

1 **Homeostatic control of an iron repressor in a GI tract resident**

2 Yuanyuan Wang^{1,3#}, Yinhe Mao^{1,4#}, Xiaoqing Chen^{1,4}, Kaiyan Yang^{1,4}, Xinhua Huang¹,
3 Lixing Tian², Tong Jiang^{1,4}, Yun Zou^{1,4}, Xiaoyuan Ma², Chaoyue Xu^{1,5}, Zili Zhou¹, Xianwei
4 Wu^{1,4}, Lei Pan¹, Huaping Liang^{2*} and Changbin Chen^{1,3*}

5 ¹ The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology
6 and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Institut Pasteur of
7 Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

8 ² State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound
9 Infection and Drug, Army Medical Center (Daping Hospital), Army Medical University,
10 Chongqing 400042, China

11 ³ Nanjing Advanced Academy of Life and Health, Nanjing 211135, Jiangsu, China

12 ⁴The University of Chinese Academy of Sciences, Beijing, China

13 ⁵ College of Life Science, Shanghai University, Shanghai, China

14

15 # These authors equally contribute to the work

16 * Co-corresponding author

17 **Abstract**

18 The transition metal iron plays a crucial role in living cells. However, high level of iron is
19 potentially toxic through the production of reactive oxygen species (ROS), serving as a
20 deterrent to the commensal fungus *Candida albicans* for colonization in the iron-rich
21 gastrointestinal (GI) tract. We observe that the mutant lacking an iron-responsive
22 transcription factor Hap43 is hyper-fit for colonization in murine gut. We demonstrate that
23 high iron specifically triggers multiple post-translational modifications (PTMs) and
24 proteasomal degradation of Hap43, a vital process guaranteeing the precision of intestinal
25 ROS detoxification. Reduced levels of Hap43 lead to de-repression of antioxidant genes and
26 therefore alleviate the deleterious ROS derived from iron metabolism. Our data reveal that
27 Hap43 functions as a negative regulator for oxidative stress-adaptation of *C. albicans* to gut
28 colonization and thereby provide a new insight into understanding the interplay between iron
29 homeostasis and fungal commensalism.

30 **Importance**

31 Iron homeostasis is critical for creatures. *Candida albicans* is one of the major commensals in
32 the GI tract where is iron-replete environment. Transcriptional factor Hap43 was believed to
33 repress iron utilizations genes in iron-depleted conditions for decades. However, the mystery
34 in iron-replete conditions of Hap43 has never been uncovered. We discovered that reduced
35 levels of Hap43 via phosphorylation-dependent nuclear export, followed by
36 proteosome-mediated protein degradation, leads to de-repression of downstream antioxidant
37 genes and promote its colonization in GI tract. We propose that *C. albicans* has a strict
38 detoxification process to ensure its survival, which has important implications for
39 understanding how the fungi survives in the mammalian host.

40 **Key words:** Iron, Oxidative stress, Hap43, Cellular detoxification, *Candida albicans*,
41 Intestinal commensalism, Posttranslational modification

42 **Introduction**

43 Iron is an essential element required for the viability of virtually all organisms (Andrews,
44 2008). This transition metal acts as an enzyme cofactor, predominantly in electron transfer
45 and catalysis, and therefore contributes to numerous metabolic processes, in particular energy
46 generation, oxygen transport and DNA synthesis. However, excess of iron is toxic and
47 potentially fatal, primarily because reactive oxygen species (ROS), including hydroxyl
48 radicals (OH^-), superoxide (O_2^-) and H_2O_2 , are generated through the iron-catalyzed
49 Haber-Weiss/Fenton reaction and causes cell damage and death (Pierre et al., 2002). The
50 mammalian gut is considered as an iron-rich environment where large amounts of dietary iron
51 (e.g. ~ 0.27 mM per day in humans) are regularly present in the colonic lumen and remain
52 unabsorbed (Miret et al., 2003). Interestingly, previous studies have found that the
53 concentration of iron in feces of British adults regularly consumed a standard Western diet
54 and of weaning infants fed with complementary foods could reached to an average value of
55 100 $\mu\text{g/g}$ wet weight feces (~ 1.8 mmol), and this level is actually much higher than the
56 minimal concentration (~ 0.4 mmol) required for intestinal bacterial species (Lund et al., 1998,
57 1999; Pizarro et al., 1987). Hence, it is very likely that the increased level of unabsorbed iron
58 would aggravate the status of oxidative stress in the gastrointestinal (GI) tract, providing a
59 detrimental impact on the growth of resident microbial commensals. Indeed, excessive ROS
60 levels in this iron-replete niche were found to enhance cellular toxicity, reflected by oxidative
61 damage to proteins, lipids and DNA, and therefore restrict the growth and proliferation of
62 colonized microorganisms (Dixon & Stockwell, 2014; Schieber & Chandel, 2014).

63 The potent redox capability of iron requires that microbes carefully respond to and regulate
64 environmental iron levels and distribution (Barber & Elde, 2015). Several examples of iron
65 detoxification have been described in bacterial species. For example, both *Escherichia coli*
66 and *Salmonella Typhimurium* developed effective iron efflux systems to decrease intracellular
67 accumulation of free iron and prevent iron stress (Frawley et al., 2013; Grass et al., 2005). In
68 similar, eukaryotic microbes like fungi also decreased the labile iron pool to prevent
69 formation of deleterious hydroxyl radicals through the vacuolar and siderophore-mediated
70 iron storage (Gupta & Outten, 2020; Singh et al., 2007). However, studies investigating
71 mechanisms employed by gut microbes to detoxify iron-mediated ROS production are
72 relatively limited.

