

1 **Title**

2 McrD binds asymmetrically to methyl-coenzyme M reductase improving active site accessibility
3 during assembly

4

5 **Authors**

6 Grayson L. Chadwick^{1,*†}, Aaron M.N. Joiner^{1,†}, Sangeetha Ramesh^{2,3}, Douglas A. Mitchell^{2,3,4},
7 Dipti D. Nayak^{1,*}

8

9 **Affiliation**

10 Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA¹,
11 Department of Microbiology, University of Illinois, Urbana, Illinois, USA², Carl R. Woese
12 Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA³, Department of
13 Chemistry, University of Illinois, Urbana, Illinois, USA⁴

14

15 **One-sentence summary**

16 Structural characterization of methyl-coenzyme M reductase assembly intermediates.

17

18 ***To whom correspondence should be addressed:**

19 Grayson L. Chadwick (chadwick@berkeley.edu), Department of Molecular and Cell Biology, 1
20 Barker Hall, University of California, Berkeley, CA 94720-3204

21 Dipti D. Nayak (dnayak@berkeley.edu), Department of Molecular and Cell Biology, 1 Barker
22 Hall, University of California, Berkeley, CA 94720-3204; Tel +1-510-664-5267

23

24 [†]These authors contributed equally to this work.

25 **ABSTRACT**

26
27 Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane and its activity
28 accounts for nearly all biologically produced methane released into the atmosphere. The
29 assembly of MCR is an intricate process involving the installation of a complex set of post-
30 translational modifications and the unique Ni porphyrin cofactor F₄₃₀. Despite decades of
31 research, details of MCR assembly remain largely unresolved. Here, we report the structural
32 characterization of MCR in two intermediate states of assembly. These intermediate states lack
33 one or both F₄₃₀ cofactors and form complexes with the previously uncharacterized McrD
34 protein. McrD is found to bind asymmetrically to MCR, displacing large regions of the alpha
35 subunit and increasing active site accessibility for the installation of F₄₃₀—shedding light on the
36 assembly of MCR and the role of McrD therein. This work offers crucial information for the
37 expression of MCR in a heterologous host and provides new targets for the design of MCR
38 inhibitors.

39 **Main text**

40 Methyl-coenzyme M reductase (MCR) is the enzyme responsible for nearly all biological
41 methane production and is found exclusively in the domain Archaea. MCR is a C2-symmetric
42 heterohexamer defined by $\alpha_2\beta_2\gamma_2$ subunit stoichiometry (**fig. S1A**). Substrate tunnels lined with
43 post-translational modifications (PTMs) end in two active sites formed at the interface of the α ,
44 α' , β and γ subunits and α' , α , β' and γ' on the opposing side (**fig. S1B-C**). Each active site
45 contains F430, a unique Ni porphyrinoid that catalyzes the reduction of methyl-coenzyme M (CH_3 -
46 CoM) by coenzyme B (CoB), yielding methane and a heterodisulfide (*I*) (**fig. S1D**). Subsequent
47 studies have determined MCR structures from diverse methanogens (2), mutants lacking specific
48 substrate channel PTMs (3, 4), anaerobic methanotrophic (ANME) archaea, which use the
49 enzyme in the reverse direction for methane oxidation (5), and the recently discovered Alkyl-
50 coenzyme M reductases (ACR), which can oxidize short chain alkanes (6). Together, this
51 research has facilitated studies on the reaction mechanism of MCR (7), and the mode of action
52 for MCR inhibitors used to reduce the emission of this potent greenhouse gas (8, 9).

53

54 Despite the advances in our understanding of MCR structure and function, key questions
55 regarding its assembly and activation remain unresolved. For instance, the three subunits $\alpha\beta\gamma$
56 encoded by the *mcrABG* genes are found together in an operon with two additional genes: *mcrC*
57 and *mcrD* (**Fig. 1A**). The function of the McrC and McrD proteins is unknown but they are
58 universally conserved in methanogens and have been suggested to be involved in MCR
59 activation (10) and assembly (11), respectively. McrD associates with MCR in native organisms
60 (12) and when heterologously expressed (11), and McrD produced in *E. coli* stimulated the final
61 step of F430 biosynthesis (13). Based on these observations, McrD is hypothesized to be a
62 chaperone required for the insertion of F430 into a previously unobserved apo-MCR (11, 14).
63 Here, we utilize Cas9-based genome editing in *Methanosarcina acetivorans* (15) to characterize
64 McrD and employ single-particle cryoelectron microscopy (cryoEM) to visualize McrD-bound
65 MCR assembly intermediates.

66

67 Surprisingly, although the entire MCR operon is essential (16), the *mcrD* gene is not in *M.*
68 *acetivorans* (**Fig. 1A**). We generated a $\Delta mcrD$ mutant and verified the absence of compensatory
69 mutations or off-target editing by whole genome resequencing (**fig. S2**). This $\Delta mcrD$ strain
70 exhibited only a minor increase in doubling time compared to the parental strain when grown on
71 a variety of substrates (**Fig. 1B**). The growth defect remained negligible in cells stressed by
72 nickel limitation, oxygen exposure and non-ideal growth temperatures (**fig. S3**). Consistent with
73 this minor growth defect, only a small number of genes were significantly differentially
74 expressed in the $\Delta mcrD$ mutant (**fig. S4**).

75

76 We used a tetracycline-inducible expression vector to reintroduce the *mcrD* gene with N-
77 terminal tandem FLAG and Strep tags into the $\Delta mcrD$ background (**Fig. 1A**). McrD expression
78 was verified by Western blot against the FLAG epitope in crude cell extracts (**fig. S5**). Affinity
79 purification of tagged McrD yielded stoichiometric amounts of McrA, B and G subunits,
80 indicative of a McrABGD complex in *M. acetivorans* (**fig. S6**). This complex is less
81 thermostable and exhibited far less F430 absorbance compared to full assembled MCR (17) (**fig.**
82 **S7**). Intriguingly, this complex could only be recovered from actively dividing cells, while
83 purification from cells in stationary phase yielded predominantly free McrD (**fig. S6**). The
84 presence of an McrABGD complex primarily in exponential phase is consistent with its role in

85 the assembly of MCR rather than in a repair pathway to salvage damaged MCR. Additionally,
86 isolation of the McrABGD complex was insensitive to the location of affinity tags on McrD,
87 suggesting that it forms through a biologically relevant interaction between McrD and the other
88 subunits, not a spurious interaction between the tag and MCR (**fig. S6**).
89

90 Two distinct conformational states of the McrABGD complex were discovered by cryoEM: 1)
91 semi-apo at 3Å and 2) apo-apo at 3.1Å (**Fig. 1C, D, fig. S8-9**). We docked a previous crystal
92 structure, of the MCR_{ox1}-silent state purified from *Methanosarcina barkeri* (2), along with an
93 AlphaFold2 (18, 19) prediction of McrD into both densities and then manually rebuilt each
94 model. Surprisingly, all of the cryoEM density in both maps could be accounted for by a
95 complex with $\alpha_2\beta_2\gamma_2D_1$ stoichiometry. These asymmetric complexes were supported by a molar
96 mass estimate, acquired by size exclusion chromatography coupled with multi-angle light
97 scattering, of roughly 256kDa, which is too small for $\alpha_2\beta_2\gamma_2D_2$ (~313kDa) and too large for
98 $\alpha_1\beta_1\gamma_1D_1$ (~157kDa) (**fig. S10**). Consistent with the hypothesis that McrD assists in the formation
99 of an assembly intermediate, the two conformations differ in their active site occupancy. Both
100 active sites in the apo-apo model are empty whereas the semi-apo model contains one empty
101 active site and the other one shows clear density corresponding to the presence of three ligands
102 (F₄₃₀, CoM, and CoB) (**Fig. 1C, D**).
103

104 In each conformational state, McrD is nestled between the γ , α and α' subunits (semi-apo
105 lettering, **Fig. 2A**). Residues 10-129 of McrD are resolvable in our cryoEM density and adopt a
106 $\beta\alpha\beta\beta\alpha\beta$ fold motif. A large loop between the two $\beta\alpha\beta$ repeats of McrD, composed of residues
107 47-68, extends upwards forming a wedge between the γ and α' subunits, positioning the bulk of
108 McrD in a region normally occupied by the N-terminal domain of the α subunit (**Fig. 2B**). The
109 N-terminal domain of the α subunit bends down and outwards along the β -sheet of McrD,
110 converting Leu^{a78}-Arg^{a81} into a β -strand (**Fig. 2B**). Although the C-terminus of McrD is partially
111 unresolved in our structures, overlaying the full-length AlphaFold2 prediction reveals that the C-
112 terminal domain contributes to the formation of a small putative tunnel into which the Leu^{a78}-
113 Arg^{a81} β -strand fits neatly (**fig. S11**). The formation of this β -strand involves a major
114 reorganization of the N-terminal domain of the α subunit (**Fig. 2C**). In both conformations,
115 binding of McrD results in large-scale movements of γ and β compared to previous crystal
116 structures (**Fig 2D**), resulting in increased accessibility of the active site on the McrD-bound
117 side. The resolution of the cryoEM structures was sufficient to visualize the methylations of
118 Arg²⁸⁵ and Cys⁴⁷² in α and α' (**Fig. 2E**), which were also detected by high-resolution and tandem
119 mass spectrometry (HRMS/MS) (**fig. S12-S14**). The didehydro Asp⁴⁷⁰, thio Gly⁴⁶⁵ and *N*-methyl
120 His²⁷¹ modifications were detected and verified by HRMS/MS despite ambiguity in the cryoEM
121 data (**Fig. 2F**).
122

123 The asymmetric nature of these structures results in four unique active site conformations (**Fig.**
124 **3A,B**). In both models, the active site on the McrD-bound side is the most distorted compared to
125 the crystal structure of fully assembled MCR (**Fig. 3C, S15A**). Nearly all active site forming
126 secondary structures deviate significantly and are unresolvable in some places, most notably the
127 loops between Leu^{a333}-Tyr^{a346} and Ala^{a158}-Glu^{a166} containing the F₄₃₀ axial ligand Gln^{a161}. The
128 loop between Asp^{a414} and Phe^{a416} show a dramatic rearrangement, with His^{a415} and Phe^{a416}
129 moving in to occupy regions normally filled by F₄₃₀ and the axial ligand loop. Additional

130 structural changes include a distortion to the loop containing Tyr^{B365} resulting in a reorientation
131 of the hydroxy group by 180 degrees.
132

133 The contralateral active sites differ significantly between the semi-apo and apo-apo states. In the
134 semi-apo complex, the contralateral active is nearly identical to those observed in the fully
135 assembled crystal structure (**Fig. 3D**). Strong density is present throughout the entire active site
136 cavity, allowing for unambiguous identification of CoM, CoB and F₄₃₀ as well as the loop
137 containing Gln^{a161}. Here, the N-terminal region of the α' subunit caps the active site as in the
138 crystal structure. In stark contrast, the contralateral active site of the apo-apo structure displays
139 weak density for the loop with Gln^{a161}, and lacks distinct density for the ligands and the entire N-
140 terminal domain of the α' subunit (**fig. S15B**). There is also a prominent deformation of the
141 helix-loop-helix region between Leu^{a'333} and Tyr^{a'346} that could not be fully resolved. Notably,
142 Gln^{a161} has shifted \sim 7 Å away from the active site cavity, consistent with a lack of F₄₃₀. A
143 comparison of the two active sites in the apo-apo model highlights the importance of McrD
144 binding for F₄₃₀ ingress to the active site. The disordered axial ligand loop leads to a solvent-
145 exposed pathway into the active site that is lined with basic residues contributed by both McrD
146 and the β -strand Leu^{a'78}-Arg^{a'81} (**Fig. 3F**). In contrast, the contralateral active site remains far
147 less accessible due to a surface covered mostly by acidic residues and an axial ligand loop left
148 largely in place.
149

150 Based on these data, we propose a model for the assembly of the MCR complex and the role of
151 McrD in this process (**Fig. 4**). Our model begins with a PTM-containing apo- $\alpha_2\beta_2\gamma_2$ MCR that is
152 folded except for the α subunit N-terminal domains. McrD is not needed to destabilize the α N-
153 terminal domains, as evidenced by the unstructured contralateral N-terminus in our apo-apo
154 $\alpha_2\beta_2\gamma_2$ D₁ structure. Free McrD recognizes one of the unfolded N-terminal domains to bind to the
155 complex, yielding our observed apo-apo $\alpha_2\beta_2\gamma_2$ D₁ state. Though they have never been visualized,
156 there are two hypothetical ways that assembly might proceed: 1) the association of a second
157 McrD on the contralateral side leading to an apo-apo $\alpha_2\beta_2\gamma_2$ D₂ complex, or 2) the insertion of
158 F₄₃₀, dissociation of McrD, and folding of the alpha N-terminal domain to cap the active site
159 producing a semi-apo $\alpha_2\beta_2\gamma_2$ state. While our purification strategy would never capture the latter
160 state, it should have trapped the former, if present in significant quantities. In the first case, F₄₃₀
161 insertion followed by McrD loss, or in the second case, rebinding of McrD to the opposite side,
162 would lead to our observed semi-apo $\alpha_2\beta_2\gamma_2$ D₁. From here, an additional round of F₄₃₀ insertion,
163 loss of McrD, and folding of the alpha N-terminal domain to cap the active site would yield a
164 conformation identical to the crystallized MCR_{ox1}-silent form, which is ready to be a substrate for
165 the activation complex.
166

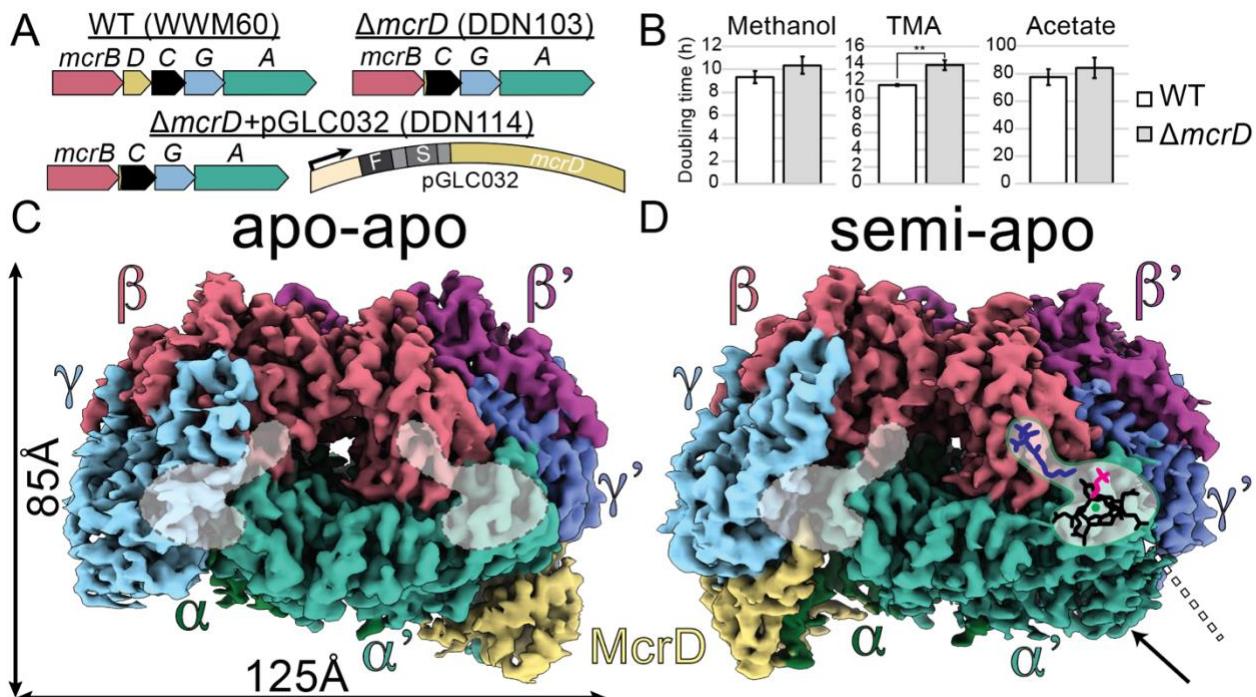
167 Here we have provided the first structural insight into the assembly of MCR and McrD's role
168 therein. Similar to the PTMs on the alpha subunit (3), the loss of McrD has little if any growth
169 penalty under a variety of laboratory conditions, highlighting that important facets of MCR
170 biology in nature not captured by ideal laboratory conditions. Despite this, our structural insight
171 into empty MCR active sites could propel the design of novel anti-methanogen compounds to
172 block F₄₃₀ insertion. Potent compounds that inhibit MCR, particularly as additives to ruminant
173 feedstocks (20), will likely be a reliable and cost-effective strategy to curb methane emissions,
174 which is a critical aspect of international efforts to limit global temperature rise. A complete
175 understanding of the MCR enzyme's assembly, activation and reaction mechanism is crucial for

176 the development and deployment of diverse classes of MCR antagonists. Furthermore,
177 elucidating the process of MCR assembly and activation advances the biotechnological goal of
178 heterologous expression of the methane generating metabolic pathway, and contributes to our
179 comprehension of the evolutionary transitions required for the natural horizontal transfer of this
180 metabolism (21). Future work must identify what additional cellular factors, if any, associate
181 with the McrD-bound assembly intermediates to facilitate F₄₃₀ insertion and N-terminal domain
182 folding.

