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Widespread reductions in body size are paired with stable assemblage
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Abstract: Biotic responses to global change include directional shifts in organismal traits.
Body size, an integrative trait that determines demographic rates and ecosystem functions, is
often thought to be shrinking in the Anthropocene. Here, we assess the prevalence of body
size change in six taxon groups across 5,032 assemblage time-series spanning 1960-2020.
Using the Price equation to partition this change into within-species body size versus
compositional changes, we detect prevailing decreases in body size through time. Change in
assemblage composition contributes more to body size changes than within-species trends,
but both components show substantial variation in magnitude and direction. The biomass of
assemblages remains remarkably stable as decreases in body size trade-off with increases in

abundance.

One-Sentence Summary: Variable within-species and compositional trends combine into

shrinking body size, abundance increases and stable biomass.
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Main Text:

The loss or gain of large species can have dramatic consequences for ecosystem functions in
terms of total system biomass and metabolism and thus food web energy fluxes (7).
Anthropogenic changes to the biosphere are miniaturizing many communities (/-3) due to the
extinction of larger species (e.g. (4)), and selective removal of the largest individuals (5). Yet
shrinkage trends of community body sizes are by no means universal and, when looking
across many communities, no change in body size is found on average (6). Indeed, as species
shift their locations, some communities, including arctic and high-elevation plant
assemblages (7), are also gaining relatively larger species. Hence, the prevalence of body size

changes, and their implications for assemblage abundance and biomass are unknown.

Here, we first quantified the distribution of trends in body size change through time from
5,032 time-series over 60 years (§), including data from 4,734 species and six taxon groups
from communities distributed across the world (Fig.1A, fig. S1). We find more shrinking
than increasing trends, both overall, and among time series with stronger evidence for trends
of change (lower p-values) (Fig. 1B), contrasting with the results of Terry et al. (6). To
disentangle the variety of trends in body size we found and how they align with previous
studies, we decompose body size changes into the different mechanisms involved, namely the
loss or gain of species of different sizes (i.e., compositional change) and within-species

population changes as individuals of a given species tend towards smaller or larger sizes.
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Fig. 1. Changes in body size across 5,032 assemblages reveal higher prevalence of
declining trends. (A) Average individual size across the full set of assemblage time-series.
Each point represents an assemblage body size at one time point, coloured by density break

(colder colours indicate lower densities) (B) Density plots of the distribution of slopes of
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change in average individual body size. The full set of 5,032 assemblage time-series is shown
in light gray. Yellow, blue and orange represent respectively the subset of assemblages for
which strong evidence (P<0.01), moderate evidence (P<0.05) and weak evidence (P<0.1) of
change was detected when testing slopes against 0. Dotted lines show slope of 0, while blue
dashed lines show the mean slope across the blue data (traditional significance value) and the

respective 90% credible interval.

Population body size shifts have been attributed to several selection forces, including
preferential exploitation of larger individuals (/, 9), climate change and habitat conversion
(10-12). At the assemblage level, large-bodied species have been particularly susceptible to
extinction following temperature shifts and human colonisation of landmasses due largely to
their life history traits and lower numbers (/3), which can shift composition turnover to
favour small-bodied species. Previous assessments often investigate only compositional (6)
components of body size change or within-species population changes (3), but see (/4). We
collated time-series that recorded both organism abundance and body size data in the field
across 5,032 assemblages to estimate the extent to which the two mechanisms drive overall

change in body size across taxa and regions.

Body size change from compositional and within-species change can co-occur, and operate
either in the same or opposing directions (Fig. 2). We decomposed assemblage body size
change into compositional and within-species changes using an extension of the Price
equation (/5-17). The Price equation is a mathematical description of the relationship
between statistical descriptors (mean and covariance) of selection and trait change (/8). By
examining the type of covariance in these two mechanisms of change, we can determine the
relative contributions of compositional and within-species change to observed overall change.
Assemblage body size change is most pronounced when both mechanisms operate in the
same direction (towards either shrinking or increasing body size), such that the covariance
between compositional and within-species changes is positive. When only one mechanism is
involved (i.e., change in one axis but not the other), body size change tends to be lower; and
with negative covariance it is possible to have change in one component cancel out change in

