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Abstract 22 

The molecular mechanisms underlying the recognition of epitopes by T cell receptors 23 

(TCRs) are critical for activating T cell immune responses and rationally designing 24 

TCR-based therapeutics. Single-cell sequencing techniques vastly boost the 25 

accumulation of TCR sequences, while the limitation of available TCR-pMHC 26 

structures hampers further investigations. In this study, we proposed a comprehensive 27 

strategy that incorporates structural information and single-cell sequencing data to 28 

investigate the epitope-recognition mechanisms of TCRs. By antigen specificity 29 

clustering, we mapped the epitope sequences between epitope-known and epitope-30 

unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope, 31 

NQKLIANQF (S919-927), was identified for a TCR expressed by 614 T cells (TCR-614). 32 

Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA 33 

(NSP31790-1798), for a TCR expressed by 204 T cells (TCR-204). According to the 34 

molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition 35 

mechanisms for both TCRs. The structural motifs responsible for epitope recognition 36 

revealed by the MD simulations are consistent with the sequential features recognized 37 

by the sequence-based clustering method. This strategy will facilitate the discovery and 38 

optimization of TCR-based therapeutics. In addition, the comprehensive strategy can 39 

also promote the development of cancer vaccines in virtue of the ability to discover 40 

neoepitopes and epitope-recognition mechanisms. 41 

Keywords: single-cell sequencing, molecular dynamics simulation, TCR-pMHC, 42 
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neoepitope, SARS-CoV-2. 43 

Introduction 44 

Triggered by the recognition of antigens derived from pathogens or tumor-45 

associated mutations, the T cell immune response is integral to the adaptive immune 46 

system for immune surveillance and clearance[1-3]. T cell receptors (TCRs), as 47 

heterodimers on the surface of T cells, take charge of recognizing antigenic peptides 48 

presented by the major histocompatibility complex (MHC, also termed human 49 

leukocyte antigen or HLA in humans) on the surface of antigen-presenting cells to 50 

activate T cell responses[3]. During the development of T cells in the thymus, TCR 51 

genes are generated by V(D)J recombination, thereby different germline gene usages 52 

and imprecise gene segments joining endow the TCR sequences with enormous 53 

diversity[4, 5]. It is estimated that approximately 2×1019 αβTCR sequences can be 54 

generated in humans[6], although only a fraction of which are present in an individual[7, 55 

8]. Accordingly, the TCR repertoire, owing to its natural diversity, bears the potential 56 

to recognize various antigenic peptides. In addition, the polyspecificity that a certain 57 

TCR is capable of recognizing multiple distinctive peptide-MHC (pMHC) ligands 58 

further broadens the antigenic peptide repertoires under immunosurveillance[9, 10]. On 59 

the other hand, the tremendous TCR sequences and polyspecificity complicate the 60 

mechanistic investigation and limit therapeutic applications. 61 

Harnessing T cell immune responses by engineered TCRs or TCR-based 62 
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molecules is a promising means of immunotherapy; however, the inadequate 63 

understanding of epitope recognition by TCRs impedes the comprehensive utilization 64 

of immunological weapons[11]. With next-generation sequencing and single-cell 65 

approaches exploited for elucidating T cell immune responses[8, 12], innumerable data 66 

on TCR sequences and T cell gene expression have been released. Consequently, 67 

multiple methods used for TCR repertoire analysis were developed to understand T cell 68 

immune responses and assist clinical applications[7, 13, 14]. The diversity originally 69 

used for quantifying the distribution of species in ecology has become a general 70 

measure to describe the TCR repertoire[14]. By delineating the features of TCR 71 

repertoires from individuals in various contexts, it is accessible to predict the immune 72 

status associated with diseases[15-17] and the responses to immunotherapy[18]. 73 

Despite various high-throughput sequencing techniques developed, it remains an 74 

arduous task to obtain epitope information for TCR repertoires[7, 14]. To infer the 75 

antigen specificity, two seminal studies have deployed the sequence similarity to cluster 76 

TCRs[19, 20]. According to sequence-based clustering methods, the TCRs falling into 77 

the same cluster share similar antigen specificities. Thereafter, several specificity 78 

clustering methods were developed and utilized for disease-associated TCR 79 

identification[21-25]. Meanwhile, TCR sequencing techniques with antigen 80 

specificity[26] and VDJdb[27], a curated database storing tens of thousands of epitope-81 

known TCR sequences, provide valuable resources for clustering-based specificity 82 

analysis. These methods and resources, to some extent, promote the investigation of 83 
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epitope recognition mechanisms at the sequence level. 84 

Compared with the rapidly increasing data generated by high-throughput 85 

sequencing, the limited structural data of TCR hampers the investigation of TCR 86 

recognition mechanisms and further translational applications, such as the design of 87 

TCR-based therapeutics[11]. According to the structural T cell receptor database 88 

(STCRDab[28]), only ~600 TCR-associated structures are available,  which is far too 89 

less compared with the immense diversity of TCR repertoires[29]. To overcome the 90 

limitation of structural data, computational tools have been developed and applied to 91 

the design of TCRs[30-33]. Assisted by the development of deep learning-based 92 

methods in recent years, the protein structure in apo form can be readily obtained by 93 

AlphaFold or RoseTTAFold[34, 35]. To construct the complex structure, one can 94 

further employ information-driven molecular docking to predict the binding mode of 95 

protein to its ligands, e.g., for antigens and antigen receptors[36, 37]. Therefore, 96 

researchers could potentially obtain the TCR-pMHC ternary structure by combining 97 

sequence analyses and model constructions, thereby revealing the molecular 98 

mechanisms underlying the activation of T cell immune responses in silico[3, 38]. 99 

However, due to the lack of a comprehensive strategy integrating single-cell sequencing 100 

data with structural information, it remains a question whether the structural or kinetic 101 

properties of TCR-pMHC interactions are associated with the cellular characteristics of 102 

T cells captured by single-cell techniques. 103 
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To advance the investigation of epitope recognition by TCRs, it is necessary to 104 

develop a comprehensive strategy that leverages large sequence data and structure-105 

modeling tools. In this study, we proposed a computational pipeline to identify disease-106 

associated TCR-pMHC complexes and unveil the specific interacting partners 107 

responsible for epitope recognition. Combining epitope-unknown and epitope-known 108 

TCRs associated with SARS-CoV-2, we mapped the epitope information for epitope-109 

unknown TCRs using GLIPH[20], a sequence-based TCR clustering software. We also 110 

exploited similarity searching and immunogenicity prediction to discover potential 111 

epitopes. A reported SARS-CoV-2 epitope from the spike protein, NQKLIANQF (S919-112 