183

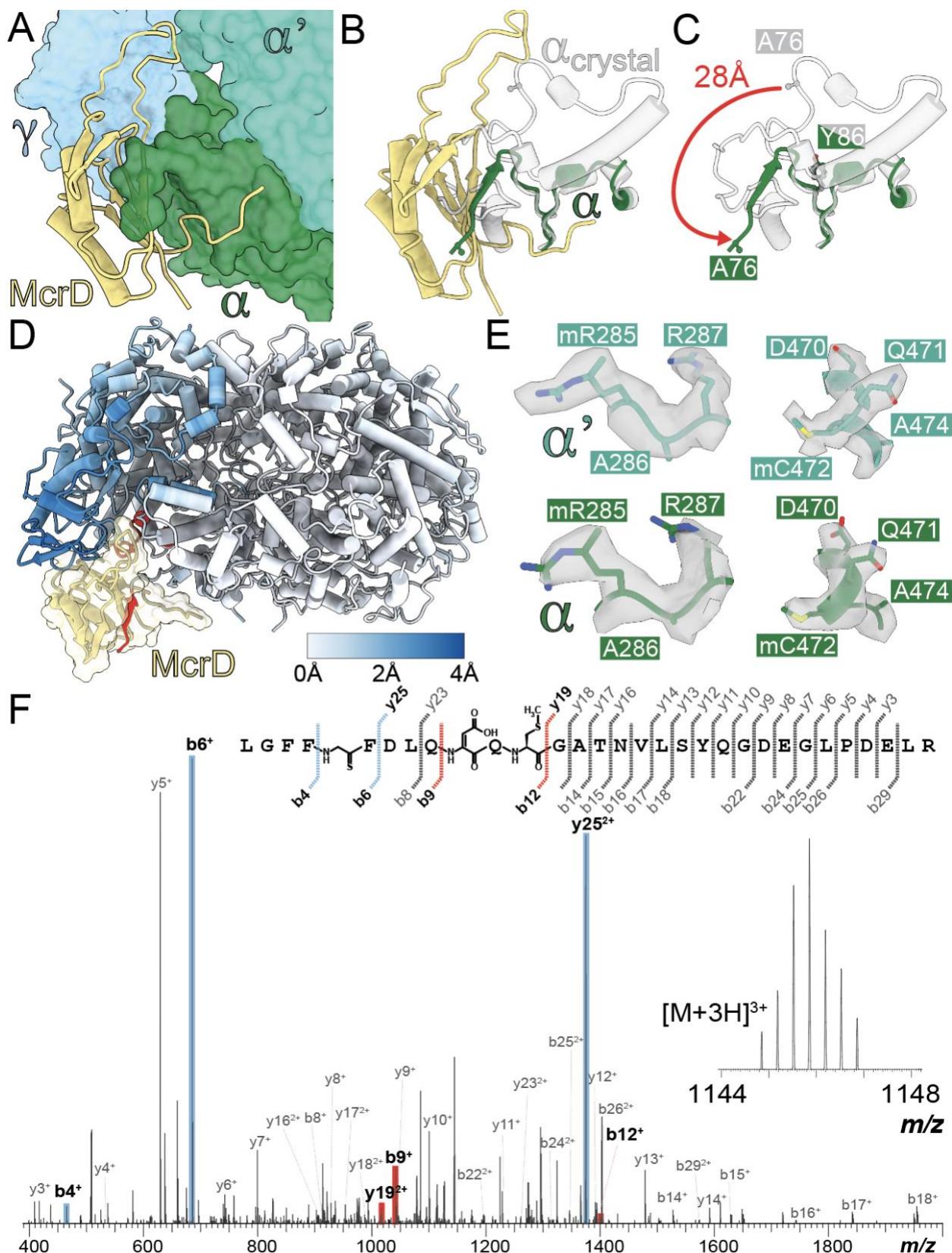
184 **Materials and Methods**

185

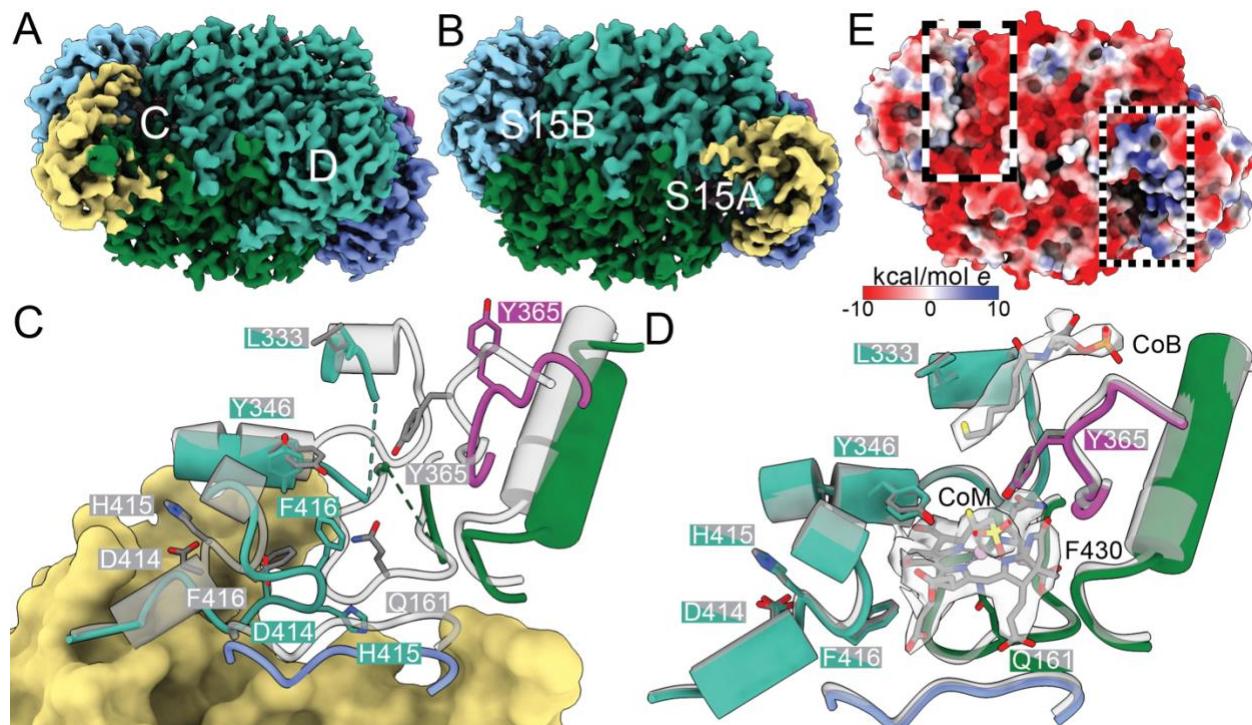

186 See supplemental information.

187

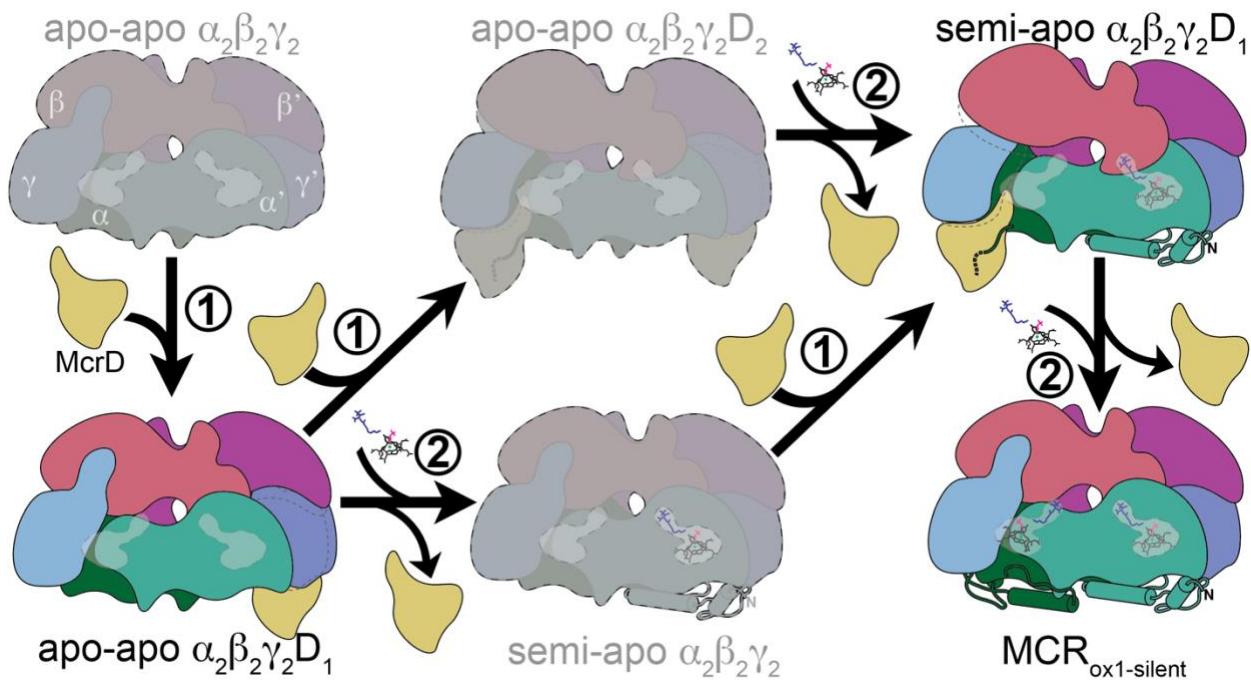
188 **Acknowledgements**


189

190 Funding list for DDN: Beckman Young Investigator Award sponsored by the Arnold and Mabel
191 Beckman Foundation, Searle Scholars Program sponsored by the Kinship Foundation, the Rose
192 Hills Innovator Grant, the Packard Fellowship in Science and Engineering sponsored by the
193 David and Lucille Packard Foundation, and the Simons Early Career Investigator in Marine
194 Microbial Ecology and Evolution Grant sponsored by the Simons Foundation. DDN is a Chan
195 Zuckerberg Biohub Investigator. GLC and AMNJ are supported by the Miller Institute for Basic
196 Research in Science, University of California Berkeley. This work was supported in part by a
197 grant from the National Institutes of Health (GM097142 to D.A.M.).


Fig. 1 Construction of $\Delta mcrD$ strain and cryoEM structure of McrD-bound MCR complexes. (A) MCR operon in the parental strain (WWM60), $\Delta mcrD$ mutant (DDN103), and tagged complementation strain (DDN114). Arrow indicates pMcrB(tetO1) promoter used for tetracycline inducible expression of McrD, F and S represent FLAG and Strep tags, respectively. **(B)** Doubling times of WT and $\Delta mcrD$ strain on methanol (MeOH), trimethylamine (TMA) and acetate (** p-value < 0.01, two-sided t-test). **(C, D)** CryoEM densities of the apo-apo and semi-apo McrABGD complexes (Supplementary Table 4). Empty active sites are outlined with dotted lines, while filled active site on the contralateral side of the semi-apo model is indicated by the dashed arrow. Solid arrow indicates density corresponding to the N-terminal domain of the α' subunit in the semi-apo complex that is absent in the apo-apo complex.

199
200
201
202
203
204
205
206
207
208


Fig. 2 McrD-binding to PTM-bearing MCR causes large-scale structural changes. (A) Detail of McrD binding location on the semi-apo model. (B) The α subunit N-terminal domain from the *M. barkeri* MCR crystal structure

212 (PDB:1e6y) depicted in white, with the corresponding region of the semi-apo α subunit dark green. (C) Significant
213 rearrangement exemplified by Ala^{a76} which deviates 28 \AA upon McrD binding. All residues before Ala^{a76} are
214 disordered. (D) Ribbon diagram of semi-apo structure colored by C α deviations from 1e6y. Residues deviating by
215 more than the color scale maximum of 4 \AA are shown in red. (E) Density corresponding to methylations at Arg²⁸⁵
216 and Cys⁴⁷² in the α and α' subunits. (F) HRMS/MS fragmentation and annotated collision-induced dissociation
217 spectrum of an McrA tryptic peptide (Leu⁴⁶¹-Arg⁴⁹¹) conclusively identified three of the five PTMs. Cyan and red
218 mass peaks indicate the most diagnostic ions for localizing the modification sites. For additional details and
219 HRMS/MS data confirming the remaining PTMs, see **fig. S12-S14**.
220

221
222 **Fig. 3 Active site variations in MCR assembly intermediates.** (A-B) Bottom view of complexes with labels
223 showing active sites detailed in subsequent panels. (C-D) Active site details of the semi-apo model with key residue
224 side chains shown (for corresponding figures for apo-apo model see **fig. S15**). MCR crystal structure from *M.*
225 *barkeri* (PDB:1e6y) overlaid in gray. In D cryoEM density corresponding to CoM, CoB and F₄₃₀ is shown in
226 transparent gray. (E) Bottom view of the apo-apo complex colored by electrostatic potential. Boxed regions on the
227 McrD-bound side (dots) and contralateral side (dashes) highlight strong electrostatic differences, with positively
228 charged patches leading to the active site from McrD and the α' subunit. Boxes indicate similar positions on the side
229 opposite McrD with the axial ligand loop blocking the active site and mostly negatively charged surfaces.
230

231
232
233
234
235
236
237
238

Fig. 4 Role of McrD in MCR assembly. Experimentally observed complexes are shown in full color, while hypothesized intermediates are shown in gray. The two proposed functions of McrD are numbered. 1) McrD recognizes the disordered N-terminal domain of an α subunit lacking F_{430} , and 2) McrD and possibly unidentified additional factors facilitate the insertion of F_{430} , McrD dissociation and α subunit N-terminal domain folding. The order of these two functions is not clear, leading to two possible routes between our observed assembly intermediates.

