

Rapid metagenomic sequencing for diagnosis and antimicrobial sensitivity prediction of canine bacterial infections

Author names

Natalie Ring^{1,2} (ORCID: 0000-0002-8971-8507)

Alison S. Low¹ (ORCID: 0000-0002-8360-1316)

Bryan Wee¹ (ORCID: 0000-0001-6135-5903)

Gavin K. Paterson^{1,2} (ORCID: 0000-0002-1880-0095)

Tim Nuttall² (ORCID: 0000-0002-7412-9398)

Richard Mellanby² (ORCID: 0000-0002-3467-7007)

David Gally¹ (ORCID: 0000-0002-2566-0844)

J. Ross Fitzgerald¹ (Corresponding, ORCID: 0000-0002-9233-8468)

Affiliation

1 The Roslin Institute, University of Edinburgh, UK

2 Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK

Corresponding author and email address

J. Ross Fitzgerald, ross.fitzgerald@roslin.ed.ac.uk

Keywords

nanopore sequencing, whole genome sequencing, rapid diagnostics, AMR, infection

Repositories:

All raw sequencing data (nanopore) produced during this work have been deposited under NCBI

BioProject Accession PRJNA925092 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA925092>).

1 **Abstract**

2 Antimicrobial resistance is one of the greatest current threats to human and animal health. There is
3 an urgent need to ensure that antimicrobials are used appropriately to limit the emergence and
4 impact of resistance. In the human and veterinary healthcare setting, traditional culture and
5 antimicrobial sensitivity testing is typically conducted, requiring 48-72 h to identify appropriate
6 antibiotics for treatment. In the meantime, broad-spectrum antimicrobials are often used, which may
7 be ineffective or impact non-target commensal bacteria. Here, we present a rapid diagnostics pipeline,
8 involving metagenomic Nanopore sequencing directly from clinical urine and skin samples of dogs. We
9 have optimised this pipeline to be versatile and easily implementable in a clinical setting, with the
10 potential for future adaptation to different sample types and animals. Using our approach, we can
11 identify the bacterial pathogen present in a sample with 100% sensitivity within 5 hours. For urine
12 samples, we can predict antibiotic sensitivity with up to 95% accuracy. However, skin swabs which
13 exhibited lower bacterial abundance and higher host DNA, were less amenable and an additional host
14 depletion step may be required prior to DNA extraction. In summary, our pipeline represents an
15 important step towards the design of individually tailored veterinary treatment plans on the same day
16 as presentation, facilitating effective use of antibiotics and promoting antimicrobial stewardship.

17 **Impact statement**

18 Antimicrobial resistance (AMR) is a major threat to veterinary and human healthcare. It is a one-health
19 problem, as humans and dogs are in close contact, require similar antibiotics, and share bacterial
20 pathogens and AMR genes. Limited treatments options due to AMR would have a catastrophic effect.
21 The risk of infection would render much of modern healthcare (including critical care, orthopaedic and
22 complex surgeries, implants and oncology) impossible. In addition, routine infections could become
23 life threatening. It is therefore critical to preserve the efficacy of these drugs for the future.
24 Inappropriate antimicrobial use is the single biggest factor driving AMR. Antimicrobial stewardship
25 involves reducing antimicrobial use, using first-line narrow-spectrum drugs, and avoiding overly long
26 treatment. Delays in culture-based diagnosis lead clinicians to speculatively use broad-spectrum
27 antibiotics and prolong courses of treatment beyond clinical cure. Our rapid diagnostic approach will
28 have a major impact in reducing, refining and replacing antibiotic use. This will advance antimicrobial
29 stewardship in veterinary and human healthcare.

30 **Data summary**

31 All sequencing data mentioned in this work is available from NCBI, BioProject PRJNA925092,
32 Biosamples SAMN32880396 to SAMN32880438, run accessions SRR23195371 to SRR23195413.

33 **The authors confirm all supporting data, code and protocols have been provided within the article**
34 **or through supplementary data files.**

35 **Introduction**

36 Antimicrobial resistance (AMR) levels amongst human and veterinary bacterial pathogens are
37 escalating globally, to the extent that the World Health Organization now classifies AMR as one of the
38 biggest threats to global health, food security and development (1, 2). The current gold-standard
39 diagnostic methods used in veterinary practice are culture-based or involve remote service providers
40 for PCR, requiring several days to yield results. Broad-spectrum or inappropriate antibiotics are often
41 started while waiting for the results; this inappropriate antimicrobial use is a major driver for AMR (3).
42 Furthermore, animals with suspected highly contagious or potentially zoonotic infections like
43 leptospirosis may require quarantining while waiting for a diagnosis leading to escalated costs, wasted
44 resources, and unnecessary stress for the quarantined animal (4).

45 Novel methods that enable sensitive, same-day rapid diagnosis and prediction of antibiotic sensitivity
46 across different infection types are required. One method which is of particular interest is
47 metagenomic whole genome sequencing (WGS), involving the extraction of all genomic DNA (gDNA)
48 present in a sample and subsequent identification of pathogens by unbiased DNA sequencing. One of
49 the main sequencing platforms for this kind of rapid diagnosis is the MinION, produced by Oxford
50 Nanopore Technologies (ONT), which has been tested with clinical sputum, endotracheal aspirate,
51 blood, urine and other sample types (5-13). Importantly, the MinION's small size and relative
52 affordability could enable its usage in a wide variety of clinical settings. In addition, sequence data is
53 accessible in real-time as it is produced, reducing the time required to identify pathogens and their
54 AMR genotypes to as little as 10 minutes (14, 15). The long reads produced by nanopore sequencing
55 readily facilitate whole genome assembly which potentially allows the linkage of AMR genes to specific
56 bacterial strains (16).

57 Here, we set out to develop a rapid, culture-free metagenomic sequencing pipeline to identify
58 pathogens and predict AMR in canine samples in a veterinary hospital setting. To initially develop this
59 pipeline, we chose to focus on two common canine infections: urinary tract infections (UTIs) and skin
60 infections (pyoderma). Antibiotic therapy is often the first line of treatment in these infections, but

61 AMR, including multi-drug resistance, is frequently observed, and increasing in prevalence (17-21).
62 Furthermore, recurrent infections are common, leading to frequent return visits to the clinic and
63 further courses of antibiotics (22, 23). A rapid, sensitive method for diagnosing the bacterial pathogens
64 and predicting their antimicrobial sensitivity could therefore prevent the use of inappropriate
65 antibiotics, and limit the amount of clinical care required. Although we focussed on urine and skin
66 swab samples here, we aimed to design a protocol which could be adapted to an array of other sample
67 types (e.g. blood) from infections in other animals including humans. Moreover, the approach could
68 be used in a variety of clinical settings, from small practices to large hospitals. By comparing and
69 optimising a number of different kit-based gDNA extractions and sequencing techniques, combined
70 with community-built DNA analysis tools, we have developed a pipeline which can identify the
71 bacterial species present in clinical samples with around 100% sensitivity and specificity, in as little as
72 5 hours. It can also predict the antimicrobial resistance phenotype of those species with up to 95%
73 accuracy, in around 8 hours.

74 **Methods**

75 **Selection of DNA extraction kit.** Three different kits recommended in the literature were tested:
76 DNeasy Blood + Tissue (Qiagen, Hilden, Germany), DNeasy Powersoil (Qiagen) and MagAttract HMW
77 DNA (Qiagen). To test each kit, overnight *Escherichia coli* CAN-50 growth in Luria-Bertani (LB,
78 ThermoFisher, Massachusetts, USA) broth equivalent to 10^9 CFUs was spun down at 16,000 xg, and
79 the cell pellet was resuspended in 1 ml healthy dog urine. The urine-cell suspension was then
80 processed using each kit, according to the relevant manufacturer's instructions for each, finishing with
81 an elution into 50 μ l nuclease-free water. The resulting extractions were used to compare the kits in
82 terms of (i) gDNA yield in 50 μ l nuclease-free water (quantified by Qubit dsDNA HS kit), (ii) lysis method
83 for Gram-positive species (enzymatic vs bead-beating), (iii) speed, and (iv) cost.

84 **Optimisation of metagenomic bacterial lysis.** Records for canine urine and skin swab samples
85 processed at the Royal (Dick) School of Veterinary Studies Hospital for Small Animals (HfSA) in
86 Edinburgh between 2018 and 2019 were analysed to determine which species were most commonly
87 detected, so the broad efficacy of our extraction protocol for the most relevant pathogens could be
88 tested (**Supplementary Table S1**). Metapolyzyme (Sigma-Aldrich, Missouri, USA), an enzymatic lysis
89 cocktail containing six lysis enzymes (achromopeptidase, chitinase, lyticase, lysostaphin, lysozyme and
90 mutanolysin), was trialled for our extraction protocol. An isolate of the Gram-positive species
91 *Staphylococcus pseudintermedius*, ED99 (24), was used to trial four enzymatic lysis options:
92 lysostaphin, lysozyme, and two different concentrations of metapolyzyme. Cells were grown overnight
93 on tryptic soy agar (TSA, Oxoid ThermoFisher, Massachusetts, USA) plates at 37°C, then a single colony

94 was transferred into tryptic soy broth (TSB, Oxoid) media and cultured overnight at 37°C with shaking.
95 2.5 ml of overnight culture was pelleted by centrifuging for 3 min at 16,000 xg, then resuspended in 3
96 ml healthy dog urine.

