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Abstract

The molecular mechanisms underlying the recognition of epitopes by T cell receptors
(TCRs) are critical for activating T cell immune responses and rationally designing
TCR-based therapeutics. Single-cell sequencing techniques vastly boost the
accumulation of TCR sequences, while the limitation of available TCR-pMHC
structures hampers further investigations. In this study, we proposed a comprehensive
strategy that incorporates structural information and single-cell sequencing data to
investigate the epitope-recognition mechanisms of TCRs. By antigen specificity
clustering, we mapped the epitope sequences between epitope-known and epitope-
unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope,
NQKLIANQF (So19-927), was identified for a TCR expressed by 614 T cells (TCR-614).
Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA
(NSP31790-1798), for a TCR expressed by 204 T cells (TCR-204). According to the
molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition
mechanisms for both TCRs. The structural motifs responsible for epitope recognition
revealed by the MD simulations are consistent with the sequential features recognized
by the sequence-based clustering method. This strategy will facilitate the discovery and
optimization of TCR-based therapeutics. In addition, the comprehensive strategy can
also promote the development of cancer vaccines in virtue of the ability to discover
neoepitopes and epitope-recognition mechanisms.

Keywords: single-cell sequencing, molecular dynamics simulation, TCR-pMHC,
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neoepitope, SARS-CoV-2.

Introduction

Triggered by the recognition of antigens derived from pathogens or tumor-
associated mutations, the T cell immune response is integral to the adaptive immune
system for immune surveillance and clearance[1-3]. T cell receptors (TCRs), as
heterodimers on the surface of T cells, take charge of recognizing antigenic peptides
presented by the major histocompatibility complex (MHC, also termed human
leukocyte antigen or HLA in humans) on the surface of antigen-presenting cells to
activate T cell responses[3]. During the development of T cells in the thymus, TCR
genes are generated by V(D)J recombination, thereby different germline gene usages
and imprecise gene segments joining endow the TCR sequences with enormous
diversity[4, 5]. It is estimated that approximately 2 X 10!* apTCR sequences can be
generated in humans[6], although only a fraction of which are present in an individual[7,
8]. Accordingly, the TCR repertoire, owing to its natural diversity, bears the potential
to recognize various antigenic peptides. In addition, the polyspecificity that a certain
TCR is capable of recognizing multiple distinctive peptide-MHC (pMHC) ligands
further broadens the antigenic peptide repertoires under immunosurveillance[9, 10]. On
the other hand, the tremendous TCR sequences and polyspecificity complicate the

mechanistic investigation and limit therapeutic applications.

Harnessing T cell immune responses by engineered TCRs or TCR-based
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molecules is a promising means of immunotherapy; however, the inadequate
understanding of epitope recognition by TCRs impedes the comprehensive utilization
of immunological weapons[11]. With next-generation sequencing and single-cell
approaches exploited for elucidating T cell immune responses|8, 12], innumerable data
on TCR sequences and T cell gene expression have been released. Consequently,
multiple methods used for TCR repertoire analysis were developed to understand T cell
immune responses and assist clinical applications[7, 13, 14]. The diversity originally
used for quantifying the distribution of species in ecology has become a general
measure to describe the TCR repertoire[14]. By delineating the features of TCR
repertoires from individuals in various contexts, it is accessible to predict the immune
status associated with diseases[15-17] and the responses to immunotherapy[18].
Despite various high-throughput sequencing techniques developed, it remains an
arduous task to obtain epitope information for TCR repertoires[7, 14]. To infer the
antigen specificity, two seminal studies have deployed the sequence similarity to cluster
TCRs[19, 20]. According to sequence-based clustering methods, the TCRs falling into
the same cluster share similar antigen specificities. Thereafter, several specificity
clustering methods were developed and utilized for disease-associated TCR
identification[21-25]. Meanwhile, TCR sequencing techniques with antigen
specificity[26] and VDJdb[27], a curated database storing tens of thousands of epitope-
known TCR sequences, provide valuable resources for clustering-based specificity

analysis. These methods and resources, to some extent, promote the investigation of
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84  epitope recognition mechanisms at the sequence level.

85 Compared with the rapidly increasing data generated by high-throughput
86  sequencing, the limited structural data of TCR hampers the investigation of TCR
87  recognition mechanisms and further translational applications, such as the design of
88 TCR-based therapeutics[11]. According to the structural T cell receptor database
89 (STCRDab|[28]), only ~600 TCR-associated structures are available, which is far too
90 less compared with the immense diversity of TCR repertoires[29]. To overcome the
91 Ilimitation of structural data, computational tools have been developed and applied to
92  the design of TCRs[30-33]. Assisted by the development of deep learning-based
93  methods in recent years, the protein structure in apo form can be readily obtained by
94  AlphaFold or RoseTTAFold[34, 35]. To construct the complex structure, one can
95 further employ information-driven molecular docking to predict the binding mode of
96 protein to its ligands, e.g., for antigens and antigen receptors[36, 37]. Therefore,
97  researchers could potentially obtain the TCR-pMHC ternary structure by combining
98 sequence analyses and model constructions, thereby revealing the molecular
99  mechanisms underlying the activation of T cell immune responses in silico[3, 38].
100  However, due to the lack of a comprehensive strategy integrating single-cell sequencing
101  data with structural information, it remains a question whether the structural or kinetic
102  properties of TCR-pMHC interactions are associated with the cellular characteristics of

103 T cells captured by single-cell techniques.
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104 To advance the investigation of epitope recognition by TCRs, it is necessary to
105 develop a comprehensive strategy that leverages large sequence data and structure-
106  modeling tools. In this study, we proposed a computational pipeline to identify disease-
107  associated TCR-pMHC complexes and unveil the specific interacting partners
108 responsible for epitope recognition. Combining epitope-unknown and epitope-known
109 TCRs associated with SARS-CoV-2, we mapped the epitope information for epitope-
110  unknown TCRs using GLIPH[20], a sequence-based TCR clustering software. We also
111  exploited similarity searching and immunogenicity prediction to discover potential
112 epitopes. A reported SARS-CoV-2 epitope from the spike protein, NQKLIANQF (So19-
113  927), and a potential cross-reactive epitope from the nonstructural protein 3 (NSP3),
114  KLKTLVATA (NSP31790-1798), were identified for two TCRs expressed by highly
115 expanded T cells. We further performed molecular dynamics (MD) simulations for the
116  identified TCR-pMHC complexes and pinpointed the critical structural motifs in TCRs
117  responsible for epitope recognition. Our computational strategy bridges the single-cell
118 sequencing data of TCRs, epitope sequences, and the structural dynamics of TCR-
119 pMHC, providing a means to obtain TCR-pMHC interactions at the atomic level. This
120  strategy can facilitate future attempts to design TCR-based therapeutics and cancer

121  vaccines.

