301 Summary

302 In the present study, we asked healthy human subjects to choose the difficulty of perceptual
303 decisions to make in individual trials, to make those decisions, and to report them with arm
304 movements directed to visual targets in order to accumulate 200 points. Difficult decisions were
305 worth 5 points, compared to only 1 point for easy ones. Crucially, the motor accuracy requirement

306 increased with the accumulation of points. At the group level, we found that motor difficulty only
307 mildly affected the proportion of difficult decisions chosen by participants, and had no significant
308 impact on their decision duration and accuracy. By contrast, we found that motor difficulty
309 strongly impacted movement accuracy, and that movement accuracy and amplitude were
310 significantly reduced when a difficult decision was reported compared to when movements
311 reported an easy one. Control analyses on additional subjects indicate a minor role of fatigue and/or
312 learning in these effects.

313 The interaction between decisional and motor difficulties in the present work was designed to
314 investigate the level of integration of the effort-related energy resource management between
315 decision and action. According to the hypothesis of an integrated control of decision and action
316 ^{15,20,22}, resources are shared in a flexible and adapted way between these two processes, depending
317 on the task demands. More specifically, an equitable distribution of resources predicts that
318 increasing motor difficulty will force one to invest more effort in the motor process, leading to less
319 frequent choices of the most difficult decision. It also predicts that performance while making
320 these difficult decisions will decline with an increased motor effort. Alternatively, an independent
321 management of the resources predicts that the proportion of difficult decision choices and decision
322 performance will not vary depending on motor difficulty, and that movement accuracy and
323 kinematics will not be influenced by decision difficulty (figure 1).

324 The present results do not fully support any of these two alternatives. Indeed, there is a trend for
325 effort choices to be influenced by motor difficulty (figure 4A and supplemental figure 2B), but
326 this influence is not as strong as expected if resources were equitably shared across decisions and
327 actions. Moreover, the perceptual decision behavior appears very stable despite the increase of
328 motor difficulty. If this argues at first sight for an essentially independent management of
329 resources, the strong influence of decision difficulty on motor behavior (movement accuracy and
330 amplitude) is not compatible with such independent management hypothesis.

331 One possible way to reconcile these results is to conceive that resources are shared between
332 decision and action but not equitably, favoring in the present task the decision process over
333 movements. In this view, subjects prioritized the allocation of their resources to the decision
334 process, resulting in effort choices biased toward the difficult option despite the increase of motor
335 difficulty, and, when a difficult decision was chosen, a maintenance of the decision accuracy figure

336 4A and 4B, left panel). Interestingly, this consistent accuracy is likely not the result of a simple
337 speed-accuracy tradeoff that would have allowed subjects to compensate for less resources
338 available for the decision by making longer decisions, resulting in constant accuracy²⁴. Indeed,
339 decision durations were overall stable within the time course of sessions too (figure 4B, right
340 panel). A consequence of a prioritization of resources on the decision process is the “sacrifice” of
341 the motor function. We indeed observed that movement accuracy was almost linearly reduced as
342 a function of the increasing motor difficulty (figure 5, top-left panel). If resources were
343 independently managed or equitably shared between decision and action depending on the task
344 needs, we would have probably observed more stable movement performance through the
345 sessions, at least until relatively late in these sessions. Finally, we observed that for a given target
346 size, movements accuracy was lower and amplitude shorter when subjects reported difficult
347 decisions compared to when they made easy ones, regardless of the size of the targets (figure 5,
348 top-left and bottom right-panels). This suggests that the choice to allocate resources to make fast
349 and accurate difficult decisions impaired participants’ ability to subsequently execute as accurate
350 and ample movements as when they made easy decisions. Together, these results support the
351 hypothesis of an integrated, but biased, management of the effort resources between decisions and
352 actions, favoring in the present task decisions over actions.

