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Abstract

Comprehending symbiont abundance among host species is a major ecological
endeavour, and the metabolic theory of ecology has been proposed to understand what
constraints symbiont populations. We parameterized metabolic theory equations to
predict how bird species’ body size and the body size of their feather mites relate to
mite abundance according to four potential energy (microbial abundance, uropygial
gland size) and space constraints (wing area, number of feather barbs). Predictions were
compared with the empirical scaling of feather mite abundance from 26,604 birds of
106 passerine species, using phylogenetic modelling and quantile regression. Feather
mite populations were strongly constrained by host space (hnumber of feather barbs) and
not energy. Moreover, feather mite species’ body size was unrelated to their abundance
or to the body size of their host species. We discuss the implications of our results for
our understanding of the bird-feather mite system and for symbiont abundance in

general.
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Introduction

A central scope in ecology is to describe abundance patterns, to comprehend the
processes that underlay these patterns, and to understand their ecological consequences.
These questions have been mainly studied in free-living organisms, while symbiont
abundance patterns have received less attention (Cunning & Baker 2004; Dobson et al.,
2008). Symbionts (including mutualists, commensals, and parasites) are the most
ubiquitous, abundant, and diverse organisms on Earth (Morand 2015; Larsen et al.,
2017). They are key components of ecosystems and influence nutrient cycles, food
webs, energy flows, and community structure (Hatcher et al., 2012), and their
abundance can shape individual host performance and the evolution of host species
(Poulin & George-Nascimento 2007). Indeed, the abundance of a given symbiont in or
on a given host may determine the nature of the host—symbiont interaction (Bronstein
1994; Holland et al., 2002), with the potential to shift the nature of this relationship
between mutualism and parasitism (Hopkins et al., 2017).

Studies on symbiont abundance have mainly focused on parasites rather than on
non-parasitic symbionts, and on understanding differences in symbiont abundance
among members of a single host species rather than interspecific differences among host
species (Turgeon et al., 2018; Mennerat et al., 2021). At the interspecific scale, several
studies have found support for Harrison’s Rule which postulates that there is a positive
covariation between host size and symbiont size. In contrast, when considering
symbiont abundance instead of symbiont size, mixed results have been found for its
correlation with the body size of either the hosts or the symbionts (R6zsa 19973, b;
Poulin 1999; Clayton & Walther 2001; Presley & Willig 2008; Krasnov et al., 2013;
Galloway & Lamb 2017; Surkova et al., 2018; Lamb & Galloway 2019). At macro-

evolutionary scale, host body size largely explained the variation in feather lice
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effective population size, which is expected to positively correlate with symbiont
abundance (Dofia & Johnson 2022). Overall, we are still far from understanding why
some host species harbour many symbiont individuals of a given taxon, while others
carry only a few.

The study of the scaling of symbiont abundance with host body size is an
underexplored approach to understand symbiont abundance (Morand & Poulin 2002;
George-Nascimento et al., 2004; Poulin & George-Nascimento 2007; Hechinger 2013).
Hechinger (2013) developed a hypothesis-driven quantitative framework based on the
metabolic theory of ecology (sensu Brown et al., 2004) to disentangle how host and
symbiont traits shape symbiont abundance across host species. This framework tries to
explain symbiont abundance in different hosts through the comparison of theoretical vs.
empirical scaling exponents of host and symbiont body size according to energy (e.g.
blood or secretions) and space (e.g. surface) provided by the host and according to the
metabolic rate and space use of symbionts (see below). Hechinger et al. (2019) used this
approach to investigate the relationship between host body size and the abundance of
ectosymbiotic mites and lice of 263 bird individuals of 42 species. Their results
indicated that the numbers of mites and lice were limited by access to host energy and
not by space. However, Hechinger et al. (2019) did not distinguish among
ectosymbionts with different diets, e.g. blood-feeding mites were equivalent to non-
parasitic mites provided that mite body sizes were similar. Here, we implemented
Hechinger’s (2013) framework by analysing an unprecedently large dataset and
parametrizing scaling equations using current knowledge of the biology of a particular
host-symbiont system: vane-dwelling feather mites (Acariformes: Astigmata:

