

B3GALT6 Promotes Dormant Breast Cancer Cell Survival and Recurrence by Enabling Heparan Sulfate-Mediated FGF Signaling

Amulya Sreekumar^{1,2}, Michelle Lu^{1,2}, Biswa Choudhury⁴, Tien-chi Pan^{1,2}, Dhruv K. Pant^{1,2},
Christopher J. Sterner^{1,2}, George K. Belka^{1,2}, Takashi Toriumi^{1,2}, Brian Benz^{1,2}, Matias Escobar-
Aguirre^{1,2}, Francesco E. Marino^{1,2}, Jeffrey D. Esko⁴, Lewis A. Chodosh^{1,2,3 *}

¹Department of Cancer Biology, ²Abramson Family Cancer Research Institute, ³Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA.

⁴Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.

Lead contact:

Lewis A. Chodosh, M.D., Ph.D., *Correspondence: chodosh@pennmedicine.upenn.edu
Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA

1 **Summary**

2 Breast cancer mortality results primarily from incurable recurrent tumors seeded by dormant,
3 therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling
4 dormant RTC survival is therefore essential for improving patient outcomes. We derived a
5 dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant
6 chemotherapy in patients and is enriched for extracellular matrix-related pathways. In vivo
7 CRISPR-Cas9 screening of dormancy-associated candidate genes identified the
8 galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 covalently
9 attaches glycosaminoglycans (GAGs) to proteins to generate proteoglycans and its germline
10 loss-of-function causes skeletal dysplasias. We determined that B3GALT6-mediated
11 biosynthesis of the GAG heparan sulfate predicts poor patient outcomes, promotes tumor
12 recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a
13 B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These
14 findings identify a role for B3GALT6 in cancer and suggest targeting FGF signaling as a novel
15 approach to preventing recurrence by eradicating dormant RTCs.

16

17

18

19 **Keywords:** B3GALT6, dormancy, breast cancer, proteoglycans, glycosaminoglycans, glycans,
20 heparan sulfate, HS6ST1, 6-O-sulfation, FGF

21 **Introduction**

22 Despite advances in early detection and treatment, breast cancer remains the leading
23 cause of cancer-related deaths among women worldwide¹. Mortality results predominantly from
24 incurable recurrences that arise years, or even decades, following treatment of the primary
25 tumor (PT)^{2,3}. Since recurrent tumors derive from residual tumor cells (RTCs) that survive
26 therapy, and are believed to reside in a reversibly quiescent, non-proliferative state of cellular
27 dormancy⁴, depleting this critical pool of cells by targeting their survival mechanisms represents
28 an attractive approach to preventing breast cancer recurrence.

29 RTC dormancy can be selected for or induced by exposure to therapy and/or interaction
30 with a foreign microenvironment following cancer cell dissemination from the primary site.
31 Experimental models recapitulating these paradigms of dormancy induction have been used to
32 identify mechanisms underlying RTC persistence and recurrence. These include i) therapy-
33 associated models that mimic RTC survival following targeted therapy by downregulating
34 oncogenes such as *Her2*^{5,6}, *Wnt1*^{6,7}, and *Fgfr1*⁸, and ii) models that recapitulate interactions
35 between RTCs and a foreign microenvironment, such as the D2.0R/D2A1 paired cell line
36 model⁹⁻¹¹.

37 Recent data suggest marked overlap of dormant RTC gene expression profiles that may
38 be independent of both the location of RTCs at primary or metastatic sites and the stimulus
39 responsible for dormancy entry^{6,12}. Consequently, investigating conserved elements of
40 dormancy-associated gene expression signatures may provide a tractable approach for
41 identifying unique dependencies of dormant RTCs that could be targeted to induce their
42 elimination, thereby preventing recurrence. Among these dependencies, crosstalk between
43 RTCs and components of the extracellular matrix (ECM), including thrombospondin¹³,
44 laminins^{14,15}, fibronectin¹⁶⁻¹⁹, and collagens²⁰⁻²², have been reported to promote RTC survival
45 and dormancy. In contrast, little is known about the role of other ECM components, including
46 proteoglycans, in regulating dormancy and RTC fitness.

47 Proteoglycans consist of unique core proteins covalently linked to one or more
48 glycosaminoglycan (GAG) side chains²³, and are subclassified as heparan sulfate,
49 chondroitin/dermatan sulfate, or keratan sulfate proteoglycans based on the type of GAG they
50 contain²⁴. Following their assembly, proteoglycans can be embedded into the plasma
51 membrane, secreted from the cell, or shed into the ECM where they orchestrate a variety of
52 biological activities^{25,26}.

53 A defining feature of GAGs that underlies their biological function is their highly anionic
54 nature²³, which is imparted by their component uronic acid residues and by dynamic, spatially
55 regulated sulfation²⁷. Anionic GAGs avidly bind growth factors, thereby regulating cellular
56 signaling as well as phenotypes such as proliferation and survival²³. The impact of these
57 modified glycans on RTC fitness and breast cancer progression is unknown.

58 Here, we performed an *in vivo* CRISPR-Cas9 screen targeting a core set of dormancy-
59 associated, tumor cell-autonomous genes to identify functional regulators of dormant RTC
60 survival. The strongest hit from this screen was *B3galt6*, a galactosyltransferase that is essential
61 for proteoglycan assembly²⁸ and whose germline loss-of-function gives rise to the connective
62 tissue disorders spondyloepimetaphyseal dysplasia with joint laxity, type 1 (SEMD-JL1),
63 spondylodysplastic Ehlers-Danlos syndrome (spEDS), and Al-Gazali syndrome²⁹⁻³¹. A role for
64 *B3GALT6* in cancer has not been reported. Our studies identify proteoglycan synthesis as a
65 critical vulnerability of dormant RTC fitness that promotes their survival and recurrence, in part
66 through *B3GALT6*-enabled heparan sulfate proteoglycan synthesis that potentiates FGF
67 signaling in RTCs. Our observations indicate that RTC survival is dependent upon tumor cell-
68 autonomous heparan sulfate synthesis and FGF signaling, which may constitute a targetable
69 node to prevent lethal breast cancer recurrences.

70

71 **Results**

72 **Dormant tumor cells display cell-autonomous upregulation of ECM-related transcripts**
73 **following therapy**

74 To understand the mechanisms underlying dormant RTC survival and persistence, we
75 have developed and characterized doxycycline-inducible genetically engineered mouse (GEM)
76 models of breast cancer^{5-7,32-37}. These models of cellular dormancy⁶ enable robust
77 spatiotemporal regulation of oncogene activation, thereby modeling the effects of targeted
78 therapy in patients and permitting study of the impact of oncogenic pathway inhibition in
79 genetically complex PTs, as well as the contribution of dormant RTCs to spontaneous
80 recurrence.

81 RTCs that survive PT regression induced by Her2 downregulation in *MMTV-rtTA;TetO-*
82 *Her2/neu (MTB/TAN)* mice⁵, or by Wnt1 downregulation in *MMTV-rtTA;TetO-Wnt1 (MTB/TWNT)*
83 mice⁷, were previously isolated to generate RTC-specific gene expression signatures⁶.
84 Dormancy signatures from *MTB/TAN* and *MTB/TWNT* mice were highly concordant, suggesting
85 conserved elements of the dormant state⁶.

86 Dormancy-associated changes in gene expression in RTCs *in vivo* in the context of
87 therapy could be imposed by the microenvironment or could result from cell-autonomous
88 determinants. To identify a core set of tumor cell-autonomous regulators of RTC survival and
89 dormancy, we cultured PT cells (PTCs) from the Her2-dependent model *in vitro* (**Fig. 1A**).
90 Maintaining Her2-dependent tumor cells in the presence of doxycycline under reduced serum
91 conditions resulted in high levels of Her2 expression and proliferation as measured by Ki67 and
92 EdU (D0; *baseline*) (**Fig. 1B, C**). Withdrawing doxycycline elicited the rapid decay of Her2 levels
93 (*Her2 deinduction*) and cellular proliferation, with negligible levels of Ki67 and EdU detected at
94 7, 14, and 28 days post-doxycycline withdrawal (D7, D14, D28). Importantly, re-addition of
95 doxycycline to quiescent tumor cells (*Her2 reinduction*) at each of these time points rapidly
96 restored Her2 levels and proliferation to baseline levels (D7+, D14+, D28+) (**Fig. 1B, C**). Thus,

97 the quiescent state of these cells is reversible, which is a *sine qua non* of cellular dormancy,
98 confirming that this in vitro system recapitulates key features of dormancy observed *in vivo*^{6,32,38}.

99 To identify a core set of dormancy-associated genes, we performed RNA-sequencing on
100 cells *in vitro* at *baseline*, *deinduction*, and *reinduction* time points. We evaluated whether
101 dormancy-associated gene expression changes are conserved in dormant *MTB/TAN* and
102 *MTB/TWNT* RTCs *in vivo* (PTCs vs. D28 RTCs) and *MTB/TAN* cells *in vitro* (D0 vs. D28) and
103 found extensive overlap in the set of downregulated genes between these models ($p=6.87e-21$)
104 (**Fig. S1A**). As anticipated, gene ontology analysis of the overlapping set of 747 downregulated
105 genes identified enrichment for pathways related to cell cycle, cellular biosynthesis, and
106 translation (**Fig. S1B**).

107 Conversely, we found a highly significant overlap among genes upregulated during
108 dormancy *in vivo* (PTCs vs. D28 RTCs) and *in vitro* (D0 vs. D28) (540 genes, $p=1.63e-15$) (**Fig.**
109 **1D**). Intriguingly, gene ontology analysis of this overlapping gene set identified enrichment for
110 multiple pathways related to the organization and metabolism of ECM components (**Fig. 1E**).
111 We refer to the overlapping *in vivo* and *in vitro*-derived up- and down-regulated gene sets as the
112 core RTC signature.

113 Thus, by integrating dormancy-associated gene expression changes that occur *in vitro*
114 and *in vivo*, we generated a therapy-associated core RTC signature that is enriched for
115 conserved features of the dormant state, including the tumor cell-autonomous synthesis of ECM
116 components.

117

118 **A core RTC dormancy signature recapitulates neoadjuvant chemotherapy-associated**
119 **gene expression changes and predicts favorable outcomes in patients**

120 To evaluate whether the core RTC signature exhibited by dormant tumor cells following
121 Her2 downregulation is clinically relevant, we interrogated data from six publicly available
122 datasets comprised of paired gene expression profiles for primary breast cancers and residual

123 tumors in patients that were first biopsied and then surgically resected following neoadjuvant
124 chemotherapy³⁹⁻⁴⁵. Five of these six datasets displayed significant enrichment for the core RTC
125 signature post-therapy (**Fig. 1F**), even after excluding proliferation-associated genes (**Fig. S1C**).
126 Notably, enrichment for this signature was independent of both the type (chemotherapy or
127 endocrine therapy) and duration of therapy. These findings indicate that mouse dormancy
128 models recapitulate clinically-relevant aspects of the response of breast cancers to therapy in
129 patients and suggest that therapy-refractory tumor cells that persist in patients exhibit changes
130 in gene expression that are similar to those associated with cellular dormancy in mice.

131 To evaluate the prognostic power of the core RTC signature in breast cancer patients,
132 we performed a meta-analysis of patient-derived recurrence data. Analogous to prior
133 observations for an in vivo *MTB/TAN* and *MTB/TWNT*-derived RTC dormancy signature⁶, we
134 found that patients whose PTs were enriched for the core RTC signature exhibited a striking
135 decrease in risk of recurrence (HR=0.14; $p=1.1\text{e-}29$), ostensibly reflecting a higher propensity of
136 such tumors to display indolent properties (**Fig. S1D**). This association was substantially
137 stronger for the core RTC signature (HR=0.14) vs. the in vivo signature alone (HR=0.49)⁶, and
138 persisted following the removal of proliferation-associated genes ($p=3.2\text{e-}18$), indicating that the
139 core signature reflects features of cellular dormancy beyond those related to cell cycle-arrest
140 (**Fig. S1E**). Furthermore, since >75% of patient tumors in this dataset were estrogen receptor
141 positive (ER+) and displayed metastatic recurrence, our findings suggest that a conserved RTC
142 signature generated from ER-negative RTCs at local sites can inform the study of mechanisms
143 enabling RTC survival and persistence in the contexts of both distant recurrence and ER+
144 disease⁶.

145 In conclusion, we found enrichment of a core RTC signature in residual lesions from
146 patients treated with different neoadjuvant chemotherapies, and determined that this signature
147 is significantly associated with risk of tumor recurrence in patients across multiple breast cancer
148 subtypes, and at both local and distant sites of recurrence.

149

150 **An in vivo ECM-focused loss-of-function screen identifies *B3galt6* as a regulator of RTC
151 fitness**

152 Having derived a core RTC signature, we reasoned that genes upregulated during
153 dormancy in a manner that is reversible following Her2 reinduction might be involved in
154 promoting RTC dormancy and/or survival. To test this hypothesis, we focused on a clustered set
155 of genes enriched for ECM-associated gene ontology terms that displayed a similar temporal
156 pattern of upregulation during in vitro dormancy (IVD) that was reversed upon Her2 reinduction
157 (**Fig. 2A**).

158 To determine whether genes within this cluster might functionally regulate RTC survival
159 in a tumor cell-intrinsic manner, we performed an in vivo CRISPR-Cas9-based loss-of-function
160 screen. We designed a custom sgRNA library with 4-5 sgRNAs targeting each of 95 candidate
161 genes that displayed strong, dormancy-selective expression and were enriched within ECM-
162 associated ontology terms (**Table S1**). An additional 53 sgRNAs comprising positive controls
163 anticipated to be lethal to proliferative cells (e.g., sg*Rpa3*, sg*Pcna*) and negative controls
164 consisting of non-targeting sgRNAs and sgRNAs targeting inert sites (e.g., sg*Rosa*) anticipated
165 to lack selection during tumor dormancy and recurrence (**Fig. 2B, Table S1**).

166 *MTB/TAN*-derived Her2-dependent PTCs constitutively expressing Cas9 (Her2-
167 dependent-Cas9 cells) were transduced with this GFP-labeled sgRNA library at low multiplicity
168 of infection (MOI=0.3) and sorted to ensure that each cell contained a single sgRNA. After
169 confirming that all sgRNAs were represented within GFP+ sorted cells (**Fig. S2A**), cells were
170 orthotopically injected into nude (*nu/nu*) mice. To assess sgRNA selection during disease
171 progression, we allowed Her2-driven PTs to form in the presence of doxycycline, then withdrew
172 doxycycline to induce tumor regression to a non-palpable, dormant state (**Fig. S2B**). PTs and
173 residual lesions (RLs) were harvested at time points corresponding to early (D7), mid (D14) and

174 late (D28, D35) dormancy following tumor regression to assess sgRNA composition at each
175 stage of tumor progression (**Fig. 2B**).

176 By sequencing the initial plasmid pool, sorted cells, injected cells, PT and RL samples,
177 we confirmed that all sgRNAs were detectable at each time point (**Fig. S2A**). Calculating the
178 Gini index to quantify the skewness of sgRNA distribution revealed that the plasmid pool, sorted
179 cells, and injected cells displayed low Gini indices (median=0.21, 0.25, and 0.26, respectively),
180 confirming that the distribution of sgRNAs remained relatively homogeneous at these points.
181 PTs displayed a slightly higher Gini index than pre-injection samples (median=0.29), suggesting
182 only modest selection of sgRNAs in the presence of the strong oncogenic driver, Her2. In
183 contrast, RLs displayed substantial stepwise increases in Gini indices at D7, D14, D28, and D35
184 (median=0.38, 0.45, 0.58, 0.69, respectively), confirming that sgRNAs were progressively
185 selected throughout the dormancy period (**Fig. 2C**).

186 To identify sgRNAs that underwent selection, we employed 8 analytical methods and
187 ranked sgRNAs identified by 2 or more methods. Consistent with our prior findings that RTCs in
188 this model are non-proliferative following Her2 downregulation⁶, sg*Rpa3* and sg*Pcna* positive
189 controls were depleted during PT formation (**Fig. S2C**), but not following Her2 downregulation
190 (**Fig. S2D**).

191 We reasoned that sgRNAs targeting genes that maintain cell cycle-arrest following Her2
192 down-regulation would be enriched in RLs vs. PTs. Our finding that *Ddr1*, a known regulator of
193 cell cycle arrest²², is enriched in this manner lends credence to this hypothesis (**Fig. S2E**).
194 Conversely, we anticipated that sgRNAs targeting genes that promote cell survival following
195 Her2 down-regulation would be depleted in RLs vs. PTs, as supported by the identification of
196 the pro-survival gene, *Bcl2*, as one of two top hits in this analysis (**Fig. 2D**).

197 The second top putative pro-survival hit identified by all 8 methods in each of four
198 pairwise comparisons of PT and RL time points was *B3galt6* (**Fig. 2D, S2F**). Analyzing the
199 distribution of sgRNAs targeting *B3galt6* (colored bars) vs. all sgRNAs (grey histogram) in each

200 pairwise comparison confirmed that *B3galt6* sgRNAs were strongly depleted within 7 days
201 following Her2 downregulation (PT vs. D7, D14) (**Fig. 2E, S2F**). Notably, *B3galt6* sgRNAs
202 exhibited further depletion at later dormancy time points, as revealed by comparisons of early
203 (D7) to later (D14, D28, D35) RL time points (**Fig. 2E, S2F**). This strong, persistent negative
204 selection against cells harboring *B3galt6* sgRNAs suggests a potential role for B3GALT6 in
205 dormancy.

206

207 **B3GALT6 promotes RTC survival following therapy-associated dormancy**

208 Beta-1,3-galactosyltransferase (B3GALT6) catalyzes the addition of the second Gal
209 residue in the GlcA-Gal-Gal-Xyl-O- tetrasaccharide linker that is essential for the attachment of
210 sulfated GAGs to proteoglycan core proteins²⁸. Accordingly, B3GALT6 enzymatic activity is
211 required for proteoglycan assembly. Based on their linear chains of repeating disaccharides,
212 GAGs can be classified as: (i) heparan sulfate (GlcNAc-GlcA or GlcNAc-iduronic acid (IdoA));
213 (ii) chondroitin sulfate (GalNAc-GlcA); or (iii) dermatan sulfate (resulting from the epimerization
214 of at least one GalNAc-GlcA to GalNAc-IdoA) (**Fig. 3A**). Consequently, deletion of the *B3galt6*
215 gene using CRISPR-Cas9 should ablate both heparan and chondroitin/dermatan sulfate GAGs
216 on cell surfaces⁴⁶.

217 To test this, we transduced Her2-dependent-Cas9 cells with sgRosa or sg*B3galt6*
218 vectors expressing GFP, performed ICE analysis⁴⁷, and confirmed that sg*B3galt6* efficiently
219 induced indels predicted to result in loss-of-function mutations in >85% of tumor cells (**Fig. S3A,**
220 **B**). Immunofluorescence performed on sgRosa and sg*B3galt6* cells using a heparan sulfate
221 antibody demonstrated a marked reduction in heparan sulfate levels in sg*B3galt6* cells vs.
222 sgRosa controls, providing further confirmation that these sgRNAs functionally reduce
223 B3GALT6 activity (**Fig. 3B**).

224 To independently validate findings from our CRISPR-Cas9 screen, an in vitro
225 competition assay was performed in which sgRosa-GFP and sg*B3galt6*-GFP transduced Her2-

226 dependent-Cas9 cells were plated at a 1:1 ratio with sgRosa-mCherry cells on D-3. Genomic
227 DNA was harvested from cells at D-2 or D0 (*baseline*) in the presence of doxycycline, at D3, D7,
228 D14, D21, and D28 following doxycycline withdrawal (*deinduction*), and at 48 hr after
229 doxycycline re-addition to D28 deinduction cells (D28+, *reinduction*). Changes in the percentage
230 of sgB3galt6-GFP:sgRosa-mCherry cells relative to sgRosa-GFP:sgRosa-mCherry controls
231 were quantified by droplet digital PCR (ddPCR) (**Fig. 3C**). Tumor cells expressing sgB3galt6
232 were significantly and progressively depleted ($p<0.0001$) throughout dormancy beginning as
233 early as 3 days following Her2 downregulation (**Fig. 3D**). These data indicate that B3GALT6
234 loss impairs RTC fitness in a tumor cell-autonomous manner.

235 To confirm that this dormancy-selective depletion of sgB3galt6 cells also occurs in vivo,
236 as predicted by our CRISPR-Cas9 screen, we performed a competition assay analogous to that
237 performed in vitro. sgRosa-mCherry Her2-dependent-Cas9 cells admixed with an equal number
238 of sgRosa-GFP or sgB3galt6-GFP cells were injected into mice maintained on doxycycline,
239 following which PT (*baseline*) as well as RL samples at D10 (*early*) and D28 (*late*) following
240 doxycycline withdrawal were harvested (**Fig. 3E**).

241 Samples were imaged using a stereoscope prior to processing for genomic DNA
242 isolation and ddPCR. While no differences in GFP intensity were visible in PT samples across
243 groups, decreases in GFP intensity for each of the sgB3galt6 guides vs. sgRosa controls were
244 clearly evident in D10 and D28 RL samples (**Fig. 3E**). Consistent with this, ddPCR analysis
245 confirmed pronounced negative selection against sgB3galt6 tumor cells ($p<0.0001$) at D10 and
246 D28 RL time points, as well as ongoing depletion from D10 to D28 (**Fig. 3F**). In contrast,
247 sgRosa-GFP cells showed no selection across time points. These data provide further evidence
248 that B3GALT6 is required for maintaining RTC fitness in vivo.

249 To determine the cellular mechanisms by which B3GALT6 regulates RTC fitness in vivo,
250 sgB3galt6_3-GFP or sgRosa-GFP cells were injected into mice maintained on doxycycline,
251 followed by harvest of PTs as well as early (D4, D7) RLs following doxycycline withdrawal. Mice

252 were injected with EdU 2 hr prior to sacrifice. As anticipated, a dramatic decrease in cell
253 proliferation was observed in control lesions D4 and D7 following doxycycline withdrawal, as
254 revealed by visualizing incorporation of the S-phase marker EdU (**Fig. 3G, H**) and
255 immunofluorescence for the cell cycle marker Ki67 (**Fig. S3C, D**). No differences were observed
256 in the percentage of EdU+ or Ki67+ RTCs between *sgB3galt6* and *sgRosa*-derived PTs or D4 or
257 D7 RLs (**Figs. 3G, H; S3C, D**). These findings confirm that RTCs in both *sgRosa* and *sgB3galt6*
258 groups enter a quiescent state following Her2 downregulation, and that the observed depletion
259 of *sgB3galt6* RTCs vs. control cells following Her2 downregulation is unlikely to result from
260 B3GALT6-dependent differences in proliferation.

261 Next, we asked if the decrease in *sgB3galt6* vs. *sgRosa* RTCs following Her2
262 downregulation is a consequence of differential cell survival by quantifying apoptotic cells by
263 terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (**Fig. 3I, J**), and by
264 immunofluorescence for cleaved caspase 3, (cc3) (**Fig. S3E, F**). While no differences were
265 evident in the percentage of TUNEL+ or cc3+ in PTs or D4 RLs between *sgB3galt6* and *sgRosa*
266 samples, a significant increase in the percentage of TUNEL+ ($p=0.0009$) and cc3+ tumor cells
267 ($p=0.033$) was apparent at D7 in *sgB3galt6* cells vs. *sgRosa* RL samples. Together, these data
268 indicate that the impaired fitness observed in *sgB3galt6* tumor cells following Her2
269 downregulation is attributable to higher levels of apoptosis in dormant *sgB3galt6* RTCs.

270

271 **B3GALT6 promotes tumor recurrence following therapy-associated dormancy**

272 In light of our observation that B3GALT6 promotes RTC fitness, we wished to determine
273 whether this would impact the kinetics of spontaneous tumor recurrence. Her2-dependent-Cas9
274 cells transduced with *sgB3galt6*-GFP or *sgRosa*-GFP at a target MOI=5 (**Fig. S4A, B**) were
275 orthotopically injected into mice maintained on doxycycline to drive PT formation (**Fig. 4A**).
276 *sgB3galt6* and *sgRosa*-GFP groups displayed no differences in PT formation ($p=0.26$) (**Fig.**
277 **S4C**).

