

1  
2 **Aberrant light sensing and motility in the green alga *Chlamydomonas priscu***  
3 **from the ice-covered Antarctic Lake Bonney**  
4

5 Mackenzie Poirier<sup>1</sup>, Pomona Osmers<sup>1</sup>, Kieran Wilkins<sup>1</sup>, Rachael M. Morgan-Kiss<sup>2</sup>, Marina  
6 Cvetkovska<sup>1\*</sup>

7  
8 <sup>1</sup>Department of Biology, University of Ottawa, Ottawa, Canada  
9 <sup>2</sup>Department of Microbiology, Miami University, Oxford, OH, United States

10  
11  
12 **\*Corresponding author:**  
13           Marina Cvetkovska  
14           Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, Canada,  
15           K1N 6N5  
16           Email: [mcvetkov@uottawa.ca](mailto:mcvetkov@uottawa.ca)  
17           Phone: 613-562-5800 x6355  
18  
19  
20  
21  
22  
23  
24  
25

26 **Abstract**

27 The Antarctic green alga *Chlamydomonas prisculii* is an obligate psychrophile and an emerging  
28 model for photosynthetic adaptation to extreme conditions. Endemic to the ice-covered Lake  
29 Bonney, this alga thrives at highly unusual light conditions characterized by very low light  
30 irradiance ( $<15 \mu\text{mol m}^{-2} \text{s}^{-1}$ ), a narrow wavelength spectrum enriched in blue light, and an  
31 extreme photoperiod. Genome sequencing of *C. prisculii* exposed an unusually large genome,  
32 with hundreds of highly similar gene duplicates and expanded gene families, some of which  
33 could be aiding its survival in extreme conditions. In contrast to the described expansion in the  
34 genetic repertoire in *C. prisculii*, here we suggest that the gene family encoding for  
35 photoreceptors is reduced when compared to related green algae. This alga also possesses a very  
36 small eyespot and exhibits an aberrant phototactic response, compared to the model  
37 *Chlamydomonas reinhardtii*. We also investigated the genome and behaviour of the closely  
38 related psychrophilic alga *Chlamydomonas* sp. ICE-MDV, that is found throughout the photic  
39 zone of Lake Bonney and is naturally exposed to higher light levels. Our analyses revealed a  
40 photoreceptor gene family and a robust phototactic response similar to those in the model  
41 *Chlamydomonas reinhardtii*. These results suggest that the aberrant phototactic response in *C.*  
42 *prisculii* is a result of life under extreme shading rather than a common feature of all  
43 psychrophilic algae. We discuss the implications of these results on the evolution and survival of  
44 shade adapted polar algae.

45

46

47

48

49

50

51

52

### 53      **Introduction**

54      Light provides energy and information that regulates many cellular processes in plants and algae.  
55      Motile green algae have sensitive mechanisms for light detection and can induce movement  
56      across a light gradient, either towards (positive phototaxis) or away from a light source (negative  
57      phototaxis) (Böhm & Kreimer, 2020). Phototaxis is regulated by a specialized organelle called  
58      an eyespot that allows for the precise detection of light intensity and direction (Ueki *et al.*, 2016;  
59      Böhm & Kreimer, 2020). Photoreceptors are critical components of the light-sensing apparatus  
60      that controls phototaxis and a plethora of other processes including photosynthesis, circadian  
61      rhythms, and gametogenesis (Trippens *et al.*, 2012; Petroutsos *et al.*, 2016; Müller *et al.*, 2017;  
62      Rredhi *et al.*, 2021). Phototaxis has evolved independently multiple times in diverse microbial  
63      lineages including cyanobacteria, algae, and protists (Jékely, 2009; Gavelis *et al.*, 2017),  
64      suggesting that light-directed movement confers an evolutionary advantage that allows free-  
65      swimming microbes to avoid stress from either insufficient or excess light.

66      Many important insights on light sensing come from model species, such as *Chlamydomonas*  
67      *reinhardtii* (Kianianmomeni & Hallmann, 2014), but green algae are found in diverse habitats.  
68      Many environments are populated by species thriving under environmental regimes that are  
69      untenable for growth of most model algae. Lake Bonney of the McMurdo Dry Valleys in  
70      Antarctica is one such environment. Microalgal communities in this lake are challenged with  
71      perpetual low temperatures, extreme shading under a perennial ice cover, prolonged periods of  
72      darkness during the polar winter, nutrient deficiencies, supersaturated oxygen levels, and high  
73      salinity (Morgan-Kiss *et al.*, 2006; Patriarche *et al.*, 2021). The ice cover prevents wind-driven  
74      mixing and environmental inputs, making this lake an unusually stable and highly stratified  
75      environment, often termed a “natural laboratory” for the study of extremophilic biology  
76      (Patriarche *et al.*, 2021). Lake Bonney is a home to a diverse algal community, including one of  
77      the best studied polar chlorophytes *Chlamydomonas priscu**ii*, recently re-named from  
78      *Chlamydomonas* sp. UWO241 (Stahl-Rommel *et al.*, 2021).

79      Chlorophytes dominate the phytoplankton communities of Lake Bonney. *C. priscu**ii* has only  
80      been detected in the deep photic zone at 17 meters below the surface of the ice (Neale & Priscu,  
81      1995) while a second chlorophyte, *Chlamydomonas* sp. ICE-MDV is found throughout the  
82      photic zone and is the dominant chlorophyte within the shallower, under-ice layers (Bielewicz *et*

83 *al.*, 2011). In its natural environment *C. priscuii* is exposed to year-round low temperatures  
84 (~4°C), hypersalinity (700 mM NaCl), low light irradiance (<15  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) with a narrow  
85 spectral range (450-550 nm), and long periods of darkness during the polar night (Neale &  
86 Priscu, 1995). *C. priscuii* is an obligate cold extremophile (psychrophile) that experiences heat  
87 shock and cell death at temperature >18°C (Possmayer *et al.*, 2011; Cvetkovska *et al.*, 2022).  
88 Under lab conditions, *C. priscuii* is present as either biflagellate, highly motile single cells or as  
89 nonmotile, multi-celled palmelloids. Pocock *et al.* (2004) observed a very small eyespot  
90 composed of a single layer of carotenoid-rich globules. Positive phototaxis was only possible at  
91 higher temperatures (25°C) but not at those closer to its natural environment (7°C) (Pocock *et*  
92 *al.*, 2004). In native phytoplankton communities, Priscu and Neale (1995) observed that while  
93 there is no evidence of diel migration in the water column, shallow phytoplankton populations  
94 exhibited positive phototaxis, while deeper communities (12 m and 20 m sampling depths) did  
95 not. The spatial distribution of different *Chlamydomonas* populations within the water column of  
96 Lake Bonney, combined with recent advances in the study of *C. priscuii*, including the  
97 sequencing of its genome (Zhang *et al.*, 2021), prompted us to further investigate its phototactic  
98 response.

99 **Materials and Methods:**

100 **Strains and Growth Conditions:** *Chlamydomonas priscuii* (previously UWO241, CCMP1619)  
101 was originally isolated in early 1990s from the deep photic zone (17 m sampling depth) of the  
102 east lobe of Lake Bonney, Antarctica (Neale & Priscu, 1995). *Chlamydomonas* sp. ICE-MDV  
103 was originally isolated in 2014 from an enrichment culture of the east lobe of Lake Bonney (Li *et*  
104 *al.*, 2016). *Chlamydomonas reinhardtii* (CC-1690) was obtained from the Chlamydomonas  
105 Resource Center. All cultures were grown axenically in Bold's Basal Medium (BBM)  
106 supplemented with 700 mM NaCl at 4°C (*C. priscuii*), 70 mM NaCl at 4°C (ICE-MDV), or 0.43  
107 mM NaCl at 24°C (*C. reinhardtii*). All cultures were grown in 500 mL Erlenmeyer flasks  
108 continuously aerated with ambient air filtered through a 0.2  $\mu\text{m}$  filter and under continuous light  
109 (40  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) provided by full spectrum LED light bulbs. Light intensity was measured with  
110 a quantum sensor attached to a radiometer (Model LI-189; Li-COR). Cell growth was monitored  
111 as change in optical density at 750 nm and cell density was measured using a Countess II FL  
112 Automated Cell Counter (ThermoFisher Scientific). To ensure that the cultures were viable at the

113 time of the experiment, cell death was measured by labelling with the fluorescent dye SYTOX  
114 Green (ThermoFisher Scientific) as described previously (Possmayer *et al.*, 2011). To exclude  
115 cell mortality as the reason behind the lack of phototaxis, we ensured close to 100% cell viability  
116 in each experiment (data not shown). Unless otherwise specified, actively growing cultures in the  
117 mid-log phase were used in all experiments. Images of algal cells were taken using a Zeiss  
118 Axiophot Microscope (Carl Zeiss AG) on a wet mount slide.