927), and a potential cross-reactive epitope from the nonstructural protein 3 (NSP3), 113 

KLKTLVATA (NSP31790-1798), were identified for two TCRs expressed by highly 114 

expanded T cells. We further performed molecular dynamics (MD) simulations for the 115 

identified TCR-pMHC complexes and pinpointed the critical structural motifs in TCRs 116 

responsible for epitope recognition. Our computational strategy bridges the single-cell 117 

sequencing data of TCRs, epitope sequences, and the structural dynamics of TCR-118 

pMHC, providing a means to obtain TCR-pMHC interactions at the atomic level. This 119 

strategy can facilitate future attempts to design TCR-based therapeutics and cancer 120 

vaccines. 121 

Methods 122 

Datasets collection 123 

The epitope-unknown TCR data were collected from a massive single-cell dataset 124 
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sampled from healthy controls and COVID-19 patients[39] (NCBI GEO database: 125 

GSE158055). The collected data mainly included germline gene usages, the nucleotide 126 

and amino acid sequences of the complementarity-determining regions 3 (CDR3s), and 127 

the cell type of originated cells. For convenience, we reannotated the cell subtypes 128 

according to marker gene expression (Table S1) and retained only αβTCRs, resulting 129 

in 213,755 epitope-unknown TCRs (Table S2). In addition, 43,252 epitope-known 130 

human TCRs or TCR β chains were collected from the VDJdb database[27]. 131 

TCR diversity analysis 132 

Samples that contained more than five distinctive TCRs that are different in 133 

germline gene usages or nucleotide sequences of CDR3s were retained for the diversity 134 

analysis. For each subtype of T cells, the TCR diversity was calculated as Shannon’s 135 

entropy[39]: 136 

𝐻 =  − ∑ 𝑝(𝑥) ∗ log2[𝑝(𝑥)]

𝑥

 137 

where p(x) represents the frequency of the TCR. 138 

Antigen specificity clustering 139 

For the epitope-unknown TCRs, 8,507 unique TCRs that occurred more than once 140 

were extracted to make up the UNK dataset. The epitope-known TCR datasets VDJ-S 141 

and VDJ-N, derived from the VDJdb database, contained 1,766 TCRs targeting SARS-142 

CoV-2 epitopes and 29,101 TCRs targeting antigens from other species, respectively. 143 

The TCRs from the UNK dataset were clustered with TCRs from the VDJ-S and VDJ-144 
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N datasets, respectively. The clustering processes were performed using the GLIPH 145 

(grouping lymphocyte interactions by paratope hotspots) algorithm[20]. According to 146 

the clustering algorithm, the CDR3β sequences of TCRs in the same cluster show either 147 

the global similarity that only one amino acid is different or the local similarity that 148 

enriched sequence motifs exist. However, due to the global similarity, the highly 149 

distinctive TCRs that do not share antigen specificities can be grouped in the same 150 

cluster via the connections between similar TCRs. To improve the clustering accuracy, 151 

we trimmed clusters by retaining the epitope-known TCRs that were different in only 152 

one position or showed local similarity with epitope-unknown TCRs, and vice versa. 153 

Finally, the epitope information was mapped between epitope-known and epitope-154 

unknown TCRs in the same cluster. 155 

Analysis of TCR-pMHC crystal structures 156 

A total of 133 human TCR-pMHC-I crystal structures were downloaded from the 157 

STCRDab[28] database. After removing TCR-pMHC structures in which the peptide 158 

contains non-standard amino acids and redundant structures with identical CDR3α, 159 

CDR3β, and the presented peptide, we finally obtained 65 non-redundant TCR-pMHC 160 

complex structures with a 9-mer peptide bound in the antigen-binding groove of the 161 

MHC-I molecule. Then, the contact numbers between CDR3α/β and the bound peptide 162 

were calculated using the Python package of PyMOL[40] software. A cutoff distance 163 

of 5 Å between each pair of heavy atoms was used for the contact calculations; therefore, 164 

two residues are in contact if at least one distance between two heavy atoms is less than 165 
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the cutoff. 166 

Potential epitope screening 167 

The mapped epitopes from non-SARS-CoV-2 antigens were utilized to screen 168 

potential epitopes against all the possible 9-mer peptides derived from the SARS-CoV-169 

2 proteins (GenBank: MN908947.3). First, the physicochemical similarities in the hot-170 

spot region, the fourth to the eighth site, between the mapped epitopes and the SARS-171 

CoV-2 peptides were calculated based on the Euclidean distances of three Atchley 172 

factors[41] representing the molecular polarity, size/volume, and electrostatic charge of 173 

residues. We chose the Atchley factor, as it was derived from a large number of amino 174 

acid indices[41] and has been successfully applied for differentiating disease-associated 175 

TCR repertoires[23]. Then, for each mapped epitope, the top 10 most similar SARS-176 

CoV-2 peptides were submitted for immunogenicity prediction. The binding abilities of 177 

searched peptides to the top 20 most common HLA class I molecules in China[42] were 178 

predicted using NetMHCpan 4.1[43]. In addition, the immunogenicity of searched 179 

peptides was predicted and ranked using DeepAntigen[44]. 180 

TCR-pMHC model construction 181 

The structures of TCR-614 and TCR-204 were predicted by a local version of 182 

ColabFold[45]. The pMHC models of HLA-B*15:01-NQKLIANQF and HLA-183 

A*3001-KLKTLVATA were constructed by mutating the peptide to the objective 184 

epitope based on the crystal structures of pHLA-B*15:01 (PDB id: 6uzq) and pHLA-185 
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A*30:01 (PDB id: 6j1w[46]), respectively. Then, the modeled pMHC structures were 186 

optimized by 50-ns unbiased MD simulations. Then, the optimized pMHC models were 187 

used for molecular docking with TCR to generate TCR-pMHC ternary models. The 188 

web server HADDOCK 2.4[47, 48] was utilized to dock TCR to pMHC. The peptide 189 

and CDRs were provided as active residues for the docking process. The rigid-body 190 

sampling generated 5000 models, and the top 1000 best-scored models were optimized 191 

in the semiflexible and water refinement stages. To select the initial model suitable for 192 

further analysis, we calculated the contact number between CDR3α and the fourth to 193 

the sixth sites in the peptide, as well as the contact number between CDR3β and the 194 

fifth to the eighth sites in the peptide, according to the analysis of TCR-pMHC crystal 195 