Analgoidea and Pterolichoidea) from European passerine bird species.
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134 Feather mites are ectosymbionts found on almost all birds (Walter & Proctor
135  2013). Their entire life cycle is spent on their living hosts, mainly on the wing and tail
136  flight feathers, where they are usually queuing between the feather barbs (i.e., the

137  primary branches of the feather rachis; Figure 1) or next to the rachis (Kelso & Nice
138  1963; Choe & Kim 1989; Yamasaki et al., 2018). They are often said to feed on the
139  preen gland secretions and organic material trapped in them (Dubinin 1951; OConnor
140  1982; Proctor 2003; Walter & Proctor 2013; Galvan et al., 2008). Still, other evidence
141 suggests a lower relevance of preen waxes as food resources (Pap et al., 2010). Algae
142  are also potential food resources for mites (Blanco et al., 2001). However, Dofia et al.
143 (2019) studied the gut contents of a large sample of mites using microscopy and DNA
144  metabarcoding, and found that bacteria and fungi were the main food resources for
145  feather mites, while algae and plant materials were rather anecdotic, and bird tissues
146  such as blood or skin were not found.

147 Bird species strongly differ in feather mite abundance even when accounting for
148 intraspecific variance between localities (Diaz-Real et al., 2014). For instance, species
149  such as Phylloscopus collybita and Periparus ater consistently have very few feather
150  mites on their wings, while similar-sized Aegithalos caudatus and Acrocephalus

151  melanopogon often have hundreds of feather mites (Diaz-Real et al., 2014).

152  Interspecific differences in feather mite abundance are partly explained by the ecology
153  and morphology of bird species, but a large proportion of the variance remains

154  unexplained after controlling for these traits (Galvan et al., 2008; authors’ unpublished
155  data). To date, only one interspecific study has related bird body size to feather mite
156  abundance (Rdzsa 1997b). This study found a positive correlation, albeit based on a
157  relatively small number of host species (N = 17), small number of host individuals

158  within species (range of 3-138), and without quantitatively addressing the underlying
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mechanisms generating the positive relationship between bird size and feather mite
abundance.

In this study, we apply Hechinger’s (2013) quantitative framework to disentangle
hosts’ energy and space constraints explaining differences in feather mite abundance
across passerine bird species. Here we follow Hechinger’s (2013) use of the term size to
refer to the body mass of hosts and symbionts. According to Hechinger (2013), the
metabolic theory of ecology predicts that if energy provided by the host (k) imposes an
effective ceiling to the growth of symbiont (s) populations, the maximal or carrying-
capacity abundance (but also mean abundance) of the symbiont in a given host
individual (N) will scale with host body size (M},) and symbiont size (M) as

Ng ¢ MMM, Eq. 1
—¥n 1S the scaling exponent for host mass-specific metabolic rate and equals to a — 1,
where « is the scaling exponent for whole-organism metabolic rate to body size (~3/4
across multicellular species; Hechinger 2013). Thus, —yy, = —1/4, and —a, = —3/4.
on is the spatial exponent for host body size, and is related to the host body part that is
metabolically relevant for the studied symbionts (i.e., the host body part that provides
the food resources to the symbionts; Hechinger 2013; Hechinger et al., 2019). Current
knowledge points to two main energy (food) resources for feather mites, and thus, there
are two oy, potential values in our study:

(1) waxes produced by the uropygial gland that birds spread on feathers (Galvan
et al., 2008; Dofia et al., 2019). We used data on uropygial gland size (see below) to
parametrize ay, in Eq. 1, given that uropygial gland size is positively correlated, at least
within bird species, with the amount of waxes produced (Mgller et al., 2009; Pap et al.,

2010).
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(2) organic matter (mainly fungi and bacteria) available on feathers' surface
(Dubinin 1951; Dofia et al., 2019; Labrador et al., 2022). This organic matter is not
produced by the host, and thus there is not a host body part that is metabolically
responsible for its production. We parametrized this alternative o3, with data on how the
abundance of fungal and bacterial DNA (microbial abundance hereafter) on the wings
of passerine bird species scales with bird species body size.