119 **Identification of photoreceptors genes in green algal genomes:** The *C. priscuii* genome  
120 (Zhang *et al.*, 2021; BUSCO score of 85%) and transcriptome (Cvetkovska *et al.*, 2022) were  
121 recently sequenced. These datasets were screened for the presence of photoreceptor genes using  
122 previously identified sequences from *C. reinhardtii* and conserved photoreceptor domains  
123 (Greiner *et al.*, 2017) obtained from Phytozome (v6.1) as queries (Merchant *et al.*, 2007; Craig *et*  
124 *al.*, 2022). Photoreceptor genes in *C. priscuii* were identified through a tBLASTn search (e-  
125 value<e<sup>-10</sup>, bit-score>100) and manually inspected for redundant sequences and to ensure correct  
126 gene structure annotation. Conserved domains typical for photoreceptors were identified in the  
127 *C. priscuii* genome using Pfam (Mistry *et al.*, 2021) and NCBI Conserved Domain Database (Lu  
128 *et al.*, 2020). The genomes of closely related species from the order Chlamydomonadales were  
129 obtained from PhycoCosm (Grigoriev *et al.*, 2021) and included: *Chlamydomonas eustigma*  
130 NIES-2499 (Hirooka *et al.*, 2017), *Chlamydomonas incerta* SAG7.73, *Chlamydomonas*  
131 *schloesseri* CCAP 11/173, *Edaphoclamys debaryana* CCAP 11/70 (Craig *et al.*, 2021),  
132 *Dunalella salina* CCAP19/18 (Polle *et al.*, 2017), *Gonium pectorale* NIES-2863 (Hanschen *et*  
133 *al.*, 2016), and *Volvox carteri* v.2.1 (Prochnik *et al.*, 2010). The genome of the only other  
134 psychrophilic Chlamydomonadalean alga available, *Chlamydomonas* sp. ICE-L (Zhang *et al.*,  
135 2020) was obtained from GenBank. Photoreceptor genes identified in genome of ICE-L were  
136 identical at the nucleotide level as those found in the genome of ICE-MDV (Raymond &  
137 Morgan-Kiss, 2013), suggesting that these strains belong to the same species. Multiple sequence  
138 alignments were performed using ClustalW (Sievers *et al.*, 2011) implemented through Geneious  
139 Prime (Biomatters Ltd, Auckland, New Zealand).

140 **Phototaxis dish assay:** Phototaxis dish assay was preformed according to the protocol by Ueki  
141 & Wakabayashi (2017) and Ueki *et al.* (2022). Cells from exponentially growing cultures  
142 (~6x10<sup>6</sup> cells/mL) were resuspended in phototaxis buffer (5 mM HEPES, 0.2 mM EGTA, 1mM

143 KCl, 0.3 mM CaCl; pH 7.2). In all cases, the phototaxis buffer was supplemented with NaCl  
144 (0.43 mM, 70 mM, 700 mM) to match the growth conditions for each species. The algae were  
145 incubated for 30 minutes under dim red LED light (624 nm; Cree, Inc.) at the growth  
146 temperature to promote motility. Phototaxis was observed in a petri dish (35 mm diameter, 10  
147 mm thickness) placed in a dark chamber and illuminated with a unilateral blue (470 nm; Cree,  
148 Inc) or green (525 nm; Broadcam Limited) LED light at 1 or 10  $\mu\text{mol m}^{-2} \text{ s}^{-1}$  for 5 minutes (*C.*  
149 *reinhardtii*) or 15 minutes (*C. priscuii* and ICE-MDV). ROS and their quenchers were previously  
150 shown to regulate the phototactic sign in *C. reinhardtii* (Wakabayashi *et al.*, 2011). We used  
151  $\text{H}_2\text{O}_2$  (12.23 mM) to induce positive phototaxis and dimethylurea (DMTU; 75 mM) as quencher  
152 of  $\text{H}_2\text{O}_2$  to induce negative phototaxis. Unless otherwise specified, all experiments were  
153 performed at a temperature corresponding to the growth conditions for each species (24°C for *C.*  
154 *reinhardtii*; 4°C for *C. priscuii* and ICE-MDV). The plates were photographed before and after  
155 incubation, and the resulting images were used to compare cell movement. All assays were  
156 completed at a minimum of three biological replicates.

157 The direction and strength of the phototactic response was quantified by determining pixel  
158 intensity in the images using ImageJ (Schneider *et al.*, 2012) according to a previously described  
159 protocol (Ueki *et al.*, 2022) with modifications. In brief, images of the same plate before and  
160 after the application of unidirectional light were converted to grayscale and color inverted. The  
161 ‘before’ image was subtracted from the ‘after’ image. The pixel density of the entire dish (total  
162 density) and the half of the dish closest to the light (phototactic cell density) were measured. The  
163 phototactic index was calculated as (phototactic cell density)/(total density). A phototactic index  
164 of 1 represents a strong positive phototactic response (movement towards the light), a phototactic  
165 index of 0 represents a strong negative phototactic response (movement away from the light),  
166 and a phototactic index of 0.5 represents no phototactic response (no directional movement in  
167 response to light).

168 **Photoshock assay:** The photoshock response was observed according to the protocol described  
169 in Ueki & Wakabayashi (2017) and Ueki *et al.*, (2022) on a Zeiss ApoTome microscope  
170 equipped with a camera (Carl Zeiss AG). Cells were resuspended in phototaxis buffer at a  
171 concentration of  $\sim 1 \times 10^6$  cells/mL and incubated in dim red LED light (624 nm) at their growth  
172 temperature as described above. To observe non-directional motility, cells were observed at 60

173  $\mu\text{mol m}^{-2} \text{s}^{-1}$  white light. To observe photoshock, cells were observed at dim red light and  
174 shocked with a rapid flash of bright white light using a Speedlight 270EX II external flash  
175 (Canon Inc.). Videos were created by taking a 15-second series at 62 frames/s and processed by  
176 Zen Pro (Carl Zeiss AG). ImageJ was used for video quantification and statistical analysis were  
177 performed in RStudio. All assays were completed at a minimum of three biological replicates,  
178 with at least 9 fields of view analyzed for each species.

179 **Results and Discussion:**

180 **The psychrophile *C. priscuii* has a reduced repertoire of photoreceptor genes**

181 Screening the nuclear genome of *C. priscuii* revealed only eight (8) full-length photoreceptor  
182 genes, a reduced complement compared to most of its green algal relatives (Figure 1a). These  
183 genes contained all conserved domains typical for photoreceptors, suggesting functional proteins  
184 (Figure 1b). In contrast, the genome of *C. reinhardtii* encodes for at least 15 photoreceptor genes  
185 (Greiner *et al.*, 2017), which are conserved within the Chlamydomonadales and most species  
186 examined within this group encode 14-16 full-length genes. This includes *Chlamydomonas* sp.  
187 ICE-L, an Antarctic sea ice alga and a strain of ICE-MDV (Figure 1a; Table S1).

188 Our results suggest that *C. priscuii* encodes a single channelrhodopsin gene (ChR1), in contrast  
189 to two genes in the *C. reinhardtii* genome. The ChR photoreceptors are light-gated cation  
190 channels (Berthold *et al.*, 2008), and are key determinants of phototactic responses in *C.*  
191 *reinhardtii* (Trippens *et al.*, 2012; Greiner *et al.*, 2017; Böhm *et al.*, 2019; Wakabayashi *et al.*,  
192 2021; Baidukova *et al.*, 2022). The sites for retinal binding, which are involved in light sensing  
193 and protein conformational change (Kato *et al.*, 2012) are conserved in *C. priscuii*, suggesting a  
194 functional photoreceptor (Figure S1). Böhm *et al.* (2019) proposed that ChR  
195 hyperphosphorylation is an important component of phototactic signalling in *C. reinhardtii* but  
196 phosphosites are poorly conserved outside of the Reinhardtinia clade with only three predicted  
197 phosphosites in the *C. priscuii* ChR compared to twelve in ChR1 in *C. reinhardtii* (Figure S1).  
198 Furthermore, none of the conserved phosphosites were in the C-terminal region of the *C. priscuii*  
199 ChR, which is of key importance for light-induced ChR1 hyperphosphorylation in *C. reinhardtii*  
200 (Böhm *et al.*, 2019). Whether these features in the sequence of the gene affect the function and  
201 regulation of ChR in *C. priscuii* remains to be experimentally examined.