97 For each of the four lysis options tested, the resulting urine-and-cell suspension was centrifuged for 3
98 min at 16,000 xg, then resuspended in 160 µl 50 mM Tris, 10 mM EDTA, pH 8.0 (buffer P1 for the
99 MagAttract HMW DNA kit). 20 µl lysozyme (100 mg ml⁻¹), lysostaphin (10 mg ml⁻¹), metapolyzyme (6.6
100 mg ml⁻¹) or metapolyzyme (3.3 mg ml⁻¹) was added, and the solution mixed by flicking. The solution
101 was then incubated on a thermomixer for 1h at 37°C with 900 RPM shaking. After 1h, 20 µl proteinase
102 K was added, and the solution was incubated for a further 30 min at 56°C with 900 RPM shaking. The
103 rest of the MagAttract HMW DNA Gram-positive protocol was then followed as per the
104 manufacturer's instructions (starting from step 8 on page 26 in the MagAttract HMW DNA Handbook
105 03/2020), eluting into 50 µl nuclease-free water as the final step. DNA concentrations were quantified
106 using the Qubit dsDNA HS kit according to the manufacturer's instructions.

107 **Testing our extraction protocol on different species.** The optimised MagAttract + Metapolyzyme
108 extraction protocol was tested on the most commonly isolated species identified in the HfSA's records:
109 *E. coli*, *S. pseudintermedius*, *Streptococcus canis*, *Enterococcus faecalis*, *Pseudomonas aeruginosa*,
110 *Proteus mirabilis*, *Pasteurella canis*, *Klebsiella pneumoniae*, *Kocuria kristinae*/*Kocuria rosea*, and
111 *Clostridium perfringens*. For aerobic species, cells were grown on TSA plates at 37°C for 24h or 72h
112 (*Kocuria/Streptococcus*), then in TSB medium at 37°C with shaking for 24h or 72h
113 (*Kocuria/Streptococcus*). For two anaerobic or facultative anaerobic species (*C. perfringens* and *P.*
114 *canis*), cells were grown on TSA plates at 37°C in a sealed box with Anaerogen sachets (Oxoid
115 ThermoFisher) for 24h, then in TSB medium in growth flasks in a sealed box with Anaerogen sachets
116 at 37°C with shaking for 24h. For all species, 3 ml of broth culture was pelleted by centrifuging at
117 16,000 xg for 3 min, the pellet was resuspended in 3 ml healthy dog urine, then pelleted again in the
118 same way. The pellet was then processed as per the optimised protocol, starting with resuspension in
119 160 µl buffer P1 and 60 minutes lysis with 20 µl metapolyzyme. DNA was eluted into 50 µl nuclease-
120 free water, and quantified using Qubit's dsDNA HS kit.

121 **Quality of the extracted DNA.** The purity of the extracted DNA was assessed using a Nanodrop
122 spectrophotometer (ThermoFisher) to measure the 260/280nm and 260/230nm absorbance ratios of
123 22 clinical samples (indicated in **Supplementary Table S2**). The samples were then cleaned up using
124 the ProNex Size-Selective Purification System (Promega, Wisconsin, USA) according to manufacturer's
125 instructions, starting with 50 µl DNA and 200 µl ProNex beads, and eluting into 20 µl nuclease-free

126 water at the end of the protocol. The purity of the cleaned-up DNA was then measured again by
127 Nanodrop.

128 **Final optimised protocols for metagenomic DNA extraction and clean-up.** The final optimised
129 protocols, including post-extraction clean-up with ProNex beads, are available from protocols.io:

130 dx.doi.org/10.17504/protocols.io.n2bj8o5bgk5/v2 (urine)

131 dx.doi.org/10.17504/protocols.io.q26g7yr19gwz/v2 (skin swabs)

132 **Species identification strategies.** For each experiment detailed here, species were identified from
133 sequencing reads using either ONT's EPI2ME tool
134 (v3.0.1-7052513, <https://epi2me.nanoporetech.com/>, ONT account required) or Kraken2 (v2.1.1, 25)
135 with one of two custom databases, "pathogens_plus" or "bacteria_plus". The bacteria_plus
136 database was constructed from all bacterial representative genomes present in the NCBI RefSeq
137 database in November 2022 (4,032 species) plus eight mammalian genomes (*Canis lupus familiaris*,
138 *Homo sapiens*, *Felis catus*, *Equus caballus*, *Oryctolagus cuniculus*, *Sus domesticus*, *Bos taurus* and
139 *Ursus arctos*). The "pathogens_plus" database contains 668 genomes of various bacterial, viral,
140 protozoan and fungal pathogens, including the top 100 European human and animal pathogens
141 identified in a 2014 study (26), plus selected other pathogens known to be important in veterinary
142 samples, such as *Leptospira* and *Mycobacterium spp* (a full list of species included can be seen in
143 **Supplementary Table S3**). The pathogens_plus database also contains the same eight mammalian
144 genomes included in the bacteria_plus database. The tool and database used is noted for each step
145 of the protocol development below.

146 **Optimising the sequencing protocol.** Two rapid library preparation kits were tested: rapid PCR
147 barcoding (SQK-RPB004, Oxford Nanopore Technologies (ONT), Oxford, UK) and rapid barcoding (SQK-
148 RBK004, ONT). The SQK-RPB004 PCR reaction was carried out on 22 clinical samples (**Supplementary**
149 **Table S2**), according to the manufacturer's instructions, and the concentration of each was measured
150 by Qubit's dsDNA HS kit before and after the reaction.

151 All 22 samples prepared with the rapid PCR barcoding kit were subsequently sequenced on MinION
152 R9.4.1 flow cells (ONT) according to the SQK-RPB004 protocol, although ProNex beads were
153 substituted into steps which required AMPure XP beads. Four of these samples, two urines (DTU09
154 and DTU16) and two skin swabs (SkSw08A and SkSw14), were re-sequenced with the rapid barcoding
155 kit, to compare the results of sequencing with and without the PCR amplification. The DNA was
156 prepared according to the manufacturer's instructions for SQK-RBK004, except for the substitution of
157 ProNex in place of AMPure XP again. The results of the two library preparation methods were

158 compared in terms of (i) run yield, and (ii) bacterial reads vs eukaryotic host contamination (according
159 to ONT's online EPI2ME classification "WIMP" tool).

160 *Determining the lower detection limits for the rapid barcoding (SQK-RBK004) kit*

161 Three sequencing runs were conducted using serially diluted gDNA extracted from *E. coli*, *S.*
162 *pseudintermedius* and *S. canis*, respectively. For each, a starting sample of gDNA was serially 1:1
163 diluted in nuclease-free water, from around 10 ng μl^{-1} down to below 0.1 ng μl^{-1} . Each dilution was
164 prepared for sequencing with SQK-RBK004 as described above, with a different barcode used for each
165 dilution and barcode01 used as a negative control (nuclease-free water). The dilution series (plus
166 negative control) from each species was then sequenced on a fresh MinION R9.4.1 flow cell for 24 h.
167 The sequencing results for each dilution were compared in terms of (i) run yield, and (ii) reads from
168 the expected species vs background contamination (according to EPI2ME).

169 *MinION vs Flongle flow cells*

170 Two relatively highly concentrated gDNA samples were used to compare MinION flow cells with
171 Flongle flow cells: a clinical skin swab sample (SkSw21, 55 ng μl^{-1}) and a 1:1 mix of *E. coli* and *P.*
172 *aeruginosa* isolate DNA, both extracted previously during the DNA extraction optimisation trials (80
173 ng μl^{-1}). Each sample was prepared for sequencing on an R9.4.1 Flongle flow cell according to the
174 Flongle-specific manufacturer's instructions for SQK-RBK004 (using ProNex beads instead of AMPure
175 XP), then each was sequenced separately for a full 24h on the Flongle device, and the total yield of the
176 24 h run was noted. More DNA from the same samples was then prepared for sequencing on an R9.4.1
177 MinION flow cell with SQK-RBK004 as above. Sequencing was started for the first (*E. coli* + *P.*
178 *aeruginosa*) sample on a Mk1C MinION device, and the sequencing was monitored. The sequencing
179 was stopped when the run yield matched that of the 24 h Flongle run, and the time taken to reach
180 that yield was recorded. The MinION flow cell was then washed using the flow cell wash kit (EXP-
181 WSH004, ONT) according to the manufacturer's instructions, and the second sample (SkSw21) was
182 loaded and sequenced. Again, the sequencing was monitored closely and stopped once the run yield
183 matched that of the 24 h Flongle run.

184 *Determining the optimal MinION flow cell usage strategy*

185 Two flow cells and a variety of DNA samples were used to test how many times a MinION flow cell can
186 be washed and re-used. For the first flow cell, the DNA sample was a relatively high concentration
187 previously extracted *E. coli* isolate (110 ng μl^{-1}) which had both been stored at 4°C since extraction. An
188 initial sample of 7.5 μl of DNA was prepared for sequencing with SQK-RBK004 as previously described,
189 using barcode01. Sequencing commenced on a fresh flow cell and was stopped when a target of 200

190 Mbp was reached. The time taken to reach 200 Mbp was recorded, and the flow cell was washed using
191 EXP-WSH004 as previously described. A second 7.5 μ l was processed in the same way, with barcode02,
192 followed by another wash with EXP-WSH004. This protocol continued until the time taken to reach
193 200 Mbp was longer than 2 h, using the next subsequent barcode (barcode03, barcode04, etc.). For
194 each sequencing step, the starting number of available sequencing pores was recorded at the
195 beginning of the run. After each run, the sequenced reads were quality controlled by EPI2ME and
196 NanoStat (v1.6.0, 27), and the percentage of DNA assigned to the wrong barcode was noted.

197 For the second flow cell, the same protocol was followed, but freshly extracted DNA from clinical
198 samples, ranging from 0.76 to >120 ng μ l⁻¹, was sequenced. Each sample was sequenced for up to 3 h,
199 and some samples were sequenced simultaneously (with different barcodes). Full details of the
200 samples sequenced are given in **Supplementary Table S4**.