the other. (Fig. 2).
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Fig. 2. Mechanisms that underpin temporal changes in mean body size. (A) Shifts in
mean assemblage-level body size can occur due to within-species changes (vertical axis),
compositional changes (horizontal axis), or a combination of both mechanisms, displayed as
change between two time points: from time 1 to time 2. Body size distribution for time 1 is
shown in the middle, with different change outcomes for time 2 shown in the other cartoons,
omitting the no-change scenario where time 2 is identical to time 1. Different colours and
shapes represent different species. Icon size represents the body size of an individual. Note
that: The vertical placement (axis) represents the within-species (population or intraspecific)
changes through time in mean body size. This could be a mix of increases (e.g., smaller
individuals growing larger or being replaced by larger individuals) and decreases in the
average size of individuals of different species. The horizontal placement (axis) indicates
change in mean body size resulting from the gain or loss of species (compositional turnover),
or a change in the relative abundance of the species present in an assemblage (even without
local extinction or immigration of species). (B) Changes are not expected to follow a
generalised directional pattern; the two components can reinforce or counteract each other. If
they counteract, the overall direction of change will depend on which component shows the

higher absolute effect (contribution).
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Our analysis shows that assemblage body size is predominately shrinking, with substantial
variation in the balance of within-species change and compositional change (Fig. 3). Of the
5,032 assemblages, two-thirds decreased in assemblage average body size and one-third
increased. In fact, both mechanisms of body size change were present for the overwhelming
majority of assemblages (97%) with the magnitude of compositional change being greater
than within-species change in 72% of assemblages. Although compositional and within-
species change often occurred in the same direction (59% of assemblages), we found
counteracting effects in 41% of all assemblages. For example, of the 3,478 assemblages
showing within-species decreases in body size, compositional change for ~37% drove
increases in body size (when within-species change < 0 and compositional change > 0, Fig 3).
Consequently, the conflicting trends in body size previously reported in the literature are
likely linked to this substantial variation in magnitude and direction of the two components of

body size change.
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Fig. 3. Patterns of body size change through time in 5,032 assemblages representing

4,237 species of fish, plants, invertebrates, mammals, herpetofauna, and marine benthic

organisms. (A) Relationship between population-level (i.e., within-species) changes and

assemblage-level (i.e., compositional) changes. Both axes show % changes standardised by

the number of years between the first and last year sample of the assemblage (duration);
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assemblages (points) are coloured by density break (colder colours indicating lower
densities). Dashed lines show x =0, y = 0, x =y and y=-x. (B) Frequency distributions (in
percentage) of the number of assemblages (n=5032) in the different scenarios depicted in Fig.
1B. For clarity, assemblages with % change.year™! higher than 10% (n=514; but see fig.S2 &
S5) are not shown in panel (A), but are included in (B).

We found that trends in body size change over time differ according to taxa, realm and
latitude (fig. S3). Available data with simultaneous estimates of abundance and body size
displays geographic and taxonomic biases (fig. S1), with order of magnitude differences in
the number of species, observations and time-series among different taxa. Hence our
confidence in estimates of body size change is highest for the most well sampled taxon—
marine fish, which show a particularly evident decrease in body size (fig. S3A). This result
aligns with previous evidence of directional trait changes found among fish assemblages (/9-
21). For marine organisms, these changes are often linked to the selective exploitation of
large-bodied individuals by humans (79), to warming (20), or to decreased resource
availability (27). Disturbances and selective removals affect the age structure of populations,
as well as genetic shifts within populations (e.g., (22)). Combinations of these drivers likely
result in high variability in trends and prevalence of counteracting effects. Among other taxa,
realms and climates (fig. S3) the number of available time-series is lower and within-species
and compositional changes are more variable. We see evidence of increasing body size where
the pattern of compositional change is strongest (e.g., plants, invertebrates and benthos-
mainly marine invertebrates), counteracting declining trends within species, although these
results should be interpreted with caution given the lower number of time-series involved.
There is substantial variability in the duration and time period of the time-series in our
dataset, but our results are robust to the length of the time-series as well as the start and end

points (see sensitivity analysis in fig. S4).