202 The gene encoding plant-like cryptochrome (pCRY), that entrains the algal circadian clock in *C.*  
203 *reinhardtii* (Müller *et al.*, 2017) was not detected in the *C. priscuii* genome despite being present  
204 in all other green algal genomes examined here. The circadian rhythm in *C. priscuii* has not been  
205 examined yet, but in its natural environment this alga has a very unusual photoperiod with  
206 months-long periods light and dark (Lizotte *et al.*, 1996). It appears that *C. priscuii* retains the  
207 animal-like cryptochrome (aCRY) and one copy of the phylogenetically conserved *Drosophila*,  
208 *Arabidopsis*, *Synechocystis*, *Homo* (DASH) cryptochrome (CRY-DASH), both of which regulate  
209 the transcription of genes involved in photosynthesis, chlorophyll biosynthesis, and maintenance  
210 of efficient photoautotrophic growth (Beel *et al.*, 2012; Rredhi *et al.*, 2021). We could also detect  
211 only two histidine-kinase rhodopsin genes (COP5 and COP8) in the genome of *C. priscuii*. This  
212 in contrast to at least six to eight genes in other green algae (Table S1), including *C. reinhardtii*  
213 (COP5-12). The function of histidine-kinase rhodopsin photoreceptors is not well understood in  
214 algae (Luck *et al.*, 2012; Luck & Hegemann, 2017).

215 We detected two blue-light receptor phototropins genes (PHOT1 and PHOT2) in the *C. priscuii*  
216 genome. Both PHOT genes have the conserved Light-Oxygen-Voltage (LOV) and Ser/Thr  
217 kinase domains (Figure 1b) important for blue-light sensitivity and signal transduction  
218 (Nakasone *et al.*, 2018). ICE-L and *C. eustigma* also share this feature. Having two PHOT  
219 receptors is typical for land plants (Li *et al.*, 2015), but most unicellular green algae examined to  
220 date, including *C. reinhardtii* and its close relatives (Figure 1a) encode a single PHOT receptor.  
221 The *C. priscuii* nuclear genome has a high degree of gene duplications (highest of any  
222 chlorophyte studied to date), particularly for genes involved in light harvesting and  
223 photosynthesis (Zhang *et al.*, 2021). Gene duplication is increasingly being viewed as a means of  
224 adapting to harsh conditions (Qian & Zhang, 2014). It was hypothesised that *C. priscuii* has  
225 retained genes important for life in its cold and shaded environment (Zhang *et al.*, 2021). PHOT  
226 is involved in the induction of nonphotochemical quenching at high light intensities and is  
227 hypothesized to aid in photoprotection (Petroutsos *et al.*, 2016).

## 228 **The Antarctic *C. priscuii* is motile but exhibits weak photobehaviours**

229 We examined the ability of *C. priscuii* to move in response to light signals and compared it to  
230 that of the well-studied responses in the model *C. reinhardtii*. We also tested the phototactic  
231 behaviour of its close relative ICE-MDV, isolated from the shallow photic zone in Lake Bonney

232 (Li *et al.*, 2016). Natural PAR levels experienced by ICE-MDV ( $\sim 50 \mu\text{mol m}^{-2} \text{s}^{-1}$ ) are  
233 approximately fivefold higher compared to that of *C. priscuii* ( $< 15 \mu\text{mol m}^{-2} \text{s}^{-1}$ ) (Kong *et al.*,  
234 2012) allowing for a direct comparison between two closely related psychrophiles from the same  
235 environment but adapted to different light conditions. Both psychrophiles exhibited small  
236 eyespots, compared to that observed in *C. reinhardtii* (Figure 2a). All algal species had two  
237 flagella (Figure 2a) and we confirmed motility under non-directional white light (Movie S1-S3);  
238 however, we show that the two Antarctic species swim slower than the mesophilic *C. reinhardtii*  
239 (Figure 2b).

240 Using a dish phototaxis assay, we demonstrated that *C. priscuii* exhibits a weaker  
241 photobehaviour compared to both ICE-MDV and *C. reinhardtii*. We first exposed algal cultures  
242 to unidirectional green light ( $\lambda = 525 \text{ nm}$ ) that regulates phototaxis and has minimal impact on  
243 photosynthesis (Ueki & Wakabayashi, 2017). This wavelength induced prominent and rapid  
244 negative phototaxis in *C. reinhardtii* after 5 min, even at very low light intensity ( $1 \mu\text{mol m}^{-2} \text{s}^{-1}$ )  
245 (Figure 3a, 3b). To account for the slower swimming speeds, we exposed the Antarctic species to  
246 this treatment for 15 minutes. We observed strong and consistent positive phototaxis in ICE-  
247 MDV after 15-minute exposure to green light even at very low light intensity ( $1 \mu\text{mol m}^{-2} \text{s}^{-1}$ ) but  
248 the same treatment induced a much weaker and inconsistent phototaxis or no phototactic  
249 response in *C. priscuii* (Figure 3a, 3b). We also tested for phototaxis under blue light ( $\lambda = 470$   
250 nm), the predominant wavelength in the depths of Lake Bonney. Once again, we observed weak  
251 or no phototaxis in *C. priscuii*. ICE-MDV exhibited a strong positive phototaxis under blue light,  
252 whereas *C. reinhardtii* also moved rapidly but away from the light (Figure S2). These results  
253 suggest that *C. priscuii* exhibits a weak and inconsistent phototactic behaviour under  
254 environmentally relevant light conditions, compared to a robust response in both *C. reinhardtii*  
255 and ICE-MDV.

256 Previous work on *C. reinhardtii* has suggested that phototactic behaviour consists of three steps:  
257 1) photoreception by ChR; 2) a signal transduction pathway that involves  $\text{Ca}^{2+}$  and reactive  
258 oxygen species (ROS); and 3) a change in the beating balance between the two flagella that  
259 regulates the phototactic turning (Wakabayashi *et al.*, 2021). Thus, the weak or absent phototaxis  
260 observed in *C. priscuii* could be a result of a defect in one or more of these steps. To test for  
261 flagellar defects, we tested the photoshock response in *C. priscuii*. This ChR-mediated response

262 occurs when algae sense a sudden and strong illumination, which causes a brief stop (<0.5s)  
263 and/or a period of backward motion (Baidukova *et al.*, 2022). It has been documented that the *C.*  
264 *reinhardtii* mutants *ptx1* and *lsp1* are not phototactic due to flagellar defects but display clear  
265 photoshock response as a result of a functional light-sensing and signalling apparatus (Okita *et*  
266 *al.*, 2005). Thus, a lack of a photoshock response would suggest a decreased ability to sense light  
267 signals.

268 A microscope-based photoshock assay revealed that *C. priscuii* has a very weak photoshock  
269 response where <10% of cells stopped or reversed their swimming direction when exposed to a  
270 very brief (2 ms) bright light flash (Figure 4; Movie S4). In contrast, we observed a robust  
271 photoshock response in *C. reinhardtii* (>98% responsive cells) (Figure 4; Movie S5). ICE-MDV  
272 displayed a photoshock response, albeit not as strong as the one observed with *C. reinhardtii*  
273 (~65% responsive cells) (Figure 4; Movie S6). These result, and the demonstrated ability of *C.*  
274 *priscuii* to move under non-directional light (Movie S1), suggest that this species has functional  
275 flagella but aberrant light-sensing ability.

## 276 **The regulation of phototaxis in psychrophilic algae**

277 The direction of phototaxis is redox regulated in *C. reinhardtii* (Wakabayashi *et al.*, 2011), and  
278 we tested whether the same is true in its psychrophilic relatives. As shown previously, addition  
279 of H<sub>2</sub>O<sub>2</sub> to the culture media caused positive phototaxis in *C. reinhardtii* exposed to 10 μmol m<sup>-2</sup>  
280 s<sup>-2</sup> green light, while reactive oxygen species (ROS) scavenging by dimethyl thiourea (DMTU)  
281 caused negative phototaxis (Figure 5). The mechanism behind ROS involvement is poorly  
282 understood, but it has been postulated that phototactic behavior maintains a moderately reduced  
283 state of the cytoplasm and high photosynthetic activity under variable light conditions  
284 (Wakabayashi *et al.*, 2011).

285 Our results suggest that psychrophilic algae employ different mechanisms of phototaxis  
286 regulation compared to the model *C. reinhardtii*. Addition of H<sub>2</sub>O<sub>2</sub> had a minimal effect on both  
287 Antarctic species (Figure 5). The regulation of phototaxis by H<sub>2</sub>O<sub>2</sub> appears to be light quality-  
288 and quantity-dependent, as all three species displayed weak or absent phototaxis under blue or  
289 low intensity green light (Figure S3a). ROS scavenging by DMTU resulted in a very weak  
290 positive or no phototactic response in *C. priscuii* but it induced a strong positive phototaxis in  
291 ICE-MDV at all light conditions tested here (green and blue light, 1-10 μmol m<sup>-2</sup> s<sup>-1</sup>) (Figure 5,

292 Figure S3b). Overall, our results suggest that the mechanism behind ROS-dependent regulation  
293 of phototaxis is species specific. A recent paper reported that *C. priscuii* has a high capacity for  
294 ROS detoxification through constitutive upregulation of the ascorbate pathway (Stahl-Rommel *et*  
295 *al.*, 2021).