353 The results discussed in the previous paragraphs indicate an important link between decision-
354 making and motor control. Recent computational, behavioral, neurophysiological and clinical
355 studies support this view, indicating that decision and action strongly influence each other^{9,12,16–}
356 ^{20,25–30}, operate according to the same ecologically-relevant principles^{13,15,31}, share neural
357 substrates^{32–42} and are often jointly altered in various neurological conditions^{22,43}. For example,
358 Thura and colleagues^{12,17} demonstrated in both monkeys and humans that when decision duration
359 is long because of weak evidence, subjects shorten the duration of their movements to limit the
360 loss of time on each trial and thus conserve their rate of reward at the session level. A similar
361 interaction between decision and movement durations has been recently described in Parkinson’s
362 patients²⁰. Conversely, Reynaud and colleagues¹⁶ have shown that decisions are shortened and less
363 likely to be correct when the motor context in which they are reported is demanding, requiring
364 slow and accurate movements. The same authors then isolated the role of movement duration from
365 effort in this effect, and showed that when the duration of the movement is lengthened, subjects
366 shorten their decisions to limit the temporal devaluation of behavior¹⁸. Interestingly, the authors

367 did not observe any consistent interaction between the decision and the action when the effort of
368 the movement was manipulated. To explain this lack of effect, the authors proposed that unlike
369 durations, effort-related energy costs were not as directly “exchangeable” between decisions and
370 actions in the task they used. They also raised a key difference between effort and time, the fact
371 that for a given behavioral success probability, effort is not necessarily always perceived as a cost
372 (i.e. the effort “paradox”³) when time usually is^{44–46}.

373 The present study validates both of these two explanations. Indeed, with a new behavioral task
374 specifically designed to investigate the control of decision and motor-related energy resources, we
375 observed that human subjects can exchange energy resources between decision and action
376 depending on the task demands. This observation thus adds to our previous results showing that
377 individuals are capable of sharing temporal resources in order to optimize their rate of success^{16–18}.
378 The integrated control of effort-related resources described in the present report might be even
379 more elaborated than a simple “dispatcher” of resources to each process considered in isolation.
380 Indeed, this control seems to operate in a biased way, favoring in the present task decisions over
381 actions. The most likely reason for such bias is that subjects strongly considered that decision
382 outcomes had more task-goal implications than movement outcomes; a perceptual decision itself
383 (i.e. regardless of the movement accuracy) allowing to earn or loose points whereas movement
384 accuracy by itself was not rewarded nor penalized.

385 The present work also suggest that effort is probably not perceived as univocally penalizing across
386 the population. Indeed, we often observed a large variability between the subjects, especially when
387 we analyzed the choice of effort level to invest in the perceptual decision, both dependently and
388 independently of the motor difficulty. As mentioned above, effort is generally felt to be aversive
389 and difficult, which is why it tends to be avoided^{5–7}. However, providing a lot of effort in a
390 behavior can sometimes add value, and doing hard work can cause greater satisfaction than
391 executing effortless tasks or even rest^{3,4}. Moreover, studies that investigated the impact of physical
392 activity on cognitive abilities report that movements improve non-motor functions^{47,48}. As a
393 consequence, in some cases, or among some individuals, effort can be sought rather than avoided
394⁴⁹. This difference in value associated with effort may be one of the factors of variability we report
395 between subjects.

396 A possible limitation of the study, related to the design of the task, concerns a possible learning-
397 related familiarization with the decisional and motor difficulty experienced by the subjects through
398 the time course of a session. However, several measures have been employed to limit this
399 possibility (the training phase and the trial-to-trial variability of the decisional and motor
400 difficulties) and the data obtained on 6 control subjects do not indicate a major impact of learning.
401 The same is true for a potential role of motor and non-motor fatigue in this task. Data from control
402 subjects do not indicate a decline in decisional and motor performance for a comparable length of
403 experiment.

404 Another limitation of the study concerns the difficulty parameters of the decisions and actions
405 which were the same for all subjects. As a consequence, difficulty levels and the resulting efforts
406 were not necessarily perceived in the same way across the population. This probably explains part
407 of the observed inter-subject variability, in particular the fact that 9 subjects did not change their
408 proportion of difficult decision choices as a function of motor difficulty during their session.
409 Another study using a staircase-type procedure to adapt the levels of difficulty to each subject
410 could be more effective on this point.

