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ABSTRACT
In the present study, we investigated the microstructural properties of the right and left Frontal
Aslant tract (FAT) in relation to bilingualism and language modality by comparing a group of
unimodal bilinguals (i.e., bilinguals proficient in two spoken languages) and a group of bimodal
bilinguals (i.e., bilinguals proficient in a spoken and a signed language). We found that the
microstructural properties of the left FAT were related to the performance in semantic fluency
in the second language (L2), either signed or spoken. Additionally, only for bimodal bilinguals,
the microstructural properties of the right FAT were related to picture naming performance in
the first spoken language (L1). No significant effects on performance were found in a language
comprehension task. Overall, the results suggest that the FAT plays a significant role in
language production in bilinguals. The left FAT appears to be involved primarily during the
use of spoken or signed L2, while the right FAT appears to be involved in handling the

competition of the signed L2 language while speaking L1.
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1.INTRODUCTION

The frontal aslant tract (FAT) is a recently described intralobar frontal tract (Catani et
al., 2012; Thiebault de Schotten et al., 2012) connecting the supplementary motor complex in
the superior frontal gyrus (comprising the supplementary motor area - SMA - and the pre-
SMA) to the most posterior part of Broca's area, the lateral IFG (see Figure 1). Based on
established functions of connected regions, it has been hypothesized that the FAT plays a role
in control and executive functions, in particular in inhibitory control during speech production
(Shekari & Nozari, 2023; Ribeiro et al., 2024). In the present study, we focus on two bilingual
populations, bimodal bilinguals (L1 spoken, L2 signed) and unimodal bilinguals (L1 spoken,
L2 spoken), examining whether their linguistic performance is associated with the
microstructural properties of the Frontal Aslant tract (FAT). Importantly, this is the first study
investigating the FAT in relation to bilingualism.

In a recent review, Dick et al. (2019) proposed that the FAT is a key component of a
neural circuit that, together with subcortical and cerebellar regions, is engaged in action control,
specifically in planning, timing, and coordination of sequential motor movements. Within this
network, the FAT would not be simply involved in motor processing but would perform a
domain-general higher-level function, i.e., resolving the conflict among competitor motor
programs. In the same review, Dick and coll. proposed some degree of hemispheric
specialization. While the left FAT is considered part of a circuit specialized for speech action
control (Tremblay & Dick, 2016), the right FAT is considered part of a circuit specialized for
general action control. Neuroimaging studies have extensively evidenced the importance of the
areas connected by the left FAT in language processing. The left IFG appears to be implicated
in controlled semantic and lexical retrieval both in spoken and signed language (e.g. Katzev et
al., 2013; Emmorey et al., 2007), and the SMA and pre-SMA are associated with selecting and

executing motor programs for speech (Alario et al., 2006; Tremblay & Gracco, 2009; 2010),
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as well as for other non-linguistic domains (Cona & Semenza, 2017). Empirical evidence
supporting the involvement of the left FAT in language production comes mainly from studies
in various clinical populations, which report a relationship between speech fluency and the
microstructural properties of the left FAT (e.g., Catani et al., 2012; Mandelli et al., 2014;
Alyahya et al., 2020; Dragoy et al., 2020; Li, M. et al., 2017). Furthermore, intraoperative
stimulation studies have shown that direct stimulation of the left FAT often results in speech
arrests (see e.g., Fujii et al., 2015; Kinoshita et al., 2015). Other studies suggested an
association between the FAT and stuttering: The severity of persistent developmental stuttering
seems to correlate with the diffusivity of the FAT (Kronfeld-Duenias et al., 2016). When
considering studies on non-clinical populations, evidence shows that the microstructural
properties of the FAT are associated with language tasks not directly related to fluency. Broce
et al. (2015) found a correlation between the length of the left FAT and the score on a receptive
language battery in typically developing children 5-8 years of age. Vallesi & Babcock (2020)
reported that the degree of left asymmetry of the FAT was correlated with lexical decision
speed but not with verbal fluency performance in a group of healthy university students (see
also Kronfeld-Duenias et al., 2016, who found no correlation between the properties of the
FAT and the fluency task in non-clinical adults).

Regarding the right FAT, functional neuroimaging studies have shown activation of
both the right SMA and pre-SMA and the right IFG in tasks requiring stopping behaviors (e.g.,
Nachev et al., 2008; Garavan et al., 1999). Stimulation of these areas has been associated with
inhibiting voluntary fine movements (Luders et al.,1988). Patients with SMA and pre-SMA
lesions exhibited deficits in producing complex sequences of movements (Dick et al., 1986),
and patients with lesions in the IFG show impairments in inhibiting irrelevant task sets (Aron
et al., 2003; 2004). However, patients with right FAT resection do not show impairments in

the performance of the Stroop test, where inhibition of verbal responses is required (Puglisi et
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al., 2019). This further supports the hypothesis of at least partial hemispheric specialization of
the control network involving the FAT.

This body of evidence aligns with the proposal that the FAT is involved in inhibitory
control processes, particularly for those related to the regulation of speech output (Shekari &
Nozari, 2023). However, the precise role of the FAT and whether its function is mainly related
to domain-general or language-specific processes has not been fully understood. The present
study aims to clarify these aspects by examining for the first time the relationship between the
microstructural properties of the FAT and the performance in the first (L1) and second (L2)
language in bilinguals. The comparison between unimodal and bimodal bilinguals will further
allow us to understand to what extent the FAT is involved in speech control or, more generally,

in language actions independent of their modality.