73 *Candida albicans* is a major opportunistic fungal pathogen of humans, capable of causing
74 mucosal diseases with substantial morbidity and life-threatening bloodstream infections in
75 immunocompromised individuals (da Silva Dantas et al., 2016; Noble & Johnson, 2007).
76 Importantly, this fungus is also the most prevalent fungal species of the human microbiota
77 and acts as a commensal to effectively colonize many host niches, particularly the GI tract
78 (Kumamoto et al., 2020). Our previous studies have demonstrated that the acquisition and
79 storage of iron in *C. albicans* was effectively regulated by a complex and effective regulatory
80 circuit, which consists of three iron-responsive transcription regulators (Sfu1, Sef1 and Hap43)
81 and plays reciprocal roles in regulating *C. albicans* commensalism and pathogenesis (Chen et
82 al., 2011). Specifically, the GATA family transcription factor Sfu1 was found to
83 downregulate the expression of iron acquisition genes, prevent toxicity in iron-replete

84 conditions, and contribute to intestinal commensalism of *C. albicans*. Sef1 acts as the central
85 iron regulator for the expression of iron uptake genes in low-iron conditions and surprisingly,
86 plays a dual role in regulating both intestinal commensalism and virulence (Chen et al., 2011).
87 The CCAAT-binding repressor Hap43 transcriptionally represses Sfu1 which therefore
88 de-represses iron acquisition gene expression in iron-limited conditions, and evidence has
89 shown that mutant lacking *HAP43* exhibits a defect in virulence, supporting its role in
90 pathogenicity (Chen et al., 2011; Hsu et al., 2011; Singh et al., 2011). Although the iron
91 homeostasis regulatory circuit, as shown above, is essentially required for both
92 commensalism and pathogenesis, the exact regulatory mode for each of the three factors and
93 its application in driving the transition of *C. albicans* commensalism and pathogenicity,
94 remains largely unsolved.

95 The CCAAT-binding factor is a highly conserved heteromeric transcription factor that
96 specifically binds to the 5'-CCAAT-3' consensus elements within the promoters of numerous
97 eukaryotic genes (Kato, 2005). In mammals, three subunits, including NF-YA, NF-YB and
98 NF-YC, form an evolutionarily conserved Nuclear Factor Y (NY-F) complex that exhibits the
99 DNA-binding capacity to the CCAAT box and plays a vital role in transcriptional regulation
100 of genes involved in proliferation and apoptosis, cancer and tumor, stress responses, growth
101 and development (Dorn et al., 1987). A similar NF-Y-like (HAP) complex also exists in fungi
102 like the budding yeast *Saccharomyces cerevisiae* and interestingly, this complex is composed
103 of four subunits, termed Hap2, Hap3, Hap4 and Hap5 (Becker et al., 1991). Among them, the
104 Hap2 (NF-YA-like), Hap3 (NF-YB-like) and Hap5 (NF-YC-like) subunits form a

105 heterotrimeric complex that is competent for DNA binding, whereas the additional Hap4
106 subunit is an acidic protein and harbors the transcriptional activation domain necessary for
107 transcriptional stimulation after interacting with the Hap2/Hap3/Hap5 complex (McNabb &
108 Pinto, 2005). Interestingly, Hap4 is only present in fungi and functional analyses in a variety
109 of fungal species identified that homologs of Hap4, such as the *Aspergillus nidulans* HapX,
110 the *Schizosaccharomyces pombe* Php4, the *Cryptococcus neoformans* homolog HapX and *C.*
111 *albicans* Hap43, were found to play both positive or negative roles in regulating the
112 transcriptional responses to iron deprivation (Jung et al., 2010; Singh et al., 2011; Skrahina et
113 al., 2017). Recently, there have been some progresses about the impact of Hap43 on the
114 pathobiology of *C. albicans*. For example, Hap43 acts as a transcriptional repressor that is
115 induced under low-iron conditions and required for iron-responsive transcriptional regulation
116 and virulence, since knocking out *HAP43* in *C. albicans* significantly up-regulates the
117 expression of genes involved in iron utilization under iron-limited conditions and attenuates
118 virulence in a mouse model of disseminated candidiasis (Chen et al., 2011; Hsu et al., 2011).
119 More importantly, genome-wide transcriptional profiling revealed that about 16% of the *C.*
120 *albicans* ORFs were differentially regulated in a Hap43-dependent manner (Chen et al., 2011;
121 Singh et al., 2011) and we found that a majority of differentially expressed genes (DEGs) are
122 associated with oxidative stress and iron regulation, such as those involved in aerobic
123 respiration, the respiratory electron transport chain, heme biosynthesis, and iron-sulfur cluster
124 assembly, supporting the notion that Hap43 is one of the major iron-based redox sensors for *C.*
125 *albicans* cells and contributes to the fine-tuned balance that adapts to different aspects of

126 oxidative stress due to iron metabolism. Moreover, these data also raised a strong possibility
127 that the regulatory function of Hap43 may be coupled to *C. albicans* commensalism by
128 dealing with the cytotoxicity of ROS mainly generated in the iron-replete GI tract, in addition
129 to its role in pathogenicity.

130 In this study, we sought to explore the underlying mechanism for a possible involvement of
131 Hap43-dependent gene regulation in *C. albicans* gut commensalism, given that this
132 commensal has to combat oxidative damage caused by excess iron content which is
133 potentially detrimental for microbial cells. We unexpectedly unraveled an uncharacterized
134 mechanism of posttranslational modification of the iron-responsive repressor Hap43 that
135 regulates adaptation of *C. albicans* to commensalism in the gut by ameliorating the
136 iron-induced environmental oxidative stress.

137 **Results**

138 **Deletion of *HAP43* significantly increases the commensal fitness of *C. albicans* in GI
139 tract of mice fed a high-Fe diet**

140 Accumulating evidence suggest the impact of the heterotrimeric CCAAT-binding complex on
141 coordination of oxidative stress in fungi, as the HAP complex in *S. cerevisiae* activates the
142 expression of genes involved in oxidative phosphorylation in response to growth on
143 non-fermentable carbon source (Pinkham & Guarente, 1985) and the homologous complex
144 (AnCF) in *A. nidulans* is regulated at the posttranslational level by the redox status of the cell
145 and manipulates the expression of genes required for an appropriate response to oxidative