296 Next, we examined the role of temperature on the strength of the phototactic response in green  
297 algae. Previous work by Pocock *et al.* (2004) observed strong phototaxis in *C. priscuii* cultures in  
298 the stationary phase at 25° exposed to high intensity white light, suggesting that the phototactic  
299 ability of this alga depends on temperature. To test this, we performed a dish phototactic assay  
300 with all three species at suboptimal temperatures (4°C for *C. reinhardtii*; 24°C for *C. priscuii* and  
301 ICE-MDV) at 10  $\mu\text{mol m}^{-2} \text{s}^{-1}$  of green light, and in the presence of H<sub>2</sub>O<sub>2</sub> and DMTU. All  
302 species were incubated at the experimental temperature up to 2 hours prior to the experiment. In  
303 *C. reinhardtii* and ICE-MDV, increased time at suboptimal temperatures lead to a decrease in the  
304 phototactic response (Figure S4). We also did not observe a phototactic response in *C. priscuii*,  
305 even after 2 hours at 24°C. To test whether the culture growth stage has an effect on motility, we  
306 also performed a dish phototactic assay at the stationary phase for all three species, and we show  
307 a decreased motility in *C. reinhardtii* and an absence of motility for ICE-MDV and *C. priscuii* in  
308 stationary phase (Figure S5) when compared to actively growing cultures in the mid-log phase  
309 (Figure 3). Thus, neither increased temperature nor a different growth stage induced strong  
310 phototaxis in *C. priscuii* under environmentally relevant light conditions.

311 Taken together our results suggest that the Antarctic alga *C. priscuii* has functional flagella but a  
312 weak and inconsistent ability to perceive and translate light signals into phototactic motion,  
313 regardless of the intensity or quality of light, presence of ROS, temperature or growth stage. We  
314 suggest that this is a result of life under extreme shading rather than a common feature of all  
315 psychrophilic algae since its close relative ICE-MDV displays a robust ability to move in  
316 response to light. Moreover, the high salinity gradient in the deep photic zone of Lake Bonney  
317 restricts natural phytoplankton populations from vertical movement in the water column (Lizotte  
318 & Priscu, 1994) This fits with earlier studies on native phytoplankton communities in Lake  
319 Bonney that demonstrated that shallow water phytoplankton populations had a strong positive  
320 phototactic response while deeper water populations had a weak or no phototactic behaviour  
321 (Priscu & Neale, 1995).

322 **Keeping the status quo in Lake Bonney**

323 So, what does this mean for the lifestyle of *C. priscuii* in the deep photic zone of salty Lake  
324 Bonney? Our results support the hypothesis that, under physiologically relevant conditions (low  
325 blue-green light, high salinity, and low temperature), *C. priscuii* has a limited capability to  
326 perceive and translate light signals into rapid motility towards areas of increased light within the  
327 water column. This could be due to its small eyespot, reduced photoreceptor repertoire, or altered  
328 ROS signalling mechanisms downstream of light perception. A detailed examination of the size  
329 and composition of the eyespot, the activity of the psychrophilic ChR photoreceptor, and the  
330 signalling pathways that lead to flagellar motility will shed light on phototaxis in shade-adapted  
331 green algae.

332 The extreme conditions in Lake Bonney have undoubtedly shaped the physiology of *C. priscuii*  
333 beyond phototaxis. This alga is unable to grow at light intensities  $>250 \mu\text{mol m}^{-2} \text{ s}^{-1}$  (Morgan-  
334 Kiss *et al.*, 2006), and lacks short-term photoacclimation response for balancing light energy  
335 distribution between the photosystems via state transitions, which is well conserved in many  
336 other algal species (Morgan-Kiss *et al.*, 2002; Szyszka *et al.*, 2007). Instead, it accumulates a  
337 unique PSI-cyt *b<sub>6</sub>f* photosynthetic supercomplex (Szyszka-Mroz *et al.*, 2015), which supports  
338 constitutively active cyclic electron flow (CEF) around PSI for energy homeostasis and  
339 photoprotection (Kalra *et al.*, 2020). These features have been associated with a rewired primary  
340 carbon metabolism leading to constitutively high levels of stress-related compounds (e.g.,  
341 sucrose, proline, and antioxidants) that support robust growth under extreme conditions (Kalra *et*  
342 *al.*, 2020; Stahl-Rommel *et al.*, 2021; Cvetkovska *et al.*, 2022). It is likely that the combined  
343 pressures of low temperatures, hypersalinity, and extreme shading drive these adjustments in its  
344 physiology, including a reduced phototactic response. Examination of the evolutionary history of  
345 *C. priscuii* and its arrival in Lake Bonney would further inform on its unique physiology and  
346 behaviour.

347 Lake Bonney is highly stratified and nutrient limited, particularly for phosphorus (Priscu, 1995).  
348 Priscu and Neale (1995) proposed that nutrient limitation, rather than light, may drive the tactic  
349 behavior of phytoflagellates residing in the deep photic zone. They postulated that motile  
350 phytoflagellates have a competitive advantage over nonmotile algae for maintaining their  
351 position in the photic zone at discrete depths in response to trade-offs between light utilization

352 efficiency and nutrient availability (Priscu & Neale, 1995). Indeed, in nutrient bioassay  
353 experiments, Lake Bonney *Chlamydomonas* spp. were highly competitive under phosphorus-  
354 supplemented treatments (Teufel *et al.*, 2016). Recent models suggest that polar environments  
355 will be strongly affected by climate change and ice-free conditions may disrupt the lake  
356 stratification, nutrient and light availability (Obryk *et al.*, 2019). For instance, climate-driven  
357 high stream flow years carry significant levels of nitrogen and phosphorus to the nutrient-poor  
358 waters of Lake Bonney (Gooseff *et al.*, 2017). How these complex climate-driven processes  
359 disrupting the ‘status quo’ of Lake Bonney will affect the endemic and highly specialized  
360 psychrophiles, such as *C. priscuii* and ICE-MDV, is currently not known. Studying the  
361 physiology and environmental responses of these unique organisms is important for predicting  
362 their survival in the face of global climate change.

### 363 **Funding**

364 This project was supported by Natural Sciences and Engineering Research Council of Canada  
365 (NSERC) Discovery Grants awarded to MC. The authors are grateful for the support from the  
366 Canadian Foundation for Innovation (CFI) and University of Ottawa start-up funding. MP was  
367 supported by Ontario Graduate Scholarship (OGS) and Polar Knowledge Canada Antarctic  
368 Doctoral Scholarship. PO was supported by OGS and NSERC Canada Graduate Scholarships.  
369 RMK was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy  
370 Sciences (BES) under Award # DE-SC0019138. The authors report there are no competing  
371 interest to declare.

### 372 **Data availability**

373 The genomic data that support the findings of this study are available in Phytozome  
374 (<https://phytozome-next.jgi.doe.gov/>) and NCBI GenBank  
375 (<https://www.ncbi.nlm.nih.gov/genbank/>). All accession numbers for the sequences are available  
376 within the Supplementary Data (Supplementary Table S1). All other data that support the  
377 findings of this study are available from the corresponding author upon reasonable request.

### 378 **References:**

379 **Baidukova O, Oppermann J, Kelterborn S, Fernandez Lahore RG, Schumacher D, Evers**  
380 **H, Kamrani YY, Hegemann P. 2022.** Gating and ion selectivity of Channelrhodopsins are

381 critical for photo-activated orientation of *Chlamydomonas* as shown by in vivo point mutation.  
382 *Nature Communications* **13**: 7253.

383 **Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinrich M, Dewez D, Ikoma D, Grossman AR, et al. 2012.** A Flavin Binding Cryptochrome Photoreceptor Responds to Both 384 Blue and Red Light in *Chlamydomonas reinhardtii*. *The Plant Cell* **24**: 2992–3008.

385

386 **Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P. 2008.**  
387 Channelrhodopsin-1 initiates phototaxis and photophobic responses in *Chlamydomonas* by  
388 immediate light-induced depolarization. *The Plant Cell* **20**: 1665–1677.

389 **Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM. 2011.** Protist  
390 diversity in a permanently ice-covered Antarctic Lake during the polar night transition. *The  
391 ISME Journal* **5**: 1559–1564.

392 **Böhm M, Boness D, Fantisch E, Erhard H, Frauenholz J, Kowalzyk Z, Marcinkowski N,  
393 Kateriya S, Hegemann P, Kreimer G. 2019.** Channelrhodopsin-1 Phosphorylation Changes  
394 with Phototactic Behavior and Responds to Physiological Stimuli in *Chlamydomonas*. *The Plant  
395 Cell* **31**: 886–910.