1.1 Language control in Bimodal and Unimodal bilinguals

It is widely recognized that both languages known by a bilingual person are simultaneously
active, even when only one is in use (for a review, see Kroll et al., 2015). This implies that
languages can influence each other and compete for output control. Therefore, learning a
second language involves learning how to control and regulate competition between the second
language (L2) and the native language (L1). Control in language production might be proactive
and reactive; it might occur at different levels (e.g., at the language level, at word level, at the
phonological level, and at the motor-articulatory level) and through different mechanisms (e.g.,
monitoring, shifting, inhibition). Such complex processes are orchestrated by a cortical-
subcortical network, partially overlapping with the general executive control network, which
involves, among other regions, the prefrontal cortex and the SMA complex. In particular,
together with the anterior cingulate cortex (ACC), the pre-SMA is typically more active in

bilinguals during language switching, language selection tasks, and cross-linguistic conflict
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resolution (for reviews, see Calabria et al., 2018; Hayakawa & Marian, 2019; Hervais-
Alderman & Babock, 2020 ), suggesting that these clusters of regions play an important role in
the language control network, likely in relation to monitoring for the correct response. The
inferior prefrontal cortex (and the IFG) is more active not only during language switching but
also in simple language production tasks, in particular when it comes to producing the weaker
language (L2). This suggests that this region is primarily involved in response control, likely
in processes of response inhibition and/or selection (Abutalebi & Green, 2016). Consistent with
functional neuroimaging evidence, studies investigating structural changes associated with
bilingualism suggest that ventrolateral and dorsolateral prefrontal cortices, including IFG, are
consistently affected by bilingual experience (for a review, see, e.g., Pliatsikas, 2019).
Furthermore, Wang & Tao (2024) directly explored the relationship between functional and
structural connectivity and showed that functional connectivity within the control network
significantly predicts structural connectivity between the ACC/pre-SMA and the lateral
prefrontal cortex.

Control requirements during language processing in bilinguals may also depend on the
language modality. Unimodal bilinguals (UBs) are individuals who have acquired two spoken
languages, whereas bimodal bilinguals (BBs) have acquired a spoken and a signed language.
This difference in L2 modality could be associated with differences in the way the brain
controls, represents, and handles the two languages. For instance, BBs can simultaneously utter
a word and make a sign, a common experience in everyday conversations (Emmorey et al.,
2008). In contrast, UBs always need to select one word in one language for production.
Moreover, an overwhelming preference for code blends in BBs has been observed, both during
signing and speaking. Interestingly, an asymmetry has been observed in the pattern of code
blends; single signs are produced frequently during speaking, whereas single words are very

rarely produced when the sign language is selected as the matrix language (Emmorey et al.,
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2015). In summary, given that BBs often produce elements of the two languages at the same
time, it has been proposed that they do not need to control the activation of the language not in
use to the same extent as UBs (Emmorey et al., 2008; 2015). Contrary to this conclusion, some
studies have shown a relationship between bimodal bilingualism and executive functions.
Kushalnagar et al. (2010) found that highly proficient BBs performed better than less proficient
BBs in an attention-switching task. Similarly, Giezen et al. (2015) reported that BBs with
higher inhibitory control abilities, measured by performance in a spatial Stroop task, were less
sensitive to cross-language competition than BBs with lower inhibitory control abilities.

Few previous neuroimaging studies directly investigated the effects of sign language
experience on the anatomical structure of the brain, often comparing BBs or deaf signers with
hearing monolinguals, thus confounding the effect of bilingualism with sign language
experience. Recently, McCullough and Emmorey (2021) attempted to isolate the plasticity
effects uniquely due to sign language experience comparing deaf signers Vs. hearing controls
and BBs Vs. hearing controls. Sign language use was associated with a reduction in cortical
thickness in the right occipital lobe and with an expansion of the surface area of the left anterior
temporal lobe and the left occipital lobe. These effects were interpreted as consequences of
higher demands for visual-spatial processing related to signed languages, requiring constant
joint processing of motion information from the hands producing the sign and facial
expressions conveying syntactic and pragmatic information. Quartarone et al. (2022) employed
Diffusion Magnetic Resonance Imaging Tractography (DTI) to compare the microstructural
properties of the ventral WM tracts in UBs and BBs. The results highlighted similarities and
differences between the two groups. For both UBs and BBs, the degree of bilingualism was
associated with the microstructural properties of the right ILF. However, only for BBs,
performance on a fluency task in L1 was associated with the microstructural properties of the

right Uncinate fasciculus (UF), an anterior white matter tract that connects the most anterior


https://doi.org/10.1101/2023.02.01.526563
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526563; this version posted May 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

part of the temporal lobe with the Inferior Frontal Gyrus (IFG). This suggests that this tract
could be involved in a network that controls signed L2 during L1 production. Other studies
directly investigated the effect of bimodal bilingualism on frontal control regions, partially
supporting the idea that BBs may rely less on executive control resources than UBs. Olulade
et al. (2016) showed that the differences observed in the control regions (bilateral frontal and
right parietal) between UBs and monolinguals were absent when comparing BBs and
monolinguals. On the contrary, Zou et al. (2012) and Li, L. et al. (2017) found substantial
structural similarities between UBs and BBs in the same areas.

In conclusion, when producing language, bilinguals constantly need to select one
language and to inhibit the one not in use, likely relying on a control network involving areas
that are connected by the FAT, i.e. SMA, pre-SMA complex, and the IFG. Whether the same
network/areas are involved in the control of spoken and signed language remains to be fully
elucidated. In the present study, our aim is to explore the role of FAT in the spoken and signed

language control network.

1.2 The present study

We extracted the microstructural properties of the right and left FAT by means of DTI
in two groups of bilinguals. We adopted the Spherical Deconvolution approach (Tournier et
al., 2004; Dell'Acqua et al., 2010, 2013) and we characterized the structure of WM fibers using
the Hindrance Modulated Orientational Anisotropy (HMOA), a true tract-specific index that
better reflects the microstructural organization of tracts in comparison to the more classical
Fractional Anisotropy (FA) measure (Dell'Acqua et al., 2013). Higher HMOA values indicate
greater fiber integrity in a given direction.