201 *Testing adaptive sampling on a GridION to reduce contamination with host DNA*

202 Two flow cells and two DNA samples were used to test the efficiency of adaptive sampling for reducing
203 levels of host DNA in clinical samples. The two DNA samples, one an *E. coli* isolate and the other a
204 sample of previously sequenced canine DNA, were 75 ng μ l⁻¹ each. The samples were mixed in various
205 ratios (90:10, 75:25, 50:50, 25:75 and 10:90). 15 μ l of each mix, plus 15 μ l of a previously sequenced
206 clinical sample known to be contaminated with host DNA, were prepared for sequencing with SQK-
207 RBK004 (volumes doubled), each with a different barcode, and using nuclease-free water with
208 barcode01 as a negative control. Half of the pooled library was then sequenced on a fresh R9.4.1 flow
209 cell on a GridION, with real-time super accuracy basecalling and no adaptive sampling. The other half
210 was sequenced at the same time on a second fresh R9.4.1 flow cell on the GridION, with real-time
211 super accuracy basecalling and adaptive sampling selected to deplete DNA which mapped to a canine
212 reference genome provided to the software (GCA_014441545.1 ROS_Cfam_1.0).

213 The resulting datasets for each barcode were analysed using Kraken2 (v2.1.1, 25) with the
214 bacteria_plus database described above. The percentage of reads from each sample assigned to
215 *Escherichia* (or *Shigella*) and *Canis lupus familiaris* were recorded, and the differences between the
216 percentages of each with and without adaptive sampling were tested for significance using a paired
217 Wilcoxon signed-rank test in R (v4.1.2).

218 **Testing clinical samples**

219 *Sample selection, DNA extraction and sequencing, and flow cell usage*

220 During the development of this protocol, DNA from 45 clinical urine and skin swab samples was
221 extracted and sequenced, using either the rapid barcoding or rapid PCR barcoding library preparation

222 kit (**Supplementary Table S3**). These samples were not usually processed on the same day they were
223 received; instead, they were processed and sequenced in batches, and the raw sample and/or
224 extracted DNA was stored at 4°C in the meantime. After these development steps, a further nine urine
225 samples were processed in batches of one to four. These were collected from the HfSA and processed
226 immediately using the finalised extraction protocol (<https://www.protocols.io/view/magattract-metapolzyme-metagenomic-gdna-extractio-chnrt5d6>).

228 The extracted DNA was prepared for sequencing using the rapid barcoding kit (SQK-RBK004) as
229 described above, using barcode 01 for a negative control (nuclease-free water, which was processed
230 using the same extraction protocol as the real samples) and the remaining sequential barcodes for the
231 real samples. Samples were sequenced for 2h, or until 100 Mbp had been sequenced, whichever was
232 sooner. In between sequencing runs, the flow cell was stopped, washed using the flow cell wash kit
233 (EXP-WSH004) according to manufacturer's instructions and stored with storage buffer at 4°C until
234 the next use.

235 *Species identification and AMR prediction*

236 During sequencing, the data produced underwent preliminary analysis using EPI2ME's Fastq
237 Antimicrobial Resistance workflow. After sequencing, the data were further analysed, including
238 species identification with Kraken2 (pathogens_plus database), genome assembly with Flye (v2.9-
239 b1774, 28) using the --meta flag and no --genome-size flag, genome annotation using Prokka (v1.14.5,
240 29) using the appropriate --species and --genus flags along with --compliant, and --usegenus, and AMR
241 prediction using Abricate (v1.0.1, 30) with the NCBI database downloaded on 18 January 2022 and
242 AMRFinderPlus (v3.10.45, 31) with the database version 2022-10-11.2.

243 During development, large volumes of data were sequenced for some samples. For the analysis
244 described above, these large datasets were randomly down-sampled to 100 Mbp using Rasusa (v0.6.1,
245 32). The results from all data analyses were collated to predict which species had been present in the
246 original sample, and the AMR phenotypes expected from them. In addition, the length of time taken
247 for each sample was recorded. The results from this pipeline were then compared to the results from
248 the Veterinary Pathology Unit (VPU) at the HfSA, which were produced using the current gold-
249 standard techniques of culture followed by species identification and antibiotic susceptibility testing
250 (AST) using a VITEK® 2 (bioMérieux) instrument.

251 **Results and Discussion**

252 **Comparison of DNA extraction methods.** A wide variety of DNA extraction methods are available,
253 and many of them have been used in previous studies aiming to develop rapid diagnostic protocols

254 or to extract metagenomic DNA from urine samples (7, 9, 11, 14, 16, 33-37). We selected three
255 commonly used kits to test here (**Table 1**), based on their previous successful application and their
256 potential flexibility for application to other sample types in the future. A metagenomic approach
257 using enzymatic lysis rather than mechanical cell disruption should result in high molecular weight
258 (HMW) fragments, facilitating better genome assembly and more efficient species and AMR gene
259 identification. Nonetheless, we tested one kit using mechanical disruption, to compare the efficiency
260 of mechanical versus enzymatic lysis.

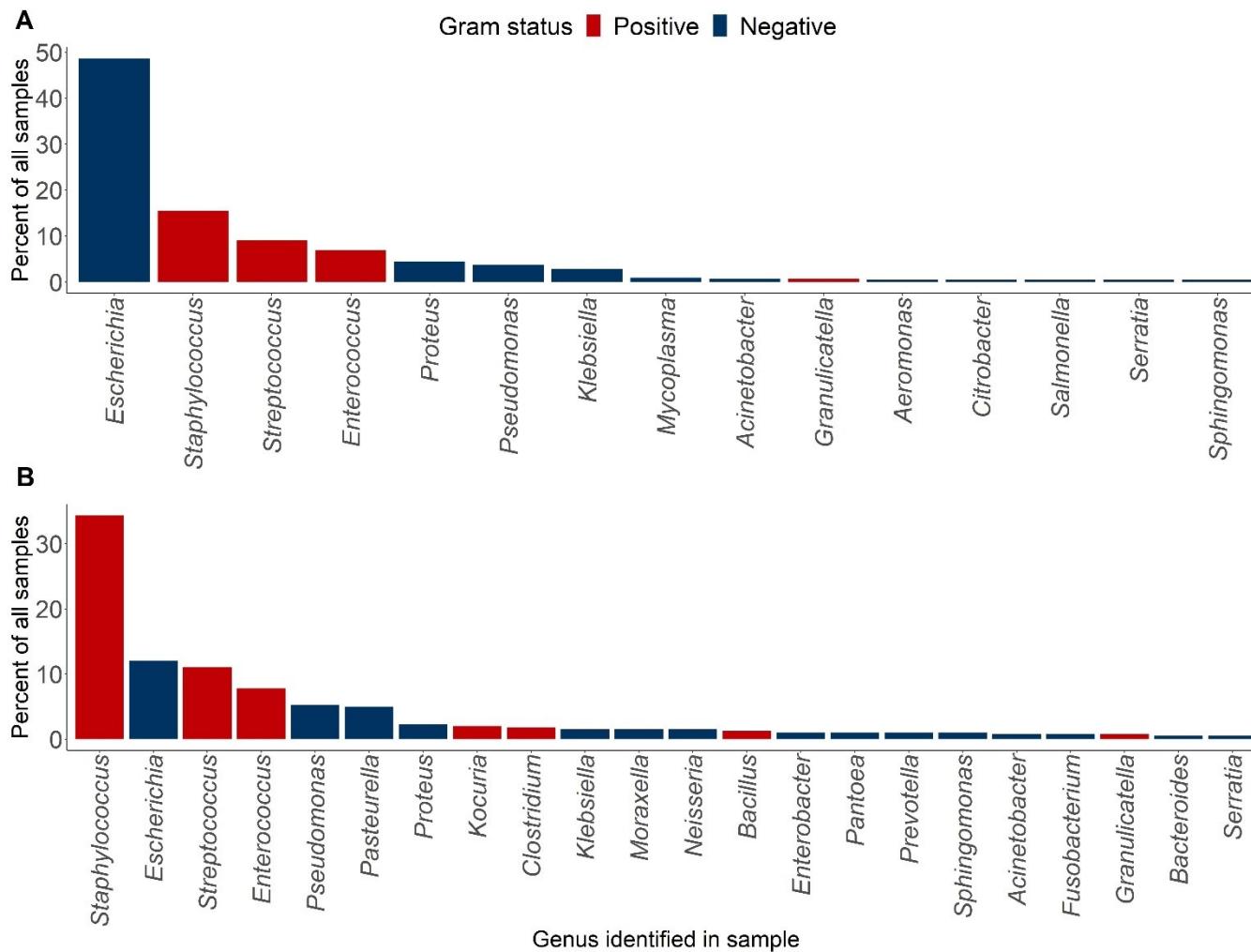
261 Of the three kits we trialled, the one with mechanical lysis (the DNeasy Powersoil) was the most
262 expensive per-sample, and produced lowest yield of gDNA when tested (Table 1). The two kits that
263 included optional enzymatic Gram-positive lysis steps were the DNeasy blood + tissue kit and the
264 MagAttract HMW kit, each producing similar yields of DNA in a similar time-frame when tested with
265 *E. coli*. Although the spin column-based DNeasy kit had a lower cost-per-sample, we ultimately
266 selected the MagAttract in our protocol due to its optimisation towards extracting HMW DNA, and its
267 extensive washing steps that should limit the presence of inhibitors that affect library preparation.