structures. The contact information was calculated with a distance cutoff of 5 Å using 196 

the gmx mindist command implemented in GROMACS 2020.3 software[49]. Then, a 197 

relatively loose threshold of 10 contacts for each CDR3 was used for filtering model 198 

candidates. Finally, the best-scored model was selected as the initial structure for the 199 

following MD simulations to unveil the TCR-pMHC recognition mechanisms. 200 

Setups and analysis of MD simulations 201 

The MD simulations were performed using GROMACS-2020 software[49]. The 202 

ff14SB[50] force field was used to describe the TCR-pMHC complex, and the TIP3P 203 

water model was used to solve the complex. The sodium and chloride ions were added 204 

to neutralize the system to an ion concentration of 0.15 M. The cutoff distances of van 205 

der Waals (vdW) and short-range electrostatic interactions were set to 12 Å. The 206 
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Partical-Mesh Ewald[51] (PME) method was used to address the long-range 207 

electrostatic interactions. The LINCS[52] algorithm was applied to constrain the 208 

chemical bonds. The energy minimization was performed using the steepest descent 209 

algorithm, followed by a 200-ps NVT MD simulation with all the protein heavy atoms 210 

restrained by a force constant (1000 kJ/mol/nm2). The initial velocities of the 211 

production MD simulations were randomly assigned at 50 K, and the system was heated 212 

to 310 K within 200 ps and kept at 310 K using the velocity rescaling thermostat[53]. 213 

Finally, we sampled 100-ns simulation data for the TCR-614-pMHC complex and 200-214 

ns simulation data for the TCR-204-pMHC complex. For each dataset, all the structural 215 

analyses were performed based on the last 50-ns simulations. 216 

The gmx rmsf command was used to calculate the value of root-mean-square 217 

fluctuation. The gmx select command was used to calculate the contact number between 218 

the TCR and the peptide with a distance cutoff of 6 Å. The HBs were analyzed using 219 

the gmx hbond command. The solvent-accessible surface area (SASA) was analyzed 220 

using FreeSASA[54] software. 221 

Results 222 

Investigation of the TCR-pMHC recognition mechanism by leveraging 223 

single-cell TCR-seq data and computational tools 224 

Here, we proposed a comprehensive strategy to investigate the molecular 225 

mechanisms underlying TCR-pMHC recognition involved in SARS-CoV-2 infection 226 
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based on available scRNA-seq data (Fig. 1A). First, we collected massive epitope-227 

unknown TCR data, including V(D)J gene usages, CDR3 sequences, and cell clonal 228 

expansion information from an scRNA-seq dataset of COVID-19 patients[39]. Then, 229 

the T cell clonality analysis was performed to reveal the influences imposed by SARS-230 

CoV-2 infection on T cell immune responses. We also collected epitope-known TCRs 231 

with epitope sequences from the VDJdb[27] database. To identify epitopes for epitope-232 

unknown TCRs, we performed sequence-based antigen specificity clustering for 233 

epitope-unknown and epitope-known TCRs. For these TCRs that share similar 234 

sequence features with epitope-known TCRs targeting SARS-CoV-2 epitopes, we could 235 

readily map the corresponding epitopes. For TCRs targeting antigens from other species, 236 

we proposed a physicochemical similarity-based strategy to screen potential cross-237 

reactive epitopes against SARS-CoV-2-derived peptides, which allows us to discover 238 

neoepitopes. According to the clonality analysis, two representative TCRs with 239 

corresponding epitopes were selected for more detailed structural analyses. Finally, we 240 

elucidated the epitope recognition mechanisms for both TCRs. 241 

SARS-CoV-2 infection reduces the diversity of the TCR repertoire in 242 

cytotoxic CD8+ T cells 243 

The epitope-unknown TCR dataset was originally sampled from healthy controls 244 

and patients in the disease progression/convalescent stage. Data sampled from patients 245 

were also divided by the severity of symptoms into moderate and severe cohorts (Table 246 

S2). The collected dataset contains 113,226 (53%) CD4+ T cells and 100,529 (47%) 247 
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CD8+ T cells that express αβTCR. According to the original publication, we reannotated 248 

the cell subtypes by combining cells similar in the expression of marker genes. We then 249 

analyzed the clonal expansion of T cells from healthy controls and patients. We found 250 

that CD8+ T cells exhibited higher clonal expansion for both controls and patients 251 

compared with CD4+ T cells (Fig. 1B and 1C). Moreover, for patients with severe 252 

symptoms in the disease progression stage, the proportion of proliferative CD8+ T cells 253 

showed an obvious increment (Fig. 1B), indicating the ongoing expansion of CD8+ T 254 

cells in these patients. Consistently, a previous study reported that proliferative T cells 255 

were elevated significantly in patients and showed associations with COVID-19 256 

severity[39]. For CD4+ T cells, naive cells dominated the distribution of T cell subtypes 257 

except for severe cohorts in the progression stage (Fig. 1C). 258 
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 259 

Figure 1. The workflow used to investigate TCR epitope recognition in the current study. (A) 260 

A computational strategy to investigate TCR-epitope recognition by leveraging bioinformatics tools. 261 

Epitope-unknown TCRs were collected from a massive scRNA-seq dataset. Epitope-known TCRs 262 

and epitope sequences were from VDJdb. Representative TCRs were selected based on clone 263 

analysis and submitted to the investigation of epitope recognition via tandem computational tools. 264 

(B-C) The composition of CD8+ T cells (B) and CD4+ T cells (C). For each cohort, the histogram 265 

indicates the proportion of each subtype and is shown in different colors according to the clone size. 266 

(D-E) The TCR diversities of CD8+ (D) and CD4+ (E) T cell subtypes. Error bars indicate the 267 

standard error of the mean, and p-values < 0.05 are labeled above the black line. The p-values were 268 

computed using the Mann-Whitney U-test. 269 

We further delineated the diversity of the TCR repertoire for each cell subtype. 270 

Defining TCRs with shared germline gene usage and nucleic acid sequences of CDR3s 271 

as identical TCRs, the whole dataset contains ~8,500 unique TCR sequences that occur 272 
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more than once. Compared with other cohorts, the diversities of TCR repertoires from 273 

severe groups showed significant differences in several subtypes for both CD4+ and 274 