To investigate the role of the FAT in bilingual language control, we explored the

association between the HMOA of the left and right FAT with behavioral performance in two
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language production tasks and a language comprehension task, performed in both L1 and L2
by UBs and BBs. Both groups of bilinguals had a spoken language as L1 (Italian), while their
L2 was English or Italian Sign Language. This approach has the advantage of highlighting what
changes in WM are associated with the experience and processing of L2 according to modality,
revealing both similarities and differences between the spoken and signed L2. Furthermore, by
comparing the pattern observed in L1 and in L2, we could investigate the role of the FAT in
selecting L2 (either signed or spoken) and/or inhibiting L1 (spoken) and the control needs to
select L1 (spoken) and/or inhibiting L2 (either signed or spoken).

The two language production tasks were verbal fluency and picture naming. Picture
naming is considered to simulate word production as it occurs in more naturalistic settings.
After identifying the concept depicted in the picture, the corresponding lexical representation
is retrieved from memory, and its phonological structure and content are specified. At this
point, articulatory processes can be planned and, finally, the word is uttered. These processes
do not occur automatically. Control processes are required to select the lexical item and its
segments, initiate speech, and monitor output at different levels (Levelt et al., 1999; Hartsuiker
& Kolk, 2001; Nozari et al., 2011; Tourville & Guenter, 2011). Only a few recent studies
investigated the relationship between picture naming and the FAT. Zhong et al. (2022)
estimated the integrity of the FAT in a group of patients with left post-stroke aphasia, finding
that lower integrity of the FAT was associated with better picture naming performance.
Troutman & Diaz (2020) showed a positive correlation between the microstructural properties
of the dorsal network (which comprises the left FAT, the arcuate fasciculus, and the superior
longitudinal fasciculus) and the accuracy in picture naming in the presence of phonological
distractors. Higher FA and lower radial diffusivity (RD) of the dorsal pathway were associated
with lower accuracy. Additionally, Troutman et al. (2022) instructed a group of healthy adults

to name everyday objects and respond “picture” in the case of abstract images. They found that
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FA and RD of the left FAT predicted the impact of age on picture naming latency, when
adjusted for associated accuracy. However, the direction of the correlations was somehow
puzzling. Higher FA (but also higher RD) were linked to higher efficiency, leading to shorter
adjusted latencies when naming everyday objects. In contrast, the adjusted latency for abstract
images displayed an inverse pattern where higher FA and lower RD were associated with
longer latencies. In conclusion, evidence suggests that the microstructural properties of the left
FAT could be correlated with naming performance; however, the mixed pattern of results does
not allow us to determine which are the exact processes of this task in which this tract is
involved.

Verbal fluency tasks require participants to recall as many words as possible in one
minute, according to specific criteria. In the semantic fluency task, participants are asked to
retrieve words (or signs) within a given semantic category. The phonological fluency task
requires participants to retrieve words beginning with a given phoneme or signs made with a
given handshape (or other phonological parameters). Previous findings on the involvement of
the FAT in verbal fluency are inconsistent: some studies reported correlations with both
phonological and semantic fluency (Blecher et al. 2019; Li, M. et al. 2017), others solely with
phonological fluency (Keser et al., 2020), and some found no correlation (Vallesi & Babcock,
2020). These contrasting results may be due to the multifaceted nature of the fluency task. The
fluency task engages control processes across multiple levels, including actively searching
among lexical items based on a single cue, selecting the item to be uttered among several
activated lexical entries, sequencing the activated relevant lexical entries, and monitoring the
output to prevent repetitions and invalid responses. Performance in this task hinges not only on
vocabulary knowledge and speed of lexical activation, but also significantly on executive
control. Luo et al. (2010; see also Sandoval et al., 2010) proposed analyzing the time course of

word retrieval during the fluency task to separate the executive control component from purely

10
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lexical processes and vocabulary knowledge. Generally, participants produce many words
early in the 1-minute interval, with the production rate gradually declining until reaching an
asymptote. Plotting the number of items generated against time allows us to define the function
representing the rate of recall. Although the exponential function has been used to describe the
decline in free recall tasks (Wixted & Rohrer, 1994), research on verbal fluency has used the
logarithmic function (Luo et al., 2010). The slope of the function reflects how linguistic
resources are handled during the interval. With time, increased control is needed to search
within the active representations in the lexicon, monitor the production of new items, resist
lexical interference, and contrasting the tendency to repeat previously produced responses.
Therefore, as suggested by Luo et al. (2010) and Friesen et al. (2015), the slope of the function
can be viewed as an index of the control requirements during word production: the flatter the
function (i.e., a slope closer to 0), the more robust the mechanism for controlling and
monitoring lexical production. In our study, we used the slope of the recall rate function as an
index of executive control ability in the fluency task.

The language comprehension task involved judging the acceptability of spoken or
signed sentences. Participants were presented with one sentence at a time and were required to
evaluate the grammatical acceptability of the sentence (acceptable / not acceptable) by pressing
one of two keys. Half of the sentences were completely acceptable, while the other half
contained a violation at the lexical, semantic, or syntactic level. This task served as a control
task to investigate whether the neural circuit comprising the FAT exclusively handles
speech/action control or whether it is also engaged in other language processes not directly
associated with speech motor planning. This issue is still underexplored, and empirical
evidence on this matter is still limited.