239

240 References

241

- 242 1. U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer, Crystal Structure of Methyl-
243 Coenzyme M Reductase: The Key Enzyme of Biological Methane Formation. *Science*. **278**,
244 1457–1462 (1997).
- 245 2. W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, Comparison of Three Methyl-
246 coenzyme M Reductases from Phylogenetically Distant Organisms: Unusual Amino Acid
247 Modification, Conservation and Adaptation. *Journal of Molecular Biology*. **303**, 329–344
248 (2000).
- 249 3. D. D. Nayak, A. Liu, N. Agrawal, R. Rodriguez-Carreiro, S.-H. Dong, D. A. Mitchell, S. K.
250 Nair, W. W. Metcalf, Functional interactions between posttranslationally modified amino
251 acids of methyl-coenzyme M reductase in *Methanosarcina acetivorans*. *PLOS Biology*. **18**,
252 e3000507 (2020).
- 253 4. D. D. Nayak, N. Mahanta, D. A. Mitchell, W. W. Metcalf, Post-translational thioamidation
254 of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic
255 Archaea. *eLife*. **6**, e29218 (2017).
- 256 5. S. Shima, M. Krueger, T. Weinert, U. Demmer, J. Kahnt, R. K. Thauer, U. Ermler, Structure
257 of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.
258 *Nature*. **481**, 98–101 (2012).
- 259 6. C. J. Hahn, O. N. Lemaire, J. Kahnt, S. Engilberge, G. Wegener, T. Wagner, Crystal
260 structure of a key enzyme for anaerobic ethane activation. *Science*. **373**, 118–121 (2021).
- 261 7. T. Wongnate, D. Sliwa, B. Ginovska, D. Smith, M. W. Wolf, N. Lehnert, S. Raugei, S. W.
262 Ragsdale, The radical mechanism of biological methane synthesis by methyl-coenzyme M
263 reductase. *Science*. **352**, 953–958 (2016).
- 264 8. E. C. Duin, T. Wagner, S. Shima, D. Prakash, B. Cronin, D. R. Yáñez-Ruiz, S. Duval, R.
265 Rümbeli, R. T. Stemmler, R. K. Thauer, M. Kindermann, Mode of action uncovered for the
266 specific reduction of methane emissions from ruminants by the small molecule 3-
267 nitrooxypropanol. *Proceedings of the National Academy of Sciences*. **113**, 6172–6177
268 (2016).
- 269 9. D. Hinderberger, R. P. Piskorski, M. Goenrich, R. K. Thauer, A. Schweiger, J. Harmer, B.
270 Jaun, A Nickel–Alkyl Bond in an Inactivated State of the Enzyme Catalyzing Methane
271 Formation. *Angewandte Chemie International Edition*. **45**, 3602–3607 (2006).
- 272 10. D. Prakash, Y. Wu, S.-J. Suh, E. C. Duin, Elucidating the Process of Activation of Methyl-
273 Coenzyme M Reductase. *Journal of Bacteriology*. **196**, 2491–2498 (2014).
- 274 11. Z. Lyu, C.-W. Chou, H. Shi, L. Wang, R. Ghebreab, D. Phillips, Y. Yan, E. C. Duin, W. B.
275 Whitman, Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon
276 *Methanococcus maripaludis*. *Journal of Bacteriology*. **200**, e00746-17 (2018).

277 12. D. Stroup, J. N. Reeve, Association of the mcrD gene product with methyl coenzyme M
278 reductase in *Methanococcus vannielli*. *Biochimica et Biophysica Acta (BBA) - Protein*
279 *Structure and Molecular Enzymology*. **1203**, 175–183 (1993).

280 13. K. Zheng, P. D. Ngo, V. L. Owens, X. Yang, S. O. Mansoorabadi, The biosynthetic pathway
281 of coenzyme F430 in methanogenic and methanotrophic archaea. *Science*. **354**, 339–342
282 (2016).

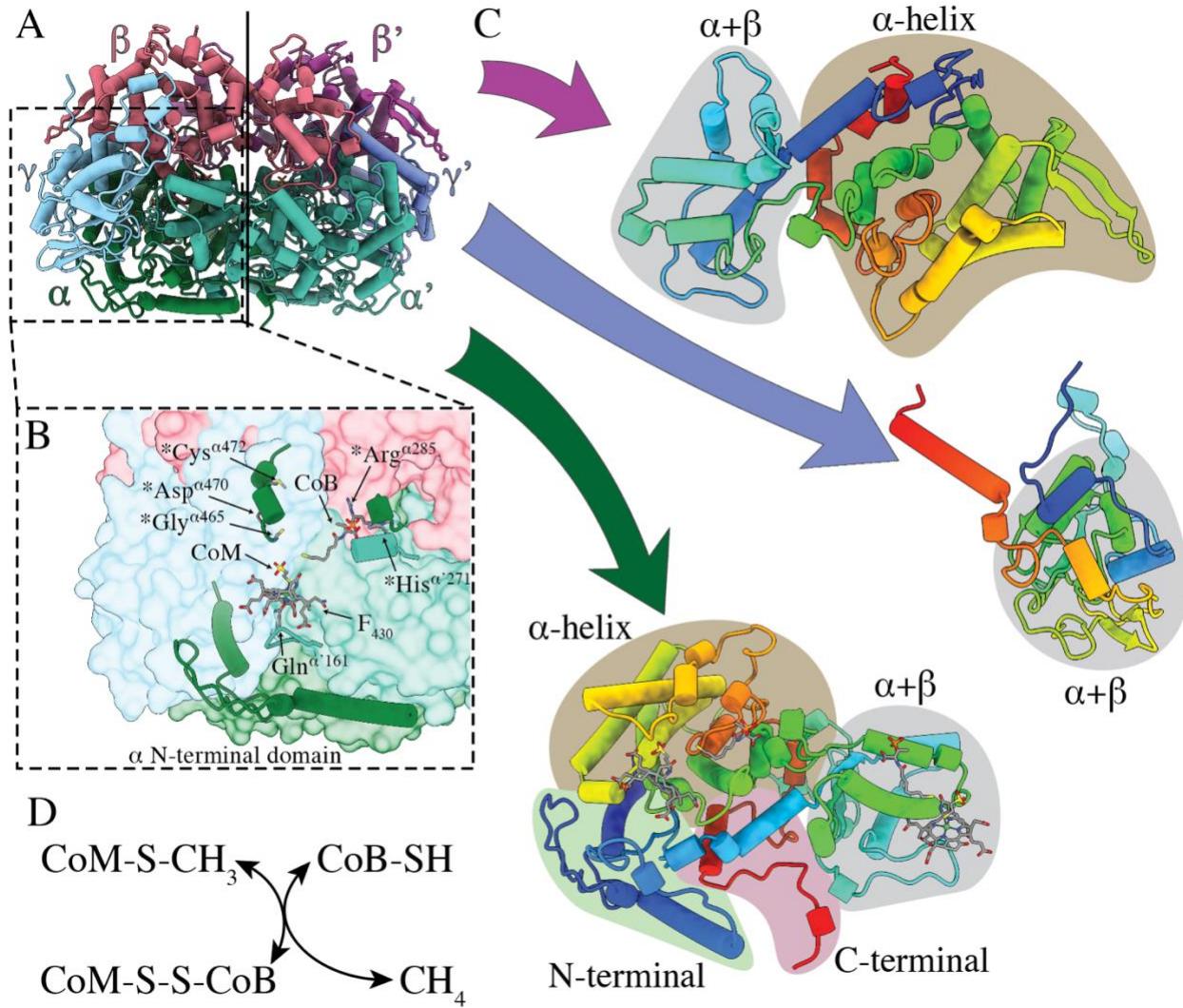
283 14. R. K. Thauer, Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes
284 Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of
285 Short Chain Alkanes. *Biochemistry*. **58**, 5198–5220 (2019).

286 15. D. D. Nayak, W. W. Metcalf, Cas9-mediated genome editing in the methanogenic archaeon
287 *Methanosarcina acetivorans*. *Proc. Natl. Acad. Sci. U.S.A.* **114**, 2976–2981 (2017).

288 16. A. M. Guss, M. Rother, J. K. Zhang, G. Kulkarni, W. W. Metcalf, New methods for tightly
289 regulated gene expression and highly efficient chromosomal integration of cloned genes for
290 *Methanosarcina* species. *Archaea*. **2**, 193–203 (2008).

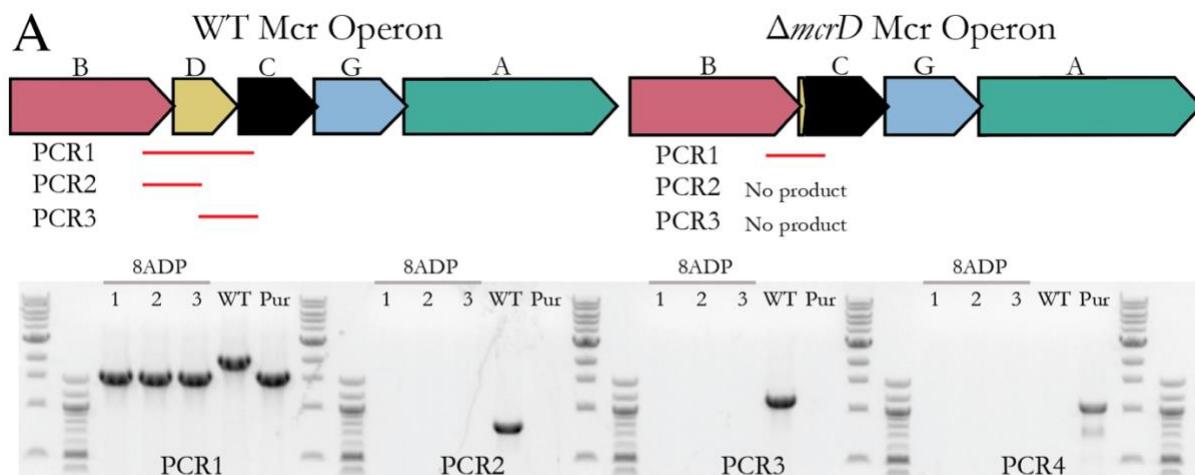
291 17. D. D. Nayak, W. W. Metcalf, "Chapter Thirteen - Genetic techniques for studies of methyl-
292 coenzyme M reductase from *Methanosarcina acetivorans* C2A" in *Methods in Enzymology*,
293 F. Armstrong, Ed. (Academic Press, 2018;
294 <https://www.sciencedirect.com/science/article/pii/S0076687918304269>), vol. 613 of
295 *Enzymes of Energy Technology*, pp. 325–347.

296 18. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
297 Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
298 A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S.
299 Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
300 S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis,
301 Highly accurate protein structure prediction with AlphaFold. *Nature*. **596**, 583–589 (2021).


302 19. M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, ColabFold:
303 making protein folding accessible to all. *Nat Methods*. **19**, 679–682 (2022).

304 20. A. N. Hristov, J. Oh, F. Giallongo, T. W. Frederick, M. T. Harper, H. L. Weeks, A. F.
305 Branco, P. J. Moate, M. H. Deighton, S. R. O. Williams, M. Kindermann, S. Duval, An
306 inhibitor persistently decreased enteric methane emission from dairy cows with no negative
307 effect on milk production. *Proceedings of the National Academy of Sciences*. **112**, 10663–
308 10668 (2015).

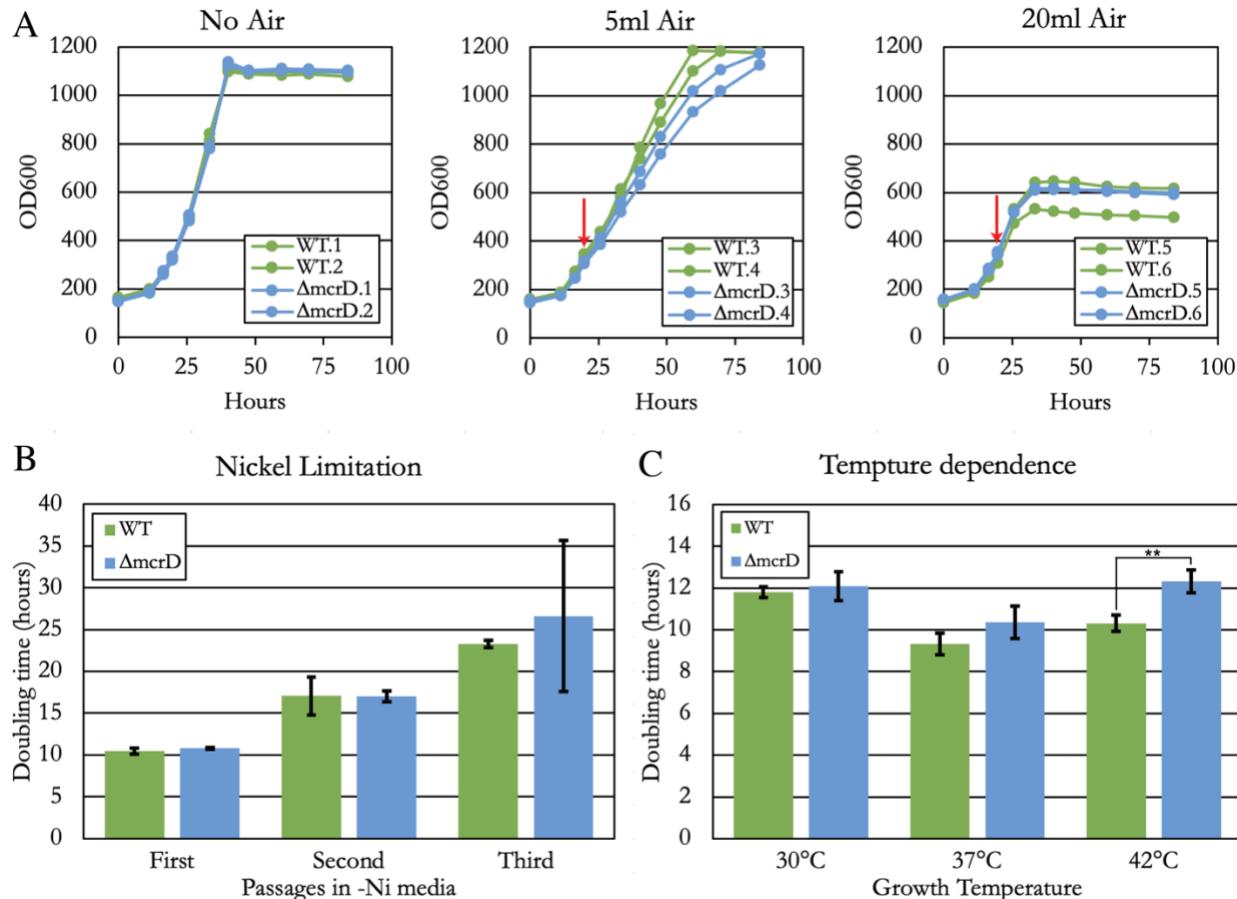
309 21. P. S. Garcia, S. Gribaldo, G. Borrel, Diversity and Evolution of Methane-Related Pathways
310 in Archaea. *Annu. Rev. Microbiol.* **76**, 727–755 (2022).


