

## 1      The distance between the plasma membrane and the actomyosin cortex acts 2      as a nanogate to control cell surface mechanics

3  
4      Sergio Lembo<sup>†,1,§,‡</sup>, Léanne Strauss<sup>†,1,§</sup>, Dorothy Cheng<sup>1,2,§</sup>, Joseph Vermeil<sup>3,4</sup>, Marc Siggel<sup>5,6</sup> Mauricio  
5      Toro-Nahuelpan<sup>2</sup>, Chii Jou Chan<sup>7,‡</sup>, Jan Kosinski<sup>2,5,6</sup>, Matthieu Piel<sup>3</sup>, Olivia Du Roure<sup>4</sup>, Julien Heuvingh<sup>4</sup>,  
6      Julia Mahamid<sup>1,2</sup>, and Alba Diz-Muñoz<sup>\*,1</sup>.

7  
8      <sup>1</sup> Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg,  
9      Germany.

10     <sup>2</sup> Structural and Computational Biology Unit, EMBL, Heidelberg, Germany.

11     <sup>3</sup> Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.

12     <sup>4</sup> Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris,  
13      Sorbonne Université, Paris, France.

14     <sup>5</sup> EMBL Hamburg, European Molecular Biology Laboratory, Hamburg, Germany.

15     <sup>6</sup> Centre for Structural Systems Biology (CSSB), Hamburg, Germany.

16     <sup>7</sup> Developmental Biology Unit, EMBL, Heidelberg, Germany.

17  
18     <sup>‡</sup> Current address: Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.

19     <sup>§</sup> Current address: Mechanobiology Institute, Department of Biological Sciences, National University of  
20      Singapore, Singapore.

21  
22     <sup>†</sup> These authors contributed equally to this work.

23     <sup>§</sup> Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences.

24     \* Correspondence: [diz@embl.de](mailto:diz@embl.de).

25  
26  
27      Animal cell shape changes are controlled by the actomyosin cortex, a peripheral actin network tethered  
28      to the plasma membrane by membrane-to-cortex attachment (MCA) proteins. Previous studies have  
29      focused on how myosin motors or actin turnover can generate the local deformations required for  
30      morphogenesis. However, how the cell controls local actin nucleation remains poorly understood. By  
31      combining molecular engineering with biophysical approaches and *in situ* characterization of cortical  
32      actin network architecture, we show that membrane-to-cortex tethering determines the distance  
33      between the plasma membrane and the actomyosin cortex at the nanoscale of single actin nucleators.  
34      In turn, the size of this gap dictates actin filament production and the mechanical properties of the cell  
35      surface. Specifically, it tunes formin activity, controlling actin bundling and cortical tension. Our study  
36      defines the membrane-to-cortex distance as a nanogate that cells can open or close by MCA proteins  
37      to control the activity of key molecules at the cell surface.

38 The cell cortex is a thin network of actin filaments, myosin motors and actin-binding proteins linked to  
39 the plasma membrane<sup>1</sup>. Spatial regulation of cortex composition and mechanics drives cell shape  
40 changes during key physiological processes such as division, migration and differentiation. Thus,  
41 deciphering how cells control cortex mechanics locally is essential to understand the remarkable ability  
42 of animal cells to dynamically change their shape. To identify the molecular mechanisms which spatially  
43 control cortex mechanics, studies have focused on the distribution of active myosin molecules<sup>2,3</sup>.  
44 However, how the cell regulates local actin nucleation activity, which determines the local architecture  
45 of the cortical network, remains poorly understood.

46 The cell cortex is tethered to the plasma membrane by membrane-to-cortex attachment (MCA)  
47 proteins. Canonical MCA proteins, such as the ERM family (ezrin, radixin and moesin), are key  
48 regulators of membrane mechanics, in particular membrane tension<sup>4</sup>. Activated by phosphorylation,  
49 ERM proteins distribute asymmetrically during many morphogenetic processes, coinciding with  
50 mechanically and functionally distinct cortical regions in cells. For example, they specifically localize and  
51 regulate the rear of migrating cells<sup>5</sup>, the cytokinetic ring of dividing cells<sup>6,7</sup>, the microvillar domain of  
52 mouse oocytes<sup>8</sup>, and the apical domain of early mouse blastomeres<sup>9,10</sup> and epithelial cells<sup>11,12</sup>. Thus,  
53 we wondered whether and how membrane-to-cortex tethering controls cortical mechanics.

54 In this study, we find that reducing the distance between the plasma membrane and the most  
55 peripheral actin filaments leads to a reduction in cortical tension and thickness. By employing *in situ*  
56 cryo-electron tomography, we reveal changes at the level of single actin filaments in the architecture of  
57 the cortical network. Finally, by using chemical perturbations and engineered MCA proteins of different  
58 lengths, we find that membrane-to-cortex distance controls actin nucleation by formins. Together, these  
59 results identify MCA proteins as major regulator of the physical space between the plasma membrane  
60 and the actin cortex, which in turn controls key molecular activities at the cell surface.

## 61 **Membrane-to-cortex tethering regulates cortical tension and thickness**

62 ERM proteins are enriched at functionally distinct regions of the cell cortex with differential mechanics.  
63 Thus, we examined whether membrane-to-cortex tethering has a direct effect on the mechanical  
64 properties of the cortex. To keep a constant cell geometry between our measurements, and induce the  
65 formation of a uniform cortical network<sup>13</sup>, we plated cells on circular micropatterns, such that they  
66 uniformly adapt into a dome-like shape (**Fig. 1a**). We then increased membrane-to-cortex tethering first  
67 by expressing a constitutively active version of ezrin (CAezrin, T567D<sup>14</sup>) in a doxycycline inducible  
68 manner in NIH 3T3 fibroblasts (**Fig. 1b** top and **Extended Data Fig. 1a,b**). Cortical tension, a key  
69 mechanical property of the cortex, was measured by atomic force nano-indentation (**Fig. 1a, Extended**  
70 **Data Fig. 1c**). Increasing membrane-to-cortex tethering by CAezrin expression led to a decrease in  
71 cortical tension (**Fig. 1b** bottom). To rule out an effect of ezrin's signaling rather than its tethering function  
72 (reviewed in<sup>15</sup>), we next used our recently developed iMC-linker, which is a synthetic molecular tool that  
73 mimics the domain architecture of endogenous MCA proteins but is inert regarding signaling<sup>16</sup>.  
74 Specifically, the iMC-linker is reduced to three small protein domains: the CH1/CH2 domain of Utrophin<sup>17</sup>  
75 to bind cortical actin, the lipidation motif of Lyn<sup>18</sup> to insert into the plasma membrane, and a fluorescent  
76 protein to link the two domains and visualize its subcellular localization (**Extended Data Fig. 1d**).  
77 Consistent with the effect of CAezrin expression, increasing tethering by expression of the iMC-linker  
78 (**Extended Data Fig. 1e**) also significantly decreased cortical tension in fibroblasts in a density-  
79 dependent manner (**Fig. 1c** bottom, d). Thus, MCA proteins not only connect the plasma membrane  
80 and the cortex, but also regulate cortical tension. To rule out a change in actin dynamics by the actin-  
81 binding activity of the iMC-linker, we expressed the actin-binding domain alone and found that it was  
82 not sufficient to decrease cortical tension (**Extended Data Fig. 1f**), demonstrating that the tethering of  
83 cortical actin to the membrane is key for this mechanical phenotype. Next, to rule out any effects due to  
84 potential differences in cell adhesion<sup>19</sup>, we measured cortical tension by micropipette aspiration of cells  
85 in suspension. Regardless of cell adhesion to the substrate, iMC-linker expressing cells had lower  
86 cortical tension (**Extended Data Fig. 1g**). Finally, we overexpressed CAezrin or the iMC-linker in naïve  
87 mouse embryonic stem cells (mESCs). Nanoindentation measurements consistently showed a  
88 decrease in cortical tension (**Fig. 1 e,f, Extended Data Fig. 1h-j**), which demonstrates that regulation  
89 of cortical tension by membrane-to-cortex tethering is a consistent feature among different cell types.  
90

91 A decrease in tension could result from reduced myosin-2 activity or a change in the architecture  
92 of the cortical actin network<sup>3,20</sup>. First, we quantified the relative concentration of phosphorylated myosin-  
93 2 (p-myosin) at the cell surface. Surprisingly, we found a clear increase in the amount of p-myosin at  
94 the cell periphery (**Fig. 1h, Extended Data Fig. 1k** right), which would instead be expected to increase  
95 tension. Next, as a first-order readout of cortical architecture, we measured cortical thickness and  
96 elasticity using a magnetic pincher<sup>21</sup>. Cortical thickness was reduced by 30% upon iMC-linker  
97 expression (**Fig. 1i**), without a significant change in elasticity (**Fig. 1j**). Moreover, we observed a slight  
98 decrease in the relative amounts of filamentous actin (F-actin) at the cortex (**Fig. 1g, Extended Data**  
99 **Fig. 1k** left). Together, our results suggest that increasing membrane-to-cortex tethering reduces  
100 cortical tension by changing cortical network architecture.

101

### 102 **Membrane-to-cortex tethering regulates cortical network architecture and the membrane-to-** 103 **cortex distance**

104 Analyzing actin network architecture in cells is a long-standing challenge because actin filaments are  
105 poorly preserved during chemical fixation and in traditional room temperature microscopy methods<sup>22</sup>.  
106 Moreover, the filaments are 7 nm thick and thus require high resolution imaging. The combination of  
107 light and electron microscopy approaches have shed some light on the architecture of the actin  
108 cytoskeleton at the basal surface and migration front in some cell types<sup>23,24-27</sup>. Yet, such methods have  
109 failed to provide a characterization of the cell cortex, which is further hampered by its diffraction-limited  
110 thickness<sup>20,28</sup>, close proximity to the membrane, and high density of actin filaments<sup>29</sup>.

111 To assess how membrane-to-cortex tethering affects the architecture of the cortical actin  
112 network, we established a cryo-electron tomography (cryo-ET) workflow, which can resolve individual  
113 actin filaments *in situ*. In alignment with our measurements of cell surface mechanics above, NIH 3T3  
114 fibroblasts were seeded on micropatterned grids. To target the cortex at the rounded parts of the cell,  
115 we used focused ion beam milling<sup>30</sup> (FIB) to produce ~200 nm thin lamellas in the equatorial plane. To  
116 ensure structural preservation of this area and stability of the lamellae, the lamellae were generated  
117 across two vitrified cells growing on adjacent micropatterns<sup>31</sup> without forming cell-cell adhesions  
118 (**Extended Data Fig. 2a-e**). We obtained 3D cryo-ET reconstructions at 1.3 nm/pixel, semi-automatically  
119 segmented individual actin filaments and the plasma membrane, and extracted structural parameters of  
120 the actin network (**Fig. 2a-d, Extended Data Fig. 2f, Extended Data Fig. 3a, Supplementary Videos**  
121 **1-4**): our ultrastructural analysis showed that increased membrane-to-cortex tethering by expression of  
122 the iMC-linker leads to a reduction in the total amount of actin in filaments (**Fig. 2b**), in agreement with  
123 fluorescence-based quantification of cortical F-actin amount (**Fig. 1g**) and thickness (**Fig. 1i**). This  
124 reduction is observed especially at a distance beyond ~100 nm from the plasma membrane (**Fig. 2b**).  
125 However, the expression of the iMC-linker led to more actin filaments very close (0 to 40 nm) to the  
126 membrane compared to the control (**Fig. 2c**).