If the FAT plays a role in inhibitory language control, we might anticipate an association

between the microstructural properties of this tract and the production (but not the
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comprehension) tasks. This correlation should manifest itself particularly during L2
production, given the stronger interference from L1 to L2 compared to the reverse.
Furthermore, we expect maximum control needs for less proficient bilinguals who need to
overcome the activation of their dominant L1. As the automaticity of lexical access increases
for L2 and the linguistic system adapts to managing two languages, the necessity for inhibitory
control process becomes less essential, and both languages can be handled with a larger degree
of automaticity (Abutalebi & Green, 2007; Grundy et al., 2017; Pliatsikas, et al., 2020).
Moreover, if controlling languages within the same modality engages the same neural circuit
as controlling languages of different modalities, we might observe similar patterns for UBs and
BBs. If instead the control of signed and spoken language relies on distinct neural circuits, UBs
and BBs would exhibit different patterns, especially during L1 production when either spoken

or signed language needs to be controlled.

2. METHOD
2.1 Participants

Forty-nine bilingual individuals participated in this study, which was part of a larger
investigation aimed at exploring structural differences in bilingualism based on modality (refer
also to Anonymous, 2022). All participants were all right-handed, confirmed through the
Edinburgh Handedness Inventory Test (Oldfield, 1971) and had no history of neurological
illness. Twenty-four participants had Italian as L1 and Italian Sign Language (LIS) as L2, while
25 had Italian as L1 and English as L2. UBs had a certified level of English proficiency
equivalent to at least the C1 of the Common European Framework of Reference for Languages
(CEFR). Additionally, within the last 5 years, they had spent at least 6 months in an English-
speaking country. BBs had achieved at least the third grade of LIS proficiency, corresponding

to a comprehensive mastery of the language, comparable to the C1 level of English. Both
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samples included 3 native bilinguals exposed to their respective L2 before the age of 3.
However, the majority of the participants were sequential bilinguals who actively acquired
their L2. At the time of the test, all participants reported using L2 daily.

Table 1 reports the detailed characteristics of the participants in both groups. The two
samples were largely matched in all variables, except for the age of initial exposure to L2 (L2
Age of Acquisition, AoA). This is due to the fact that English is a compulsory subject in Italian
primary school over the past 20 years, leading the majority of UBs to be exposed to English at
around 6 or 7 years of age. On the contrary, learning LIS for people not in deaf families
typically begins during adolescence, often driven by personal interests.

Table 1. Means and standard deviations (SD, in parentheses) of the characteristics of the two groups
of bilinguals. AoA refers to the age of acquisition. The percentage of switches refers to the percentage
of people who reported a given frequency of switching (from both L1 to L2 and L2 to L1).

Unimodal Bilinguals, M (SD) Bimodal Bilinguals, M (SD)
N 25 24
Gender E8M-17F 1M-23F
Age in years 25.4(4.93) 27.79 (6.01)
Raven SPM 41.61 (2.68) 40.12 (5.39)
L2 AoA 6.04 (1.54) 16.7 (7.84)
fodge . 18.56(5.20) 11.08 (10.14)
orafein | 7.2(1.22) 7.8 (1.88)
% L2 use 47.92 (20.79 42.08 (24.88
switches 0 12 20 56 12 0 21 25 212

Participants participated in two experimental sessions conducted over two days: one
session involved brain MRI and the other aimed to collect demographic and behavioral
measures. The behavioral session occurred approximately a month after the scanning session.
Two participants (one UB and one BB) experienced personal inconveniences, which caused
the second session to be postponed by approximately 5 months. The participants received a

monetary compensation of 40 euros.
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2.2. MRI data acquisition

Diffusion imaging data was acquired using a Siemens Avanto 1.5T scanner housed in
the Padova University Hospital with actively shielded magnetic field gradients (maximum
amplitude 45mT/m™). The body coil was used for RF transmission and an 8-channel head coil
for signal reception. Protocol consisted of a localizer scan, followed by a single-shot, spin-
echo, EPI sequence with the following parameters: TR = 8500, TE =97, FOV =307.2 x 307.2,
matrix size = 128 x 128, 60 slices (no gaps) with isotropic (2.4 x 2.4 x 2.4 mm?) voxels. The
maximum diffusion weighting was 2000 sec/mm2, and at each slice location 7 images were
acquired with no diffusion gradients applied (b =0 s/mm?), together with 64 diffusion-weighted
images in which gradient directions were uniformly distributed in space and repeated three
times, to increase signal to noise ratio. Gains and scaling factors were kept constant between

acquisitions. Scanning lasted approximately 30 minutes.

2.2.1. Correction of motion and eddy current distortion, and estimation of the fiber orientation
distribution.

Row image data from each subject were examined before proceeding on to further
analyses to detect any outliers in the data, including signal drop-outs, poor signal-to-noise ratio,
and image artifacts such as ghosts. Any subject whose raw data contained volumes with
significant image quality issues was removed from further analysis.

DWI datasets were concatenated and corrected for subject motion and geometrical
distortions using ExploreDTI (http://www.exploredti.com; Leemans et al., 2009). Spherical
deconvolution (Dell'Acqua et al., 2007) approach was chosen to estimate multiple orientations
in voxels containing different populations of crossing fibers (Alexander, 2007). Spherical
deconvolution was calculated applying the damped version of the Richardson-Lucy algorithm

with a fiber response parameter a =1.5, 400 algorithm iterations and n=0.15 and v=15 as
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threshold and geometrical regularization parameters (Dell’Acqua et al., 2010). Fiber
orientation estimates were obtained by selecting the orientation corresponding to the peaks
(local maxima) of the FOD profiles. To exclude spurious local maxima, we applied both an
absolute and a relative threshold on the FOD amplitude (Dell’Acqua et al., 2013). The first
“absolute” threshold corresponding to a HMOA threshold of 0.2 was used to exclude
intrinsically small local maxima due to noise or partial volume effects with isotropic tissue.
This threshold was set to select only the major fiber orientation components and exclude low
amplitude spurious FOD components obtained from gray matter and cerebro-spinal fluid
isotropic voxels. The second “relative” threshold of 5% of the maximum amplitude of the FOD
was applied to remove remaining unreliable local maxima with values greater than the absolute

threshold but still significantly smaller than the main fiber orientation (Dell’ Acqua et al., 2013).