146 stress (Thon et al., 2010). Moreover, microarray analyses in *C. albicans* showed that for 286
147 upregulated genes in *hap43Δ/Δ* relative to the wild type under iron-limiting conditions, 7.7%
148 and 4.5% are those associated with aerobic respiration and the respiratory electron transport
149 chain, respectively, highlighting the importance of Hap43 in iron-dependent oxidative stress
150 (Chen et al., 2011). These observations prompt us to hypothesize that Hap43 may play an
151 important role in regulating gastrointestinal commensalism of *C. albicans*, possibly by
152 sensing changes of the oxidative status in this specific niche. To test this hypothesis, we first
153 evaluated the contribution of Hap43 to the commensal fitness of *C. albicans* in GI tract, using
154 a well-established mouse model of stable GI candidiasis (Chen et al., 2011). Groups of female
155 C57BL/6 mice receiving a normal Fe diet (NFD) (37mg/kg Fe of diet) were inoculated by
156 gavage with 1:1 mixtures of the wild type (WT) and *hap43Δ/Δ* mutant cells (**Figure. 1A**). The
157 relative abundance of each strain in fecal pellets was monitored by qPCR using strain-specific
158 primers (Table S2). Surprisingly, we did not observe significant differences in persistence
159 between the WT and mutant (**Figure 1—figure supplement 1**). To investigate whether the
160 inoculated *C. albicans* cells were really exposed to a host environment with high ROS levels,
161 we examined ROS production in the colon tissue sections using the oxidant-sensitive
162 fluorophore dihydroethidium (DHE). As shown in **Figure. 1B and C**, the oxidative red
163 fluorescence was almost undetectable in the colon (NFD), suggestive of insufficient ROS
164 production. We therefore considered a possibility that the neglectable effect on ROS
165 generation could be attributed to inadequate iron bioavailability in the gut. To test the
166 possibility, we modified our animal model by changing the mouse diet from the normal chow

167 to a high-Fe diet (HFD) (400mg/kg Fe of diet) (Mahalhal et al., 2018), since previous studies
168 have shown that the amount of iron, which is about 10-fold higher than that in standard chow,
169 is able to increase microbial exposure to iron without being overtly toxic to mice (Mahalhal et
170 al., 2018; Schwartz et al., 2019). As expected, a three-day high-Fe diet (HFD) caused a
171 significant increase of iron level in mouse colon, as determined by Prussian blue iron staining
172 (**Figure. 1D**). In line with the elevated level of iron, we clearly observed a marked increase of
173 ROS levels in mouse colon after a high-Fe diet, as detected by DHE showing an increase in
174 fluorescence (**Figure. 1B and C**). The iron-induced ROS production in the gut was further
175 confirmed by examining the transcript level of *DUOX2*. *DUOX2* encodes the dual oxidase 2,
176 a hydrogen-peroxide generator at the apical membrane of gastrointestinal epithelia (Donko et
177 al., 2014). qRT-PCR results showed that mice fed the high-Fe diet had significant increase in
178 *DUOX2* mRNA levels in the colon compared with mice on a normal Fe diet (**Figure. 1E**).
179 Finally, the hydrogen peroxide (H₂O₂) concentrations were determined in the mouse colon
180 samples as an indicator of the level of oxidative stress (**Figure. 1F**). We observed that
181 treatment of mice with HFD significantly increased levels of H₂O₂, indicating the induction of
182 oxidative stress pathways in the colon tissues. Taken together, these data strongly support that
183 a high-Fe diet is sufficient to sustain a persistent exposure of gut microbes to high levels of
184 ROS.
185 We repeated the competitive gut infections in mice receiving HFD, using the WT, *hap43Δ/Δ*
186 mutant and *HAP43* reintegrant (*HAP43* AB) strains (**Figure. 1A**). Using this modified model,
187 we found that a mutant lacking *HAP43* exhibited enhanced colonization fitness, such that the

188 *hap43Δ/Δ* mutant cells significantly outcompeted WT *C. albicans* in 1:1 mixed infection
189 (**Figure. 1G**), implying a negative impact of the iron-responsive regulator Hap43 in gut
190 commensalism of *C. albicans*. This notion was further validated by using the wild-type
191 *Drosophila melanogaster* as a model host to assess the gut fitness of the WT and *hap43Δ/Δ*
192 mutant. Following a previously described protocol (Glittenberg et al., 2011), we set up *C.*
193 *albicans* GI infections in the early third instar larvae of the common laboratory strain OrR of
194 the WT or *hap43Δ/Δ* mutant. At time intervals of 6- and 8- hours post-infections, the infected
195 flies were homogenized, serially diluted, and plated on plates for the recovery of fungal cells.
196 Colony-forming unit (CFU) measurements indicated that, following 6 or 8 h of infection, the
197 amounts of living mutant are much higher than WT *C. albicans* in the host (**Figure. 1H**).
198 Taken together, our *in vivo* evidence highly suggests that Hap43 may play a negative role in
199 regulating the gastrointestinal commensalism of *C. albicans*, especially under the
200 circumstance in which the dietary stress is induced by ROS in the gut.

201 **High iron triggers Ssn3-mediated phosphorylation of Hap43**

202 The microbial commensals colonizing the mammalian gut thrive on comparatively high levels
203 of iron that are not digested and taken up by the upper intestine (Miret et al., 2003). Deletion
204 of the iron-responsive regulator Hap43 results in a beneficial effect on *C. albicans*
205 colonization in the gut, making it highly possible that iron influences the expression of Hap43.
206 Indeed, we found that by both qRT-PCR and immunoblotting, Hap43 in WT strain was
207 significantly less expressed in iron-repleted (H) medium in comparison to the iron-depleted
208 (L) medium (**Figure. 2A and B**). Unexpectedly, immunoblot analysis of Hap43-Myc

209 recovered from WT cells under iron replete vs depleted condition identified an increase in the
210 electrophoretic mobility of Hap43 in iron-replete medium compared to that under
211 iron-depleted conditions (**Figure. 2B**). Interestingly, when WT cells expressing Myc-tagged
212 Hap43 were pre-grown to mid-exponential phase ($OD_{600}=0.4\sim0.5$) under iron-depleted
213 conditions and then transferred into the iron-repleted medium (YPD), we found that a rapid
214 gel mobility of Hap43 can be visualized at early time (2 mins) after medium change (**Figure.**
215 **2C**). We hypothesized that the shift in mobility on SDS-PAGE gel electrophoresis that is
216 characteristic of the Hap43-Myc proteins might result from posttranslational modification, for
217 example, a covalent phosphorylation event. To test this possibility, WT cells expressing
218 Myc-tagged Hap43 were grown to mid-exponential phase in either iron-rich medium or
219 iron-depleted medium, and cell lysates were treated with or without lambda phosphatase, a
220 broad specificity enzyme which acts on phosphorylated serine, threonine and tyrosine
221 residues. Immunoblotting analysis indicated that the mobility shifted form of Hap43-Myc
222 reverted to the unshifted form if cell lysates were treated with lambda phosphatase, showing
223 that the increased mobility induced by high iron was due to phosphorylation (**Figure. 2D**).