278 Following doxycycline withdrawal to induce tumor regression to a non-palpable, dormant
279 state, mice were monitored for tumor recurrence. Strikingly, dormant RLs derived from
280 sgB3galt6_3 ($p<0.0001$; HR=0.13) or sgB3galt6_1 ($p<0.0001$; HR=0.11) tumor cells displayed
281 dramatically delayed median recurrence-free survival vs. sgRosa controls (**Fig. 4B**). Moreover,
282 whereas all 20 recurrent tumors in the sgRosa control group were strongly GFP+, only 1/20
283 sgB3galt6_3 and 3/20 sgB3galt6_1 recurrent tumors were GFP+ (**Fig. 4C, S4D**). This strong
284 negative selection against sgB3galt6 GFP+ cells in recurrences was confirmed by ddPCR,
285 which demonstrated >10-fold depletion of GFP+ cells in sgB3galt6_3 ($p=0.0003$) and
286 sgB3galt6_1 ($p=0.039$) recurrences (**Fig. 4D**). Together, the marked delay in spontaneous
287 tumor recurrence observed for sgB3galt6- cells, coupled with the observation that the small
288 fraction (~10%) of untransduced GFP-negative cells present efficiently and reproducibly
289 outcompeted GFP+ sgB3galt6 tumor cells during recurrent tumor formation, indicate that
290 B3GALT6 is required for tumor recurrence.

291 To ensure that recurrences maintained B3GALT6 deletion (*i.e.*, remain GFP+), we
292 transduced Her2-dependent-Cas9 cells with sgRosa-GFP or sgB3galt6-GFP at a higher target
293 MOI of 10 (**Fig. 4E**), which resulted in a transduction efficiency of >95% (**Fig. S4E, F**). Under
294 these conditions, sgB3galt6-GFP cells exhibited a dramatic delay in median recurrence-free
295 survival (135d) vs. sgRosa-GFP (39.5d) cells ($p<0.0001$; HR=0.16) (**Fig. 4F**) that was even
296 greater than that observed for cells transduced at lower MOI (86-91d vs. 51d) (**Fig. 4B**).
297 Consistent with the higher MOI employed, nearly all recurrences arising from sgB3galt6-GFP
298 (12/14) or sgRosa-GFP (18/19) cells displayed strong GFP-positivity (**Fig. 4G, S4G**) and ddPCR
299 confirmed that the number of GFP+ cells in sgRosa and sgB3galt6 recurrences was comparable
300 (**Fig. 4H**). Further, immunofluorescence on recurrent tumor tissue confirmed that heparan
301 sulfate levels were decreased in sgB3galt6 vs. sgRosa recurrences, as anticipated, thereby
302 confirming that loss of B3GALT6 function was maintained in sgB3galt6 recurrences (**Fig. S4H**).

303 These observations suggest that transducing tumor cells with *sgB3galt6* at high MOI eliminated
304 a bypass pathway in which untransduced (*i.e.*, GFP-negative) cells give rise to recurrence.

305 EdU labeling failed to identify differences in proliferation between *sgRosa* and *sgB3galt6*
306 recurrences (**Fig. 4I, J**). In contrast, TUNEL staining revealed an increase in apoptotic tumor
307 cells in *sgB3galt6* vs. *sgRosa* recurrent tumors ($p=0.018$) (**Fig. 4K, L**). Consistent with these
308 findings, a trending, albeit non-significant, decreased growth rate was observed for *sgB3galt6*
309 vs. *sgRosa* recurrences ($p=0.073$) (**Fig. 4M**). Together, these findings indicate that B3GALT6 is
310 required for efficient tumor recurrence from dormant residual disease post-therapy.

311

312 **B3GALT6 promotes tumor cell survival and outgrowth in microenvironment-induced
313 dormancy**

314 Our data to this point identified B3GALT6 as a critical regulator of RTC survival and
315 recurrence in the context of therapy-associated dormancy. We next asked whether B3GALT6
316 might also play a functional role in microenvironment-induced dormancy. To address this
317 question we used the D2.OR-D2A1 system of paired cell lines that share a common origin and
318 grow comparably in two-dimensional (2D) culture, but manifest divergent growth properties (*i.e.*,
319 D2.OR: dormant/indolent vs. D2A1: proliferative/aggressive) when cultured in 3D or at
320 metastatic sites *in vivo*^{16,20,48}.

321 We first determined whether a previously derived dormancy-associated gene expression
322 signature generated by comparing D2.OR to D2A1 cells grown in 3D culture⁴⁸ exhibited overlap
323 with dormancy-associated gene expression changes in *MTB/TAN* cells following Her2
324 downregulation *in vitro* and *in vivo*. Gene expression changes observed in Her2-dependent
325 tumor cells revealed strong and progressive enrichment of the D2.OR/D2A1 dormancy
326 signature over the 28-day course following Her2 downregulation *in vitro* (**Fig. 5A**, $p=1.88e-09$).
327 This enrichment was reversible following doxycycline readdition, which reactivates Her2
328 signaling and induces dormant tumor cells to re-enter the cell cycle (**Fig. 5A**). The D2.OR-

329 derived dormancy signature was also enriched in a dormancy-specific manner in dormant
330 *MTB/TAN* and *MTB/TWNT* RTCs *in vivo* 28 days following oncogene downregulation vs. either
331 PTCs ($p=7.4\text{e-}05$, $1.7\text{e-}05$, respectively) or recurrent tumor cells ($p=6.2\text{e-}04$, $1.1\text{e-}03$,
332 respectively) (**Fig. S5A**).

333 Next, we asked what gene ontology terms were enriched within the D2.OR-derived
334 dormancy signature. As observed for the core RTC signature derived from therapy-associated
335 dormancy models, the D2.OR dormancy signature was enriched for multiple pathways relating
336 to ECM, proteoglycan, and GAG-related gene ontology terms (**Fig. 5B**, highlighted in red).
337 These data indicate that dormancy-associated gene expression signatures are strongly
338 enriched for ECM-related pathways in general, and proteoglycan and glycosaminoglycan-
339 related pathways in particular, irrespective of whether the dormant state was induced by the
340 microenvironment or associated with therapy.

341 D2.OR cells persist as dormant single cells over the course of 12 days when grown on
342 basement membrane extract (BME), whereas D2A1 cells generate proliferative, spindle-shaped
343 outgrowths under these same conditions²⁰. Addition of Collagen I (Col I) to BME induces
344 dormant D2.OR cells to resume proliferation and generate D2A1-like spindle-shaped colonies²⁰.
345 Using this system, we asked whether the dormant behavior of D2.OR cells in 3D culture is
346 regulated by B3GALT6-mediated proteoglycan synthesis.

347 D2.OR and D2.A1 cells transduced with a sh*B3galt6* hairpin exhibited >80% knock-down
348 of *B3galt6* transcripts (**Fig. S5B**). D2.OR cells transduced with sh*B3galt6* or control
349 sh*Scrambled* hairpins were then overlaid on BME with or without addition of Col I. While the
350 numbers of viable sh*B3galt6* and sh*Scrambled* cells each decreased over the 12-day course,
351 *B3galt6* knockdown resulted in progressive and marked decreases in cell number at D8
352 ($p=0.022$) and D12 ($p=0.0004$) compared to control cells (**Fig. 5C, D**).

353 As anticipated, sh*Scrambled* D2.OR cells plated on BME + col I displayed increased
354 viable cell numbers over this same time course (**Fig. 5E, F**). *B3galt6* knockdown in D2.OR cells

355 yielded marked reductions in the numbers of viable tumor cells at D4, D8, and D12 compared to
356 ($p<0.0001$) sh*Scrambled* controls. Indeed, the Col I-induced increase in number of D2.OR cells
357 was entirely abrogated by *B3galt6* knockdown, as viable D2.OR sh*B3galt6* cells failed to
358 increases in number when grown under these conditions (**Fig. 5E, F**). Additionally, while
359 sh*Scrambled* D2.OR cells formed spindle-like colonies when grown on BME + Col I, sh*B3galt6*
360 cells failed to do so. These data suggest that B3GALT6 is required for both the viability of
361 dormant tumor cells and their outgrowth.

362 We next performed analogous 3D assays using D2A1 cells. When grown on BME, a
363 significant decrease in viable cell number was observed for sh*B3galt6* vs. sh*Scrambled* D2A1
364 cells at D12 ($p=0.003$), and sh*B3galt6* D2A1 cells failed to exhibit the characteristic spindle-like
365 morphology adopted by sh*Scrambled* D2A1 cells that is associated with colony outgrowth (**Fig.**
366 **S5C, D**). Notably, this same difference in phenotype was observed in sh*B3galt6* D2A1 cells
367 (**Fig. S5E**) grown on BME + Col I. Moreover, a progressive decrease in viable cell numbers was
368 observed for sh*B3galt6* D2A1 cells grown on BME + Col I at D4 ($p=0.0014$), D8 ($p=0.0002$), and
369 D12 ($p<0.0001$) compared to control cells (**Fig. S5F**). These data indicate that, B3GALT6 is
370 required for cell viability, as well as outgrowth, in proliferative D2A1 cells. Taken together, these
371 findings suggest that B3GALT6 is a critical regulator of cell survival in dormant tumor cells,
372 irrespective of whether dormancy is therapy-associated or induced by the microenvironment.

373

374 **Heparan sulfate synthesis is upregulated during dormancy and associated with poor
375 outcomes in breast cancer patients**

376 In light of our observations implicating B3GALT6-mediated proteoglycan biosynthesis as
377 a key determinant of dormant tumor cell persistence in therapy-associated and
378 microenvironment-induced models of dormancy, we next asked how proteoglycan synthesis is
379 regulated during dormancy.

380 Because B3GALT6 catalyzes the synthesis of a linker that is common to, and required
381 for, the production of both heparan sulfate and chondroitin sulfate (**Fig. 3A**), we assessed the
382 biosynthesis of these GAGs under dormancy conditions. First, we applied heparan sulfate and
383 chondroitin/dermatan sulfate KEGG mRNA biosynthesis signatures to IVD gene expression
384 data derived from Her2-dependent cells. This revealed that enzymes involved in heparan sulfate
385 synthesis and modification are upregulated (**Fig. S6A**) – whereas those involved in
386 chondroitin/dermatan sulfate synthesis and modification are downregulated (**Fig. S6B**) – during
387 dormancy *in vitro*.

388 Addition of the hexosamine residue *N*-Acetylglucosamine (GlcNAc) to the proteoglycan
389 tetrasaccharide linker results in heparan sulfate synthesis, whereas addition of *N*-
390 Acetylgalactosamine (GalNAc) to this linker results in chondroitin/dermatan sulfate synthesis⁴⁹.
391 Notably, the enzymes (*Extl2*, *Extl3*) that direct heparan sulfate synthesis by catalyzing the
392 addition of GlcNAc to the tetrasaccharide linker are reversibly upregulated during dormancy *in*
393 *vitro* (**Fig. S6C**); in contrast, the enzymes (*Csgalnact1*, *Csgalnact2*) that direct chondroitin
394 sulfate synthesis by catalyzing the addition of GalNAc to this linker are reversibly downregulated
395 during dormancy (**Fig. S6D**). Consistent with this, we identified the heparan sulfate polymerase
396 *Ext2* as a hit in the CRISPR-Cas9 screen, whereby sgRNAs targeting *Ext2* were selected
397 against during dormancy, as were sgRNAs targeting *B3galt6* (**Fig. 2D**). In contrast, negative
398 selection for the chondroitin sulfate polymerase *Chpf* was not observed in our screen (**Fig.**
399 **S2C**). These associations suggest the preferential synthesis of heparan sulfate rather than
400 chondroitin/dermatan sulfate in dormant RTCs.

401 To quantify levels of heparan sulfate and chondroitin sulfate GAGs as a function of
402 dormancy, we performed liquid chromatography-mass spectrometry (LC/MS) on cell lysates
403 isolated at baseline (D0, proliferative) or post-doxycycline withdrawal (D7, dormant). Heparan
404 sulfate was readily detectable in Her2-dependent tumor cells at D0 and its levels were
405 significantly higher in dormant tumor cells at D7 ($p<0.0001$) (**Fig. 6A**). In contrast, chondroitin

406 sulfate levels were >100-times lower than heparan sulfate at baseline (D0) and did not change
407 significantly during dormancy (**Fig. 6A**).

408 We next evaluated GAG levels in vivo as a function of dormancy using heparan or
409 chondroitin sulfate-specific antibodies. We first confirmed the specificity of these antibodies by
410 demonstrating that pre-treatment of tissue sections with heparin lyase or chondroitinase
411 eliminated the signal detected for heparan sulfate or chondroitin sulfate, respectively (**Fig. S6E**,
412 **F**). Immunofluorescence staining revealed that Her2-dependent PTCs (green) expressed
413 heparan sulfate but not chondroitin sulfate (**Fig. 6B, C; S6E, F**). Moreover, heparan sulfate
414 levels increased in dormant tumor cells at D7, whereas chondroitin sulfate remained
415 undetectable (**Fig. 6B, C**). Thus, both LC/MS and immunofluorescence data demonstrate an
416 increase in heparan sulfate abundance during dormancy, both in vitro and in vivo.

417 Defects in differentiation resulting from heparan sulfate impairment in myoblasts⁵⁰ and
418 mouse embryonic stem cells⁵¹ in vitro have been reported to be partially rescued by the addition
419 of exogenous heparin, a highly sulfated heparan sulfate variant. Therefore, we performed an
420 analogous experiment to determine whether heparin addition could rescue the impaired cell
421 survival observed in B3GALT6-depleted cells, as would be predicted if heparan sulfate
422 promotes the survival of dormant tumor cells.

423 We harvested Her2-dependent *sgRosa* and *sgB3galt6* cells at baseline (D0,
424 proliferative) and in cells treated with vehicle, low-dose heparin, or high-dose heparin for 7 days
425 post-doxycycline withdrawal (D7, dormant). As above, *sgB3galt6* cells exhibited decreased
426 survival at D7 compared to control cells (**Fig. 6D**). Consistent with reports that heparin
427 supplementation in heparan sulfate-replete cells may dampen signaling by competing with
428 endogenous heparan sulfate⁵², we observed that both low- and high-dose heparin treatment in
429 *sgRosa* cells modestly decreased viable RTC number vs. vehicle-treated controls (**Fig. 6D**). In
430 contrast, exogenous addition of high-dose heparin to *sgB3galt6* RTCs markedly increased the
431 number of viable tumor cells at D7 vs. vehicle-treated controls ($p<0.0001$) (**Fig. 6D**). These data

432 indicate that heparin supplementation is sufficient to rescue the survival defect induced by loss
433 of B3GALT6 in dormant RTCs.

434 To extend these findings to a microenvironment-induced model of dormancy, we plated
435 D2.OR cells transduced with sh*B3galt6* or control sh*Scrambled* hairpins in 3D in the presence of
436 vehicle or heparin. As before, loss of B3GALT6 resulted in a pronounced survival defect in
437 dormant D2.OR cells grown on BME (**Fig. 6D**). Notably, addition of exogenous heparin partially
438 rescued the decrease in viable cell number observed in dormant D2.OR sh*B3galt6* cells vs.
439 sh*Scrambled* at D5 ($p=0.003$) and D10 ($p=0.0009$) (**Fig. 6E, F**). Additionally, when D2.OR cells
440 were plated under outgrowth conditions (BME + Col I), heparin potently rescued the decrease in
441 cell numbers observed in dormant D2.OR sh*B3galt6* cells vs. sh*Scrambled* at D5 ($p<0.0001$)
442 and D10 ($p<0.0001$) (**Fig. 6G**). These findings are concordant with those observed in Her2-
443 dependent cells and consistent with the hypothesis that heparan sulfate GAGs are required for
444 maintaining dormant RTC survival and subsequent outgrowth. However, heparin failed to
445 rescue the rounded morphology associated with sh*B3galt6*, suggesting that D2.OR cells may
446 transduce the Collagen I signal to stimulate the spindle-like morphology of outgrowths
447 independently of heparin/heparan sulfate. (**Fig. 6H**).

448 To this point, our functional data in preclinical models suggested a role for heparan
449 sulfate, but not chondroitin sulfate, in dormant tumor cell survival and we had observed the
450 concordant dormancy-associated upregulation of a heparan sulfate KEGG mRNA biosynthesis
451 signature, expression of rate-limiting enzymes for heparan sulfate synthesis, and levels of
452 heparan sulfate, as well as a lack of dormancy-associated changes in these same features for
453 chondroitin sulfate. Therefore, we applied the KEGG heparan sulfate and chondroitin/dermatan
454 sulfate mRNA biosynthetic signatures to gene expression data from primary breast cancers in
455 ~4400 patients with known recurrence outcomes³⁸. Strikingly, and consistent with a role for
456 heparan sulfate in enhancing tumor cell fitness during dormancy and recurrence, the expression
457 of heparan sulfate biosynthetic enzymes in early stage primary breast cancers was strongly

458 associated with poorer recurrence-free survival (overall p value=2.2e-04) (**Fig. 6I**). In contrast,
459 no association was observed between recurrence-free survival and expression
460 chondroitin/dermatan sulfate biosynthetic enzymes (**Fig. 6J**). These data provide further
461 evidence specifically implicating heparan sulfate, rather than chondroitin sulfate, biosynthesis in
462 promoting breast cancer recurrence in patients.

463 Our findings demonstrate that enzymes involved in heparan sulfate synthesis, as well as
464 total heparan sulfate levels, are upregulated in dormant tumor cells both *in vivo* and *in vitro* and
465 that heparin supplementation partially rescues the survival defect induced by B3GALT6 loss in
466 RTCs both in the context of therapy-associated dormancy and microenvironment-induced
467 dormancy. In contrast, we found that chondroitin sulfate levels are orders of magnitude lower
468 than heparan sulfate in tumor cells and are not upregulated during dormancy. Consistent with
469 this, the enzymes involved in chondroitin sulfate synthesis are downregulated during dormancy.
470 Taken together with our other findings, these data suggest a selective and essential role for
471 heparan sulfate in mediating dormant RTC survival.

472

473 **Heparan sulfate 6-O-sulfation is selectively upregulated during dormancy and potentiates
474 FGF1 signaling**

475 Having identified a key role for B3GALT6-mediated heparan sulfate biosynthesis in
476 promoting RTC survival, we asked if heparan sulfate undergoes dynamic modifications during
477 dormancy, as was suggested by the reversible upregulation of gene expression for modifying
478 enzymes, such as sulfotransferases (e.g., *Ndst2*, *Hs2st1*, *Hs6st1*), within the heparan sulfate
479 signature (**Fig. S6C**). Accordingly, we examined the extent and sites of heparan sulfation since
480 this modification is a key determinant of the ligand binding properties of GAG side chains^{23,53}.

481 To accomplish this, we isolated cell lysates from Her2-dependent cells grown *in vitro* at
482 D0 (*baseline*), D7 and D28 (*deinduction*), and D28+ (*reinduction*) and performed glycan
483 reductive isotope labeling followed by LC/MS (GRIL-LC/MS)⁵⁴ (**Fig. S7A**). This revealed a

484 significant and progressive increase in the average sulfation level per heparan sulfate-derived
485 disaccharide at D7 and D28 of dormancy vs. D0 baseline ($p<0.0001$), which remained elevated
486 after 72 hr of Her2 reinduction (**Fig. S7B**). This dormancy-associated increase in sulfation
487 indicates that, in addition to increased overall levels of heparan sulfate GAGs during dormancy,
488 the extent to which these GAGs are sulfated is also dynamically upregulated in RTCs.

489 Next, we wished to determine whether dormancy-selective patterns of heparan sulfation
490 were present. Of the 3 (out of 4 total) sulfation sites on heparan sulfate-derived disaccharides
491 that we interrogated (**Fig. 7A-C; S7C**), 6-O-sulfation exhibited the most dramatic fold-increase
492 in abundance during dormancy (**Fig. 7A-D**). We also examined the relative abundance of
493 specific disaccharide motifs⁵⁵ as a function of dormancy (**Fig. S7D, E**). Only D2S6 and D0A6
494 disaccharides showed upregulation during dormancy in a manner that was reversible following
495 exit of cells from the dormant state (**Fig. S7F, G**). This indicates that 6-O-sulfation on
496 glucosamine tends to co-occur in non-sulfated uronic acid-*N*-acetylated glucosamine (D0A6) or
497 2-O-sulfated uronic acid-*N*-sulfated glucosamine (D2S6) disaccharides.

498 Heparan 6-O-sulfation has been reported to promote FGF signaling by increasing the
499 binding affinity of some FGF ligands for heparan sulfate in the ternary heparan sulfate-FGF-
500 FGFR complex that is required for FGF signaling^{56,57} (**Fig. S7H**). To identify which FGF ligands
501 are expressed in dormant tumor cells in an abundant, but reversible, manner we interrogated
502 the expression of the 15 paracrine FGFs that require heparin/heparan sulfate as a co-factor for
503 signaling⁵⁸. This revealed that FGF1 is dramatically and persistently upregulated (>10-fold)
504 during dormancy as early as 3 days following doxycycline withdrawal, and that its expression is
505 potently suppressed within 48 hr of doxycycline re-addition (D7+, D14+, D28+) (**Fig. 7E**). Other
506 notable FGF ligands included FGF2, which displayed only minor upregulation during dormancy
507 that was not reversible, and FGF7, which displayed reversibility but was expressed at low levels
508 with only modest dormancy-associated upregulation (**Fig. S7I**).

509 Our finding that FGF1 expression is markedly upregulated in dormant tumor cells was
510 particularly striking in light of recent data identifying heparan 6-O-sulfation as a strong binding
511 site for FGF1, but not FGF2⁵⁹. This suggested the possibility that dormant tumor cells might be
512 specifically dependent on heparan sulfate 6-O-sulfation as a consequence of its interaction with
513 FGF1.

514 To test whether FGF1 regulates RTC survival, we determined the number of dormant
515 RTCs that survived Her2 downregulation in vitro following the depletion of endogenous FGF1
516 using CRISPR-Cas9-based deletion. After confirming successful editing by *Fgf1* sgRNAs by ICE
517 analysis (**Fig. S7J**), we performed an IVD assay using Her2-dependent-Cas9 cells transduced
518 with sg*Fgf1* or sg*Rosa*. Deletion of FGF1 further accentuated the decrease in viable RTC
519 numbers that occurs at D7 (*deinduction*) vs. D0 (*baseline*) when compared to the sg*Rosa*
520 controls (**Fig. S7K**). This suggests that tumor cell-autonomous FGF1 signaling promotes
521 dormant RTC survival.

522 To determine whether FGF acts via heparan 6-O-sulfation to mediate B3GALT6-
523 associated RTC survival, we examined the expression of the three sulfotransferases, *Hs6st1-3*,
524 that catalyze 6-O-sulfation (**Fig. S7H**), particularly those on the D2S6 and D0A6 6-O-sulfated
525 disaccharide motifs^{53,56} identified above. Of these, only *Hs6st1* was found to be abundantly
526 expressed in Her2-dependent cells and only *Hs6st1* was reversibly upregulated during
527 dormancy (**Fig. S7L**). Notably, *Hs6st1* was identified as a putative pro-survival hit in our
528 CRISPR-Cas9 screen, which exhibited increasingly apparent effects at later dormancy time
529 points (**Fig. 2D, 7F**).

530 We also evaluated the expression of the four FGFRs, *Fgfr1-4*, that participate in FGF
531 signaling. Of these, *Fgfr1* and *Fgfr2* are abundantly expressed in Her2-dependent cells and are
532 each reversibly upregulated during dormancy (**Fig. S7L**); *Fgfr2* was upregulated ~4-fold during
533 dormancy, whereas *Fgfr1* was upregulated ~1.5-fold. Although FGF1 can signal through both
534 FGFR1 and FGFR2, *Fgfr2* was identified as a putative pro-survival hit in our CRISPR-Cas9

535 screen, whereas sgRNAs targeting *Fgfr1* displayed no selection (**Fig. 2D, S2C, 7F**).
536 Accordingly, we hypothesized that 6-O-sulfated heparan sulfate and FGFR2 may act together to
537 promote FGF1 signaling and RTC survival, and prioritized studies of FGFR2 as a candidate for
538 maintaining dormant RTC survival.

539 To determine whether heparan 6-O-sulfation and FGFR2 act in concert to promote
540 FGF1 signaling and dormant RTC survival, we first sought to evaluate FGF activity in dormant
541 tumor cells in vitro, as well as the effect of inhibiting heparan sulfate biosynthesis or 6-O-
542 sulfation on FGF signaling.

543 After confirming successful editing by *Hs6st1* and *Fgfr2* sgRNAs by ICE analysis (**Fig. S7M**), we performed an IVD assay using Her2-dependent-Cas9 cells transduced with
544 *sgB3galt6*, *sgHs6st1*, *sgFgfr2*, or *sgRosa*. We reasoned that if increased heparan sulfate
545 synthesis and 6-O-sulfation by dormant RTCs enhances endogenous FGF signaling, then
546 impairing heparan sulfate synthesis (*sgB3galt6*), or 6-O-sulfation (*sgHs6st1*), should attenuate
547 FGF signaling (**Fig. S7N**). Furthermore, we predicted that if enhanced FGF signaling in dormant
548 cells is mediated by FGFR2, depleting *Fgfr2* should also attenuate FGF signaling during
549 dormancy.