2.2.2 Tractography Algorithm

Whole brain tractography was performed selecting every brain voxel with at least one
fiber orientation as a seed voxel. From these voxels, and for each fiber orientation, streamlines
were propagated using a modified Euler integration with a step size of 0.5 mm. When entering
a region with crossing white matter bundles, the algorithm followed the orientation vector of
the least curvature. Streamlines were halted when a voxel without fiber orientation was reached
or when the curvature between two steps exceeded a threshold of 45°. Spherical deconvolution
and tractography processing were performed using StarTrack, a freely available Matlab
software toolbox developed by Flavio Dell’Acqua (NatBrainLab, King’s College London),

based on the methods described by Dell’ Acqua et al. (2013).

2.2.3 Tractography dissections of the frontal aslant tract

To visualize the frontal aslant tract and quantify tract-specific measures, we used
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TrackVis software (http://www.trackvis.org; Wang et al., 2007). We used the two regions of
interest (ROIs) approach, according to a dissection method previously described in
Budisavljevi¢ et al. (2017), Catani et al. (2012), and Rojkova et al. (2016). Two separate frontal
‘AND’ ROIs were manually delineated on the FA maps of each subject in each hemisphere.
The ‘AND’ ROl is used to represent an obligatory passage for the tract, and includes the desired
streamlines passing through it. We delineated on axial slices an ‘AND’ ROI around the white
matter of the superior frontal gyrus (SFg ROI) and a sagittal ‘AND’ ROI around the white
matter of the inferior frontal gyrus (also including the pars opercularis, triangularis and
orbitalis) (IFg ROI). An example of tractography reconstructions in a representative subject is

shown in Figure 1.

2.3 Behavioral testing

During this session, participants completed three tasks: fluency, picture naming, and a
grammaticality judgment task. Each task was performed first in L1 and then in L2. Task order
remained consistent for all participants, to focus on comparing diffusion tractography measures
and behavioral measures collected under identical conditions, rather than comparing
performance between tasks or groups. In the semantic fluency task, participants generated
words or signs within the categories “Animals” and “Transports” for Italian and “Food” and
“Clothes” for English and LIS. In the phonological fluency task, the participants produced
words beginning with the phonemes “F” and “L” in Italian, the phonemes “S” and “P” in
English, and with the hand configurations “1” and “B” in LIS. Participants were instructed to
produce words as quickly and accurately as possible in one minute while avoiding repetitions,
derivatives, personal, and geographical names, which were considered errors. Responses were
audio-recorded (for Italian and English) and video-recorded (for LIS). For vocal responses,

participants wore Microsoft LifeChat LX-3000 earplugs equipped with a built-in microphone.
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For signed responses, a camera captured the participant's peripersonal space. The participants
began the task with their hands on the table and returned to the starting position after each sign.
All audio or video recordings were carefully reviewed and each word/sign was manually
transcribed. To estimate the slopes of the recall rate function, the 1-minute interval was divided
into 12 bins of 5 seconds each. The analysis was conducted on a participant basis. The mean
of correct responses was computed for each of the 12 bins, separately for the phonological and
semantic tasks in L1 and in L2. A logarithmic function was fitted to the 12 bin means and the
y value of the function represented the slope value used for the analyses.

For the picture naming task, 100 colored pictures of concrete objects were selected from
existing databases (Alario & Ferrand, 1999; Dell’ Acqua, Lotto, & Job, 2000; Bonin, et al.,
2003). The list of pictures is available in the Open Source Foundation (OSF) repository at the
following link: https://osf.i0/bv8fm/?view_only=beb76a1309484a64bd03727c1004f90c. The
images were displayed on the computer monitor (PC Acer Intel Core 17, display 17”) one by
one, centered within a white 400x400 mm template, for 2000 ms or until the participant
responded. Each image was preceded by a fixation point (+) that lasted 500 ms. For presenting
the pictures, we used DMDX software (Forster & Forster, 2003) for Italian and English and E-
prime 2.0 (Schneider, Eschman, & Zuccolotto, 2002) for LIS. A set of 50 pictures was
presented twice in each language condition in separate blocks, with a different random order
for each block and participant. The blocks were separated by a short pause. The experimental
blocks were preceded by a 6-trial training session. Vocal responses were recorded through the
microphone. Mean RTs were manually calculated by checking the interval between the
appearance of the target picture and the onset of each correct response, using Check-Vocal
software (Protopapas, 2007). Manual responses were video recorder and verified for accuracy.
To record the response times, at the beginning of each trial, participants were instructed to press

the "Z" and "M" keys on the keyboard with their left and right index fingers. Release times of