224 We previously reported that the Cys₆Zn₂ DNA binding protein Sef1, another key player
225 operating in the iron-regulatory circuit of *C. albicans*, was phosphorylated under
226 iron-depleted conditions and the phosphorylation was catalyzed by the protein kinase Ssn3
227 (Chen & Noble, 2012). To test whether Hap43 phosphorylation under iron-replete conditions
228 also depends on the kinase activity of Ssn3, we expressed the Myc epitope-tagged version of
229 Hap43 in *ssn3Δ/Δ* mutant strain and examined the mobility of Hap43 by immunoblotting.

230 Compared to that of WT, the higher mobility form of Hap43 under iron-replete conditions
231 was abolished in the mutant lacking *SSN3*, supporting the role of Ssn3 in phosphorylation of
232 Hap43 (**Figure. 2E**). An identical result was obtained when the mobility of Hap43-Myc was
233 examined in the strain expressing a predicted kinase-dead allele of Ssn3 (Ssn3^{D325A}) (**Figure.**
234 **2E**). Moreover, the putative enzyme-substrate interactions between Ssn3 and Hap43 was
235 further reinforced through a co-immunoprecipitation assay, showing that Hap43-Myc was
236 efficiently co-immunoprecipitated with Ssn3-TAP using either iron-replete or iron-depleted
237 cells (**Figure. 2F**).

238 **Ssn3-mediated phosphorylation induces cytoplasmic localization and protein
239 degradation of Hap43 by ubiquitin-proteasome pathway**

240 Studies have shown that Ssn3 acts as a cyclin-dependent protein kinase and catalyzes the
241 phosphorylation of a number of specific transcription factors that strongly contributes to their
242 transcriptional activities, nuclear-cytoplasmic localization, and/or stability (Chi et al., 2001;
243 Nelson et al., 2003). The effect of Ssn3-mediated phosphorylation on subcellular localization
244 of Hap43 was investigated by indirect immunofluorescence. Under iron-depleted conditions,
245 the localization of Hap43-Myc was primarily nuclear in both WT and *ssn3Δ/Δ* mutant strains
246 (**Figure. 3A**). However, differences were observed under iron-replete conditions, in which the
247 Hap43-Myc was found to be partially mislocalized from cytoplasm to nucleus in *ssn3Δ/Δ*
248 mutant, compared to a complete cytoplasmic localization of this fusion protein in WT (**Figure.**
249 **3A**). The intracellular localization of Hap43-Myc in either WT or *ssn3Δ/Δ* mutant strains was
250 further analyzed by immunoblot analysis of cell fractions. Yeast nuclei were purified using a

251 modified method described previously (von Hagen & Michelsen, 2013) and the analysis of
252 Hap43-Myc distribution showed that Hap43 is only detected in the nuclear fraction of
253 *ssn3Δ/Δ* mutant cells but not WT, when cultures were grown under iron-replete conditions
254 (**Figure. 3B**). These data highly suggested that blockade of Hap43 phosphorylation by *SSN3*
255 deletion allows nuclear mislocalization of Hap43 in *C. albicans* grown under iron-replete
256 conditions. In other words, Hap43 transcription factor is able to respond to iron status in *C.*
257 *albicans* and modulates its expression and subcellular localization that depend on the
258 posttranslational modification by covalent phosphorylation.

259 We note that loss of *SSN3* has a direct effect on the protein level of Hap43 when the cells
260 were cultured in iron-replete conditions. Following the abolishment of increased mobility, the
261 level of Hap43 is comparable with that found under iron-depleted conditions (**Figure. 2E**).
262 Importantly, the increased steady level of Hap43 protein could not be explained by its
263 transcriptional level, as we observed that deletion of *SSN3* has no effect on the mRNA level
264 of *HAP43* under iron-replete conditions (**Figure. 3C**), suggesting that the posttranslational
265 modification by covalent phosphorylation may promote protein instability of Hap43. To test
266 this possibility, we employed the strains in which the sole Hap43-Myc allele is expressed
267 under the control of the doxycycline (DOX) inducible promoter (TetO-Hap43-Myc/*hap43Δ*)
268 in either WT or *ssn3Δ/Δ* mutant backgrounds. Exponential-phase cells growing in iron-replete
269 (YPD) medium supplemented with 50 µg/ml doxycycline were harvested, washed and
270 re-suspended in fresh YPD medium, and whole-cell protein extracts were prepared at each
271 time point for analysis by Western blotting. Clearly, Hap43-Myc levels in WT were reduced

272 by approximately 50% after 30 min incubation and continued to decline over the course of
273 incubation (**Figure. 3D, left panel**). In comparison, abundance of Hap43-Myc in *ssn3Δ/Δ*
274 mutant remained at a relatively high level during the treatment (**Figure. 3D, right panel**).
275 These data highly suggested that phosphorylation of Hap43 mediated by Ssn3 kinase
276 promotes its degradation.