396 **Böhm M, Kreimer G. 2020.** Orient in the World with a Single Eye: The Green Algal Eyespot  
397 and Phototaxis. In: Cánovas FM, Lütte U, Risueño M-C, Pretzsch H, eds. *Progress in Botany. Progress in Botany* Vol. 82. Cham: Springer International Publishing, 259–304.

398

399 **Craig RJ, Gallaher SD, Shu S, Salomé P, Jenkins JW, Blaby-Haas CE, Purvine SO,  
400 O'Donnell S, Barry K, Grimwood J, et al. 2022.** The *Chlamydomonas* Genome Project,  
401 version 6: reference assemblies for mating type plus and minus strains reveal extensive structural  
402 mutation in the laboratory. *The Plant Cell*: koac347.

403 **Craig RJ, Hasan AR, Ness RW, Keightley PD. 2021.** Comparative genomics of  
404 *Chlamydomonas*. *The Plant Cell* **33**: 1016–1041.

405 **Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N,  
406 Smith DR, Hüner NPA. 2022.** A constitutive stress response is a result of low temperature  
407 growth in the Antarctic green alga *Chlamydomonas* sp. UWO241. *Plant, Cell & Environment* **45**:  
408 156–177.

409 **Gavelis GS, Keeling PJ, Leander BS. 2017.** How exaptations facilitated photosensory  
410 evolution: Seeing the light by accident. *BioEssays* **39**: 1600266.

411 **Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG, Lyons WB, McKnight DM,  
412 Priscu JC, Sokol ER, Takacs-Vesbach C, et al. 2017.** Decadal ecosystem response to an  
413 anomalous melt season in a polar desert in Antarctica. *Nature Ecology & Evolution* **1**: 1334–  
414 1338.

415 **Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. 2017.** Targeting of  
416 Photoreceptor Genes in *Chlamydomonas reinhardtii* via Zinc-Finger Nucleases and  
417 CRISPR/Cas9. *The Plant Cell* **29**: 2498–2518.

418 **Grigoriev IV, Hayes RD, Calhoun S, Kamel B, Wang A, Ahrendt S, Dusheyko S, Nikitin R,**  
419 **Mondo SJ, Salamov A, et al. 2021.** PhycoCosm, a comparative algal genomics resource.  
420 *Nucleic Acids Research* **49**: D1004–D1011.

421 **Hanschen ER, Marriage TN, Ferris PJ, Hamaji T, Toyoda A, Fujiyama A, Neme R,**  
422 **Noguchi H, Minakuchi Y, Suzuki M, et al. 2016.** The *Gonium pectorale* genome demonstrates  
423 co-option of cell cycle regulation during the evolution of multicellularity. *Nature*  
424 *Communications* **7**: 11370.

425 **Hirooka S, Hirose Y, Kanesaki Y, Higuchi S, Fujiwara T, Onuma R, Era A, Ohbayashi R,**  
426 **Uzuka A, Nozaki H, et al. 2017.** Acidophilic green algal genome provides insights into  
427 adaptation to an acidic environment. *Proceedings of the National Academy of Sciences*. **114**:  
428 E8304–E8313

429 **Jékely G. 2009.** Evolution of phototaxis. *Philosophical Transactions of the Royal Society B:*  
430 *Biological Sciences* **364**: 2795–2808.

431 **Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS,**  
432 **Morgan-Kiss R. 2020.** *Chlamydomonas* sp. UWO 241 Exhibits High Cyclic Electron Flow and  
433 Rewired Metabolism under High Salinity. *Plant Physiology* **183**: 588–601.

434 **Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y,**  
435 **Tsukazaki T, Hayashi S, et al. 2012.** Crystal structure of the channelrhodopsin light-gated  
436 cation channel. *Nature* **482**: 369–374.

437 **Kianianmomeni A, Hallmann A. 2014.** Algal photoreceptors: in vivo functions and potential  
438 applications. *Planta* **239**: 1–26.

439 **Kong W, Ream DC, Priscu JC, Morgan-Kiss RM. 2012.** Diversity and Expression of  
440 RubisCO Genes in a Perennially Ice-Covered Antarctic Lake during the Polar Night Transition.  
441 *Applied and Environmental Microbiology* **78**: 4358–4366.

442 **Li W, Podar M, Morgan-Kiss RM. 2016.** Ultrastructural and Single-Cell-Level  
443 Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an  
444 Ice-Covered Antarctic Lake. *Applied and Environmental Microbiology*.

445 **Li F-W, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GK-**  
446 **S, Mathews S, Pryer KM. 2015.** The origin and evolution of phototropins. *Frontiers in Plant*  
447 *Science* **6**: 637.

448 **Lizotte MP, Sharp TR, Priscu JC. 1996.** Phytoplankton dynamics in the stratified water  
449 column of Lake Bonney, Antarctica. *Polar Biology* **16**: 155–162.

450 **Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI,**  
451 **Marchler GH, Song JS, et al. 2020.** CDD/SPARCLE: the conserved domain database in 2020.  
452 *Nucleic Acids Research* **48**: D265–D268.

453 **Luck M, Hegemann P.** 2017. The two parallel photocycles of the *Chlamydomonas* sensory  
454 photoreceptor histidine kinase rhodopsin 1. *Journal of Plant Physiology* **217**: 77–84.

455 **Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Nguyen TMT, Kateriya S, Kennis**  
456 **JTM, Hildebrandt P, Hegemann P.** 2012. A Photochromic Histidine Kinase Rhodopsin  
457 (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light. *Journal of Biological*  
458 *Chemistry* **287**: 40083–40090.

459 **Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A,**  
460 **Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, et al.** 2007. The *Chlamydomonas* genome  
461 reveals the evolution of key animal and plant functions. *Science (New York, N.Y.)* **318**: 245–250.

462 **Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto**  
463 **SCE, Paladin L, Raj S, Richardson LJ, et al.** 2021. Pfam: The protein families database in  
464 2021. *Nucleic Acids Research* **49**: D412–D419.

465 **Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher Khan, Huner NPA.** 2002. Differential  
466 thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid  
467 membranes of a psychrophilic and a mesophilic alga. *Biochimica et Biophysica Acta (BBA) -*  
468 *Biomembranes* **1561**: 251–265.

469 **Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA.** 2006.  
470 Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold  
471 Environments. *Microbiology and Molecular Biology Reviews* **70**: 222–252.

472 **Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T,**  
473 **Mittag M.** 2017. A Plant Cryptochrome Controls Key Features of the *Chlamydomonas*  
474 Circadian Clock and Its Life Cycle. *Plant Physiology* **174**: 185–201.

475 **Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M.** 2018. Photoreaction  
476 Dynamics of LOV1 and LOV2 of Phototropin from *Chlamydomonas reinhardtii*. *The Journal of*  
477 *Physical Chemistry B* **122**: 1801–1815.

478 **Neale PJ, Priscu JC.** 1995. The Photosynthetic Apparatus of Phytoplankton from a Perennially  
479 Ice-Covered Antarctic Lake: Acclimation to an Extreme Shade Environment. *Plant and Cell*  
480 *Physiology* **36**: 253–263.

481 **Obryk MK, Doran PT, Priscu JC.** 2019. Prediction of Ice-Free Conditions for a Perennially  
482 Ice-Covered Antarctic Lake. *Journal of Geophysical Research: Earth Surface* **124**: 686–694.

483 **Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K.** 2005. Phototactic activity in  
484 *Chlamydomonas* ‘non-phototactic’ mutants deficient in  $\text{Ca}^{2+}$ -dependent control of flagellar  
485 dominance or in inner-arm dynein. *Journal of Cell Science* **118**: 529–537.

486 **Patriarche JD, Priscu JC, Takacs-Vesbach C, Winslow L, Myers KF, Buelow H, Morgan-**  
487 **Kiss RM, Doran PT.** 2021. Year-Round and Long-Term Phytoplankton Dynamics in Lake  
488 Bonney, a Permanently Ice-Covered Antarctic Lake. *Journal of Geophysical Research:*  
489 *Biogeosciences* **126**: e2020JG005925.

490 **Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke**  
491 **T, Mittag M, Hegemann P, et al. 2016.** A blue-light photoreceptor mediates the feedback  
492 regulation of photosynthesis. *Nature* **537**: 563–566.

493 **Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Hüner NPA. 2004.** Identification  
494 of a psychrophilic green alga from Lake Bonney Antarctica: *Chlamydomonas raudensis* Ettl.  
495 (UWO241) Chlorophyceae. *Journal of Phycology* **40**: 1138–1148.

496 **Polle JEW, Barry K, Cushman J, Schmutz J, Tran D, Hathwaik LT, Yim WC, Jenkins J,**  
497 **McKie-Krisberg Z, Prochnik S, et al. 2017.** Draft Nuclear Genome Sequence of the Halophilic  
498 and Beta-Carotene-Accumulating Green Alga *Dunaliella salina* Strain CCAP19/18. *Genome*  
499 *Announcements* **5**.