17


https://doi.org/10.1101/2023.02.01.526563
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526563; this version posted May 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

correct responses, measured from the presentation of the picture, were computed. Responses
faster than 200 ms or slower than 4000 ms were considered outliers and were excluded from
the RTs analysis for both vocal and manual responses. To compare manual and vocal
responses, picture naming latencies in L2 were z-transformed.
For the acceptability judgment task, we created 90 correct and 90 incorrect sentences for each
language, ranging from 4 to 9 words or signs each. All sentences followed the same structure,
comprising a noun and a verb phrase. The stimuli are available in the OSF repository
(https://osf.io/bv8fm/?view only=beb76a1309484a64bd03727c1004f90c). The incorrect
sentences concluded with either a pseudo-word/a pseudo-sign (lexical violation), or a
semantically incongruent word/sign (semantic violation), or a syntactic violation. In English
and Italian the syntactic violation involved a morphological violation related to number (or
gender for Italian) and in LIS it involved a) a violation of the object-verb/action location
concordance, or b) a violation of the negation position. For Italian and English, stimuli
consisted of audio recordings of a native Italian-English bilingual, while for LIS stimuli
consisted of video recordings of a native deaf signer. We presented sentences using DMDX
software. Each sentence was presented after a fixation cross (“+”) lasting 1500 ms. Participants
were instructed to press the “B” key for acceptable sentences and the “N” key for unacceptable
ones. Since the sentences varied in durations, we calculated response latency relative to the
sentence duration: RT of each correct response / sentence duration. In addition, given the
different durations of oral and signed sentences, the latencies in L2 were z-transformed. Only
correct responses to acceptable sentences were considered.

After the experimental session, we collected demographic data and information on the
use and proficiency of L2. Following this, non-verbal intelligence was assessed by
administering the Raven Standard Progressive Matrices. The research protocol received

approval from the Ethics Committee for Psychological Research of the University of Padova.
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(Protocol n. 2015).

2.4 Statistical analyses

All analyses were performed with R software (R Core Team, 2020). We were interested in
investigating the association between the linguistic tracts and the microstructural properties of
the FAT, also in relation to the type of bilingualism (unimodal Vs. bimodal). We used
regression models with the HMOA of the right/left FAT as dependent variable and group, task
performance, and their interaction as predictors (Syntax: Im(FAT L/R_ HMOA ~ Group *
TaskPerformance). The effect of task performance would indicate whether the tract is involved
in the processes required to accomplish the task; the interaction would highlight differences in
the involvement according to the language modality. Helmert contrasts were performed, and
unimodal bilinguals were set as a reference level for the models. Separate models were run for
each task. To avoid false positives by multiple tests, we corrected the alpha level for statistical
significance according to Bonferroni, separately for each tract and each language (alpha =
0.0125). Preliminarily, we controlled for the effects of Age of Acquisition, Gender and Age on
the HMOA values. To test whether the two groups of bilingual participants showed anatomical
differences in the microstructural properties of the FAT, we also added Group as predictor

(Syntax: Im(FAT _L/R_HMOA ~ Sex + Age + Group + AoA_L2).

3. RESULTS

Tract dissection in a representative participant is shown in Figure 1. Figure 2 reports
the HMOA values separately for each tract and for each group of bilinguals.

The linear regression model run on the HMOA values did not show an effect of group
(left FAT t = -0.485; right FAT t = -0.307), no effect of age (left FAT t = -0.034; right FAT t

=-0.928), no effect of gender (left FAT t = -0.307; right FAT t = 0.281) and no effect of L2
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AoA (left FAT t=0.297; right FAT t = -0.443). These variables were no longer considered in

the rest of the analyses.

Figure 1. Tractography reconstructions of the left and right FAT in a representative subject. Frontal ‘AND’ ROIs
including superior frontal gyrus (SFg ROI) and inferior frontal gyrus (IFg ROI) are shown for the right
hemisphere.

Frontal aslant tract
SFg ROI
IFg ROI

Figure 2. Violin plots of the HMOA values of the left and right FAT extracted from the two groups of bilinguals.
Lines represent mean values.
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Table 3 reports the performance of the two groups of bilinguals in behavioral tasks. A
UB participant was excluded from the analysis of picture naming in L2 due to a failure in audio
recording. Two UB participants were excluded from the analyses in the acceptability judgment

task in L2 since their mean speed was 2.5 sd lower than the mean.
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Table 3. Mean performance and standard deviation (in parentheses) obtained in behavioral tasks performed in L1
and L2 by unimodal (UB) and bimodal (BB) bilinguals. The Slope in the fluency task refers to the slope of the
retrieval rate logarithmic function. A slope close to 0 represents a performance where control is deployed all along
the minute of time. For the Grammaticality judgment task, we analyzed the responses to acceptable sentences. We
used the ratio between the duration of the sentence and the latency of the keypress as an index of the response
time.

SEMANTIC FLUENCY PHONOLOGICAL FLUENCY PICTURE NAMING ACCEPTABILITY JUDGMENT
N of Words Slope N of Words Slope Mean RTS RTs/Duration  Accuracy
L1 BB [17.146 (3.447) -1.223(0.414) | 14.229 (2.870) -0.686 (0.315) | 789.958 (78.867) 1.254 (0.123) 0.947 (0.035)
UB | 18.16 (2.779)  -1.272(0.370) | 14.12 (3.153)  -0.705 (0.216) | 784.8 (91.652) 1.213 (0.11)  0.964 (0.032)

L2 BB |14.396(3.455) -0.607(0.222) |8.875(1.941) -0.293 (0.177) | 1156.646 (399.056) |1.011(0.063) 0.736 (0.099)
UB | 15.1(2.905)  -0.905 (0.255) | 13.28 (2.292)  -0.577 (0.224) | 963.788 (125.141) | 1.367 (0.134) 0.834 (0.068)

The full results of the models are reported in the file “Regression tables” available online at the
following OSF link: https://osf.io/bv8fm/?view only=beb76a1309484a64bd03727c1004f90c.
In the following paragraphs, we report statistically significant effects (p Bonferroni corrected <
.00125).