313 **Supplementary Information**

314

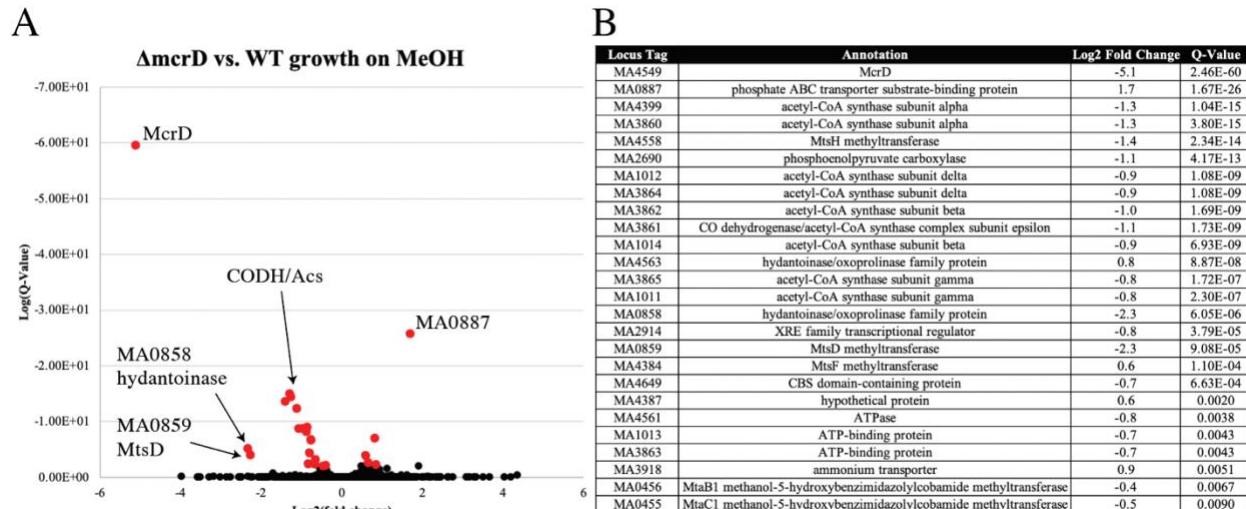
315
316

317 **fig. S1 MCR reaction and structural features.** (A) Crystal structure of methyl-coenzyme M
318 reductase (MCR) from *M. barkeri* demonstrating the quaternary structure of the complex
319 (PDB:1e6y). (B) Detail of MCR active site showing coenzyme M (CoM), coenzyme B (CoB),
320 cofactor F₄₃₀, F₄₃₀'s axial ligand Gln $^{\alpha 161}$ and the five post-translationally modified residues
321 denoted by asterisks. The N-terminal domain of the α subunit that covers the bottom of active
322 site shown as a cartoon. (C) Folds of McrB (top), McrG (right) and McrA (bottom) with major
323 domains labelled as defined by Ermler *et al.* 1997. The α -helix and $\alpha+\beta$ domains of McrA and
324 McrB are structurally similar, suggesting an ancient duplication event. (D) The reversible
325 reaction catalyzed by MCR. Methyl coenzyme M (CoM-S-CH₃) is reduced by coenzyme B
326 (CoB-SH) to form the heterodisulfide (CoM-S-S-CoB) and methane.


B

Predicted mutations						
evidence	position	mutation	annotation	gene	description	
RA	487,691	+C	intergenic (+91/-154)	MA_RS02125 → / → MA_RS02130	(4Fe-4S)-binding protein/aldehyde oxidase	
RA	941,168	(A) ₅ →6	coding (27/765 nt)	MA_RS04205 ←	hypothetical protein	
RA	1,314,120	Δ1 bp	pseudogene (467/802 nt)	MA_RS05790 →	DNA-directed RNA polymerase subunit D	
RA	2,086,881	2 bp→CT	intergenic (-200/+180)	MA_RS09025 ← / ← MA_RS09030	cell surface protein/ATPase	
RA	2,086,886	G→T	intergenic (-205/+176)	MA_RS09025 ← / ← MA_RS09030	cell surface protein/ATPase	
RA	2,534,543	+C	coding (6589/6645 nt)	MA_RS10645 ←	hypothetical protein	
RA	2,836,646	A→G	F64L (ITC→CTC)	MA_RS11965 ←	phosphoserine aminotransferase	
RA	2,867,059	T→G	H313Q (CAT→CAG)	MA_RS24595 →	hypothetical protein	
RA	3,433,201	Δ1 bp	coding (771/774 nt)	MA_RS14410 →	hypothetical protein	
RA	4,295,452	Δ1 bp	intergenic (-25/+484)	MA_RS24770 ← / ← MA_RS18150	hypothetical protein/hypothetical protein	
RA	4,874,567	Δ1 bp	intergenic (-82/-693)	MA_RS20725 ← / → MA_RS20730	4Fe-4S ferredoxin/tRNA-Ser	
RA	4,945,345	+C	pseudogene (211/1904 nt)	MA_RS21030 ←	phosphoadenosine phosphosulfate reductase	
RA	5,078,585	G→A	M1M (ATG→ATA) †	MA_RS21710 →	carbamoyltransferase HypF	
MC JC	5,599,800	Δ456 bp	coding (31-486/513 nt)	MA_RS23715 ←	methyl-coenzyme M reductase operon protein D	

Unassigned missing coverage evidence						
seq id	start	end	size	← reads →	gene	description
NC_003552	836144	836801	658	38 [35] [34] 36	MA_RS03755-[MA_RS03760]	MA_RS03755,[MA_RS03760]
NC_003552	3204745-3206136	1-1392	38 [32] [32] 36		MA_RS13410-[MA_RS13415]	MA_RS13410,[MA_RS13415]


327
328

329 **fig. S2 Deletion of the *mcrD* gene.** (A) PCR reactions spanning the *mcrD* gene, as well as
330 primers within the *mcrD* coding sequence were used to verify *mcrD* deletion and rule out wild
331 type contamination. Genomic DNA was used as a template from wildtype (WT; WWM60),
332 initial colony selected from Puromycin plate that contains the gene editing plasmid (Pur), and
333 three colonies from 8-aza-2,6-diaminopurine (8ADP) containing plates used for counterselection
334 against the gene editing plasmid. PCR1 spans the *mcrD* gene, showing a full-sized product only
335 in WT and expected truncated size post gene editing. Similarly, only WT generates a product in
336 PCR 2 and 3 with primers binding within *mcrD*. PCR4 amplifies the *pac* gene conferring
337 puromycin resistance on the gene editing plasmid, verifying plasmid curing by 8ADP
338 counterselection (Nayak and Metcalf 2017). (B) Breseq comparison of DDN103 to *M.*
339 *acetivorans* C2A reference genome. All mutations and missing coverage are identical to the
340 parental strain WWM60 (Nayak and Metcalf 2017) besides the 456 bp deletion of *mcrD*
341 (MA_RS23715). RA: read alignment, MC: missing coverage, JC: new junction.

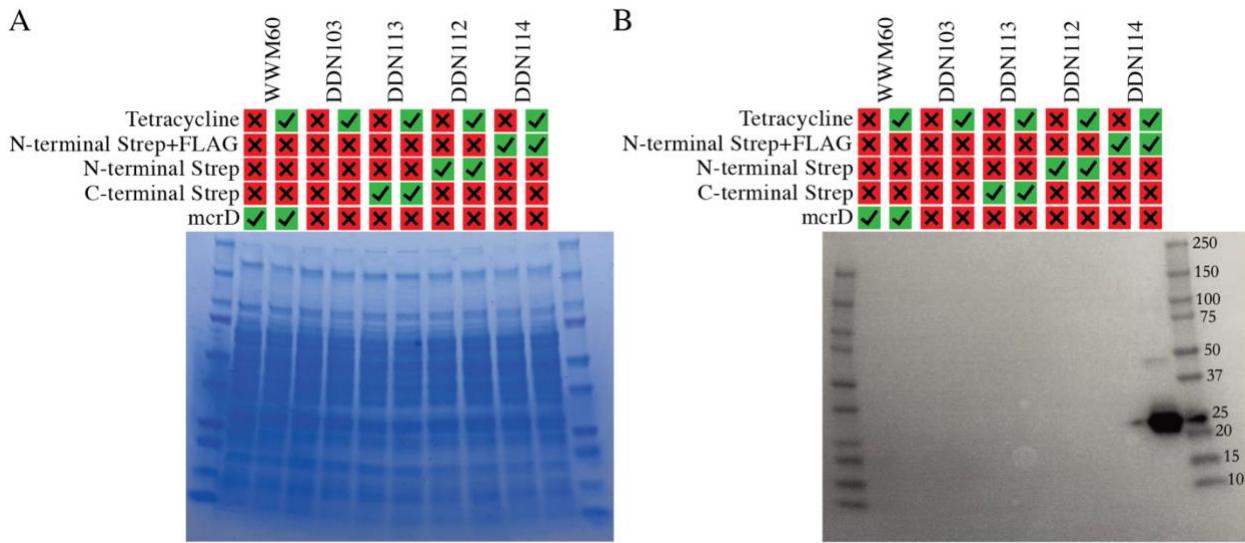
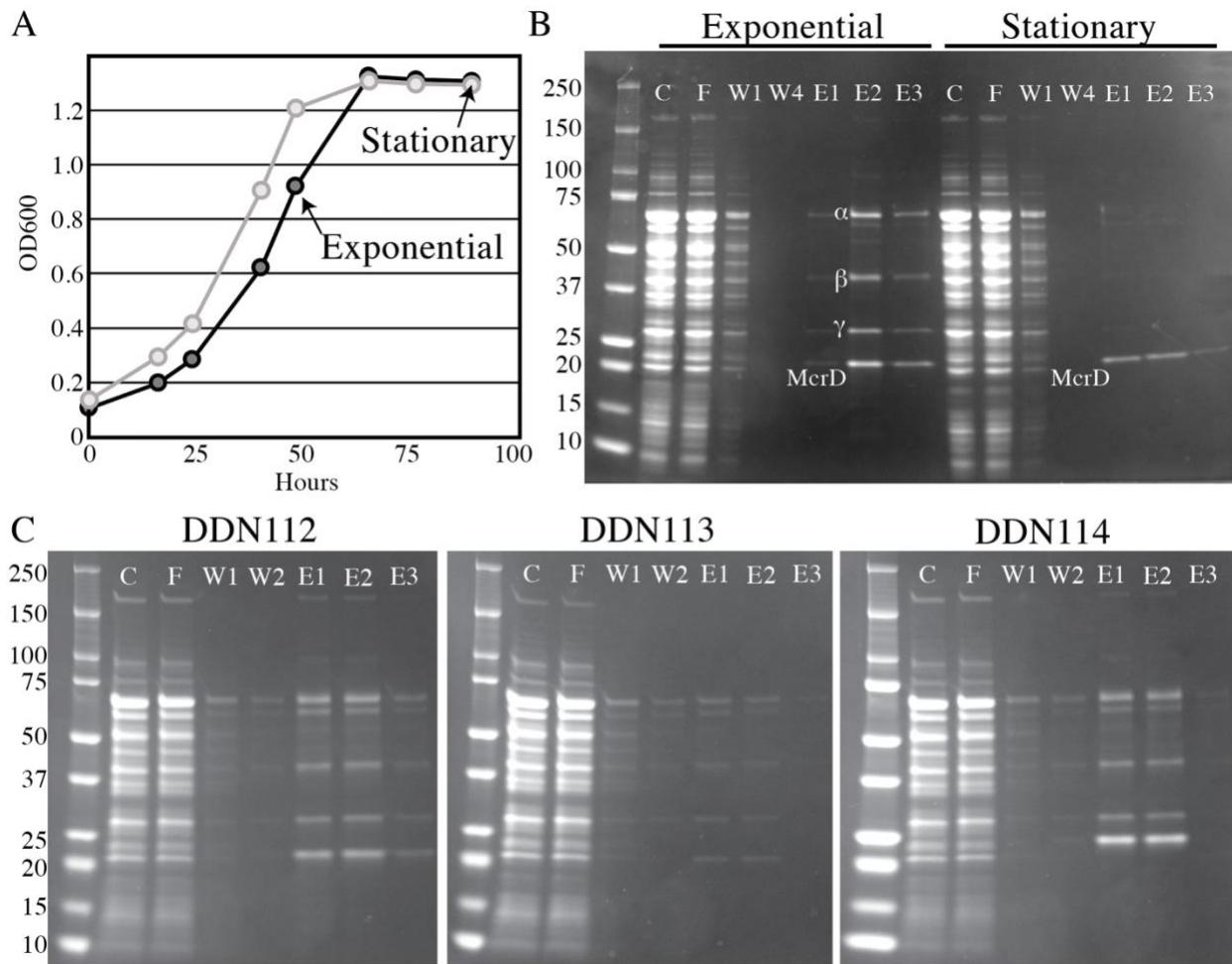
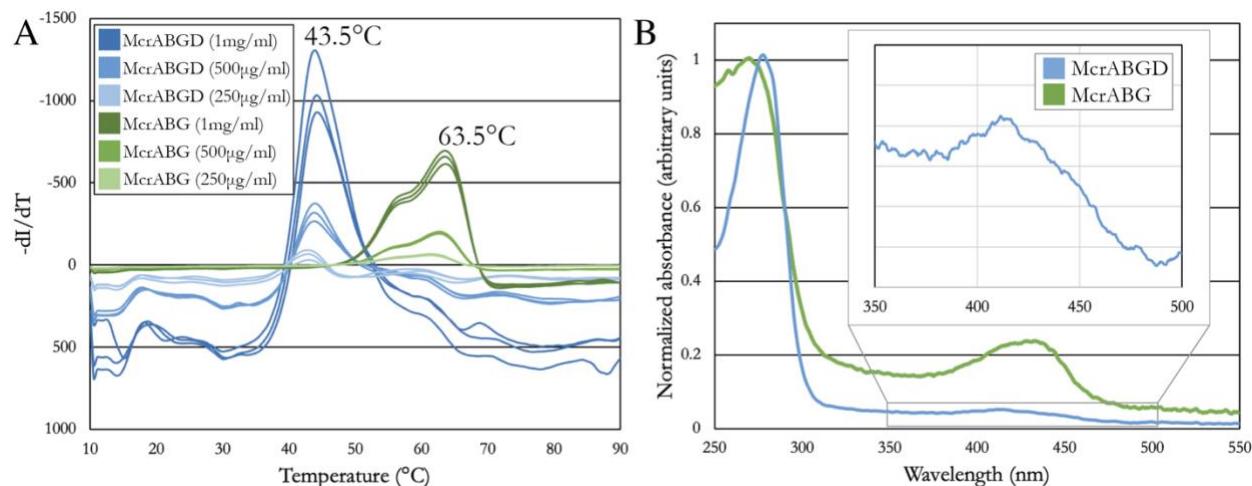

342
343

fig. S3 Stress experiments. Attempts to find conditions with a dramatic growth difference between wildtype (WT; WWM60) and $\Delta mcrD$ were unsuccessful. (A) MCR is known to be oxygen sensitive, so air was introduced into growing cultures of WT and $\Delta mcrD$ at the times indicated by red arrows. Low (5 ml) and high (20 ml) air challenges negatively affected growth, but with no noticeable difference between strains. (B) Cultures were washed three times and transferred into methanol media lacking added Ni. Although subsequent passages showed an increase in doubling time for both WT and $\Delta mcrD$, no significant difference was observed between strains (two-sided t-test). (C) Growth in methanol media in non-ideal low (30°C) and high (42°C) temperatures was assessed. In neither case was the $\Delta mcrD$ dramatically worse than WT, although at 42°C there was a statistically significant difference (p-value < 0.01, two-sided t-test). Error bars in B and C represent standard deviations of triplicate cultures.