411 Our results suggest a “sacrifice” of the motor system for the benefit of the cognitive system,
412 possibly to prioritize the allocation of resources on the process allowing to earn or loose the points
413 in the task. It would be interesting to assess whether or not the cognitive system can also sacrifice
414 itself for the motor system. To this end, a complementary study in which difficulty parameters and
415 task rules are switched between the decision and the action could be undertaken.

416 Finally, a distinction has been proposed between an account of effort based on computational or
417 on metabolic costs¹. Unlike physical effort, there does not appear to be a global metabolic cost for
418 executing demanding non-motor tasks compared to automatic and effortless ones. In other words,
419 the brain’s overall metabolic demands appear to change only mildly during engagement in non-
420 motor behavior^{1,50}. In the present task, motor difficulty was manipulated by means of varying the
421 required level of movement accuracy, or movement control. This type of manipulation is probably
422 different compared to a manipulation of load or resistance on the movements. It is thus possible
423 that physical effort such as loaded or resistive movements induce more metabolic costs than motor
424 control per se. By contrast, the cost of motor control is perhaps captured more accurately along the
425 computational dimension, similar to that of perceptual decisions, which would have facilitated the

426 integrated aspect of resource control between decisions and actions in our task. A very interesting
427 question for future experiments is thus whether the present results are generalizable to other types
428 of non-motor and motor efforts, tapping into different amounts of computational and metabolic
429 costs.

430 METHODS

431 Participants

432 Thirty-height healthy human subjects (median age \pm STD: 25 ± 4 ; 32 females; 35 right handed)
433 participated in this study. All gave their consent before starting the experiment. The ethics
434 committee of Inserm (IRB00003888, IORG0003254, FWA00005831) approved the protocol on
435 June 7th 2022. Each participant was asked to perform one experimental session. They received a
436 monetary compensation (10 euros per completed session) for participating in this study.

437 Setup

438 The subjects sat in a comfortable armchair and made planar reaching movements using a handle
439 held in their dominant hand. A digitizing tablet (GTCO CalComp) continuously recorded the
440 handle horizontal and vertical positions (100 Hz with 0.013 cm accuracy). The behavioral task was
441 implemented by means of LabVIEW 2018 (National Instruments, Austin, TX). Visual stimuli and
442 handle position feedback (black cross) were projected by a DELL P2219H LCD monitor (60 Hz
443 refresh rate) onto a half-silvered mirror suspended 26 cm above and parallel to the digitizer plane,
444 creating the illusion that stimuli floated on the plane of the tablet.

445 Behavioral task

446 Participants performed multiple trials of a multi-step decision-making task (figure 1). Each trial
447 began with a small ($\emptyset = 3$ cm) black circle (the starting circle) displayed at the bottom of the screen.
448 To initiate a trial, the subject moved the handle in the starting circle and maintained the position
449 for 300ms. Two colored circles (the movement targets: one blue, one green) were then displayed
450 180° apart of the starting circle for 200ms. The distance between the starting circle center and each
451 movement target center was 10.9cm, with a trial-to-trial variability of 0.9cm. At this point subjects
452 were informed about the accuracy requirement of their future movement (see how the size of the
453 movement targets was determined below). The color of the targets at this stage is not informative
454 of their color at the time of the perceptual decision.

455 Then the two movement targets disappeared and two rectangles appeared above the starting circle,
456 separated from each other by 10 cm. In each rectangle a text informed the subject about the
457 difficulty of the perceptual decision that she/he had to make in each trial: “1” for an easy decision,
458 or “5” for a difficult decision. The subject had 1s to move the handle in the chosen rectangle and
459 hold it for 500ms to validate this choice. She/he then returned to the starting circle and maintain
460 the position for another 500ms to continue the trial.