For both groups of bilinguals, the left FAT seems to be primarily involved in the
semantic fluency task when performed in L2. As illustrated in Figure 3, the slope of the retrieval
rate function in semantic fluency was positively correlated with the HMOA value (t=3.584,
p=-0008). No significant interaction with Group was obtained (t=0.359), suggesting a similar
pattern for BBs and UBs. Interestingly, the picture naming latencies in L2 also show a similar
trend in both groups, even if the effect did not reach statistical significance (t=2.403, p=0.0205;
see panel B, Figure 3; for the whole correlation pattern, see the file “Correlations” available in
the OSF repository: https://osf.io/bv8fm/?view_only=beb76a1309484a64bd03727¢c1004{90c.

As for the HOMA of the right FAT we obtained a significant interaction between
picture naming latencies in L1 and Group (t=2.724, p=.0092). As illustrated in panel C of
Figure 3, only for BBs, higher HMOA values were associated with longer picture naming

latencies in L1.
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Figure 3. Panel A represents the model estimates for the effect of the slope of the retrieval rate function
in semantic fluency in L2 on the HMOA of the left FAT. The slope increases as the HMOA increases
similarly for both BBs and UBs. Panel B reports the data obtained from the analysis of picture naming
latencies in L2. The effect did not reach the significance level, but there is a trend suggesting that RTs
increased with increasing HMOA values. Panel C represents model estimates for the interaction
between picture naming latencies in L1 and Group. For BBs only, the RTs in L1 picture naming
increased as the HMOA increased.
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Several important conclusions could be drawn from the observed pattern. First, it appears that
FAT is correlated with production tasks but not with comprehension tasks. Second, production
in L2 is associated with the microstructural properties of the left FAT in all participants,
regardless of the modality of L2. The HMOA decreases as the slope of the recall rate function
of the semantic fluency task decreases. Consistently, we found a positive trend between HMOA
and picture naming latencies, indicating that lower HMOA values were associated with faster
response times. Third, only for BBs, production in L1, and specifically in picture naming, is
related to the properties of the right FAT. The effect is modality specific, i.e., depending on the
modality of L2 during the use of L1. The neural circuit involving the right FAT appears to play
a significant role during L1 production, when the activation of a signed L2 must be controlled.
Note that even in this case the correlation is positive, indicating that lower HMOA values are

consistently associated with faster response times.
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4. DISCUSSION

Functional neuroimaging studies showed that multilingual speakers activate areas
beyond the classical perisylvian language network. These studies suggest the involvement of a
specialized control pathway that allows bilinguals to use the target language while managing
interference from the unintended language (Branzi et al., 2016; Calabria et al., 2018). The key
areas implicated in this process are the IFG and the SMA complex. The results of the present
study underscore the involvement of the FAT, the WM tract connecting these regions, in
bilingualism. By comparing unimodal and bimodal bilinguals, this study offers new insights

into the role of FAT within the control network.

4.1 The left FAT and L2 production

Our findings reveal the involvement of left FAT in L2 production, regardless of the L2
modality. Both UBs and BBs seem to rely on the neural circuit that encompasses the left FAT
during L2 word/sign production. This suggests that the type of process mediated by this tract
is independent of the L2 modality. During tasks such as semantic fluency or picture naming in
L2, bilinguals need to select a lexical entry in L2 while managing the interference from
semantically related coactivated language entries in L1, which was spoken for both groups of
bilinguals in our study. Therefore, a plausible interpretation is that the left FAT is involved in
controlling/stopping inappropriate but prominent L1 (spoken). This aligns with recent studies
that highlight the direct role of left FAT in speech motor control (e.g., Troutman et al., 2022;
Zhong et al., 2022).

Primarily based on the involvement of the left IFG in controlled lexical retrieval and
phonological activation/selection (e.g., Katzev et al., 2013; Krieger-Redwood & Jefferies,
2014; Klaus & Hartwigsen, 2019), the left FAT has been hypothesized to also play a role in

these processes. The results of the present study are not consistent with this hypothesis. We
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observed similar left FAT involvement in L2 production for both UBs and BBs, regardless of
whether the active lexical/phonological representations belong to the same (spoken) modality
or different (signed Vs. spoken) modalities. Direct evidence of the involvement of FAT in
lexical selection remains lacking. Zyranov et al. (2020) examined the effect of FAT volume on
lexical selection in post-stroke patients using a picture-word interference task and failed to find
a relationship between the two variables. It could be possible that activation of the left IFG in
lexical and phonological selection is mainly related to activation in temporal areas or to
subcortical structures, as suggested by recent studies investigating the pattern of functional
connectivity during a covert naming task (Rivas-Fernandez et al., 2021) and a picture naming
task in a language switch paradigm (Wang & Tao, 2024).

Notably, we found a positive correlation between the HMOA of the left FAT and the
slope of the word retrieval rate function in the semantic fluency task. The slope reflects the rate
of declining in performance during the minute allowed for word/sign retrieval. Higher HMOA
values are associated with slow decline rates, that is, with superior control abilities.
Furthermore, a positive relationship has been observed between the HMOA of the left FAT
and the L2 naming times. Longer naming times in L2 corresponded to higher HMOA values.
According to our predictions, this pattern suggests that less proficient bilinguals strongly rely
on active control of the native language while speaking/signing in L2. As lexical access in L2
becomes more automatic and the linguistic system adapts to using multiple languages,
inhibitory control process may become less essential and/or control may be displaced at other
(earlier) levels of processing. These findings align with the views that envision structural
changes related to bilingualism as the result of a learning process. Early learning stages, when
processes have not yet been automatized, can entail more pronounced changes in the frontal
areas of the brain involved in control and executive functions (Green & Abutalebi, 2013).