127 Next, we aimed to examine the topology of actin filaments within the cortex. Actin filaments can  
128 be organized into bundles, whose filaments are elongated by formins, or branched networks, generated  
129 by the Arp2/3 complex from preexisting filaments<sup>32</sup>; *in vitro*, these nucleators generate distinct network  
130 topologies with different mechanical properties<sup>33-36</sup>. In cells, the cortex appears soft if predominantly  
131 nucleated by the Arp2/3 complex, and bundled and stiff if predominantly generated by formins<sup>37,38</sup>. The  
132 activity ratio of the two nucleators can thus control the network architecture and thereby mechanics of  
133 the cell cortex<sup>37,38</sup>. In order to analyze whether increasing membrane-to-cortex tethering affects the  
134 topology within the cortex, we derived inter-filament orientations and distances. Actin branching was low  
135 in both control and upon expression of the iMC-linker, and was not significantly different between the  
136 two conditions (**Fig. 2e,f, Extended Data Fig. 3a,c**). We however observed a reduction in the fraction  
137 of bundled actin (**Fig. 2e,g, Extended Data Fig. 3a,b,d**).

138 Together, our findings allow us to understand how increased membrane-to-cortex tethering  
139 changes cortical network architecture, pointing to a specific effect on bundling, and link it to the resulting  
140 cell surface mechanics.

141

### 142 **Membrane-to-cortex tethering regulates the actin nucleator landscape**

143 Our findings reveal that increasing membrane-to-cortex tethering reduces cortical thickness (**Fig. 1i**),  
144 amount of actin filaments (**Fig. 1g** and **2b**), their bundling (**Fig. 2e,g**), and the distance between the

145 membrane and the most peripheral actin filaments (**Fig. 2c,d**). This led us to investigate actin filament  
146 polymerization at the cell surface, as our data suggests that increasing tethering might limit formin  
147 activity at the cell cortex.

148 mDia1 has been shown to be the primary formin at the cortex<sup>39</sup>. Of note, its activity is  
149 mechanosensitive and dependent on the environment<sup>40,41</sup>, being more processive when bound to the  
150 plasma membrane and also, upon pulling force on the polymerizing filament. First, we quantified mDia1  
151 amount, which was unchanged by the expression of the iMC-linker (**Fig. 3a, Extended Data Fig. 4a**).  
152 Next, we tested if the effects of increased tethering on cortical mechanics are the result of reduced  
153 formin activity. To that end, we used SMIFH2, a pan-formin inhibitor<sup>42</sup>. In agreement with previous  
154 reports, cortical tension was strongly reduced upon inhibitor treatment<sup>3</sup> in our control cells, to strikingly  
155 similar levels as expression of the iMC-linker alone (**Fig. 3b**). Moreover, in cells with increased tethering,  
156 formin inhibition had little additional effect on cortical tension. Importantly, to rule out off-target effects  
157 of SMIFH2, which has been shown to inhibit members of the myosin superfamily<sup>43</sup>, we also tested the  
158 effect of direct myosin-2 inhibition. We found that Blebbistatin treatment decreases cortical tension also  
159 upon expression of the iMC-linker (**Extended Data Fig. 4b**), suggesting that our SMIFH2 findings are  
160 specific to formins. In contrast, inhibition of the Arp2/3 complex by the small molecule CK-666<sup>44</sup>  
161 increased cortical tension (**Extended Data Fig. 4c**), regardless of expression of the iMC-linker. Finally,  
162 simultaneous inhibition of both cortical nucleators led to a strong reduction in cortical tension,  
163 irrespective of the level of tethering (**Extended Data Fig. 4d**).

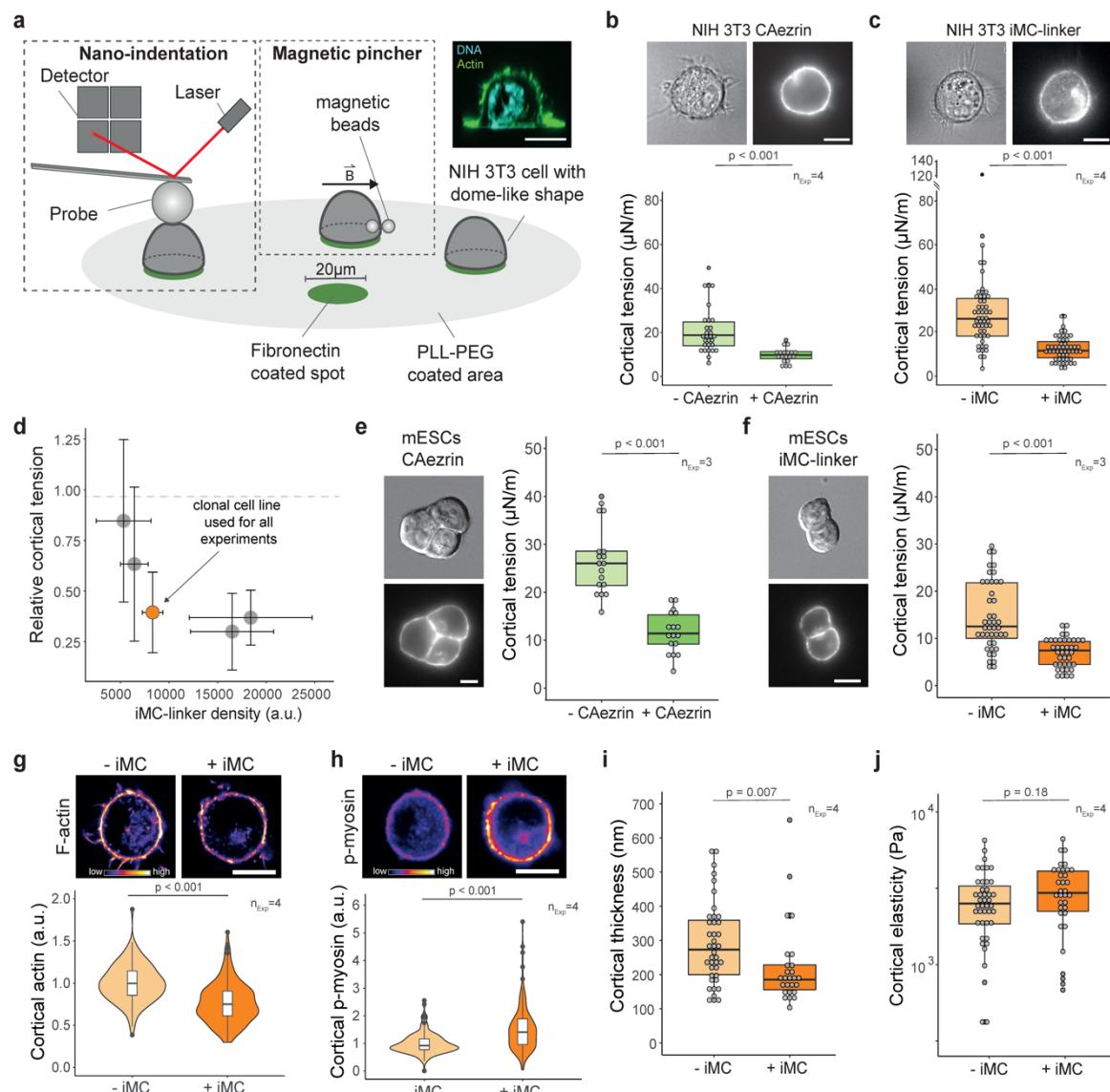
164 Taken together, our findings thus far suggest that formin activity is minimal upon expression of  
165 the iMC-linker. To test if the reduction in cortical tension by increased tethering can be restored by  
166 activating formins, we used the small molecule IMM-01<sup>45</sup>, which locks formins in their active  
167 conformation. Such treatment increased cortical tension in control cells, but failed to do so in cells  
168 expressing the iMC-linker (**Fig. 3c**). This strongly suggests that reducing the distance between the  
169 plasma membrane and the cortex (**Fig. 2c**) precludes formin activity at the interface of these two  
170 structures.

171  
172 **The membrane-to-cortex distance limits the activity of formins at the cell surface**  
173 We hypothesized that the reduction in the membrane-to-cortex distance at the nanoscale is the  
174 mechanism behind the inhibition of formins. Such “nanogating” would be expected to operate at the  
175 scale of 10-20 nm (29 and **Fig. 2c**). This hypothesis is based on recent cryo-electron microscopy  
176 structures indicating that formins undergo a conformational extension from 10 to 20 nm upon  
177 activation<sup>46</sup>. Active formin molecules would thus require larger gaps at the membrane-to-cortex interface  
178 than the more compact nucleation complex Arp2/3<sup>47</sup>.

179 To test our nanogating hypothesis, we introduced a linker with a predicted length of over 30 nm  
180 (iMC-6FP-linker), thus longer than active ezrin (25 nm<sup>48</sup>) and the 10 nm long original iMC-linker (**Fig.**  
181 **4a**). Although, the iMC-6FP-linker increased tethering between the membrane and the cortex  
182 (**Extended Data Fig. 5a**) and was expressed at higher levels than the original iMC-linker construct  
183 (**Extended Data Fig. 5b**), it did not lead to a reduction in cortical tension, in stark difference to the  
184 Cezrin and the original iMC-linker (**Fig. 1b,c, and 4b**). Taken together, we propose that the membrane-  
185 to-cortex distance acts as a nanogate, that cells can locally modulate through MCA proteins, to regulate  
186 formin activity and thus cortex architecture and its mechanics (**Fig. 4c**).  
187