268 **Our optimised protocol can efficiently extract DNA from the bacterial pathogens most commonly**
269 **identified in canine urinary tract and skin infections.** We examined records from the HfSA to identify
270 the array of bacterial species most commonly associated with clinical urine or skin swab samples from
271 dogs (**Figure 1, Supplementary Figure S1**). Overall, 90% of culture-positive cases were associated with
272 ten different genera, with a total of 53 different genera in total, including 48% Gram-positive and 52%
273 Gram-negative (**Supplementary Table S1**). Thus, we required a lysis method that would allow the
274 extraction of DNA from a wide variety of different species. Metapolyzyme contains six enzymes
275 optimised for the lysis of bacterial and/or fungal cell walls. Of these six, lysostaphin, mutanolysin and
276 lysozyme should lyse all of the Gram-positive species most commonly seen in the 2018-2019 HfSA
277 data. We determined that 3.3 mg ml⁻¹ of metapolyzyme resulted in better yield of extracted DNA than
278 either lysozyme or lysostaphin for the most common Gram-positive species in skin swabs
279 (*Staphylococcus pseudintermedius*, **Table 2**). The optimised MagAttract + Metapolyzyme extraction
280 protocol was next tested on the top ten species identified in urine and/or skin swab samples (**Figure**
281 **1, Table 3**). Each species was grown in appropriate media and spiked into 3 ml healthy dog urine to
282 simulate a clinical sample, and our protocol was successful in extracting micrograms of DNA from all
283 ten species, including anaerobes, Gram-positives, and slow-growing bacteria (e.g. *Kocuria*). We
284 therefore concluded that the protocol would be efficacious in extracting DNA from the vast majority,
285 if not all, of the species encountered in clinical canine urine or skin swab samples.

286

Table 2: Different lysis enzymes tested with *S. pseudintermedius* ED99 DNA extraction

Lysis enzyme	DNA yield (μg)
Lysozyme (100 mg/ml)	0.46
Lysostaphin (10 mg/ml)	2.75
Metapolyzyme (6.6 mg/ml)	5.5
Metapolyzyme (3.3 mg/ml)	5.2


287

288 **Enhancement of DNA purity during extraction.** As clinical samples may contain contaminants or
289 inhibitors that impact library preparation or sequencing, we tested if a further clean-up step would be
290 enhance the protocol. Nanodrop 260/280nm and 260/230nm absorbance ratios were used to assess
291 the purity of 22 clinical samples (14 urine, 8 skin swabs, **Supplementary Figure S2**) before and after a
292 clean-up protocol using the ProNex Size-Selective Purification System. This kit was selected because it
293 should maintain the high molecular weight of the DNA extracted by the MagAttract protocol, and for
294 its affordability relative to the AMPure XP system. After the clean-up, the mean value across the 22
295 samples was close to ideal at 1.82, although the difference between pre- and post-clean-up ratios was
296 not assessed to be significant according to the Wilcoxon signed rank test for paired samples ($p=0.7$,
297 $n=22$). In contrast, the 260/230nm ratios were significantly improved post-clean-up ($p=0.004$, $n=22$);
298 the mean value of 1.36 was not optimal but still enabled efficient library preparation. Our findings
299 support the inclusion of the additional clean-up step between DNA extraction and library preparation,
300 despite adding extra time to the final length of the rapid diagnostics protocol. An additional benefit of
301 the clean-up protocol is that by eluting into a final volume lower than the starting volume (20 μ l vs 50
302 μ l) the DNA is further concentrated.

303

Table 1: gDNA extraction kits tested, and their pros and cons

Kit	Pros	Cons	Yield from test <i>E. coli</i> extraction (µg)	Cost per sample (kit only)
Qiagen DNeasy	<ul style="list-style-type: none"> Quick extraction (<40 minutes after lysis) 	<ul style="list-style-type: none"> Different Gram +ve protocol (enzymatic lysis step required) 	3.16	£3.92
Blood + Tissue	<ul style="list-style-type: none"> Easy, column-based No additional reagents or equipment required No bead-beating 			
Qiagen DNeasy	<ul style="list-style-type: none"> Very quick extraction (30 minutes or less) 	<ul style="list-style-type: none"> Extremely low yield 	0.6	£6.06
PowerSoil	<ul style="list-style-type: none"> Same protocol for Gram +ve or –ve, optimised for metagenomics extractions 	<ul style="list-style-type: none"> Bead-beating, highly sheared DNA Not optimised for liquid samples 		
Qiagen	<ul style="list-style-type: none"> Optimised for extraction of HMW DNA 	<ul style="list-style-type: none"> Different Gram +ve protocol (enzymatic lysis step required) 	3.08	£4.75
MagAttract	<ul style="list-style-type: none"> No bead-beating 			
HMW DNA	<ul style="list-style-type: none"> Magnetic beads and 6 wash steps, so theoretically very clean DNA even from dirty starting samples Quick extraction (30 minutes after lysis) 	<ul style="list-style-type: none"> Magnetic rack required 		

Fig. 1 Pathogens identified in HfSA (A) urine and (B) skin swab samples, 2018 & 2019.

Species observed in only one sample (17 species for urine samples, 22 for skin swab samples) are not shown here, but can be seen in **Supplementary Table S1**.

Table 3: gDNA concentrations extracted from ten most commonly encountered species, using our optimised lysis and extraction protocol

Species	Mean DNA yield (µg) (standard deviation)
<i>Escherichia coli</i>	>6.00 (±0)
<i>Staphylococcus pseudintermedius</i>	5.35 (±0.15)
<i>Proteus mirabilis</i>	5.85 (±0.15)
<i>Pseudomonas aeruginosa</i>	2.4 (±0.72)
<i>Enterococcus faecalis</i>	2.74 (±0.87)
<i>Streptococcus canis</i>	2.68 (±0.18)
<i>Kocuria rosea/kristinae</i>	2.09 (±0.21)
<i>Pasteurella canis</i> ¹	>6.00 (±0)
<i>Clostridium perfringens</i> ¹	1.86 (±0.31)
<i>Klebsiella pneumoniae</i>	>6.00 (±0)

Bold indicates Gram positive species

¹ Cultured in anaerobic conditions

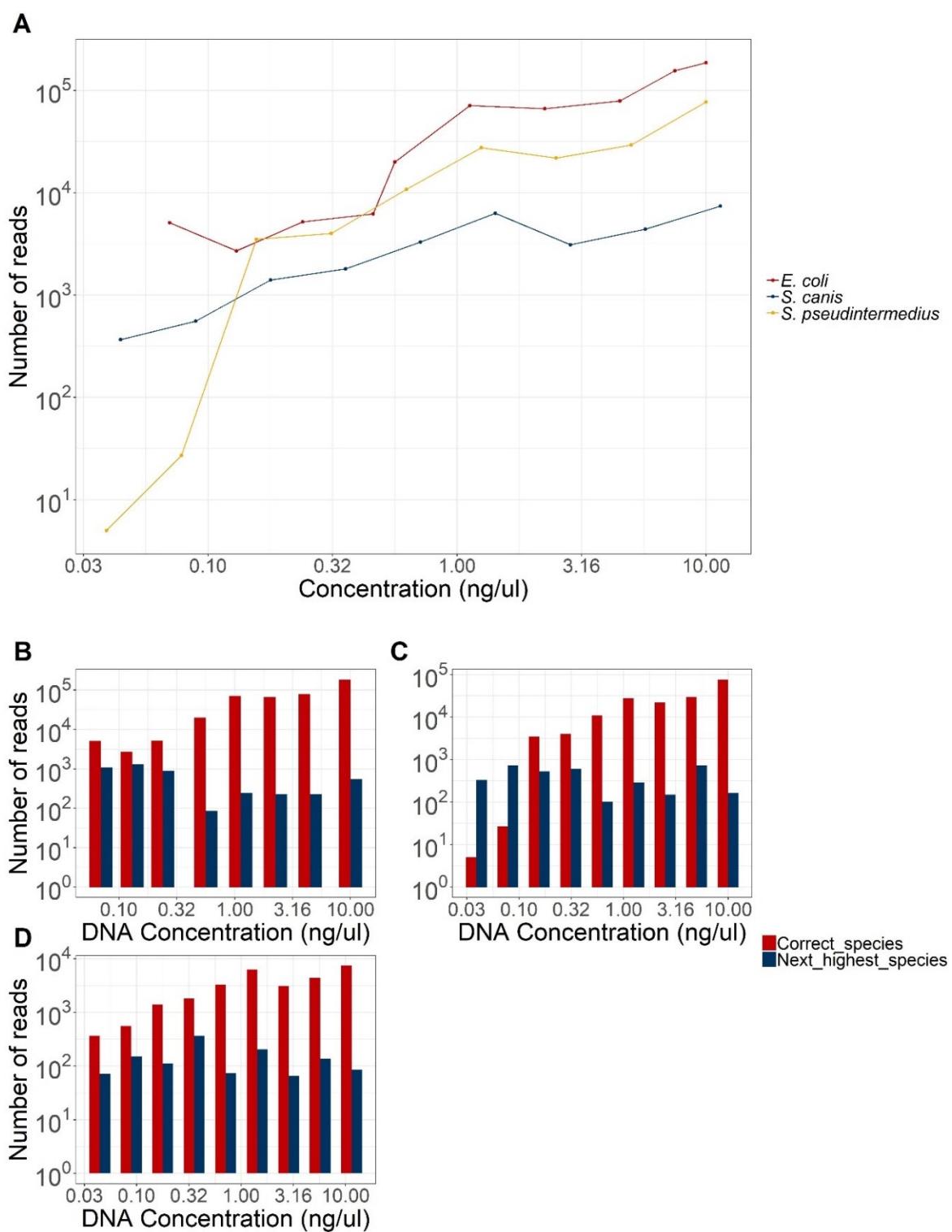
306 **Rapid barcoding enables sequencing and identification of species from extracted concentrations of**
307 **DNA as low as 0.04 ng µl⁻¹**. Our experience extracting DNA from the first few clinical samples
308 (**Supplementary Table S2**) indicated that DNA concentrations may be low in some samples (the mean
309 concentration of the first five skin swab samples was just 4.86 ng µl⁻¹, while the mean from the first
310 five urine samples was 21.98 ng µl⁻¹). Some previous protocols developed for rapid bacterial
311 identification by whole genome nanopore sequencing have used the rapid PCR barcoding library
312 preparation kit, SQK-RPB004 (7, 9, 38, 39). The major benefit of this kit is the amplification of DNA
313 during the PCR step, which may be important for low abundance samples, though with the
314 disadvantage of the additional time required. However, we found that this step resulted in