461 Next, both rectangles disappeared and a large ($\emptyset = 9\text{cm}$) circle appeared on the screen (the decision
462 circle). The decision circle was filled with 100 green and blue tokens, with different ratios between
463 the two colors depending on the difficulty chosen at the beginning of the trial. “Difficult” decisions
464 (“5”) were those in which the stimulus coherence (the ratio between the numbers of tokens of the
465 two colors) was 53%, with a trial-to-trial variability of 2%; “Easy” decisions (“1”) were those in
466 which the coherence was 75%, with a trial-to-trial variability of 2%. The subject task was to
467 determine the dominant color in the decision circle, either blue or green. To express this perceptual
468 decision, the participant moved the handle in the lateral target whose color corresponded to her/his
469 choice and maintained this position for 500ms. The dominant color (blue or green) as well as the
470 position of the green and blue movement targets relative to the starting circle were randomized
471 from trial to trial. The maximum decision duration allowed (the time between the decision circle
472 onset and movement onset) was 1s. The maximum movement duration allowed (the time between
473 movement onset and offset) was 750ms.

474 At the end of the trial, a visual cue informed the subject about the outcome of the trial. The chosen
475 target was surrounded by a green circle if she/he accurately reached the correct target, and by a
476 red one if she/he accurately reached the wrong target. The subject earns the number of points
477 corresponding to the chosen difficulty if the correct target was accurately reached. The goal of the
478 subject was to earn a total of 200 points. In case of wrong decision (regardless of the accuracy of
479 the movement), the number of points chosen at the beginning of the trial was subtracted. If the
480 subject failed to reach or stop in the chosen target (inaccurate movement, whether it was the correct
481 target or not), both movement targets turned orange and no points were deducted. To move on to
482 the next trial, the subject moved the handle back in the starting circle and maintained the position
483 for 500ms.

484 In the main experiment, performed by 32 out of 38 participants, the number of points accumulated
485 by the subject determined the size of the movement targets. The diameter of these circles was set
486 to 4 cm at the beginning of the session and it linearly decreased with the accumulation of points,
487 reaching 1 cm at 200 points. As a consequence, the required motor control, and thus the motor
488 difficulty, increased with the size reduction of the movement targets. We assumed that subjects
489 increased their motor effort as movement targets get smaller with the number of trials performed
490 and the number of points earned during the session. Six additional subjects performed the exact
491 same task as the one described above except that the diameter of the movement targets was set to
492 2.5cm at the beginning of the session and was kept constant through the entire experiment. This
493 control experiment was aimed to estimate effects that would not be a consequence of the increase
494 of motor effort, such as fatigue or learning.

495 [Instructions provided to the subjects](#)

496 To familiarize each participant with the task and with the manipulation of the lever on the tablet,
497 a training phase was proposed prior to the experimental phase per se. During this training phase,
498 subjects performed about 20 training trials where they could choose the difficulty of the decision
499 to make (easy or difficult) and report these decisions by executing reaching movements to targets
500 of 2.5 cm in diameter. The training phase was prolonged if subjects required so. During the
501 experimentation phase, each subject was instructed to perform the task described above and they
502 were informed that they needed to earn a total of 200 points to complete the session. Importantly,
503 the 32 subjects who performed the main version of the task were not told about the decreasing size
504 of the motor targets indexed to the accumulation of points. They were also not told about their
505 number of points accumulated after each trial. We informed the subjects that there would be no
506 scheduled breaks during the session, except in case of discomfort or real fatigue. No subject
507 requested a break during their session.

508 [Data analysis and statistics](#)

509 Data were collected by means of LabVIEW 2018 (National Instruments, Austin, TX), stored in a
510 database (Microsoft SQL Server 2005, Redmond, WA), and analyzed off-line with custom-written
511 MATLAB scripts (MathWorks, Natick, MA). Unless stated otherwise, data are reported as
512 medians \pm standard deviation.

513 Arm movement characteristics were assessed using the subjects' movement kinematics.
514 Horizontal and vertical arm position data (collected from the handle on the digitizing tablet) were
515 first filtered using a tenth-degree polynomial filter and then differentiated to obtain a velocity
516 profile. Onset and offset of movements were determined using a 3.75 cm/s velocity threshold. Peak
517 velocity and amplitude was determined as the maximum value and the Euclidian distance between
518 movement onset and offset, respectively.