Space provided by the host can also impose an effective ceiling on symbiont
populations, and then the maximal or carrying-capacity symbiont abundance in a given
host individual would scale with host and symbiont body size as

Ng o< MMM, %8, Eq. 2

Here, gy, indicates how the host body portion that the symbiont inhabits scales to
host body size (Hechinger 2013; Hechinger et al., 2019). Theoretical oy, values are 1
when the studied symbionts use the host volumetrically, or 2/3 if symbionts inhabit the
host surface. Ideally, though, oy, should be calculated empirically for each particular
study system (Hechinger 2013). We hypothesized that feather mite infracommunities
(all of the mite infrapopulations within a single host; Bush et al., 1997) could be
spatially constrained by wing area, which is the largest scale habitat for these mites.
Alternatively, feather mites could be constrained by the number of feather barbs on the
wing because they (except the genus Trouessartia) live in the corridors between feather
barbs in the ventral side of feathers (Figure 1; Mironov 2022). Moreover, Trouessartia
spp., despite living on the dorsal surface of feathers (where there are not such well-
defined corridors), they also queue along feather barbs (Figure 1 in Mironov &
Gonzélez-Acufia 2013; authors’ personal observation). Thus, we studied the scaling of
wing area and the number of barbs to bird species body size to parameterize g, in Eq. 2.

Similarly, —a is the relevant aspect of symbiont bodies that determines their spatial
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packing on host bodies. Given that mites align in a single row along feather barbs,
feather mite length would be the most relevant aspect, and thus we parametrized —o as
—1/3 because this is how mite length scales to mite body size (in pug) (Supporting
Information).

In sum we used empirical data to complete the parametrization of Egs. 1 and 2,
and then compared predicted scaling exponents with the empirical exponents obtained
by phylogenetic generalized least squares regressions and quantile regressions for the
abundance of feather mites across bird species, following Hechinger (2013). We show,
using a large dataset on feather mite abundance, how a biologically-informed
parametrization of the metabolic theory of ecology proposed by Hechinger (2013) is a
powerful approach to understanding why symbiont abundance differs between host
species.

Materials and Methods

Feather mite morphometric data

Body size in Hechinger’s (2013) equations (M,,, M) refers to host and symbiont
species’ body masses. Given that these data were available for only one of the mite
species studied here, we calculated them from feather mite species’ biometry following
the equation provided by Edwards (1967) (Supporting Information). To do so, we
gathered data from adult female morphology because they are typically the largest (e.g.
Atyeo & Braasch 1966; Santana 1976) and more abundant life stage (e.g. Muzaffar &
Jones 2005; Marcanova & Janiga 2021). Feather mites ranged from 394 um and 0.989
ug for Scutulanyssus nuntiaeveris [Berlese] to 1,121 pum and 22.85 ug for
Joubertophyllodes modularis [Berlese]. Then, to obtain a reliable measure of the mean
M, on each bird species, we calculated the weighted mean body size (in pg) of the

feather mite species reported for each bird species. The weighted mean was calculated