315 unpredictable yields of DNA and a tendency to amplify host DNA (**Supplementary figures S3 and S4**).
316 We therefore trialled the rapid barcoding kit without the PCR step (SQK-RBK004) instead, aiming to
317 determine the lowest concentration which could be sequenced and still produce enough usable data
318 to identify selected bacterial species from our samples. We conducted three serial dilutions of DNA
319 samples extracted from cultured *E. coli*, *S. pseudintermedius* and *S. canis*, and found that the relevant
320 bacterial species was identifiable at concentrations much lower than our means of 4.86 (skin swabs)
321 and 21.98 (urine) ng μ l⁻¹. For *E. coli* (**Figure 2B**) and *S. canis* (**Figure 2D**), the original species could be
322 detected above background contamination even at the lowest concentrations tested (0.07 and 0.04
323 ng μ l⁻¹). For *S. pseudintermedius* (**Figure 2C**), the original species could be detected above background
324 contamination at 0.16 ng μ l⁻¹. We therefore concluded that we could use the rapid barcoding kit to
325 sequence our clinical samples without the need for the PCR amplification step.

326 **Flongle flow cell use and re-use of MinION flow cells.** The Flongle is an adapter which fits into MinION
327 or GridION sequencers and allows the use of Flongle flow cells, which are a single-use, lower yield
328 alternative to MinION flow cells. These characteristics of Flongle flow cells are desirable for clinical
329 use: single-use means no potential cross-contamination between different samples, and the lower
330 yield means the flow cells are correspondingly less expensive than MinION flow cells. Clinical
331 applications for which Flongle flow cells are already being used include rapid sequencing of viruses
332 such as SARS-CoV-2 and monkeypox (40, 41), HLA-typing (42, 43), and 16S metagenomics (44, 45). A
333 small number of previous studies have also investigated the use of Flongle flow cells for the rapid
334 identification and typing of bacterial infections (5, 46, 47).

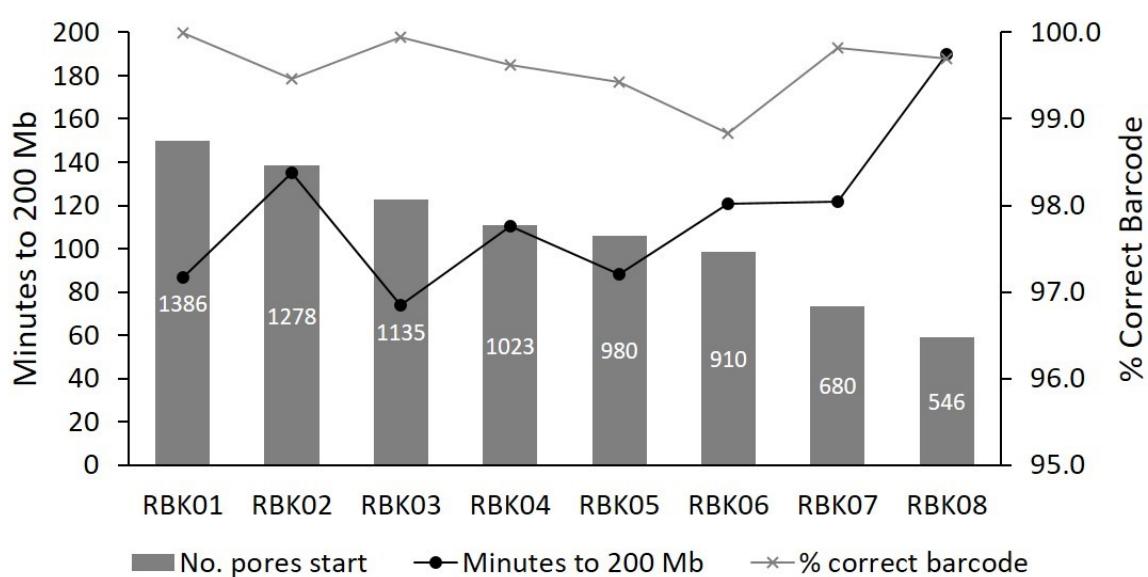
335 We sought to evaluate the utility of Flongle flow cells in our protocol compared to the classical MinION
336 using two clinical samples (**Supplementary Table S4**). The volume of DNA sequence data produced by
337 Flongle in a 24h period was matched by MinION within 1.5h for one sample, and 3h for the other.
338 However, although MinION offers greater sequencing speed, the price of each MinION flow cell
339 precludes the use of one flow cell per sample. Barcoding allows multiplexing of up to 12 samples, but
340 in a clinical setting, there may not be sufficient samples to load a full flow cell and still produce results
341 within the desired timeframe. We therefore examined the possibility of reusing MinION flow cells.
342 This would involve sequencing a sample for as long as necessary to produce the sequence data
343 required, stopping the run and performing a DNase wash of the flow cell, then storing the flow cell
344 until another sample was received. In this way, the same flow cell could theoretically be used many
345 times, thus reducing the cost-per-sample without the need for simultaneous sequencing of multiple
346 samples. Accordingly, we aimed to establish i) how many times could we re-use a flow cell to produce
347 sufficient sequence data in a timely manner, and ii) how much residual DNA from previous samples

348 would remain in the flow cell after washing. Employing a cultured *E. coli* sample, we examined the
349 capacity to produce 200 Mbp of DNA within 2h, and what percentage of the reads had the correct
350 barcode attached. We were able to use the same flow cell eight times before it was exhausted, and
351 the percentage of reads with the correct barcode never fell below 98.8% (**Figure 3, Supplementary**
352 **Table S5**). Further, using different barcodes for each subsequent sample reduces the risk of cross-
353 contamination between runs to negligible. We also later decided that, for most samples, only 100 Mbp
354 of sequence will be sufficient for species identification and AMR prediction, hence flow cells could
355 potentially be used even more times.


356 Importantly, we also trialled a second flow cell, using real clinical urine samples that had been
357 extracted on the same day they were sequenced (**Table 4**). This second flow cell was able to produce
358 data for nine samples before being used to exhaustion, with samples being sequenced in batches of
359 one to four per run, and over a period of roughly one month.

360 Ultimately, we estimate that the average MinION flow cell can be used and re-used around eight
361 times to sequence 100-200 Mbp per sample. This slight increase in cost is balanced against
362 producing the data at least eight times faster than it would be on a single-use Flongle flow cell, as
363 well as producing less plastic waste (especially as MinION flow cells can be returned to ONT for
364 recycling, whilst Flongle flow cells cannot).

365 **Adaptive sampling on a GridION significantly reduced host DNA contamination, but not enough to 366 benefit sample analysis**


367 The pipeline developed here is primarily aimed at processing clinical samples and it is therefore likely
368 that many of the DNA samples extracted will contain host DNA alongside the bacterial DNA. In some
369 cases, such as purulent skin swabs or urine samples containing high numbers of white blood cells, the
370 vast majority of the DNA extracted may be derived from the host, which could impact on the accuracy
371 of the diagnostic and AMR prediction from bacterial DNA. Lab-based methods to reduce the numbers
372 of host cells in the sample prior to DNA extraction exist, but can be costly and/or slow, so were not
373 included in this pipeline. As an alternative, a sequencing-based sampling method was trialled.

374 Adaptive sampling is technique unique to nanopore-based sequencers, in which DNA reads are
375 compared to a reference genome whilst the strand of DNA is still being sequenced. The technique can
376 be used either to enhance or to deplete sequences which map to the reference genome. Due to the
377 computer power needed, MinION sequencers are unlikely to be capable of adaptive sampling, unless
378 connected to a GPU-powered computer. The GridION sequencer, however, is equipped with GPU
379 processors, and adaptive sampling is therefore possible.