However, as proficiency increases and L2 lexical activation/selection becomes more and more
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automatic, frontal involvement is not yet required and changes in this part of the brain
progressively disappear, in favor of changes in most posterior parts of the brain (Grundy et al.,
2017). Consistent with this idea, Quartarone et al. (2022) found for both UBs and BBs a
correlation between the proficiency/amount of use of L2 and the microstructural properties of
the Inferior Longitudinal fasciculus, a ventral WM tract connecting the occipital and the
temporal lobes.

Although we found significant correlations between the microstructure of the left FAT
and the performance of L2 semantic fluency, no such correlations were found for phonological
fluency in L2. Typically, phonological fluency is thought to strongly reflect executive control,
given that the search based on a phonological cue is more artificial than the search based on a
semantic cue. However, the task might be highly demanding in L2, with control resources
primarily allocated to the search for the target words/signs rather than inhibiting competing

candidates and thus involving neural circuits that do not comprise the FAT.

4.2. The role of the FAT in L1 production

Our findings revealed the involvement of the FAT in L1 production for BBs. We
observed that increased HMOA values corresponded to longer response times in picture
naming for this specific group of bilinguals. This pattern suggests that BBs exert specific
control over L2 (signed) when naming pictures in L1. Differently from UBs, who need to select
one phonological (spoken) representation at a time, BBs may activate both word and sign
phonology upon the presentation of a picture, without experiencing between-language
competition until later processing stages. However, a point arises when the spoken modality
must be selected, and/or the signed modality must be inhibited. This process appears to involve
a neural circuit involving the FAT. It is possible that this tract contributes to the control of hand

movements, stopping the activation of motor plans related to the phonology of signs. Consistent
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with this hypothesis, Budisavljevi¢ et al. (2017) showed an association between the bilateral
FAT microstructure and the hand kinematics during grasping and reaching movements
performed with the right hand. This proposal is consistent with recent literature indicating the
involvement of FAT in selecting and controlling appropriate motor actions (Dick et al., 2019;
Shekari & Nozari, 2022). Similarly to the findings in L2, we observed positive correlations
between the L1 naming times and the HMOA values. This suggests that highly proficient
bilinguals maintain their language output without — or with minimal - interference from the
language not in use.

Quartarone et al. (2022) reported a significant correlation between L1 production and
the microstructural properties of the right UF. Parallel to the results reported here, a significant
relation was present for BBs, but not for UBs. This convergence might point to some neural
adaptation of the (right) frontal regions/networks to control the signed modality in BBs,
consistent with evidence showing differences in control needs between BBs and UBs (for a
review, see Emmorey et al., 2015).

The fact that for BBs, inhibition of the signed modality involves the right FAT, while
inhibition of the spoken modality primarily engages the left FAT, further supports the idea that,
on the left side, the FAT specializes in the control of speech actions (Dick et al., 2019, Shekari
& Nozari, 2023; Ribeiro et al., 2024).

Previous evidence supporting the involvement of FAT in language production comes
primarily from studies involving clinical populations (e.g., Basilakos et al. 2014; Blecher et al.,
2019; Catani et al. 2013; Keser et al., 2020; Kinoshita et al. 2015; Li, M. et al., 2017).
Conversely, research involving healthy participants failed to establish a direct association
between native language word production and the microstructure of FAT (Babock & Vallesi,
2020; Kronfeld-Duenias et al., 2016). Similarly, in our study, we did not find correlations

between the microstructural properties of the FAT and the performance in the L1 production
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tasks for UBs. For UBs (or monolinguals), when speaking in their native language, lexical
selection among competing units might occur before the activation of motor plans in most
cases. Inhibitory control may be applied during the activation of lexical/phonological
representations through neural circuits not involving the FAT (for a review, see de Zubicaray
& Piai, 2019). Alternatively, it could be proposed that when a language is fully acquired and
proficiently handled, lexical selection may not necessitate inhibitory control mechanisms and

the most active phonological unit is readily selected for articulation (Dell, 1986; Costa, 2005).

4.3 Concluding remarks

For the first time, the current study presents a direct link between the microstructure of
bilateral FAT and language control during language production in bilingual individuals. No
evidence of the involvement of the FAT in the acceptability judgment comprehension task was
found, implying a predominant role of this tract in processes associated with bilingual language
production. By comparing unimodal and bimodal bilinguals, we could further delineate the
nature of the control mechanism supported by the FAT.

Our findings support the hypothesis that the FAT is mainly involved in action control.
Specifically, this tract might have a role in resolving the competition among motor programs
of language production, likely by inhibiting the non-target action (Dick et al., 2019; Shekari &
Nozari, 202). Production performance of a spoken or a signed L2 is correlated with the
microstructural properties of the left FAT. In addition, the correlation observed between the
microstructure of FAT and production in L1 in BBs — but not in UBs — suggests that when
languages activate different modalities, control over the unintended language might occur at
later processing levels than when competition occurs between representations sharing the same
phonological format. Our study also revealed some hemispheric specialization in bilingual

language control. The left FAT appears to primarily manage activation of the dominant spoken
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language during L2 word or sign production, while the right FAT appears to be involved in
controlling the signed language during speech. Furthermore, language competition appears
stronger for less proficient bilinguals, suggesting that in more balanced bilinguals, the control
network adapts so that competition is either mitigated or resolved before activating motor
representations, likely involving other brain regions and/or other tracts of the neural network
engaged in language control.

The present study has some limitations, mainly due to the challenges in pairing BBs
and UBs based on the year of first exposure to L2. Typically, hearing individuals not born to
deaf parents encounter sign language during adolescence, while learning a spoken L2 often
begins earlier, during primary school. Consequently, the two samples did not match fully for
this variable. Despite this, we believe it unlikely that AoA confounded the reported effects, as

this variable did not show an impact on the microstructural properties of the FAT.
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