519 An accurate movement is defined as a movement that reached a target (whether it is the correct
520 target or not) and stayed in it for 500ms. In the main text of this report we only refer to movements
521 executed to report the perceptual decisions. Kinematics of movements executed to select the
522 difficulty of the decision at the beginning of the trial are illustrated in supplementary figure 2.
523 Decision duration is defined as the time between the onset of the stimulus providing the visual
524 evidence to the subject (the decision circle containing the 100 tokens) to the onset of the movement
525 executed to report the decision. A decision is defined as correct if the correct target is chosen,
526 regardless of the accuracy of the movement.

527 Chi-squared tests for independence were used to assess the effect of decision difficulty (easy or
528 difficult) on individual subjects' decision accuracy. Wilcoxon rank sum tests were used to assess
529 the effect of decision difficulty on individual subjects' decision duration. Chi-squared tests for
530 independence were used to test the effect of motor difficulty, evaluated by chronologically
531 grouping trials in 5 quantiles, on individual subjects' movement accuracy and proportion of
532 difficult choices. At the population level, Kruskal-Wallis tests were used to test the effect of motor
533 difficulty on movement accuracy, decision accuracy, proportion of difficult choices, and on
534 decision duration. Analyses of covariance (ANCOVAs) were used to assess the effect of decision
535 difficulty, motor difficulty and their interaction on movement accuracy and kinematics (speed,
536 duration, amplitude). The significance level of all statistical tests was set at 0.05, and highest levels
537 of significance are reported when appropriate.

538 **AUTHORS' CONTRIBUTION**

539 ER, EK and DT designed the experiment
540 EK coded the task
541 ER collected the data
542 ER and DT conducted the analyses and prepared the figures

543 DT wrote the draft of the manuscript
544 ER, EK and DT revised the draft and approved the final version of the manuscript

545 CONFLICT OF INTEREST STATEMENT

546 The authors declare no competing financial interests.

547 OPEN PRACTICES STATEMENT

548 This work's data and codes are freely available upon request.

549 REFERENCES

- 550 1. Westbrook, A. & Braver, T. S. Cognitive 579 decision making. *Journal of Neurophysiology*
551 effort: A neuroeconomic approach. *Cogn 580* **105**, 3022–3033 (2011).
552 *Affect Behav Neurosci* **15**, 395–415 (2015).
- 553 2. Walton, M. E. & Bouret, S. What Is the 581 10.Haith, A. M., Reppert, T. R. & Shadmehr, R.
554 Relationship between Dopamine and Effort? 582 Evidence for Hyperbolic Temporal
555 *Trends in Neurosciences* **42**, 79–91 (2019). 583 Discounting of Reward in Control of
556 3. Inzlicht, M., Shenhav, A. & Olivola, C. Y. 584 Movements. *Journal of Neuroscience* **32**,
557 The Effort Paradox: Effort Is Both Costly and 585 11727–11736 (2012).
558 Valued. *Trends in Cognitive Sciences* **22**, 586 11.Chi, J. E. S., Vaswani, P. A. & Shadmehr, R.
559 337–349 (2018). 587 Vigor of Movements and the Cost of Time in
560 4. Wu, R., Ferguson, A. M. & Inzlicht, M. Do 588 Decision Making. *Journal of Neuroscience*
561 humans prefer cognitive effort over doing 589 **34**, 1212–1223 (2014).
562 nothing? *J Exp Psychol Gen* (2022) 590 12.Thura, D., Cos, I., Trung, J. & Cisek, P.
563 doi:10.1037/xge0001320. 591 Context-dependent urgency influences speed-
564 5. Kool, W., McGuire, J. T., Rosen, Z. B. & 592 accuracy trade-offs in decision-making and
565 Botvinick, M. M. Decision making and the 593 movement execution. *J. Neurosci.* **34**, 16442–
566 avoidance of cognitive demand. *J Exp 594 16454 (2014).
567 Psychol Gen* **139**, 665–682 (2010). 595 13.Morel, P., Ulbrich, P. & Gail, A. What makes
568 6. Kurzban, R. The sense of effort. *Current 596 a reach movement effortful? Physical effort
569 Opinion in Psychology* **7**, 67–70 (2016). 597 discounting supports common minimization
570 7. Hull, C. L. *Principles of behavior: an 598 principles in decision making and motor
571 introduction to behavior theory.* x, 422 599 control. *PLoS Biol* **15**, e2001323 (2017).
572 (Appleton-Century, 1943). 600 14.Yoon, T., Geary, R. B., Ahmed, A. A. &
573 8. Inzlicht, M., Schmeichel, B. J. & Macrae, C. 601 Shadmehr, R. Control of movement vigor and
574 N. Why self-control seems (but may not be) 602 decision making during foraging. *Proc Natl
575 limited. *Trends in Cognitive Sciences* **18**, 603 Acad Sci USA* **115**, E10476–E10485 (2018).
576 127–133 (2014). 604 15.Shadmehr, R., Reppert, T. R., Summerside, E.
577 9. Cos, I., Bélanger, N. & Cisek, P. The 605 M., Yoon, T. & Ahmed, A. A. Movement
578 influence of predicted arm biomechanics on 606 Vigor as a Reflection of Subjective Economic
607 Utility. *Trends in Neurosciences* **42**, 323–336
608 (2019).