277 In eukaryotic cells, lysosomal proteolysis and the ubiquitin-proteasome system represent two
278 major protein degradation pathways mediating protein degradation (Lecker et al., 2006). To
279 clarify the exact proteolytic pathway implicated in Hap43 turnover under iron-replete
280 conditions, we incubated cells with specific and selective inhibitors of the lysosome
281 (Chloroquine) or the proteasome (MG132). Previous studies have shown that proteasome
282 inhibitors such as MG132 are unable to penetrate WT yeast cells due to the impermeability of
283 the cell wall or membrane and therefore, mutant strains (e.g. *erg6Δ* and *pdr5Δ*) are required
284 for experiments using the proteasome inhibitors since the mutant cells show increased
285 drug permeability or reduced drug efflux (Tumusiime et al., 2011). We adapted the same
286 strategy for inhibiting the proteasome and lysosome in *C. albicans*. A copy of *ERG6* gene
287 was deleted from the strain in which the sole Myc-tagged version of Hap43 was expressed
288 under the control of the doxycycline (DOX) inducible promoter (TetO-Hap43-Myc/*hap43Δ*),
289 and the resulting mutant strain was treated with or without MG132. As shown in **Figure. 3E**,
290 treatment of mutant cells with 100 μM of MG132 for 30, 60, and 120 mins, significantly
291 increased Hap43 protein levels compared with the untreated control. However, under the
292 same experimental conditions, treating the cells with the lysosome inhibitor chloroquine had

293 no effect on the decreased level of Hap43-Myc (**Figure 3—figure supplement 1**). Taken
294 together, these data demonstrate that when *C. albicans* cells are grown under high iron
295 conditions, the phosphorylated form of Hap43 is prone to be degraded through the
296 proteasomal pathway.

297 To further verify this, we test a possibility of ubiquitination because this modification
298 represents a common signal for proteasome-mediated protein degradation (Hershko &
299 Ciechanover, 1998). In both WT and *ssn3Δ/Δ* mutant strain backgrounds (a copy of *HAP43*
300 was C-terminally tagged with Myc epitope), we created strains that an epitope-tagged
301 3xHA-ubiquitin under the control of the doxycycline (DOX) inducible promoter was
302 co-expressed with the Myc-tagged version of Hap43 (**Figure 3—figure supplement 2**). After
303 a 6-h induction using doxycycline (50 µg/ml), log-phase cells were collected and lysed,
304 followed by immunoprecipitation of whole cell extracts with anti-HA antibodies.
305 Immunoblotting the precipitates with anti-Myc antibody revealed, as expected, a predominant
306 band in WT but not *ssn3Δ/Δ* mutant (**Figure. 3F**), indicating that only the phosphorylated
307 form of Hap43-Myc was able to bind ubiquitin. In the other direction, Hap43 was fused
308 C-terminally to a tandem affinity purification (TAP) tag in the WT strain (Hap43-TAP/Hap43)
309 and lysates were immunoprecipitated with IgG beads to recover the TAP-tagged Hap43 and
310 the precipitates were immunoblotted with K48 linkage-specific polyubiquitin antibodies,
311 considering the fact that the polyubiquitin chains linked through K48 are the principal signal
312 for targeting substrates to the proteasome for degradation (Thrower et al., 2000). A reactive
313 smear, characteristic of polyubiquitination, was associated with immunoprecipitated

314 TAP-tagged Hap43 (**Figure. 3G**). Collectively, our data suggest that the Ssn3-mediated
315 phosphorylation promotes protein degradation of Hap43 through a ubiquitin-proteasome
316 pathway.

317 **Identification of the Hap43 phosphorylation sites that signal its ubiquitination and**
318 **degradation**

319 Together with the aforementioned results that the iron-responsive regulator Hap43 is
320 phosphorylated in *C. albicans* cells grown under iron-replete conditions, this observation
321 prompt us to identify at which serine/threonine residues Hap43 is phosphorylated. First, we
322 started with an *in silico* prediction by using the Kinasephos 2.0 server
323 (<http://kinasephos2.mbc.nctu.tw/>) (Wong et al., 2007) and this analysis predicted 12 putative
324 serine/threonine phosphorylation sites within Hap43 of *C. albicans*. Moreover, Ssn3 of *C.*
325 *albicans* is orthologous to *S. cerevisiae* Srb10, a cyclin-dependent kinase subunit of the Cdk8
326 module of Mediator (Bjorklund & Gustafsson, 2005), and putative Cdk8-dependent
327 phosphorylation sites identified to date are serine/threonine residues flanked by a proline 1 to
328 2 residues toward the C-terminus, and/or by a proline 2 to 4 residues toward the N terminus
329 (Chi et al., 2001). We examined the Hap43 sequence and identified another 17 potential Ssn3
330 kinase phosphorylation sites that meet the criteria described above (**Figure. 4A**). To
331 experimentally confirm these *in silico* predictions, we generated amino acid substitution
332 mutants in which the neutral amino acid alanine replaced serine/threonine at the predicted 12
333 putative phosphorylation sites to change the conserved phosphorylation motif in order to

334 mimic the dephosphorylated state of Hap43. By use of the strain (TetO-Hap43-Myc/*hap43Δ*)
335 described in **Figure. 3D**, where the sole Hap43-Myc allele driven by the doxycycline (DOX)
336 inducible promoter was expressed in the *hap43Δ/Δ* strain background, we successfully created
337 seven mutants, each of which included one or two mutated S/T (to Ala) sites. In similar,
338 exponential-phase cells growing in iron-replete (YPD) medium supplemented with 50 µg/ml
339 doxycycline were harvested, washed and re-suspended in fresh YPD medium, and whole-cell
340 protein extracts were prepared at indicated time points or after 2 h of incubation, and analyzed
341 by Western blotting for the phosphorylation status and overall level of Hap43. Intriguingly,
342 we found that single or double mutation of the predicted phosphorylation sites had no change
343 of the phosphorylation pattern and consequently, still promoted protein degradation of Hap43
344 as the WT cells did (**Figure 4—figure supplement 1A and B**), indicating that
345 phosphorylation of Hap43 should not occur in merely one or two residues.

346 We therefore generated a *HAP43* mutant strain (Hap43m-Myc/*hap43Δ*) that all 29 putative
347 S/T phosphorylation sites, including the 12 residues predicted by computer algorithms and 17
348 residues matching the Cdk8 consensus phosphorylation sites, were replaced with alanine
349 residues (**Figure. 4A**). An immunoblot with cell lysates from both WT (Hap43-Myc/*hap43Δ*)
350 and *HAP43* mutant-29 (Hap43m29-Myc/*hap43Δ*) clearly revealed that the replacement of all
351 29 S/T residues abolished the upward shift (phosphorylation) of Hap43-Myc band induced by
352 high iron and as a result, significantly increased the steady level of Hap43 (**Figure. 4B**). As a
353 control, amino acid replacement appeared to have no effect on the growth and function of
354 *HAP43* mutant harboring 29-point mutations under low iron conditions (**Figure 4—figure**

355 **supplement 2**). Taken together, our experiments identified multiple S/T residues as important
356 Hap43 phosphorylation sites *in vivo*.