550 To test this hypothesis, we assessed levels of activated ERK1/2⁶⁰ in each of the above
551 genetic contexts, using two sgRNAs each for *sgB3galt6*, *sgHs6st1*, and *sgFgfr2*. As anticipated,
552 pERK1/2 levels normalized to total ERK1/2 were >10-fold higher in Her2-dependent proliferating
553 cells at D0 (*baseline*) compared to D4 or D7 dormancy time points (**Fig. 7G, S7O**). Moreover,
554 pERK1/2:ERK1/2 levels in the presence of Her2 expression (D0) were largely unaffected by
555 deletion of *B3galt6*, *Hs6st1*, or *Fgfr2*. In contrast, pERK1/2:ERK1/2 levels were significantly and
556 progressively diminished in *sgB3galt6*, *sgHs6st1*, and *sgFgfr2* cells compared to *sgRosa*
557 controls following Her2 downregulation (*deinduction*) induced by doxycycline withdrawal (**Fig.**
558 **7G, S7O**). This additional impairment of pERK1/2:ERK1/2 levels caused by deletion of
559 components of the FGF signaling pathway that are expressed in RTCs in a dormancy-specific

561 manner is consistent with a model in which endogenous FGF signaling is active during
562 dormancy, and requires B3GALT6, HS6ST1, and FGFR2 for its maintenance.

563

564 **Upregulation of heparan sulfate 6-O-sulfation during dormancy promotes RTC survival
565 and recurrence by potentiating FGF signaling**

566 Given the above findings, we assessed whether the addition of exogenous FGF ligands
567 can increase the number of viable RTCs in vitro. Indeed, we found that addition of FGF1 to
568 sgRosa cells for 4 days initiated concurrently with doxycycline withdrawal resulted in a near
569 doubling of the number of viable RTCs compared to vehicle controls (dotted line) (**Fig. S7P**).
570 This FGF1-induced increase in viable dormant RTCs was impaired in sgB3galt6, sgHs6st1, and
571 sgFgfr2 cells vs. sgRosa controls (**Fig. S7P**). These findings suggest that heparan sulfate
572 (synthesized by B3GALT6), particularly 6-O-sulfation (catalyzed by HS6ST1), as well as FGFR2
573 are key components of FGF signal transduction in dormant RTCs.

574 Next, we asked if the impaired response to FGF1 in sgB3galt6 and sgHs6st1 RTCs
575 compared to sgRosa RTCs could be rescued by the addition of heparin, which is natively
576 sulfated, including at the 6-O site. We treated Her2-dependent tumor cells with FGF1, heparin,
577 or a combination of FGF1 + heparin for 7 days post-doxycycline withdrawal (D7, dormant). We
578 found that heparin could rescue the blunted response to exogenous FGF1 stimulation observed
579 in sgB3galt6 and sgHs6st1 cells (**Fig. 7H**). These data are consistent with a model wherein
580 heparan 6-O-sulfation potentiates FGF signaling to promote the survival of dormant RTCs in
581 vitro.

582 We wished to determine whether heparan 6-O-sulfation and FGF signaling promote
583 dormant RTC viability and tumor recurrence as suggested by the CRISPR screen results (**Fig.**
584 **2D, 7F**). We assessed viable RTC number for sgRosa, sgB3galt6, sgHs6st1, and sgFgfr2-
585 transduced Her2-dependent-Cas9 cells at D7 (*deinduction*). Consistent with our hypothesis,
586 dormant tumor cells deleted for each of these genes exhibited significantly impaired survival

587 during dormancy vs. sg*Rosa* control cells (**Fig. S7Q**). This suggests that heparan 6-O-sulfation
588 potentiates endogenous FGF signaling mediated by FGFR2 to promote the survival of dormant
589 RTCs *in vitro*.

590 To extend these findings *in vivo*, we injected GFP-labeled sg*Rosa*, sg*Hs6st1*, and
591 sg*Fgfr2* Her2-dependent-Cas9 cells into mice maintained on doxycycline. Her2-driven PT
592 samples (*baseline*) as well as D7 RL samples following doxycycline withdrawal were harvested
593 for TUNEL staining. This revealed a significant increase in the percentage of TUNEL+ sg*Hs6st1*
594 ($p=0.003$) and sg*Fgfr2* ($p=0.04$) tumor cells in D7 RL vs. sg*Rosa* controls (**Fig. 7I, J**). In
595 contrast, we found no significant differences in the percentage of TUNEL+ tumor cells in
596 sg*Hs6st1*, sg*Fgfr2*, and sg*Rosa* PT samples. These data indicate that sg*Hs6st1* and sg*Fgfr2*
597 dormant RTCs display a selective impairment in RTC, but not PTC, survival compared to the
598 controls, in a manner analogous to our findings for sg*B3galt6*.

599 Finally, to determine the impact of HS6ST1 and FGFR2-mediated pro-survival effects on
600 tumor recurrence, we performed recurrence-free survival assays in mice bearing dormant RLs
601 derived from sg*Hs6st1* or sg*Fgfr2* Her2-dependent tumor cells. Analogous to our findings for
602 sg*B3galt6*, mice bearing dormant RLs containing sg*Hs6st1* or *Fgfr2* tumor cells exhibited
603 delayed recurrence-free survival compared to sg*Rosa* controls ($p=0.02$, HR=0.42; and $p=0.006$,
604 HR=0.35, respectively) (**Fig. 7K**). This demonstrates that HS6ST1 and FGFR2 are each
605 required for efficient tumor recurrence.

606 In aggregate, the above studies are consistent with a model in which HS6ST1 is
607 reversibly upregulated during dormancy, which results in the selective upregulation of heparan
608 sulfate 6-O-sulfation in dormant RTCs and potentiation of FGF1 signaling via FGFR2, thereby
609 enhancing dormant RTC survival. This, in turn, promotes tumor recurrence, as reflected by the
610 delay in the median time-to-recurrence observed for tumor cells deleted for either *Hs6st1* or
611 *Fgfr2*.

612

613 **Discussion**

614 Residual tumor cells (RTCs) that persist following primary tumor therapy have long been
615 recognized as the precursors of treatment-refractory recurrent disease that determines patient
616 mortality. While a small number of post-adjuvant clinical trials to identify and target dormant
617 RTCs in early stage breast cancer patients are currently underway^{61,62}, there is a pressing need
618 to identify unique biological vulnerabilities of dormant RTCs.

619 In this study, we address this unmet clinical need by identifying novel, actionable
620 dependencies of RTC fitness that could be leveraged to prevent tumor recurrence. Utilizing a
621 combination of in vivo and in vitro derived gene expression data from mouse models and breast
622 cancer patients, a CRISPR-Cas9-based screen, and functional validation studies in mouse
623 models for tumor dormancy and recurrence, we found that dormant RTCs create – in a cell
624 autonomous manner – an extracellular environment that is conducive to their own survival. In
625 particular, we determined that dormant RTCs selectively upregulate the B3GALT6-mediated
626 synthesis of heparan sulfate proteoglycans in both therapy-associated and microenvironment-
627 induced models of dormancy. Underscoring the clinical relevance of these data, we observed
628 that increased heparan sulfate synthesis in primary tumors in patients is associated with poor
629 recurrence-free survival. Mechanistically, we found that dormant RTCs reversibly upregulate not
630 only B3GALT6-mediated heparan sulfate synthesis, but also HS6ST1-mediated 6-O-sulfation of
631 heparan sulfate proteoglycans, as well as *Fgf1* and *Fgfr2* expression, in a dormancy-specific
632 manner. These orchestrated effects result in enhanced FGF1 signaling via FGFR2, enhanced
633 dormant RTC survival, and accelerated tumor recurrence. In aggregate, our findings identify the
634 B3GALT6-heparan sulfate/HS6ST1-6-O-sulfation/FGF1-FGFR2 signaling axis (**Fig. S7N**) as a
635 potential therapeutic target for preventing tumor recurrence from dormant RTCs.

636 Proteoglycans have pleiotropic functions in both normal physiology and during cancer
637 initiation and progression²³. Individual proteoglycans have been implicated as regulators of
638 tumor cell growth, angiogenesis, epithelial-to-mesenchymal transition, anoikis, extravasation,

639 and colonization of metastatic locations⁶³. In contrast, little is known about potential roles for
640 proteoglycans during the dormant phase of cancer progression⁶⁴, and fewer studies still have
641 dissected the function of the protein core of proteoglycans from that of their GAG chains.

642 Our findings identify B3GALT6 as a potent regulator of dormant RTC survival and
643 recurrence. To date, a role for B3GALT6 in cancer has not been reported. Because B3GALT6 is
644 essential for synthesis of the tetrasaccharide required for covalent linkage of GAG chains to
645 their protein core²⁸, genetic deletion of *B3galt6* permits the role of GAGs in tumor progression to
646 be specifically investigated, as opposed to their protein cores. Prior studies of B3GALT6 in
647 vertebrate models have been limited to genetic loss in a zebrafish model⁴⁶ generated for study
648 of two pathogenic conditions observed in patients with biallelic loss of *B3GALT6*: spEDS and
649 SEMD-JL1^{29,31}. Accordingly, while zebrafish with *b3galt6* loss-of-function recapitulate the
650 connective tissue defects observed in spEDS and SEMD-JL1 patients, the extent to which the
651 pathways underlying B3GALT6-mediated functions in connective tissues, and those explaining
652 the dependence of dormant epithelial tumor cells on this enzyme, are shared – if at all –
653 remains to be determined.

654 The levels and spatial patterns of heparan sulfation strongly influence the extracellular
655 ligand milieu and the extent to which proteoglycans elicit signaling in cells²⁶. In addition to the
656 dormancy-associated upregulation of heparan sulfate proteoglycans in our model, we
657 discovered an upregulation of the extent of heparan sulfation in dormant residual tumor cells. A
658 recent study in melanoma cells identified increased levels of a transporter of the sulfate donor
659 PAPS (i.e., SLC35B2) and downstream heparan sulfation as a dependency of melanoma cells
660 that are refractory to MAPK pathway inhibition⁶⁵. In light of our study, these data may suggest
661 the possibility that increased heparan sulfation may constitute an adaptive mechanism of drug
662 resistance in multiple cancer types, although the site of heparan sulfation and dependence of
663 this phenotype on FGF signaling were not addressed in this study.

664 Heparan 6-O sulfation is required for formation of the ternary heparan sulfate-FGF-
665 FGFR complex and, therefore, FGF pathway activity^{56,57}. In particular, 6-O-sulfation is a strong
666 determinant of FGF1 binding⁵⁹. FGF signaling is classically thought to play a mitogenic function
667 in tumor cells^{8,66}. However, recent data suggest a context-dependent role for FGF signaling in
668 promoting breast cancer therapy resistance and growth arrest. FGF2 derived from osteogenic
669 cells in the bone marrow can suppress the expression of estrogen receptor (ER) in
670 disseminated breast cancer cells via FGFR1, rendering them resistant to endocrine therapy⁶⁷.
671 Furthermore, exogenously-derived FGF2 induces cell cycle arrest in ER+ breast cancer cell
672 lines, such as MCF7 and T47D⁶⁸, and can induce the expression of the pro-dormancy
673 transcription factor ZFP281 in early disseminated cancer cells⁶⁹. In contrast to these examples
674 in which FGF2 can promote dormancy predominantly via FGFR1, our data suggest dormant
675 RTC survival is mediated by tumor cell-autonomous FGF1 in a heparan sulfate-FGFR2
676 dependent manner. In this regard, we found that genetic depletion of FGFR2 induced RTC
677 apoptosis and significantly delayed recurrence. Consistent with this, our CRISPR screen
678 identified *Fgfr2*, but not *Fgfr1*, as a vulnerability in dormant RTCS. These data suggest the
679 intriguing possibility that highly selective FGFR2 pharmacological inhibitors currently in clinical
680 trials in other solid tumors (NCT04526106⁷⁰, NCT04071184⁷¹) could be leveraged in the
681 adjuvant or post-adjuvant setting, to exploit the dependency of dormant RTCS on FGF signaling
682 for their survival and recurrence.

683 Although heparan 6-O-sulfation has been reported to increase the affinity of VEGFA
684 binding to VEGFR2⁷², both VEGFA and VEGFR2 gene expression levels are downregulated
685 during dormancy in our model, thereby providing further evidence for the selective effects of
686 FGF signaling in the context of dormancy and heparan 6-O-sulfation. Consistent with this, we
687 have not observed evidence supporting angiogenic impairment as a mechanism of dormancy in
688 our model⁶. Notably, desulfation of heparan sulfate at the 6-O position is catalyzed by the
689 sulfatases, SULF1 and SULF2⁵³. As such, our data demonstrating that heparan 6-O-sulfation is

690 preferentially increased during dormancy is compatible not only with models in which
691 sulfotransferase activity is upregulated, as we have shown occurs during dormancy, but also
692 with models in which sulfatase activity is downregulated. Although we observe no
693 downregulation of *Sulf1* and *Sulf2* levels in dormancy, further investigation into the regulation of
694 6-O-sulfation during breast cancer progression is a promising avenue of future research.

695 Intriguingly, our studies implicate heparan sulfate, rather than chondroitin sulfate, as the
696 key GAG responsible for promoting RTC fitness. Although our study is focused on the glycan
697 component of proteoglycans, the core protein may also play an important role beyond serving
698 as a scaffold for the attachment of GAGs. Indeed, sequences within the core protein can
699 influence the stoichiometry⁷³ and sulfation pattern of GAG chains⁷², with important biological
700 consequences⁷⁴. The heparan sulfate proteoglycan family orchestrates diverse physiological
701 functions²⁶ and includes transmembrane syndecans (SDC1-4), 6 glycophosphatidylinositol
702 (GPI)-anchored glypicans (GPC1-6), as well as secreted perlecan, agrin, and collagen XVIII that
703 are deposited in the extracellular matrix²⁵. Additionally, betaglycan (also known as TGFBR3)
704 and a splice variant of CD44 (CD44v3) can be modified by GAGs, including heparan sulfate,
705 and act as 'part-time' proteoglycans²⁵. Determining which heparan sulfate proteoglycans
706 contribute to RTC survival in breast cancer models, and whether their functions are dependent
707 on the heparan sulfate GAG are intriguing directions to pursue.

708 In conclusion, our study identifies a dormancy-specific function for the B3GALT6-
709 heparan sulfate/HS6ST1-6-O-sulfation/FGF1-FGFR2 signaling axis in maintaining RTC survival.
710 In addition to ascribing a critical role to an understudied class of compounds, namely
711 glycosaminoglycans, in breast cancer progression, our study leverages this information to
712 identify novel therapeutic vulnerabilities for depleting RTCs in an effort to mitigate the
713 development of incurable recurrences.

714

715

716 **Acknowledgments**

717 We thank Dr. Junwei Shi and his laboratory for their advice on developing and performing the
718 CRISPR-Cas9 screen, Dr. Mikala Egeblad for the gift of D2.OR and D2A1 cells, Jianping Wang
719 for histology assistance, Mousumi Paulchakrabarti for GRIL-LC/MS assistance, and Cuyler Luck
720 as well as members of the Chodosh laboratory for their invaluable input that led to the
721 development of techniques used in this study. This project was supported in part by grants from
722 the NIH and the Breast Cancer Research Foundation to L.A.C. and by a grant from DOD to A.S.

723

724 **Author contributions**

725 Conceptualization, A.S., J.D.E., and L.A.C.; Methodology, A.S., M.L., B.C., T.P., D.K.P., C.J.S.,
726 G.K.B., T.T., B.B., M.E., and F.E.M.; Investigation, A.S., M.L., B.C., T.P., and D.K.P.; Writing,
727 A.S. and L.A.C.; Funding Acquisition, A.S. and L.A.C.

728

729 **Declaration of interests**

730 L.A.C. has served as an expert witness and consultant in litigation involving Teva
731 Pharmaceuticals, Sanofi, Lilly, Whittaker, Clark and Daniels, Imerys, Colgate, and Sterigenics.

732

733

734

735

736

737

738

739

740

741 **STAR Methods**

742 **In vitro assays**

743 *MTB/TAN*-derived primary tumor cells were cultured in DMEM (Corning, Cat. # 10-017-
744 CV) containing 10% super calf serum (GeminiBio, Cat. # 100-510), 1% Penicillin/Streptomycin
745 (Thermo Fisher Scientific, Cat. # 15-140-122), 1% Glutamine (Thermo Fisher Scientific, Cat. #
746 25030081), 2mg/ml Doxycycline (RPI, Cat. # D43020-250.0), 5mg/ml Prolactin (NHPP, Cat. #
747 NIDDK-oPRL-21), 5mg/ml Insulin (GeminiBio, Cat. # 700-112P), 10ug/ml EGF (Millipore, Cat. #
748 E4127), 1mg/ml Hydrocortisone (Sigma, Cat. # H0396), 1mM Progesterone (Sigma, Cat. #
749 P7556).

750 For in vitro dormancy experiments, cells were plated on D-3 in medium as above,
751 transitioned to medium as above containing 1% super calf serum on D-2, and transitioned to
752 medium containing 1% super calf serum and no Doxycycline on D0. Plates were harvested at
753 dormancy deinduction time points as desired, while medium containing 1% super calf serum
754 and no Doxycycline was replaced on remaining plates weekly. Reinduction plates were
755 harvested at time points as desired following 48h or 72h treatment with medium containing 1%
756 super calf serum and doxycycline as indicated in the figures.

757 D2.OR and D2A1 cells were a gift from Dr. Mikala Egeblad at Cold Spring Harbor
758 Laboratories. These cells were maintained in DMEM (Corning, Cat. # 10-017-CV) containing
759 10% fetal bovine serum (GeminiBio, Cat. # 100-106), 1% Penicillin/Streptomycin (Thermo
760 Fisher Scientific, Cat. # 15-140-122).

761 Cell viability assays (2D and 3D) were performed as per manufacturer's instructions
762 using the Cell Titer 96 Non-Radioactive Cell Proliferation Assay (Promega, Cat. # G4000) in 96-
763 well plates.

764

765 **3D assays**

766 D2.OR and D2A1 cells were plated on top of a matrix of basement membrane extract
767 (Cultrex 3D Basement Membrane Extract, Reduced Growth Factor, Trevigen Cat. # 3445-005-
768 01) or a 1:1 ratio of basement membrane extract and neutralized type I collagen (Cultrex 3D
769 Culture Matrix Rat Collagen I, Trevigen Cat. # 3447-020-01). For experiments in 96-well plates
770 (Corning, Cat. # 353219), 50 μ l of the matrix was added per well and were solidified for 1h at
771 37°C. D2.OR and D2A1 cells were resuspended at 20,000 cells/ml in DMEM low glucose, low
772 pyruvate medium (Thermo Fisher Scientific, Cat. # 11885092) containing 2% fetal bovine serum
773 (GeminiBio, Cat. # 100-106), 2% basement membrane extract, 1% Penicillin/Streptomycin
774 (Thermo Fisher Scientific, Cat. # 15-140-122), and 100 μ l per well was plated on top of the
775 solidified matrices. Plates were harvested at desired time points and medium was replaced on
776 remaining plates every 4 days. Cell viability in the harvested plates was assayed using the
777 CellTiter Non-Radioactive Cell Proliferation Assay (Promega, Cat. # G4000) as per
778 manufacturer's instructions.

779 D2.OR and D2A1 cells were similarly cultured in 18 well Glass Bottom chamber slides
780 (ibidi, Cat. # 81817) for immunofluorescence with the following modifications - 20 μ l of the matrix
781 was added per well and wells were solidified for 1h at 37°C following which 200 cells were
782 added to each well.

783

784 **RNA sequencing**

785 *MTB/TAN* cells were cultured in vitro under dormancy conditions as described. Samples
786 were harvested at baseline (D0), deinduction (8 h, D1, D3, D7, D14, D28), and reinduction
787 (D7+, D14+, and D28+) timepoints. RNA isolation was performed using the RNeasy Mini kit
788 (Qiagen, Cat. # 74106) and sequencing libraries were prepared using the TruSeq Stranded
789 mRNA for NeoPrep kit (Illumina, Cat. # NP-202-1001). Sequencing was performed using 75-bp
790 paired-end NextSeq (Illumina, Cat. # 20024907).

791 The quality of raw reads was assessed using FASTQC. Sequenced reads were mapped
792 to the mm10 *Mus musculus* reference genome using Spliced Transcripts Alignment to a
793 Reference (STAR). Gene-level read counts were determined using featureCounts. Principal
794 component analysis (PCA) was performed using the top 1000 most variable genes assessed by
795 per-gene standard deviations and was used to exclude distinct outliers from the downstream
796 analysis. Read counts across samples were normalized and differentially expressed genes were
797 identified using DESeq2.

798

799 **Animal experiments**

800 All animal studies were approved by the University of Pennsylvania Institutional Animal
801 Care and Use Committee (IACUC). In vivo competition assays and recurrence-free survival
802 assays were performed as previously described. Briefly, 1e06 cells (1:1 mixture of GFP⁺ and
803 mCherry⁺ cells for competition assays or unmixed cells for recurrence-free survival assays and
804 the CRISPR-Cas9 screen) were transplanted into the inguinal #4 mammary fat pads of *nu/nu*
805 female mice (NCRNU-F, Taconic) and administered 2mg/ml doxycycline/5% sucrose via
806 drinking water. Mice were de-induced by switching to regular drinking water once mammary
807 tumors reached target size (5x5mm for competition assays; 3x3mm for recurrence-free survival
808 assays and the CRISPR-Cas9 screen). Mice were palpated thrice a week and time-to-
809 recurrence was assessed by Kaplan-Meier analysis. At the time of harvest, mice were
810 administered 50mg/kg EdU (i.p.) 2h prior to euthanasia.

811

812 **Plasmids and lentiviral production**

813 LentiV_Cas9_puro (Addgene, Cat. # 108100) was used to generate Cas9 expressing
814 *MTB/TAN*-derived primary tumor cells. LRG2.1 (Addgene, Cat. # 108098), LRG (Addgene, Cat.
815 # 65656), or LRmCherry2.1 (Addgene, Cat. # 108099) vector backbones were utilized for
816 cloning sgRNAs for CRISPR-Cas9 studies. For each sgRNA, sense and antisense oligos were

817 phosphorylated and annealed and then ligated into BsmB1-digested vector. Ligated vectors
818 were transformed into the chemically competent Stbl3 bacteria (Thermo Fisher Scientific, Cat. #
819 C737303). Successfully transformed bacterial clones were picked from Ampicillin selective
820 plates and isolated DNA was sequenced using a U6 primer to confirm sgRNA incorporation.

821 Lentiviruses were generated in HEK293T cells using the TransIT-293 transfection
822 reagent (Mirus, Cat. # MIR2700) to introduce packaging plasmids pMD2.G (Addgene, Cat. #
823 12259; 3 μ g) and psPAX2 (Addgene, Cat. # 12260; 6 μ g), and 9 μ g of the desired backbone
824 containing the sgRNA of interest. sgRNA lentiviruses were titered by serial dilution in *MTB/TAN*-
825 derived primary tumor cells using the fluorophore associated with the vector backbones as a
826 readout by on the Attune NxT flow cytometry (Thermo Fisher).

827

828 **CRISPR-Cas9 screen**

829 Of the genes that were selectively enriched during dormancy *in vitro* that were
830 encompassed by extracellular matrix-associated gene ontology terms, 95 genes were selected
831 for CRISPR-Cas9 screening *in vivo*. In addition, positive control sgRNAs targeting genes that
832 are known to be functional during disease progression (pro-proliferative and pro-survival genes)
833 and negative control sgRNAs that are non-targeting were also included in this library. For the 95
834 genes, 4-5 sgRNAs were designed for each gene resulting in a total of 509 sgRNAs.
835 Additionally, a size-matched library of non-targeting sgRNAs was prepared to aid data analysis.

836 sgRNAs were designed to target conserved functional domains that display low
837 computationally predicted off-target scores using the GUIDES tool
838 (<http://guides.sanjanalab.org/>), preferentially picking sgRNAs that have an A/T nucleotide at the
839 17th position of the sgRNA sequence. This approach maximizes functionally 'null' mutations and
840 circumvents the need for subcloning the cells, thus maintaining their heterogeneity. These
841 sgRNA oligo pools were cloned into the LRG expression vector following which the plasmid pool
842 was amplified, purified, and packaged into lentiviruses. To ensure that *MTB/TAN*-Cas9 cells

843 receive only one sgRNA/cell, the lentiviral library was titered using the GFP selectable marker
844 by flow cytometry (Attune NxT Thermo Fisher) and transduced at an MOI=0.3. Finally, the
845 transduced cells were sorted (MoFlo Astrios, Beckman Coulter Life Sciences) and expanded
846 prior to transplantation *in vivo*. All steps were performed such that each sgRNA was
847 represented in >1500 cells/sgRNA to maintain coverage and improve the robustness of
848 downstream analyses.