10
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using the number of records reported by Dofia et al. (2016) for each mite species in each
bird species, using only the most reliable bird—mite associations (i.e., those with quality
score = 2; see Doia et al., 2016 for more details).
Feather mite abundance data
Data were obtained from FeatherMites, the largest dataset available on feather mite
abundances (see Diaz-Real et al., 2014 for details), where, for each bird individual, the
total number of vane-dwelling feather mites was counted (i.e., without differentiating
between mite species) on the 19 flight feathers (10 primaries, six secondaries, and three
tertials) of one wing. Because we aimed to understand the mechanisms setting the upper
limit for feather mite abundance, birds without feather mites were not included in the
analyses. Therefore, according to parasitological terminology, we analysed feather mite
intensity (or infracommunity size; Bush et al., 1997), i.e., the number of feather mites
counted in each individual bird with at least one mite, but we use the term ‘abundance’
hereafter due to its general use in the ecology literature. Since we could not find data on
the morphology of certain feather mite species in our dataset, some bird species were
not included in the analyses, leading to a final dataset of 26,604 individual birds from
106 passerine species.

Given the non-normal frequency distribution of feather mite abundance (Diaz-
Real et al., 2014), we used quantiles of mite counts at regular intervals from the 5™ (Q5)
to the 95" quantile (Q95) to characterize feather mite abundance in each bird species.
Special relevance was given to Q95 as the best surrogate of the carrying capacity of
feather mite abundance of each bird species, following Hechinger et al. (2019).
Microbial abundance data
We used microbial abundance data from a recent study where the amount of fungi and

bacteria DNA available on feathers’ surfaces was quantified by qPCR (Labrador et al.,

11
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2021). This is justified not only by current knowledge on feather mites’ diet (see
above), but because Labrador et al. (2022) found that feather mites also occur on wing
flight feathers during the night, when they forage. In brief, microbial DNA was
extracted and amplified from the second secondary feather of the right wing of 133
individuals of 22 species. The amount of fungal and bacteria DNA were positively
correlated at the individual bird and bird species levels (Labrador et al., 2021). Hence,
here we combined fungal and bacterial values for each individual bird, and then
calculated the mean microbial DNA abundance for each bird species. This value was
used as a rough estimate of the microbial food resources available for their feather
mites.

Bird morphology data

Three morphological traits for the studied bird species were retrieved from the
literature: body size (in g), wing area, and uropygial gland size (see Supporting
Information for details). Moreover, the number of feather barbs was calculated for each
bird species combining original data on feather lengths for 40,346 birds (sample size:
mean = 917, min-max = 1-9,506 birds per species) captured from 1994 to 2015 at the
Manecorro Ringing Station (Dofiana National Park, SW Spain), and feather barb density
reported in the literature (see Supporting Information for details, and Figure 2 for the
number of bird species for each morphological variable).

Statistical analyses

Phylogenetic generalized least squares regressions (PGLS; Symonds & Blomberg 2014)
were performed to retrieve (from the slope of the log-log regressions; following
Hechinger 2013) the scaling exponents between bird species’ body size (logio
transformed) and the four variables (logio transformed) hypothesized to constrain

feather mite infracommunity sizes: wing feather microorganism amount, uropygial

12
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gland size, wing area, and number of barbs of primary feathers. One multivariable
PGLS regression for each feather mite abundance quantile (dependent variable; logzo
transformed) was used to calculate how it scaled with bird and mite body sizes
(independent variables; logio transformed). PGLS regression was also used to study the
relationship between bird size and the weighted mean body size of their feather mites.
We used the gls function of the caper R package (Orme et al., 2012) to perform the
PGLS regressions, which ensure the statistical independence of our samples, correcting
the model estimates by the phylogenetic relatedness of the studied species. We obtained
information on the phylogenetic relationship among bird species by downloading a

distribution of 1,000 trees from BirdTree (Jetz et al., 2012, http://birdtree.org) using the

Hackett backbone tree (only sequenced species; Hackett et al., 2008). Then, following
Rubolini et al. (2015), trees were summarized by computing a single 50% majority-rule
consensus tree in SumTrees v 4.5.1 in DendroPy (Sukumaran & Holder 2010, 2015).

In each PGLS model, we allowed the phylogenetic signal in the residuals (i.e.,
Pagel’s lambda, 1) to be optimized towards its maximum likelihood value (Symonds &
Blomberg 2014). These models were also weighted by the sample size (logzo
transformed) of each bird species to incorporate the higher uncertainty associated with
feather mite abundance data from host species with smaller sample sizes.