357 Another alternative strategy for the role of phosphorylation is to assess the degradation of
358 truncated Hap43. Four kinds of C-terminally deleted *HAP43* ORFs fused with the TAP tag
359 were generated and introduced into *hap43Δ/Δ* mutant (**Figure 4—figure supplement 3A**). We
360 showed that there was no significant difference in the transcript levels of WT and truncated
361 *HAP43* (**Figure 4—figure supplement 3B**), however, their protein levels varied dramatically
362 (**Figure. 4C**). Among them, Hap43 truncating mutations ($\Delta 400$ and $\Delta 504$) give rise to almost
363 similar levels as the full length of WT, whereas the mutation ($\Delta 330$) results in a suddenly
364 dramatic increase of Hap43 level. These results strongly suggest that the region within
365 residues 330-400 harbors the signal contributing the phosphorylation-dependent degradation
366 of Hap43. To further verify this, we deleted the 36 residues (346-381 aa) of Hap43 in
367 *HAP43^{S337A}* strain (make sure there is no T or S left between 300-400aa) and generated a
368 Hap43 truncation mutant (TetO-Hap43tr-Myc/*hap43Δ*) (**Figure. 4D**). Similar to the
369 phenotypes observed in the *HAP43* mutant, deletion of the 36 amino acid residues also leads
370 to increased level of the truncated form of Hap43 (**Figure. 4E**) and abrogated the high
371 iron-induced protein degradation (**Figure. 4F**). As a control, fragment deletion appeared to
372 have no effect on the growth and function of *HAP43* truncation mutant under low iron
373 conditions (**Figure 4—figure supplement 4**).

374 By combining the results shown above, we finally focused on the four putative
375 phosphorylation sites (S337/S355/S369/T381) between residue 336 and 381. To verify this,
376 we generated a *HAP43* mutant-4 strain (Hap43m4-Myc/*hap43Δ*) in which site-directed
377 mutagenesis was used to convert the codons for serine and tyrosine at these sites to codons
378 for alanine (**Figure 4—figure supplement 5A**). Consistently, we found that under high iron
379 conditions, the mutant exhibited significantly higher level of Hap43 proteins than that of the
380 wild type (**Figure 4—figure supplement 5B**). As a control, replacement of these four
381 residues with alanine appeared to have no effect on the growth and function of Hap43
382 (**Figure 4—figure supplement 5C**). Collectively, our data identified potential
383 phosphorylation sites responsible for protein instability of Hap43 when *C. albicans* cells were
384 grown under high iron conditions.

385 **Importance of Hap43 phosphorylation for alleviating Fenton reaction-induced ROS**
386 **toxicity**

387 Numerous studies have demonstrated that bivalent iron cation drives the Fenton reaction (Fe^{2+}
388 $+ \text{H}_2\text{O}_2 \longrightarrow \text{Fe}^{3+} + \cdot\text{OH} + \text{OH}^-$) that plays an important role in the transformation of poorly
389 reactive radicals into highly reactive ones, leading to many disturbances contributing to
390 cellular toxicity (Ryan & Aust, 1992). The Hap complex, which is composed of Hap2, Hap3,
391 Hap5 and Hap43 in *C. albicans*, has been found to play a key role in connecting the iron
392 acquisition to oxidative stress response, by regulating the expression of oxidative stress genes
393 (e.g., *CAT1*, *SOD4*, *GRX5* and *TRX1*), those who have been known to be induced in the

394 production of ROS under iron-overloaded conditions (Mao & Chen, 2019). We therefore
395 hypothesized that Hap43 phosphorylation may play a role in the coordinate regulation of *C.*
396 *albicans* against iron-induced ROS toxicity. To test this, we first measured the intracellular
397 ROS production in *C. albicans* cells grown under YPD or YPD supplemented with 200 μ M
398 FeCl_3 conditions, by a fluorometric assay using hydroxyphenyl fluorescein (HPF; 5 μ M)
399 (Avci et al., 2016). As shown in **Figure. 5A and B**, ROS levels were moderately elevated in
400 *C. albicans* cells after incubation in YPD medium whereas massive increase was observed in
401 medium supplemented with FeCl_3 , to a level comparable to that observed in medium with
402 H_2O_2 . As controls, iron-induced ROS production via Fenton reaction could be prevented by
403 treating the cells with the antioxidant N-acetyl-L-cysteine (NAC). These data clearly
404 indicated that high levels of iron are sufficient to significantly enhanced ROS production in *C.*
405 *albicans*. More importantly, we observed that iron-triggered degradation of Hap43 could be
406 inhibited by treating the cells with NAC (**Figure. 5C**) and treatment of *C. albicans* cells with
407 menadione, an inducer of endogenous ROS, leads to the reduction of the Hap43 protein level
408 (**Figure. 5D**), supporting the proposition that the promotion of iron-induced generation of
409 ROS may account for the ubiquitin-dependent degradation of Hap43 after phosphorylation by
410 Ssn3.