500 **Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP. 2011.** Plasticity  
501 of the psychrophilic green alga *Chlamydomonas raudensis* (UWO 241) (Chlorophyta) to  
502 supraoptimal temperature stress: Heat stress in a psychrophilic green alga.. *Journal of Phycology*  
503 **47**: 1098–1109.

504 **Possmayer M, Gupta RK, Szyszka-Mroz B, Maxwell DP, Lachance M, Hüner NPA, Smith**  
505 **DR. 2016.** Resolving the phylogenetic relationship between *Chlamydomonas* sp. UWO 241 and  
506 *Chlamydomonas raudensis* sag 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences  
507 (M Schröda, Ed.). *Journal of Phycology* **52**: 305–310.

508 **Priscu JC. 1995.** Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys,  
509 Antarctica. *Freshwater Biology* **34**: 215–227.

510 **Priscu J, Neale P. 1995.** Phototactic response of phytoplankton forming discrete layers within  
511 the water column of Lake Bonney, Antarctica. *Antarctic Journal of the US* **30**: 301–303.

512 **Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A,**  
513 **Mitros T, Fritz-Laylin LK, et al. 2010.** Genomic analysis of organismal complexity in the  
514 multicellular green alga *Volvox carteri*. *Science (New York, N.Y.)* **329**: 223–226.

515 **Qian W, Zhang J. 2014.** Genomic evidence for adaptation by gene duplication. *Genome*  
516 *Research* **24**: 1356–1362.

517 **Raymond JA, Morgan-Kiss R. 2013.** Separate Origins of Ice-Binding Proteins in Antarctic  
518 *Chlamydomonas* Species. *PLOS ONE* **8**: e59186.

519 **Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V,**  
520 **Kottke T, Mittag M. 2021.** DASH cryptochrome 1, a UV-A receptor, balances the  
521 photosynthetic machinery of *Chlamydomonas reinhardtii*. *New Phytologist* **232**: 610–624.

522 **Schneider CA, Rasband WS, Eliceiri KW. 2012.** NIH Image to ImageJ: 25 years of image  
523 analysis. *Nature Methods* **9**: 671–675.

524 **Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H,**  
525 **Remmert M, Söding J, et al. 2011.** Fast, scalable generation of high-quality protein multiple  
526 sequence alignments using Clustal Omega. *Molecular Systems Biology* **7**: 539.

527 **Stahl-Rommel S, Kalra I, D'Silva S, Hahn MM, Popson D, Cvetkovska M, Morgan-Kiss**  
528 **RM. 2021.** Cyclic electron flow (CEF) and ascorbate pathway activity provide constitutive  
529 photoprotection for the photopsychrophile, *Chlamydomonas* sp. UWO 241 (renamed  
530 *Chlamydomonas priscuii*). *Photosynthesis Research* **151**: 235-250

531 **Szyszka B, Ivanov AG, Hüner NPA. 2007.** Psychrophily is associated with differential energy  
532 partitioning, photosystem stoichiometry and polypeptide phosphorylation in *Chlamydomonas*  
533 *raudensis*. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1767**: 789–800.

534 **Szyszka-Mroz B, Pittock P, Ivanov AG, Lajoie G, Hüner NPA. 2015.** The Antarctic  
535 Psychrophile *Chlamydomonas* sp. UWO 241 Preferentially Phosphorylates a Photosystem I-  
536 Cytochrome b6/f Supercomplex. *Plant Physiology* **169**: 717–736.

537 **Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM. 2016.** Impact of nitrogen and phosphorus on  
538 phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a  
539 bioassay approach. *Polar Biology* **5**: 1007–1022.

540 **Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann**  
541 **P, Kreimer G. 2012.** Phototropin Influence on Eyespot Development and Regulation of  
542 Phototactic Behavior in *Chlamydomonas reinhardtii*. *The Plant Cell* **24**: 4687–4702.

543 **Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S,**  
544 **Tanaka K, Minagawa J, et al. 2016.** Eyespot-dependent determination of the phototactic sign in  
545 *Chlamydomonas reinhardtii*. *Proceedings of the National Academy of Sciences* **113**: 5299–5304.

546 **Ueki N, Isu A, Kyuji A, Asahina Y, So S, Takahashi R, Hisabori T, Wakabayashi K-I. 2022.**  
547 Observation of Photobehavior in *Chlamydomonas reinhardtii*. *Journal of Visualized*  
548 *Experiments: JoVE*.

549 **Ueki N, Wakabayashi K. 2017.** Phototaxis Assay for *Chlamydomonas reinhardtii*. *BIO-PROTOCOL* **7**.

551 **Wakabayashi K, Isu A, Ueki N. 2021.** Channelrhodopsin-Dependent Photo-Behavioral  
552 Responses in the Unicellular Green Alga *Chlamydomonas reinhardtii*. In: Yawo H, Kandori H,  
553 Koizumi A, Kageyama R, eds. *Advances in Experimental Medicine and Biology. Optogenetics:*  
554 *Light-Sensing Proteins and Their Applications in Neuroscience and Beyond*. Singapore:  
555 Springer, 21–33.

556 **Wakabayashi K., Misawa Y, Mochiji S, Kamiya R. 2011.** Reduction-oxidation poise regulates  
557 the sign of phototaxis in *Chlamydomonas reinhardtii*. *Proceedings of the National Academy of*  
558 *Sciences* **108**: 11280–11284.

559 **Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NPA, Smith DR. 2021.** Draft genome  
560 sequence of the Antarctic green alga *Chlamydomonas* sp. UWO241. *iScience* **24**: 102084.

561 **Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, et al.**  
562 **2020.** Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice  
563 Green Alga. *Current Biology* **30**: 3330-3341.e7.