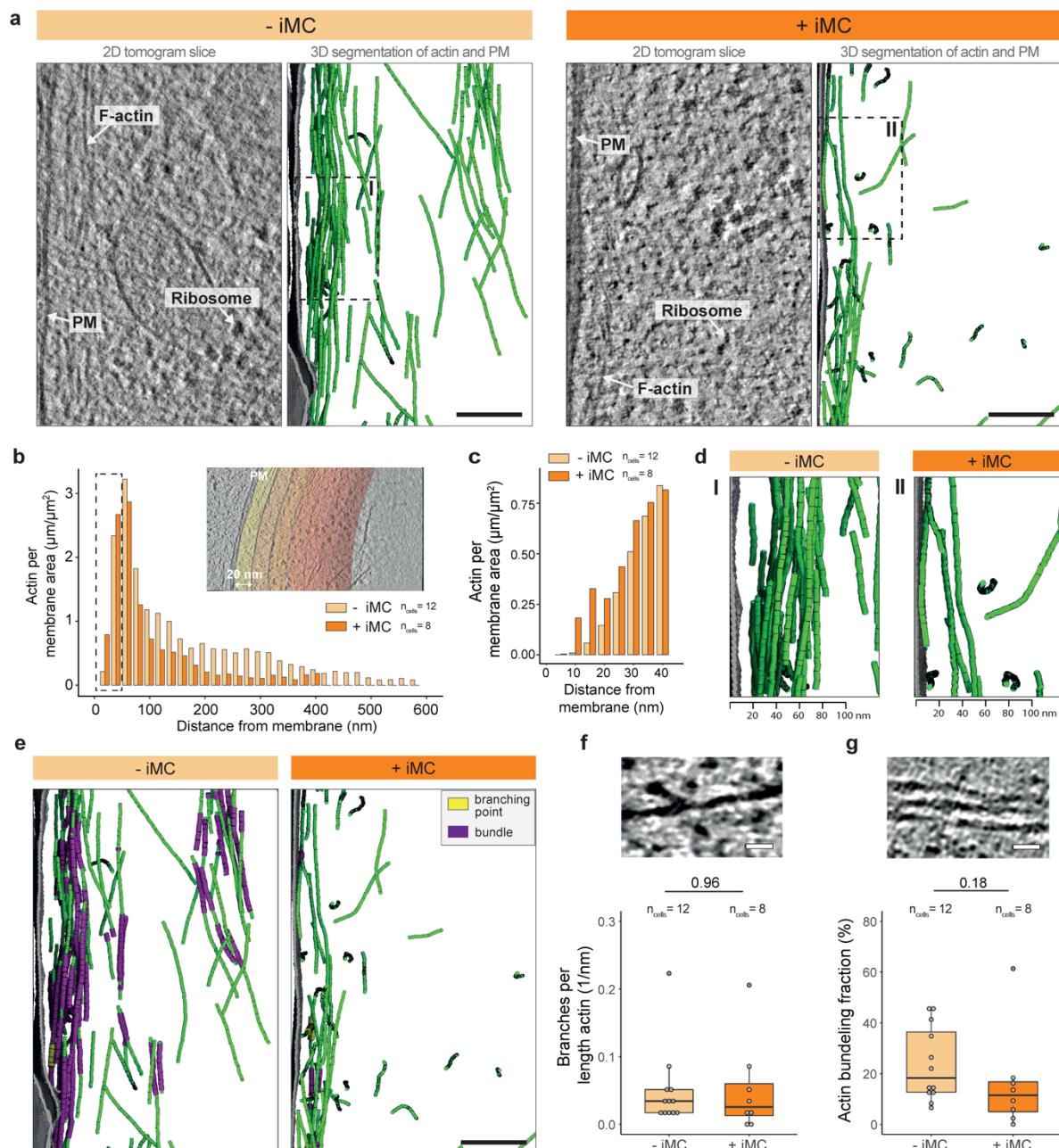
## 188 **Discussion**

189 In recent years, membrane-to-cortex tethering has gained attention, owing to its regulation of  
190 fundamental cellular processes such as stem cell differentiation<sup>16,49</sup>, cell division<sup>7</sup> and migration<sup>50,51</sup>.  
191 However, how it can regulate such a diversity of cellular states remains poorly understood.


192 Interestingly, the spatial localization of MCA proteins often mirrors local differences in cortex  
193 mechanics, as seen for example in the apical domain of epithelial cells and early mouse blastomeres,  
194 the back of migrating cells, or the cytokinetic ring<sup>5-10,12,52-54</sup>. This raises the intriguing idea that a  
195 functional relation exists between these two phenomena. Here, we show that MCA proteins control  
196 cortical mechanics in a length- and density-dependent manner, limiting formin activity at the cell cortex  
197 and thus controlling cortex architecture. The redundancy of MCA proteins found in metazoan<sup>55</sup> would  
198 render such a mechanism robust to genetic instability and enable control by different regulatory

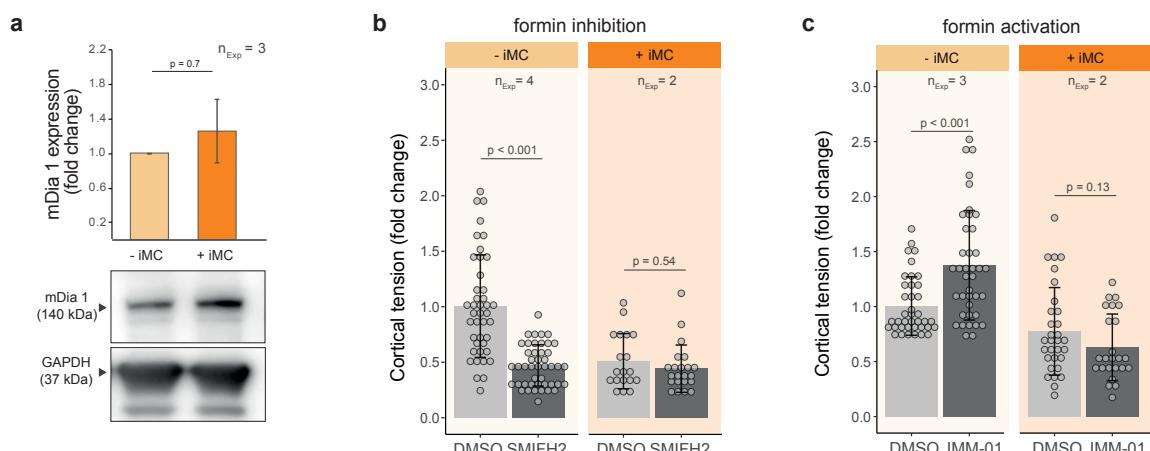
199 pathways. Moreover, this novel mechanism suggests that cells could employ gradients in linker density  
200 to regulate cortical tension, resulting in local contractions that drive cell deformations.

201 Membrane-to-cortex tethering limits lateral diffusion of proteins at the plasma membrane (picket  
202 fence model<sup>56</sup>). In this study, we show that it also regulates protein activity in the third dimension.  
203 Specifically, it regulates cortical tension by modulating formin activity, but only when expressing linkers  
204 with a predicted length shorter or equal to that of active ezrin. Together, our findings highlight how the  
205 membrane-to-cortex distance is a novel geometrical parameter that can regulate protein activity at the  
206 cell periphery. We observe the same mechanical phenotype in iMC-linker and CAezrin expressing cells,  
207 which supports an unspecific allosteric inhibition of a geometrical nature. The fact that IMM-01 is not  
208 able to increase cortical tension in cells expressing the iMC-linker further supports that the membrane-  
209 to-cortex distance by itself regulates mDia1 activity directly. Given the mechanosensitivity of formins<sup>57-</sup>  
210 <sup>60</sup>, and specifically that of the key formin at the cell cortex mDia1<sup>39,58,60,61</sup>, it is tempting to speculate that  
211 a feed-forward loop might be at play: membrane-to-cortex tethering may alter formins' ability to efficiently  
212 elongate filament ends for significant durations<sup>61</sup> at the cell surface. This is expected to lead to a  
213 reduction in cortical bundles and tension, which in turn further decreases formin-dependent filament  
214 elongation, as formins are more processive upon tension on the polymerized filament<sup>39,41</sup>.


215 Connecting cell-scale mechanics to defined cytoskeletal topologies is a current challenge in  
216 mechanobiology. There is an urgent need to develop methods that allow descriptions of cytoskeletal  
217 network architecture in quantitative terms at subcellular resolution, to guide reconstitution and modelling  
218 efforts, and interpret biophysical measurements. Although other actin structures have been resolved by  
219 cryo-ET<sup>62-65</sup>, we provide the first characterization of cortical architecture with single filament resolution  
220 away from the adhesive substrate in its native state. By keeping a constant cell geometry between our  
221 biophysical, biochemical and structural approaches we are able to link cell-scale mechanics to its  
222 molecular constituents.

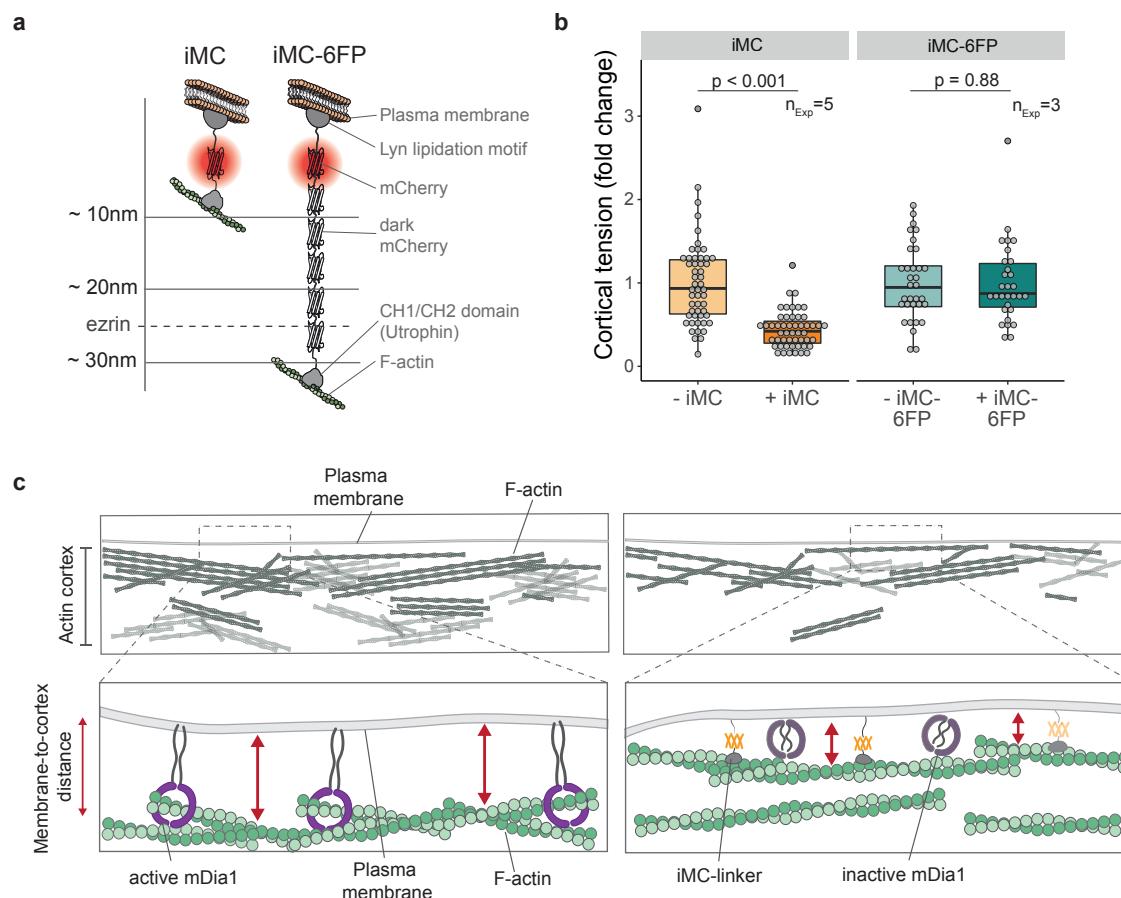
223 In summary, our work identifies the membrane-to-cortex distance as a nanogate, that acts as a  
224 new and likely universal type of control switch for cortical mechanics. By deploying MCA proteins, cells  
225 can control this key geometrical parameter to pattern protein activity at the cell surface, and thereby  
226 regulate a plethora of biological processes.