411 To further test the potential role of Hap43 phosphorylation in protecting *C. albicans* cells
412 from ROS-induced cytotoxicity, we examined the growth of different strains (WT, *hap43Δ/Δ*,
413 *Hap43-Myc/hap43Δ*, *Hap43m29-Myc/hap43Δ* and *Hap43tr-Myc/hap43Δ* mutants) in
414 medium supplemented with or without H_2O_2 . Compared to the WT, deletion of *HAP43*

415 showed remarkable resistance to H₂O₂ (**Figure. 5E**), suggesting that loss of Hap43 promotes
416 cell survival under oxidative stress. Actually, the observation is consistent with our *in vivo*
417 fitness study showing an increased competitive ability of the *hap43Δ/Δ* mutant to colonize the
418 GI tract (**Figure. 1**). Interestingly, we also found that compared to the WT
419 (Hap43-Myc/*hap43Δ*), abolishment of Hap43 phosphorylation in each of the three mutants
420 generated above, including the Hap43 truncation mutant (Hap43tr-Myc/*hap43Δ*), *HAP43*
421 mutant-29 (Hap43m29-Myc/*hap43Δ*) or *HAP43* mutant-4 (Hap43m4-Myc/*hap43Δ*), showed
422 significantly greater sensitivity to oxidative stress (**Figure. 5F; Figure 5—figure supplement**
423 **1A and B**), arguing that the ubiquitin-dependent degradation of Hap43 after phosphorylation
424 contributes to the protection against ROS-induced cytotoxicity. This notion was further
425 supported by the *in vivo* evidence that the *HAP43* mutant-29 and Hap43 truncation mutant
426 could be outcompeted by the WT strain when cells stably colonize in both fly and mouse GI
427 tract (**Figure 5—figure supplement 1C and D; Figure. 5G and H**). Taken together, our data
428 highly suggest that iron-induced Hap43 phosphorylation, followed by ubiquitin-dependent
429 proteasomal degradation, acts to protect *C. albicans* from ROS toxicity and thus promote its
430 survival in GI tract, a niche normally considered as an iron replete environment.

431 **Iron-induced phosphorylation and degradation of Hap43 leads to de-repression of**
432 **antioxidant genes**

433 ROS generation in actively growing cells occurs via Fenton reaction or as a byproduct of
434 mitochondrial respiration. Previous studies have shown that Hap43 is primarily a

435 transcriptional repressor and enriched in the nucleus in response to iron depletion, particularly
436 responsible for repression of genes that encode iron-dependent proteins involved in
437 mitochondrial respiration and iron-sulfur cluster assembly (Chen et al., 2011; Hsu et al.,
438 2011). Moreover, our data revealed that iron-triggered posttranslational modification of
439 Hap43, including cytoplasmic localization, phosphorylation, ubiquitination and proteasomal
440 degradation, heavily impacts the ability of *C. albicans* to adapt and respond to oxidative stress.
441 These findings are very informative and prompt us to examine whether the
442 phosphorylation-dependent degradation of Hap43 may correlate with activation of antioxidant
443 response. In other words, it is likely that iron-induced posttranslational modification of Hap43
444 may directly cause ROS elimination by upregulating the expression of antioxidant genes
445 when *C. albicans* cells are bathed under conditions of high iron availability.

446 Given that the iron-responsive transcription factor Hap43 undergoes ubiquitin-dependent
447 proteasomal degradation after phosphorylation, we provided evidence that deletion of the
448 protein kinase Ssn3 prevents its degradation and causes nuclear mislocalization, when *C.*
449 *albicans* cells are grown under iron-replete conditions (**Figure. 3A and B**). Consistently,
450 replacement of all 29 S/T residues by alanine, as well as the truncated form, were found to
451 abrogate phosphorylation and degradation of Hap43 (**Figure. 4**), prompting us to hypothesize
452 that the unphosphorylated form of Hap43 through either amino acid substitutions or
453 truncation, may alter its cellular localization when cells are grown under iron-replete
454 conditions. To test this hypothesis, indirect immunofluorescence of formaldehyde-fixed yeast
455 cells from WT (Hap43-Myc/*hap43Δ*), *HAP43* mutant-29 (Hap43m29-Myc/*hap43Δ*), or

456 Hap43 truncation mutant (Hap43tr-Myc/*hap43Δ*) strain, at the early mid log phases of growth
457 on YPD supplemented with FeCl₃, was used to examine the subcellular localization of Hap43.

458 As shown in **Figure. 6A and Figure 6—figure supplement 1A**, WT Hap43 localized to the
459 cytoplasm, while unphosphorylated form of Hap43 (Hap43tr and Hap43m29) localized to the
460 nucleus, suggesting that abolishing the phosphorylation-dependent modification resulted in
461 relocation of Hap43 from cytoplasm to nucleus.

462 The antioxidant enzyme-mediated adaptive response has been demonstrated to attenuate
463 toxicity caused by oxidative stress and a list of enzymes, including catalases, superoxide
464 dismutases, peroxidases and peroxiredoxins, have been found to be the most ubiquitous
465 effectors in microbial eukaryotes (Aguirre et al., 2005). Moreover, sequence analysis
466 demonstrated the presence of CCAAT cis-acting element, a conserved Hap43 DNA
467 recognition motif, on the promoter regions of antioxidant genes *CAT1*, *SOD2*, *GSH1* and
468 *TRR1*. We therefore ask whether the unphosphorylated form of Hap43, once located to the
469 nucleus, has the DNA binding capacity. ChIP-qPCR assays were performed to investigate
470 Hap43 binding to the promoter sequences containing CCAAT motifs in the selected
471 antioxidant genes. As expected, the mutated or truncated Hap43 (Hap43tr or Hap43m29)
472 significantly enriched in the promoter regions of the four target antioxidant genes (**Figure. 6B**
473 **and Figure 6—figure supplement 1B**), which suggested a direct regulation of ROS
474 detoxification in *C. albicans* by posttranslational modification of Hap43. Indeed, when the
475 expression levels of these four antioxidant genes were examined by qPCR, we found that
476 upon binding to the promoters directly, Hap43 significantly repressed the expression of *CAT1*

477 and *SOD2* in both Hap43tr and Hap43m29 strains (*Figure. 6C and Figure 6—figure*
478 **supplement 1C**). Antioxidant enzymes such as superoxide dismutase (SOD) and catalase
479 (CAT) form the first line of defense against ROS in organisms. Meanwhile, SOD is
480 responsible for the formation of H₂O₂ through disproportionation to remove O₂[·] and CAT
481 metabolizes H₂O₂ into H₂O and O₂ (Ren et al., 2020; Van Breusegem et al., 2001). These
482 results suggested that SOD and CAT may largely contribute to the resistance of *HAP43*
483 mutants to iron-induced ROS.