CD8+ T cells (Fig. 1D and 1E). Notably, the diversity of cytotoxic CD8+ T cells that 275 

consist mainly of clonal T cells decreased significantly for severe cohorts in the 276 

progression state (Fig. 1D), indicating the enrichment of antigen-specific TCRs. The 277 

shrinkage in the diversity of the TCR repertoire of cytotoxic CD8+ T cells probably 278 

reflects that the TCR repertoire converges, to some extent, into the SARS-CoV-2-279 

specific spectrum. These results indicated that SARS-CoV-2 infection biased the 280 

composition of T cell subtypes and TCR repertoires, especially for patients with severe 281 

symptoms in the disease progression stage. Considering the higher clonal expansion 282 

and diversity shrinkage in cytotoxic CD8+ T cells, we focused on the epitope 283 

recognition mechanisms of CD8+ T cells in further analysis. 284 

Identifying SARS-CoV-2-specific TCRs and potential epitopes via a 285 

clustering-based pipeline 286 

Antigen specificity is indispensable to comprehending adaptive immune responses, 287 

while the lack of epitope information in TCR repertoires hinders the investigation of 288 

TCR-epitope recognition. We then proposed a strategy to investigate the antigen 289 

specificity and recognition mechanisms for epitope-unknown TCRs. For the epitope-290 

unknown TCR repertoires collected above, we retained only TCR sequences occurring 291 

more than once at the amino acid level, resulting in 8,507 epitope-unknown TCRs (Fig. 292 

2A, referred to as dataset UNK in the following sections). In addition, we also collected 293 
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1,766 SARS-CoV-2-specific TCRs (Fig. 2A, referred to as dataset VDJ-S) and 29,101 294 

SARS-CoV-2 nonspecific TCRs (referred to as dataset VDJ-N) from VDJdb[27], as 295 

well as the corresponding epitope sequences. Then, the epitope information for epitope-296 

unknown TCRs was inferred based on these datasets via two parallel steps. 1) TCR 297 

sequence clustering was performed for the UNK dataset and the SARS-CoV-2-specific 298 

VDJ-S dataset using GLIPH[20]. For each cluster containing both epitope-known and 299 

epitope-unknown TCRs, the epitope sequences were mapped between TCRs (Fig. 2A 300 

top). To improve the accuracy of clustering and epitope mapping, we trimmed TCR 301 

clusters by retaining only epitope-unknown TCRs directly connected with epitope-302 

known TCRs and vice versa (see details in Methods). 2) Identical clustering and 303 

additional epitope screening processes were performed for the UNK and SARS-CoV-2 304 

nonspecific datasets VDJ-N (Fig. 2A bottom). As the epitopes in VDJ-N dataset 305 

originated from non-SARS-CoV-2 antigens, we then utilized the mapped epitope 306 

sequences to screen for similar peptides against SARS-CoV-2 protein sequences. Then, 307 

we predicted the binding ability of the searched peptides to 20 common MHC-I 308 

molecules using NetMHCpan 4.1[55], followed by immunogenicity prediction and 309 

ranking using DeepAntigen[44]. Finally, combining TCR, epitope, and MHC 310 

information, we investigated the molecular mechanisms underlying TCR-epitope 311 

recognition via structure prediction, molecular docking, and MD simulations (Fig. 2B). 312 
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 313 

Figure 2. Schematic diagram of the pipeline to identify antigen specificity and explore epitope 314 

recognition mechanisms. (A) Flowchart of epitope mapping for epitope-known and epitope-315 

unknown TCRs by sequence clustering. (B) The workflow to investigate the molecular mechanisms 316 

of TCR-pMHC recognition. (C) The contact frequency of each site in the 9-mer epitope for 65 TCR-317 

pMHC crystal structures. 318 

Clustering TCRs from the UNK and VDJ-S datasets gave rise to 152 clusters 319 

involving 387 epitope-unknown TCRs and 477 epitope-known TCRs targeting SARS-320 

CoV-2 epitopes. Considering the functionality and disease association, we focused on 321 

the TCRs carried by highly expanded T cells. Retaining clusters that contain at least 322 

one TCR expressed by more than 100 T cells, five clusters were finally identified with 323 

epitopes mapped for nineteen epitope-unknown TCRs (Table 1). Four of the five 324 

clusters contain TCRs from more than one patient, and none of the clusters contains 325 

TCRs from healthy controls. We found that the most-populated TCR (TCR-614, the 326 

suffix indicates the number of cells expressing the TCR) clustered in this step was 327 

gathered in cluster 1 with a TCR targeting epitope S919-927 (NQKLIANQF) from the 328 
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SARS-CoV-2 spike protein. A sequence motif in CDR3β, ‘SDPE’, was recognized by 329 

GLIPH[20] in cluster 1, probably accounting for the shared antigen specificity. 330 

In step 2, 2,164 epitope-unknown TCRs and 5,064 TCRs targeting non-SARS-331 

CoV-2 epitopes were gathered into 905 clusters, 11 of which contained at least one TCR 332 

expressed by more than 100 T cells (Table 2). A total of eight epitope sequences in the 333 

eleven clusters were utilized to screen for potential epitopes against SARS-CoV-2 334 

protein sequences. Prior to the screening, we analyzed the contacts between TCR and 335 

the 9-mer antigenic peptide for 65 nonredundant TCR-pMHC complex structures. We 336 

found that five hot spots, the fourth to the eighth site, in the presented peptide showed 337 

high frequencies in interacting with TCR (Fig. 2C). Therefore, we calculated the 338 

physicochemical similarity in the above hot-spot region between the mapped epitopes 339 

and all possible 9-mer peptides derived from SARS-CoV-2 proteins to screen for similar 340 

peptides. Notably, the most-populated TCR clustered in this step was sampled from 341 

healthy controls and shared antigen specificity with a TCR targeting a melanoma-342 

associated neoantigen-derived epitope[56] (Table 2 cluster 1), although it is unclear 343 

whether the corresponding donors burden the neoantigen or associated cancers[39]. 344 

Thus, we chose the TCR expressed by 204 T cells (TCR-204) in cluster 2 for further 345 

analysis. We noticed that six TCRs targeting four distinctive epitopes were highly 346 

similar in CDR3β and shared specificity with TCR-204 (Table 2 cluster 2), implying 347 

the polyspecificity of TCR-204. Notably, in the potential epitope screening, we found 348 

that the shared epitope GLCTLVAML showed high similarity in the TCR-interacting 349 
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hot spots to a peptide from SARS-CoV-2 NSP3, KLKTLVATA (NSP31790-1798). The 350 

peptide was also predicted as a binder to four common HLA alleles (A*02:01, A*02:06, 351 