122 Methods

123  Datasets collection

124 The epitope-unknown TCR data were collected from a massive single-cell dataset

6
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125 sampled from healthy controls and COVID-19 patients[39] (NCBI GEO database:
126  GSEI158055). The collected data mainly included germline gene usages, the nucleotide
127  and amino acid sequences of the complementarity-determining regions 3 (CDR3s), and
128  the cell type of originated cells. For convenience, we reannotated the cell subtypes
129  according to marker gene expression (Table S1) and retained only afTCRs, resulting
130 in 213,755 epitope-unknown TCRs (Table S2). In addition, 43,252 epitope-known

131  human TCRs or TCR B chains were collected from the VDJdb database[27].

132  TCR diversity analysis

133 Samples that contained more than five distinctive TCRs that are different in
134  germline gene usages or nucleotide sequences of CDR3s were retained for the diversity
135 analysis. For each subtype of T cells, the TCR diversity was calculated as Shannon’s

136  entropy[39]:

137 H= = p() log, [p(x)]

X

138  where p(x) represents the frequency of the TCR.

139  Antigen specificity clustering

140 For the epitope-unknown TCRs, 8,507 unique TCRs that occurred more than once
141  were extracted to make up the UNK dataset. The epitope-known TCR datasets VDJ-S
142  and VDI-N, derived from the VDJdb database, contained 1,766 TCRs targeting SARS-
143  CoV-2 epitopes and 29,101 TCRs targeting antigens from other species, respectively.

144  The TCRs from the UNK dataset were clustered with TCRs from the VDJ-S and VDJ-
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145 N datasets, respectively. The clustering processes were performed using the GLIPH
146  (grouping lymphocyte interactions by paratope hotspots) algorithm[20]. According to
147  the clustering algorithm, the CDR3f sequences of TCRs in the same cluster show either
148  the global similarity that only one amino acid is different or the local similarity that
149  enriched sequence motifs exist. However, due to the global similarity, the highly
150 distinctive TCRs that do not share antigen specificities can be grouped in the same
151  cluster via the connections between similar TCRs. To improve the clustering accuracy,
152  we trimmed clusters by retaining the epitope-known TCRs that were different in only
153  one position or showed local similarity with epitope-unknown TCRs, and vice versa.
154  Finally, the epitope information was mapped between epitope-known and epitope-

155  unknown TCRs in the same cluster.

156  Analysis of TCR-pMHC crystal structures

157 A total of 133 human TCR-pMHC-I crystal structures were downloaded from the
158 STCRDab[28] database. After removing TCR-pMHC structures in which the peptide
159  contains non-standard amino acids and redundant structures with identical CDR3aq,
160  CDR3p, and the presented peptide, we finally obtained 65 non-redundant TCR-pMHC
161  complex structures with a 9-mer peptide bound in the antigen-binding groove of the
162  MHC-I molecule. Then, the contact numbers between CDR30/ and the bound peptide
163  were calculated using the Python package of PyMOL[40] software. A cutoff distance
164  of 5 A between each pair of heavy atoms was used for the contact calculations; therefore,

165 two residues are in contact if at least one distance between two heavy atoms is less than

8
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166 the cutoff.

167  Potential epitope screening

168 The mapped epitopes from non-SARS-CoV-2 antigens were utilized to screen
169  potential epitopes against all the possible 9-mer peptides derived from the SARS-CoV-
170 2 proteins (GenBank: MN908947.3). First, the physicochemical similarities in the hot-
171  spot region, the fourth to the eighth site, between the mapped epitopes and the SARS-
172 CoV-2 peptides were calculated based on the Euclidean distances of three Atchley
173  factors[41] representing the molecular polarity, size/volume, and electrostatic charge of
174  residues. We chose the Atchley factor, as it was derived from a large number of amino
175 acid indices[41] and has been successfully applied for differentiating disease-associated
176  TCR repertoires[23]. Then, for each mapped epitope, the top 10 most similar SARS-
177  CoV-2 peptides were submitted for immunogenicity prediction. The binding abilities of
178  searched peptides to the top 20 most common HLA class I molecules in China[42] were
179  predicted using NetMHCpan 4.1[43]. In addition, the immunogenicity of searched

180 peptides was predicted and ranked using DeepAntigen[44].

181 TCR-pMHC model construction

182 The structures of TCR-614 and TCR-204 were predicted by a local version of
183  ColabFold[45]. The pMHC models of HLA-B*15:01-NQKLIANQF and HLA-
184  A*3001-KLKTLVATA were constructed by mutating the peptide to the objective

185  epitope based on the crystal structures of pHLA-B*15:01 (PDB id: 6uzq) and pHLA-
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186  A*30:01 (PDB id: 6j1w[46]), respectively. Then, the modeled pMHC structures were
187  optimized by 50-ns unbiased MD simulations. Then, the optimized pMHC models were
188  used for molecular docking with TCR to generate TCR-pMHC ternary models. The
189  web server HADDOCK 2.4[47, 48] was utilized to dock TCR to pMHC. The peptide
190 and CDRs were provided as active residues for the docking process. The rigid-body
191  sampling generated 5000 models, and the top 1000 best-scored models were optimized
192  in the semiflexible and water refinement stages. To select the initial model suitable for
193  further analysis, we calculated the contact number between CDR3a and the fourth to
194  the sixth sites in the peptide, as well as the contact number between CDR3f and the
195 fifth to the eighth sites in the peptide, according to the analysis of TCR-pMHC crystal
196  structures. The contact information was calculated with a distance cutoff of 5 A using
197  the gmx mindist command implemented in GROMACS 2020.3 software[49]. Then, a
198  relatively loose threshold of 10 contacts for each CDR3 was used for filtering model
199 candidates. Finally, the best-scored model was selected as the initial structure for the

200 following MD simulations to unveil the TCR-pMHC recognition mechanisms.