227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247

**Fig. 1 | Membrane-to-cortex tethering regulates cortical tension and thickness.** **a**, Schematic representation of the experimental setup for cortical tension and thickness measurements of NIH 3T3 fibroblasts, by nano-indentation and a magnetic pincher (vector B depicts the magnetic field), respectively. Cells are seeded on micropatterned dishes to acquire pseudo-spherical shape. Insert: representative xz view of a cell fixed and stained with phalloidin (F-actin) and DAPI (DNA). **b,c**, (top) Representative bright field and epifluorescence images of NIH 3T3 fibroblasts expressing CAezrin (b) or iMC-linker (c). (bottom) Cortical tension of NIH 3T3 fibroblasts upon expression of the respective construct. **d**, Relative cortical tension of various iMC-linker expressing clonal NIH 3T3 fibroblasts lines. Values are normalized to the respective non-induced control. Orange highlights the clonal line used in the rest of this study, others are depicted in grey. Each dot represents the median of independent experiments of a single clonal line ( $n_{Exp} \geq 3$ ). **e,f**, (left) Representative differential interference contrast and epifluorescence images of a mESCs expressing CAezrin (e) or iMC-linker (f). (right) Cortical tension of NIH 3T3 fibroblasts upon expression of the respective construct. **g,h**, (top) Representative confocal images of NIH 3T3 fibroblasts seeded on micropatterned dishes, and stained with phalloidin (F-actin) (g) and an anti-p-myosin antibody (h). (bottom) Normalized mean fluorescence intensity of cortical F-actin (g) and p-myosin (h). **i,j**, Cortical thickness (i) and cortical elasticity (j) in NIH 3T3 fibroblasts upon expression of the iMC-linker. Each dot represents the mean of multiple measurements of a single cell unless specified otherwise. Scale bars = 10  $\mu$ m.  $n_{Exp}$  = number of independent experiments, a.u. = arbitrary units. Normality of data distribution was tested by Shapiro-Wilk test. Two-tailed t-test was used for normally distributed data. Otherwise, a non-parametric Wilcoxon test was used.




248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263

**Fig. 2 | Membrane-to-cortex tethering regulates cortical architecture.** **a**, Representative tomogram slices and segmentations of actin filaments (green) and plasma membrane (grey) rotated such that the membranes are aligned to the y-axis in control (left) and iMC-linker expressing (right) NIH 3T3 fibroblasts. See Supplementary Videos 1-4 for complete tomograms. Dashed squares (I) and (II) indicate the areas depicted in (d). **b**, Areal density of F-actin as a function of distance from the plasma membrane. Insert depicts representative tomogram slice with the histogram bins. **c**, Close up on the first 40 nm with 5 nm bins. **d**, Magnification from (a) showing membrane-to-cortex distance. **e**, Representative segmented tomograms shown in (a) displaying the detected actin bundles and branches in control (left) and iMC-linker expressing (right) NIH 3T3 fibroblasts (each branching point is illustrated by a segment for better visualization). **f,g**, (top) Representative image of a F-actin branching point (f) or bundle (g). (bottom) Number of F-actin branching points per actin length (f) and normalized amount of F-actin in bundles (g). Scale bars = 100 nm in (a) and (e), = 20 nm in (f) and (g). PM denotes the plasma membrane.  $n_{cells}$  = number of cells. Normality of data distribution was tested by Shapiro-Wilk test. Two-tailed t-test was used for normally distributed data. Otherwise, a non-parametric Wilcoxon test was used.



264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274

**Fig. 3 | Membrane-to-cortex tethering modulates nucleation of cortical actin filaments by formins.** **a**, (top) Relative formin mDia1 protein amount quantified by western blotting. Protein levels are normalized to loading control GAPDH and to protein expression of control cells. (bottom) Representative western blot bands for mDia1 and GAPDH. **b,c**, Relative cortical tension of NIH 3T3 fibroblasts ( $\pm$  iMC) upon treatment with SMIFH2, a pan-formin inhibitor (b) or IMM-01, a formin's activator (c). Tension values are normalized to the mean cortical tension of control cells (- iMC) treated with vehicle only (DMSO). Each dot represents the mean of multiple measurements of a single cell.  $n_{Exp}$  = number of independent experiments. Normality of data distribution was tested by Shapiro-Wilk test. Two-tailed t-test was used for normally distributed data. Otherwise, a non-parametric Wilcox test was used.



275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287

**Fig. 4 | Membrane-to-cortex distance gates the activity of cortical actin regulators. a**, Schematic representation of iMC-linker (left) and iMC-6FP-linker (right). iMC-6FP-linker construct is built with 5 dark (i.e. non-fluorescent) mCherry molecules in addition to domains present in the original iMC-linker. Dashed line: active ezrin length<sup>48</sup>. **b**, Relative cortical tension in NIH 3T3 fibroblasts upon expression of iMC-linker (normalized data from fig. 1c) or the iMC-6FP-linker, normalized to the respective control. Each dot represents the mean of multiple measurements of a single cell. n<sub>Exp</sub> = number of independent experiments. **c**, Working model: membrane-to-cortex tethering regulates the membrane-to-cortex distance in a MCA protein length-dependent fashion. The iMC-linker and the endogenous MCA proteins reduce the membrane-to-cortex distance and consequently hampers the ability of mDia1 to elongate actin filaments from the plasma membrane. Normality of data distribution was tested by Shapiro-Wilk test. Two-tailed t-test was used for normally distributed data. Otherwise, a non-parametric Wilcoxon test was used.

288 **Material and methods**  
289

290 **Cell culture**

291 NIH 3T3 fibroblasts (CRL-1658, ATCC repository) were cultured in Dulbecco's Modified Eagle Medium  
292 (DMEM) with 4.5 g/l D-glucose (Merck), supplemented with 10% fetal bovine serum and 1% Penicillin-  
293 Streptomycin (10,000 U/ml). Mouse Embryonic Stem Cells (mESCs, kindly provided by the Austin  
294 Smith's group, Cambridge Stem Cell Institute), were maintained in serum-free N2B27 medium  
295 containing 2i (1 mM PD0325901 and 3 mM CHIR99021, both Tocris) and LIF (10 mg/ml, Merck) on  
296 polystyrene culture dishes coated with 0.1% (w/v) Gelatin (Merck) solution. N2B27 medium was  
297 prepared from a 1:1 mixture of DMEM/F12 (without HEPES, with L-glutamine) and neurobasal medium  
298 (no L-glutamine), supplemented with 0.5x B-27 (without vitamin A) and 0.5x N-2 supplement, 2.5 mM  
299 L-glutamine, 10 mg/ml BSA fraction, 10 mg/ml human recombinant insulin and 1% Penicillin-  
300 Streptomycin (10,000 U/ml). Cells were cultured at 37° C with 5% CO<sub>2</sub> on polystyrene 100 mm dishes  
301 (Corning). Cells were passaged every 2-3 days (up to 70% confluence) using 0.05% Trypsin-EDTA.  
302 Cells were routinely tested for mycoplasma contamination using MycoAlert detection kit (Lonza)  
303 according to manufacturer's instruction.

304 All the transgenic cell lines used in this study (**Supplementary Table 1**) were generated using  
305 a PiggyBac transposon system<sup>66</sup>. The gene of interest was cloned via Gibson assembly in a custom  
306 PiggyBac vector (kindly provided by Jamie Hackett's group, EMBL Rome) downstream of a Doxycycline  
307 (dox)-responsive TRE3G promoter. The transposable region of the vector contained also a TET3G and  
308 a Neomycin resistance under the control of a CAG promoter. Stable cell lines were obtained by co-  
309 transfecting the PiggyBac vector and the PiggyBac transposase using lipofectamine 3000. Successfully  
310 transfected cells were then positively selected by adding 1.2 mg/ml Geneticin to the medium. Expression  
311 of the constructs was induced by the addition of 1 µg/ml dox to the medium 16 hrs before probing the  
312 cells.

313 Monoclonal cell lines were finally generated by limiting dilution, and screened via flow cytometry  
314 for low background expression and similar expression upon dox-dependent induction (**Extended Data**  
315 **Fig. 5a**).

316 All the reagents were purchased from Thermo Fisher Scientific unless otherwise specified.

317  
318 **Supplementary Table 1.** Transgenic cell lines used in this study.

| Cell line | Construct name | Description                                                            |
|-----------|----------------|------------------------------------------------------------------------|
| NIH 3T3   | CAezrin        | constitutively active human ezrin (T567D)-mCherry                      |
| NIH 3T3   | iMC-linker     | Lyn lipidation motif-mCherry-CH1/CH2 domain (human utrophin)           |
| NIH 3T3   | iMC-6FP-linker | Lyn lipidation motif-mCherry-dark mCherry(x5)-CH1/CH2 (human utrophin) |
| NIH 3T3   | ABD            | mCherry-CH1/CH2 domain (human utrophin)                                |
| mESCs     | CAezrin        | constitutively active human ezrin (T567D)-mCherry <sup>16</sup>        |
| mESCs     | iMC-linker     | Lyn lipidation motif-mCherry-CH1/CH2 (human utrophin) <sup>16</sup>    |
| mESCs     | ABD            | mCherry-CH1/CH2 domain (human utrophin) <sup>16</sup>                  |

319  
320 **iMC-6FP-linker cloning**  
321 iMC-6FP-linker was generated by introducing five non-fluorescent mCherry proteins (dark mCherry,  
322 Y72S) between the fluorescent mCherry molecule and the actin binding domain of the iMC-linker<sup>67</sup>.  
323 Single dark mCherry molecules were added using Type IIS endonucleases cloning<sup>68</sup>. The length of the  
324 molecule was predicted based on the crystal structure of a single mCherry molecule.