564

565

566

567

568

569

570

571

572

573

574

575

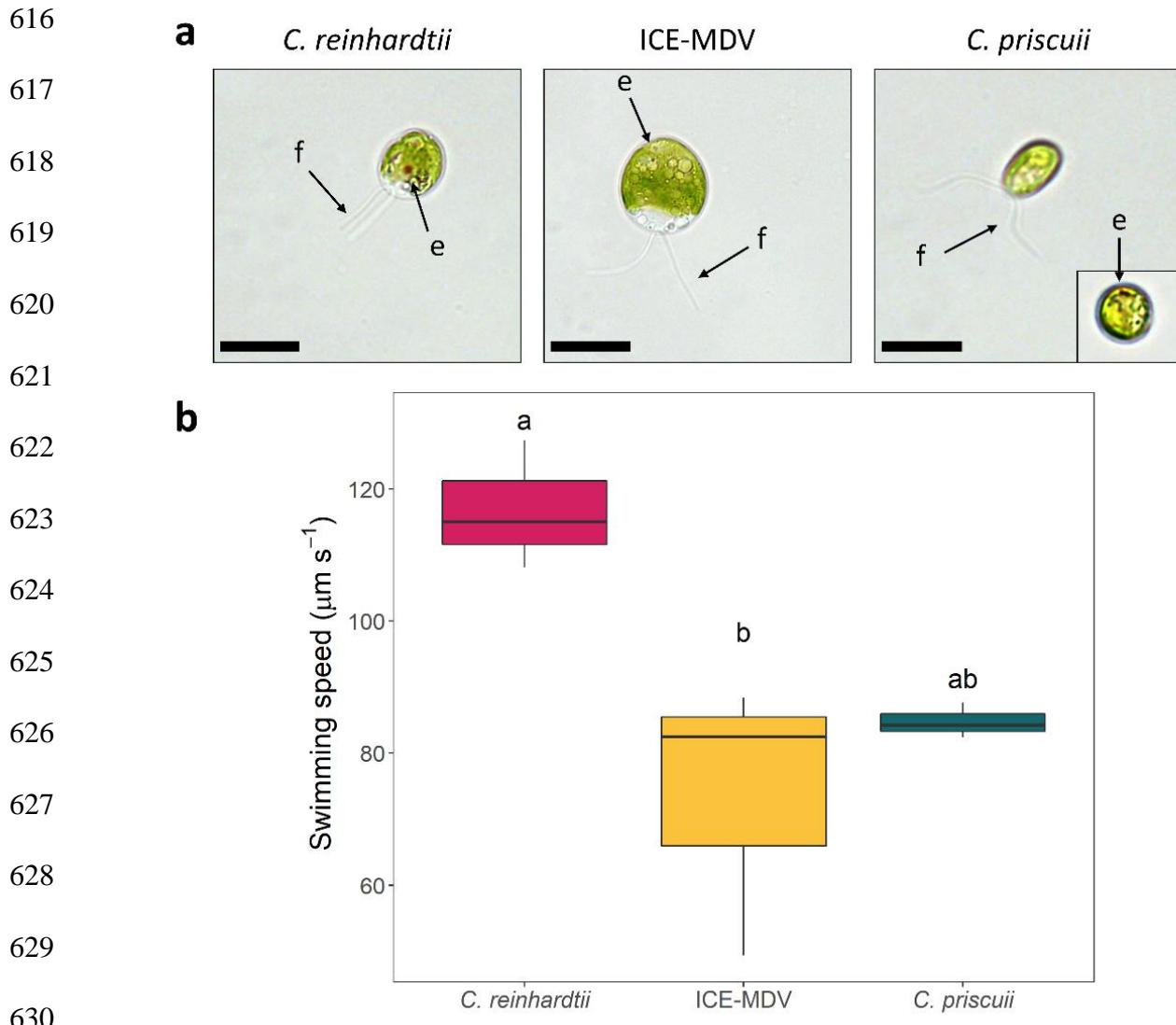
576

577

578

579

580


581

582

583

584

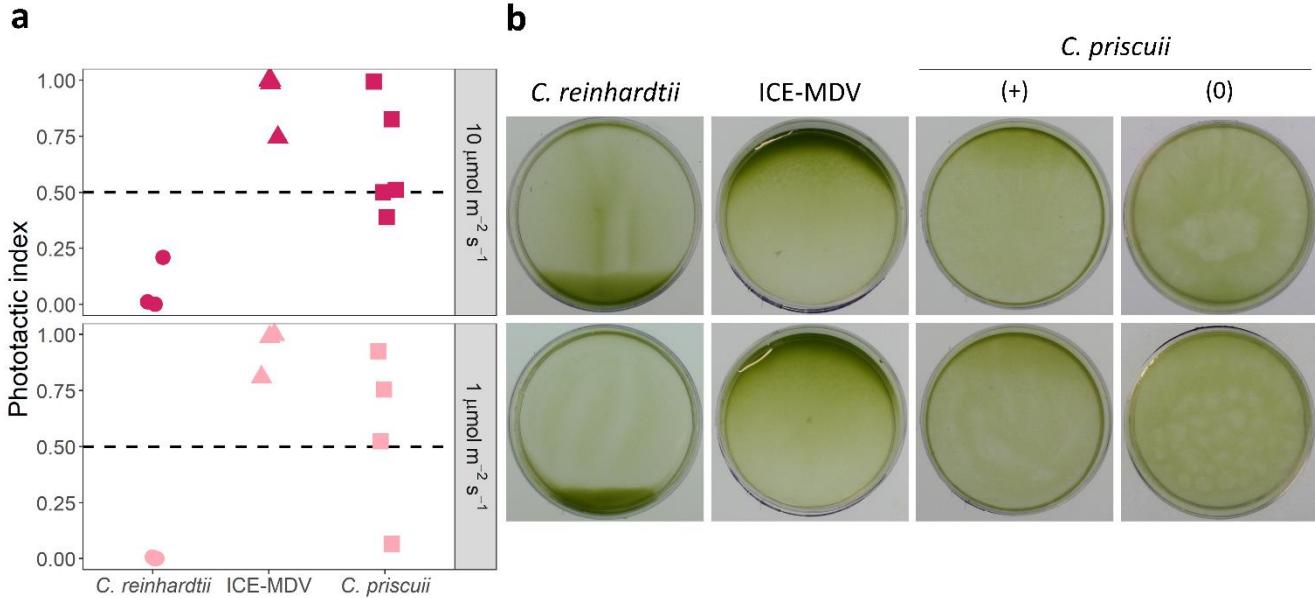




631 **Figure 2:** (a) Morphology of *C. reinhardtii*, ICE-MDV, and *C. priscuii*. Algae observed under  
632 brightfield microscopy exhibit a visible eyespot (e) and two flagella (f), as indicated by black  
633 arrows. The image in the inset is a single *C. priscuii* cell where the small eyespot is visible. Scale  
634 bar = 10  $\mu\text{m}$ . (b) Average swimming speeds of three Chlamydomonadales species. Statistical  
635 significance was determined with a one-way ANOVA ( $p = 0.018$ ) with Tukey's post hoc test.  
636 Statistically different treatments are indicated by different letters.

637

638


639

640

641

642

643



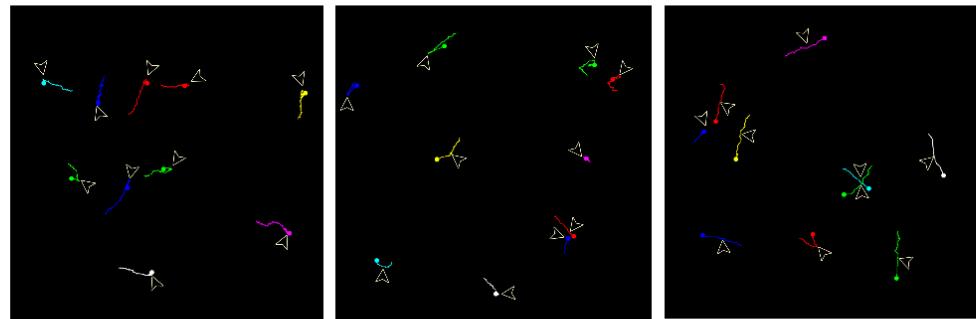
652

653 **Figure 3:** The phototactic response in *C. reinhardtii*, ICE-MDV, and *C. priscuii* determined in a  
654 dish motility assay. Cell suspensions were exposed to green light ( $\lambda = 525$  nm) at two different  
655 intensities:  $10 \mu\text{mol m}^{-2} \text{s}^{-1}$  (top) and  $1 \mu\text{mol m}^{-2} \text{s}^{-1}$  (bottom) and observed after 5 minutes (*C.*  
656 *reinhardtii*) or 15 minutes (ICE-MDV, *C. priscuii*). (a) The phototactic index calculated using  
657 the pixel density of the images before and after the light treatment. (b) Representative images of  
658 phototactic movement. *C. priscuii* had a weak or inconsistent phototactic response, and we show  
659 a representative image with detectable phototaxis (+) and no phototaxis (0). In all cases, positive  
660 phototaxis is indicated by accumulation of cells to the top side of the dish and a phototactic index  
661 of 1, negative phototaxis is indicated by accumulation of cells to the bottom side of the dish and  
662 a phototactic index of 0, and no phototactic response is seen by uniform dispersal of cells and a  
663 phototactic index of 0.5. All experiments were performed as at least 3 biological replicates.