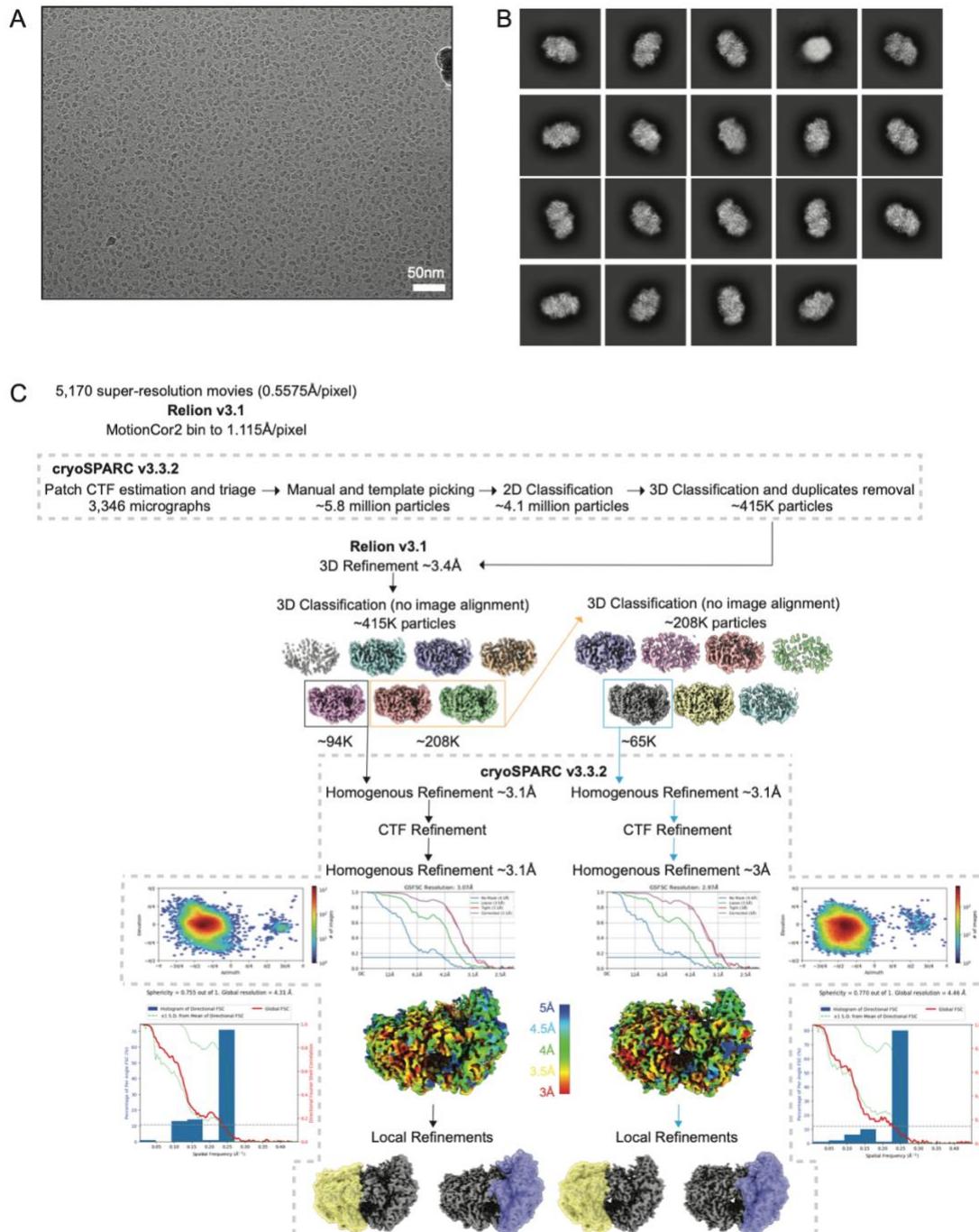
355
356


357 **fig. S4 Transcriptome comparison of $\Delta mcrD$ and WT.** (A) Comparison of significantly
358 differentially expressed genes in $\Delta mcrD$ and WT grown on methanol. Only 25 genes aside from
359 $mcrD$ were differentially expressed between the two strains (defined as a Q-value<0.01
360 highlighted in red). There is a downregulation of some carbon metabolism genes including
361 multiple isoforms of CODH/Acs and PEP carboxylase, perhaps suggestive of a decrease in
362 carbon flow towards biomass production. All fold changes are relatively minor, at or below two-
363 fold difference. Importantly, other MCR genes are not differentially expressed, revealing that the
364 absence of the $mcrD$ gene has not affected the stability of the MCR operon transcript, or resulted
365 in a transcriptional change in this operon. (B) Locus tags, annotations log2 fold change and Q-
366 values for all 25 genes.
367

368
369

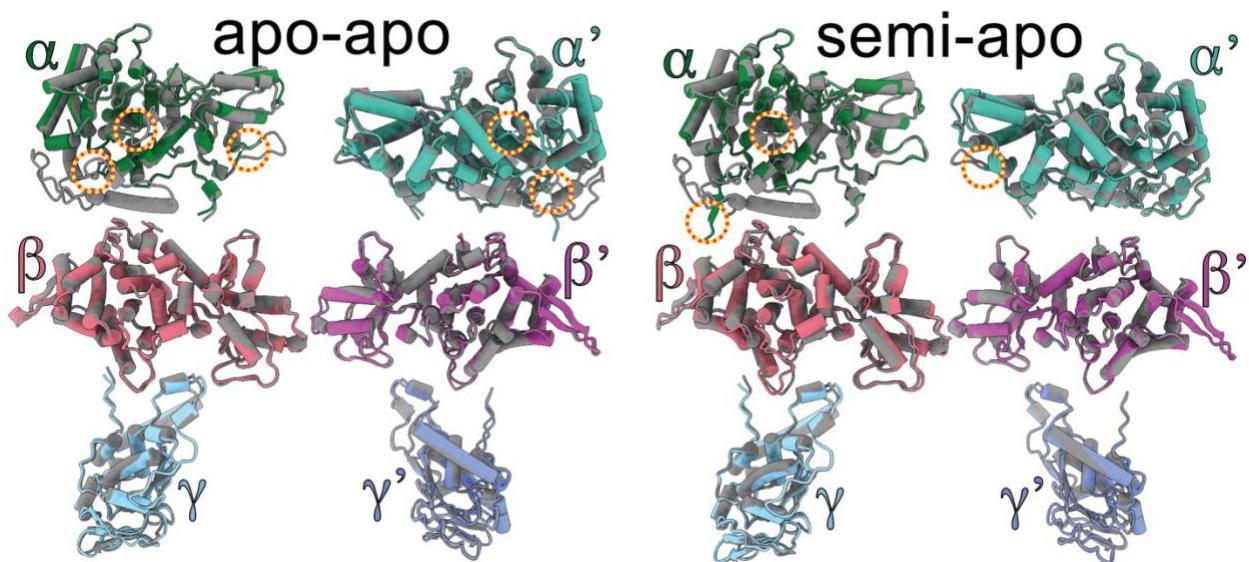

370 **fig. S5 Expression of McrD in trans.** (A) Coomassie and (B) anti-FLAG Western blot of crude
371 protein extracts from *M. acetivorans* strains. Only strain DDN114, which contains a plasmid
372 encoded *mcrD* with a N-terminal twin FLAG and Strep tags showed immunolabelling at the
373 expected size. The plasmid encoded *mcrD* is under the control of a tetracycline-inducible
374 promoter and 100 µg/mL tetracycline was added to the growth medium to induce expression of
375 the tagged McrD protein.

376


379 **fig. S6 Purification of the McrABGD complex.** (A) 500 mL cultures of DDN114 were grown
380 and harvested in late exponential (dark gray line) or stationary phase (light gray line) for
381 purification for the McrABGD complex. Optical density readings displayed here were taken
382 from Balch tubes set up in parallel to the large format bottle incubations to determine the growth
383 phase. Arrows indicate the timepoint where the 500mL cultures were harvested. (B) SDS-PAGE
384 gels showing Crude cell lysate (C), flow-through of Strep-Tactin Superflow Plus resin used for
385 affinity purification (F), first wash (W1), fourth and final wash (W4), first, second and third
386 elution (E1, E2 and E3, respectively). Protein purification from exponential phase demonstrate
387 roughly stoichiometric amounts of subunits α , β , γ and δ , while cells in stationary phase yield
388 almost entirely δ free from other proteins. (C) Comparison of tags on the co-purification of MCR
389 subunits. DDN112 (N-terminal Strep only), DDN113 (C-terminal Strep only) and DDN114 (N-
390 terminal FLAG and Strep) all pulled down α , β and γ subunits along with the dominant δ band.
391 Note: the band below the α subunit was identified as Hsp60 (MA0086) but was not detected in
392 the cryoEM data (data not shown).

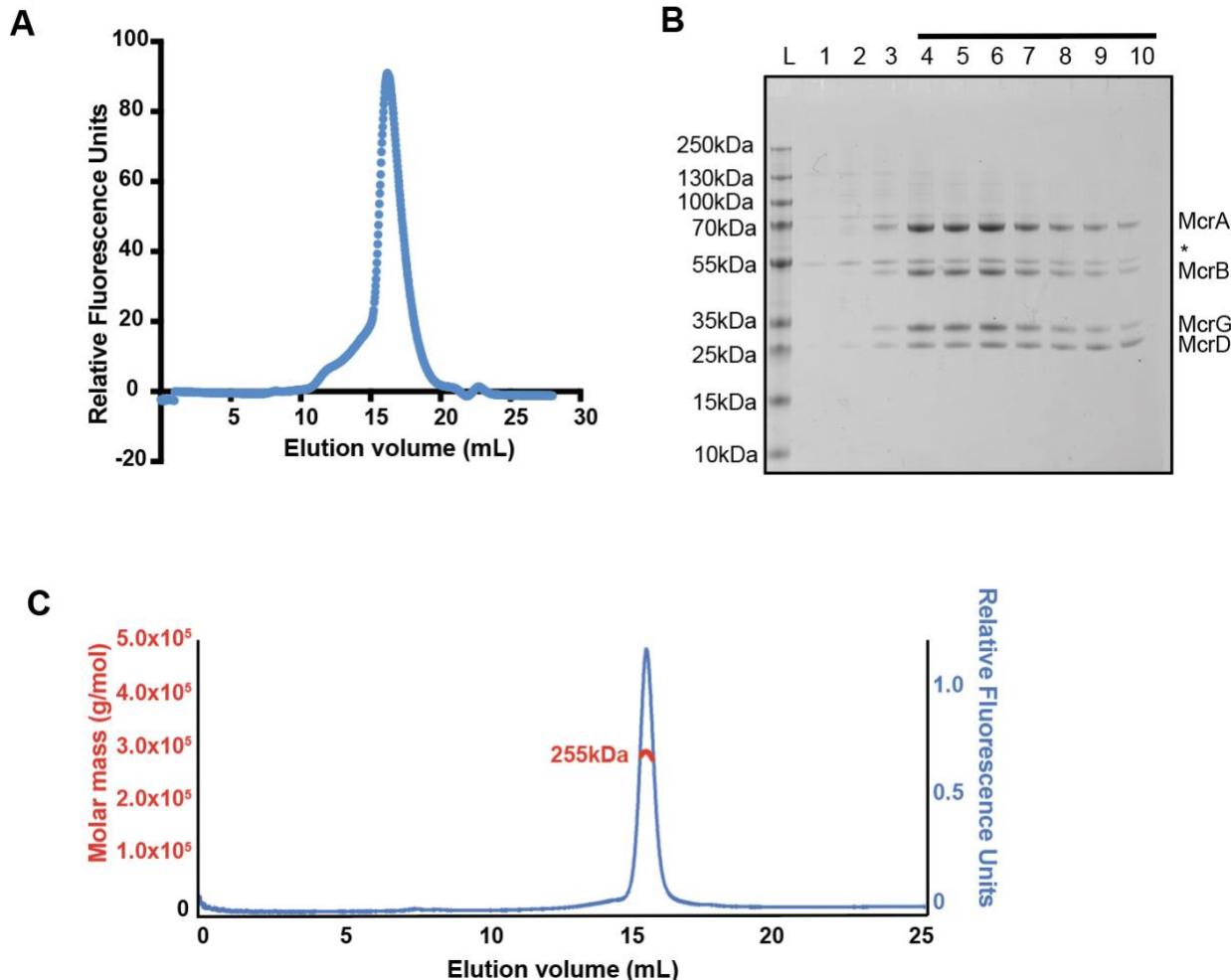
393

394
395

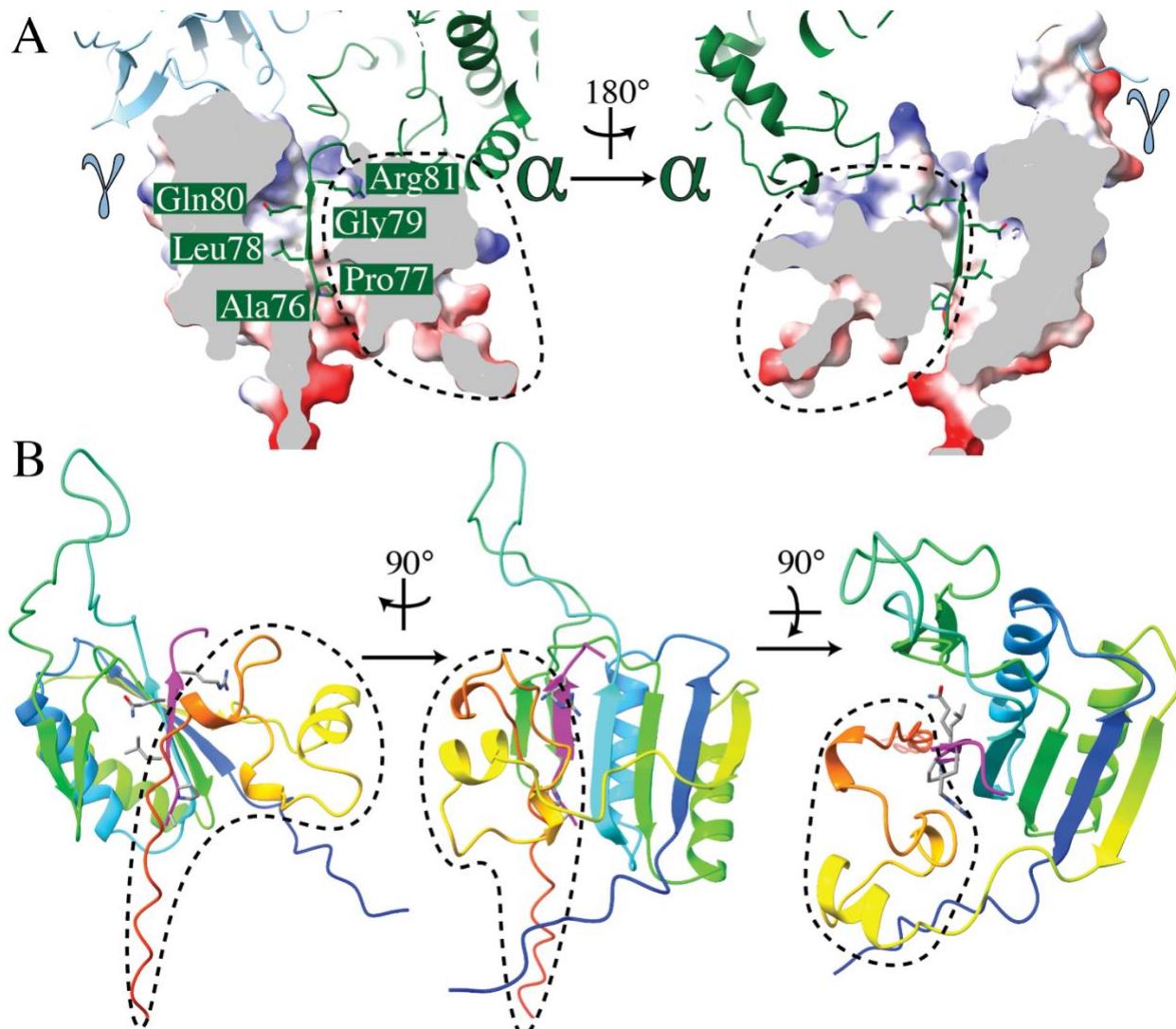

396 **fig. S7 Properties of McrABGD complex.** (A) SYPRO Orange melt curve analysis of
397 McrABGD complex purified from DDN114 reveals a 20 $^{\circ}\text{C}$ lower melting temperature than
398 McrABG purified from WWM1086. (B) Absorbance spectra of McrABGD complex purified
399 from DDN114 and McrABG purified from WWM1086. Inset region of showing weak
400 absorbance between 400 and 450 nm consistent with sub-stoichiometric loading of McrABGD
401 complex with cofactor F₄₃₀.