849 All samples harvested from mouse primary tumors and residual lesions were
850 microdissected under a stereoscope and homogenized for genomic DNA extraction using the
851 Quick-DNA Midiprep Plus kit (Zymo Research, Cat. # D4075). sgRNA inserts were amplified by
852 PCR using the Phusion Flash High Fidelity PCR Master Mix (Thermo Fisher, Cat. # F548),
853 followed by barcode and adapter addition. The libraries were then pooled, mixed with 5% PhiX
854 (Thermo Fisher, Cat. # FC-110-3001) and massively parallel sequenced using the MiSeq
855 reagent kit v3 150 cycle (Illumina, Cat. # MS-102-3001) on the MiSeq Instrument (Illumina).

856

857 **Histology**

858 When harvesting 3D assays for immunofluorescence, medium was aspirated and
859 immediately fixed in 2% paraformaldehyde (Santa Cruz Biotechnology, Cat. # sc-281692) in
860 PBS for 20 min at room temperature. Cells were then permeabilized in PBS containing 0.5%
861 Triton X-100 for 10 min at room temperature. Wells were then rinsed three times in 1x PBS
862 containing 100mM glycine before proceeding with the immunofluorescence protocol.

863 For *in vitro* immunofluorescence/labeling studies, *MTB/TAN*-derived primary tumor cells
864 were cultured on glass coverslips (Bellco Glass Inc., Cat. # 1943-010015A) and treated with
865 5 μ M EdU for 2h before harvest. Coverslips containing cells were fixed in 4% paraformaldehyde
866 for 15 min at room temperature. Cells were then permeabilized in PBS containing 0.5% Triton
867 X-100 for 20 min at room temperature followed by wash steps in 3% bovine serum albumin in 1x
868 PBS before proceeding with the immunofluorescence protocol.

869 For in vivo immunofluorescence/labeling studies, inguinal #4 mammary fat pads
870 containing primary tumors, residual lesions, or recurrent tumors were dissected and fixed
871 overnight in 4% paraformaldehyde overnight at 4°C. Samples were thoroughly washed and
872 dehydrated prior to paraffin embedding and sectioning at 5µm. Slides were prepared by serial
873 deparaffinization and rehydration followed by PBS washes and antigen retrieval in R-Buffer A
874 (Electron Microscopy Sciences, Cat. # 62706-10) or R-Buffer B (Electron Microscopy Sciences,
875 Cat. # 62706-11) using a retriever (Aptum, Cat. # RR2100-EU).

876 For GAG immunofluorescence, specificity controls were included where tissue sections
877 were treated with Chondroitinase ABC (Amsbio, Cat. # AMS.E1028-02; 10mU/µl at pH 8) or
878 Heparin lyase (Amsbio, Cat. # AMS.HEP-ENZ III-S; 20mU/µl at pH 7) at 37°C for 1h prior to
879 immunofluorescence.

880 For labeling studies using coverslips for EdU (Thermo Fisher Scientific, Cat. # C10640)
881 or on tissues for EdU (Sigma Aldrich, Cat. # BCK647-IV-IM-S) or TUNEL (Thermo Fisher
882 Scientific, Cat. # C10619) samples were processed as per manufacturer's instructions prior to
883 immunofluorescence.

884 Immunofluorescence samples were blocked with 5% goat serum in 1x PBS with mouse-
885 on-mouse block (Vector Laboratories, Cat. # BMK-2202), washed 3 times in 1x PBS and
886 incubated overnight at 4°C with primary antibodies or matched isotype controls diluted in 5%
887 goat serum in 1x PBS with mouse-on-mouse diluent (Vector Laboratories, Cat. # BMK-2202) as
888 follows: Primary antibodies - Rat anti-Ki67 (Thermo Fisher Scientific, Cat. # 14-5698; 1:100),
889 Rabbit anti-Her2 (Cell Signaling, Cat. # 2165; 1:100), Rabbit anti-cleaved Caspase-3 (Cell
890 Signaling, Cat. # 9664; 1:250), Mouse anti-Chondroitin sulfate (Sigma, Cat. # SAB4200696),
891 Mouse anti-Heparan sulfate (Amsbio, Cat. # 370225), Rabbit anti-GFP (Cell Signaling, Cat. #
892 2956; 1:200), and Mouse anti-GFP (Living Colors, Cat. # 632381; 1:250). Isotype controls - Rat
893 IgG (Thermo Fisher Scientific, Cat. # 02-9602), Rabbit IgG (Thermo Fisher Scientific, Cat. # 02-
894 6102), Mouse IgG2a kappa (Thermo Fisher Scientific, Cat. # 14-4724-82).

895 After performing 3 washes with 1x PBS, samples were incubated with secondary
896 antibodies at 37°C for 1h as follows: Secondary antibodies - Goat anti-mouse IgG2a Alexa488
897 (Thermo Fisher Scientific, Cat. # A21131; 1:1000), Goat anti-rabbit IgG Alexa488 (Thermo
898 Fisher Scientific, Cat. # A11034; 1:1000), Goat anti-rabbit IgG Alexa594 (Thermo Fisher
899 Scientific, Cat. # A11012; 1:1000), Goat anti-rat IgG Alexa568 (Thermo Fisher Scientific, Cat. #
900 A11077; 1:1000), Goat anti-mouse IgM Alexa568 (Abcam, Cat. # ab175702; 1:1000).

901 Following incubation with secondary antibodies, samples were washed 3 times with 1x
902 PBS and incubated with 0.5µg/ml Hoechst 33258 for 10 min at room temperature for nuclear
903 counter staining. Samples were mounted using ProLong gold (Thermo Fisher Scientific, Cat. #
904 P36934) and imaged using a DM 5000B Automated Upright Microscope with a DFC350 FX
905 monochrome digital camera (Leica Microsystems). Images were quantified using QuPath-0.3.0
906 open source software.

907

908 **Droplet digital PCR**

909 Microdissected lesions from the in vivo experiments or cells harvested from the in vitro
910 dormancy experiment were processed for genomic DNA isolation using the Quick-DNA Midiprep
911 Plus kit (Zymo Research, Cat. # D4075) kit, or the QIAamp DNA mini kit (Thermo Fisher, Cat. #
912 51304), respectively. To quantify the numbers of GFP⁺ and mCherry⁺ cells, 50ng of genomic
913 DNA/sample was added together with the ddPCR Supermix for Probes (Bio-Rad, Cat. #
914 1863025) and the probes of interest: GFP (Bio-Rad, Cat. # dCNS372378948), mCherry (Bio-
915 Rad, Cat. # dCNS507694046), and the control ApoB (Bio-Rad, Cat. # dMmuCNS4075944696).
916 Droplets were generated using the AutoDG system (Bio-Rad, Cat. # 1864101) followed by PCR
917 under the following conditions: 95°C for 5 min; 40 cycles at 94°C for 30 sec and 60°C for 1 min;
918 98°C for 10 min. Droplets were analyzed using the QX200 Droplet Reader (Bio-Rad, Cat. #
919 1864003). Droplet-derived copy numbers were first normalized to ApoB numbers to normalize

920 input and then converted to cell numbers by using the average copy number derived from singly
921 transduced cells.

922

923 **Western blot**

924 Western blots were performed as described using the following antibodies: β-Tubulin
925 (BioGenex, Cat. # MU122). Secondary antibodies used were anti-mouse 680LT (LI-COR
926 Biosciences 925-68020), anti-rabbit 800CW (LI-COR Biosciences, Cat. # 925-32211), and anti-
927 rat 800CW (LI-COR Biosciences, Cat. # 925-32219). Fluorescent signals were detected using
928 the Odyssey detection system (LI-COR Biosciences), and band intensities were quantified using
929 the Image Studio Ver 2.0 software (LI-COR Biosciences).

930

931 **Glycan reductive isotope labeling – mass spectrometry (GRIL-LC/MS)**

932 *MTB/TAN*-derived primary tumor cells were cultured for an in vitro dormancy time course
933 as previously described and harvested at baseline (D0), deinduction (D7, D28), and reinduction
934 (D28+) time points. At the time of harvest, cells were kept on ice, thoroughly washed 2 times
935 with ice cold 1x PBS, and gently scraped into 1x PBS. Cells were pelleted down at 1500 rpm
936 and the pellets were flash frozen for further analysis.

937 GAG isolation and purification was performed by sonicating the cell pellet in ultrapure
938 distilled water (Invitrogen, Cat. # 10977-015) containing measured amount of protease inhibitor
939 cocktail SetIII, EDTA free (EMD Millipore, Cat. # 539134-1ml) followed by adding equal volume
940 of 2X wash buffer (100mM NaOAc and 400mM NaCl; pH 6). Protein digestion was done using
941 bacterial protease (Sigma, Cat. # P5147) at a concentration of 0.4mg/ml at 37°C overnight
942 (16h). Samples were then loaded on to a Poly-Prep column (Bio-Rad, Cat. # 731-1550) packed
943 with pre-equilibrated DEAE Sephadex gel (Sigma, Cat. # 16505). Columns were washed with 10
944 bed volume of wash buffer (50mM NaOAc containing 200mM NaCl; pH 6) and bound GAG were

945 eluted using elution buffer (50mM NaOAc containing 1M NaCl; pH 6). Eluted samples were then
946 loaded on to a PD10 desalting column (GE Healthcare, Cat. # 17-0851-01) pre-washed with
947 10% ethanol. Desalted GAG samples in 10% ethanol were lyophilized and used for further
948 analysis.

949 Lyophilized samples were resuspended in MilliQ water and distributed for enzymatic
950 digestion of chondroitin sulfate and heparan sulfate at 37°C for 24h using 30mU of
951 Chondroitinase ABC (Amsbio, Cat. # AMS.E1028-02) and 10mU of Heparinase I, II, III (Ibex,
952 Cat. # PN 50-010; PN 50-011; PN 50-012 Heparinase I, II, and III), respectively. Digested
953 samples were spin-filtered using a 3K MWCO spin filtering unit (Pall Life Sciences, Cat. #
954 OD003C34) and tagged with ¹²C₆-aniline in the presence of a reducing agent 1M NaCNBr in a
955 mixture of DMSO: HOAc (65:35 v/v). Reductive isotope labeling is performed at 65°C for 45
956 minutes, followed by incubation at 37°C for 16 h. Samples were mixed with internal standards
957 (¹³C₆-aniline tagged disaccharides from chondroitin sulfate and heparan sulfate respectively)
958 and LC/MS is performed in negative mode using an LTQ-Orbitrap (Thermo Fisher Scientific)
959 mass spectrometer.

960

961 **Statistics**

962 For each gene expression signature in each data set, signature scores were calculated
963 as weighted averages of z-score transformed expression data across signature genes, where
964 the z-score transformation was done for each gene across the samples, and the weights are 1
965 for genes expected to be positively associated with the signature target (e.g. dormancy) and -1
966 for genes expected to be negatively associated with the signature target.

967 CRISPR screen sequencing reads were de-convoluted using the unique barcodes
968 associated with each sample and mapped to sgRNA sequences. The abundance of each
969 sgRNA was normalized by the median of ratios (MoR, as implemented in DESeq2), the total
970 read count (T, as % of total), the robust z-score (RZ, with median-centering and MAD-scaling),

971 trimmed mean of M-values (TMM, as implemented in edgeR), and normalized rank (NR, as
972 percentile rank) following which depletion and enrichment scores for each sgRNA were
973 calculated by MAGeCK or the Mann-Whitney U test followed by robust rank aggregation (RRA).
974 False positive rates were controlled for using data from the size matched non-targeting negative
975 control (NC) sgRNA library. In addition to the five normalization methods above, an NC-centric
976 version of MoR was done using negative control gRNAs to calculate scaling factors instead of
977 using all gRNAs, and an NC-centric version of RZ was done using the median and MAD values
978 calculated from negative control gRNAs instead of all gRNAs. Methods with the highest
979 sensitivity were as follows: MAGeCK-RRA-M, MAGeCK-RRA-T, MW-RRA-MoR, MW-RRA-
980 NC_MoR, MW-RRA-NC_RZ, MW-RRA-NR, MW-RRA-RZ, MW-RRA-TMM. Using p values from
981 the 8 tests above, hits called by a larger number of tests were prioritized for further validation.

982 To determine differences between multiple groups, ANOVA followed by Tukey's multiple
983 comparisons test was used. In cases where the data were not normally distributed, the Mann-
984 Whitney U test was used to determine statistical significance. Survival curves were subjected to
985 Kaplan-Meier analysis and p values and hazard ratios were calculated using the Mantel-
986 Haenszel method.

987

988

989

990

991

992

993

994

995

996

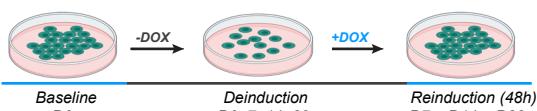
997 **References**

- 998 1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and
999 Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
1000 Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* 71, 209-249.
1001 10.3322/caac.21660.
- 1002 2. Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P., Peto, R., Pritchard,
1003 K.I., Bergh, J., Dowsett, M., et al. (2017). 20-Year Risks of Breast-Cancer Recurrence
1004 after Stopping Endocrine Therapy at 5 Years. *N Engl J Med* 377, 1836-1846.
1005 10.1056/NEJMoa1701830.
- 1006 3. Pedersen, R.N., Esen, B.O., Mellemkjaer, L., Christiansen, P., Ejlertsen, B., Lash, T.L.,
1007 Norgaard, M., and Cronin-Fenton, D. (2021). The Incidence of Breast Cancer
1008 Recurrence 10-32 Years after Primary Diagnosis. *J Natl Cancer Inst.*
1009 10.1093/jnci/djab202.
- 1010 4. Pantel, K., Schlimok, G., Braun, S., Kutter, D., Lindemann, F., Schaller, G., Funke, I.,
1011 Izbicki, J.R., and Riethmuller, G. (1993). Differential expression of proliferation-
1012 associated molecules in individual micrometastatic carcinoma cells. *J Natl Cancer Inst*
1013 85, 1419-1424. 10.1093/jnci/85.17.1419.
- 1014 5. Moody, S.E., Sarkisian, C.J., Hahn, K.T., Gunther, E.J., Pickup, S., Dugan, K.D.,
1015 Innocent, N., Cardiff, R.D., Schnall, M.D., and Chodosh, L.A. (2002). Conditional
1016 activation of Neu in the mammary epithelium of transgenic mice results in reversible
1017 pulmonary metastasis. *Cancer Cell* 2, 451-461. 10.1016/s1535-6108(02)00212-x.
- 1018 6. Ruth, J.R., Pant, D.K., Pan, T.C., Seidel, H.E., Baksh, S.C., Keister, B.A., Singh, R.,
1019 Sterner, C.J., Bakewell, S.J., Moody, S.E., et al. (2021). Cellular dormancy in minimal
1020 residual disease following targeted therapy. *Breast Cancer Res* 23, 63. 10.1186/s13058-
1021 021-01416-9.
- 1022 7. Gunther, E.J., Moody, S.E., Belka, G.K., Hahn, K.T., Innocent, N., Dugan, K.D., Cardiff,
1023 R.D., and Chodosh, L.A. (2003). Impact of p53 loss on reversal and recurrence of
1024 conditional Wnt-induced tumorigenesis. *Genes Dev* 17, 488-501. 10.1101/gad.1051603.
- 1025 8. Janghorban, M., Yang, Y., Zhao, N., Hamor, C., Nguyen, T.M., Zhang, X.H., and Rosen,
1026 J.M. (2021). Single Cell Analysis Unveils the Role of the Tumor Immune
1027 Microenvironment and Notch Signaling in Dormant Minimal Residual Disease. *Cancer*
1028 Res. 10.1158/0008-5472.CAN-21-1230.
- 1029 9. Morris, V.L., Tuck, A.B., Wilson, S.M., Percy, D., and Chambers, A.F. (1993). Tumor
1030 progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor
1031 cell lines. *Clin Exp Metastasis* 11, 103-112. 10.1007/BF00880071.
- 1032 10. Morris, V.L., Koop, S., MacDonald, I.C., Schmidt, E.E., Grattan, M., Percy, D.,
1033 Chambers, A.F., and Groom, A.C. (1994). Mammary carcinoma cell lines of high and low
1034 metastatic potential differ not in extravasation but in subsequent migration and growth.
1035 *Clin Exp Metastasis* 12, 357-367. 10.1007/BF01755879.
- 1036 11. Naumov, G.N., MacDonald, I.C., Weinmeister, P.M., Kerkvliet, N., Nadkarni, K.V.,
1037 Wilson, S.M., Morris, V.L., Groom, A.C., and Chambers, A.F. (2002). Persistence of
1038 solitary mammary carcinoma cells in a secondary site: a possible contributor to
1039 dormancy. *Cancer Res* 62, 2162-2168.
- 1040 12. Ren, Q., Khoo, W.H., Corr, A.P., Phan, T.G., Croucher, P.I., and Stewart, S.A. (2022).
1041 Gene expression predicts dormant metastatic breast cancer cell phenotype. *Breast*
1042 *Cancer Res* 24, 10. 10.1186/s13058-022-01503-5.
- 1043 13. Ghajar, C.M., Peinado, H., Mori, H., Matei, I.R., Evasion, K.J., Brazier, H., Almeida, D.,
1044 Koller, A., Hajjar, K.A., Stainier, D.Y., et al. (2013). The perivascular niche regulates
1045 breast tumour dormancy. *Nat Cell Biol* 15, 807-817. 10.1038/ncb2767.

- 1046 14. Dai, J., Cimino, P.J., Gouin, K.H., 3rd, Grzelak, C.A., Barrett, A., Lim, A.R., Long, A.,
1047 Weaver, S., Saldin, L.T., Uzamere, A., et al. (2022). Astrocytic laminin-211 drives
1048 disseminated breast tumor cell dormancy in brain. *Nat Cancer* 3, 25-42.
1049 10.1038/s43018-021-00297-3.
- 1050 15. Albrengues, J., Shields, M.A., Ng, D., Park, C.G., Ambroco, A., Poindexter, M.E.,
1051 Upadhyay, P., Uyeminami, D.L., Pommier, A., Küttner, V., et al. (2018). Neutrophil
1052 extracellular traps produced during inflammation awaken dormant cancer cells in mice.
1053 *Science*. 10.1126/science.aoa4227.
- 1054 16. Barkan, D., Kleinman, H., Simmons, J.L., Asmussen, H., Kamaraju, A.K., Hoenorhoff,
1055 M.J., Liu, Z.Y., Costes, S.V., Cho, E.H., Lockett, S., et al. (2008). Inhibition of metastatic
1056 outgrowth from single dormant tumor cells by targeting the cytoskeleton. *Cancer Res* 68,
1057 6241-6250. 10.1158/0008-5472.CAN-07-6849.
- 1058 17. Korah, R., Boots, M., and Wieder, R. (2004). Integrin alpha5beta1 promotes survival of
1059 growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in
1060 bone marrow. *Cancer Res* 64, 4514-4522. 10.1158/0008-5472.CAN-03-3853.
- 1061 18. Aguirre-Ghiso, J.A., Liu, D., Mignatti, A., Kovalski, K., and Ossowski, L. (2001).
1062 Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity
1063 ratios that determine carcinoma cell proliferation or dormancy in vivo. *Mol Biol Cell* 12,
1064 863-879. 10.1091/mbc.12.4.863.
- 1065 19. Barney, L.E., Hall, C.L., Schwartz, A.D., Parks, A.N., Sparages, C., Galarza, S., Platt,
1066 M.O., Mercurio, A.M., and Peyton, S.R. (2020). Tumor cell-organized fibronectin
1067 maintenance of a dormant breast cancer population. *Sci Adv* 6, eaaz4157.
1068 10.1126/sciadv.aaz4157.
- 1069 20. Barkan, D., El Touny, L.H., Michalowski, A.M., Smith, J.A., Chu, I., Davis, A.S., Webster,
1070 J.D., Hoover, S., Simpson, R.M., Gauldie, J., and Green, J.E. (2010). Metastatic growth
1071 from dormant cells induced by a col-1-enriched fibrotic environment. *Cancer Res* 70,
1072 5706-5716. 10.1158/0008-5472.CAN-09-2356.
- 1073 21. Gao, H., Chakraborty, G., Zhang, Z., Akalay, I., Gadiya, M., Gao, Y., Sinha, S., Hu, J.,
1074 Jiang, C., Akram, M., et al. (2016). Multi-organ Site Metastatic Reactivation Mediated by
1075 Non-canonical Discoidin Domain Receptor 1 Signaling. *Cell* 166, 47-62.
1076 10.1016/j.cell.2016.06.009.
- 1077 22. Di Martino, J.S., Nobre, A.R., Mondal, C., Taha, I., Farias, E.F., Fertig, E.J., Naba, A.,
1078 Aguirre-Ghiso, J.A., and Bravo-Cordero, J.J. (2022). A tumor-derived type III collagen-
1079 rich ECM niche regulates tumor cell dormancy. *Nature cancer* 3, 90-107.
1080 10.1038/s43018-021-00291-9.
- 1081 23. Merry, C.L.R., Lindahl, U., Couchman, J., and Esko, J.D. (2022). Proteoglycans and
1082 Sulfated Glycosaminoglycans. In *Essentials of Glycobiology*, th, A. Varki, R.D.
1083 Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N.H.
1084 Packer, et al., eds. pp. 217-232. 10.1101/glycobiology.4e.17.
- 1085 24. Iozzo, R.V., and Schaefer, L. (2015). Proteoglycan form and function: A comprehensive
1086 nomenclature of proteoglycans. *Matrix Biol* 42, 11-55. 10.1016/j.matbio.2015.02.003.
- 1087 25. Couchman, J.R., and Pataki, C.A. (2012). An introduction to proteoglycans and their
1088 localization. *J Histochem Cytochem* 60, 885-897. 10.1369/0022155412464638.
- 1089 26. Bishop, J.R., Schuksz, M., and Esko, J.D. (2007). Heparan sulphate proteoglycans fine-
1090 tune mammalian physiology. *Nature* 446, 1030-1037. 10.1038/nature05817.
- 1091 27. Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding
1092 sites in heparan sulfate. *Annu Rev Biochem* 71, 435-471.
1093 10.1146/annurev.biochem.71.110601.135458.
- 1094 28. Bai, X., Zhou, D., Brown, J.R., Crawford, B.E., Hennet, T., and Esko, J.D. (2001).
1095 Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of

- 1096 galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family
1097 (beta 3GalT6). *J Biol Chem* 276, 48189-48195. 10.1074/jbc.M107339200.
- 1098 29. Malfait, F., Kariminejad, A., Van Damme, T., Gauche, C., Syx, D., Merhi-Soussi, F.,
1099 Gulberti, S., Symoens, S., Vanhauwaert, S., Willaert, A., et al. (2013). Defective initiation
1100 of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-
1101 Danlos-syndrome-like connective tissue disorder. *Am J Hum Genet* 92, 935-945.
1102 10.1016/j.ajhg.2013.04.016.
- 1103 30. Ben-Mahmoud, A., Ben-Salem, S., Al-Sorkhy, M., John, A., Ali, B.R., and Al-Gazali, L.
1104 (2018). A B3GALT6 variant in patient originally described as Al-Gazali syndrome and
1105 implicating the endoplasmic reticulum quality control in the mechanism of some
1106 beta3GalT6-pathy mutations. *Clin Genet* 93, 1148-1158. 10.1111/cge.13236.
- 1107 31. Nakajima, M., Mizumoto, S., Miyake, N., Kogawa, R., Iida, A., Ito, H., Kitoh, H.,
1108 Hirayama, A., Mitsubuchi, H., Miyazaki, O., et al. (2013). Mutations in B3GALT6, which
1109 encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and
1110 connective tissue disorders. *Am J Hum Genet* 92, 927-934. 10.1016/j.ajhg.2013.04.003.
- 1111 32. Alvarez, J.V., Pan, T.C., Ruth, J., Feng, Y., Zhou, A., Pant, D., Grimley, J.S., Wandless,
1112 T.J., Demichele, A., Investigators, I.S.T., and Chodosh, L.A. (2013). Par-4
1113 downregulation promotes breast cancer recurrence by preventing multinucleation
1114 following targeted therapy. *Cancer Cell* 24, 30-44. 10.1016/j.ccr.2013.05.007.
- 1115 33. Feng, Y., Pan, T.C., Pant, D.K., Chakrabarti, K.R., Alvarez, J.V., Ruth, J.R., and
1116 Chodosh, L.A. (2014). SPSB1 promotes breast cancer recurrence by potentiating c-MET
1117 signaling. *Cancer Discov* 4, 790-803. 10.1158/2159-8290.CD-13-0548.
- 1118 34. Payne, A.W., Pant, D.K., Pan, T.C., and Chodosh, L.A. (2014). Ceramide kinase
1119 promotes tumor cell survival and mammary tumor recurrence. *Cancer Res* 74, 6352-
1120 6363. 10.1158/0008-5472.CAN-14-1292.
- 1121 35. D'Cruz, C.M., Gunther, E.J., Boxer, R.B., Hartman, J.L., Sintasath, L., Moody, S.E., Cox,
1122 J.D., Ha, S.I., Belka, G.K., Golant, A., et al. (2001). c-MYC induces mammary
1123 tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations.
1124 *Nat Med* 7, 235-239. 10.1038/84691.
- 1125 36. Gunther, E.J., Belka, G.K., Wertheim, G.B., Wang, J., Hartman, J.L., Boxer, R.B., and
1126 Chodosh, L.A. (2002). A novel doxycycline-inducible system for the transgenic analysis
1127 of mammary gland biology. *FASEB J* 16, 283-292. 10.1096/fj.01-0551com.
- 1128 37. Alvarez, J.V., Belka, G.K., Pan, T.C., Chen, C.C., Blankemeyer, E., Alavi, A., Karp, J.S.,
1129 and Chodosh, L.A. (2014). Oncogene pathway activation in mammary tumors dictates
1130 FDG-PET uptake. *Cancer Res* 74, 7583-7598. 10.1158/0008-5472.CAN-14-1235.
- 1131 38. Abravanel, D.L., Belka, G.K., Pan, T.C., Pant, D.K., Collins, M.A., Sterner, C.J., and
1132 Chodosh, L.A. (2015). Notch promotes recurrence of dormant tumor cells following
1133 HER2/neu-targeted therapy. *J Clin Invest* 125, 2484-2496. 10.1172/JCI74883.
- 1134 39. Stickeler, E., Pils, D., Klar, M., Orlowsk-Volk, M., Zur Hausen, A., Jager, M., Watermann,
1135 D., Gitsch, G., Zeillinger, R., and Tempfer, C.B. (2011). Basal-like molecular subtype
1136 and HER4 up-regulation and response to neoadjuvant chemotherapy in breast cancer.
1137 *Oncol Rep* 26, 1037-1045. 10.3892/or.2011.1392.
- 1138 40. Turnbull, A.K., Arthur, L.M., Renshaw, L., Larionov, A.A., Kay, C., Dunbier, A.K.,
1139 Thomas, J.S., Dowsett, M., Sims, A.H., and Dixon, J.M. (2015). Accurate Prediction and
1140 Validation of Response to Endocrine Therapy in Breast Cancer. *J Clin Oncol* 33, 2270-
1141 2278. 10.1200/JCO.2014.57.8963.
- 1142 41. Arthur, L.M., Turnbull, A.K., Webber, V.L., Larionov, A.A., Renshaw, L., Kay, C.,
1143 Thomas, J.S., Dixon, J.M., and Sims, A.H. (2014). Molecular changes in lobular breast
1144 cancers in response to endocrine therapy. *Cancer Res* 74, 5371-5376. 10.1158/0008-
1145 5472.CAN-14-0620.