664

665

666


667

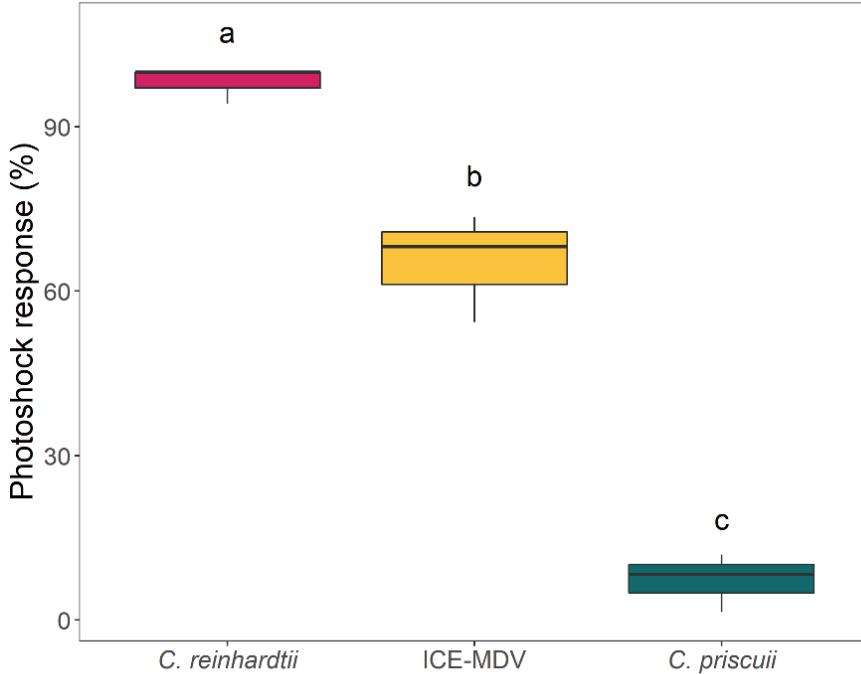
668

669

670 **a**

*C. reinhardtii* ICE-MDV *C. priscuii*




671

672

673

674

675 **b**



676

677

678

679

680

681

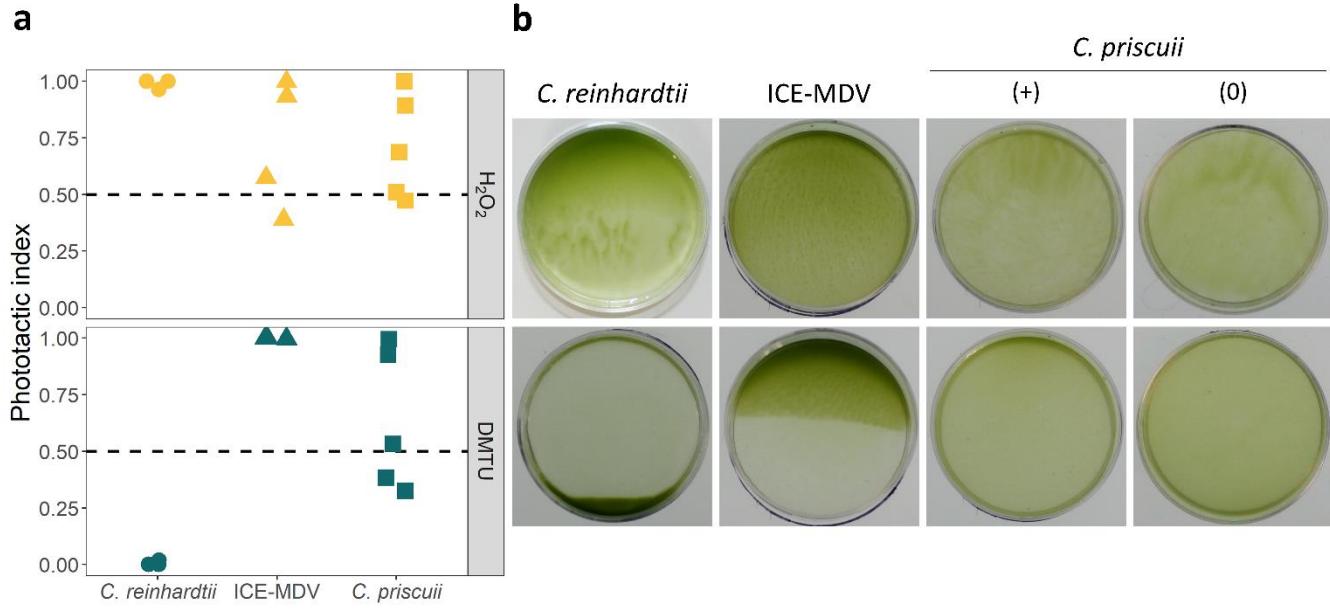
682

683

690

691

692


693

684 **Figure 4:** Photoshock response of three Chlamydomonas species. (a) Representative 15 second  
685 swimming trajectories of *C. reinhardtii*, ICE-MDV, and *C. priscuii* showing cell movement  
686 before and after photoshock. The arrow indicates the flash illumination point. Different colors  
687 indicate different cell trajectories. (b) Percent of cells that exhibit a photoshock response.  
688 Statistical significance was determined by a one-way ANOVA ( $p = 9.4 \times 10^{-6}$ ) and Tukey's post  
689 hoc test. Statistically different results are indicated by different letters. (n = 33 cells/species).

694

695

696



705 **Figure 5:** The phototactic response in *C. reinhardtii*, ICE-MDV, and *C. priscui* treated with  
706  $\text{H}_2\text{O}_2$  (top) and its quencher DMTU (bottom). Cell suspensions were exposed to  $10 \mu\text{mol m}^{-2} \text{ s}^{-1}$   
707 green light ( $\lambda = 525 \text{ nm}$ ) and observed after 5 minutes (*C. reinhardtii*) or 15 minutes (ICE-MDV,  
708 *C. priscui*). (a) The phototactic index calculated using the pixel density of the images before and  
709 after the light treatment. (b) Representative images of phototactic movement. *C. priscui* had a  
710 weak or inconsistent phototactic response, and we show a representative image with detectable  
711 phototaxis (+) and no phototaxis (0). In all cases, positive phototaxis is indicated by  
712 accumulation of cells to the top side of the dish and a phototactic index of 1, negative phototaxis  
713 is indicated by accumulation of cells to the bottom side of the dish and a phototactic index of 0,  
714 and no phototactic response is seen by uniform dispersal of cells and a phototactic index of 0.5.  
715 All experiments were performed as at least 3 biological replicates.

716

717

718

719

720

721

722 **Supplementary material**

723 **Table S1:** Photoreceptor genes in *Chlamydomonas priscuii* and related Chlamydomonadales.  
724 The data was obtained from GenBank for *C. priscuii* (PRJNA547753) and *Chlamydomonas* sp.  
725 ICE-L (PRJNA636631). All other algal genomes were obtained from PhycoCosm. The table  
726 contains the accession numbers for all identified genes.

727 **Figure S1:** Multiple sequence alignments of channelrhodopsins from different  
728 Chlamydomonadalean species. Residues shown to be phosphorylated in *C. reinhardtii* (Böhm *et*  
729 *al.*, 2019) are highlighted with a yellow square and those that are also present in *C. priscuii* are  
730 labeled with a red asterisk. The retinal binding sites are labeled with a blue square (Kato *et al.*,  
731 2012).

732 **Figure S2:** The phototactic response in *C. reinhardtii*, ICE-MDV, and *C. priscuii* exposed to  
733 blue light ( $\lambda = 420$  nm) at two different intensities:  $10 \mu\text{mol m}^{-2} \text{s}^{-1}$  (top) and  $1 \mu\text{mol m}^{-2} \text{s}^{-1}$   
734 (bottom). **(a)** Phototactic index **(b)** Representative images from a dish motility assay. All  
735 experiments were performed in at least 3 biological replicates.

736 **Figure S3:** Phototactic response represented as a phototactic index for *C. reinhardtii*, ICE-MDV,  
737 and *C. priscuii* in the presence of **(a)**  $\text{H}_2\text{O}_2$  and **(b)** DMTU under blue light ( $10 \mu\text{mol m}^{-2} \text{s}^{-1}$ ,  $1$   
738  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) and green light ( $1 \mu\text{mol m}^{-2} \text{s}^{-1}$ ). All experiments were performed in at least 3  
739 biological replicates.

740 **Figure S4:** Phototactic response in *C. reinhardtii*, ICE-MDV, and *C. priscuii* after incubation at  
741 suboptimal temperatures. Cell suspensions were incubated at  $4^\circ\text{C}$  (*C. reinhardtii*) or  $24^\circ\text{C}$  (ICE-  
742 MDV and *C. priscuii*) for 30 minutes or 2 hours prior to phototaxis dish assay. Cell suspensions  
743 were exposed to  $10 \mu\text{mol m}^{-2} \text{s}^{-1}$  green light with and without the addition of  $\text{H}_2\text{O}_2$  or DMTU **(a)**  
744 The phototactic index was calculated using the pixel density images **(b)** Representative images.  
745 All experiments were performed in at least 3 biological replicates.

746 **Figure S5:** Phototactic response in *C. reinhardtii*, ICE-MDV, and *C. priscuii* at stationary phase  
747 exposed to  $10 \mu\text{mol m}^{-2} \text{s}^{-1}$  green light with and without the addition of  $\text{H}_2\text{O}_2$  or DMTU. **(a)** The  
748 phototactic index was calculated using the pixel density images **(b)**. Representative images. All  
749 experiments were performed in at least 3 biological replicates.

750 **Movie S1:** Motility in *C. priscuii* under non-directional white light. Scale bar =  $100 \mu\text{m}$ .  
751 **(Submitted as an AVI file)**

752 **Movie S2:** Motility in *C. reinhardtii* under non-directional white light. Scale bar =  $100 \mu\text{m}$ .  
753 **(Submitted as an AVI file)**

754 **Movie S3:** Motility in ICE-MDV under non-directional white light. Scale bar =  $100 \mu\text{m}$ .  
755 **(Submitted as an AVI file)**

756 **Movie S4:** Photoshock response of in *C. priscuii* under non-directional  $5 \mu\text{mol m}^{-2} \text{s}^{-1}$  red light  
757 followed by exposure to a white light flash for 2 ms. Scale bar =  $100 \mu\text{m}$ . **(Submitted as an AVI**  
758 **file)**

759 **Movie S5:** Photoshock response of in *C. reinhardtii* under non-directional  $5 \mu\text{mol m}^{-2} \text{s}^{-1}$  red  
760 light followed by exposure to a white light flash for 2 ms. Scale bar = 100  $\mu\text{m}$ . (**Submitted as**  
761 **an AVI file**)

762 **Movie S6:** Photoshock response of in ICE-MDV under non-directional  $5 \mu\text{mol m}^{-2} \text{s}^{-1}$  red light  
763 followed by exposure to a white light flash for 2 ms. Scale bar = 100  $\mu\text{m}$ . (**Submitted as an AVI**  
764 **file**)

765