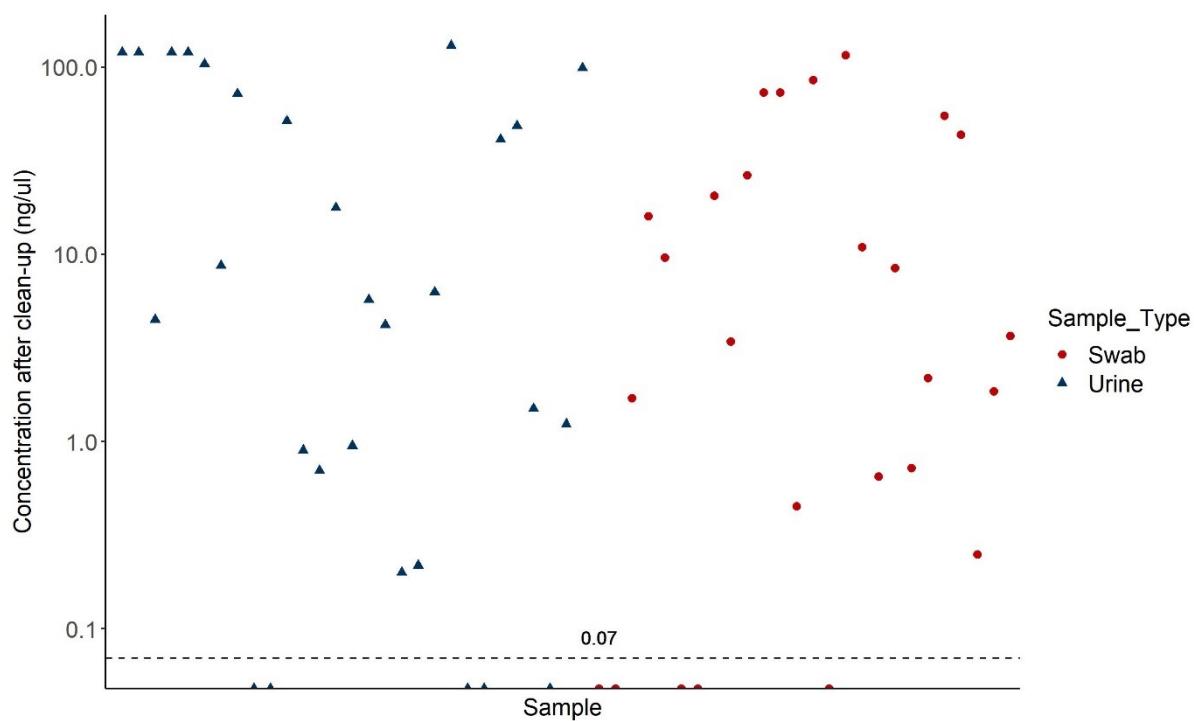
Fig. 2 Sequencing serial dilutions of *E. coli*, *S. pseudintermedius* and *S. canis*.

1:1 dilution of gDNA in nuclease-free water, sequenced for 24 hours using SQK-RBK004 (rapid barcoding) and R9.4.1 MinION flow cells. A) shows the number of reads identified by EPI2ME's WIMP tool as the correct species vs starting gDNA concentration. B), C) and D) show the number of reads identified as the correct species vs the number identified as the next most common species for *E. coli*, *S. pseudintermedius* and *S. canis*, respectively.

Fig. 3 MinION flow cell progression when washing and re-using multiple times.

The same 108 ng μ l⁻¹ *E. coli* sample was sequenced up to 200Mbp in 8 consecutive sequencing runs on a single flow cell. In between runs, the sequencing was ceased, and the flow cell was washed with wash kit EXP-WSH004-XL according to manufacturer's instructions. The flow cell was either then stored over one or two nights with storage buffer, or the next sequencing run was immediately commenced.

381 Although adaptive sampling did significantly reduce the proportion of eukaryotic reads ($p=0.03135$,
382 $n=6$) and increase the proportion of bacterial reads ($p=0.03135$, $n=6$) in our paired samples, the
383 absolute differences in percentages were small: 1% fewer eukaryotic reads, and 0.7% more bacterial
384 reads (**Supplementary Table S6**). These differences would realistically have little effect on our ability
385 to identify bacterial species or detect AMR genes. Where a GridION is available, we would therefore
386 recommend its use in our protocol, but where only a MinION is available, the ability to produce
387 accurate results will not be affected.


388 **Our optimised protocol produces up to 100% sensitivity and specificity for species prediction,
389 within five hours**

390 During the development of this protocol, DNA was extracted from 45 urine and skin swab samples (20
391 urines and 25 skin swabs). Subsequently, we processed a further nine urine samples using the final
392 optimised protocol, for a total of 54 clinical samples tested (**Supplementary Tables S2, S7, and S8, and
393 Table 4**).

394 A wide variety of DNA concentrations were retrieved from these samples, ranging from 0 to >120 ng
395 μ l⁻¹ for the urine samples and 0 to 116 ng μ l⁻¹ for the skin swabs (**Figure 4**). As mentioned previously,
396 the lower limit of detection for sequencing was determined to be < 0.1 ng μ l⁻¹ of cleaned-up DNA. In
397 total, only five urine samples and five skin swabs produced DNA with lower concentrations than our
398 lower limit and colony forming units (CFU) per ml of sample indicated that those samples had either
399 no growth of any kind, or contained fewer than 1×10^5 cells. We therefore estimate our lower limit for

400 sufficient DNA from clinical samples to be between 1×10^5 and 1×10^6 CFU/ml. The exact lower limit is
401 likely to depend on other sample characteristics, such as the presence of host cells, sediment or
402 inhibitors.

403 In order to test relevance to a clinical scenario, the nine post-optimisation urine samples were
404 processed in real-time. The average time taken to process the samples through to the commencement
405 of sequencing was just under 5 hours (**Table 4 and Supplementary Table S8**). Using the online EPI2ME
406 tool, species identification was carried out in real-time as soon as the first sequencing reads were
407 produced. The speed of EPI2ME can be affected by the number of concurrent online users, but we
408 were able to produce preliminary species identification calls within approximately 20 min of
409 sequencing. In each case, we continued to sequence until 100 Mbp of reads had been produced and,
410 to reduce the likelihood of false positive calls, we also performed species identification using Kraken2
411 after sequencing was complete. Of note, the initial rapid EPI2ME species calls differed from the
412 Kraken2 calls for only one sample in which EPI2ME detected both *P. mirabilis* and *E. coli*, whilst
413 Kraken2 only identified *P. mirabilis* at an abundance greater than 1% of the reads. The culture-based
414 diagnostic process also only identified *P. mirabilis*. Across all the clinical samples processed during the
415 study, EPI2ME and Kraken2 agreed on the species present in all samples except this one, and one
416 other (where EPI2ME detected *Finegoldia magna* in addition to *E. coli* and *E. faecalis*, but Kraken2 did
417 not). Likewise, the culture-based identification for the samples were in almost 100% agreement with
418 both EPI2ME and Kraken2 (**Table 4 and Supplementary Table S8**). For 2 samples, SkSw8A and SkSw10,
419 our sequence-based protocol revealed additional species according to EPI2ME (Kraken2 only
420 identified an additional species for SkSw10). Although these may be false-positives, it is also highly
421 feasible that the sequence-based approach is be more sensitive than the current gold-standard
422 culture-based techniques. It is worth noting that while culture-based species identification and ASTs
423 are “gold standard” they are themselves not 100% accurate, with problems including small sample
424 sizes compared to the infecting population, results skewed to easily cultured and fast growing
425 organisms, and laboratory error (e.g. single doubling dilution steps between sensitive, intermediate
426 and resistant). A 2007 evaluation estimated VITEK® 2 accuracy for species identification to be 98.3%,
427 while AST accuracy was estimated to be 97.7% (48).

Fig. 2 Concentration of DNA extracted from 54 real skin swab and urine samples from the HfSA.

DNA was extracted using our optimised extraction protocol, followed by clean-up with ProNex beads and

428 **Metagenome-based AMR prediction is dependent on bacterial sequence data volume.**

429 The accuracy of using sequencing data alone for AMR identification varies from species to species, but
430 previous studies have suggested >97% accuracy for *E. coli* and over 99% for *Staphylococcus aureus*
431 (49, 50). AMR phenotypes can be predicted from sequencing data alone, by screening the data for
432 known AMR-related genes or SNPs, based on curated databases like ResFinder or CARD (51, 52). This
433 level of accuracy is, however, dependent on the volume of sequencing data available, the complexity
434 of the samples being sequenced, and the amount of contaminating host DNA present. Here we
435 interrogated DNA sequence produced from both urine samples and skin swabs using our
436 metagenomic protocol for AMR resistance determinants and compared to the phenotypic data
437 produced by AST (**Supplementary Tables S2, S7 and S8, and Table 4**).

438 For urine samples, 71.7% of the resistance phenotypes identified by phenotypic AST were also
439 predicted by our protocol ($n=53$). 50% of samples were in exact agreement for all AMR calls for each
440 sample ($n=16$). However, further investigation revealed that the vast majority of AST calls that did not
441 correlate with the sequence-based predictions were defined as intermediate resistance, often to
442 chloramphenicol, which may represent unknown genetic mechanisms. Excluding intermediate
443 resistance calls from the VITEK® 2 results, we detected 83.7% of the same AMR using sequencing data
444 alone. Excluding a single missed gene in one of our post-optimisation samples (post-dev-8) increases

445 the sensitivity of our AMR predictions to 95.3% (41 of 43 resistant phenotypes accurately predicted,
446 excluding intermediates).

447 The remaining two AMR phenotypes not detected by our pipeline were from one sample (post-dev-
448 3), which was determined by the VITEK® 2 to be a co-infection consisting of two different strains of *E.*
449 *coli* and one strain of *Streptococcus gallolyticus* ssp *pasteurianus*. Though the type of resistance
450 (multiple cephalosporins) identified in this sample was frequently detected accurately by our pipeline,
451 the complexity of this sample may have hindered our AMR prediction, and we suggest that
452 complicated co-infection samples may require significantly more than 100 Mbp of sequencing data,
453 particularly when host DNA is also present (Kraken2 identified 47.5% of the DNA in this sample as
454 canine). Taken together, our pipeline can predict the vast majority of resistant phenotypes in non-
455 complex urine samples.