201  Setups and analysis of MD simulations

202 The MD simulations were performed using GROMACS-2020 software[49]. The
203  ff14SB[50] force field was used to describe the TCR-pMHC complex, and the TIP3P
204  water model was used to solve the complex. The sodium and chloride ions were added
205  to neutralize the system to an ion concentration of 0.15 M. The cutoff distances of van

206  der Waals (vdW) and short-range electrostatic interactions were set to 12 A. The

10


https://doi.org/10.1101/2023.02.02.526761
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.02.526761; this version posted February 2, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

207  Partical-Mesh Ewald[51] (PME) method was used to address the long-range
208  electrostatic interactions. The LINCS[52] algorithm was applied to constrain the
209  chemical bonds. The energy minimization was performed using the steepest descent
210  algorithm, followed by a 200-ps NVT MD simulation with all the protein heavy atoms
211  restrained by a force constant (1000 kJ/mol/nm?). The initial velocities of the
212 production MD simulations were randomly assigned at 50 K, and the system was heated
213  to 310 K within 200 ps and kept at 310 K using the velocity rescaling thermostat[53].
214  Finally, we sampled 100-ns simulation data for the TCR-614-pMHC complex and 200-
215  nssimulation data for the TCR-204-pMHC complex. For each dataset, all the structural

216  analyses were performed based on the last 50-ns simulations.

217 The gmx rmsf command was used to calculate the value of root-mean-square
218  fluctuation. The gmx select command was used to calculate the contact number between
219  the TCR and the peptide with a distance cutoff of 6 A. The HBs were analyzed using
220  the gmx hbond command. The solvent-accessible surface area (SASA) was analyzed

221  using FreeSASA[54] software.

222 Results

223 Investigation of the TCR-pMHC recognition mechanism by leveraging
224  single-cell TCR-seq data and computational tools

225 Here, we proposed a comprehensive strategy to investigate the molecular

226  mechanisms underlying TCR-pMHC recognition involved in SARS-CoV-2 infection

11
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227  based on available scRNA-seq data (Fig. 1A). First, we collected massive epitope-
228  unknown TCR data, including V(D)J gene usages, CDR3 sequences, and cell clonal
229  expansion information from an scRNA-seq dataset of COVID-19 patients[39]. Then,
230  the T cell clonality analysis was performed to reveal the influences imposed by SARS-
231  CoV-2 infection on T cell immune responses. We also collected epitope-known TCRs
232 with epitope sequences from the VDJdb[27] database. To identify epitopes for epitope-
233  unknown TCRs, we performed sequence-based antigen specificity clustering for
234  epitope-unknown and epitope-known TCRs. For these TCRs that share similar
235  sequence features with epitope-known TCRs targeting SARS-CoV-2 epitopes, we could
236  readily map the corresponding epitopes. For TCRs targeting antigens from other species,
237  we proposed a physicochemical similarity-based strategy to screen potential cross-
238  reactive epitopes against SARS-CoV-2-derived peptides, which allows us to discover
239  neoepitopes. According to the clonality analysis, two representative TCRs with
240  corresponding epitopes were selected for more detailed structural analyses. Finally, we

241  elucidated the epitope recognition mechanisms for both TCRs.

242  SARS-CoV-2 infection reduces the diversity of the TCR repertoire in
243 cytotoxic CD8" T cells

244 The epitope-unknown TCR dataset was originally sampled from healthy controls
245  and patients in the disease progression/convalescent stage. Data sampled from patients
246  were also divided by the severity of symptoms into moderate and severe cohorts (Table

247  S2). The collected dataset contains 113,226 (53%) CD4" T cells and 100,529 (47%)

12
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248  CDS8" T cells that express apTCR. According to the original publication, we reannotated
249  the cell subtypes by combining cells similar in the expression of marker genes. We then
250 analyzed the clonal expansion of T cells from healthy controls and patients. We found
251 that CD8" T cells exhibited higher clonal expansion for both controls and patients
252  compared with CD4" T cells (Fig. 1B and 1C). Moreover, for patients with severe
253  symptoms in the disease progression stage, the proportion of proliferative CD8" T cells
254  showed an obvious increment (Fig. 1B), indicating the ongoing expansion of CD8" T
255  cells in these patients. Consistently, a previous study reported that proliferative T cells
256  were elevated significantly in patients and showed associations with COVID-19
257  severity[39]. For CD4" T cells, naive cells dominated the distribution of T cell subtypes

258  except for severe cohorts in the progression stage (Fig. 1C).

13
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259
260  Figure 1. The workflow used to investigate TCR epitope recognition in the current study. (A)

261 A computational strategy to investigate TCR-epitope recognition by leveraging bioinformatics tools.
262  Epitope-unknown TCRs were collected from a massive scRNA-seq dataset. Epitope-known TCRs
263  and epitope sequences were from VDJdb. Representative TCRs were selected based on clone
264  analysis and submitted to the investigation of epitope recognition via tandem computational tools.
265  (B-C) The composition of CD8"* T cells (B) and CD4" T cells (C). For each cohort, the histogram
266  indicates the proportion of each subtype and is shown in different colors according to the clone size.
267  (D-E) The TCR diversities of CD8" (D) and CD4" (E) T cell subtypes. Error bars indicate the
268  standard error of the mean, and p-values < 0.05 are labeled above the black line. The p-values were

269  computed using the Mann-Whitney U-test.

270 We further delineated the diversity of the TCR repertoire for each cell subtype.
271  Defining TCRs with shared germline gene usage and nucleic acid sequences of CDR3s

272  asidentical TCRs, the whole dataset contains ~8,500 unique TCR sequences that occur
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273  more than once. Compared with other cohorts, the diversities of TCR repertoires from
274 severe groups showed significant differences in several subtypes for both CD4" and
275 CDS8' T cells (Fig. 1D and 1E). Notably, the diversity of cytotoxic CD8" T cells that
276  consist mainly of clonal T cells decreased significantly for severe cohorts in the
277  progression state (Fig. 1D), indicating the enrichment of antigen-specific TCRs. The
278  shrinkage in the diversity of the TCR repertoire of cytotoxic CD8" T cells probably
279  reflects that the TCR repertoire converges, to some extent, into the SARS-CoV-2-
280  specific spectrum. These results indicated that SARS-CoV-2 infection biased the
281  composition of T cell subtypes and TCR repertoires, especially for patients with severe
282  symptoms in the disease progression stage. Considering the higher clonal expansion
283  and diversity shrinkage in cytotoxic CD8" T cells, we focused on the epitope

284  recognition mechanisms of CD8" T cells in further analysis.