402
403

404 fig. S8 Cryo-EM processing pipeline. (A) Example micrograph of the McrABGD complex at -
 405 2.1 μ m estimated average defocus. Scale bar, 100 \AA . **(B)** Representative 2D class averages
 406 generated in cryoSPARC. The edge of each box corresponds to 250 \AA . **(C)** EM density from a
 407 well-resolved region of the final 3D reconstructions. **(D)** Flow chart depicting the steps taken
 408 during data processing to generate the two distinct conformational reconstructions of McrD-
 409 bound MCR complex. Steps enclosed in gray dashed boxes were performed in cryoSPARC.
 410 Sphericity was calculated using the 3DFSC script from D. Lyumkis, available at
 411 <https://3dfsc.salk.edu>.

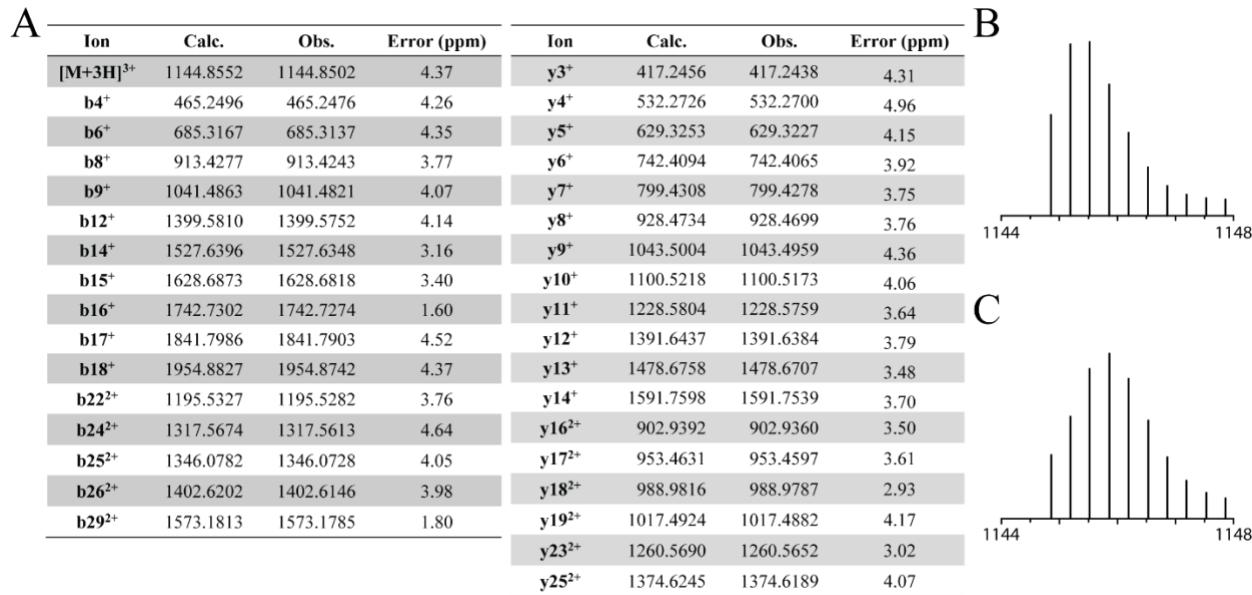

412

413


414

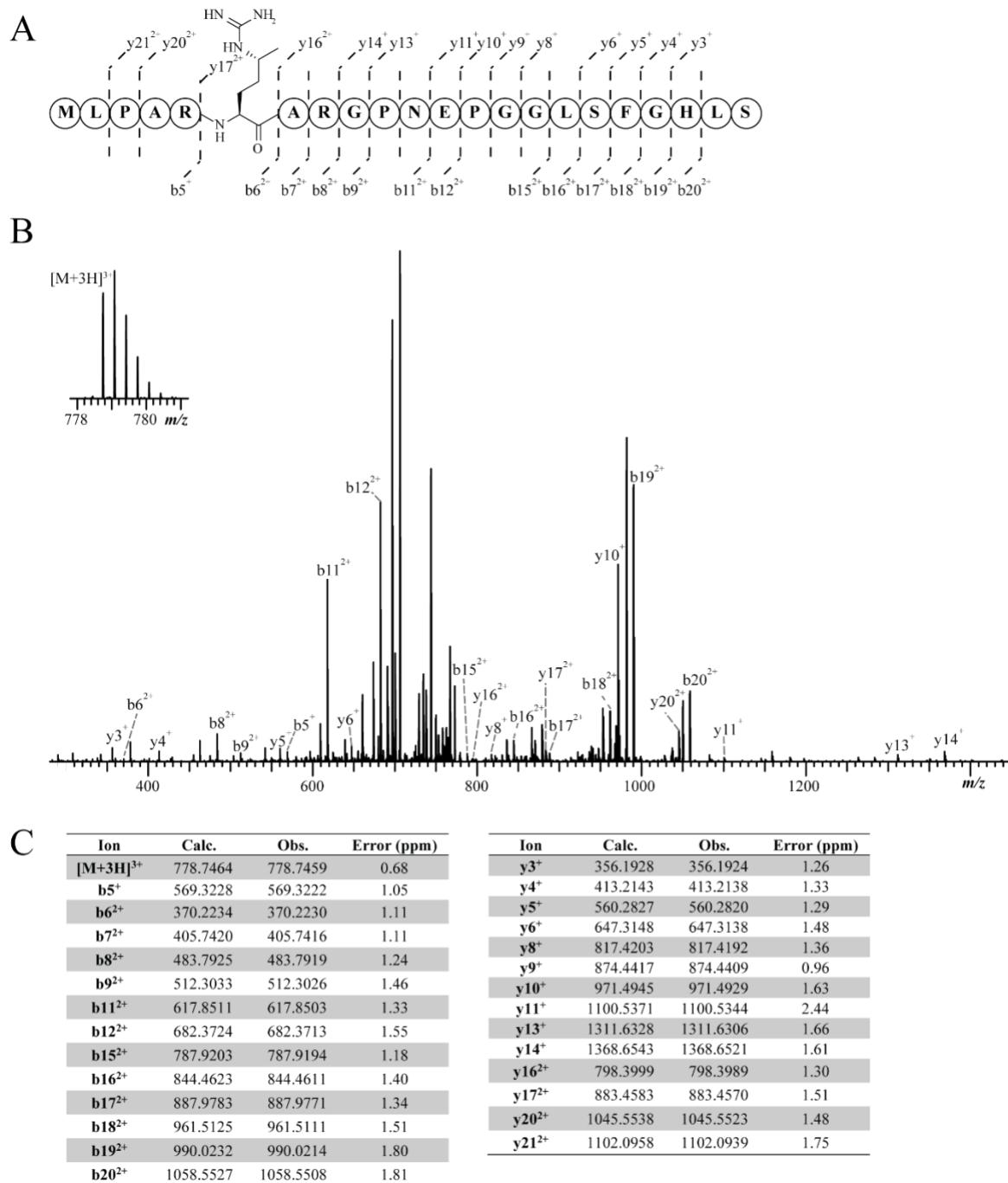
415 **fig. S9 Details of individual chains.** Each individual subunit of MCR from the cryoEM models
416 reported here are aligned to their corresponding subunit from PDB:1e6y. Overlays highlight the
417 extensive structural similarity, while major differences are highlighted in yellow dashed circles.

418
419
420
421
422
423
424
425


fig. S10 Size of the McrABGD complex and sample preparation for CryoEM. (A)
Representative UV trace from gel filtration of the McrABGD complex on a Superose 6 Increase 10/300 GL. **(B)** Coomassie-stained gel corresponding to the peak fractions in A, * indicates multimeric McrD complex due to incomplete denaturing conditions in the gel (McrD verified by mass spectrometry, data not shown). **(C)** Representative trace of the purified McrABGD complex after gel filtration from SEC-MALS experiment.

426
427

428 **fig. S11 Unresolved C-terminal domain of McrD.** The C-terminal domain of McrD past
429 Asp D129 does not have corresponding CryoEM density (Tyr D130 -Glu D170). The AlphaFold2
430 prediction of tagged McrD which matches the N-terminal domain nearly perfectly predicts these
431 C-terminal residues to fold in a way that produces a channel into which the residues Ala $^{\alpha 76}$ -
432 Arg $^{\alpha 81}$ fit neatly. (A) Two views of this interface with a cartoon diagram of the α and γ subunits
433 and surface cutaway of the AlphaFold2 prediction of McrD. Side chains for Ala $^{\alpha 76}$ -Arg $^{\alpha 81}$ are
434 shown to highlight the fit. (B) Three views of the same interface with the McrD prediction
435 shown as a cartoon with rainbow coloring. In all panels region of McrD not found in our cryoEM
436 density is outlined with a dashed line.


437
438

439
440
441
442
443
444
445
446
447
448

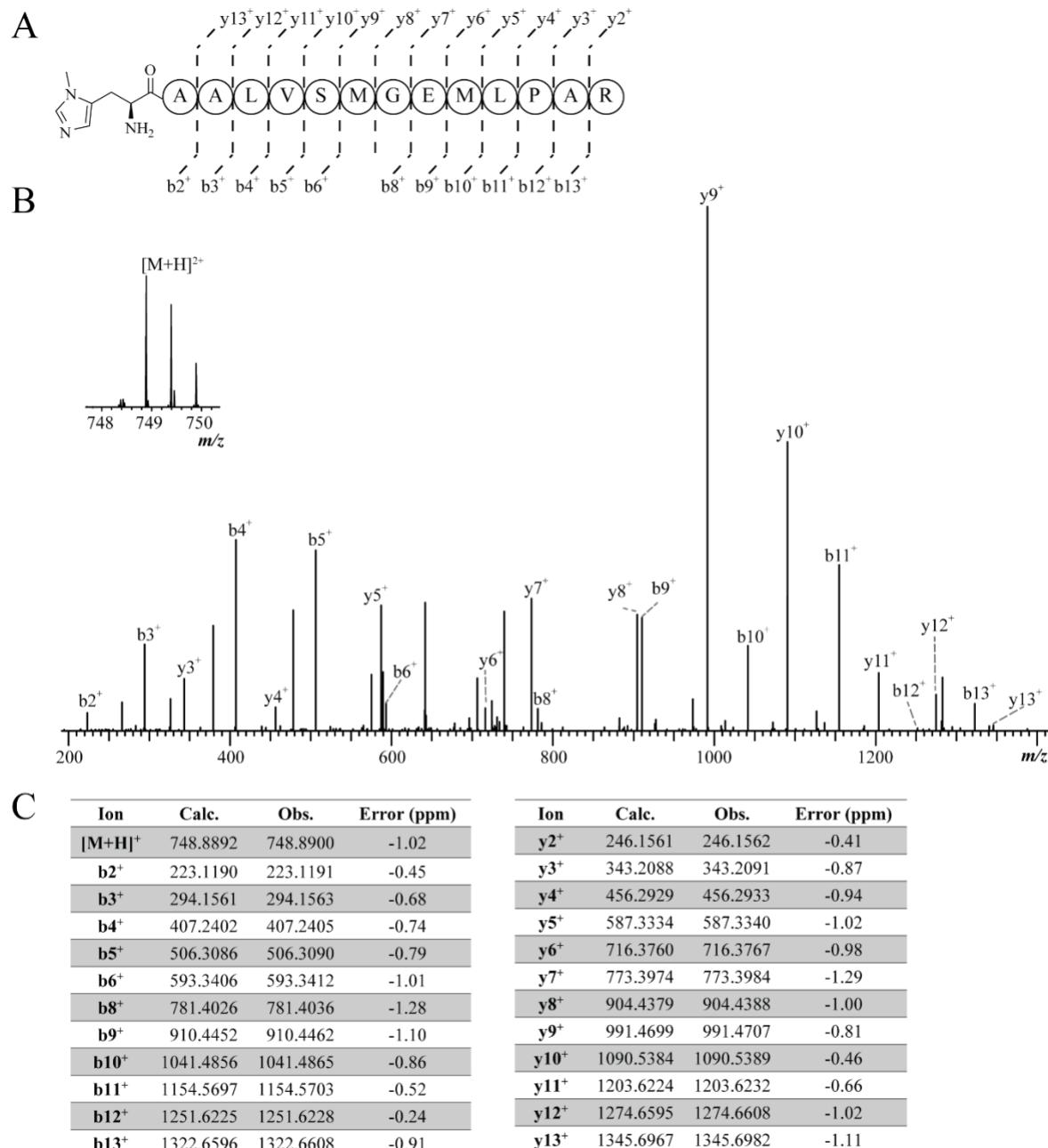
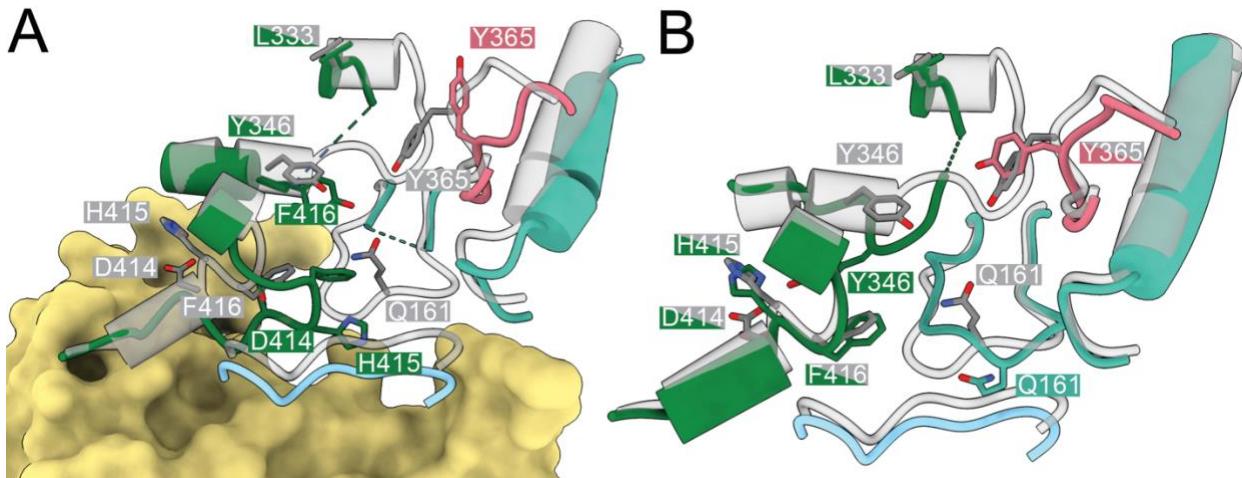

fig. S12 HRMS/MS analysis of an McrA tryptic peptide (Leu⁴⁶¹-Arg⁴⁹¹, m/z 1144.85). (A)

Table of daughter ion assignments for an McrA tryptic peptide confirming three PTMs- thio Gly⁴⁶⁵, didehydro Asp⁴⁷⁰ and methyl Cys⁴⁷² for fragmentation and annotated CID spectrum shown in Fig. 2D. Calculated isotope distribution for the parent ion (B) with thio Gly⁴⁶⁵, dehydro Asp⁴⁷⁰ and methyl Cys⁴⁷² (C) 1:1 mixture of tryptic peptides having or lacking dehydro Asp⁴⁷⁰ and containing thio Gly⁴⁶⁵ and methyl Cys⁴⁷². The observed isotope distribution of the parent ion in Fig. 2D is similar to that in (C) suggesting that Asp⁴⁷⁰ is unmodified in some fragments.