609 16. Reynaud, A. J., Saleri Lunazzi, C. & Thura, 652 movements. *Journal of Neurophysiology* **123**,
610 D. Humans sacrifice decision-making for 653 1090–1102 (2020).
611 action execution when a demanding control 654 28. Wispinski, N. J., Gallivan, J. P. & Chapman,
612 of movement is required. *Journal of 655 C. S. Models, movements, and minds:
613 Neurophysiology* **124**, 497–509 (2020). 656 bridging the gap between decision making
614 17. Thura, D. Decision urgency invigorates 657 and action. *Ann. N.Y. Acad. Sci.* **1464**, 30–51
615 movement in humans. *Behavioural Brain 658 (2020).*
616 *Research* **382**, 112477 (2020).
617 18. Saleri Lunazzi, C., Reynaud, A. J. & Thura, 659 29. Domínguez-Zamora, F. J. & Marigold, D. S.
618 D. Dissociating the Impact of Movement 660 Motor cost affects the decision of when to
619 Time and Energy Costs on Decision-Making 661 shift gaze for guiding movement. *J
620 and Action Initiation in Humans. *Front. Hum. 662 Neurophysiol* **122**, 378–388 (2019).*
621 *Neurosci.* **15**, 715212 (2021).
622 19. Solman, G. J. F. & Kingstone, A. Balancing 663 30. Servant, M., Logan, G. D., Gajdos, T. &
623 energetic and cognitive resources: memory 664 Evans, N. J. An integrated theory of deciding
624 use during search depends on the orienting 665 and acting. *Journal of Experimental
625 effector. *Cognition* **132**, 443–454 (2014). 666 Psychology: General* (2021)
626 20. Herz, D. M. *et al.* Dynamic control of 667 doi:10.1037/xge0001063.
627 decision and movement speed in the human 668 31. Shadmehr, R. & Ahmed, A. A. *Vigor: Neuroeconomics of Movement Control.* (The
628 basal ganglia. *Nat Commun* **13**, 7530 (2022).
629 669 MIT Press, 2020).
630 21. Balci, F. *et al.* Acquisition of decision making 670 32. Thura, D., Cabana, J.-F., Feghaly, A. &
631 criteria: reward rate ultimately beats 671 Cisek, P. Integrated neural dynamics of
632 accuracy. *Atten Percept Psychophys* **73**, 640– 672 sensorimotor decisions and actions. *PLoS
673 657 (2011). Biol* **20**, e3001861 (2022).
674 33. Gold, J. I. & Shadlen, M. N. The Neural Basis
675 22. Carland, M. A., Thura, D. & Cisek, P. The 676 of Decision Making. *Annu. Rev. Neurosci.* **30**,
677 Urge to Decide and Act: Implications for 677 535–574 (2007).
678 Brain Function and Dysfunction. 678 34. Coallier, É., Michelet, T. & Kalaska, J. F.
679 *Neuroscientist* 107385841984155 (2019) 679 Dorsal premotor cortex: neural correlates of
680 doi:10.1177/1073858419841553. 680 reach target decisions based on a color-
681 23. Thura, D. Reducing behavioral dimensions to 681 location matching rule and conflicting
682 study brain–environment interactions. 682 sensory evidence. *J. Neurophysiol.* **113**,
683 *Behavioral and Brain Sciences* **44**, (2021). 683 3543–3573 (2015).
684 24. Heitz, R. P. The speed-accuracy tradeoff: 684 35. Cisek, P. & Kalaska, J. F. Neural Mechanisms
685 history, physiology, methodology, and 685 for Interacting with a World Full of Action
686 behavior. *Front. Neurosci.* **8**, (2014). 686 Choices. *Annual Review of Neuroscience* **33**,
687 25. Hagura, N., Haggard, P. & Diedrichsen, J. 687 269–298 (2010).
688 Perceptual decisions are biased by the cost to 688 36. Thura, D. & Cisek, P. Deliberation and
689 act. *eLife* **6**, e18422 (2017). 689 commitment in the premotor and primary
690 26. Marcos, E., Cos, I., Girard, B. & Verschure, 690 motor cortex during dynamic decision
691 P. F. M. J. Motor Cost Influences Perceptual 691 making. *Neuron* **81**, 1401–1416 (2014).
692 Decisions. *PLoS ONE* **10**, e0144841 (2015).
693 27. Michalski, J., Green, A. M. & Cisek, P. 693 37. Romo, R., Hernández, A. & Zainos, A.
694 Reaching decisions during ongoing 694 Neuronal correlates of a perceptual decision
695 in ventral premotor cortex. *Neuron* **41**, 165–
173 (2004).