285 Identifying SARS-CoV-2-specific TCRs and potential epitopes via a
286 clustering-based pipeline

287 Antigen specificity is indispensable to comprehending adaptive immune responses,
288  while the lack of epitope information in TCR repertoires hinders the investigation of
289  TCR-epitope recognition. We then proposed a strategy to investigate the antigen
290  specificity and recognition mechanisms for epitope-unknown TCRs. For the epitope-
291  unknown TCR repertoires collected above, we retained only TCR sequences occurring
292  more than once at the amino acid level, resulting in 8,507 epitope-unknown TCRs (Fig.

293  2A, referred to as dataset UNK in the following sections). In addition, we also collected
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294 1,766 SARS-CoV-2-specific TCRs (Fig. 2A, referred to as dataset VDJ-S) and 29,101
295  SARS-CoV-2 nonspecific TCRs (referred to as dataset VDJ-N) from VDJdb[27], as
296  well as the corresponding epitope sequences. Then, the epitope information for epitope-
297  unknown TCRs was inferred based on these datasets via two parallel steps. 1) TCR
298  sequence clustering was performed for the UNK dataset and the SARS-CoV-2-specific
299  VDI-S dataset using GLIPH[20]. For each cluster containing both epitope-known and
300 epitope-unknown TCRs, the epitope sequences were mapped between TCRs (Fig. 2A
301  top). To improve the accuracy of clustering and epitope mapping, we trimmed TCR
302  clusters by retaining only epitope-unknown TCRs directly connected with epitope-
303 known TCRs and vice versa (see details in Methods). 2) Identical clustering and
304  additional epitope screening processes were performed for the UNK and SARS-CoV-2
305 nonspecific datasets VDJ-N (Fig. 2A bottom). As the epitopes in VDJ-N dataset
306  originated from non-SARS-CoV-2 antigens, we then utilized the mapped epitope
307  sequences to screen for similar peptides against SARS-CoV-2 protein sequences. Then,
308 we predicted the binding ability of the searched peptides to 20 common MHC-I
309  molecules using NetMHCpan 4.1[55], followed by immunogenicity prediction and
310 ranking using DeepAntigen[44]. Finally, combining TCR, epitope, and MHC
311 information, we investigated the molecular mechanisms underlying TCR-epitope

312  recognition via structure prediction, molecular docking, and MD simulations (Fig. 2B).
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314  Figure 2. Schematic diagram of the pipeline to identify antigen specificity and explore epitope
315  recognition mechanisms. (A) Flowchart of epitope mapping for epitope-known and epitope-
316  unknown TCRs by sequence clustering. (B) The workflow to investigate the molecular mechanisms
317  of TCR-pMHC recognition. (C) The contact frequency of each site in the 9-mer epitope for 65 TCR-
318  pMHC crystal structures.

319 Clustering TCRs from the UNK and VDJ-S datasets gave rise to 152 clusters
320 involving 387 epitope-unknown TCRs and 477 epitope-known TCRs targeting SARS-
321  CoV-2 epitopes. Considering the functionality and disease association, we focused on
322  the TCRs carried by highly expanded T cells. Retaining clusters that contain at least
323  one TCR expressed by more than 100 T cells, five clusters were finally identified with
324  epitopes mapped for nineteen epitope-unknown TCRs (Table 1). Four of the five
325  clusters contain TCRs from more than one patient, and none of the clusters contains
326  TCRs from healthy controls. We found that the most-populated TCR (TCR-614, the
327  suffix indicates the number of cells expressing the TCR) clustered in this step was

328  gathered in cluster 1 with a TCR targeting epitope So19-927 (NQKLIANQF) from the
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329  SARS-CoV-2 spike protein. A sequence motif in CDR3p, ‘SDPE’, was recognized by

330  GLIPH[20] in cluster 1, probably accounting for the shared antigen specificity.

331 In step 2, 2,164 epitope-unknown TCRs and 5,064 TCRs targeting non-SARS-
332  CoV-2 epitopes were gathered into 905 clusters, 11 of which contained at least one TCR
333  expressed by more than 100 T cells (Table 2). A total of eight epitope sequences in the
334  eleven clusters were utilized to screen for potential epitopes against SARS-CoV-2
335  protein sequences. Prior to the screening, we analyzed the contacts between TCR and
336  the 9-mer antigenic peptide for 65 nonredundant TCR-pMHC complex structures. We
337  found that five hot spots, the fourth to the eighth site, in the presented peptide showed
338  high frequencies in interacting with TCR (Fig. 2C). Therefore, we calculated the
339  physicochemical similarity in the above hot-spot region between the mapped epitopes
340  and all possible 9-mer peptides derived from SARS-CoV-2 proteins to screen for similar
341  peptides. Notably, the most-populated TCR clustered in this step was sampled from
342  healthy controls and shared antigen specificity with a TCR targeting a melanoma-
343  associated neoantigen-derived epitope[56] (Table 2 cluster 1), although it is unclear
344  whether the corresponding donors burden the neoantigen or associated cancers[39].
345  Thus, we chose the TCR expressed by 204 T cells (TCR-204) in cluster 2 for further
346  analysis. We noticed that six TCRs targeting four distinctive epitopes were highly
347  similar in CDR3f and shared specificity with TCR-204 (Table 2 cluster 2), implying
348  the polyspecificity of TCR-204. Notably, in the potential epitope screening, we found

349  that the shared epitope GLCTLVAML showed high similarity in the TCR-interacting
18
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350 hot spots to a peptide from SARS-CoV-2 NSP3, KLKTLVATA (NSP31790-1798). The
351  peptide was also predicted as a binder to four common HLA alleles (A*02:01, A*02:06,
352  A*30:01, and B*13:02) by NetMHCpan 4.1{43] and ranked with high priority (4/80)
353  in immunogenicity prediction by DeepAntigen[44], suggesting its competence to be an

354  epitope.

355 The identification of reported SARS-CoV-2 epitopes for highly expanded TCRs
356 indicated the capability to identify epitopes for epitope-unknown TCRs via clustering.
357  Meanwhile, combining physicochemical similarity-based epitope screening and
358 immunogenicity prediction, we also discovered neoepitopes for potential treatment.
359  However, the lack of detailed interactions between TCRs and epitopes at the atomic
360 level hinders the understanding and utilization of TCR-pMHC recognition for
361  immunotherapy. Therefore, we further investigated the detailed epitope-recognition

362  mechanisms for the two highly expanded TCRs, TCR-614 and TCR-204.