A*30:01, and B*13:02) by NetMHCpan 4.1[43] and ranked with high priority (4/80) 352 

in immunogenicity prediction by DeepAntigen[44], suggesting its competence to be an 353 

epitope. 354 

The identification of reported SARS-CoV-2 epitopes for highly expanded TCRs 355 

indicated the capability to identify epitopes for epitope-unknown TCRs via clustering. 356 

Meanwhile, combining physicochemical similarity-based epitope screening and 357 

immunogenicity prediction, we also discovered neoepitopes for potential treatment. 358 

However, the lack of detailed interactions between TCRs and epitopes at the atomic 359 

level hinders the understanding and utilization of TCR-pMHC recognition for 360 

immunotherapy. Therefore, we further investigated the detailed epitope-recognition 361 

mechanisms for the two highly expanded TCRs, TCR-614 and TCR-204. 362 

TCR-614 employs a hydrophobic clamp and hydrogen bonds to 363 

recognize the middle/C-terminus of SARS-CoV-2 epitope S919-927 364 

To illustrate the molecular mechanisms of epitope recognition, we constructed the 365 

HLA-B*15:01-NQKLIANQF complex model according to the HLA allele information 366 

from the VDJdb[27] database and one crystal structure of pHLA-B*15:01 (PDB id: 367 

6uzq). Then, we performed one 50-ns MD simulation to equilibrate the constructed 368 

binary complex. The resulting equilibrated model revealed that the presented peptide 369 
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adopted a canonical conformation in which its two ends were embedded into two 370 

pockets in the antigen-binding groove, with pL4-pQ8 exposed to the solvents (Fig. 3A). 371 

To stabilize the bound peptide, five and seven hydrogen bonds (HBs) were established 372 

between MHC and the peptide N- and C-terminal regions, respectively (Fig. 3B). 373 

 374 

Figure 3. MD simulations reveal the recognition mechanism between the epitope S919-927 and 375 

TCR-614. (A) The overall conformation of the epitope, NQKLIANQF, presented by HLA-B*15:01. 376 

The HLA molecule is shown in the cyan cartoon, and the peptide is highlighted by violet sticks with 377 

labels. (B) The HB interactions formed in the peptide N-terminus (left) and C-terminus (middle) 378 

and the corresponding occupancies (right). The HBs are indicated by black dashed lines and red 379 

labels. (C) The overall structure of the TCR-pMHC complex. (D) The occupancies of contacts 380 

formed between the TCR and peptide. The distance cutoff used for the contact calculation is set to 381 

6 Å. (E) Relative solvent-accessible surface area (rSASA) of the peptide during MD simulations for 382 

pMHC (gray) and TCR-pMHC (red) complexes. (F) The structural details of the hydrophobic clamp 383 

responsible for recognizing pL4pI5. (G) HB interaction networks formed between the TCR β chain 384 

and peptide C-terminus (left) and HBs occupancy (right). The HBs are labeled by black dashed lines. 385 

We then sought to construct the ternary complex of the TCR-bound pMHC 386 

complex. To this end, we first built the structure of TCR-614 via ColabFold[45] and 387 
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performed molecular docking to predict the TCR-pMHC model via HADDOCK 388 

2.4[47]. The resulting TCR-pMHC model was then employed as the initial structure for 389 

the following 100-ns MD simulations, and the last 50-ns simulation dataset was used 390 

for final structural analyses. The equilibrated TCR-pMHC conformation shows that the 391 

TCR α and β chain mainly target the peptide N- and C-terminus, respectively (Fig. 3C). 392 

In addition, TCR was found to form more direct contacts with the hot spots pL4-pQ8 393 

region (Fig. 3D), leading to a significantly reduced solvent-accessible surface area 394 

(SASA) in this region (Fig. 3E). In particular, two peptide residues, pL4 and pI5, could 395 

establish more stable interactions with several discontinuous CDR3 residues, including 396 

βY29, βD93-E95, and αF99 that clamps the bound peptide, highlighting their 397 

importance in TCR recognition (Fig. 3F). Moreover, pN7 and pQ8 could also directly 398 

interact with TCR CDR1β and CDR2β, respectively. In addition, several HBs were 399 

established between pN7pQ8 and several CDR1/2β residues, i.e., βH27, βE28, and 400 

βN49 (Fig. 3G).   401 

CDR3β conformation is critical for the recognition of the potential 402 

SARS-CoV-2 epitope NSP31790-1798 by TCR-204 403 

Likewise, we constructed the TCR-pMHC ternary model for TCR-204 and the 404 

potential SARS-CoV-2 epitope KLKTLVATA. To achieve this, we first built the pMHC 405 

model based on one crystal structure of pHLA-A*30:01 (PDB id: 6j1w[46]) to which 406 

the potential epitope KLKTLVATA was predicted to be a strong binder by NetMHCpan 407 

4.1[43]. Our 50-ns MD simulations indicate that the peptide remained stable and 408 
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adopted a canonical convex conformation in the antigen-binding groove (Fig. 4A). 409 

Similar to the S919-927 epitope, the peptide N- and C-terminus were inserted into the 410 

antigen-binding groove, with several HBs formed between MHC and the bound peptide 411 

(Fig. 4B). In particular, the positively charged pK3 could form salt-bridge interactions 412 

with the MHC-E114 (Fig. 4B), which further stabilizes the loaded peptide. 413 

 414 

Figure 4. CDR3β of TCR-204 dominates the recognition of epitope NSP31790-1798. (A) The 415 

overall conformation of the peptide KLKTLVATA presented by HLA-A*30:01. (B) The hydrogen-416 

bond interactions established between the peptide termini and MHC (left and middle panels) and 417 

the corresponding occupancies in MD simulations (right panel). (C) The occupancies of contacts 418 

formed between the TCR and peptide. A distance cutoff of 6 Å is used for defining contacts. (D) 419 

rSASA of the peptide during MD simulations for pMHC (gray) and TCR-pMHC (red) complexes. 420 

(E) HB interactions established between CDR3β and peptide residues (left panel) and the 421 

corresponding occupancies (right panel). (F) The hydrophobic core formed by βL95, W147, A150, 422 

and W152 (left panel) and two distance measurements indicating the conformational switch of 423 

CDR3β (middle and right panels). The distances d1 and d2 are measured between the center of mass 424 

(COM) of sidechains of CDR3β residues (βL95 for d1 and βA96 for d2) and MHC residues W147, 425 

A150, and W152. 426 

Next, we modeled the structure of TCR-204 via ColabFold[45], and docked this 427 
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structure to the above pMHC model using HADDOCK 2.4[48]. Then, we performed a 428 