325  
326 **Cellular micropatterning on glass**  
327 NIH 3T3 fibroblasts were seeded on 20 µm adhesive spots to unify their geometry and ensure a  
328 spherical shape. For micropatterning of the dishes, an inverted Ti2<sup>®</sup> Nikon microscope equipped with

329 the Primo micropatterning module (Alvéole) was used. In brief, 35 mm glass-bottomed dishes were  
330 plasma treated for 1 min and a small PDMS stencil with an inner hole of ~10-20  $\mu$ l was placed in the  
331 middle of the dish to reduce reagents usage. Next, the glass surface inside the stencil was coated with  
332 a non-adhesive layer of 0.2 mg/ml polyethylene glycol ( PLLg-PEG, Susos AG) for 1 hour at RT. Then,  
333 the surface was washed trice with PBS before applying a thin layer of 4-benzoylbenzyl-  
334 trimethylammonium chloride micropatterning reagent (PLPP, Alvéole). Using a 375 nm laser (4.5 mW)  
335 20  $\mu$ m circles spaced by 40  $\mu$ m from each other were photo-patterned onto the glass surface, using the  
336 pmanager software v.1.4.22 with the Leonardo plugin v.4.12 (Alvéole). Finally, the dish was coated with  
337 50  $\mu$ g/ml human fibronectin (Corning) for 30 min and  $10^5$  cells were seeded onto the patterned dish.  
338 Cells were allowed to settle and adhere for 20 min before non-attached cells were washed out.  
339 Experiments were performed 2 hrs after cell seeding if not indicated otherwise.  
340

#### 341 **Single-cell atomic force spectroscopy**

342 Tether extrusion and nano-indentation were performed on a CellHesion® 200 atomic force spectrometer  
343 (Bruker) integrated into an Eclipse Ti® inverted light microscope (Nikon). Measurements were run at 37 °  
344 C with 5% CO<sub>2</sub> and samples were used no longer than 1 hour for data acquisition. Measurements were  
345 acquired at a sampling rate of 2 kHz and analyzed using the JPK Data Processing Software.

346 Apparent plasma membrane tension ( $T_{(app)}$ ) (the sum of in-plane tension ( $T_m$ ) and the adhesion  
347 energy resulting from membrane-to-cortex tethering ( $\gamma$ )) depends on the breakage tether force ( $f_0$ ) and  
348 the bending rigidity of the membrane ( $k$ )<sup>69</sup>, which we assumed is unchanged between our experimental  
349 conditions.

350

$$T_{(app)} = T_m + \gamma = \frac{f_0^2}{8\pi^2\kappa}$$

351

352 To measure the breakage tether force, we used OBL-10 Cantilevers (spring constant ~0.06  
353 N/m; Bruker) calibrated using the thermal noise method and coated for 1 hour at 37 °C with 2.5 mg/ml  
354 Concanavalin A (Thermo Fischer Scientific), which binds polysaccharides expressed on the surface of  
355 the cell. Before the measurements, cantilevers were rinsed in PBS. NIH 3T3 fibroblasts were washed  
356 and probed in Dulbecco's Modified Eagle Medium (DMEM) with 4.5 g/l D-glucose (Merck) supplemented  
357 with 2% fetal bovine serum (Thermo Fisher Scientific) and 1% penicillin-streptomycin (10,000  
358 U/ml)(Thermo Fisher Scientific). mESCs were probed in growth medium.

359 In brief, approach velocity was set to 0.5  $\mu$ m/s while contact force and contact time ranged  
360 between 100 to 200 pN and 100 ms to 10 s, respectively, in order to maximize the probability to extrude  
361 single tethers, while minimizing the experimental stress on the cells. After contacting the cell surface,  
362 the cantilever was retracted for 10  $\mu$ m at a velocity of 10  $\mu$ m/s. The position was then kept constant for  
363 ~30 s and tether force was recorded at the moment of tether breakage. Each cell was probed for a  
364 maximum of 10 attempts or until 3 single tethers were successfully extruded. Tether force values from  
365 a single cell were then averaged.

366 For cortical tension measurements on adherent cells, nano-indentation was performed using  
367 tipless MLCT-O10 type C cantilevers (spring constant ~0.01 N/m; Bruker), calibrated using the thermal  
368 noise method. A silica bead with a diameter of 10  $\mu$ m (Microparticles) was glued onto the cantilever  
369 using a 2-part epoxy resin (UHU) with 5 min working time. Upon full hardening of the glue, the cantilever  
370 was coated for 30 min at 37 °C with a 1% (w/v) Pluronic F-68 (Thermo Fisher Scientific) in milli-Q water  
371 and rinsed with PBS, aiming to prevent non-specific adhesion to the probed cells. Force-distance curves  
372 were acquired using 500 pN contact force and 0.4  $\mu$ m/s approach/retract velocity. Up to 5 curves, were  
373 taken per cell, with a 10 s waiting time between successive curves to prevent history effects.

374 Cortical tension ( $T_c$ ) was determined by fitting each force-indentation curve between 0 (the  
375 contact point) and 300 nm with a liquid droplet model suited for nano-indentation experiments<sup>70</sup>:

376

377

$$f = \left[ 2T_c \left( \frac{1}{R_c} + \frac{1}{R_b} \right) \times 2\pi R_b \right] \times \delta$$

378

379 Where  $f$  is the force applied to the cell surface which leads to a displacement ( $\delta$ ) of cellular material;  $R_c$   
380 and  $R_b$  are the radius of the cell and the silica bead glued on the cantilever, respectively.  
381

### 382 **Micropipette aspiration**

383 Micropipettes were forged by pulling glass capillaries (World Precision Instruments TW100-3) using a  
384 P-97 Flaming Brown needle puller (Sutter Instrument) in order to obtain a radius ( $R_p$ ) of 4-6  $\mu\text{m}$ . The  
385 micropipette was mounted on a micromanipulator (Narishige, MON202-D) and connected to a  
386 microfluidic pump (Fluigent, MFCS) delivering negative pressures with a 7 Pa resolution. The pressure  
387 is controlled using custom-made Labview (National Instruments) software.

388 To measure cortical tension, NIH 3T3 fibroblasts were detached from the substrate using 0.05%  
389 Trypsin-EDTA (Thermo Fisher Scientific), seeded on a 5 cm glass-bottom dish pre-coated with a non-  
390 adhesive layer of 0.2 mg/ml polyethylene glycol (PLLg-PEG, Susos AG) and incubated at 37° C with 5%  
391 CO<sub>2</sub> for 4 hrs to allow cell shape recovery. After the incubation, cells were probed by bringing the  
392 micropipette in contact, and increasing stepwise a negative pressure until a deformation of the cells with  
393 the same radius of the micropipette ( $R_p$ ) was formed. At steady state, the surface tension ( $T_c$ ) of the  
394 blastomeres was calculated based on Young-Laplace's law<sup>71</sup>:

395

$$396 T_c = \left[ \frac{P_c}{2} \left( \frac{1}{R_p} - \frac{1}{R_c} \right) \right]$$

397  
398 Where  $P_c$  is the pressure used to deform the cell of radius ( $R_c$ ).  
399

### 400 **Drug treatments**

401 NIH 3T3 fibroblasts were seeded on micropatterned dishes as described above and actomyosin  
402 perturbing drugs were added directly to the medium to reach a final concentration of 40  $\mu\text{M}$  for SMIFH2,  
403 100  $\mu\text{M}$  for CK-666, 25  $\mu\text{M}$  for IMM-01 and 20  $\mu\text{M}$  for (-)-Blebbistatin (all Merck). Cells were then  
404 incubated with the drug for 1 hour before probing with an atomic force spectrometer in presence of the  
405 drug. Control cells were treated with vehicle only (DMSO) at the same final concentration of the  
406 respective drug.

### 407 **Magnetic pincher**

408 24-48 hrs before magnetic pinching experiments, cells were seeded at a density of 5\*10<sup>3</sup> cells/cm<sup>2</sup> in  
409 the presence of superparamagnetic beads (M-450, Dynabeads) at a density of 10<sup>4</sup> beads/cm<sup>2</sup>.  
410

411 On the day of the experiment, cells were detached from the substrate using 0.05% Trypsin-  
412 EDTA (Thermo Fisher Scientific) and plated on micropatterned dishes as described above. Then 1.5\*10<sup>5</sup>  
413 M450 beads were added to the dish, and the medium was supplemented by 20 mM of HEPES buffer,  
414 to mitigate pH fluctuations during the experiment.

415 The magnetic pincher setup is mounted on an Axio A1 inverted microscope (Zeiss) with an oil-  
416 immersion 100 $\times$  objective mounted on a piezo-controlled translator (Physik Instrumente). The magnetic  
417 field is generated by two coaxial coils (SBEA) with mu metal core (length, 40 mm; diameter, 26 to 88  
418 mm; 750 spires). The coils are powered by a bipolar operational power supply amplifier 6A/36V (Kepco)  
419 controlled by a data acquisition module (National Instruments). The maximum field generated is 54 mT  
420 with a gradient less than 0.1 mT/mm over the sample. The self-organization of beads is first triggered  
421 with a constant field of 5 mT. Time-lapse images are recorded with an Orca Flash4 camera (Hamamatsu  
422 Photonics). The setup was heated at 37° C, without CO<sub>2</sub> supplementation and is controlled by a custom  
423 LabVIEW interface that ensures the synchronicity between piezo position, magnetic field imposition,  
424 and image acquisition.

425 Cells with their cortex pinched between beads were imaged. For each film, the nominal  
426 magnetic field exerted by the coils was 5 mT (108 pN) and every 10 s the field was lowered to 1 mT (25  
427 pN), then increased to 54 mT (1090 pN) in 1.5 s, then brought back to 5 mT (the values between brackets  
428 are the typical corresponding force values). This series of compression-relaxation was repeated 6 to 10  
429 times per cell. In addition to the images, the precise time and magnetic field corresponding to each  
430 image were saved. Using Fiji's plugin "Analyze Particle", the center of all beads on each images of time-

431 lapse was detected with a subpixel resolution<sup>21</sup>. Then using a home-made tracking algorithm written in  
432 Python ([https://github.com/jvermeil-biophys/CortExplore\\_PublicVersion](https://github.com/jvermeil-biophys/CortExplore_PublicVersion)) the trajectories in 3D of the  
433 centers of the two beads pinching the cortex were detected, and the thickness of the pinched cortex  
434 was computed. The pinching force was also computed knowing the distance between the beads, the  
435 external magnetic field and the magnetization function of the beads. To characterize the cortex  
436 thickness, the median of the cortical thickness at 5 mT (nominal field) was measured; it correspond to  
437 a typical force of 108±29 pN. The elastic modulus at low stress was computed from the strain-stress  
438 curve corresponding to each compression using a model developed by Chadwick for this specific  
439 geometry<sup>72</sup>. Next, the slope of these strain-stress curves between 100 and 300 Pa was fitted.  
440

#### 441 **Immunofluorescence staining and quantification**

442 Cells were seeded on micropatterned coverslips as described above and stained with MemBrite® Fix  
443 before fixation according to the manufacturers' protocol. In brief, cells were washed twice with warm  
444 growth medium (37 °C) and incubated for 10-15 min at 37 °C and 5% CO<sub>2</sub> before fixation. Next, cells  
445 were washed twice with PBS, incubated with the Prestaining solution (1:1000 in PBS) for 5 min at 37 °C  
446 and stained with the Staining solution (1:1000 in PBS) for 5 min at 37 °C.