Body size is usually tightly linked to abundance (23) through metabolic (24) and trophic (25,
26) processes. This relationship can have implications for assemblage biomass mediated by a
trade-off between size and abundance (27). Hence, we investigated if the changes in body
size were associated with changes in assemblage abundance, biomass, or both. We found that
abundance has, on average, slightly increased through time, while the overall change in
biomass is indistinguishable from zero (Fig. 4). Previously, no (6), or complex (28)

relationships have been found between body size and abundance changes. Our results also
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point to a complex relationship. However, amidst the variation, there are signs that the overall
reduction in body size is being counteracted by increasing overall abundance (Fig. 4A and C).
Trade-offs between abundance and body size are expected (23) and affect ecosystem
metabolic rate and function (24). We detect a strong positive covariance between change in
biomass and abundance (Fig. 4D), but much weaker covariance between abundance and body
size, with the strongest trends among these two variables tending to negative covariance (Fig.
4C). In fact, 76% of the assemblages with detectable trends in both variables have abundance
increases and body size decreases. These patterns suggest that assemblage body size,
abundance and biomass are linked so that change in one has implications for change in the
others. Evidence of widespread regulation of assemblage level variables (species richness and
abundance) has been previously reported (29), whereby assemblages tend to return to
previous levels after disturbances. The absence of a directional trend in biomass suggests it
may be more tightly regulated than body size and abundance, which may be causing trade-

offs in change of the latter two variables.
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change in total biomass in an assemblage, as a function of time, for the same assemblages as
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shown in Fig. 3. The full set of 5,032 assemblage time-series is shown in light gray. Yellow,
blue and orange represent respectively the subset of assemblages for which strong evidence
(P<0.01), moderate evidence (P<0.05) and weak evidence (P<0.1) of change was detected
when testing slopes against 0. Dotted lines show slope of 0, while blue dashed lines show the
mean slope across the blue data (traditional significance value) and the respective 90%
credible interval; (C and D) The bottom panels show the different relationships between
variables. Only assemblages for which strong or moderate evidence (P<0.05) were detected
for both variables plotted are shown in blue, while purple highlights the assemblages for
which significant changes through time were detected in all 3 variables (n=47), all remaining
assemblages are shown in light grey: (C) change in average body size as a function of
abundance changes (note that 76% of the blue dots are in the quadrant where abundance
increases and body size decreases), and (D) change in biomass as a function of abundance

changes.

Collectively, these analyses reveal high variation in local-scale assemblage body size change
patterns, with both within-species and compositional changes playing considerable roles.
These findings highlight the importance of considering interactions between compositional
and within-species body size change. Specifically, the assemblage context is needed to
understand within-species change. For example, removing top predators (often the larger-
body size individuals in an assemblage) can trigger mesopredator release, which alters
assemblage size structure and composition (30). It is also at the assemblage level where
regulation will play out, for example, in relation to ecological carrying capacity (317).
Similarly, compositional change on its own ignores important within-species variation. In our
analyses, although we detect shrinkage with in situ estimates of body size, we cannot detect
change when we use species’ mean body sizes (from external non in-situ trait databases)
instead (fig. S8-S10) (/7). Indeed, we detect no trend regardless of whether we use the same
subset of the BioTIME database as in our main analysis, or if we expand it to include 20,925
assemblages (fig. S8) as was also found by (6). This discrepancy cautions against the use of
species’ averages for traits that exhibit substantial individual variation (20, 32) and highlights
the need for increased surveying of individual-level traits. Importantly, considering the two
axes of variation (compositional and within-species) avoids the misleading conclusions that

arise when the two components change in opposite directions.
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The selection forces acting on body size are varied and have heterogeneous distributions in
space and time. Partitioning body size change into within-species and compositional change,
the two components adopted here, can help explain the wide variation in body size change
patterns found in literature. For example, global warming is simultaneously selecting for
smaller body size (for metabolic reasons), affecting species’ phenology, and causing range
shifts (2). Global warming and species phenology effects can best be seen in within-species
changes while range shifts induce compositional change. The net result of these processes
will depend on the environmental context: in the Arctic Tundra, warming promotes larger
shrubs (7), because southern species are expanding their ranges and because there are longer
growing seasons. In contrast, warming is associated with smaller fish in the North Sea (717),
although selective harvesting/exploitation is likely also contributing to this change (33). By
considering both within-species and compositional changes in individual-level body size,
alongside changes in relative abundance, future research should be able to better elucidate the

mechanisms involved in body size change.