200-ns MD simulation for the ternary TCR-pMHC model to investigate the epitope-429 

recognition mechanisms of NSP31790-1798 by TCR-204. According to the contact 430 

calculations between the peptide and TCR, the interacting interface was also located in 431 

the hot-spots pT4-pT8 region in which pT8 interacts with a series of CDR3β residues, 432 

i.e., βP93-βG97 (Fig. 4C). The SASA analyses also suggest that TCR-204 mainly 433 

recognizes the peptide pT4-pT8 region (Fig. 4D). Moreover, the CDR2β residues βY48 434 

and βR49 play critical roles in recognizing the peptide C-terminus via forming HBs, 435 

alongside with the MHC residues D77 and R146. In addition to electrostatic interactions, 436 

nonpolar interactions are also integral factors in the epitope recognition of NSP31790-437 

1798. Lying over the proximal region of the peptide C-terminus, the hydrophobic region 438 

of CDR3β, βP93-G97, simultaneously recognized the peptide and MHC, with the side 439 

chain of βL95 embedded into a shallow hydrophobic pocket formed by pA7 and MHC 440 

residues W147, A150 & W152 (Fig. 4F left). Importantly, the sequence ‘GLAG’ in 441 

CDR3β is also highly conserved between TCRs gathered in cluster 2 by GLIPH (Table 442 

2), highlighting its essential role in polyspecificity. Notably, βL95 underwent a 443 

conformational shift from a solvent-exposed state to an inserted conformation at ~165-444 

ns and maintains steady in the remaining simulations (Fig. 4F middle and right)  445 

Discussion 446 

In this study, we developed a combinatorial strategy to investigate the disease-447 

associated TCR-pMHC recognition mechanism by leveraging massive single-cell 448 
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sequencing data and efficient computational tools. The epitope-unknown TCRs from 449 

COVID-19 patients were clustered with epitope-known TCRs to identify antigen 450 

specificity. According to the single-cell sequencing data, two SARS-CoV-2-associated 451 

TCRs, TCR-614 and TCR-204, expressed by highly expanded T cells were subjected 452 

to further MD simulations to investigate the molecular mechanisms underlying the TCR 453 

and pMHC recognition for two identified epitope sequences NQKLIANQF (S919-927) 454 

and KLKTLVATA (NSP31790-1798). Combining deep learning-based structure prediction, 455 

information-driven docking, and MD simulations, we revealed the critical interactions 456 

responsible for epitope recognition by the two TCRs. The CDR3β loops of both TCRs 457 

play critical roles in recognizing pMHC molecules, complying well with the 458 

conventional understanding of epitope recognition by TCR. For TCR-614, αF99, βY29, 459 

and βP94 formed a hydrophobic ‘clamp’ to recognize two hydrophobic peptide residues 460 

pL4 and pI5. Several HBs were also formed between CDR1/2β and the peptide C-461 

terminus. For TCR-204, we observed a conformational transition of the CDR3β loop 462 

that stabilized the hydrophobic interactions by the insertion of βL95 into a shallow 463 

pocket formed by the peptide and MHC residues. Our work provides a computational 464 

strategy bridging the single-cell sequencing data of TCRs and structural insights into 465 

the epitope-recognition mechanisms. The detailed interactions between the TCR and 466 

epitope can be further utilized to facilitate TCR engineering and cancer vaccine design. 467 

The massive TCR sequences generated by high-throughput and single-cell 468 

sequencing techniques have greatly promoted the investigation of T cell immune 469 
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responses. Recently, by clustering experimentally sequenced TCRs with released 470 

epitope-known TCRs, researchers were allowed to identify the antigen specificities of 471 

epitope-unknown TCRs associated with autoimmune disease[57], viral infection[58], 472 

and cancers[59], making it plausible to utilize TCR sequence repertoires for therapeutic 473 

discovery. However, the lack of TCR-pMHC complex structures hinders the 474 

optimization of TCRs and the rational design of peptide vaccines. To overcome the 475 

limitation of structural data, we proposed a computational strategy by combining the 476 

TCR clustering method and structural modeling tools, thereby revealing the TCR-477 

pMHC recognition mechanisms for two SARS-CoV-2-associated TCRs at the atomic 478 

level. Our MD simulations pinpointed the bilateral residue-residue interactions between 479 

TCR and epitope, which is more precise and comprehensive compared with the sole 480 

TCR sequence motif recognized by the clustering method. The deep insights into the 481 

TCR-pMHC interactions and the accompanying conformational transitions will guide 482 

the engineering of TCR-based therapeutics. 483 

Derived from the tumor-specific antigens (TSAs) containing nonsynonymous 484 

mutations, the neoepitopes can be discerned and targeted by the immune system, 485 

thereby playing a pivotal role in the development of cancer vaccines[60-62]. However, 486 

the identification and selection of neoepitopes suitable for vaccine design remain 487 

challenging despite several developed strategies[62]. Here, we provided a 488 

computational strategy to discover neoepitopes and reveal the structural dynamics 489 

underlying epitope recognition by TCRs, which will promote the design and 490 
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optimization of cancer vaccines.    491 

In this study, we selected two TCRs mainly based on clonal expansion which is a 492 

critical process in adaptive immune responses against pathogens[63]. In addition to the 493 

extent of clonal expansion, single-cell approaches can simultaneously capture TCR 494 

sequences coupled with more features, such as gene/protein expression and chromatin 495 

accessibility[26]. These features can also be utilized to identify the TCRs carried by 496 

functional or characteristic T cells for investigating TCR-pMHC recognition by 497 

structural modeling. Based on the constructed TCR-pMHC model, researchers could 498 

further improve the binding affinity and specificity of TCRs by combining other 499 

computational methods[30, 31, 33]. For the epitope, the recognized peptide repertoire 500 

by a certain TCR is highly expanded owing to the polyspecificity. Here, we determined 501 

a hot-spots region, position 4 to position 8 of the 9-mer peptide, which was 502 

subsequently used for potential epitope screening by physicochemical similarity 503 

searching against SARS-CoV-2-derived peptides. Consistent with previous studies, the 504 

cross-reactive peptides exhibited similarity in hot-spots regions[64, 65], demonstrating 505 

the feasibility of discovering cross-reactive peptides by similarity searching. However, 506 

even highly distinctive peptides can be recognized by the same TCR with different 507 

conformations[64], indicating the limited efficacy of similarity searching in the 508 

discovery of cross-reactive peptides. In addition, a variety of post-translational 509 

modifications can reshape the peptides presented by MHC molecules and influence the 510 

T cell immune response[66], which further complicates TCR-pMHC recognition. To 511 
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better understand and utilize T cell immune responses, the molecular basis underlying 512 

TCR-pMHC recognition remains to be comprehensively elucidated in the future, and 513 

further studies are necessary to unveil the association between cellular characteristics 514 

and TCR-pMHC interactions. 515 

Data Availability 516 

The epitope-unknown TCR data were collected from a massive scRNA-seq 517 
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Table 1. Clusters of epitope-unknown TCRs and SARS-CoV-2-specific TCRs from VDJdb. 