- 1146 42. Miller, W.R., Larionov, A.A., Renshaw, L., Anderson, T.J., White, S., Murray, J., Murray,
1147 E., Hampton, G., Walker, J.R., Ho, S., et al. (2007). Changes in breast cancer
1148 transcriptional profiles after treatment with the aromatase inhibitor, letrozole.
1149 *Pharmacogenet Genomics* 17, 813-826. 10.1097/FPC.0b013e32820b853a.
- 1150 43. Korde, L.A., Lusa, L., McShane, L., Lebowitz, P.F., Lukes, L., Camphausen, K., Parker,
1151 J.S., Swain, S.M., Hunter, K., and Zujewski, J.A. (2010). Gene expression pathway
1152 analysis to predict response to neoadjuvant docetaxel and capecitabine for breast
1153 cancer. *Breast Cancer Res Treat* 119, 685-699. 10.1007/s10549-009-0651-3.
- 1154 44. Gruoso, T., Mieulet, V., Cardon, M., Bourachot, B., Kieffer, Y., Devun, F., Dubois, T.,
1155 Dutreix, M., Vincent-Salomon, A., Miller, K.M., and Mechta-Grigoriou, F. (2016). Chronic
1156 oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in
1157 breast cancer patients. *EMBO Mol Med* 8, 527-549. 10.15252/emmm.201505891.
- 1158 45. Gonzalez-Angulo, A.M., Iwamoto, T., Liu, S., Chen, H., Do, K.A., Hortobagyi, G.N., Mills,
1159 G.B., Meric-Bernstam, F., Symmans, W.F., and Pusztai, L. (2012). Gene expression,
1160 molecular class changes, and pathway analysis after neoadjuvant systemic therapy for
1161 breast cancer. *Clin Cancer Res* 18, 1109-1119. 10.1158/1078-0432.CCR-11-2762.
- 1162 46. Delbaere, S., De Clercq, A., Mizumoto, S., Noborn, F., Bek, J.W., Alluyn, L., Gistelinck,
1163 C., Syx, D., Salmon, P.L., Coucke, P.J., et al. (2020). b3galt6 Knock-Out Zebrafish
1164 Recapitulate beta3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide
1165 Proteoglycan Linkage Region. *Front Cell Dev Biol* 8, 597857.
1166 10.3389/fcell.2020.597857.
- 1167 47. Conant, D., Hsiao, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso,
1168 R., Holden, K., et al. (2022). Inference of CRISPR Edits from Sanger Trace Data.
1169 *CRISPR J* 5, 123-130. 10.1089/crispr.2021.0113.
- 1170 48. Prunier, C., Alay, A., van Dijk, M., Ammerlaan, K.L., van Gelderen, S., Marvin, D.L.,
1171 Teunisse, A., Slieker, R.C., Szuhai, K., Jochemsen, A.G., et al. (2021). Breast cancer
1172 dormancy is associated with a 4NG1 state and not senescence. *NPJ Breast Cancer* 7,
1173 140. 10.1038/s41523-021-00347-0.
- 1174 49. Prydz, K., and Dalen, K.T. (2000). Synthesis and sorting of proteoglycans. *J Cell Sci* 113
1175 Pt 2, 193-205.
- 1176 50. Rapraeger, A.C., Krufka, A., and Olwin, B.B. (1991). Requirement of heparan sulfate for
1177 bFGF-mediated fibroblast growth and myoblast differentiation. *Science* 252, 1705-1708.
1178 10.1126/science.1646484.
- 1179 51. Johnson, C.E., Crawford, B.E., Stavridis, M., Ten Dam, G., Wat, A.L., Rushton, G.,
1180 Ward, C.M., Wilson, V., van Kuppevelt, T.H., Esko, J.D., et al. (2007). Essential
1181 alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-
1182 enhanced green fluorescent protein-expressing neural progenitor cells. *Stem Cells* 25,
1183 1913-1923. 10.1634/stemcells.2006-0445.
- 1184 52. Ashikari-Hada, S., Habuchi, H., Sugaya, N., Kobayashi, T., and Kimata, K. (2009).
1185 Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan
1186 sulfate. *Glycobiology* 19, 644-654. 10.1093/glycob/cwp031.
- 1187 53. Marques, C., Reis, C.A., Vives, R.R., and Magalhaes, A. (2021). Heparan Sulfate
1188 Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression.
1189 *Front Oncol* 11, 778752. 10.3389/fonc.2021.778752.
- 1190 54. Lawrence, R., Olson, S.K., Steele, R.E., Wang, L., Warrior, R., Cummings, R.D., and
1191 Esko, J.D. (2008). Evolutionary differences in glycosaminoglycan fine structure detected
1192 by quantitative glycan reductive isotope labeling. *J Biol Chem* 283, 33674-33684.
1193 10.1074/jbc.M804288200.
- 1194 55. Lawrence, R., Lu, H., Rosenberg, R.D., Esko, J.D., and Zhang, L. (2008). Disaccharide
1195 structure code for the easy representation of constituent oligosaccharides from
1196 glycosaminoglycans. *Nat Methods* 5, 291-292. 10.1038/nmeth0408-291.


- 1197 56. Sugaya, N., Habuchi, H., Nagai, N., Ashikari-Hada, S., and Kimata, K. (2008). 6-O-
1198 sulfation of heparan sulfate differentially regulates various fibroblast growth factor-
1199 dependent signalings in culture. *J Biol Chem* 283, 10366-10376.
1200 10.1074/jbc.M705948200.
- 1201 57. Qiu, H., Shi, S., Yue, J., Xin, M., Nairn, A.V., Lin, L., Liu, X., Li, G., Archer-Hartmann,
1202 S.A., Dela Rosa, M., et al. (2018). A mutant-cell library for systematic analysis of
1203 heparan sulfate structure-function relationships. *Nat Methods* 15, 889-899.
1204 10.1038/s41592-018-0189-6.
- 1205 58. Ornitz, D.M., and Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. *Wiley*
1206 *Interdiscip Rev Dev Biol* 4, 215-266. 10.1002/wdev.176.
- 1207 59. Weiss, R.J., Spahn, P.N., Chiang, A.W.T., Liu, Q., Li, J., Hamill, K.M., Rother, S.,
1208 Clausen, T.M., Hoeksema, M.A., Timm, B.M., et al. (2021). Genome-wide screens
1209 uncover KDM2B as a modifier of protein binding to heparan sulfate. *Nat Chem Biol* 17,
1210 684-692. 10.1038/s41589-021-00776-9.
- 1211 60. Huang, M.L., Smith, R.A., Triegler, G.W., and Godula, K. (2014). Glycocalyx remodeling
1212 with proteoglycan mimetics promotes neural specification in embryonic stem cells. *J Am*
1213 *Chem Soc* 136, 10565-10568. 10.1021/ja505012a.
- 1214 61. Bayne, L.J., Nivar, I., Goodspeed, B., Deluca, S.E., Wileyto, P., Shih, N.N.C., Nayak, A.,
1215 Feldman, M.D., Edwards, J., Fox, K., et al. (2021). Identifying breast cancer survivors
1216 with dormant disseminated tumor cells: The PENN-SURMOUNT screening study
1217 [abstract]. *Cancer Res* 81 (4).
- 1218 62. Bayne, L.J., Nivar, I., Goodspeed, B., Wileyto, P., Savage, J., Shih, N.N.C., Feldman,
1219 M.D., Edwards, J., Clark, A.S., Fox, K.R., et al. (2018). Detection and targeting of
1220 minimal residual disease in breast cancer to reduce recurrence: The PENN-
1221 SURMOUNT and CLEVER trials [abstract]. *Cancer Res* 78 (4).
- 1222 63. Hassan, N., Greve, B., Espinoza-Sanchez, N.A., and Gotte, M. (2021). Cell-surface
1223 heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. *Cell*
1224 *Signal* 77, 109822. 10.1016/j.cellsig.2020.109822.
- 1225 64. Shibue, T., Reinhardt, F., and Weinberg, R.A. (2019). Syndecan-Mediated Ligation of
1226 ECM Proteins Triggers Proliferative Arrest of Disseminated Tumor Cells. *Cancer Res* 79,
1227 5944-5957. 10.1158/0008-5472.CAN-19-1165.
- 1228 65. Dieter, S.M., Lovecchio, D., Pataskar, A., Zowada, M.K., Korner, P.R., Khalizieva, A.,
1229 van Tellingen, O., Jager, D., Glimm, H., and Agami, R. (2022). Suppression of heparan
1230 sulfation re-sensitizes YAP1-driven melanoma to MAPK pathway inhibitors. *Oncogene*
1231 41, 3953-3968. 10.1038/s41388-022-02400-z.
- 1232 66. Turner, N., and Grose, R. (2010). Fibroblast growth factor signalling: from development
1233 to cancer. *Nat Rev Cancer* 10, 116-129. 10.1038/nrc2780.
- 1234 67. Bado, I.L., Zhang, W., Hu, J., Xu, Z., Wang, H., Sarkar, P., Li, L., Wan, Y.W., Liu, J., Wu,
1235 W., et al. (2021). The bone microenvironment increases phenotypic plasticity of ER(+)
1236 breast cancer cells. *Dev Cell* 56, 1100-1117 e1109. 10.1016/j.devcel.2021.03.008.
- 1237 68. Barrios, J., and Wieder, R. (2009). Dual FGF-2 and integrin alpha5beta1 signaling
1238 mediate GRAF-induced RhoA inactivation in a model of breast cancer dormancy.
1239 *Cancer Microenvironment* 2, 33-47. 10.1007/s12307-009-0019-6.
- 1240 69. Nobre, A.R., Dalla, E., Yang, J., Huang, X., Wullkopf, L., Risson, E., Razghandi, P.,
1241 Anton, M.L., Zheng, W., Seoane, J.A., et al. (2022). ZFP281 drives a mesenchymal-like
1242 dormancy program in early disseminated breast cancer cells that prevents metastatic
1243 outgrowth in the lung. *Nat Cancer*. 10.1038/s43018-022-00424-8.
- 1244 70. Schram, A.M., Kamath, S.D., El-Khoueiry, A.B., Borad, M.J., Mody, K., Mahipal, A.,
1245 Goyal, L., Sahai, V., Schmidt-Kittler, O., Shen, J., et al. (2021). First-in-human study of
1246 highly selective FGFR2 inhibitor, RLY-4008, in patients with intrahepatic
1247 cholangiocarcinoma and other advanced solid tumors. *Journal of clinical oncology* :

- 1248 official journal of the American Society of Clinical Oncology.
1249 10.1200/JCO.2021.39.15_suppl.TPS4165 Journal of Clinical Oncology 39, no. 15_suppl.
1250 71. Statsenko, G., Fedyanin, M., Moiseyenko, V., Vladimirova, L.Y., Tsimafeyeu, I., and
1251 Tjulandin, S. (2020). A phase Ib study of alofanib, an allosteric FGFR2 inhibitor, in
1252 patients with advanced or metastatic gastric cancer.
1253 10.1200/JCO.2020.38.4_suppl.TPS466 Journal of Clinical Oncology 38, no. 4_suppl.
1254 72. Corti, F., Wang, Y., Rhodes, J.M., Atri, D., Archer-Hartmann, S., Zhang, J., Zhuang,
1255 Z.W., Chen, D., Wang, T., Wang, Z., et al. (2019). N-terminal syndecan-2 domain
1256 selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA165-
1257 dependent neovascularization. *Nat Commun* 10, 1562. 10.1038/s41467-019-09605-z.
1258 73. Langford, J.K., Stanley, M.J., Cao, D., and Sanderson, R.D. (1998). Multiple heparan
1259 sulfate chains are required for optimal syndecan-1 function. *J Biol Chem* 273, 29965-
1260 29971. 10.1074/jbc.273.45.29965.
1261 74. Critcher, M., and Huang, M.L. (2022). Excavating proteoglycan structure-function
1262 relationships: modern approaches to capture the interactions of ancient biomolecules.
1263 *Am J Physiol Cell Physiol* 323, C415-C422. 10.1152/ajpcell.00222.2022.

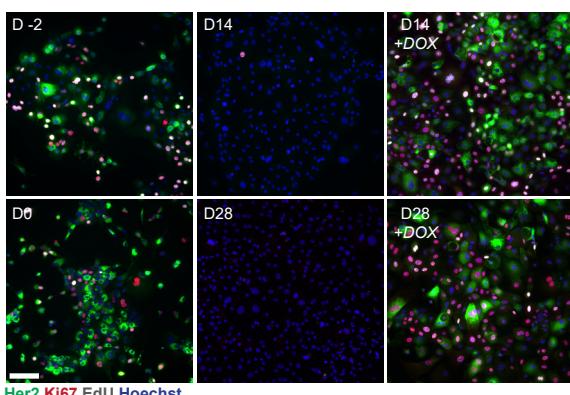
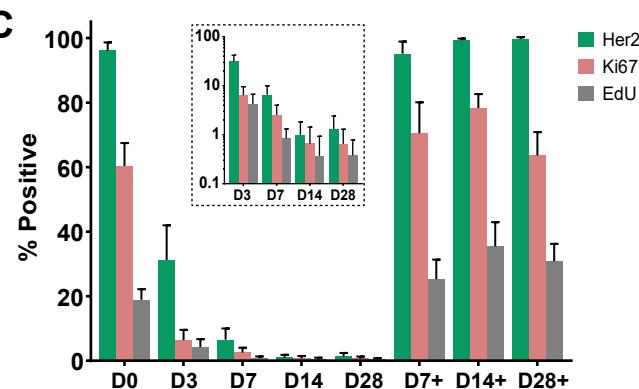

1264

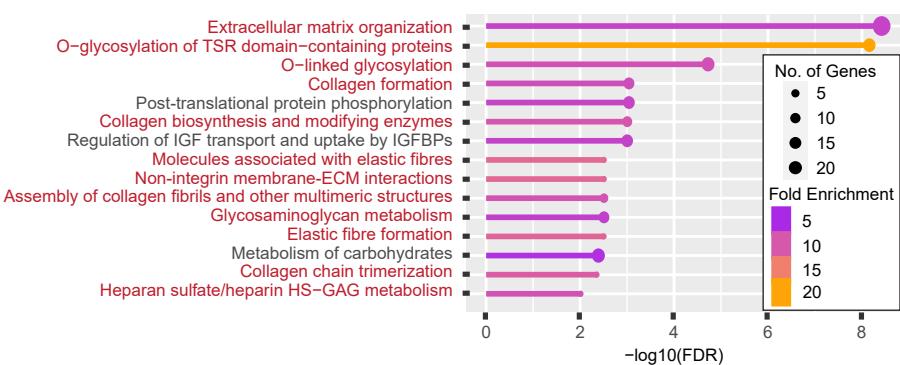
Figure 1


A

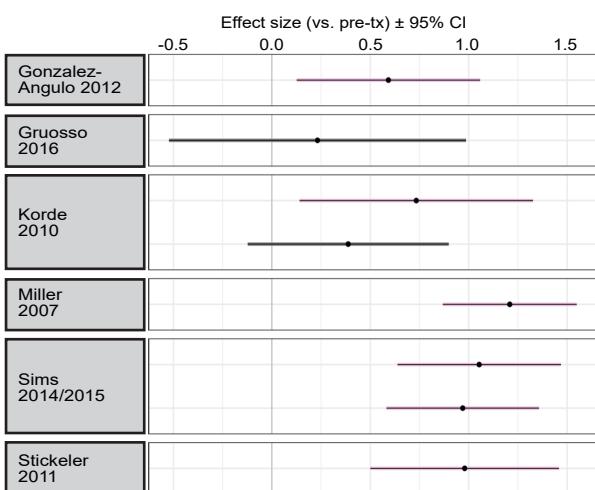
B

C

D


Dormancy upregulated genes
Hypergeometric p value = 1.63e-15

In vivo
PTC vs. RTC


In vitro
D0 vs. D28

797 540 3853

E

F

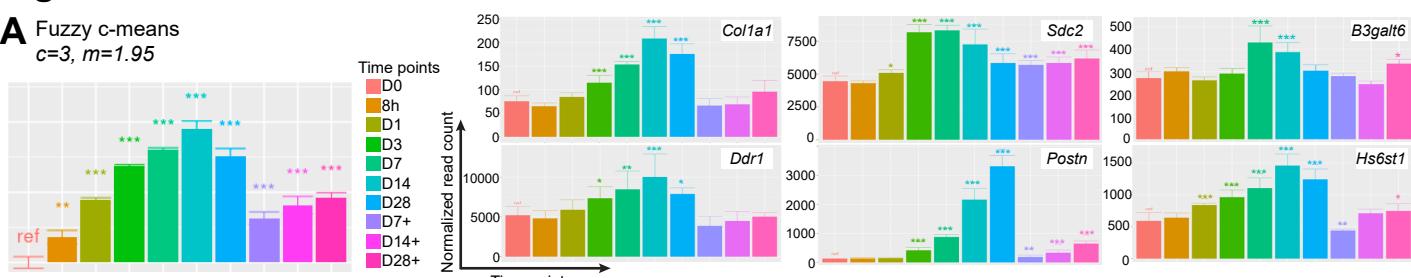

N	Time point	Effect size	p-value	Treatment
21	Surgery	0.59	0.013	Mixed (anthracycline/taxane/trastuzumab)
7	Surgery	0.23	0.56	4 cycles of epirubicin + cyclophosphamide, 4 cycles of taxanes
14	Post-Tx	0.73	0.017	1 cycle of docetaxel + capecitabine
16	Surgery	0.39	0.14	4 cycles of docetaxel + capecitabine
58	Post-Tx	1.21	7.2e-13	2 weeks on letrozole
35	Post-Tx_1	1.05	4.3e-07	2 weeks on letrozole
38	Post-Tx_2	0.97	6.8e-07	3 months on letrozole
25	Post-Tx	0.98	5.4e-05	4 cycles of epirubicin + cyclophosphamide

Fig. 1: Dormant tumor cells display cell-autonomous upregulation of ECM-related transcripts following therapy

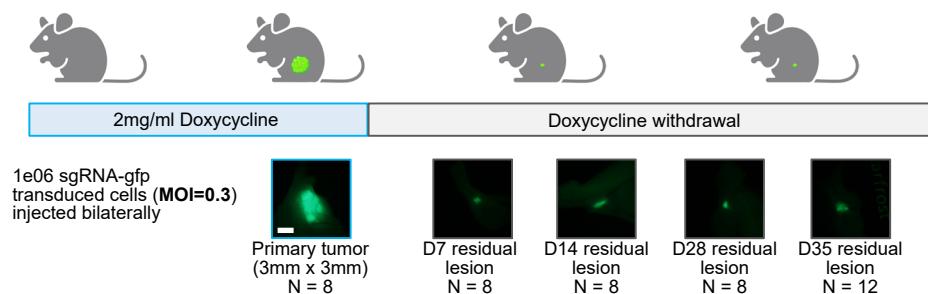
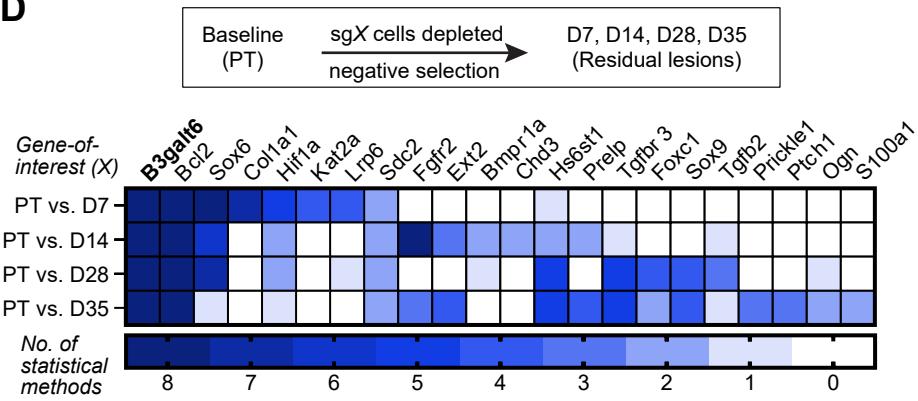
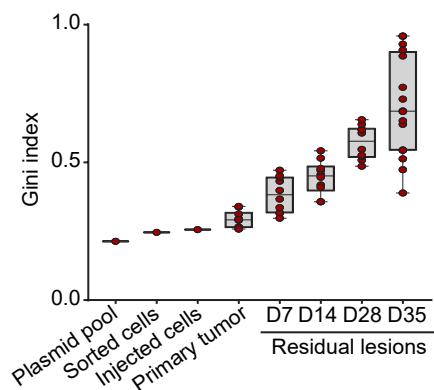
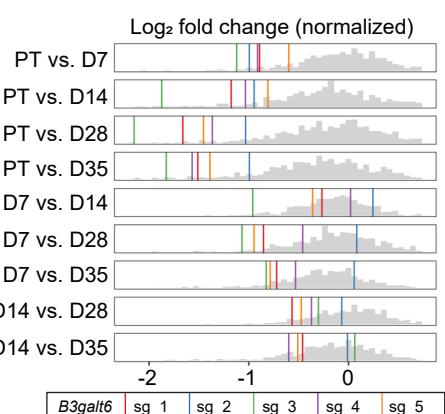

A. Experimental schematic indicating time points for in vitro dormancy (IVD) assay using *MTB/TAN* cells. **B.** Immunofluorescence for Her2 (green), Ki67 (red), and EdU (grey) with Hoechst nuclear staining (blue) during IVD. **C.** Quantification of (B) represented as mean \pm standard deviation (SD). Inset displays the percentages at deinduction time points on a \log_{10} y-axis. Scale bar=100 μ m. **D.** Hypergeometric test and Venn diagram depicting the overlap between the in vivo and IVD-derived upregulated gene set. **E.** Top 15 Reactome gene ontology terms for the overlapping upregulated gene set. ECM-associated categories highlighted in red. **F.** Core RTC signature enrichment following neoadjuvant therapies vs. pre-treatment (pre-tx) samples across 6 patient datasets measured by effect size (mean of pair-wise difference in signature scores). Significant effects are highlighted in pink.