363 TCR-614 employs a hydrophobic clamp and hydrogen bonds to
364 recognize the middle/C-terminus of SARS-CoV-2 epitope So19.927

365 To illustrate the molecular mechanisms of epitope recognition, we constructed the
366 HLA-B*15:01-NQKLIANQF complex model according to the HLA allele information
367  from the VDJdb[27] database and one crystal structure of pHLA-B*15:01 (PDB id:
368  6uzq). Then, we performed one 50-ns MD simulation to equilibrate the constructed

369  binary complex. The resulting equilibrated model revealed that the presented peptide
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adopted a canonical conformation in which its two ends were embedded into two
pockets in the antigen-binding groove, with pL4-pQS8 exposed to the solvents (Fig. 3A).
To stabilize the bound peptide, five and seven hydrogen bonds (HBs) were established

between MHC and the peptide N- and C-terminal regions, respectively (Fig. 3B).
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Figure 3. MD simulations reveal the recognition mechanism between the epitope So19.927 and
TCR-614. (A) The overall conformation of the epitope, NQKLIANQF, presented by HLA-B*15:01.
The HLA molecule is shown in the cyan cartoon, and the peptide is highlighted by violet sticks with
labels. (B) The HB interactions formed in the peptide N-terminus (left) and C-terminus (middle)
and the corresponding occupancies (right). The HBs are indicated by black dashed lines and red
labels. (C) The overall structure of the TCR-pMHC complex. (D) The occupancies of contacts
formed between the TCR and peptide. The distance cutoff used for the contact calculation is set to
6 A. (E) Relative solvent-accessible surface area (rSASA) of the peptide during MD simulations for
pMHC (gray) and TCR-pMHC (red) complexes. (F) The structural details of the hydrophobic clamp
responsible for recognizing pL4pl5. (G) HB interaction networks formed between the TCR [ chain
and peptide C-terminus (left) and HBs occupancy (right). The HBs are labeled by black dashed lines.

We then sought to construct the ternary complex of the TCR-bound pMHC

complex. To this end, we first built the structure of TCR-614 via ColabFold[45] and

20
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388  performed molecular docking to predict the TCR-pMHC model via HADDOCK
389  2.4[47]. The resulting TCR-pMHC model was then employed as the initial structure for
390 the following 100-ns MD simulations, and the last 50-ns simulation dataset was used
391  for final structural analyses. The equilibrated TCR-pMHC conformation shows that the
392  TCR a and B chain mainly target the peptide N- and C-terminus, respectively (Fig. 3C).
393  In addition, TCR was found to form more direct contacts with the hot spots pL4-pQS8
394  region (Fig. 3D), leading to a significantly reduced solvent-accessible surface area
395 (SASA) in this region (Fig. 3E). In particular, two peptide residues, pL4 and pI5, could
396  establish more stable interactions with several discontinuous CDR3 residues, including
397  BY29, BD93-E95, and aoF99 that clamps the bound peptide, highlighting their
398  importance in TCR recognition (Fig. 3F). Moreover, pN7 and pQ8 could also directly
399 interact with TCR CDRIP and CDR2, respectively. In addition, several HBs were
400  established between pN7pQ8 and several CDR1/2 residues, i.e., pH27, BE28, and

401 BN49 (Fig. 3G).

402 CDR3p conformation is critical for the recognition of the potential
403 SARS-CoV-2 epitope NSP31790-1798 by TCR-204

404 Likewise, we constructed the TCR-pMHC ternary model for TCR-204 and the
405  potential SARS-CoV-2 epitope KLKTLVATA. To achieve this, we first built the pMHC
406  model based on one crystal structure of pHLA-A*30:01 (PDB id: 6j1w[46]) to which
407  the potential epitope KLKTLVATA was predicted to be a strong binder by NetMHCpan

408  4.1[43]. Our 50-ns MD simulations indicate that the peptide remained stable and
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409  adopted a canonical convex conformation in the antigen-binding groove (Fig. 4A).
410  Similar to the So19.927 epitope, the peptide N- and C-terminus were inserted into the
411  antigen-binding groove, with several HBs formed between MHC and the bound peptide
412  (Fig. 4B). In particular, the positively charged pK3 could form salt-bridge interactions

413  with the MHC-E114 (Fig. 4B), which further stabilizes the loaded peptide.
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414
415  Figure 4. CDR3pB of TCR-204 dominates the recognition of epitope NSP3179¢-179s. (A) The

416  overall conformation of the peptide KLK TLVATA presented by HLA-A*30:01. (B) The hydrogen-
417  bond interactions established between the peptide termini and MHC (left and middle panels) and
418  the corresponding occupancies in MD simulations (right panel). (C) The occupancies of contacts
419  formed between the TCR and peptide. A distance cutoff of 6 A is used for defining contacts. (D)
420  rSASA of the peptide during MD simulations for pMHC (gray) and TCR-pMHC (red) complexes.
421 (E) HB interactions established between CDR3B and peptide residues (left panel) and the
422  corresponding occupancies (right panel). (F) The hydrophobic core formed by BL95, W147, A150,
423  and W152 (left panel) and two distance measurements indicating the conformational switch of
424  CDR3B (middle and right panels). The distances d1 and d2 are measured between the center of mass
425  (COM) of sidechains of CDR3p residues (BL95 for d1 and BA96 for d2) and MHC residues W147,
426  A150, and W152.

427 Next, we modeled the structure of TCR-204 via ColabFold[45], and docked this
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428  structure to the above pMHC model using HADDOCK 2.4[48]. Then, we performed a
429  200-ns MD simulation for the ternary TCR-pMHC model to investigate the epitope-
430  recognition mechanisms of NSP31790.179s by TCR-204. According to the contact
431  calculations between the peptide and TCR, the interacting interface was also located in
432  the hot-spots pT4-pT8 region in which pT8 interacts with a series of CDR3p residues,
433 i.e., BP93-pG97 (Fig. 4C). The SASA analyses also suggest that TCR-204 mainly
434 recognizes the peptide pT4-pT8 region (Fig. 4D). Moreover, the CDR2[ residues fY48
435  and PR49 play critical roles in recognizing the peptide C-terminus via forming HBs,
436  alongside with the MHC residues D77 and R146. In addition to electrostatic interactions,
437  nonpolar interactions are also integral factors in the epitope recognition of NSP3790-
438  1798. Lying over the proximal region of the peptide C-terminus, the hydrophobic region
439  of CDR3p, BP93-G97, simultaneously recognized the peptide and MHC, with the side
440  chain of BL95 embedded into a shallow hydrophobic pocket formed by pA7 and MHC
441  residues W147, A150 & WI152 (Fig. 4F left). Importantly, the sequence ‘GLAG’ in
442  CDR3} is also highly conserved between TCRs gathered in cluster 2 by GLIPH (Table
443  2), highlighting its essential role in polyspecificity. Notably, BL95 underwent a
444 conformational shift from a solvent-exposed state to an inserted conformation at ~165-