Cluster Dataset TRBV TRBJ CDR3b TRAV TRAJ CDR3a Number Patients Epitope Antigen HLA 

1 UNK V27 J2-5 CASSDPEETQYF V19 J8 CALSDNTGFQKLVF 614 P-S084    

 UNK V24-1 J2-5 CATSDPEGTGQETQYF V13-1 J34 CAALSYNTDKLIF 17 P-S042    

 UNK V9 J2-7 CASSDPEGLYF V12-1 J10 CVEPTGGGNKLTF 6 P-M071    

 UNK V27 J2-5 CASSDPEETQYF V18 J8 CALSDNTGFQKLVF 2 P-S084    

 VDJ-S V7-9 J1-1 CASSTSDPEAFF V8-2 J43 CVVSDSDNNNDMRF   NQKLIANQF S B*15:01 

2 UNK V2 J2-7 CATDPDHNGGQYF V19 J23 CALSEYDSNNQGGKLIF 492 P-M026    

 UNK V6-5 J2-2 CASSHLGELFF V14/DV4 J52 CAMRESPWGTSYGKLTF 8 P-M079    

 UNK V14 J1-2 CASSQDRGSHNGYTF V14/DV4 J37 CAMSGGSSNTGKLIF 7 P-M069    

 UNK V11-3 J2-2 CASSGRGHNGELFF V8-3 J47 CAVLYGNKLVF 2 P-M078    

 VDJ-S V7-9 J1-2 CASSFVSEEHNGYTF V12-1 J8 CVVGTGFQKLVF   TTDPSFLGRY NSP3 A*01:01 
 VDJ-S V4-1 J2-2 CASSHNGELFF V4 J32 CLVDGGATNKLIF   SPRWYFYYL N B*07:02 

3 UNK V5-6 J1-6 CASSLSDRQNSPLHF V38-2/DV8 J30 CAYRSAFWGDDKIIF 350 P-M052    

 UNK V29-1 J2-1 CSVVRQNSYNEQFF V38-2/DV8 J44 CAYRRDYTGTASKLTF 2 P-M017    

 UNK V20-1 J1-6 CSAREDRQNSPLHF V26-1 J31 CIVRLNNARLMF 2 P-S057    

 UNK V6-5 J1-6 CASSQGRQNSPLHF V4 J22 CLVGDLRLYGSARQLTF 2 P-S053    

 VDJ-S V10-2 J2-1 CASLRQNSGEQFF V12-1 J47 CVVNMEDKLVF   YLQPRTFLL S A*02:01 

4 UNK V7-9 J1-1 CASSIENTEAFF V3 J43 CAVSRLDNDMRF 155 P-M014    

 UNK V9 J1-1 CASSGSNTEAFF V9-2 J27 CALGTNAGKSTF 38 P-M071    

 UNK V9 J1-1 CASSGSNTEAFF V1-2 J39 CAVKNAGNMLTF 25 P-S055 P-M071    

 UNK V9 J1-1 CASSGGNTEAFF V9-2 J13 CAPRGGGQKVTF 9 P-M071    

 UNK V9 J1-1 CASSGGNTEAFF V1-2 J39 CAVRNAGNMLTF 5 P-M071    

 UNK V2 J1-1 CASSGGNTEAFF V24 J46 CAFSSGDKLTF 2 P-M049    

 VDJ-S V19 J1-1 CASSGENTEAFF      RLQSLQTYV S A*02 

5 UNK V2 J2-7 CASSQGWPYEQYF V8-2 J13 CVVSESGGYQKVTF 101 P-M042    

 VDJ-S V29-1 J2-7 CSVLTGWPYEQYF V12-2 J28 CAGALGGAGSYQLTF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVHQGWPYEQYF V12-2 J53 CAVNSGGSNYKLTF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVHQGWPYEQYF V17 J57 CATDIVREGGSEKLVF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVGKGWPYEQYF V12-2 J20 CAVNMQSNDYKLSF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVGQGWPYEQYF V8-1 J53 CAVSLLNSGGSNYKLTF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVGTGWPYEQYF V12-2 J53 CAVNVGGGSNYKLTF   LTDEMIAQY S A*01:01 
 VDJ-S V29-1 J2-7 CSVGTGWPYEQYF V12-1 J52 CVVTSRDHLRANAGGTSYGKLTF   LTDEMIAQY S A*01:01 
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Table 2. Clusters of epitope-unknown TCRs and non-SARS-CoV-2-specific TCRs from VDJdb. 

Cluster Dataset TRBV TRBJ CDR3b TRAV TRAJ CDR3a Number Patients Epitope Antigen Species HLA 

1 UNK V28 J1-4 CASSQWSATNEKLFF V36/DV7 J28 CAAPGAGSYQLTF 262 P-HC003         
 UNK V28 J1-4 CASSLWSATNEKLFF V36/DV7 J28 CASPGAGSYQLTF 62 P-M017     

 UNK V28 J1-4 CASSFWSATNEKLFF V36/DV7 J28 CATPGAGSYQLTF 3 P-S087     

 UNK V28 J1-4 CASSLWSATNEKLFF V1-2 J33 CALLDSNYQLIW 2 P-M017     

 UNK V28 J1-4 CASSLWSATNEKLFF V36/DV7 J28 CATPGAGSYQLTF 2 P-M064     

 VDJ-N V14 J1-4 CASSQWSSTNEKLFF           MLGEQLFPL PABPC1 Homo Sapiens A*02:01 

2 UNK V5-4 J2-1 CASSPGLAGDNEQFF V12-2 J11 CAAEYSTLTF 204 P-M044         
 VDJ-N V6-3 J2-1 CASSPGLAGDNEQFF V14/DV4 J22 CAMRRPISSGSARQLTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V4-1 J2-7 CASSQGLAGDNEQYF      LLLGIGILV BST2 Homo Sapiens A*02 
 VDJ-N V4-2 J2-1 CASSPGLAGANEQFF      GLCTLVAML BMLF1 EBV A*02:01 
 VDJ-N V7-2 J2-1 CASSPGLAGANEQFF      GLCTLVAML BMLF1 EBV A*02:01 
 VDJ-N V7-8 J2-1 CASSPGLAGANEQFF      GLCTLVAML BMLF1 EBV A*02:01 
 VDJ-N V7-6 J2-7 CASSPGLAGNNEQYF        GILGFVFTL M InfluenzaA A*02:01 