To further study the factors constraining feather mite infracommunities, we used a
multivariable quantile regression analysis on the logi0(Q95) of feather mite abundance
against logio(bird body size) and logio(feather mite body size) as independent variables
(Koenker & Basset 1978; Cade & Noon 2003). We were especially interested in the
quantile regressions at the largest t values because these would reflect the maximum
feather mite abundance that bird species can harbour, considering their body size and

that of their feather mites. However, we also explored the other t values to obtain a
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more complete picture of the scaling of feather mite abundance. We used the quantreg
R package (Koenker 2015), and assessed the slopes of the quantile regression models
for different = values from 0.05 to 0.95. Quantile regression analyses were also weighted
by the sample size (logio transformed) of each bird species.

Estimated mean A for Q95 in the PGLS regressions explained above was 0.413
(95% CI: 0.077-0.749). Thus, a phylogenetic modelling approach to the quantile
regression would require the phylogenetic scaling factor to be adjusted to A<1.
However, we were unaware of any tool able to perform such partial phylogenetic
correction in a quantile regression analysis (see Jovani et al., 2016). Consequently, we
present the results based on a non-phylogenetically corrected quantile regression and
assume that phylogeny is unlikely to be a confounding factor.

Current information on the annual cycle of European feather mites indicates that
their abundance peaks from winter until the onset of birds’ reproductive season (Blanco
et al., 1997; Peet et al., 2022), when mites are transmitted from parents to offspring
birds, causing a lowering of feather mite abundance (Mironov & Malyshev 2002; Dofia
et al., 2017). Thus, we tested the robustness of our conclusions by repeating all the
analyses on feather mite abundance for the subset of birds captured from the beginning
of October to the end of March (hereafter “winter”). This restriction reduced the sample
size to 8,066 individual birds of 77 species.

Results

Predictions from Eqg. 1 and Eq. 2

Microbial abundance on feathers was not correlated with bird species’ body size (Figure
2a, Table S1) which suggests that o;,would be 0. Moreover, bacteria and fungi are not
produced by the host’s metabolism (in contrast to uropygial gland waxes). Thus, we

removed —y;, because it refers to a host mass-specific metabolic rate scaling. In this
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case, Eq. 1 predicts that feather mite abundance would only negatively scale with mite
body size as follows (note that MY = 1)
Ny o« M, 3%, Eq. 3
Uropygial gland size showed a strong allometric relationship with bird body

size, with a scaling exponent of 0.902 (Figure 2b, Table S1). Therefore, if energy
provided by the gland waxes of the hosts is the main constraint to feather mite
infracommunities, Eqg. 1 would predict that the maximum feather mite abundance would
scale with bird and mite body size as follows

Ny o< MP-652 1 3/*, Eq. 4

Thus, the scaling exponent of uropygial gland size on bird body size in Eq. 4
predicts a positive effect upon feather mite abundance because larger birds would
provide more energy resources to mites. In contrast, the scaling exponent of feather
mites’ body size is negative because (all else being equal) the higher energy
consumption of larger mites would lead to lower abundances.

Wing area scaled with bird species body size to 0.676 power in accordance with
the theoretical 2/3 scaling exponent for external host surfaces, while the number of
barbs scaled with a slope of 0.264 (Figures 2c and 2d, Table S1). Thus, if feather mite
infracommunities were limited by wing area, Eq. 2 would be

Ny oc MQ676 M3,

Eq.5
However, if the number of barbs is the relevant spatial constraint for feather mite
infracommunities, Eqg. 2 would read as
Ng o« MO264M /3, Eq. 6
Thus, Eq. 5 and Eqg. 6 show the predicted positive effect of bird body size upon

feather mite abundance (larger birds provide more space to mites, depending on the
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bird’s body part relevant to the mites, i.e., wing area vs. barb amount), but that larger
mites would attain a lower abundance (fewer mites would fit on a host of a given size).
Predicted vs. empirical scaling rules