456 In contrast, for skin swab samples, of which 5 had also been phenotyped by AST, effective sequence-
457 based prediction of AMR was not possible due to the low abundance of the bacteria in the samples,
458 (3x10² to 7.5x10⁵ cfu/ml), almost all below our predicted lower limit of detection. In addition, four of
459 the five samples were more than 95% dog DNA, so bacterial DNA comprised a very low proportion of
460 the extracted DNA (reflecting 1 or 2x coverage). Thus, for low abundance skin samples, species can
461 easily and quickly be identified by sequencing, but the amount of sequencing data required to
462 accurately detect AMR genotypes is likely cost-prohibitive for veterinary applications, as it would
463 reduce the number of uses of each flow cell. One of our urine samples (post-dev-9) contained over
464 83% dog DNA, as well as a multidrug-resistant *E. coli*, yet we were able to predict all four of its non-
465 intermediate AMR phenotypes from just 100 Mbp. This suggests that even small increases in the
466 relative levels of bacterial cells we are seeing in our low abundance skin swabs could greatly improve
467 our ability to accurately detect AMR genotypes. Although we have shown that removing host DNA via
468 adaptive sampling has limited benefit, host-depletion steps could be added prior to DNA extraction to
469 enable more accurate AMR prediction even in lower abundance infections. Previous studies have
470 shown promising results for host depletion using a range of techniques including saponin-and-DNase
471 enzymatic methods, PMA plus UV-light-based chemical methods, and even methods as simple and
472 cost-effective as physical filtering of host cells through a 22 µm filter prior to extraction (9, 53, 54).

473

Table 4: Results from processing 9 clinical urine samples in real-time using our final optimised protocol

Sample name	Processing time to sequencing	Processing time to full results	Species Kraken	Species VITEK® 2	AMR sequencing	AST VITEK® 2
Post-dev-1	5	8	<i>S. aureus</i>	<i>S. aureus</i>	Ampicillin/Penicillin, Tetracycline, Fosfomycin, Tetracycline, Tigecycline	Penicillin
Post-dev-2	04:35	05:30	<i>Escherichia coli</i>	<i>E. coli</i>	Cephalosporins, Colistin	Cefalexin, Cefalotin
Post-dev-3	05:15	8	<i>E. coli</i> <i>Streptococcus</i> <i>gallolyticus</i> <i>pasteurianus</i>	<i>E. coli</i> (2) <i>Streptococcus</i> <i>gallolyticus</i> ssp <i>pasteurianus</i>	Trimethoprim, Tetracycline	Cefalexin, Cefalotin Cefalexin, Cefalotin (I)
Post-dev-4	05:15	8	<i>E. marmotae</i>	No growth	None	NA
Post-dev-5	4	4	NA	No growth	NA	NA
Post-dev-6	05:15	8	<i>E. marmotae</i> <i>Mycoplasmopsis canis</i>	No growth	None	NA
Post-dev-7	5	8	<i>E. coli</i>	<i>E. coli</i> (2)	Cephalosporins, Class A beta-lactams, Colistin	Ampicillin, Cefalexin, Cefalotin, Chloramphenicol (I)
Post-dev-8	5	8	<i>Proteus mirabilis</i>	<i>Proteus mirabilis</i>	Trimethoprim, Chloramphenicol, Tetracycline, Streptomycin, Sulfonamide, Class A beta-lactams, Streptothricin, Spectinomycin	Ampicillin, (I) Co-amoxiclav, (I) Cefalotin, Enrofloxacin, Marbofloxacin, Predofloxacin, Doxycycline, Tetracycline,

					Nitrofurantoin, Chloramphenicol, Trimethoprim/Sulfamethoxazole
Post-dev-9	5	8 <i>E. coli</i>	<i>E. coli</i>	Cephalosporins, Class A beta-lactams, Colistin, Chloramphenicol, Class C beta-lactams, Streptomycin, Streptothricin, Trimethoprim	Ampicillin, Co-amoxiclav, Cefalexin, Cefalotin, Chloramphenicol (I)

474

475 **Concluding comments and future considerations**

476 We have developed and validated a protocol for the rapid, culture-free, agnostic identification of
477 pathogenic species from clinical canine samples, by cost-effective metagenomic sequencing. We have
478 shown that this protocol is capable of detecting a wide array of species, representing over 90% of the
479 urine and skin infections seen in the R(D)SVS HfSA. Although we did not test the remaining 10% of
480 species due to their large number and relative rarity, our metagenomic extraction should effectively
481 extract DNA from any species present in a sample, and we have shown up to 100% sensitivity and
482 specificity in the identification of species from sequencing data alone. We intentionally developed a
483 protocol that can also be adapted to a variety of other sample types, and the MagAttract protocol can
484 be easily adapted for tissue, blood and other bodily fluids. In this way, one simple protocol can be
485 deployed in a clinical setting to detect pathogens in a wide variety of infections, in different animals,
486 in as little as 5 hours, compared to the 48 hours plus commonly seen in the current gold-standard
487 diagnostics techniques.

488 Although the large amounts of host cell contamination we saw in some samples was problematic with
489 regards to the prediction of AMR, a number of depletion techniques exist which could be incorporated
490 into our protocol, at the cost of time and likely money, but with the benefit of allowing accurate AMR
491 prediction from a greater range of samples. Outwith the samples with the highest levels of host DNA
492 contamination, our ability to predict AMR was relatively accurate, approaching 95% in all but the most
493 complicated co-infections. However, according to phenotypic AST a number of samples displayed
494 intermediate levels of resistance to certain antimicrobials, mainly chloramphenicol, which were not
495 predicted from the sequencing data. This suggests that as-yet unknown mechanisms may be
496 responsible for intermediate resistance, or that certain mechanisms are currently missing from the
497 AMR databases used (NCBI, ResFinder and CARD). Our current AMR prediction pipeline includes
498 combining the results of three different tools (EPI2ME, Abricate and AMRFinderPlus), which function
499 in different ways, in order to capture all potential information from our sequencing data. Future
500 developments may include combining these tools into one easy-to-run workflow, as well as testing
501 alternative tools and databases, such as the newly released, ISO-certified, abritAMR (55).

502 Lastly, we note that the flow cells (R9.4.1) and kits (SQK-RBK004) used here throughout development
503 are now being replaced with R10.4.1 and SQK-RBK114. We expect these new flow cells and kits to
504 incorporate seamlessly into our existing protocol and, indeed, they will likely improve the accuracy of
505 the sequencing data produced, which could in turn improve the accuracy of our prediction of SNP-
506 based AMR.

507 **Author statements**

508 **Authors and contributors**

509 Conceptualization: NR, AL, BW, GP, TN, RM, DG, JRF; Data curation: NR, AL; Formal analysis: NR;
510 Funding acquisition: BW, GP, TN, DG, JRF; Investigation: AL, BW, NR; Methodology: NR, AL, BW; Project
511 administration: JRF; Resources: GP, TN; Supervision: RM, DG, JRF; Validation: NR, AL, BW;
512 Visualization: NR, BW; Writing - original draft: NR, JRF; Writing - review & editing: NR, AL, BW, GP, TN,
513 RM, DG, JRF.

514 **Conflicts of interest**

515 The authors declare there are no conflicts of interest affecting this work.

516 **Funding information**

517 This work was funded by the Dog's Trust Canine Welfare Grant, Direct Diagnostic Genomics Towards
518 Effective Antimicrobial Use ("Dogstails").

519 **Ethical approval**

520 This work involved the use of non-experimental pet animals only and followed established
521 internationally recognised high standards ('best practice') of individual veterinary clinical patient care.
522 Samples were non-invasive and/or were excess from those taken during ordinary clinical treatment
523 and, as such, were covered by the R(D)SVS's ethical approval for research.

524 **Acknowledgements**

525 Many thanks to Jennifer Harris, Easter Bush Pathology, R(D)SVS, University of Edinburgh, for sharing
526 clinical samples and the results thereof.

527 The authors are grateful for the fantastic bioinformatics resource, CLIMB-BIG-DATA (developed by the
528 MRC, grant number MR/T030062/1), without which much of the data analysis undertaken here would
529 not have been possible.

530 For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY)
531 licence to any Author Accepted Manuscript version arising from this submission.

532

533 References

534 1. Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a
535 systematic analysis. *Lancet* (London, England). 2022;399(10325):629-55.

536 2. WHO WHO. Antibiotic Resistance 2020 [Available from: <https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance>].

538 3. Nuttal T. Choosing the best antimicrobial for the job. *Vet Rec*. 2013;172(1):12-3.

539 4. Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-Drasekaran S, Palanisamy R, et al.
540 *Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review*. *Pathogens*. 2021;10(2):145.

541 5. Avershina E, Frye SA, Ali J, Taxt AM, Ahmad R. Ultrafast and Cost-Effective Pathogen
542 Identification and Resistance Gene Detection in a Clinical Setting Using Nanopore Flongle
543 Sequencing. *Frontiers in Microbiology*. 2022;13.

544 6. Taxt AM, Avershina E, Frye SA, Naseer U, Ahmad R. Rapid identification of pathogens,
545 antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing. *Scientific
546 reports*. 2020;10(1):7622.

547 7. Street TL, Barker L, Sanderson ND, Kavanagh J, Hoosdally S, Cole K, et al. Optimizing DNA
548 Extraction Methods for Nanopore Sequencing of *Neisseria gonorrhoeae* Directly from Urine Samples.
549 *Journal of Clinical Microbiology*. 2020;58(3):e01822-19.

550 8. Sanderson ND, Swann J, Barker L, Kavanagh J, Hoosdally S, Crook D, et al. High precision
551 *Neisseria gonorrhoeae* variant and antimicrobial resistance calling from metagenomic Nanopore
552 sequencing. *Genome research*. 2020;30(9):1354-63.

553 9. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, et al. Nanopore
554 metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. *Nat
555 Biotechnol*. 2019;37(7):783-92.

556 10. Yang L, Haidar G, Zia H, Nettles R, Qin S, Wang X, et al. Metagenomic identification of severe
557 pneumonia pathogens with rapid Nanopore sequencing in mechanically-ventilated patients.
558 *medRxiv*. 2019;19002774.

559 11. Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C, et al. Identification
560 of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based
561 metagenomic sequencing. *J Antimicrob Chemother*. 2017;72(1):104-14.

562 12. Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, et al. Optimizing
563 Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in
564 Patients at Risk of Surgical Site Infections. *mSphere*. 2022;7(1):e0096421.