3 UNK V7-8 J2-7 CASSVGAGREQYF V1-2 J15 CAVRDTNQAGTALIF 191 P-S059         
 VDJ-N V9 J2-1 CASSVGGGREQFF V5 J7 CAETRGNNRLAF     LLWNGPMAV NS4B YFV A*02:01 

4 UNK V27 J2-3 CASSSRLAGSTDTQYF V3 J30 CAVRPYRDDKIIF 181 P-M026         
 UNK V27 J2-3 CASSSRLAGGTDTQYF V3 J30 CAVRPNRDDKIIF 91 P-M021 P-S028     

 UNK V27 J2-3 CASSSRLAGGTDTQYF V3 J30 CAVRPHRDDKIIF 15 P-S028     

 VDJ-N V9 J2-3 CASSSRLAGSTDTQYF V14/DV4 J48 CAMREGQSFGNEKLTF     KLGGALQAK IE1 CMV A*03:01 

5 UNK V2 J2-3 CASSTDTQYF V29/DV5 J45 CAASHDAGGGADGLTF 174 P-M049         
 UNK V2 J2-3 CASSTDTQYF V40 J48 CLLGSNFGNEKLTF 74 P-M049     

 VDJ-N V29-1 J2-1 CSASTDEQFF V19 J13 CALRPSGGYQKVTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V9 J1-2 CASSTDRVAF V8-3 J41 CAVGAGSGYALNF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V7-9 J2-3 CASSLDTQYF V35 J49 CAGHTGNQFYF   IVTDFSVIK EBNA4 EBV A*11:01 
 VDJ-N V7-9 J2-3 CASSLDTQYF V13-1 J42 CAASMGGGSQGNLIF   GILGFVFTL M InfluenzaA A*02:01 
 VDJ-N V7-9 J2-3 CASSLDTQYF V5 J31 CAEDSNARLMF   GLCTLVAML BMLF1 EBV A*02:01 
 VDJ-N V7-9 J2-3 CASSLDTQYF V27 J37 CAGGGSGNTGKLIF   GILGFVFTL M InfluenzaA A*02:01 
 VDJ-N V7-9 J2-3 CASSLDTQYF V12-3 J27 CAMKSTNAGKSTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V11-2 J2-3 CASSLDTQYF V9-2 J41 CALTGGYALNF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V6-3 J2-3 CATGTDTQYF V30 J43 CGFYNNNDMRF     KLGGALQAK IE1 CMV A*03:01 

6 UNK V7-9 J1-1 CASSIENTEAFF V3 J43 CAVSRLDNDMRF 155 P-M014         
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 VDJ-N V6-3 J1-1 CASSIMNTEAFF V8-1 J5 CAVNLGRRALTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V19 J1-1 CASSIGNTEAFF V19 J40 CALSEAGTYKYIF     KLGGALQAK IE1 CMV A*03:01 

7 UNK V6-6 J2-1 CASSRNNEQFF V20 J26 CAVWNYGQNFVF 154 P-M046         
 UNK V6-6 J2-1 CASSRNNEQFF V12-3 J38 CAMNAGNNRKLIW 90 P-M046     

 UNK V2 J2-1 CASSGNNEQFF V5 J24 CAVSTDSWGKFQF 4 P-S090     

 UNK V2 J2-7 CASSRMNEQYF V21 J30 CAGGGDDKIIF 2 P-M079     

 VDJ-N V10-3 J2-7 CAISRGNEQYF V8-6 J28 CAVSEPSGAGSYQLTF   GILGFVFTL M InfluenzaA A*02:01 
 VDJ-N V6-3 J2-1 CASSRYNEQFF V29/DV5 J45 CAATDSGGGADGLTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V6-5 J2-1 CASSRYNEQFF V35 J26 CAGQGNYGQNFVF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V5-1 J2-1 CASSTNNEQFF      ISPRTLNAW Pol HIV-1 B*57 
 VDJ-N V5-1 J2-1 CASSFNNEQFF      GLCTLVAML BMLF1 EBV A*02:01 
 VDJ-N V3-1 J2-7 CASSRPNEQYF V39 J40 CAGESGTYKYIF     KLGGALQAK IE1 CMV A*03:01 

8 UNK V6-5 J1-1 CASSYFGMNTEAFF V17 J42 CGYGGSQGNLIF 141 P-HC013         
 UNK V6-5 J1-1 CASSYFGMNTEAFF V35 J52 CAGPGLGGTSYGKLTF 25 P-HC013     

 VDJ-N V6-5 J1-1 CASSYFGGNTEAFF      NLVPMVATV pp65 CMV A*02:01 
 VDJ-N V6-5 J1-1 CASSYFGANTEAFF           NLVPMVATV pp65 CMV A*02 

9 UNK V11-3 J2-3 CASSRQGNTQYF V41 J53 CAAPPNSGGSNYKLTF 140 P-S038         
 UNK V11-3 J2-3 CASSRQGNTQYF V38-1 J48 CAFSLPPNFGNEKLTF 52 P-S038     

 UNK V7-6 J1-3 CASSGQGNTIYF V39 J27 CAVDSVGTNAGKSTF 2 P-M054     

 VDJ-N V7-6 J1-3 CASSRTGNTIYF V13-2 J23 CAENYQGGKLIF     KLGGALQAK IE1 CMV A*03:01 

10 UNK V14 J2-1 CASSQDRGGWQFF V9-2 J34 CALSVLYNTDKLIF 128 P-M032         
 VDJ-N V4-1 J2-7 CASSQDRGGTQYF V26-2 J33 CILRLAVGNYQLIW     KLGGALQAK IE1 CMV A*03:01 

11 UNK V7-8 J2-1 CASSRLNNEQFF V8-6 J45 CAVSESGGGADGLTF 113 P-M055         
 UNK V7-8 J2-1 CASSRLNNEQFF V8-6 J45 CAVSEAGGGADGLTF 10 P-M049     

 VDJ-N V27 J2-1 CASSRLNNEQFF V24 J45 CASSSGGGADGLTF   KLGGALQAK IE1 CMV A*03:01 
 VDJ-N V25-1 J2-1 CASSVLNNEQFF           NLVPMVATV pp65 CMV A*02 
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