Figure 2


A Fuzzy c-means c=3, m=1.95


B In vivo CRISPR-Cas9 library composition (509 sgRNAs total) 4-5 sgRNAs each targeting 95 genes; 53 control sgRNAs


D

C

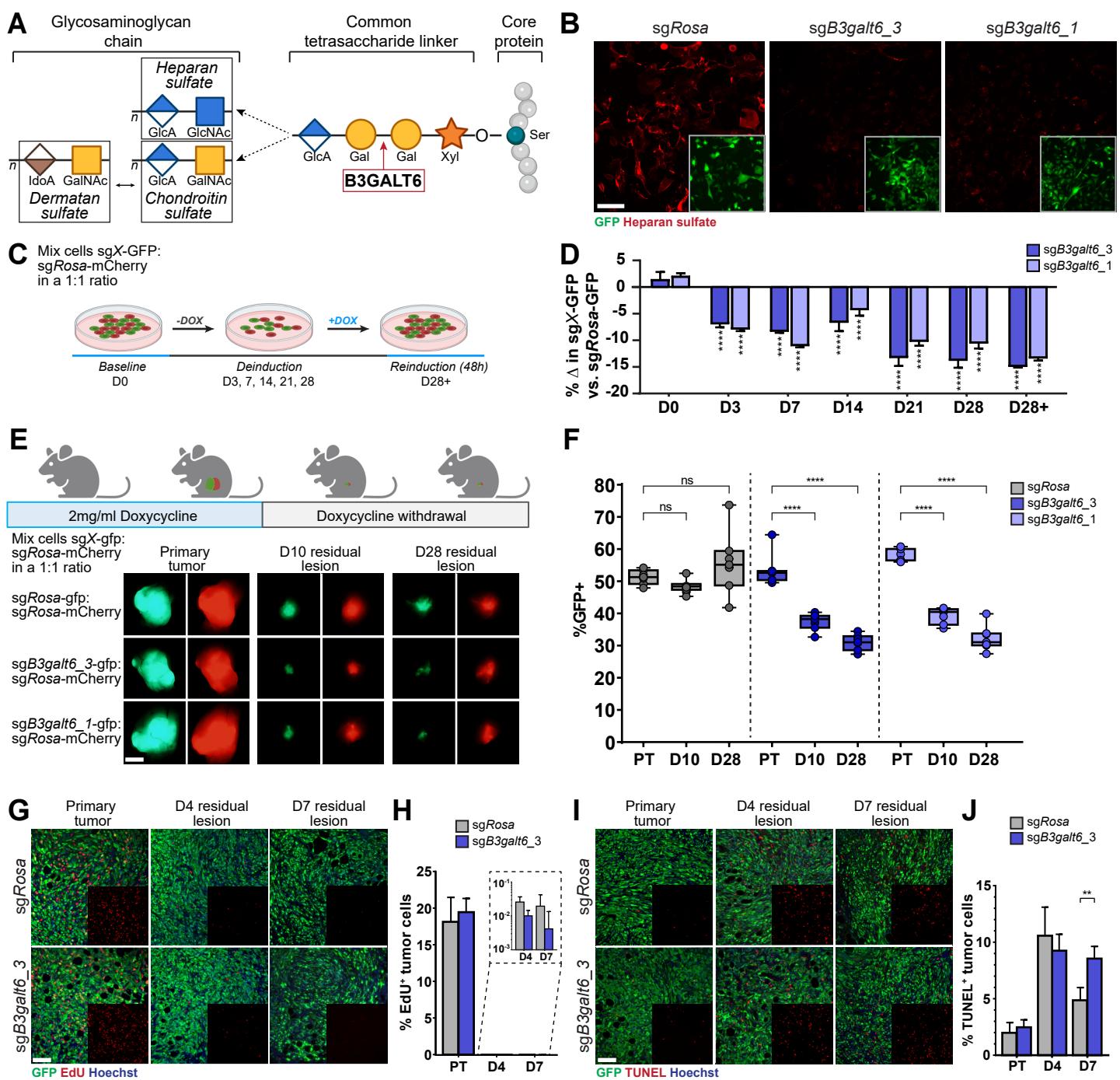

E

Fig. 2: An ECM-focused loss-of-function screen identifies *B3galt6* as a novel regulator of RTC fitness in vivo

A. Fuzzy c-means clustering using cluster # (c)=3, fuzzifier (m)=1.95 identifies one cluster that displays reversible, dormancy-dependent upregulation of genes at 8h, D1, D3, D7, D14, D28 (deinduction) time points. 6 genes (of 3450) in this cluster are indicated. Asterisks indicate significant changes in normalized read counts vs. D0 (baseline) * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. **B.** In vivo CRISPR-Cas9 screen schematic. Stereoscope images of representative lesions are shown. Scale bar=2mm. **C.** Gini index for heterogeneity at sequential time points assayed in the screen. Data are represented as median \pm range. **D.** Target identification criterion and list of CRISPR-Cas9 screen depletion hits identified by 2-8 statistical methods used for calling hits. **E.** Log₂ fold change (normalized) gene-level effect size plots for *B3galt6* sgRNAs in different pairwise comparisons using PT, D7, or D14 as baselines. Grey histogram depicts the background distribution of sgRNAs in the CRISPR-Cas9 screen, colored vertical lines depict each sgRNA targeting *B3galt6*.

Figure 3

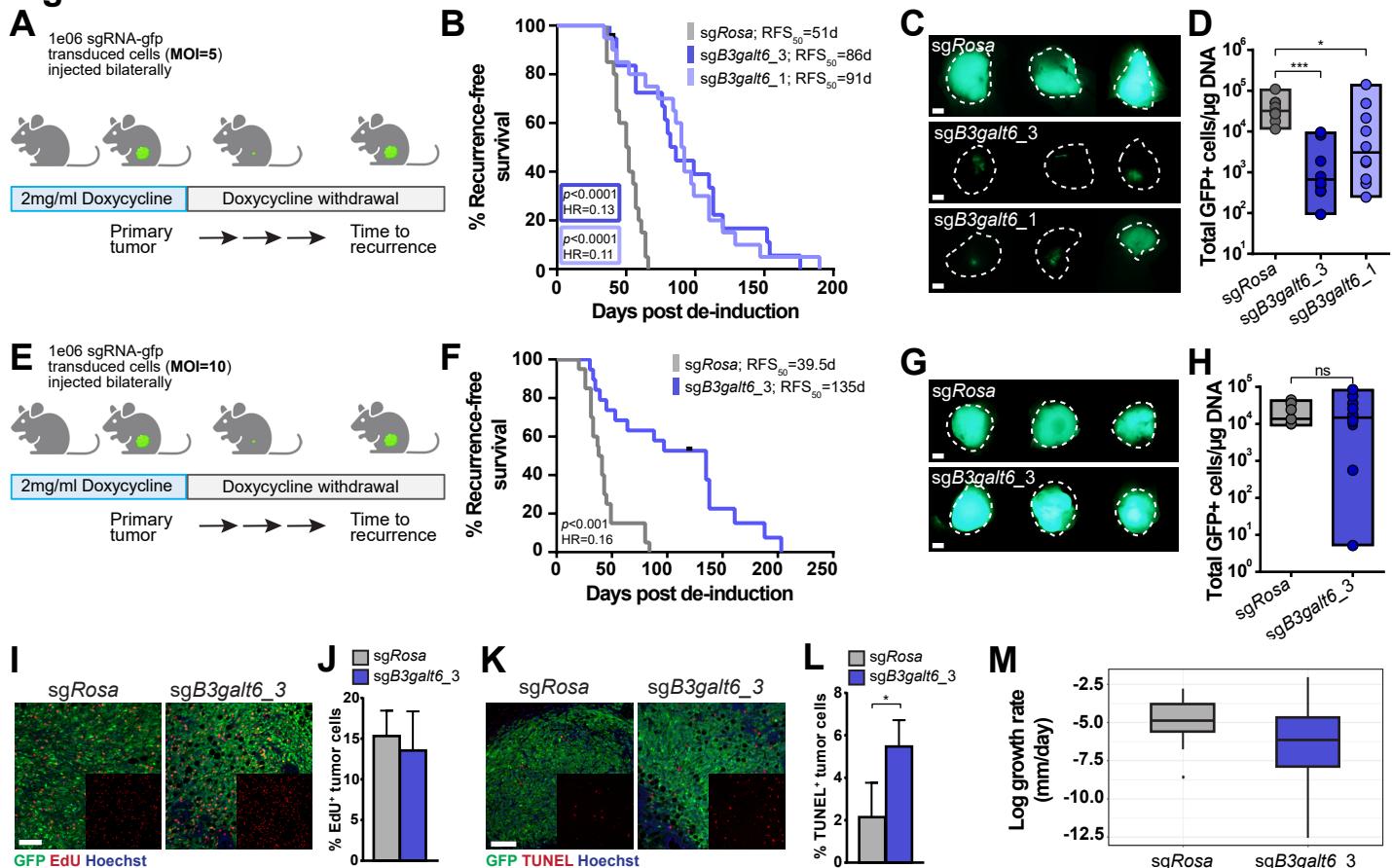


Fig. 3: B3GALT6 promotes RTC survival during dormancy

A. B3GALT6 (red box) function in tetrasaccharide linker synthesis and proteoglycan assembly. Typical disaccharide repeat units in heparan sulfate, chondroitin sulfate, and dermatan sulfate are indicated. Ser=Serine, Xyl=Xylose, Gal=Galactose, GlcA=Glucuronic acid, GlcNAc=N-Acetylglucosamine, GalNAc=N-Acetylgalactosamine, IdoA=Iduronic acid. **B.** Immunofluorescence for heparan sulfate (red) in Her2-dependent-Cas9 cells transduced with sgRosa, sgB3galt6_3, or sgB3galt6_1 sgRNAs (green). Scale bar=100μm. **C.** IVD competition assay schematic. **D.** ddPCR data quantifying percentage change in sgB3galt6_3 (dark blue) and sgB3galt6_1 (light blue) GFP+ cells normalized to sgRosa (grey) cell numbers. Data are represented as mean \pm SD. ****p<0.001.

E. Schematic for in vivo competition assay with stereoscope images of representative lesions harvested. Scale bar=2mm. **F.** ddPCR data quantifying GFP+ cell percentage in sgRosa (grey), sgB3galt6_3 (dark blue), and sgB3galt6_1 (light blue) groups. Data are represented as median \pm range. ns=non-significant, ****p<0.0001. **G-J.** Immunofluorescence (**G**) and quantification (**H**) for EdU (red) or for TUNEL (red) (**I, J**) in Her2-dependent-Cas9 sgRosa and sgB3galt6_3 (green) PTs, D4, and D7 residual lesions (RLs). Scale bar=100μm. Quantification in the sgRosa (grey) and sgB3galt6_3 (dark blue) groups is represented as mean \pm SD. **p<0.01.

Figure 4

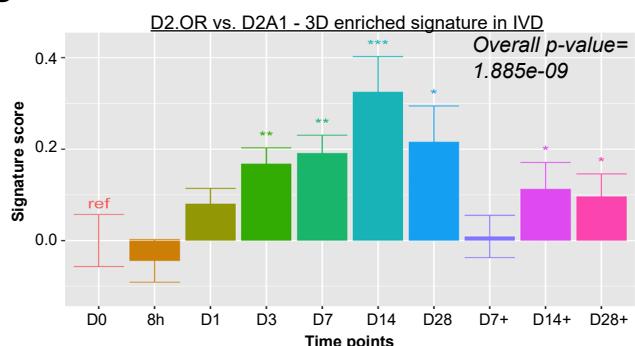


Fig. 4: B3GALT6 promotes recurrence following dormancy

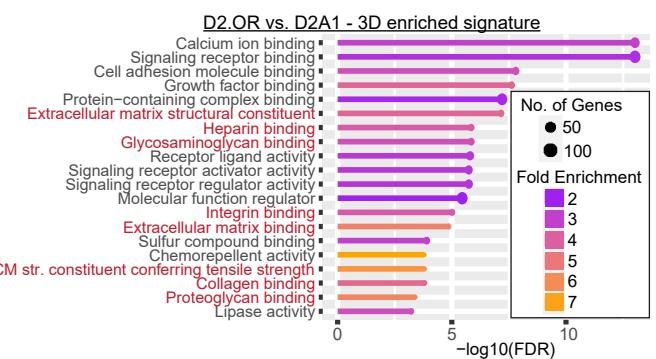
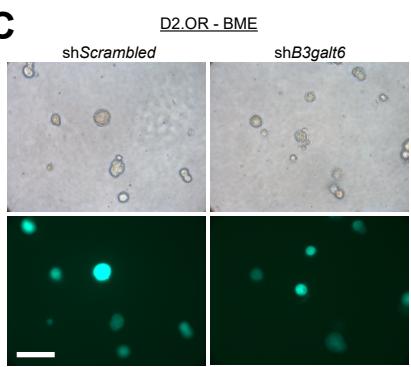
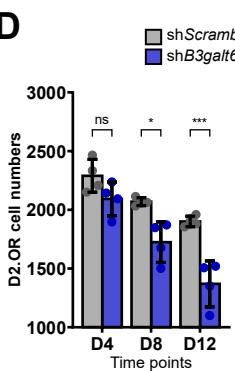
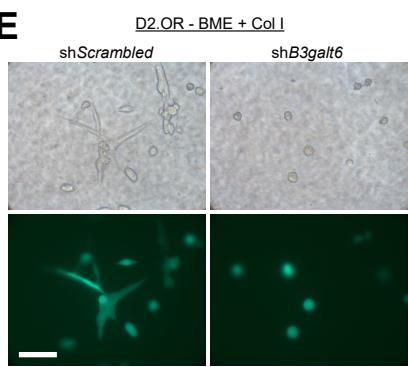
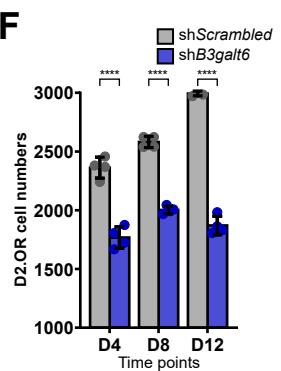

A. Recurrence-free survival assay using multiplicity of infection (MOI)=5. **B.** Kaplan-Meier analysis of recurrence-free survival for sgRosa (grey), sgB3galt6_3 (dark blue), and sgB3galt6_1 (light blue) groups. RFS₅₀=median time-to-recurrence. **C.** Stereoscope images of representative recurrences. Dotted white lines represent tumor edges identified in corresponding bright field images. Scale bar=2mm. **D.** Quantification of GFP+ cells in recurrent tumors as measured by ddPCR for sgRosa (grey), sgB3galt6_3 (dark blue), and sgB3galt6_1 (light blue) groups. Data are represented as median ± range. *p<0.05, **p<0.001. **E.** Recurrence-free survival assay using MOI=10. **F.** Kaplan-Meier analysis of recurrence-free survival for sgRosa (grey) and sgB3galt6_3 (dark blue) groups. RFS₅₀=median time-to-recurrence. **G.** Stereoscope images of representative recurrences. Scale bar=2mm. **H.** Quantification of GFP+ cells measured by ddPCR for sgRosa (grey) and sgB3galt6_3 (dark blue) recurrences. Data are represented as median ± range. ns=non-significant. **I-L.** Immunofluorescence (**I**) and quantification (**J**) for EdU (red) or for TUNEL (red) (**K, L**) in Her2-dependent-Cas9 sgRosa and sgB3galt6_3 (green) recurrences. Scale bar=100μm. Quantification in sgRosa (grey) and sgB3galt6_3 (dark blue) groups is represented as mean ± SD. *p<0.05. **M.** Log growth rate of sgRosa (grey) and sgB3galt6_3 (dark blue) recurrent tumors. Data are represented as median ± interquartile range.

Figure 5


A


B


C


D

E

F

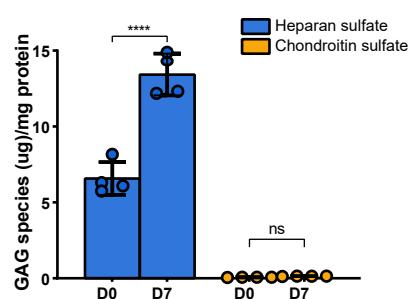


Fig. 5: B3GALT6 promotes tumor cell survival and outgrowth in microenvironment-induced models of dormancy

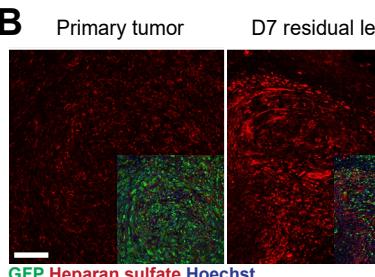
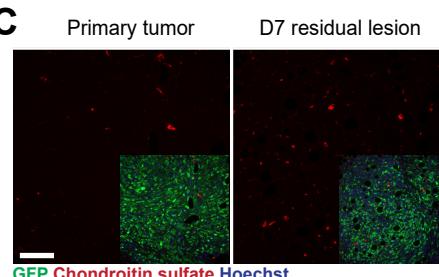
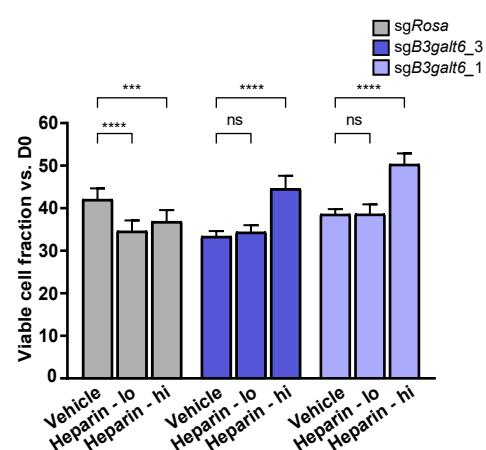
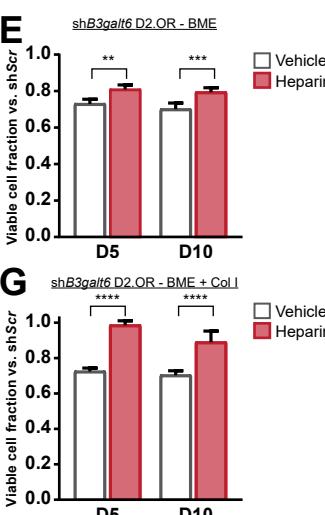
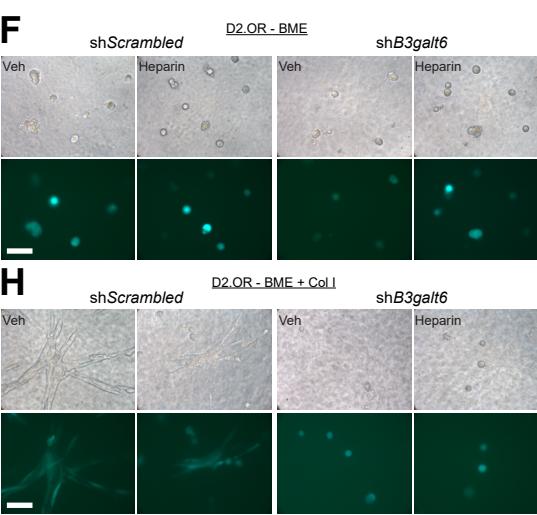

A. Application of a gene expression signature derived from D2.OR (indolent) cells vs. D2A1 (aggressive) cells in 3D to IVD temporal profiling of Her2-dependent tumor cells. Asterisks indicate significant changes in normalized read counts vs. D0 (*baseline*). * p <0.05, ** p <0.01, *** p <0.001. **B.** Top 20 gene ontology terms for the overlapping upregulated set of 1018 genes. ECM-associated categories are highlighted in red. **C.** Brightfield and fluorescence images of shScrambled and shB3galt6 D2.OR cells grown in 3D on basement membrane extract (BME) and **D.** viable cell numbers measured at D4, D8, and D12 time points. Scale bar=100μm. Data are represented as mean \pm SD. ns=non-significant, * p <0.05, *** p <0.0001. **E.** Brightfield and fluorescence images of shScrambled and shB3galt6 D2.OR cells grown in 3D on BME + Col I and **F.** viable cell numbers measured at D4, D8, and D12 time points. Scale bar=100μm. Data are represented as mean \pm SD. ns=non-significant, * p <0.05, *** p <0.0001.

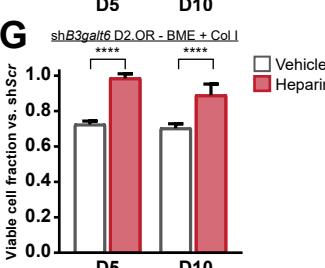
Figure 6

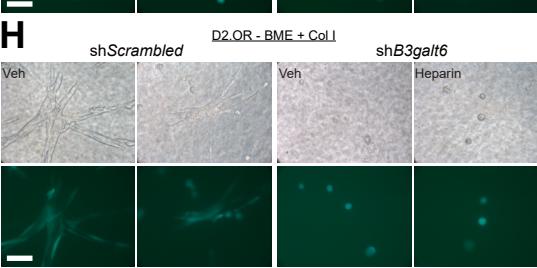

A


B

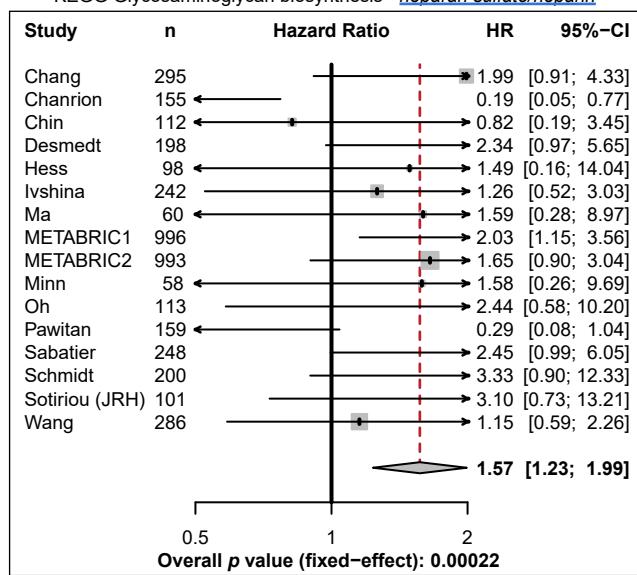

C


D

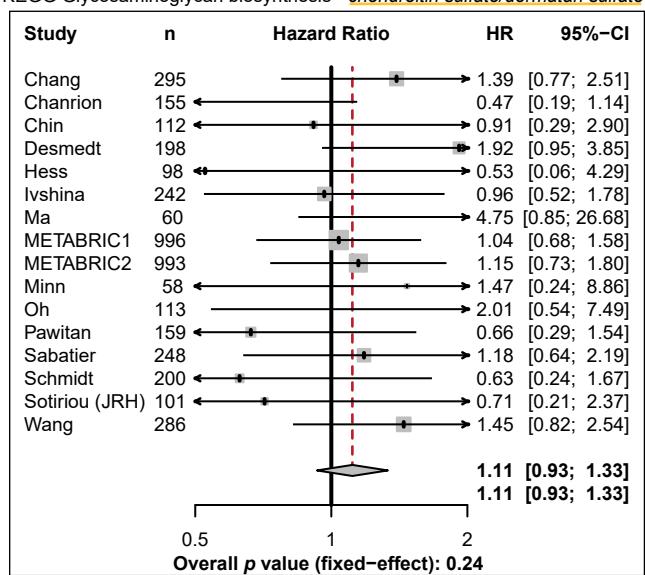

E


F

G



H


I

KEGG Glycosaminoglycan biosynthesis - *heparan sulfate/heparin*

J

KEGG Glycosaminoglycan biosynthesis - *chondroitin sulfate/dermatan sulfate*

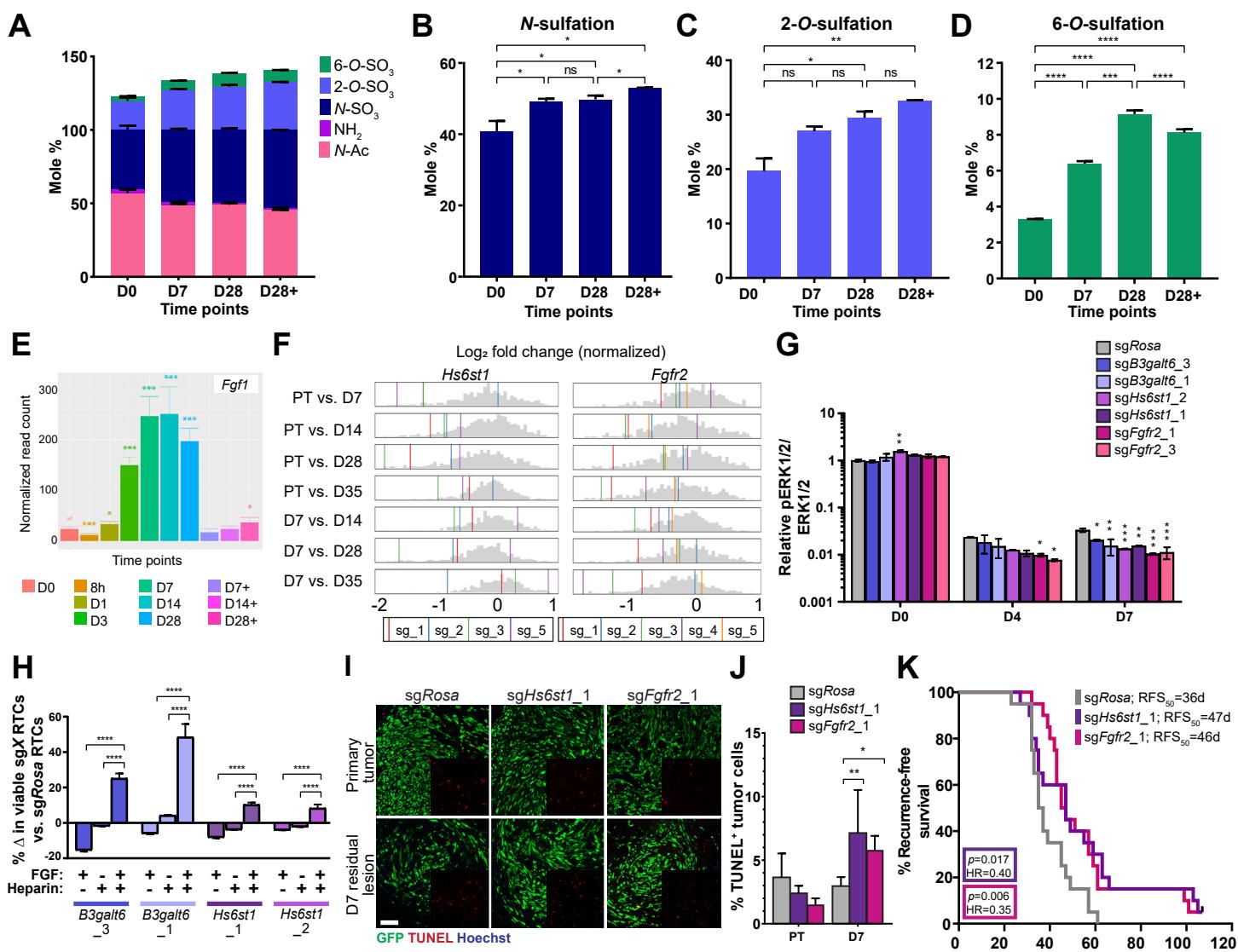


Fig. 6: Heparan sulfate synthesis is upregulated during dormancy and associated with worse recurrence-free survival in breast cancer patients