PGLS models showed a weak effect of feather mites’ body size on their abundance
along all abundance quantiles (Table S2). For the few quantiles with slopes differing
from 0, the slopes were all positive, thus strongly departing from the predicted negative
slopes of —3/4 (Egs. 3 and 4) and —1/3 (Egs. 5 and 6) of mite abundance to mite body
size (Table S2). In contrast, we found a positive correlation between bird species’ body
size and the abundance of their feather mites (Figure 3, Table S2), holding from the Q45
to Q95, with empirical slopes in close agreement with the slopes predicted by Eq. 6 for
the number of barbs (Figure 3a, Table S2). For the remaining host traits that might
constrain mite abundances, empirical slopes departed from those predicted by the
equations based on the scaling of microbial abundance (Eq. 3), uropygial gland size
(EQ. 4), and wing area (Eq. 5; Figure 3a, Table S2).

Quantile regression analyses (including both bird and mite body size as
independent variables) showed slopes for feather mite body size clearly departing from
the predicted —1/3 and —3/4 by Eqgs. 3 to 6 (particularly for higher < values; Figure S1).
However, we did found the expected positive relationship between Q95 feather mite
abundance and bird species’ body size (Figure 4). Regression slopes for the highest <
values were close to the one predicted by the scaling equation that considers the number
of barbs as a main spatial constraint (Eq. 6), but much larger than the slopes predicted
for microbial abundance (Eg. 3), and much lower than those predicted by the scaling
equations considering uropygial gland size (Eq. 4) or the wing area (Eg. 5) as the main

energetic or spatial constraint, respectively (Figure 4).
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Feather mite’s body size was uncorrelated with hosts’ body size (Figure S2).
Thus, overall, these results show that larger birds hold larger feather mite abundances,
but this cannot be explained by feather mite size, i.e., larger birds do not carry larger
numbers of smaller mites.

Dashed lines in Figure 4b (and Figure S3b) were drawn to cross the actual Q95
feather mite abundance (356 mites) for Regulus ignicapilla, the second smallest bird
species in our sample (5.6 g). Thus, the dashed lines extrapolate the Q95 feather mite
abundance expected for larger bird species, given the actual abundance of feather mites
for smaller ones. Strikingly, this predicted that the largest bird species in our sample
(Pyrrhocorax pyrrhocorax; 287.5 g) would have 5,098 and 4,635 Q95 feather mite
abundance, according to the allometry of the wing area (Eqg. 5) or the uropygial gland
size (Eq. 4), respectively. However, the actual abundance was four times lower (1,155),
and in close agreement with Eq. 6 (1,005) that involves the number of barbs. Also, the
extrapolation according to Eq. 3 involving microbial abundance yielded a clear
underestimation (356) of the actual abundance of mites. In summary, the rather flat
slope of the quantile regression for the largest = values (slope, 95% CI = 0.336, 0.272—
0.336) shows the strong ceiling that the number of barbs imposes on feather mites’
abundance, precluding larger birds from holding as many mites as expected based on
other bird features.

When analysing only data from birds sampled in winter, the smaller sample size
led to an increase in the uncertainty of the estimates, but similar qualitative results were

found (see Supporting Information).

Discussion
The carrying capacity of birds to support feather mite populations increases with bird

species’ body size, with a scaling exponent close to that predicted by space (but not
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energy) constraints. Specifically, the empirical scaling we found fits closely the scaling
exponents predicted by the equation involving the number of feather barbs, but not wing
area as spatial constraint or microbial abundance or uropygial gland size as energetic
constraints. The size of feather mites inhabiting bird species was not correlated with the
abundance of mites or with the size of their hosts.