565 13. Janes VA, Matamoros S, Munk P, Clausen P, Koekkoek SM, Koster LAM, et al. Metagenomic
566 DNA sequencing for semi-quantitative pathogen detection from urine: a prospective, laboratory-
567 based, proof-of-concept study. *The Lancet Microbe*. 2022;3(8):e588-e97.

568 14. Břinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, et al. Rapid
569 inference of antibiotic resistance and susceptibility by genomic neighbour typing. *Nature*
570 *Microbiology*. 2020;5(3):455-64.

571 15. Steinig E, Pitt M, Aglua I, Suttie A, Greenhill A, Heather C, et al. Genomic neighbor typing for
572 bacterial outbreak surveillance. *bioRxiv*. 2022:2022.02.05.479210.

573 16. Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes
574 using nanopore sequencing. *Nat Biotechnol*. 2020.

575 17. Loeffler A, Lloyd DH. What has changed in canine pyoderma? A narrative review. *Veterinary*
576 *journal (London, England : 1997)*. 2018;235:73-82.

577 18. Wong C, Epstein SE, Westropp JL. Antimicrobial Susceptibility Patterns in Urinary Tract
578 Infections in Dogs (2010-2013). *Journal of veterinary internal medicine*. 2015;29(4):1045-52.

579 19. White SD. Systemic treatment of bacterial skin infections of dogs and cats. *Veterinary*
580 *dermatology*. 1996;7(3):133-43.

581 20. Paradis M, Lemay S, Scott DW, Miller WH, Wellington J, Panich R. Efficacy of Enrofloxacin in
582 the Treatment of Canine Bacterial Pyoderma. *Veterinary dermatology*. 1990;1(3):123-7.

583 21. Byron JK. Urinary Tract Infection. *Veterinary Clinics of North America: Small Animal Practice*.
584 2019;49(2):211-21.

585 22. Norris CR, Williams BJ, Ling GV, Franti CE, Johnson, Ruby AL. Recurrent and persistent
586 urinary tract infections in dogs: 383 cases (1969-1995). *Journal of the American Animal Hospital*
587 *Association*. 2000;36(6):484-92.

588 23. Reddy BS, Kumari KN, Rao VV, Rayulu VC, Sivajothi S. Efficacy of Enrofloxacin in the
589 Treatment of Recurrent Pyoderma in Dogs. *Journal of Advanced Veterinary Research*. 2014;4(3):108-
590 12.

591 24. Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, van den Broek AH, et al.
592 Population genetic structure of the *Staphylococcus intermedius* group: insights into agr
593 diversification and the emergence of methicillin-resistant strains. *Journal of bacteriology*.
594 2007;189(23):8685-92.

595 25. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome*
596 *Biology*. 2019;20(1):257.

597 26. McIntyre KM, Setzkorn C, Hepworth PJ, Morand S, Morse AP, Baylis M. A Quantitative
598 Prioritisation of Human and Domestic Animal Pathogens in Europe. *PLoS one*. 2014;9(8):e103529.

599 27. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and
600 processing long-read sequencing data. *Bioinformatics (Oxford, England)*. 2018;34(15):2666-9.

601 28. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat
602 graphs. *Nat Biotechnol*. 2019;37(5):540-6.

603 29. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics (Oxford, England)*.
604 2014;30(14):2068-9.

605 30. Seemann T. ABRickate 2022 [Available from: <https://github.com/tseemann/abricate>].

606 31. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al.
607 AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among
608 antimicrobial resistance, stress response, and virulence. *Scientific reports*. 2021;11(1):12728.

609 32. Hall MB. Rasusa: Randomly subsample sequencing reads to a specified coverage. *Journal of*
610 *Open Source Software*. 2022;7(69):3941.

611 33. Ackerman AL, Anger JT, Khalique MU, Ackerman JE, Tang J, Kim J, et al. Optimization of DNA
612 extraction from human urinary samples for mycobiome community profiling. *PLoS one*.
613 2019;14(4):e0210306.

614 34. Bialasiewicz S, Duarte TPS, Nguyen SH, Sukumaran V, Stewart A, Appleton S, et al. Rapid
615 diagnosis of *Capnocytophaga canimorsus* septic shock in an immunocompetent individual using real-
616 time Nanopore sequencing: a case report. *BMC Infectious Diseases*. 2019;19(1):660.

617 35. Yang L, Haidar G, Zia H, Nettles R, Qin S, Wang X, et al. Metagenomic identification of severe
618 pneumonia pathogens in mechanically-ventilated patients: a feasibility and clinical validity study.
619 *Respiratory Research*. 2019;20(1):265.

620 36. Ferreira FA, Helmersen K, Visnovska T, Jørgensen SB, Aamot HV. Rapid nanopore-based DNA
621 sequencing protocol of antibiotic-resistant bacteria for use in surveillance and outbreak
622 investigation. *Microb Genom*. 2021;7(4).

623 37. Dalla-Costa LM, Morello LG, Conte D, Pereira LA, Palmeiro JK, Ambrosio A, et al. Comparison
624 of DNA extraction methods used to detect bacterial and yeast DNA from spiked whole blood by real-
625 time PCR. *Journal of microbiological methods*. 2017;140:61-6.

626 38. Helmersen K, Aamot HV. DNA extraction of microbial DNA directly from infected tissue: an
627 optimized protocol for use in nanopore sequencing. *Scientific reports*. 2020;10(1):2985.

628 39. Wang CX, Huang Z, Fang W, Zhang Z, Fang X, Li W, et al. Preliminary Assessment of
629 Nanopore-based Metagenomic Sequencing for the Diagnosis of Prosthetic Joint Infection.
630 *International journal of infectious diseases : IJID : official publication of the International Society for*
631 *Infectious Diseases*. 2020.

632 40. Israeli O, Guedj-Dana Y, Shifman O, Lazar S, Cohen-Gihon I, Amit S, et al. Rapid Amplicon
633 Nanopore Sequencing (RANS) for the Differential Diagnosis of Monkeypox Virus and Other Vesicle-
634 Forming Pathogens. *Viruses*. 2022;14(8):1817.

635 41. Chan WS, Au CH, Lam HY, Wang CLN, Ho DN-Y, Lam YM, et al. Evaluation on the use of
636 Nanopore sequencing for direct characterization of coronaviruses from respiratory specimens, and a
637 study on emerging missense mutations in partial RdRP gene of SARS-CoV-2. *Virology Journal*.
638 2020;17(1):183.

639 42. Mosbruger TL, Dinou A, Duke JL, Ferriola D, Mehler H, Pagkrati I, et al. Utilizing nanopore
640 sequencing technology for the rapid and comprehensive characterization of eleven HLA loci;
641 addressing the need for deceased donor expedited HLA typing. *Human Immunology*.
642 2020;81(8):413-22.

643 43. De Santis D, Truong L, Martinez P, D'Orsogna L. Rapid high-resolution HLA genotyping by
644 MinION Oxford nanopore sequencing for deceased donor organ allocation. *HLA*. 2020;96(2):141-62.

645 44. de Siqueira GMV, Pereira-dos-Santos FM, Silva-Rocha R, Guazzaroni M-E. Nanopore
646 Sequencing Provides Rapid and Reliable Insight Into Microbial Profiles of Intensive Care Units.
647 *Frontiers in Public Health*. 2021;9.

648 45. Baldan R, Cliff PR, Burns S, Medina A, Smith GC, Batra R, et al. Development and evaluation
649 of a nanopore 16S rRNA gene sequencing service for same day targeted treatment of bacterial
650 respiratory infection in the intensive care unit. *Journal of Infection*. 2021;83(2):167-74.

651 46. Grädel C, Terrazos Miani MA, Barbani MT, Leib SL, Suter-Riniker F, Ramette A. Rapid and
652 Cost-Efficient Enterovirus Genotyping from Clinical Samples Using Flongle Flow Cells. *Genes (Basel)*.
653 2019;10(9).

654 47. Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC, Kujawska M, et al. Rapid MinION
655 profiling of preterm microbiota and antimicrobial-resistant pathogens. *Nature microbiology*.
656 2020;5(3):430-42.

657 48. Nakasone I, Kinjo T, Yamane N, Kisanuki K, Shiohira CM. Laboratory-based evaluation of the
658 colorimetric VITEK-2 Compact system for species identification and of the Advanced Expert System
659 for detection of antimicrobial resistances: VITEK-2 Compact system identification and antimicrobial
660 susceptibility testing. *Diagnostic microbiology and infectious disease*. 2007;58(2):191-8.

661 49. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately
662 predicts antimicrobial resistance in *Escherichia coli*. *J Antimicrob Chemother*. 2015;70(10):2763-9.

663 50. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the
664 emergence, evolution, and global spread of a methicillin-resistant *Staphylococcus aureus* pandemic.
665 *Genome Res*. 2013;23(4):653-64.

666 51. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification
667 of acquired antimicrobial resistance genes. *J Antimicrob Chemother*. 2012;67(11):2640-4.

668 52. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020:
669 antibiotic resistome surveillance with the comprehensive antibiotic resistance database. *Nucleic
670 Acids Research*. 2020;48(D1):D517-D25.

671 53. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K. Improving saliva shotgun
672 metagenomics by chemical host DNA depletion. *Microbiome*. 2018;6(42).

673 54. Shi Y, Wang G, Lau HC, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples:
674 Emerging Technological Advances. *International journal of molecular sciences*. 2022;23(4).

675 55. Sherry NL, Horan KA, Ballard SA, Gonçalves da Silva A, Gorrie CL, Schultz MB, et al. An ISO-
676 certified genomics workflow for identification and surveillance of antimicrobial resistance. *Nature
677 communications*. 2023;14(1):60.