A. Liquid chromatography/mass spectrometry (LC/MS) analysis of heparan sulfate (blue) and chondroitin sulfate (yellow) GAGs performed on D0 and D7 in vitro samples. Data are represented as mean \pm SD. ns=non-significant, $****p < 0.0001$. **B.** Immunofluorescence for heparan sulfate or **C.** chondroitin sulfate (red) in PTs and D7 RLs derived from Her2-dependent-Cas9 cells with sgRosa (green). Scale bar=100μm. **D.** Viable cell numbers measured at D7 following daily treatment of Her2-dependent cells with vehicle, heparin low dose (lo; 5μg/ml), or heparin high dose (hi; 25μg/ml). ns=non-significant, $***p < 0.001$, $****p < 0.001$. **E.** Viable shB3galt6 cell numbers normalized to shScrambled controls measured at D5 and D10 following treatment of D2.0R cells in BME with vehicle (grey) or heparin (25μg/ml, red) and **F.** fluorescence images. $**p < 0.01$, $***p < 0.001$. Scale bar=100μm. **G.** Viable shB3galt6 cell numbers normalized to shScrambled controls measured at D5 and D10 following treatment of D2.0R cells in BME + Col I with vehicle (grey) or heparin (25μg/ml, red) and **H.** fluorescence images. Scale bar=100μm. $****p < 0.0001$. **I.** Forest plots of hazard ratios (HR) and 95% confidence intervals (CI) as a function of heparan sulfate/heparin or **J.** chondroitin sulfate/dermatan sulfate.

matan sulfate KEGG biosynthesis signatures in breast cancer patients recurring within 10 years after initial treatment. Red dashed lines depict the shift in HR across 16 human datasets.

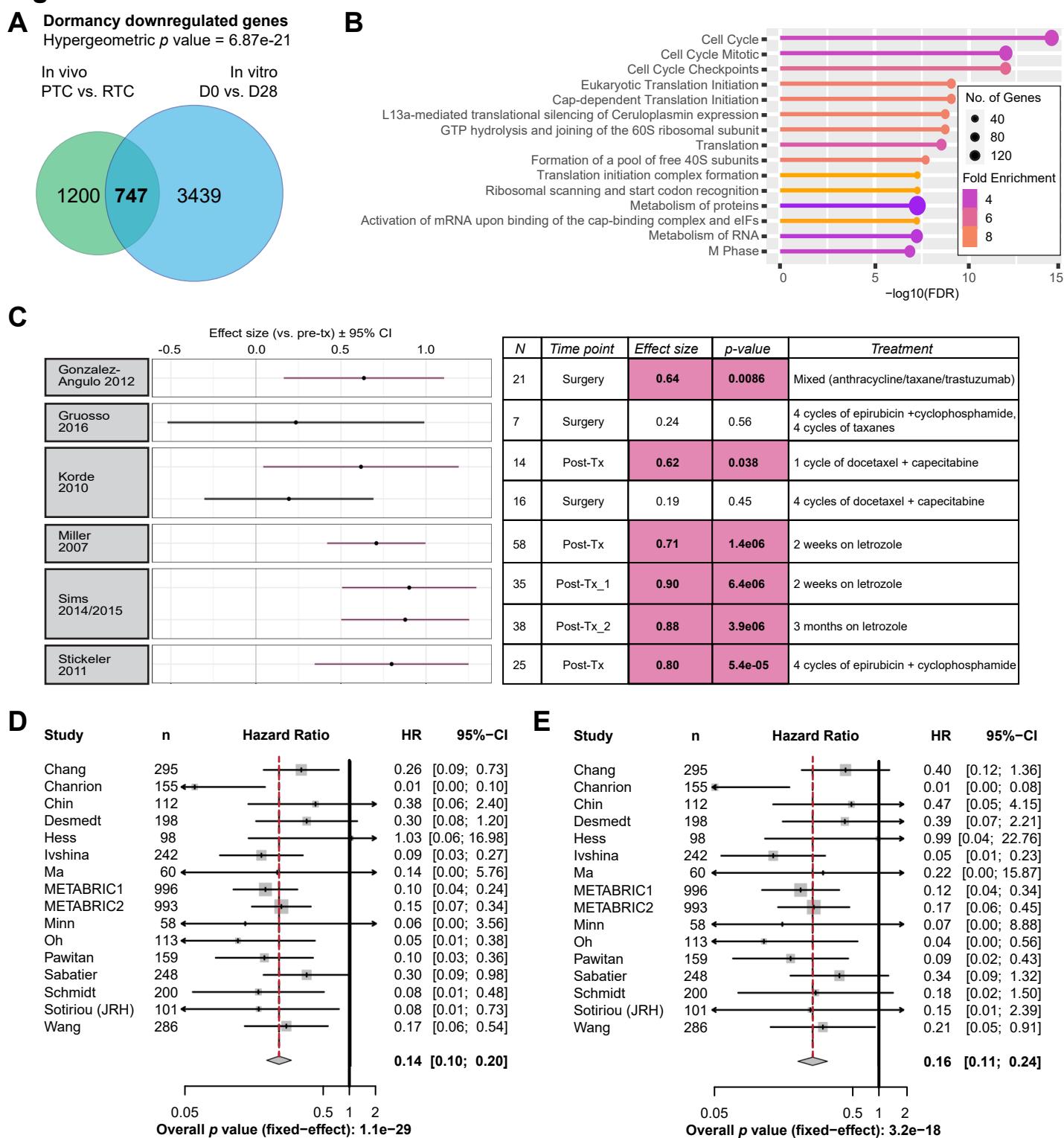

Figure 7

Fig. 7: Heparan sulfate 6-O-sulfation is selectively upregulated during dormancy and promotes RTC survival by potentiating FGF1 signaling

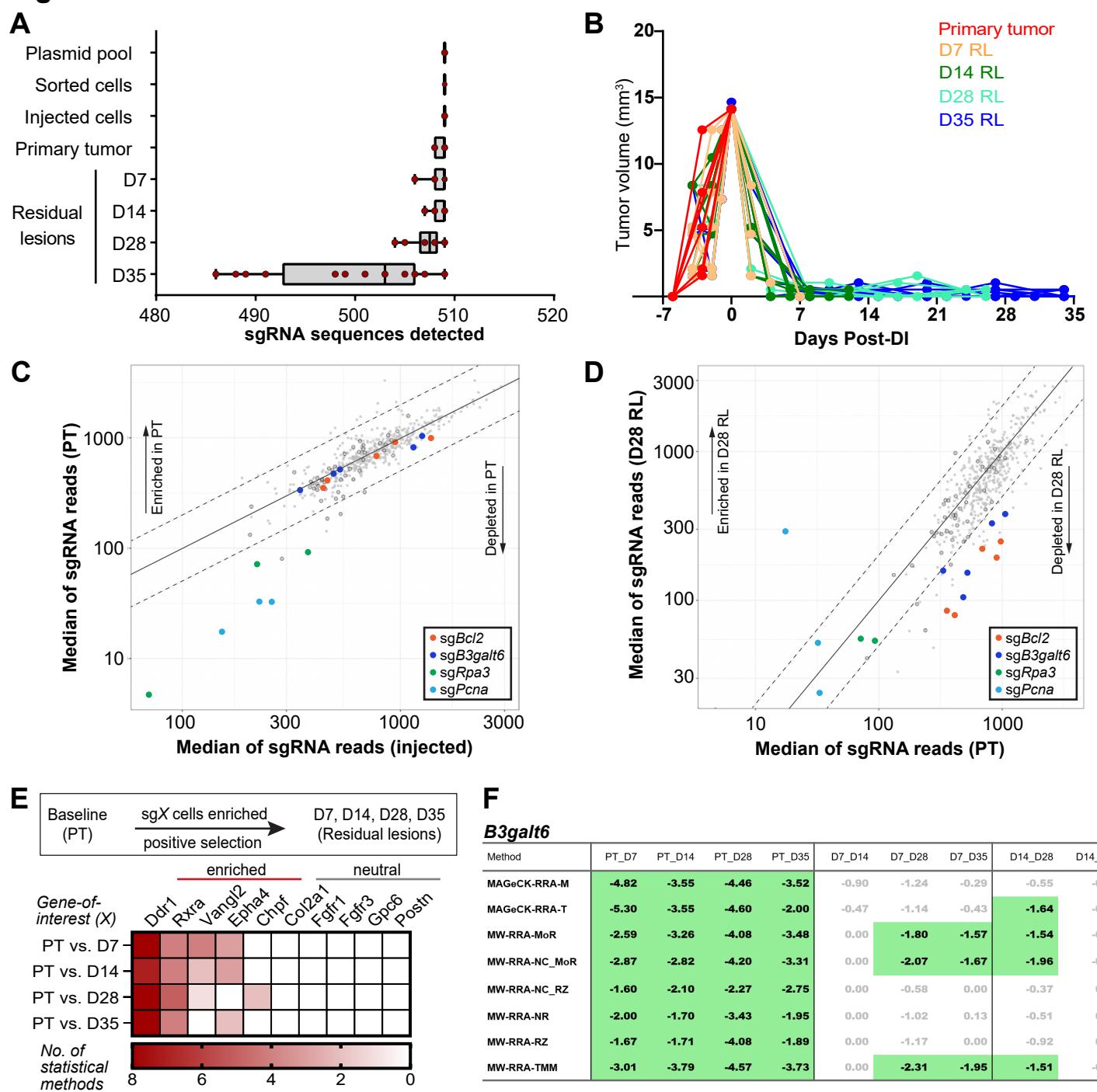
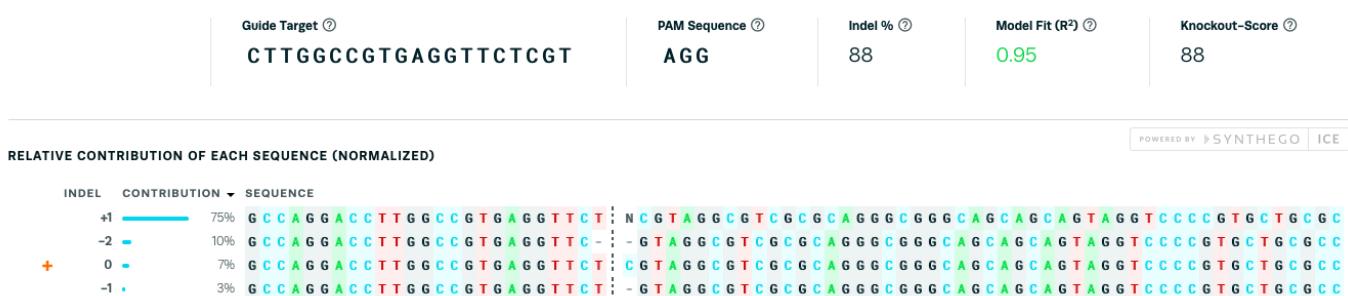

A. LC/MS on D0 (*baseline*), D7, D28 (*deinduction*), and D28+ (*reinduction*) IVD samples identifying the molar percentages of modifications on disaccharide units comprising iduronic/glucuronic acid and glucosamine. Relative proportions of N-acetylglucosamine (N-Ac; light pink), unsubstituted glucosamine (NH₂; dark pink), **B.** N-sulfoglucosamine (N-S; dark blue), **C.** Uronyl-2-O-sulfates (2-O-SO₃; light blue), and **D.** Glucosaminyl-6-O-sulfates (6-O-SO₃; green) are depicted as mean \pm SD. ns=non-significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. **E.** Normalized read counts indicating reversible upregulation of *Fgf1* at 8h, D1, D3, D7, D14, D28 (*deinduction*) time points. Asterisks indicate significant changes in normalized read counts vs. D0 (*baseline*) *p<0.05, ***p<0.001. **F.** Log₂ fold-change (normalized) gene-level effect size plots for *B3galt6* in pairwise comparisons using PT or D7 as baselines. Grey histogram depicts the background distribution of sgRNAs in the CRISPR-Cas9 screen, colored vertical lines depict each sgRNA targeting *Hs6st1* or *Fgfr2*. **G.** Western blot analysis of phospho-ERK1/2 (pERK1/2) and total ERK1/2 (tERK1/2) levels in sgRosa, sgB3galt6_3, sgB3galt6_1, sgHs6st1_2, sgHs6st1_1, sgFgfr2_2, and sgFgfr2_3 Her2-dependent-Cas9 cells at D0 (*baseline*), D4, and D7 (*deinduction*) time points. Numbers indicate relative quantification of pERK1/2/tERK1/2 signal normalized to sgRosa levels within each time point. **H.** Viable RTC counts at D7 quantifying the percentage change relative to sgRosa RTCs in sgB3galt6_3, sgB3galt6_1, sgHs6st1_2, and sgHs6st1_1 Her2-dependent-Cas9 cells treated with FGF1 (25ng/ml), heparin (25 μ g/ml), or FGF1 (25ng/ml) + heparin (25 μ g/ml). ****p<0.0001. **I.** Immunofluorescence and **J.** quantification for TUNEL (red) in Her2-dependent-Cas9 sgRosa, sgHs6st1_1, and sgFgfr2_1 (green) PTs and D7 RLs. Scale bar=100 μ m. Quantification in the sgRosa (grey), sgHs6st1_1 (purple), and sgFgfr2_1 (pink) groups is represented as mean \pm SD. *p<0.05, **p<0.01. **K.** Kaplan-Meier analysis of recurrence-free survival for the sgRosa (grey), sgHs6st1_1 (purple), and sgFgfr2_1 (pink) groups. RFS₅₀=median time-to-recurrence.

Figure S1

Fig. S1: **A.** Hypergeometric test and Venn diagram depicting the overlap between the in vivo and IVD-derived downregulated gene set. **B.** Top 15 Reactome gene ontology terms for the overlapping upregulated set of 747 genes is depicted on the bar plot. **C.** Dormancy-associated tumor cell-autonomous gene signature (after subtracting out genes that belong to the gene ontology term 'Cell Cycle') enrichment following neoadjuvant therapies vs. pre-treatment (pre-tx) samples across 7 different datasets is measured by effect size. Significant effects are highlighted in pink. **D.** Forest plot representation of hazard ratios (HR) and 95% confidence intervals (CI) as a function of the dormancy-signature or **E.** dormancy signature after subtracting out genes that belong to the gene ontology term 'Cell Cycle' in breast cancer patients recurring 10 years after initial treatment. Red dashed lines depict the shift in HR across 16 human datasets. Forest plot representation of hazard ratios (HR) and 95% confidence intervals (CI) as a function of the dormancy-signature in breast cancer patients recurring 10 years after initial treatment.


Figure S2

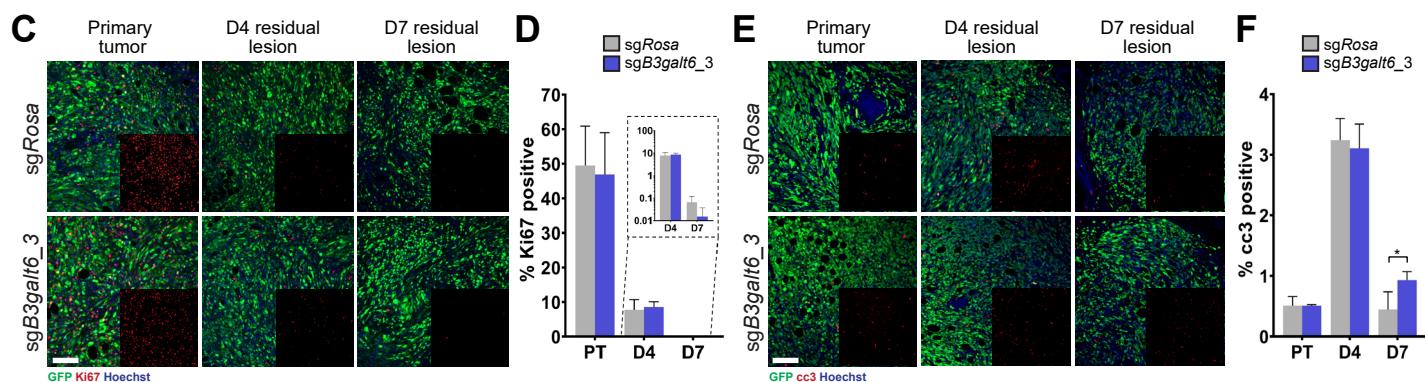
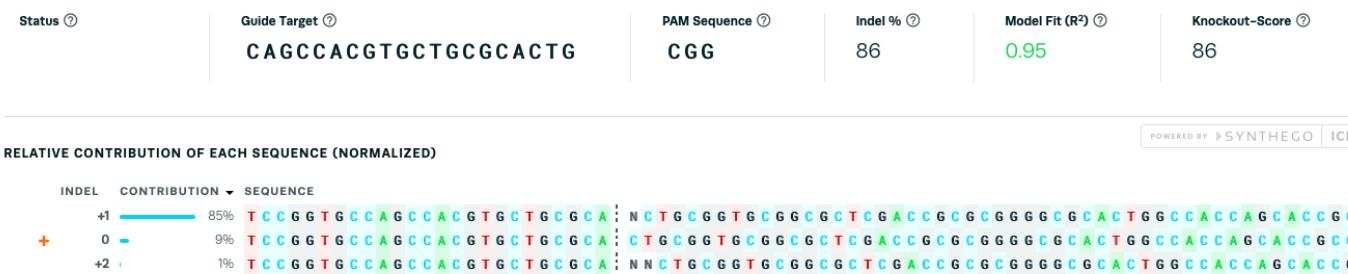
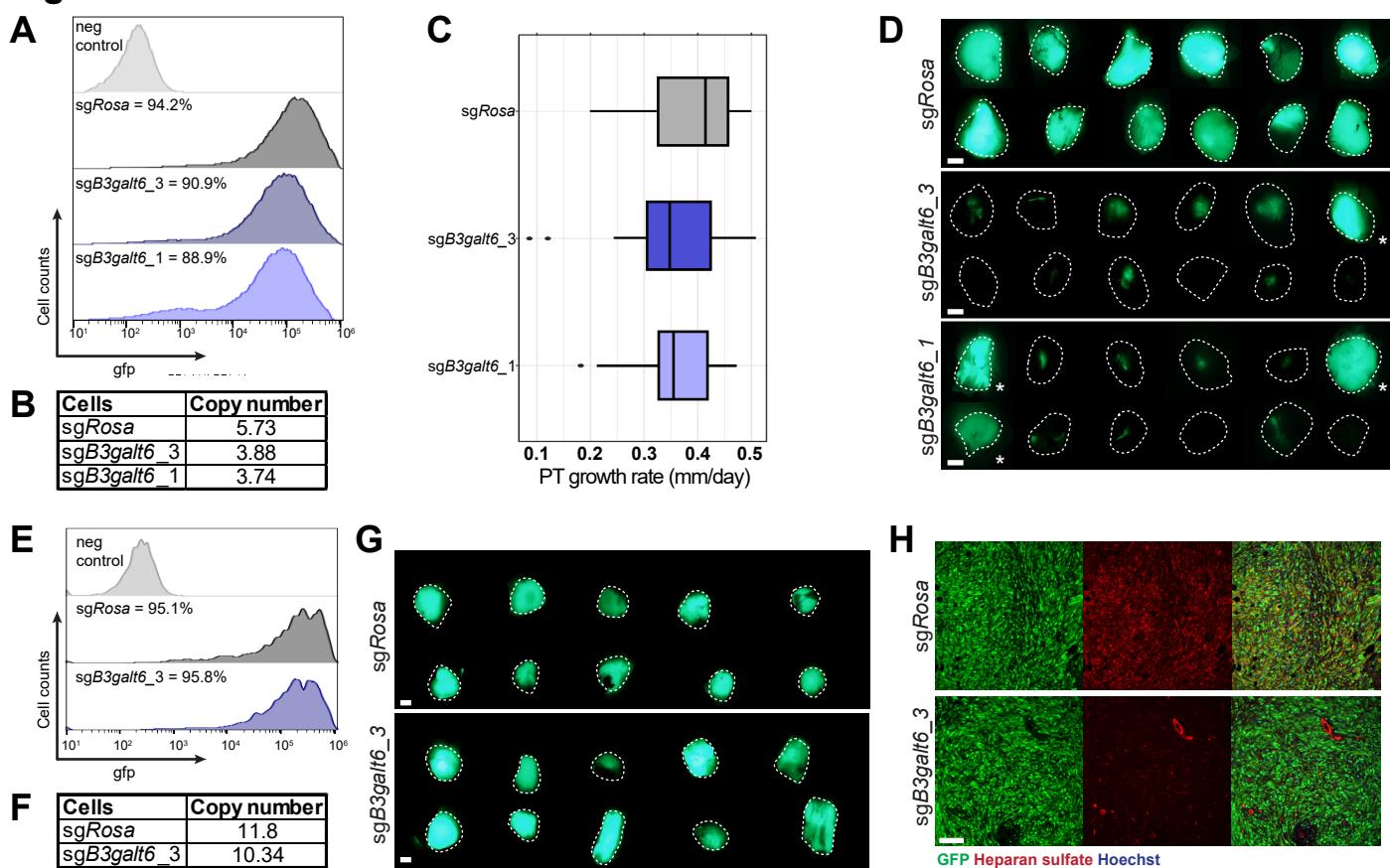


Fig. S2: A. Number of sgRNAs (out of 509) detected in every sample at sequential time points in the CRISPR-Cas9 screen. Data are represented as median \pm interquartile range. **B.** Palpation data tracking tumor volumes for all harvested samples at PT and RL time points. **C, D** Scatterplot of sgRNA sequence reads normalized by MoR in injected vs. PT samples (**C**) and PT vs. D28 RL (**D**). Solid line indicates identity line, dotted lines indicate two-fold differences. Outlined grey circles indicate non-targeting sgRNAs. **E.** Subset of CRISPR-Cas9 screen enrichment hits (5 genes) identified by 2-8 statistical methods (MAGECK-RRA-M, MAGECK-RRA-T, MW-RRA-MoR, MW-RRA-NC_MoR, MW-RRA-NC_RZ, MW-RRA-NR, MW-RRA-RZ, MW-RRA-TMM) and neutral genes (5 genes) displaying no selection during dormancy. **F.** Scores indicate $-\log_{10}(p \text{ value})$ for each pairwise comparison using PT, D7, or D14 as a baseline. Rows represent the statistical method being used. Positive values indicate enrichment of sgRNAs, negative values indicate depletion of sgRNAs. Significant results are highlighted in green.