447 Next, cells were fixed and permeabilized simultaneously by adding prewarmed (37 °C) fixation  
448 buffer (2x) to growth medium and incubated for 20 min at RT. Fixation buffer (1x) contains 4% PFA  
449 (Thermo Fisher Scientific), 0.5% Tergitol (Serva), 20mM sucrose (Merck) in cytoskeleton buffer (10 mM  
450 MES, 140 mM KCl, 3 mM MgCl<sub>2</sub>, 2 mM EGTA, pH = 7.5). Cells were washed trice for 10 min with 0.05%  
451 Tergitol in TBS (Tris-Buffered Saline) and blocked for 1 hour with 2% BSA (Merck) in TBS. Primary  
452 antibody staining was performed over night at 4 °C in blocking solution (anti-Phospho-MLC2 (Ser19),  
453 #3671, Cell signaling technology, 1:100). Cells were washed trice for 10 min with 0.05% Tergitol in TBS  
454 and incubated in blocking solution for 10 min. Secondary antibody staining was performed for 1 hour at  
455 RT in blocking solution (AF647 anti-rabbit #A21244, Thermo Fisher Scientific, 1:1.000; AF488 Phalloidin  
456 #A12379, Thermo Fisher Scientific, 1:1.000). Cells were washed trice for 10 min before mounting the  
457 coverslips on Marienfeld Superior Microscope slides with molds (Thermo Fisher Scientific) and imaged  
458 in TBS.

459 Cells were then imaged using an inverted confocal laser scanning microscope (Leica Stellaris  
460 8®, HC PL APO CS2 40x / NA 1.10 water objective lens, white light laser) with LAS X software. For each  
461 cell one plane was recorded with a 4 µm set-off from the coverslip. Fluorescence intensities were  
462 analyzed using a custom-made Fiji macro, written with the kind help of Christian Tischer (EMBL  
463 Heidelberg). In brief, the cell was segmented based on the membrane staining, the mean fluorescence  
464 signal from F-actin, p-myosin and iMC-linker was measured in the cortical area (5, 10 and 15 pixels in  
465 width from the outer rim of the cell. See **Extended Data Fig. 1K**). Mean fluorescence intensities were  
466 normalized to the control for each replicate.  
467

#### 468 **mDia1 western blotting**

469 For immune blotting, cells were lysed in RIPA Lysis and Extraction buffer (Thermo Fisher Scientific)  
470 supplemented with protease inhibitors (Roche) according to manufacturers' protocol. After removal of  
471 cell growth medium, cells were washed twice with cold PBS (4 °C) before incubating in lysis buffer for  
472 5 min on ice. Lysed cells were collected using a cell scraper. Cells were sonicated for 2 min to enhance  
473 lysis and centrifuged for 15 min at 14 Kg at 4 °C. The supernatant was collected and treated with  
474 Bezonase (1:100) and 0.5 M MgCl<sub>2</sub> (1:100) for 10 min at RT. Further, samples were denatured by  
475 mixing them with 4x Laemmli buffer (BioRad) containing 10% β-mercaptoethanol (Merck) and incubated  
476 for 5 min at 95 °C. Proteins were separated in a SDS page using Nupage 4-18% Bis-Tris gels in running  
477 buffer.

478 Proteins were transferred by wet blotting (transfer buffer) on a methanol activated PVDF  
479 membrane. Successful protein transfer was verified by Ponceau red staining. For immunodetection, all  
480 washing steps were performed in TBST. The blot was blocked in 5% BSA in TBST and subsequently  
481 incubated with primary antibody (anti-mDia1, #20624-1-AP, Thermo Fisher Scientific, 1:1000,  
482 overnight at 4 °C; GAPDH, #NB300-221, Novus Biologicals, 1:40.000, 1-2 hrs at RT). Secondary  
483 antibody staining was performed for 1 hour at RT in blocking solution (Donkey-Anti-Rabbit-HRP, #711-

484 035-152, Jackson Immuno Research, 1:10.000; Goat-Anti-Mouse-HRP, #115-035-062, Jackson  
485 ImmunoResearch, 1:10.000). Proteins were detected using ECL western blotting substrate and a  
486 reader.

487 Western blots were quantified using gel analyzer plugin, available in Fiji. In brief, detected bands  
488 of interest were selected by the square tool and contained gray values are displayed as a histogram. To  
489 quantify the amount of protein, the area under the curve is integrated. For quantification, the signal of  
490 mDia1 was normalized to the GAPDH control and the mean of technical replicates was calculated and  
491 samples were normalized to untreated wild type (WT) samples.

492

### 493 **Cryo electron tomography**

494 Micropatterns for cryo-electron tomography were designed as two 15  $\mu$ m diameter circles with a  
495 separation of 10  $\mu$ m in a single grid square. Micropatterns covered an area of 8 x 8 squares around the  
496 center of the cryo-TEM grids (Quantifoil R1/4 or R1/20, Au 200 mesh, SiO<sub>2</sub> film) as previously  
497 described<sup>31</sup>. Briefly, grids were plasma treated on both sides for 60 s. Next, grids were incubated on  
498 droplets of poly-L-lysine grafted with polyethylene glycol (PLLg-PEG, Susos AG) at a concentration of  
499 0.5 mg/ml in 10 mM HEPES pH 7.4, for 1 hour at RT on parafilm in a humid chamber. Following  
500 passivation, the grids were blotted with filter paper from the back, allowed to dry for few seconds and  
501 immediately placed on a drop of 4-benzoylbenzyl-trimethylammonium chloride (PLPP, Alvéole). Grids  
502 were then photo-patterned using the Primo module with a 375 nm laser (4.5 mW) as described above.  
503 Grids were promptly retrieved from the PLPP solution, washed first in milliQ water and then in PBS. For  
504 functionalization of the micropatterns, grids were incubated for 30 min at RT with fibronectin (50  $\mu$ g/ml,  
505 Thermo Fischer Scientific) in PBS. Grids were then stored in PBS at 4° C in a humid chamber until use.

506 NIH 3T3 fibroblasts, at a concentration of 10<sup>6</sup> cells/ml were seeded, allowed to settle and adhere  
507 for 20-30 min before non-attached cells were washed out. A Leica EM GP® was utilized to vitrify cells 2  
508 hrs after seeding. In the chamber, 1.5  $\mu$ l of growth medium was directly applied to the backside of the  
509 grids. Blotting from the backside was performed for 2 s at 37° C, at 70% humidity. Grids were plunge-  
510 frozen in liquid ethane cooled by liquid nitrogen and stored until further usage.

511 For cryo-focused ion beam (cryo-FIB) milling, grids were clipped into an autogrid with a cut-out  
512 enabling milling at shallow angles. Mounted on a 45° pre-tilt shuttle, grids were transferred into an  
513 Aquilos Dual beam microscope (Thermo Fisher Scientific) via a load-lock system and maintained at -  
514 183° C throughout the next steps. Prior to cryo-FIB milling, a layer of organometallic platinum was  
515 applied by opening the gas injection system for 9 s at a stage Z position of 3-4 mm below the coincidence  
516 point. Subsequently, grids were sputter-coated with platinum for 20 s (1 kV, 10 mA, 10 Pa). In  
517 independent sessions, grids with 3-5 lamellae each were prepared at a milling angle of 15-18°. Grid  
518 squares with two cells attached in the desired geometry were micromachined in three steps of rough  
519 milling to a thickness of 5  $\mu$ m at 1 nA ion beam current, 3  $\mu$ m at 0.5 nA and 1  $\mu$ m at 0.1 nA. Fine milling  
520 was performed at 100 and 50 pA to a target thickness of 200 nm. To render the lamellae conductive for  
521 TEM imaging, they were sputtered with platinum for 5 s (1 kV, 10 mA, 10 Pa) and transferred into sealed  
522 boxes in liquid nitrogen.

523 For cryo-electron tomography, autogrids containing lamellae were loaded into a Titan Krios®  
524 microscope (Thermo Fisher Scientific) such that the axis of the pre-tilt introduced by cryo-FIB milling  
525 was aligned perpendicular to the tilt axis of the microscope. Tomograms were acquired at 300 kV on a  
526 K2 Summit direct detection camera (Gatan) operating in dose fractionation mode and utilizing a  
527 Quantum post-column energy filter operated at zero-loss (Gatan). Data were recorded using automated  
528 acquisition procedures in the SerialEM software<sup>73</sup>. Magnification of 42,000 (EFTEM) with a calibrated  
529 pixel size of 3.37 Å was used for data collection. Starting from the lamella pre-tilt, images were acquired  
530 at 2.0-4.0  $\mu$ m under-focus, in 2° increments using a dose-symmetric tilt scheme<sup>74</sup>. A maximum of 125  
531 e/Å<sup>2</sup> was used with a constant electron dose per tilt image. Tilt-series were collected with Volta potential  
532 phase plate (VPP, Thermo Fisher Scientific) with prior conditioning for 6 min. Cryo-electron tomography  
533 data analyzed in this work are summarized in **Supplementary Table 2**.

534 For tomogram reconstruction, tilt movie frames were aligned using a SerialEM plugin or in Warp  
535 (version 1.0.7)<sup>75</sup>. Tilt series alignment was performed in the IMOD (version 4.9) software package<sup>76</sup>,  
536 using fiducials (platinum particle contaminants on the lamellae surface) or patch-tracking. Aligned  
537 images were binned to the final pixel of 13.48 Å. Tomographic reconstruction was performed in IMOD.

538 Tomograms from **Fig. 2**, **Extended Data Fig. 3** and the **Supplementary Videos 1,3** were treated with  
539 an amplitude spectrum matching filter<sup>77</sup>.

540 Actin segmentation was performed with the automated filament tracing module in Amira on  
541 IMOD reconstructed tomograms, or tomograms treated with a spectrum matching, or gaussian filtered  
542 using a generic missing wedge-modulated cylinder with a radius of 4 nm and 40 nm length as a template.  
543 The traced filaments were manually curated in Amira, exported as a binary mask and the coordinates  
544 were resampled to equidistant points corresponding to the tomogram resolution (double the pixel size)  
545 using the Bspline fit in a python script.

546 Membrane segmentation was performed using the following workflow. An initial segmentation  
547 was generated using the TomoSegMemTV software package<sup>78</sup>. Parameters were tuned individually for  
548 each tomogram to achieve maximum membrane coverage for the plasma membranes which was  
549 determined by visual inspection. Voxels were then clustered using the connected component algorithm  
550 provided by the TomoSegMemTV package. The resulting clusters were processed using custom Python  
551 scripts. Each cluster was converted to a 3D point cloud (XYZ format) and imported into the Open3D  
552 library<sup>79</sup> for further processing. Statistical outlier removal as implemented in Open3D was used to  
553 remove excess noise from the segmentations. In some cases, false positives (often microtubules or  
554 other intracellular membranes) were removed manually after visual inspection using Amira (Thermo  
555 Fischer). Subsequently, the DBSCAN algorithm was used to re-cluster and separate individual  
556 membrane sections from plasma membrane segments, which in some instances were classified as a  
557 single cluster (the analyzed tomograms always contained two plasma membrane segments from  
558 adjacent cells). Clusters corresponding to parts of the same membrane were then merged. A radial  
559 basis function fit as implemented in SciPy was then applied to point clouds of each plasma membrane  
560 to generate smooth, hole-free membrane surfaces for subsequent measurements.