449
450

451 **fig. S13 HRMS/MS analysis of an McrA AspN-GluC double-digest peptide (Met²⁸⁰-Ser³⁰¹,
452 m/z 778.74). (A) Fragmentation (B) Annotated CID spectrum of an McrA AspN-GluC double-
453 digest peptide confirming methyl Arg²⁸⁵. Observed b and y ions are annotated. (C) Table of
454 daughter ion assignments.**

455
456

457 **fig. S14 HRMS/MS analysis of an McrA tryptic peptide (His²⁷¹-Arg²⁸⁵, m/z 748.88). (A)**
458 Fragmentation **(B)** Annotated CID spectrum of an McrA tryptic peptide confirming N-methyl
459 His²⁷¹. Observed b and y ions are annotated. **(C)** Table of daughter ion assignments.
460

461
462
463 **fig. S15 Active site details of apo-apo model.** (A) McrD-bound active site in the apo-apo model
464 shows similar deformations compared to that in the semi-apo model (Fig. 3D). (B) The
465 contralateral active site in the apo-apo model shows a unique conformation, with notable
466 displacements to the F₄₃₀ axial ligand Q^{α'161} and a partially resolved disordered loop between
467 Y^{α346} and L^{α333}.
468

469
470

Supplementary Table 1: List of primers used in this study

Name	Description	Primer Sequence (Overhangs for Gibson assembly are shown in red)
VI095	Fwd primer pac region for colony PCR. Product size 1061bp	CTCCATTCTCATGGGGTCGTGC
VI096	Rev primer pac region for colony PCR. Product size 1061bp	GGAACCTCTGATATCGAATTCATCGC
GLC053	Rev primer for adding McrD guide	ATTCAGATCGGAGATCAGGTACATGTG CTTACAGC
GLC054	Fwd primer for adding McrD guide	ACCTGATCTCCGATCTGAATGTTTAGA GCTAGAAATAGC
GLC060	Fwd primer for McrD KO repair template fragment 1	<u>GCCTTTTTTTTCGAAGTT</u> AACCACAG TTGGTGCAGCA
GLC061	Rev primer for McrD KO repair template fragment 1	<u>TGTCATCTC</u> ATCTTCCGTGTTGAAGC AGAG
GLC062	Fwd primer for McrD KO repair template fragment 2	<u>CACGGAAGAT</u> GAAGATGACACTGATAA AGATGAGTGA
GLC063	Rev primer for McrD KO repair template fragment 2	<u>GATGTTGTCCTGCAGGTT</u> TACACCTC TGAAGTTGATTGCTG
GLC073	Fwd sequencing primer for <i>mcrD</i> KO	AAGACGGTGTAATCTCC
GLC074	Rev sequencing primer for <i>mcrD</i> KO	TTCAACAACTGACGGC
GLC075	Fwd primer for amplifying McrD for gibson assembly into pJK027A	<u>AATAAATTAAGGAGGAAATTCA</u> ATGTC AGACTCTGCTTCAAACAC
GLC076	Rev primer for amplifying McrD for gibson assembly into pJK027A	<u>CATTATACGAAGTTATCAAGA</u> TCACTCA TCTTATCAGTGTCA
GLC077	Rev primer for amplifying McrD-C-strep for gibson assembly into pJK027A	<u>CATTATACGAAGTTATCAAGATCATTT</u> TCAAACGTGAGGATGTGACC
GLC078	Rev primer for amplifying McrD-C-strep-flag for gibson assembly into pJK027A	<u>CATTATACGAAGTTATCAAGA</u> TCACTTG TCGTCATCGTCTTG
GLC079	Fwd primer for amplifying McrD-C-strep for gibson assembly into pJK027A	<u>AATAAATTAAGGAGGAAATTCA</u> ATGTG GTCACATCCTCAGTTGA
GLC080	Fwd primer for amplifying McrD-flag-strep for gibson assembly into pJK027A	<u>AATAAATTAAGGAGGAAATTCA</u> ATGGA CTACAAAGACGATGACGA
GLC081	Rev primer to add strep and linker to c-terminus of McrD	TCATTTTCAAACTGAGGATGTGACCA TCCTCCACC <u>CTCATCTTATCAGTGT</u>
GLC082	Rev primer to add flag and linker to c-terminus of McrD-strep	TCACTTGTGTCGTATCGTCTTGAGTCA CCGCCTCC <u>TTTCAAACTGAGGATG</u>
GLC083	Fwd primer to add strep and linker to n-terminus of McrD	ATGTGGTCACATCCTCAGTTGAAAAA GGAGGCGGT <u>ATGTCAGACTCTGCTTC</u>

GLC084	Rev primer to add flag and linker to n-terminus of McrD-strep	ATGGACTACAAAGACGATGACGACAAG GGTGGAGGA <u>TGGTCACATCCTCAGTT</u>
GLC091	Fwd primer to amplify from within <i>mcrD</i>	TTCCTCAGAAGAAAGCC
GLC092	Rev primer to amplify from within <i>mcrD</i>	TTTTCGATTCAAGCCTG

471

472

473
474
475

Supplementary Table 2: List of plasmids used in this study

Plasmid	Features	Source
pAMG40	Vector for fosmid retrofitting that contains pC2A and λ attB	(Guss <i>et al.</i> 2008)
pJK027A	Vector with $P_{mcrB(tetO1)}$ promoter fusion to $nidA$ that contains φ C31-attB and λ attP	(Guss <i>et al.</i> 2008)
pDN201	pJK027A-derived plasmid with $P_{mcrB(tetO1)}$ promoter fusion to Spy <i>cas9</i>	(Nayak and Metcalf, 2017)
pGLC009	pDN201-derived plasmid with synthetic fragments containing P_{mtaCB1} promoter fusion to sgRNA targeting the <i>mcrD</i> (<i>MA4549</i>) CDS	This study
pGLC011	pGLC009-derived plasmid containing a repair template to generate an in-frame deletion of the <i>mcrD</i> (<i>MA4549</i>) CDS	This study
pGLC013	Cointegrate of pGLC011 and pAMG40	This study
pGLC023	pJK027A-derived plasmid with $P_{mcrB(tetO1)}$ promoter fusion to <i>mcrD</i> (<i>MA4549</i>) CDS from <i>M. acetivorans</i>	This study
pGLC024	pJK027A-derived plasmid with $P_{mcrB(tetO1)}$ promoter fusion to <i>mcrD</i> (<i>MA4549</i>) CDS from <i>M. acetivorans</i> with a C-terminal Strep tag	This study
pGLC026	pJK027A-derived plasmid with $P_{mcrB(tetO1)}$ promoter fusion to <i>mcrD</i> (<i>MA4549</i>) CDS from <i>M. acetivorans</i> with a N-terminal Strep tag	This study
pGLC027	pJK027A-derived plasmid with $P_{mcrB(tetO1)}$ promoter fusion to <i>mcrD</i> (<i>MA4549</i>) CDS from <i>M. acetivorans</i> with a N-terminal tandem Strep and FLAG tags	This study
pGLC028	Cointegrate of pGLC023 and pAMG40	This study
pGLC029	Cointegrate of pGLC024 and pAMG40	This study
pGLC031	Cointegrate of pGLC026 and pAMG40	This study
pGLC032	Cointegrate of pGLC027 and pAMG40	This study

476
477

478
479
480

Supplementary Table 3: List of *Methanosa*cina *acetivorans* strains used in this study

Strain	Genotype	Source
WWM60	$\Delta hpt::PmcrB-tetR$	(Guss <i>et al.</i> , 2008)
WWM1086	$\Delta hpt::PmcrB-tetR$, Enterokinase cleavable TAP-tag at N-terminus of <i>mcrG</i>	(Nayak <i>et al.</i> , 2020)
DDN103	$\Delta hpt::PmcrB-tetR, \Delta mcrD$	This study
DDN111	DDN103/pGLC028 [<i>PmcrB(tetO1)-mcrD</i>]	This study
DDN112	DN103/pGLC029 [<i>PmcrB(tetO1)-mcrD</i> -C-terminal strep tag]	This study
DDN113	DN103/pGLC031 [<i>PmcrB(tetO1)</i> - N-terminal strep tag- <i>mcrD</i>]	This study
DDN114	DN103/pGLC032 [<i>PmcrB(tetO1)</i> - N-terminal strep and FLAG tag - <i>mcrD</i>]	This study

481
482

483
484
485

Supplementary Table 4: CryoEM structure statistics reported in this study

	Semi-apo (EMDB: XXXX) (PDB:XXXX)	Apo-apo (EMDB: XXXX) (PDB:XXXX)		
Composition (#)				
Chains	10	7		
Atoms	19180	18317		
Protein residues	2515	2422		
Ligands	F43, TP7, CoM	---		
Bonds (RMSD)				
Length (Å) (# > 4σ)	0.007 (2)	0.010 (1)		
Angles (°) (# > 4σ)	1.108 (7)	1.376 (16)		
MolProbity score	2.27	1.88		
Clash score	28.08	10.76		
Ramachandran plot (%)				
Outliers	0.0	0.0		
Allowed	4.77	4.75		
Favored	95.23	95.25		
Rama-Z (Ramachandran plot Z-score, RMSD)				
whole (N=2475)	0.25 (0.17)	2.31 (0.15)		
helix (N=1209)	0.57 (0.15)	1.42 (0.13)		
sheet (N=140)	0.54 (0.48)	1.50 (0.42)		
loop (N=1126)	0.89 (0.18)	1.53 (0.17)		
Rotamer outliers (%)	0.10	0.26		
Cβ outliers (%)	0.09	0.05		
Peptide plane (%)				
Cis proline/general	2.0/0.0	2.1/0.0		
Twisted proline/general	0.0/0.0	0.0/0.0		
CaBLAM outliers (%)	2.14	2.94		
ADP (B-factors)				
Iso/Aniso (#)	19129/0	18317/0		
Protein (min/max/mean)	30.00/122.52/62.31	30.00/151.67/82.67		
Ligand (min/max/mean)	55.70/59.00/58.08	---		
Occupancy				
Mean	1.00	1.00		
occ = 1 (%)	100.00	100.00		
occ > 1 (%)	0.00	0.00		
Resolution estimates (Å)				
	Masked	Unmasked	Masked	Unmasked
d FSC (half maps; 0.143)	3.2	3.4	3.2	3.5
d 99 (full/half1/half2)	3.7/2.3/2.3	3.6/2.3/2.3	3.9/2.3/2.3	3.8/2.3/2.3
d model	3.4	3.4	3.5	3.5
d FSC model (0/0.143/0.5)	2.9/3.0/3.3	2.9/3.0/3.5	3.0/3.1/3.5	3.0/3.1/3.7
Map min/max/mean	-0.78/1.70/0		-0.64/1.71/0	
Model vs. Data				
CC (mask)	0.84		0.80	
CC (box)	0.87		0.87	
CC (peaks)	0.82		0.78	
CC (volume)	0.84		0.80	
Mean CC for ligands	0.81		---	

486

487 **Supplementary Methods**

488

489 **sgRNA design and plasmid construction**

490 The Cas9 single guide RNA (sgRNA) sequence used in this study for genome editing was
491 ACCTGATCTCCGATCTGAATAGG (PAM sequence bold and underlined) and was generated
492 with Geneious Prime v. 11.0. This guide targets the *mcrD* gene (MA4549) and matches
493 5,600,053-5,600,075 (+strand) in the *M. acetivorans* C2A genome. The CRISPR site finder tool
494 was used with an NGG PAM site at the 3' end with no off-target matches to the *M. acetivorans*
495 genome allowed. The plasmids and primers used in this study are listed in Supplementary Tables
496 1 and 2 and were generated as previously described (1).

497

498 **Growth media and mutant generation**

499 *M. acetivorans* strains were routinely maintained in 10ml of high salt (HS) media with either
500 acetate (40mM), methanol (125mM) or trimethylamine (50mM) as the sole carbon and energy
501 source as previously described (2). For transformation, 10ml cultures in late exponential phase
502 were anaerobically pelleted and subjected to liposome-mediated transformation using establish
503 protocols (3). Selection for transformants was carried out on HS media with 50 mM
504 trimethylamine as the carbon source solidified with 1.5% agar and puromycin at 2 μ g/ml for
505 positive selection. Colonies were screened for the desired mutation (see below) and restruck on
506 plates with 20 μ g/ml 8ADP for counter selection to remove the genome editing plasmid and
507 generate the clean deletion strain. Strains carrying tetracycline-inducible *mcrD* variants are
508 permanently maintained in 2 μ g/ml puromycin to retain the expression plasmid. *M. acetivorans*
509 strains used and generated in this study are listed in Supplementary Table 3.

510

511 **Mutant validation**

512 PCR screening of colonies was carried out on whole cells resuspended in nanopure water
513 amplified with GoTaq® Green Master Mix (Promega Corporation). Primers were designed to
514 amplify across the *McrD* gene (GLC073/74) and from within the *McrD* gene (GLC073/92 and
515 GLC074/91). Positive identification of $\Delta mcrD$ genotype with no wild type contamination came
516 from the expected decrease in product size with the 73/74 primer pair, and no product with the
517 73/92 or 74/91 primer pairs. PCR primers amplifying the *Pac* gene (VI095/96) were used to
518 validate the loss of genome editing plasmids by 8ADP counter selection, or the presence of
519 heterologous expression plasmids. Whole genome resequencing of the $\Delta mcrD$ strain was carried
520 out by extracting genomic DNA from 10ml of stationary phase culture grown in HS media with
521 trimethylamine using the Qiagen blood and tissue kit (Qiagen, Hilden, Germany). Illumina
522 library preparation and sequencing was carried out at SeqCenter (Pittsburgh, PA). Comparison of
523 the $\Delta mcrD$ strain to *M. acetivorans* C2A was carried out using the breseq software package (4).
524 Raw reads are deposited in the Sequencing Reads Archive (SRA) and are available under the
525 BioProject XXXXXXXX.

526

527 **Growth measurements**

528 *M. acetivorans* doubling times were determined by measuring the optical density at 600nm of
529 cultures grown in Balch tubes containing 10ml HS media with growth substrates and media
530 additions as indicated. Measurements were made using a UV-Vis spectrophotometer (Gensys 50,
531 Thermo Fisher Scientific, Waltham, MA). Doubling times were determined by fitting all points
532 in for which the best fit line of the log2 transformed optical density data had $>0.99 R^2$ values. For

533 Ni limitation experiments, trace metal solutions were prepared without Ni addition. For oxygen
534 exposure experiments, the indicated volume of lab air was added through a 0.2 μ m syringe filter
535 (CellTreat Scientific Products, Pepperall, MA).

536

537 **RNA extraction and bioinformatic analysis of transcriptome**

538 WWM60 and DDN103 were grown in triplicate in methanol media at 37°C until late log phase
539 (~0.6 OD600). Two ml of culture was sampled and added immediately to equal amounts 37°C
540 Trizol solution (Life Technologies, Carlsbad, CA, USA). After a 5 minute incubation at room
541 temperature 4 ml of ethanol was added to the culture and Trizol mixture. Solution was applied to
542 a Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany) and extraction proceeded according to the
543 manufacturer's instructions. DNase treatment, rRNA depletion and Illumina library preparation
544 and sequencing was carried out at SeqCenter (Pittsburgh, PA). Analysis of transcriptome data
545 was carried out on the KBase bioinformatics platform (5). Briefly, raw reads were mapped to the
546 *M. acetivorans* C2A genome using Bowtie2 (6), assembled using Cufflinks (7), and fold changes
547 and significances values were calculated with DESeq2(8). Raw reads are deposited in the
548 Sequencing Reads Archive (SRA) and are available under the BioProject XXXXXXXX.