696 38.Roitman, J. D. & Shadlen, M. N. Response of
697 Neurons in the Lateral Intraparietal Area
698 during a Combined Visual Discrimination
699 Reaction Time Task. *J. Neurosci.* **22**, 9475–
700 9489 (2002).

701 39.Schall, J. D. Neural correlates of decision
702 processes: neural and mental chronometry.
703 *Curr. Opin. Neurobiol.* **13**, 182–186 (2003).

704 40.Costello, M. G., Zhu, D., Salinas, E. &
705 Stanford, T. R. Perceptual modulation of
706 motor--but not visual--responses in the frontal
707 eye field during an urgent-decision task. *J
708 Neurosci* **33**, 16394–16408 (2013).

709 41.Klaes, C., Westendorff, S., Chakrabarti, S. &
710 Gail, A. Choosing goals, not rules: deciding
711 among rule-based action plans. *Neuron* **70**,
712 536–548 (2011).

713 42.Robbe, D. & Dudman, J. T. The Basal
714 Ganglia invigorate actions and decisions. in
715 *The Cognitive Neurosciences* (MIT Press,
716 2020).

717 43.Le Heron, C. *et al.* Distinct effects of apathy
718 and dopamine on effort-based decision-
719 making in Parkinson's disease. *Brain* **141**,
720 1455–1469 (2018).

721 44.Shadmehr, R., Orban de Xivry, J. J., Xu-
722 Wilson, M. & Shih, T.-Y. Temporal
723 Discounting of Reward and the Cost of Time
724 in Motor Control. *Journal of Neuroscience*
725 **30**, 10507–10516 (2010).

726 45.Myerson, J. & Green, L. Discounting of
727 delayed rewards: Models of individual
728 choice. *J Exp Anal Behav* **64**, 263–276
729 (1995).

730 46.Otto, A. R. & Daw, N. D. The opportunity
731 cost of time modulates cognitive effort.
732 *Neuropsychologia* **123**, 92–105 (2019).

733 47.Cheval, B. *et al.* Relationship between decline
734 in cognitive resources and physical activity.
735 *Health Psychology* **39**, 519–528 (2020).

736 48.Damrongthai, C. *et al.* Benefit of human
737 moderate running boosting mood and
738 executive function coinciding with bilateral
739 prefrontal activation. *Sci Rep* **11**, 22657
740 (2021).

741 49.Cacioppo, J. T. & Petty, R. E. The need for
742 cognition. *Journal of Personality and Social
743 Psychology* **42**, 116–131 (1982).

744 50.Kurzban, R. Does the brain consume
745 additional glucose during self-control tasks.
746 *Evol Psychol* **8**, 244–259 (2010).

747