This space constraint seems to be in conflict with the fact that birds with many
feather mites typically have large sections of each flight feather, or even entire feathers,
devoid of feather mites (e.g. Jovani & Serrano 2004). However, feather mites show
strong preferences for certain feathers and feather sections (e.g. Figure 1), and these
preferences differ among feather mite species (Bridge 2003; Jovani & Serrano 2004;
Mestre et al., 2011; Fernandez-Gonzalez et al., 2015; Stefan et al., 2015), feather mite
life stages (Labrador et al., 2022), and according to environmental conditions (Wiles et
al., 2000) or even to time of the day (Labrador et al., 2022). Therefore, our results,
complemented with previous knowledge about the bird—feather mite system, show that
feather mite populations are spatially limited, likely because of some negative density
dependence acting well before the entire feather surfaces are fully occupied.

Our results simultaneously show a strong ceiling for the maximum feather mite
abundance, and manifold differences in the abundance of feather mites among bird
species with similar body sizes (note the logarithmic y-axis of Figures 3 and 4). For
instance, in the Q95 abundance of feather mites of well-sampled bird species under 10 g
there is an 8-fold difference from 47.9 mites per bird in Phylloscopus collybita to 389.5
mites in Aegithalos caudatus. Further comparative studies (as the one by Galvan et al.,
2008) are needed to understand which traits of birds and traits of feather mites are
responsible for the large differences in feather mite abundances across bird species

(Diaz-Real et al., 2014). Our results reject the role of uropygial gland size as an
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important constraint to feather mite populations and provide a new evidence (in addition
to other studies, e.g. Pap et al., 2010; Dofa et al., 2019) against preen waxes being
important food resources for feather mites. Lastly, the role of bacteria and fungi as
important food resources for feather mites would need further study because their
potential limiting role should not be fully discarded given the small number of host
species analyzed here in this regard (N = 21, Figure 2a).

Our results can be compared with those reported by Hechinger et al. (2019), who
also studied the allometry of bird ectosymbionts’ abundance. While they found
energetic constraints to be more relevant for arthropod ectosymbionts of birds, we have
not found this energetic constraint. This disagreement may be because Hechinger et al.
(2019) mainly studied non-passerine birds, and here we studied only passerines.
Moreover, Hechinger et al. (2019) studied a more complete arthropod ectosymbiont
community (lice and mites, including a few ticks), rather than focusing on a more
taxonomically and ecologically restricted group as in our study (only feather mites).
While there may be constraints shaping the whole community of ectosymbionts (thus
supporting Hechinger et al.’s approach), it is also likely that different symbiont groups
are constrained by different host traits, or by the same host traits but in different ways.
For instance, unlike lice, blood-feeding mites and ticks, feather mites consume fungi,
bacteria and other organic matter present on feathers’ surface, which are not produced
by the host’s metabolism. Thus, this demands a different parameterization of the
metabolic theory equations. Interestingly, Hechinger (2013) suggested that space
constraints may be more relevant than energy in metabolically inactive symbiont stages
that do not use the energy resources provided by their hosts (e.g. because they are
trophically transmitted cyst stages waiting for an ultimate host to predate their current

intermediate host). Our findings support this view as feather mites may not consume
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bird metabolic products, but organic material that they find on the feathers’ surface
(Doria et al., 2019; Labrador et al., 2022). Thus, it is necessary to nurture the framework
proposed by Hechinger (2013) and Hechinger et al. (2019) with more knowledge about
the ecology and biology of the studied symbionts, and to integrate this with interspecific
comparative analyses to understand the relevant processes regulating symbiont
abundances and energy fluxes in host-symbiont systems.

The lack of correlation between the body size of the bird species studied here and
the size of their feather mites goes against the Harrison’s Rule (Harrison 1915). This
may be the result of feather mite species showing a complex co-evolutionary history
with their hosts, with host-switching being as frequent as cospeciation (Doiia et al.,
2017, 2019). In other words, mites currently found on one bird species may have
speciated on another host species (typically from the same genus or family). This may
partly explain why the smallest (Regulus regulus; 5.6 g) and the largest (Pyrrhocorax
pyrrhocorax; 287.5 g) bird species in our study have similarly sized mites (i.e., similar
weighted mean size of their mite species): 3.82ug and 2.61 g, respectively (Figure S2).