445  ns and maintains steady in the remaining simulations (Fig. 4F middle and right)

446 Discussion

447 In this study, we developed a combinatorial strategy to investigate the disease-

448  associated TCR-pMHC recognition mechanism by leveraging massive single-cell
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449  sequencing data and efficient computational tools. The epitope-unknown TCRs from
450 COVID-19 patients were clustered with epitope-known TCRs to identify antigen
451  specificity. According to the single-cell sequencing data, two SARS-CoV-2-associated
452  TCRs, TCR-614 and TCR-204, expressed by highly expanded T cells were subjected
453  to further MD simulations to investigate the molecular mechanisms underlying the TCR
454  and pMHC recognition for two identified epitope sequences NQKLIANQF (S919-927)
455  and KLKTLVATA (NSP31790-1798). Combining deep learning-based structure prediction,
456  information-driven docking, and MD simulations, we revealed the critical interactions
457  responsible for epitope recognition by the two TCRs. The CDR3p loops of both TCRs
458 play critical roles in recognizing pMHC molecules, complying well with the
459  conventional understanding of epitope recognition by TCR. For TCR-614, aF99, fY29,
460  and P94 formed a hydrophobic ‘clamp’ to recognize two hydrophobic peptide residues
461 pL4 and plS. Several HBs were also formed between CDR1/2p and the peptide C-
462  terminus. For TCR-204, we observed a conformational transition of the CDR3f loop
463  that stabilized the hydrophobic interactions by the insertion of BL95 into a shallow
464  pocket formed by the peptide and MHC residues. Our work provides a computational
465  strategy bridging the single-cell sequencing data of TCRs and structural insights into
466  the epitope-recognition mechanisms. The detailed interactions between the TCR and

467  epitope can be further utilized to facilitate TCR engineering and cancer vaccine design.

468 The massive TCR sequences generated by high-throughput and single-cell

469  sequencing techniques have greatly promoted the investigation of T cell immune
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470  responses. Recently, by clustering experimentally sequenced TCRs with released
471  epitope-known TCRs, researchers were allowed to identify the antigen specificities of
472  epitope-unknown TCRs associated with autoimmune disease[57], viral infection[58],
473  and cancers[59], making it plausible to utilize TCR sequence repertoires for therapeutic
474  discovery. However, the lack of TCR-pMHC complex structures hinders the
475  optimization of TCRs and the rational design of peptide vaccines. To overcome the
476  limitation of structural data, we proposed a computational strategy by combining the
477  TCR clustering method and structural modeling tools, thereby revealing the TCR-
478  pMHC recognition mechanisms for two SARS-CoV-2-associated TCRs at the atomic
479  level. Our MD simulations pinpointed the bilateral residue-residue interactions between
480 TCR and epitope, which is more precise and comprehensive compared with the sole
481  TCR sequence motif recognized by the clustering method. The deep insights into the
482  TCR-pMHC interactions and the accompanying conformational transitions will guide

483  the engineering of TCR-based therapeutics.

484 Derived from the tumor-specific antigens (TSAs) containing nonsynonymous
485  mutations, the neoepitopes can be discerned and targeted by the immune system,
486 thereby playing a pivotal role in the development of cancer vaccines[60-62]. However,
487  the identification and selection of neoepitopes suitable for vaccine design remain
488  challenging despite several developed strategies[62]. Here, we provided a
489  computational strategy to discover neoepitopes and reveal the structural dynamics

490  underlying epitope recognition by TCRs, which will promote the design and
25
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491  optimization of cancer vaccines.

492 In this study, we selected two TCRs mainly based on clonal expansion which is a
493  critical process in adaptive immune responses against pathogens[63]. In addition to the
494  extent of clonal expansion, single-cell approaches can simultaneously capture TCR
495  sequences coupled with more features, such as gene/protein expression and chromatin
496  accessibility[26]. These features can also be utilized to identify the TCRs carried by
497  functional or characteristic T cells for investigating TCR-pMHC recognition by
498  structural modeling. Based on the constructed TCR-pMHC model, researchers could
499  further improve the binding affinity and specificity of TCRs by combining other
500  computational methods[30, 31, 33]. For the epitope, the recognized peptide repertoire
501 by a certain TCR is highly expanded owing to the polyspecificity. Here, we determined
502 a hot-spots region, position 4 to position 8 of the 9-mer peptide, which was
503  subsequently used for potential epitope screening by physicochemical similarity
504  searching against SARS-CoV-2-derived peptides. Consistent with previous studies, the
505  cross-reactive peptides exhibited similarity in hot-spots regions[64, 65], demonstrating
506 the feasibility of discovering cross-reactive peptides by similarity searching. However,
507  even highly distinctive peptides can be recognized by the same TCR with different
508 conformations[64], indicating the limited efficacy of similarity searching in the
509 discovery of cross-reactive peptides. In addition, a variety of post-translational
510  modifications can reshape the peptides presented by MHC molecules and influence the

511 T cell immune response[66], which further complicates TCR-pMHC recognition. To
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512  better understand and utilize T cell immune responses, the molecular basis underlying
513  TCR-pMHC recognition remains to be comprehensively elucidated in the future, and
514  further studies are necessary to unveil the association between cellular characteristics

515 and TCR-pMHC interactions.
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Table 1. Clusters of epitope-unknown TCRs and SARS-CoV-2-specific TCRs from VDJdb.