549

550 **Protein extraction and affinity purification.**

551 For protein purification 500ml cultures of *M. acetivorans* strains were grown in HS media with
552 trimethylamine (100mM). Cells were lysed and cell debris removed as previously described (9),
553 with the one modification that the 50mM sodium phosphate was replaced with 50mM Tris HCl
554 (pH 7.0) in all buffers. Strep-tagged proteins were purified using Strep-Tactin Superflow plus
555 resin (Qiagen, Hilden, Germany) as described previously (9) again with the sole modification
556 that sodium phosphate buffer was replaced with Tris HCl. Strep-tagged protein complexes were
557 eluted with washing buffer containing 2.5 mM desthiobiotin.

558

559 **Protein gels**

560 Protein preparations were mixed with 4x Laemmli sample buffer (Bio-Rad, Hercules, CA) and
561 final concentration of 355mM 2-mercaptoethanol and heated at 90°C for 5 minutes before being
562 run on Mini-Protean TGX denaturing SDS-PAGE gel (Bio-Rad, Hercules, CA). Coomassie
563 staining was carried out with GelCode™ Blue Safe Protein Stain (Thermo Fisher Scientific). For
564 immunoblotting, gels were transblotted using the Trans-Blot Turbo transfer system (Bio-Rad,
565 Hercules, CA) onto 0.2 μ m PVDF membrane (Bio-Rad, Hercules, CA). Monoclonal anti-Flag
566 M2-Peroxidase (HRP) antibody (Sigma-Aldrich, St Louis, MO) was used at 50,000 fold dilution
567 as previously described (1). Immobilon Western Chemiluminescent HRP Substrate (Millipore,
568 Burlington, MA) was used with manufacturer's protocol for detecting HRP-conjugated
569 antibodies. Coomassie and immublots were imaged with the ChemiDoc MP Imaging System
570 (Bio-Rad, Hercules, CA).

571

572 **Proteolytic digestion of purified McrABDG complex**

573 For in-solution trypsinolysis (His^{a271}-Arg^{a285}, m/z 748.88), 50 μ g of purified McrABDG complex
574 was digested with Sequencing Grade Modified Trypsin (1:100 w/w ratio; Promega) at a final
575 McrABDG concentration of 0.5 mg/mL in 50 mM Tris-HCl, 1 mM CaCl₂ at 37°C for 14 h. For
576 in-gel trypsinolysis of McrA (Leu^{a461}-Arg^{a491}, m/z 1144.85), 100 μ g of purified McrABDG
577 complex was separated by SDS-PAGE. In-gel trypsin digest was performed per established
578 protocols on excised gel pieces corresponding to McrA (10).

579

580 For AspN and GluC double digestion (Met^{α280}-Ser^{α301}, m/z 778.74), 300 µg of purified McrABDG
581 was digested with endoproteinase GluC (1:200 w/w ratio; Promega) and endoproteinase AspN
582 (1:125 w/w ratio; Promega) at a final McrABDG concentration of 2 mg/mL in 50 mM NH₄HCO₃
583 pH 8 at 37°C for 14 h. MeCN was added to the resultant digest to a final ratio of 50/50 50 mM aq.
584 NH₄HCO₃/MeCN and centrifuged at 17,000g to remove precipitate. The supernatant was dried
585 using a SpeedVac concentrator prior to purification by HPLC using a Thermo Fisher Vanquish
586 UHPLC equipped with a Thermo Scientific Accucore C18 column (150 × 4.6 mm, 2.6 µm particle
587 size, 80 Å pore size). The dried sample was resuspended in 5/95 10 mM aq. NH₄HCO₃/MeCN and
588 injected with a mobile phase of 10 mM aq. NH₄HCO₃/MeCN and separated using a gradient from
589 5-65% MeCN over 25 min at 1.5 mL/min. Fractions collected every min were analyzed by MALDI
590 MS to identify those containing peptide fragment of interest. Desired fractions were dried using a
591 SpeedVac concentration for subsequent HRMS/MS analysis.

592

593 **HRMS/MS analysis of McrA peptide fragments**

594 HPLC-purified, dried samples were resuspended in ESI mix [80% MeCN, 19% H₂O, 1% acetic
595 acid]. Digests were desalted using ZipTips, eluted into 75% aq. MeCN, and diluted 1:1 in ESI mix
596 before HRMS/MS analysis. Samples were directly infused onto a ThermoFisher Scientific
597 Orbitrap Fusion ESI-MS using an Advion TriVersa Nanomate 100. MS calibration was performed
598 with Pierce LTQ Velos ESI Positive Ion Calibration Solution (ThermoFisher). The MS was
599 operated using the following parameters: 120,000 resolution, 0.4-2 m/z isolation width (MS/MS),
600 35 normalized collision energy (MS/MS), 0.4 activation q value (MS/MS), and 30 ms activation
601 time (MS/MS). Fragmentation was performed using collision-induced dissociation (CID) at 30%,
602 50%, and 70%. Data analysis was conducted using the Qualbrowser application of Xcalibur
603 software (ThermoFisher Scientific).

604

605 **SEC MALS**

606 A Superose6 10/300 Increase column (Cytiva) was attached in line to an Agilent Technologies
607 1100 series with a 1260 Infinity lamp, Dawn Heleos II and the Optilab T-Rex (Wyatt
608 Technology) operating on Astra v5.3 software (Wyatt Technology). The system was equilibrated
609 overnight in 25mM Tris pH 8, 150 mM NaCl before standardization with 2mg/mL bovine serum
610 albumin. 125uL of McrABGD sample was injected onto the system at 0.35mL/min and light
611 scattering was used to determine the molecular weight.

612

613

614 **Sample preparation for cryoEM**

615 Frozen aliquots of protein were thawed and centrifuged at 21,000g for 5 minutes before gel
616 filtration chromatography on an Akta Purifier (GE) equipped with a Superose6 10/300 Increase
617 column (Cytiva) into GF buffer (25mM Tris pH 8, 150mM NaCl). The peak fractions (see
618 Supplemental Figure) were collected and concentrated in a 100K MWCO spin concentrator
619 (Millipore). 3uL of sample at 0.55mg/mL was deposited onto freshly glow-discharged Quantifoil
620 R 2/1 Copper 300 mesh grids (Electron Microscopy Sciences, CAT# [Q310CR1](#)) for 5 seconds
621 before being blotted at 4°C under 100% humidity for 3 seconds in a Vitrobot Mark IV
622 (ThermoFisher) at blot force 18 and plunged into liquid ethane. The grids were glow discharged
623 beforehand for 30s at 25mA at 0.37mBar in a PelCo EasiGlo (Ted Pella, Inc.)

624

625 **CryoEM data collection**

626 ~5,200 super-resolution dose-fractionated images were collected with a total dose of 50^{e-} over a
627 defocus range of -0.8um to -2.0um on a Talos Arctica, equipped with a Gatan K3 camera,
628 operating at 200kV with a nominal magnification of 36,000X and a pixel size of 0.5575Å/pixel.
629 Using SerialEM (11), movies were collected in a 9-hole image shift pattern with 2 exposures
630 captured per hole, for a total of 18 images per stage shift.

631

632 **CryoEM data processing**

633 Movies were motion-corrected with 2x binning using MotionCor2 (12) via the RELION wrapper
634 (13) and then imported into cryoSPARC (14) for patch CTF estimation, micrograph curation,
635 and particle picking, which generated 5.7 million particles. Junk particles were filtered out via
636 2D Classification, yielding 4.1 million particles. Duplicate particles were removed, and the
637 remaining particles were pruned via 3D classification, by retaining only the classes with obvious
638 density for McrD, leaving 415K particles. This particle set was transferred into RELION via
639 csparc2star.py (15), for 3D refinement to generate a consensus reconstruction followed by 3D
640 classification without alignments. Two distinct classes emerged, one with 94K particles and
641 another with 208K particles. The 208K particle stack went through a second round of 3D
642 classification and ultimately yielded a stack with 65K particles. The separate 94K and 65K
643 particle stacks were imported back into cryoSPARC for additional homogenous refinements,
644 CTF refinement, and estimation of local resolution. 3DFSC (16) was used to measure the
645 directional resolution anisotropy. Due to high anisotropy and variability in resolution, local
646 refinements were performed using masks at each end of the molecule. The local refinement maps
647 were combined into composite maps using Phenix (17). A mix of composite, sharpened, and
648 local refinement maps was used for interpretation.

649

650 **Model building and refinement**

651 A crystal structure of McrABG complex (pdb: 1e6y) was docked into the semi-apo map but left a
652 sizeable patch of density unoccupied (18). An AlphaFold2 prediction of McrD was
653 simultaneously placed into the remaining density (19), and together these models were used as
654 the starting point for manual rebuilding throughout the cryoEM density using Coot (20). The
655 resulting semi-apo model was docked into the apo-apo map and used as the initial model for
656 manual rebuilding. The rebuilt models were iteratively refined in real space using Phenix, and
657 figures were produced using ChimeraX (21).

658

659

660

661 1. D. Gupta, K. E. Shalvarjian, D. D. Nayak, An Archaea-specific c-type cytochrome
662 maturation machinery is crucial for methanogenesis in *Methanosarcina acetivorans*. *eLife*.
663 **11**, e76970 (2022).

664 2. K. R. Sowers, J. E. Boone, R. P. Gunsalus, Disaggregation of *Methanosarcina* spp. and
665 Growth as Single Cells at Elevated Osmolarity. *Appl Environ Microbiol.* **59**, 3832–3839
666 (1993).

667 3. W. W. Metcalf, J. K. Zhang, E. Apolinario, K. R. Sowers, R. S. Wolfe, A genetic system for
668 Archaea of the genus *Methanosarcina*: Liposome-mediated transformation and construction
669 of shuttle vectors. *Proceedings of the National Academy of Sciences*. **94**, 2626–2631 (1997).

670 4. D. E. Deatherage, J. E. Barrick, "Identification of Mutations in Laboratory-Evolved
671 Microbes from Next-Generation Sequencing Data Using breseq" in *Engineering and*
672 *Analyzing Multicellular Systems: Methods and Protocols*, L. Sun, W. Shou, Eds. (Springer,
673 New York, NY, 2014; https://doi.org/10.1007/978-1-4939-0554-6_12), *Methods in*
674 *Molecular Biology*, pp. 165–188.

675 5. A. P. Arkin, R. W. Cottingham, C. S. Henry, N. L. Harris, R. L. Stevens, S. Maslov, P.
676 Dehal, D. Ware, F. Perez, S. Canon, M. W. Sneddon, M. L. Henderson, W. J. Riehl, D.
677 Murphy-Olson, S. Y. Chan, R. T. Kamimura, S. Kumari, M. M. Drake, T. S. Brettin, E. M.
678 Glass, D. Chivian, D. Gunter, D. J. Weston, B. H. Allen, J. Baumohl, A. A. Best, B. Bowen,
679 S. E. Brenner, C. C. Bun, J.-M. Chandonia, J.-M. Chia, R. Colasanti, N. Conrad, J. J. Davis,
680 B. H. Davison, M. DeJongh, S. Devoid, E. Dietrich, I. Dubchak, J. N. Edirisinghe, G. Fang,
681 J. P. Faria, P. M. Frybarger, W. Gerlach, M. Gerstein, A. Greiner, J. Gurtowski, H. L. Haun,
682 F. He, R. Jain, M. P. Joachimiak, K. P. Keegan, S. Kondo, V. Kumar, M. L. Land, F. Meyer,
683 M. Mills, P. S. Novichkov, T. Oh, G. J. Olsen, R. Olson, B. Parrello, S. Pasternak, E.
684 Pearson, S. S. Poon, G. A. Price, S. Ramakrishnan, P. Ranjan, P. C. Ronald, M. C. Schatz, S.
685 M. D. Seaver, M. Shukla, R. A. Sutormin, M. H. Syed, J. Thomason, N. L. Tintle, D. Wang,
686 F. Xia, H. Yoo, S. Yoo, D. Yu, KBase: The United States Department of Energy Systems
687 Biology Knowledgebase. *Nat Biotechnol.* **36**, 566–569 (2018).

688 6. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat Methods.* **9**,
689 357–359 (2012).

690 7. C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L.
691 Salzberg, J. L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-
692 seq experiments with TopHat and Cufflinks. *Nat Protoc.* **7**, 562–578 (2012).

693 8. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
694 RNA-seq data with DESeq2. *Genome Biology.* **15**, 550 (2014).

695 9. D. D. Nayak, W. W. Metcalf, "Chapter Thirteen - Genetic techniques for studies of methyl-
696 coenzyme M reductase from *Methanosarcina acetivorans* C2A" in *Methods in Enzymology*,
697 F. Armstrong, Ed. (Academic Press, 2018;
698 <https://www.sciencedirect.com/science/article/pii/S0076687918304269>), vol. 613 of
699 *Enzymes of Energy Technology*, pp. 325–347.

700 10. A. Shevchenko, H. Tomas, J. Havli, J. V. Olsen, M. Mann, In-gel digestion for mass
701 spectrometric characterization of proteins and proteomes. *Nat Protoc.* **1**, 2856–2860 (2006).

702 11. D. N. Mastronarde, Automated electron microscope tomography using robust prediction of
703 specimen movements. *Journal of Structural Biology.* **152**, 36–51 (2005).

704 12. S. Q. Zheng, E. Palovcak, J.-P. Armache, K. A. Verba, Y. Cheng, D. A. Agard, MotionCor2:
705 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat*
706 *Methods.* **14**, 331–332 (2017).

707 13. J. Zivanov, T. Nakane, B. O. Forsberg, D. Kimanius, W. J. Hagen, E. Lindahl, S. H. Scheres,
708 New tools for automated high-resolution cryo-EM structure determination in RELION-3.
709 *eLife*. **7**, e42166 (2018).

710 14. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for rapid
711 unsupervised cryo-EM structure determination. *Nat Methods*. **14**, 290–296 (2017).

712 15. D. Asarnow, E. Palovcak, Y. Cheng, asarnow/pyem: UCSF pyem v0.5 (2019), ,
713 doi:10.5281/zenodo.3576630.

714 16. Y. Z. Tan, P. R. Baldwin, J. H. Davis, J. R. Williamson, C. S. Potter, B. Carragher, D.
715 Lyumkis, Addressing preferred specimen orientation in single-particle cryo-EM through
716 tilting. *Nat Methods*. **14**, 793–796 (2017).

717 17. D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczki, V. B. Chen, T. I. Croll, B. Hintze,
718 L.-W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G.
719 Prisant, R. J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D.
720 H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, P. D.
721 Adams, Macromolecular structure determination using X-rays, neutrons and electrons: recent
722 developments in Phenix. *Acta Cryst D*. **75**, 861–877 (2019).

723 18. W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, Comparison of three methyl-
724 coenzyme M reductases from phylogenetically distant organisms: unusual amino acid
725 modification, conservation and adaptation¹¹Edited by R. Huber. *Journal of Molecular
726 Biology*. **303**, 329–344 (2000).

727 19. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
728 Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
729 A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S.
730 Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
731 S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis,
732 Highly accurate protein structure prediction with AlphaFold. *Nature*. **596**, 583–589 (2021).

733 20. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of *Coot*. *Acta
734 Crystallogr D Biol Crystallogr*. **66**, 486–501 (2010).

735 21. E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S. Couch, T. I. Croll, J. H.
736 Morris, T. E. Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and
737 developers. *Protein Sci*. **30**, 70–82 (2021).

738

739