561 Quantitative analysis of the cortex architecture was performed in MATLAB using the coordinates  
562 of the equidistant sampled actin points and the membrane segmentation binary mask as input. Each  
563 actin point in the tomogram was assigned to one of the two cells based on its distance to the segmented  
564 plasma membranes. Subsequently, the algorithms described by Jasnin *et al.*,<sup>80</sup> were used to analyze  
565 the local-neighborhood of each actin point in each cell. Based on the peak in the 2D histogram of the  
566 nearest neighbor distance and relative orientation (**Extended Data Fig. 3b**), we identify actin bundles  
567 as two single actin points closer than 15 nm in distance with a relative orientation of less than 20°.  
568 Branch site candidates were initially identified as locations at the end of a filament fragment within a  
569 distance of 25 nm and angles between 50° and 90°, considering the 70° angle reported in literature<sup>81,82</sup>.  
570 These candidates were further filtered, by determining the approximate point of intersection of the two  
571 filaments by extrapolating two line segments and only including those that pass each other within a  
572 maximal distance of 3 nm. Additionally, all candidates where the closest points of two filaments were  
573 end points were removed because visual inspection showed those instances being typically false  
574 positives. A subset of detected branches was visually inspected in the tomograms by 3 experts giving a  
575 16.6% false positive rate. To ensure that the analysis was not affected by chosen parameters for inter-  
576 filament distance and angle, we varied these parameters and found the ratios of +iMC to -iMC were  
577 unaffected (**Extended Data Fig. 3c,d**).

578 To determine the membrane-to-cortex distance, for each resampled actin point, the distance to  
579 the closest membrane point was determined. The obtained distances were binned into 20 nm bins for  
580 each cell. The counts in each bin were normalized against the plasma membrane area of the cell, and  
581 the normalized counts were averaged over all cells to produce a final histogram (**Fig. 2b,c**). To calculate  
582 the angle between filaments and the membrane, the tangent plane of the membrane was defined as the  
583 plane orthogonal to the normal vector and determined using a script in python. For each actin point and  
584 its closest membrane point, the angle between the local orientation of the actin point and the tangent  
585 plane of the membrane point was calculated. The obtained angles were binned, normalized against the  
586 membrane surface area, and the normalized count was averaged across all tomograms per bin  
587 (**Extended Data Fig. 2f**).

588 Figures and movies were generated using IMOD, Chimera<sup>83</sup> and Chimera X<sup>84</sup>.  
589

590

**Supplementary Table 2. Summary of tomography data.**

| Condition                 | - iMC | + iMC |
|---------------------------|-------|-------|
| Number of grids           | 3     | 1     |
| Number of tomograms       | 6     | 4     |
| Number of lamellae        | 6     | 4     |
| Number of cells analyzed  | 12    | 8     |
| Number of actin filaments | 1511  | 775   |

591

592 **Statistical analysis**

593 Statistical analyses were performed using R, while data visualization by both R and Adobe Illustrator®.  
594 Normality of data distribution was tested by Shapiro-Wilk test. Two-tailed t-test was used for normally  
595 distributed data. Otherwise, a non-parametric Wilcox test was used. In all box- and violin-plots, the lower  
596 and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper  
597 whisker extends from the hinge to the largest value, but no further than 1.5\*IQR (distance between the  
598 first and third quartiles). The lower whisker extends from the hinge to the smallest value, but no lower  
599 than 1.5\*IQR of the hinge. Data beyond the end of the whiskers are plotted as black dots. Black line  
600 corresponds to the median; each dot represents the mean of multiple measurements of single cells  
601 unless specified otherwise. In violin-plots the colored area reflects the probability distribution of the data  
602 points.

603

604 **Code availability**

605 The Fiji macro for immunofluorescence quantification as well as the cryo-ET analysis code will be made  
606 available upon publication. Tomograms and segmentations generated in this work will be deposited to  
607 the EMDB and EMPIAR.

608

609 **Acknowledgements**

610 We thank Jan Ellenberg, Stephan Grill and Anna Erzberger for critical reading of the manuscript. We  
611 thank Estela Sosa Osorio for manual curation of actin segmentation in cryo-electron tomograms, and  
612 Ievgeniia Zagoriy and Mukthi Ammai Sridharan Iyer for the visual inspection of actin branching points in  
613 cryo-electron tomograms. We thank the EMBL flow cytometry core facility, and the EMBL advanced light  
614 microscopy facility for support and advice, especially Christian Tischer for help with image analysis. We  
615 acknowledge the financial support of the European Molecular Biology Laboratory (EMBL) to J.M. and  
616 A.D.-M., the Deutsche Forschungsgemeinschaft (DFG) grant DI 2205/2-1 and the Human Frontiers  
617 Science Program (HFSP) grant RGY0073/2018 to A.D.-M., the Boehringer Ingelheim Fonds PhD  
618 fellowship and the Croucher Scholarship for Doctoral Study to D.C., and the EMBL interdisciplinary  
619 Postdoc (EIPOD) programme under Marie Curie Cofund Actions MSCA-COFUND-FP to M.S. and M.T.-  
620 N.

621

622 **Author contributions**

623 S.L., L.S., and A.D.-M. conceived the project. S.L., L.S., J.M. and A.D.-M. designed the experiments.  
624 M.T.-N. performed the cryo-ET experiments under the supervision of J.M.. D.C., M.T.-N. and M.S.  
625 analyzed the cryo-ET datasets under the supervision of J.M. and J.K.. J.V. performed and analyzed the  
626 magnetic pincher experiments under the supervision of M.P., O.D.R. and J.H.. C.J.C performed and  
627 analyzed the micropipette aspiration experiments. S.L. and L.S. performed and analyzed the rest of the  
628 experiments. S.L., L.S. and A.D.-M. wrote the manuscript. All authors contributed to the interpretation of  
629 the data, and read and approved the final manuscript.

630

631 **Competing interests**

632 The authors declare no competing interests.

633

634

635 **Bibliography**

- 636 1. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular  
637 morphogenesis. *Trends Cell Biol* **22**, 536–545 (2012).
- 638 2. Truong Quang, B. A. et al. Extent of myosin penetration within the actin cortex regulates  
639 cell surface mechanics. *Nat Commun* **12**, 6511–12 (2021).
- 640 3. Ramanathan, S. P. et al. Cdk1-dependent mitotic enrichment of cortical myosin II  
641 promotes cell rounding against confinement. *Nat Cell Biol* **17**, 148–159 (2015).
- 642 4. Diz-Muñoz, A., Weiner, O. D. & Fletcher, D. A. In pursuit of the mechanics that shape cell  
643 surfaces. *Nat Phys* **14**, 648–652 (2018).
- 644 5. Lorentzen, A., Bamber, J., Sadok, A., Elson-Schwab, I. & Marshall, C. J. An ezrin-rich,  
645 rigid uropod-like structure directs movement of amoeboid blebbing cells. *J Cell Sci* **124**,  
646 1256–1267 (2011).
- 647 6. Carreño, S. et al. Moesin and its activating kinase Slik are required for cortical stability and  
648 microtubule organization in mitotic cells. *J Cell Biol* **180**, 739–746 (2008).
- 649 7. Kunda, P., Pelling, A., Liu, T. & Baum, B. Moesin Controls Cortical Rigidity, Cell Rounding,  
650 and Spindle Morphogenesis during Mitosis. *Curr Biol* **18**, 91–101 (2008).
- 651 8. Larson, S. M. et al. Cortical mechanics and meiosis II completion in mammalian oocytes  
652 are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. *Mol Biol Cell* **21**,  
653 3182–3192 (2010).
- 654 9. Louvet, S., Aghion, J., Santa-Maria, A., Mangeat, P. & Maro, B. Ezrin becomes restricted  
655 to outer cells following asymmetrical division in the preimplantation mouse embryo. *Dev  
656 Biol* **177**, 568–579 (1996).
- 657 10. Liu, H. et al. Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin  
658 during eight-cell embryocompaction. *Dev Biol* **375**, 13–22 (2013).
- 659 11. Bretscher, A. Purification of an 80,000-dalton protein that is a component of the isolated  
660 microvillus cytoskeleton, and its localization in nonmuscle cells. *J Cell Biol* **97**, 425–432  
661 (1983).
- 662 12. Pakkanen, R., Hedman, K., Turunen, O., Wahlström, T. & Vaheri, A. Microvillus-specific  
663 Mr 75,000 plasma membrane protein of human choriocarcinoma cells. *J Histochem  
664 Cytochem* **35**, 809–816 (1987).
- 665 13. Svitkina, T. M. Actin Cell Cortex: Structure and Molecular Organization. *Trends Cell Biol*  
666 **30**, 556–565 (2020).
- 667 14. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a  
668 phosphorylation-induced transition from oligomers to monomers at the plasma membrane.  
669 *J Cell Biol* **150**, 193–203 (2000).
- 670 15. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM  
671 proteins. *Nat Rev Mol Cell Biol* **11**, 276–287 (2010).
- 672 16. Bergert, M. et al. Cell Surface Mechanics Gate Embryonic Stem Cell Differentiation. *Cell  
673 Stem Cell* **28**, 209–216.e4 (2021).
- 674 17. Winder, S. J. et al. Utrophin actin binding domain: analysis of actin binding and cellular  
675 targeting. *J Cell Sci* **108**, 63–71 (1995).
- 676 18. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified  
677 monomeric GFPs into membrane microdomains of live cells. *Science* **296**, 913–916  
678 (2002).
- 679 19. Manning, M. L., Foty, R. A., Steinberg, M. S. & Schoetz, E.-M. Coaction of intercellular  
680 adhesion and cortical tension specifies tissue surface tension. *Proc Natl Acad Sci USA*  
681 **107**, 12517–12522 (2010).
- 682 20. Chugh, P. et al. Actin cortex architecture regulates cell surface tension. *Nat Cell Biol* **15**,  
683 2935 (2017).
- 684 21. Laplaud, V. et al. Pinching the cortex of live cells reveals thickness instabilities caused by  
685 myosin II motors. *Sci Adv* **7**, eabe3640 (2021).
- 686 22. Svitkina, T. M. Platinum replica electron microscopy: Imaging the cytoskeleton globally  
687 and locally. *Int J Biochem Cell Biol* **86**, 37–41 (2017).
- 688 23. Xia, S. et al. Nanoscale Architecture of the Cortical Actin Cytoskeleton in Embryonic Stem  
689 Cells. *Cell Rep.* **28**, 1251–1267.e7 (2019).
- 690 24. D'Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the  
691 ubiquity of subcortical cytoskeleton periodicity in living neurons. *Cell Rep.* **10**, 1246–1251  
692 (2015).
- 693 25. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic  
694 cytoskeletal structure in axons. *Science* **339**, 452–456 (2013).