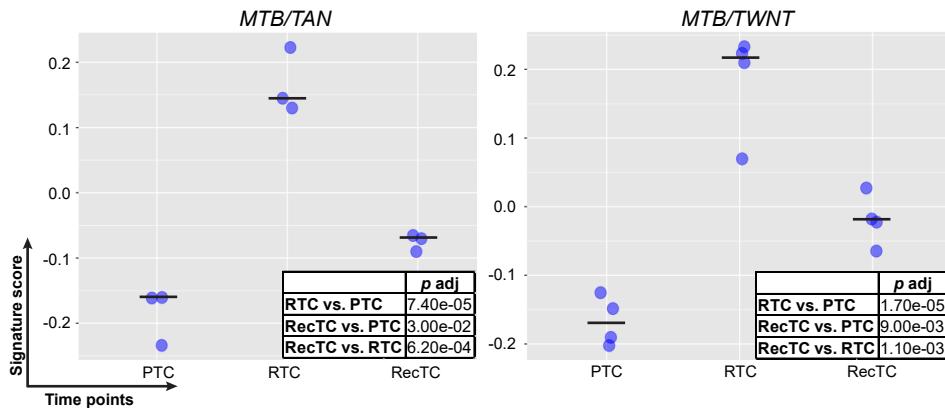
Figure S3

A sgB3galt6_3



B sgB3galt6_1

Fig. S3: A. Inference of CRISPR edits (ICE) analysis for sgB3galt6_3 and **B.** sgB3galt6_1 displaying the proportion of indels in the population. Wild-type sequence is represented by the orange + sign at 0. Dotted line indicates the Cas9 cut site. **C.** Immunofluorescence and **D.** associated quantification for Ki67 (red) or **E.**, **F.** cleaved caspase 3 (cc3, red) in Her2-dependent-Cas9 sgRosa and sgB3galt6_3 (green) PTs, D4, and D7 RLs. Scale bar=100μm. Quantification in the sgRosa (grey) and sgB3galt6_3 (dark blue) groups is represented as mean ± SD. *p<0.05.


Figure S4

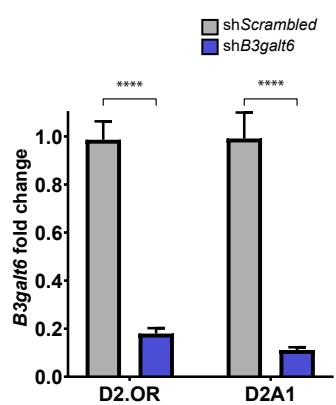
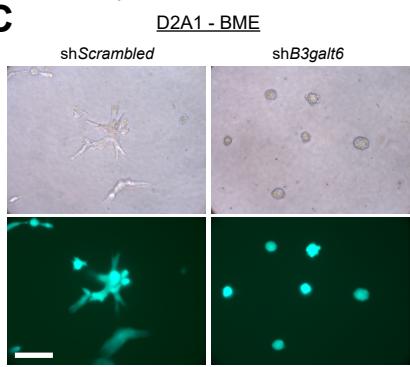
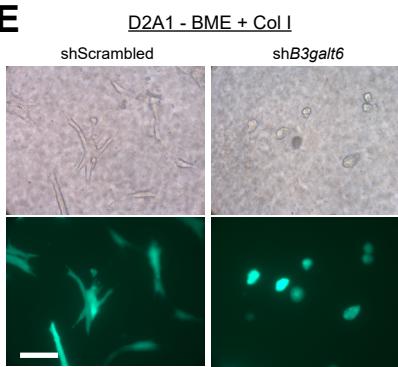
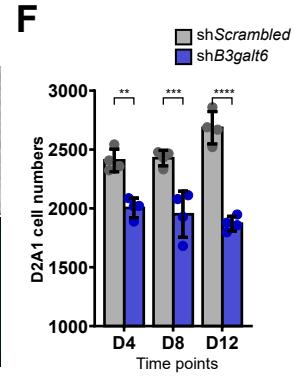

Fig. S4: **A.** Histograms represent the distribution of GFP positivity in the injected Her2-dependent-Cas9 sgRosa (dark grey), sgB3galt6_3 (dark blue), and sgB3galt6_1 (light blue) relative to untransduced Her2-dependent-Cas9 cells (light grey). **B.** Average copy number of integrated GFP in the injected Her2-dependent-Cas9 sgRosa, sgB3galt6_3, and sgB3galt6_1 cells detected by ddPCR. **C.** Growth rate of primary sgRosa (dark grey), sgB3galt6_3 (dark blue), and sgB3galt6_1 (light blue) tumors. Data are represented as median \pm interquartile range. **D.** Stereoscope images of 12 representative recurrences harvested. Dotted white lines drawn based on discernible tumor edges in bright field images. White asterisks indicate GFP+ recurrences in the sgB3galt6_3 and sgB3galt6_1 groups. Scale bar=2mm. **E.** Histograms represent the distribution of GFP positivity in the injected Her2-dependent-Cas9 sgRosa (dark grey) and sgB3galt6_3 (dark blue) relative to untransduced Her2-dependent-Cas9 cells (light grey). **F.** Average copy number of integrated GFP in the injected Her2-dependent-Cas9 sgRosa and sgB3galt6_3 cells detected by ddPCR. **G.** Stereoscope images of 10 representative recurrences harvested. Dotted white lines drawn based on discernible tumor edges in bright field images. Scale bar=2mm. **H.** Immunofluorescence for heparan sulfate (red) in Her2-dependent-Cas9 sgRosa or sgB3galt6_3 (green) recurrences. Scale bar=100 μ m.

Figure S5

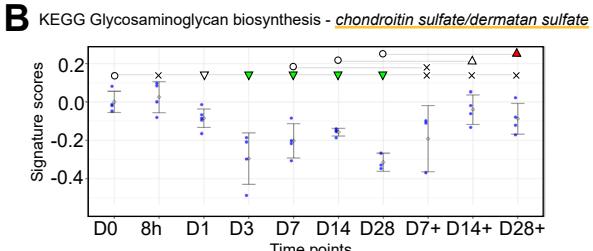
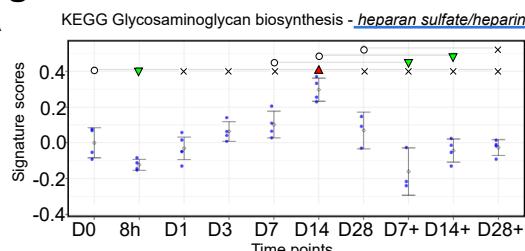

A

B


C


D

E



F

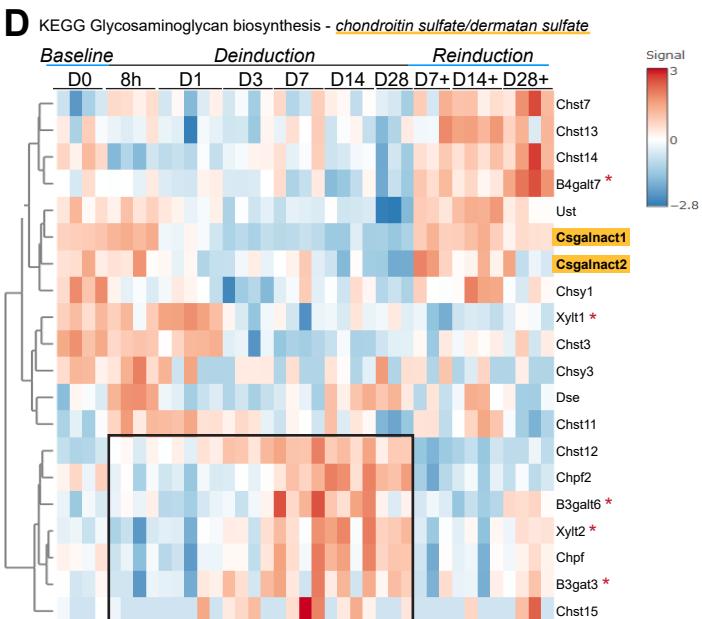
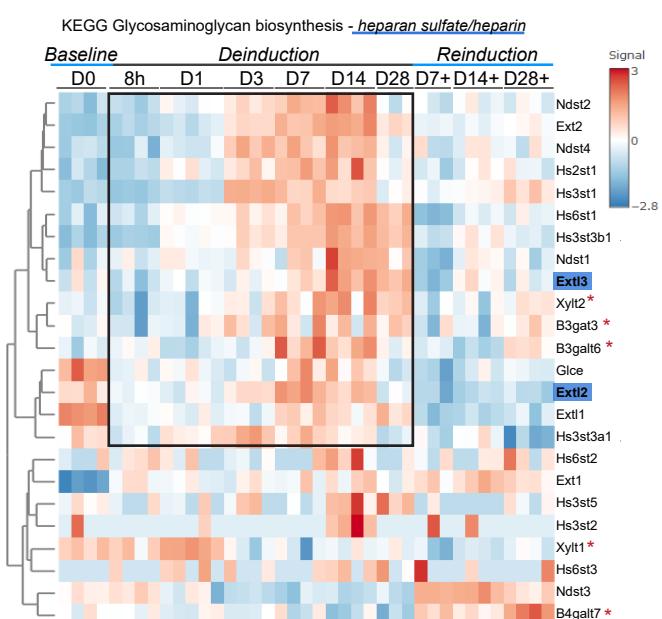
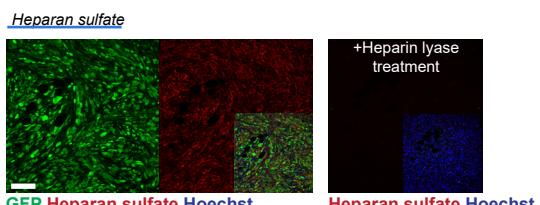
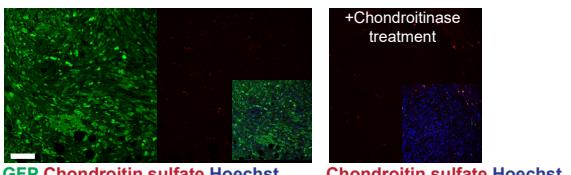
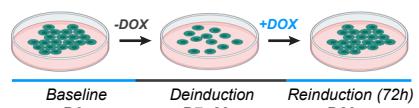


Fig. S5: A. Application of the gene expression signature derived from D2.OR (dormant, indolent) cells vs. D2A1 (proliferative, aggressive) cells in 3D to the MTB/TAN or MTB/TWNT-derived in vivo dormancy temporal profiling. Table represents adjusted *p* value for each pairwise comparison between primary tumor cells (PTC), residual tumor cells (RTC), and recurrent tumor cells (RecTC). Black lines indicate median score for each time point. **B.** qRT-PCR for *B3galt6* transcripts in shScrambled or sh*B3galt6* D2.OR and D2A1 cells. **C.** Brightfield and fluorescence images of shScrambled and sh*B3galt6* D2A1 cells grown in 3D on basement membrane extract (BME) and **D.** associated viable cell numbers measured by absorbance at 570nm at D0, D8, and D12 time points. Scale bar=100μm. Data are represented as mean ± SD. ns=non-significant, ***p*<0.01. **E.** Brightfield and fluorescence images of shScrambled and sh*B3galt6* D2A1 cells grown in 3D on BME + Col I and **F.** associated viable cell numbers measured by absorbance at 570nm at D0, D8, and D12 time points. Scale bar=100μm. Data are represented as mean ± SD. ***p*<0.01, ****p*<0.001, *****p*<0.0001.

Figure S6


A


C

E


F Chondroitin sulfate

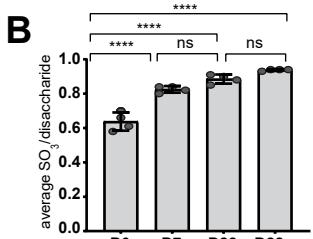
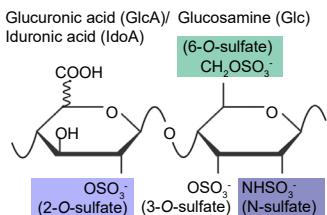
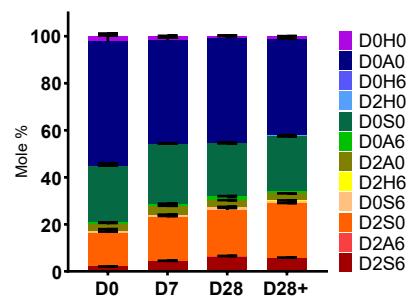
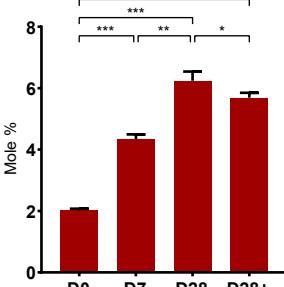

Fig. S6: A. Application of KEGG glycosaminoglycan (GAG) biosynthesis signatures for heparan sulfate/heparin and **B.** chondroitin sulfate/dermatan sulfate on MTB/TAN IVD temporal gene expression profiles. Circle=baseline, x=non-significant, empty triangles=trending significance $0.05 < p < 0.1$, filled triangles= $p < 0.05$, inverted triangles=decreased signature score, upright triangles=increased signature score. **C.** Heatmap of KEGG glycosaminoglycan (GAG) biosynthesis gene expression signatures for heparan sulfate/heparin (left) and **D.** chondroitin sulfate/dermatan sulfate (right) on *MTB/TAN* IVD temporal gene expression profiles. Black box represents the major group demonstrating dormancy-selective upregulation identified by hierarchical clustering. Red asterisks represent enzymes involved in tetrasaccharide linker synthesis during proteoglycan assembly. Blue boxes indicate enzymes involved in determining heparan sulfate synthesis, yellow boxes indicate enzymes involved in chondroitin sulfate synthesis. **E.** Immunofluorescence for heparan sulfate (left panels) or **F.** chondroitin sulfate (right panels) (red) in PTs derived from Her2-dependent-Cas9 cells with sgRosa (green). Heparan sulfate/Chondroitin sulfate staining following heparin lyase or chondroitinase treatment is used as the negative control. Scale bar=100 μ m.

Figure S7

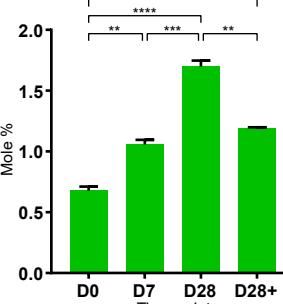

A

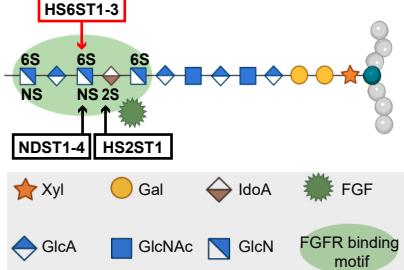
B

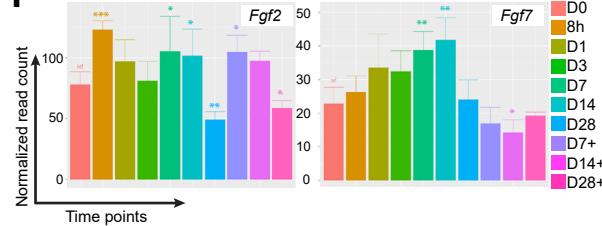

C


D

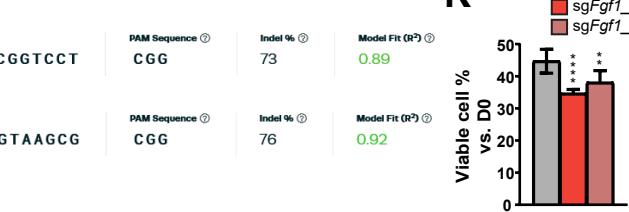
Structure code	Unit formula
D0H0	ΔUA-GlcNH ₂
D0A1	ΔUA-GlcNAc
D0H6	ΔUA-GlcNH ₂ S
D2H0	ΔUA2S-GlcNH ₂
D0S0	ΔUA-GlcNS
D0A6	ΔUA-GlcNAcS
D2A0	ΔUA2S-GlcNAc
D2H6	ΔUA2S-GlcNH ₂ S
D0S6	ΔUA-GlcNSS
D2S0	ΔUA2S-GlcNS
D2A6	ΔUA2S-GlcAcS
D2S6	ΔUA2S-GlcNSS

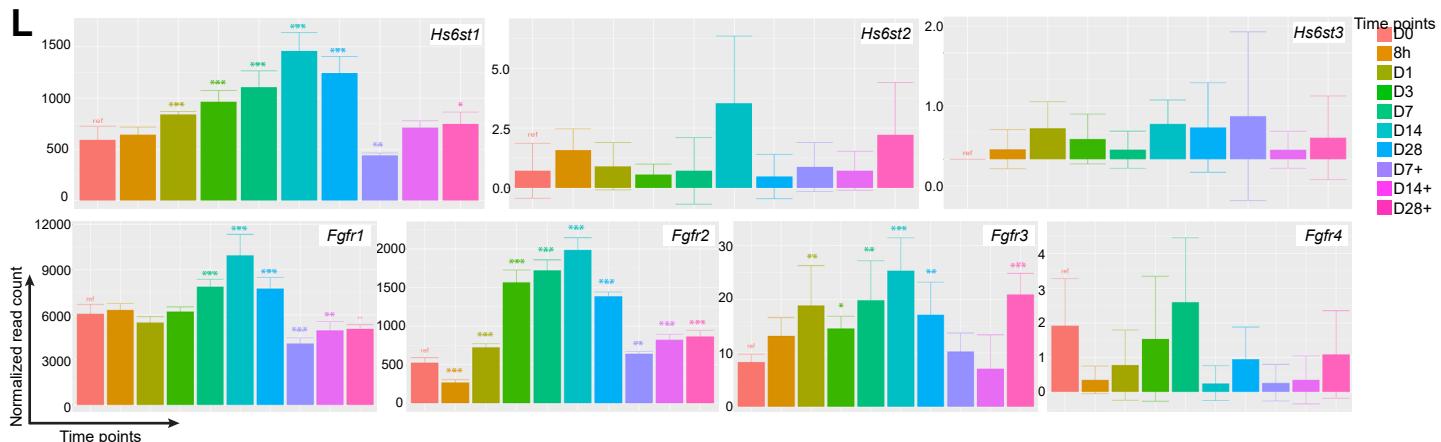

E

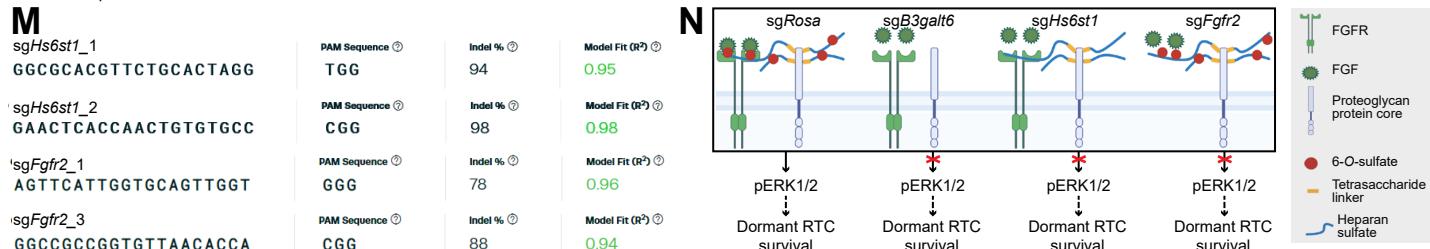

F

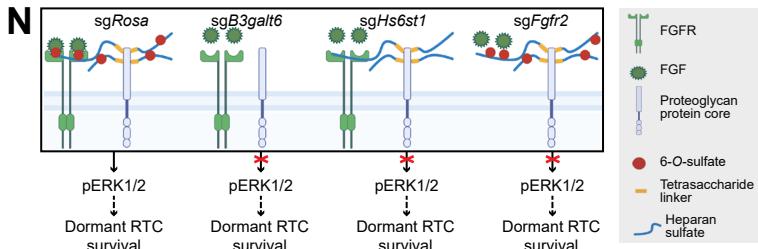

G

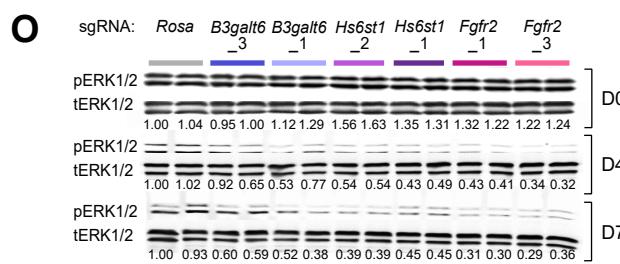
H

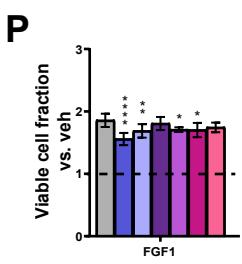

I

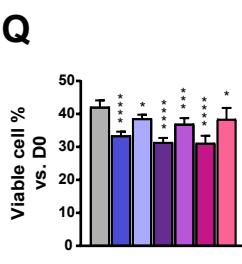

J


K


L


M


N


O

P

Q

Fig. S7: A. Experimental setup for IVD samples isolated for LC/MS for heparan sulfate and chondroitin sulfate disaccharide analysis. **B.** Average sulfation/disaccharide of heparan sulfate at D0 (*baseline*), D7, D28 (*deinduction*), and D28+ (*reinduction*) time points measured by LC/MS. Data are represented as mean \pm SD. ns=non-significant, *** p <0.0001. **C.** Possible sites of sulfation on the heparan sulfate disaccharide. Colored boxes indicate the types of sulfation assessed. **D.** 4-character disaccharide structure code (DSC) nomenclature and unit formulae. Δ UA – Δ 4,5-unsaturated uronic acid. **E.** Distribution of heparan sulfate disaccharide motifs at IVD time points represented according to the 4-character disaccharide structure code (DSC) nomenclature. Molar percentages of (**F**) D2S6 and (**G**) D0A6 are highlighted. Data are represented as mean \pm SD. ns=non-significant, * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. **H.** Pictorial representation of the substrates and the type of sulfation catalyzed by sulfotransferase enzymes to generate protein binding motifs, e.g., FGFR binding motif. **I.** Normalized read counts indicating the expression of *Fgf2* and *Fgf7*. Asterisks indicate significant changes in normalized read counts vs. D0 (*baseline*) * p <0.05, ** p <0.01. **J.** Inference of CRISPR edits (ICE) analysis for *sgFgf1_1* and *sgFgf1_2* displaying the proportion of indels in the population. **K.** Viable RTC counts relative to D0 in *sgRosa*, *sgFgf1_1*, and *sgFgf1_2* Her2-dependent-Cas9 cells. ** p <0.01, **** p <0.0001. **L.** Normalized read counts indicating the expression of *Hs6st1-3* and *Fgfr1-4*. Asterisks indicate significant changes in normalized read counts vs. to D0 (*baseline*) * p <0.05, ** p <0.01, *** p <0.001. **M.** Inference of CRISPR edits (ICE) analysis for *sgHs6st1_1*, *sgHs6st1_2*, *sgFgfr2_1*, *sgFgfr2_3* displaying the proportion of indels in the population. **N.** Schematic depicting the role of heparan sulfate, 6-O-sulfation, and FGF signaling in maintain dormant RTC survival. **O.** Western blot quantification of phospho-ERK1/2 (pERK1/2) over total ERK1/2 (tERK1/2) levels in *sgRosa*, *sgB3galt6_3*, *sgB3galt6_1*, *sgHs6st1_2*, *sgHs6st1_1*, *sgFgfr2_2*, and *sgFgfr2_3* Her2-dependent-Cas9 cells at D0 (*baseline*), D4, and D7 (*deinduction*) time points. pERK1/2/tERK1/2 signal normalized to *sgRosa* levels at D0. Asterisks indicate significant changes vs. *sgRosa* signal within the time point (*baseline*) * p <0.05, ** p <0.01, *** p <0.001. **P.** Viable RTC counts relative to vehicle-treated cells (black dashed line) at D4 in *sgRosa*, *sgB3galt6_3*, *sgB3galt6_1*, *sgHs6st1_2*, *sgHs6st1_1*, *sgFgfr2_1*, and *sgFgfr2_3* Her2-dependent-Cas9 cells treated with FGF1 (25ng/ml). Black dotted line indicates the viable cell number in the vehicle controls. * p <0.05, ** p <0.01, **** p <0.0001. **Q.** Viable RTC counts relative to D0 in *sgRosa*, *sgB3galt6_3*, *sgB3galt6_1*, *sgHs6st1_2*, *sgHs6st1_1*, *sgFgfr2_1*, and *sgFgfr2_3* Her2-dependent-Cas9 cells. * p <0.05, **** p <0.0001.