Cluster Dataset TRBV TRBJ CDR3b TRAV TRAJ CDR3a Number Patients Epitope Antigen HLA
1 UNK V21 J2-5 CASSDPEETQYF V19 J8 CALSDNTGFQKLVF 614 P-S084
UNK V24-1  J2-5 CATSDPEGTGQETQYF V13-1 J34 CAALSYNTDKLIF 17 P-S042
UNK V9 Jo-7 CASSDPEGLYF Vi2-1 J10 CVEPTGGGNKLTF 6 P-M071
UNK V27 J2-5 CASSDPEETQYF V18 J8 CALSDNTGFQKLVF 2 P-S084
VDJ-S V7-9 Ji-1 CASSTSDPEAFF V8-2 J43 CVVSDSDNNNDMRF NQKLTANQF S B*15:01
2 UNK V2 Jo-7 CATDPDHNGGQYF V19 J23 CALSEYDSNNQGGKLIF 492 P-M026
UNK V6-5 J2-2 CASSHLGELFF V14/DV4 J52 CAMRESPWGTSYGKLTF 8 P-M079
UNK V14 J1-2 CASSQDRGSHNGYTF V14/DV4 J37 CAMSGGSSNTGKLIF 7 P-M069
UNK Vi1-3  J2-2 CASSGRGHNGELFF V8-3 Ja7 CAVLYGNKLVF 2 P-M078
VDJ-S V7-9 J1-2 CASSFVSEEHNGYTF Vi2-1 J8 CVVGTGFQKLVF TTDPSFLGRY NSP3 A*01:01
VDJ-S V4-1 J2-2 CASSHNGELFF V4 J32 CLVDGGATNKLIF SPRWYEYYL N B*07:02
3 UNK V5-6 J1-6 CASSLSDRQNSPLHF V38-2/DV8 J30 CAYRSAFWGDDKITF 350 P-M052
UNK V29-1 J2-1 CSVVRQNSYNEQFF V38-2/DV8 Ja4 CAYRRDYTGTASKLTF 2 P-MO17
UNK V20-1  J1-6 CSAREDRQNSPLHF V26-1 J31 CIVRLNNARLMF 2 P-S057
UNK V6-5 J1-6 CASSQGRQNSPLHF Nzt J22 CLVGDLRLYGSARQLTF 2 P-S053
VDJ-S V1i0-2 J2-1 CASLRQNSGEQFF Viz2-1 Ja7 CVVNMEDKLVF YLQPRTFLL S A%02:01
4 UNK V7-9 Ji-1 CASSTIENTEAFF V3 J43 CAVSRLDNDMRF 155 P-M014
UNK V9 J1-1 CASSGSNTEAFF V9-2 J27 CALGTNAGKSTF 38 P-M071
UNK V9 Ji-1 CASSGSNTEAFF Vi-2 J39 CAVKNAGNMLTF 25 P-S055 P-M071
UNK V9 Ji-1 CASSGGNTEAFF V-2 J13 CAPRGGGQKVTF 9 P-MO71
UNK V9 J1-1 CASSGGNTEAFF Vi-2 J39 CAVRNAGNMLTF 5 P-M071
UNK V2 Ji-1 CASSGGNTEAFF V24 J46 CAFSSGDKLTF 2 P-M049
VDJ-S V19 J1-1 CASSGENTEAFF RLQSLQTYV S A*02
5 UNK V2 J2-1 CASSQGWPYEQYF V8-2 J13 CVVSESGGYQKVTF 101 P-M042
VDJ-S V29-1  J2-7 CSVLTGWPYEQYF V12-2 J28 CAGALGGAGSYQLTF LTDEMIAQY S A*01:01
VDJ-S V29-1 J2-7 CSVHQGWPYEQYF V12-2 J53 CAVNSGGSNYKLTF LTDEMIAQY S A*01:01
VDJ-S V29-1  J2-7 CSVHQGWPYEQYF V17 J57 CATDIVREGGSEKLVF LTDEMIAQY S A*01:01
VDJ-S V29-1 J2-7 CSVGKGWPYEQYF Vi2-2 J20 CAVNMQSNDYKLSF LTDEMIAQY S A*01:01
VDJ-S V29-1  J2-7 CSVGQGWPYEQYF V8-1 J53 CAVSLLNSGGSNYKLTF LTDEMIAQY S A*01:01
VDJ-S V29-1 J2-7 CSVGTGWPYEQYF Vi2-2 J53 CAVNVGGGSNYKLTF LTDEMIAQY S A*01:01
VDJ-S V29-1  J2-7 CSVGTGWPYEQYF Vi2-1 J52 CVVTSRDHLRANAGGTSYGKLTF LTDEMIAQY S A*01:01
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Table 2. Clusters of epitope-unknown TCRs and non-SARS-CoV-2-specific TCRs from VDJdb.

Cluster Dataset TRBV  TRBJ CDR3b TRAV TRAJ CDR3a Number Patients Epitope Antigen Species HLA

1 UNK V28 J1-4 CASSQWSATNEKLFF V36/DV7 J28 CAAPGAGSYQLTF 262 P-HC003

UNK V28 J1-4 CASSLWSATNEKLFF V36/DV7 J28 CASPGAGSYQLTF 62 P-MO17

UNK V28 J1-4 CASSFWSATNEKLFF V36/DV7 J28 CATPGAGSYQLTF 3 P-S087

UNK V28 J1-4 CASSLWSATNEKLFF Vi-2 J33 CALLDSNYQLIW 2 P-MO17

UNK V28 J1-4 CASSLWSATNEKLFF V36/DV7 J28 CATPGAGSYQLTF 2 P-M064

VDJ-N V14 J1-4 CASSQWSSTNEKLFF MLGEQLFPL PABPC1 Homo Sapiens  A*02:01
2 UNK V5-4 J2-1 CASSPGLAGDNEQFF Vi2-2 J11 CAAEYSTLTF 204 P-M044

VDJ-N V6-3 J2-1 CASSPGLAGDNEQFF V14/DV4 J22 CAMRRPISSGSARQLTF KLGGALQAK IE1 CMV A*03:01

VDJ-N V4-1 Jo-7 CASSQGLAGDNEQYF LLLGIGILV BST2 Homo Sapiens A*02

VDJ-N V4-2 J2-1 CASSPGLAGANEQFF GLCTLVAML BMLF1 EBV A*%02:01

VDJ-N V7-2 J2-1 CASSPGLAGANEQFF GLCTLVAML BMLF1 EBV A%02:01

VDJ-N V7-8 J2-1 CASSPGLAGANEQFF GLCTLVAML BMLF1 EBV A%02:01

VDJ-N V7-6 Jo-7 CASSPGLAGNNEQYF GILGFVFTL M InfluenzaA A*02:01
3 UNK V7-8 Jo-7 CASSVGAGREQYF Vi-2 J15 CAVRDTNQAGTALIF 191 P-S059