In conclusion, we find evidence of widespread shrinking body size through time due to
various mechanisms despite substantial variation, and overall stable assemblage biomass.
Body size is an easily measured, integrative, key morphological trait that scales with many
ecological characteristics of organisms and ecosystems, such as demographic rates,
metabolism and resource requirements (34, 35). We reiterate pleas for more regular
monitoring of body size (36), especially for non-marine taxa. Future research should focus on
the implications of the changes we identify for ecosystem function. For instance, cascading
food web effects of shrinking body size in organisms could negatively affect human nutrition
and associated economics (e.g., affecting crop plants and protein sources such as fish; (37).
Moreover, shrinking body size through compositional change is likely to bring changes in
other traits, and therefore trigger additional impacts on ecosystem functioning (/2). Our study
suggests the ubiquitous turnover in composition currently unfolding (38, 39) is a profound re-

shuffling of not only species, but also key characteristics of living organisms.
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Methods

Our analysis is based on bringing together trait data and ecological assemblage time-
series. We used two sources of body size trait data: direct measurements of species’ body size
(biomass) taken over time in the field (type 1) and species’ average body size estimates from
major published trait databases (type 2). Below, we describe the a priori quality criteria,
standardisations and subsequent calculations and statistical analyses that we used to provide a
uniquely comprehensive analysis of the processes behind current assemblage- and
population-level body size changes using type 1 data. The results of these analyses are
presented in the main text. In addition, we also present the methodology we followed to
explore the global patterns of body size change when considering compositional changes
alone and using different types of trait data (type 1 and type 2); the main results of those
analyses are presented in the Supplementary Results (/7).

Assemblage time-series data (BioTIME Database)

BioTIME is the largest global, open-access database of assemblage composition time-
series (8). This database includes data on multiple multicellular taxa (e.g., plants, fish, birds,
mammals, invertebrates), with over 12.5 million species-level records representing ~46,000
species. Each BioTIME study contains distinct samples measured (with a consistent
methodology) over time, which could be fixed plots (i.e., 'single-site' studies where measures
are taken from a set of specific georeferenced sites at any given time) or wide-ranging
surveys, transects, tows, and so on (i.e., 'multi-site' studies where measures are taken from
multiple sites that may or may not align from year to year). Because the spatial extent varies
across studies, we followed previous approaches (38, 40) to identify and standardise 'multi-
site' studies using a global grid of 96km? hexagonal cells using dggridR (4/). Studies that
were contained within a single cell were not partitioned. Following this step, each sample was
assigned a different combination of study ID and grid cell (based on its latitude and
longitude) resulting in a unique identifier for each assemblage time-series within grid cells,
thus allowing for the integrity of each study and each sample to be maintained. Then sample-
based rarefaction was applied to standardise the number of samples per year within each
time-series (38, 40, 42). Finally, we only retained observations sampled after the year 1960
(99.4% of all the data was recorded after this period) and restricted our analysis to time-series
with at least five different sampled years. For the analyses presented in the main text, we

further subsetted the database, and considered only records that contain both abundance
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information (i.e., counts of the number of individuals) and biomass estimates. In total, we

considered 5,032 time series from 44 studies across the globe (fig. S1; Table S1).

Trait data (BioTIME Database)

We extracted body size trait data directly from BioTIME using both abundance and
biomass estimates measured at the same time and place. From each record i, we estimate

average body size of individuals (BS) by considering that:

Br,s,t,i
BSr,s,t,i - Nyseg 5

where B is biomass and N is abundance recorded in year t, for species s within the
assemblage time-series r. Note that biomass is only measured at the individual scale
(abundance=1) for ~28% of the data, thus we refer to this measure as average individual body
size. Here, we include all taxonomic groups for which the appropriate data were available
including groups poorly represented in most trait compilations (e.g., invertebrates). In total,
we considered the following taxon groups: fish, benthos, plants, mammals, invertebrates, and
herpetofauna (reptiles and amphibians). We did not distinguish taxa across realms, but studies
that included multiple taxa (i.e., studies that sampled multiple taxon groups simultaneously)
were re-classified based on the dominant taxa represented. On average, we estimated multiple
body size measurements for 4,734 species within the 5,032 assemblage time-series (average

~41 species per assemblage time-series; Fig. S1).