695 26. Vassilopoulos, S., Gibaud, S., Jimenez, A., Caillol, G. & Leterrier, C. Ultrastructure of the  
696 axonal periodic scaffold reveals a braid-like organization of actin rings. *Nat Commun* **10**,  
697 5803–13 (2019).

698 27. Pan, L., Yan, R., Li, W. & Xu, K. Super-Resolution Microscopy Reveals the Native  
699 Ultrastructure of the Erythrocyte Cytoskeleton. *Cell Rep.* **22**, 1151–1158 (2018).

700 28. Clark, A. G., Dierkes, K. & Paluch, E. K. Monitoring Actin Cortex Thickness in Live Cells.  
701 *Biophys J* **105**, 570–580 (2013).

702 29. Clausen, M. P., Colin-York, H., Schneider, F., Eggeling, C. & Fritzsch, M. Dissecting the  
703 actin cortex density and membrane-cortex distance in living cells by super-resolution  
704 microscopy. *Journal of Physics D: Applied Physics* **50**, 064002 (2017).

705 30. Mahamid, J. *et al.* Visualizing the molecular sociology at the HeLa cell nuclear periphery.  
706 *Science* **351**, 969–972 (2016).

707 31. Toro-Nahuelpan, M. *et al.* Tailoring cryo-electron microscopy grids by photo-  
708 micropatterning for in-cell structural studies. *Nat Methods* **17**, 50–54 (2020).

709 32. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. *Annu  
710 Rev Biophys Biomol Struct* **36**, 451–477 (2007).

711 33. Esue, O., Harris, E. S., Higgs, H. N. & Wirtz, D. The filamentous actin cross-  
712 linking/bundling activity of mammalian formins. *J Mol Biol* **384**, 324–334 (2008).

713 34. Martiel, J.-L., Michelot, A., Boujemaa-Paterski, R., Blanchoin, L. & Berro, J. Force  
714 Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical  
715 Properties. *Biophys J* **118**, 182–192 (2020).

716 35. Bieling, P. *et al.* Force Feedback Controls Motor Activity and Mechanical Properties of  
717 Self-Assembling Branched Actin Networks. *Cell* **164**, 115–127 (2016).

718 36. Sakamoto, R. *et al.* Tug-of-war between actomyosin-driven antagonistic forces determines  
719 the positioning symmetry in cell-sized confinement. *Nat Commun* **11**, 3063 (2020).

720 37. Cao, L. *et al.* SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical  
721 actin organization. *Nat Cell Biol* **22**, 803–814 (2020).

722 38. Fritzsch, M., Erlenkämper, C., Moeendarbary, E., Charras, G. & Kruse, K. Actin kinetics  
723 shapes cortical network structure and mechanics. *Sci Adv* **2**, e1501337 (2016).

724 39. Bovellan, M. *et al.* Cellular control of cortical actin nucleation. *Curr Biol* **24**, 1628–1635  
725 (2014).

726 40. Yu, M. *et al.* mDia1 senses both force and torque during F-actin filament polymerization.  
727 *Nat Commun* **8**, 1650–9 (2017).

728 41. Seth, A., Otomo, C. & Rosen, M. K. Autoinhibition regulates cellular localization and actin  
729 assembly activity of the diaphanous-related formins FRLalpha and mDia1. *J Cell Biol* **174**,  
730 701–713 (2006).

731 42. Rizvi, S. A. *et al.* Identification and characterization of a small molecule inhibitor of formin-  
732 mediated actin assembly. *Chem. Biol* **16**, 1158–1168 (2009).

733 43. Nishimura, Y. *et al.* The formin inhibitor SMIFH2 inhibits members of the myosin  
734 superfamily. *J Cell Sci* **134**, (2021).

735 44. Nolen, B. J. *et al.* Characterization of two classes of small molecule inhibitors of Arp2/3  
736 complex. *460*, 1031–1034 (2009).

737 45. Lash, L. L. *et al.* Small-molecule intramimics of formin autoinhibition: a new strategy to  
738 target the cytoskeletal remodeling machinery in cancer cells. *Cancer Research* **73**, 6793–  
739 6803 (2013).

740 46. Maiti, S. *et al.* Structure and activity of full-length formin mDia1. *Cytoskeleton* **69**, 393–405  
741 (2012).

742 47. Loeffelholz, von, O. *et al.* Cryo-EM of human Arp2/3 complexes provides structural insights  
743 into actin nucleation modulation by ARPC5 isoforms. *Biol Open* **9**, (2020).

744 48. Tsai, F.-C. *et al.* Ezrin enrichment on curved membranes requires a specific conformation  
745 or interaction with a curvature-sensitive partner. *eLife* **7**, (2018).

746 49. De Belly, H. *et al.* Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell  
747 Fate. *Cell Stem Cell* **28**, 273–284.e6 (2021).

748 50. Diz-Muñoz, A. *et al.* Control of directed cell migration in vivo by membrane-to-cortex  
749 attachment. *Plos Biol* **8**, e1000544 (2010).

750 51. Diz-Muñoz, A. *et al.* Steering cell migration by alternating blebs and actin-rich protrusions.  
751 *BMC Biology* **14**, 74–13 (2016).

752 52. Bretscher, A. Purification of an 80,000-dalton protein that is a component of the isolated  
753 microvillus cytoskeleton, and its localization in nonmuscle cells. *J Cell Biol* **97**, 425–432  
754 (1983).

755 53. Faure, S. *et al.* ERM proteins regulate cytoskeleton relaxation promoting T cell-APC  
756 conjugation. *Nat Immunol* **5**, 272–279 (2004).

757 54. Stefani, C. *et al.* Ezrin enhances line tension along transcellular tunnel edges via NMIIa  
758 driven actomyosin cable formation. *Nat Commun* **8**, 15839–14 (2017).

759 55. Shabardina, V., Kashima, Y., Suzuki, Y. & Makalowski, W. Emergence and Evolution of  
760 ERM Proteins and Merlin in Metazoans. *Genome Biol Evol* **12**, 3710–3724 (2020).

761 56. Fujiwara, T. K. *et al.* Confined diffusion of transmembrane proteins and lipids induced by  
762 the same actin meshwork lining the plasma membrane. *Mol Biol Cell* **27**, 1101–1119  
763 (2016).

764 57. Zimmermann, D. *et al.* Mechanoregulated inhibition of formin facilitates contractile  
765 actomyosin ring assembly. *Nat Commun* **8**, 703–13 (2017).

766 58. Jégou, A., Carlier, M.-F. & Romet-Lemonne, G. Formin mDia1 senses and generates  
767 mechanical forces on actin filaments. *Nat Commun* **4**, 1883–7 (2013).

768 59. Courtemanche, N., Lee, J. Y., Pollard, T. D. & Greene, E. C. Tension modulates actin  
769 filament polymerization mediated by formin and profilin. *Proc Natl Acad Sci USA* **110**,  
770 9752–9757 (2013).

771 60. Cao, L. *et al.* Modulation of formin processivity by profilin and mechanical tension. *eLife*  
772 (2018).

773 61. Suzuki, E. L. *et al.* Geometrical Constraints Greatly Hinder Formin mDia1 Activity. *Nano*  
774 *Lett* **20**, 22–32 (2020).

775 62. Jasnin, M. *et al.* The Architecture of Traveling Actin Waves Revealed by Cryo-Electron  
776 Tomography. *Structure* **27**, 1211–1223.e5 (2019).

777 63. Urban, E., Jacob, S., Nemethova, M., Resch, G. P. & Small, J. V. Electron tomography  
778 reveals unbranched networks of actin filaments in lamellipodia. *Nat Cell Biol* **12**, 429–435  
779 (2010).

780 64. Martins, B. *et al.* Unveiling the polarity of actin filaments by cryo-electron tomography.  
781 *Structure* **29**, 488–498.e4 (2021).

782 65. Fäßler, F., Dimchev, G., Hodirnau, V.-V., Wan, W. & Schur, F. K. M. Cryo-electron  
783 tomography structure of Arp2/3 complex in cells reveals new insights into the branch  
784 junction. *Nat Commun* **11**, 6437–10 (2020).

785 66. Ding, S. *et al.* Efficient transposition of the piggyBac (PB) transposon in mammalian cells  
786 and mice. *Cell* **122**, 473–483 (2005).

787 67. Schmid, E. M. *et al.* Size-dependent protein segregation at membrane interfaces. *Nat*  
788 *Phys* **12**, 704–711 (2016).

789 68. Scior, A., Preissler, S., Koch, M. & Deuerling, E. Directed PCR-free engineering of highly  
790 repetitive DNA sequences. *BMC Biotechnol* **11**, 87–9 (2011).

791 69. Hochmuth, F. M., Shao, J. Y., Dai, J. & Sheetz, M. P. Deformation and flow of membrane  
792 into tethers extracted from neuronal growth cones. *Biophys J* **70**, 358–369 (1996).

793 70. Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Force microscopy of nonadherent cells: a  
794 comparison of leukemia cell deformability. *Biophys J* **90**, 2994–3003 (2006).

795 71. Yeung, A. & Evans, E. Cortical shell-liquid core model for passive flow of liquid-like  
796 spherical cells into micropipets. *Biophys J* **56**, 139–149 (1989).

797 72. Mathematics, R. C. S. J. O. A. 2002. Axisymmetric indentation of a thin incompressible  
798 elastic layer. *SIAM* **62**, 1520–1530 (2002).

799 73. Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software  
800 tools for automated transmission electron microscopy. *Nat Methods* **16**, 471–477 (2019).

801 74. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography  
802 tilt-scheme optimized for high resolution subtomogram averaging. *J Struct Biol* **197**, 191–  
803 198 (2017).

804 75. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM  
805 refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nat Methods*  
806 **18**, 186–193 (2021).

807 76. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-  
808 dimensional image data using IMOD. *J Struct Biol* **116**, 71–76 (1996).

809 77. de Teresa, I. *et al.* Convolutional networks for supervised mining of molecular patterns  
810 within cellular context. *bioRxiv* (2022).

811 78. Martínez-Sánchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J.-J. Robust  
812 membrane detection based on tensor voting for electron tomography. *J Struct Biol* **186**,  
813 49–61 (2014).

814 79. Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: A Modern Library for 3D Data Processing.  
815 [www.open3d.org](http://www.open3d.org) (2018).

816 80. Jasnin, M. *et al.* Three-dimensional architecture of actin filaments in *Listeria*  
817 *monocytogenes* comet tails. *Proc Natl Acad Sci USA* **110**, 20521–20526 (2013).

818 81. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin:  
819 nucleation, high affinity pointed end capping, and formation of branching networks of  
820 filaments. *Proc Natl Acad Sci USA* **95**, 6181–6186 (1998).

821 82. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching  
822 mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. *Proc  
823 Natl Acad Sci USA* **98**, 15009–15013 (2001).

824 83. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and  
825 analysis. *J Comput Chem* **25**, 1605–1612 (2004).

826 84. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators,  
827 and developers. *Protein Sci* **30**, 70–82 (2021).