VDJ-N V9 J2-1 CASSVGGGREQFF V5 J7 CAETRGNNRLAF LLWNGPMAV NS4B YFV A*%02:01
4 UNK V27 J2-3 CASSSRLAGSTDTQYF V3 J30 CAVRPYRDDKITIF 181 P-M026

UNK V27 J2-3 CASSSRLAGGTDTQYF V3 J30 CAVRPNRDDKIIF 91 P-M021 P-S028

UNK V27 J2-3 CASSSRLAGGTDTQYF V3 J30 CAVRPHRDDKIIF 15 P-S028

VDJ-N V9 J2-3 CASSSRLAGSTDTQYF V14/DV4 J48 CAMREGQSFGNEKLTF KLGGALQAK IE1 CMv A*03:01
5 UNK V2 J2-3 CASSTDTQYF V29/DV5 J45 CAASHDAGGGADGLTF 174 P-M049

UNK V2 J2-3 CASSTDTQYF V40 J48 CLLGSNFGNEKLTF 74 P-M049

VDJ-N V29-1  J2-1 CSASTDEQFF V19 J13 CALRPSGGYQKVTF KLGGALQAK IE1 CMv A*03:01

VDJ-N V9 J1-2 CASSTDRVAF V8-3 J41 CAVGAGSGYALNF KLGGALQAK IE1 CMV A%03:01

VDJ-N V7-9 J2-3 CASSLDTQYF V35 J49 CAGHTGNQFYF IVTDFSVIK EBNA4 EBV A*11:01

VDJ-N V7-9 J2-3 CASSLDTQYF V13-1 J42 CAASMGGGSQGNLIF GILGFVFTL M InfluenzaA A%02:01

VDJ-N V7-9 J2-3 CASSLDTQYF V5 J31 CAEDSNARLMF GLCTLVAML BMLF1 EBV A%02:01

VDJ-N V7-9 J2-3 CASSLDTQYF V27 J37 CAGGGSGNTGKLIF GILGFVFTL M InfluenzaA A%02:01

VDJ-N V7-9 J2-3 CASSLDTQYF Vi2-3 J27 CAMKSTNAGKSTF KLGGALQAK IE1 CMV A*03:01

VDJ-N Vil-2  J2-3 CASSLDTQYF V9-2 Ja1 CALTGGYALNF KLGGALQAK IE1 CMV A%03:01

VDJ-N V6-3 J2-3 CATGTDTQYF V30 J43 CGFYNNNDMRF KLGGALQAK IE1 CMV A*03:01
6 UNK V7-9 J1-1 CASSTENTEAFF V3 J43 CAVSRLDNDMRF 155 P-M014
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VDJ-N V6-3  Jl-1 CASSIMNTEAFF V8-1 J5 CAVNLGRRALTF KLGGALQAK IE1 CMV A*%03:01
VDJ-N V19 J1-1 CASSIGNTEAFF V19 J40 CALSEAGTYKYIF KLGGALQAK IE1 CMvV Ax03:01
7 UNK Ve-6  J2-1 CASSRNNEQFF V20 J26 CAVWNYGQNFVF 154 P-M046
UNK V6-6  J2-1 CASSRNNEQFF V12-3 J38 CAMNAGNNRKLIW 90 P-M046
UNK V2 J2-1 CASSGNNEQFF V5 J24 CAVSTDSWGKFQF 4 P-S090
UNK V2 J2-1 CASSRMNEQYF V2l J30 CAGGGDDKIIF 2 P-M079
VDJ-N V1io-3  J2-7 CAISRGNEQYF V8-6 J28 CAVSEPSGAGSYQLTF GILGFVFTL M InfluenzaA Ax02:01
VDJ-N V6-3  J2-1 CASSRYNEQFF V29/DV5 J45 CAATDSGGGADGLTF KLGGALQAK IE1 CMV A*%03:01
VDJ-N V6-5  J2-1 CASSRYNEQFF V35 J26 CAGQGNYGQNFVF KLGGALQAK IE1 CMV A*03:01
VDJ-N V5-1 J2-1 CASSTNNEQFF ISPRTLNAW Pol HIV-1 B*57
VDJ-N V5-1 J2-1 CASSFNNEQFF GLCTLVAML BMLF1 EBV A*02:01
VDJ-N V3-1 J2-1 CASSRPNEQYF V39 J40 CAGESGTYKYIF KLGGALQAK IE1 CMvV Ax03:01
8 UNK V-5  J1-1 CASSYFGMNTEAFF V17 J42 CGYGGSQGNLIF 141 P-HC013
UNK V-5  J1-1 CASSYFGMNTEAFF V35 J52 CAGPGLGGTSYGKLTF 25 P-HC013
VDJ-N V-5  Jl-1 CASSYFGGNTEAFF NLVPMVATV pp65 CMv Ax02:01
VDJ-N V-5  J1-1 CASSYFGANTEAFF NLVPMVATV pp65 CMv A%02
9 UNK Vi1-3  J2-3 CASSRQGNTQYF V41 J53 CAAPPNSGGSNYKLTF 140 P-S038
UNK Vi1-3  J2-3 CASSRQGNTQYF V38-1 J48 CAFSLPPNFGNEKLTF 52 P-5038
UNK Vi-6  J1-3 CASSGQGNTIYF V39 J21 CAVDSVGTNAGKSTF 2 P-M054
VDJ-N Vi-6  J1-3 CASSRTGNTIYF V13-2 J23 CAENYQGGKLIF KLGGALQAK IE1 CMV A*%03:01
10 UNK V14 J2-1 CASSQDRGGWQFF V9-2 J34 CALSVLYNTDKLIF 128 P-M032
VDJ-N V4-1 J2-17 CASSQDRGGTQYF V26-2 J33 CILRLAVGNYQLIW KLGGALQAK IE1 CMV A*%03:01
11 UNK V-8 J2-1 CASSRLNNEQFF V8-6 J45 CAVSESGGGADGLTF 113 P-M055
UNK V-8 J2-1 CASSRLNNEQFF V8-6 J45 CAVSEAGGGADGLTF 10 P-M049
VDJ-N Va7 J2-1 CASSRLNNEQFF V24 J45 CASSSGGGADGLTF KLGGALQAK IE1 CMV A*%03:01
VDJ-N V25-1  J2-1 CASSVLNNEQFF NLVPMVATV pp65 CMvV A%02
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