Partitioning body size change — Price equation

To partition temporal changes in average individual body size, we used an extension of
the Price equation (75, 18), that allows an exact partition of trait change, Az, in an observed
dataset:

Az = X(4q5)zs + 2 q,s(AZs)

The first term on the left-hand side of the equation for Az accounts for total body size change
caused by changes in frequency due to species selection, i.e. changes in the relative
abundance or presence of species with a certain property value (body size; e.g., local
extirpations or colonisations). This term reflects the effect of species turnover. The second
term describes the part of total change caused by changes in mean property values, reflecting

the effect of within-species variation (e.g., larger individuals within a species being replaced
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by smaller individuals of the same species). Together, the two terms sum up to the actual
change in community-weighted mean (CWM) body size in an assemblage, Az. Given this, we
quantified changes in frequency as 4q,=q’s- q,, where ggand q'; are, respectively, the before
and after relative abundance of species s; and changes in mean property value as Az,= z',- zg,
where z; and z' represent, respectively, the before and after mean individual body size of
species s. In assemblage time-series where multiple individual BS, ; ; ; estimates were
available for the same year and species (e.g. when the assemblage was monitored more than
once a year), an abundance-weighted mean was used instead. Finally, when z; was not
available (i.e. colonisations did not occur) we considered zg = z', for that species, and thus
Azis equal to 0 and no change occurs due to changes in mean property values (within-
species changes).

For each assemblage time-series, we used the Price equation to partition body size
changes that occurred between two years, the last year (t,) and the first year (t;), where t =
t, — t; + 1 is the full length of the assemblage time-series. In order to ensure comparability
among time-series of different durations, both the within-species and the composition
component of body size change were converted to proportional changes relative to the
starting size of the assemblage. This was done by dividing each component of change by the
initial assemblage CWM and standardising it by duration (i.e., dividing by t). These
quantities were expressed in units of % change.year™'. Patterns across all assemblages are
represented in Fig. 3 and fig. S2, and patterns across the different taxa, realms and climates

are shown in fig. S3.

Sensitivity analyses

Many of the assemblage time-series varied in length (27.4 + 12yr, mean + sd), with
varying start and end points. To examine whether our results were sensitive to such effects,
we repeated the analysis using alternative start (t;) and end times (t,) within the same
assemblage. This analysis included a scenario where the first year was fixed, a scenario
where the last year was fixed and a scenario where both years varied randomly. For each of
the three scenarios, we repeated the analysis 100 times, where for each iteration we used the
Price equation to partition body size changes that occurred between the selected two years in
a given assemblage (as done in our main analysis); and reported the median effect of each

component and their dispersion (interquartile range) across all iterations (fig. S4). Despite
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slight differences across scenarios, the results were largely concordant and yielded the same
directional trends.

Given that some of the estimates were extreme with very large changes to assemblage
level body size (fig. S2), there could be some concerns about errors in the measurement or
measurement reporting of the abundance and biomass estimates (and consequently body size
estimates) in the original datasets. We performed in-depth checks of the raw data within
affected individual datasets (see fig S5 for an example) and found that such effects seem to be
a true representation of changes occurring in the assemblages. Nevertheless, these few
assemblages have the potential to over-influence the overall effects found, so we chose to
report robust statistics (median and interquartile range) that de-emphasise such extreme cases
without removing them, when appropriate (e.g., fig. S4 and S6).

For a few assemblage time-series the sample-based rarefaction process could lead to a
different species composition. To ensure our results were robust to the random samples
selected by the sample-based rarefaction process, we performed a bootstrap analysis re-
running the analysis described in the main text (using first and last year only) 100 times, each
time using a different dataset after the sample-based rarefaction process was applied. Only
the results of one iteration are presented in the main text, but plots of the distribution of

results across the 100 rarefaction iterations can be seen in fig. S6.

Body size, abundance, and biomass change

As mean body size emerges from the ratio of biomass and abundance (see section "7rait
data (BioTIME Database)"), change in either biomass or abundance can be responsible for
any observed body size changes. To explore these effects, we quantified trends in biomass
and abundance across individual assemblage time-series. This was achieved by fitting
ordinary least-squares regression models for each assemblage separately, with either average
individual body size, total abundance, or total biomass (centered and scaled) as a function of
time (year, mean-centered). All sampled years were considered, and for each year in a given
assemblage time-series, total abundance and total biomass were calculated by tallying the
number of individuals and biomass (regardless of species) sampled within that year,
respectively. The average individual size in a year was then retrieved by dividing the sum of
the biomass by the total abundance reported in that year for that assemblage time-series. The
set of slopes () of these linear models is shown in Fig. 1 (change in body size) and Fig.4A
and B (change in abundance and biomass, respectively). Additionally, we evaluated the

associations between the temporal trends in total abundance, total biomass, and mean body
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size, by comparing the slopes of change of assemblages for which statistically significant

trends were found across two or more variables (Fig. 4C and D; fig. S7). All calculations and

statistical analyses were performed in R-3.6.3 (43).
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