Besides the relevance of the number of barbs for mite abundance, the allometry of
other host traits may also have interesting implications for our understanding of the
entire symbiont community composed of all organisms living on bird feathers, the so-
called pterosphere (sensu Labrador et al., 2021). For instance, we showed that feather
mite abundance scaled with bird species’s body size with a much shallower slope than
the wing area did (Figures 3 and 4, Table S2). Consequently, although absolute feather
mite abundance increased with host body size, the maximum density of feather mites
(i.e., Q95 feather mite abundance/cm?wing area) decreased sharply with increasing bird
species body size (PGLS: t =-3.083, df = 86, p = 0.003; Figures 5 and S5). This raises

the question of (1) whether a lower density of feather mites in larger bird species
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implies a lower cleaning service provided by mites to their hosts; or (2) whether this
lower density is the result of a potential competition between feather mites and feather
lice, as numeric dominance of lice relative to mites has been observed in larger-bodied
bird species (Hechinger et al., 2019).

Overall, our study shows the potential of the theoretical and quantitative
framework proposed by Hechinger (2013) using the metabolic theory of ecology to
disentangle the mechanisms behind symbiont abundance across host species. It also
shows the necessity to fully integrate the biology of the studied species to make

accurate predictions on the factors limiting symbiont populations.
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720  Figure 1: Feather mites (Proctophyllodes sylviae) on the wing of a Sylvia atricapilla.
721 Note their strong aggregation in certain feathers along the wing and some sections

722 within those feathers, and their queuing along feather barbs.
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Figure 2: Relationships between potential energetic (microbial abundance N = 21
species, uropygial gland size N = 76) and spatial (wing area N = 88, or number of barbs
N = 44) constraints against bird species body size (in g). Dashed lines show slope = 1.
Only slopes that departed from 0 (p-value < 0.05) are drawn (black line) and its

estimated value is shown.
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732

733 Figure 3: PGLS models for the relationship between 19 quantiles (from Q5 to Q95) of
734  feather mite abundance in each bird species as dependent variable and logzo(bird species
735  body size) and logio(feather mite body size) as independent variables. (a) Slopes (£95%
736 ClI) for logio(bird species body size) are shown as dots and whiskers. Dashed lines show
737  slope predictions according to Eq. 3 (microbial abundance), Eq. 4 (uropygial gland

738  size), Eq. 5 (wing area), and Eq. 6 (number of barbs). (b) to (d) three examples of the
739  relationship between bird body size (in g) and feather mite abundance at different

740  quantiles (Q95, Q5, and Q50, respectively) from which slopes for plot (a) were

741  obtained. Dot size is proportional to the logio(sample size) for each bird species. Only

742 regression lines with slopes differing from 0 are shown.
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744
745  Figure 4: Multivariable quantile regression on log10(Q95 feather mite abundance) with

746 logio(bird species body size) and logio (feather mite body size) as independent variables.
747  Dashed lines show slope predictions according to Eqg. 3 (microbial abundance, MA), Eq.
748 4 (uropygial gland size, UGS), Eq. 5 (wing area, WA), and Eq. 6 (number of barbs,

749  NB). (a) Bird species body size slopes (£95% CI) for each tau (z) value. (b) Quantile
750  regression of the allometry of Q95 feather mite abundance (continuous gray lines) and
751  predicted slopes (black dashed lines). Dot size is proportional to the logio(sample size)
752  for each bird species.
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757  Figure 5: Relationship between logio(bird species body size) (in g) and the maximum
758  density of their feather mites (Q95 feather mite abundance/cm? of wing area). Dot size

759 is proportional to the logio(sample size) for each bird species.
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