484 Taken together, our data proposed a model (*Figure. 7; Graphical abstract*) that the
485 iron-induced posttranslational modification of Hap43, including cytoplasmic localization,
486 Ssn3-mediated phosphorylation, ubiquitination and proteasomal degradation, results in the
487 de-repression of antioxidant genes (e.g., *CAT1* and *SOD2*), an event that is most effective in
488 lowering cytotoxicity induced by oxidative stress and promotes *C. albicans* commensalism in
489 GI tract.

490 **Discussion**

491 Iron makes an ideal redox active cofactor for a variety of key biological processes and
492 therefore becomes an indispensable element for all eukaryotes and the vast majority of
493 prokaryotes. However, studies have revealed that iron excess is able to promote the
494 production of potentially harmful ROS through accelerating the Fenton reactions, causing
495 deleterious cellular effects such as lipid peroxidation, protein oxidation and carbonylation,
496 and DNA mutagenesis and destabilization (Galaris et al., 2019). The need to avoid oxidative

497 damages is particularly acute in the case of human fungal pathogens like *C. albicans*, mainly
498 because these microbes are often subjected to assault by ROS produced by iron metabolism,
499 environmental competitors or phagocytic cells during infections, as well as the endogenously
500 produced ROS. Here, we discovered an uncharacterized detoxification strategy that *C.*
501 *albicans* used to combat the toxic effects of ROS accumulation and promote its colonization
502 in GI tract. Our data highly suggest that the iron-dependent global regulator Hap43, through a
503 previously unknown posttranslational modification mechanism, senses the iron status of the
504 cell and negatively regulates the gene expression of antioxidant enzymes.

505 Protein phosphorylation has been found to affect an estimated one-third of all proteins and
506 recognized as the most widely studied posttranslational modification (Cohen, 2001). Changes
507 in protein phosphorylation represent an important cell signaling mechanism that is frequently
508 employed by cells to regulate the activities of transcription factors, for example, targeting for
509 proteolytic degradation (Olsen et al., 2006). Moreover, a close connection between the
510 ubiquitin-proteasome system and transcriptional activation has been reported in a number of
511 studies (Lipford & Deshaies, 2003; Muratani & Tansey, 2003). Indeed, studies have shown
512 that the posttranslational modification such as the phosphorylation-dependent ubiquitination
513 and degradation is a highly conserved process across eukaryotes. For example, a powerful
514 proteomic study in the budding yeast *S. cerevisiae* identified 466 proteins co-modified with
515 ubiquitylation and phosphorylation (Swaney et al., 2013). A variety of extracellular stimuli in
516 mammalian cells cause the rapid phosphorylation, ubiquitination, and ultimately proteolytic
517 degradation of I κ B, resulting in cytoplasm-nuclear translocation of NF- κ B and induction of

518 gene transcription (Ghosh & Dass, 2016). The same is the transcription factor SREBP1 who
519 also undergoes phosphorylation and subsequent ubiquitination and degradation by the
520 proteasome (Punga et al., 2006). In *Arabidopsis thaliana*, phosphorylation of the
521 calmodulin-binding transcription activator 3 (CAMTA3) was found to trigger its
522 destabilization and nuclear export (Jiang et al., 2020). Consistent with these observations, we
523 described that under iron replete conditions, the iron-responsive transcription factor Hap43 of
524 *C. albicans* undergoes ubiquitin/proteasome-mediated degradation upon a direct
525 phosphorylation event mediated by Ssn3, a cyclin-dependent kinase previously known to
526 have a similar activity on Ume6 degradation (Lu et al., 2019). Although the regions
527 associated with phosphorylation and ubiquitination of Hap43 have been identified in our work,
528 the precise modification sites remain unclear, more likely due to the presence of multiple
529 modification sites and technical challenges such as the detection of low abundant proteins like
530 transcription factors.

531 Previous studies have shown that ROS production in GI tract could be triggered by different
532 abiotic or biotic stimuli. For example, iron (II) complex was found to interact with bile acids
533 and the K vitamins to generate free radicals in the colon (Valko et al., 2001). The host's
534 defense through phagocytes induces an ROS burst that is required for pathogen killing and for
535 regulating pro-inflammatory signaling in phagocytic cells (El-Benna et al., 2016). Moreover,
536 similar studies have demonstrated that the antifungal action of different classes of antifungal
537 compounds such as amphotericin B, miconazole, and caspofungin is related with the
538 induction of ROS formation in fungi, especially in *Candida* species (Mello et al., 2011).

539 Previous studies showed that miconazole-mediated fungicidal activity against *C. albicans* was
540 significantly inhibited by the addition of antioxidant (Kobayashi et al., 2002), and superoxide
541 dismutase inhibitors enhanced the activity of miconazole against *C. albicans* biofilm cells
542 (Bink et al., 2011). The ability of *C. albicans* to adapt and respond to oxidative stress is
543 critical for its survival and virulence (Dantas Ada et al., 2015). Accumulating evidence have
544 suggested that *C. albicans* cells respond to oxidative stress from the host environment through
545 diverse strategies such as detoxifying ROS, repairing oxidative damages, synthesizing
546 antioxidants and restoring redox homeostasis, and all of these actions involve the
547 transcriptional induction of antioxidant genes encoding catalase (*CAT1*), superoxide
548 dismutases (*SOD*), glutathione peroxidases (*GPX*) and components of the
549 glutathione/glutaredoxin (*GSH1*, *TTR1*) and thioredoxin (*TS1*, *TRX1*, *TRR1*) systems (Mao
550 & Chen, 2019). Coincidentally, we discovered the role of the transcription factor Hap43 in
551 modulation of the transcription of antioxidant genes in response to iron. In iron replete
552 environments (e.g., host GI tract), Hap43 degradation leads to de-repression of antioxidant
553 genes which enhances ROS detoxification and promotes the GI colonization of *C. albicans*.

554 Iron chelation has been explored as an adjunct in the treatment of fungal infections,
555 particularly in salvage therapy (Reed et al., 2006). Some clinically approved iron-chelating
556 drugs have been directly tested for inhibition of fungal pathogens, including *Cryptococcus*,
557 *Rhizopus*, *Candida* and *Aspergillus* species (Symeonidis, 2009). For example, treatment of
558 deferasirox, an FDA-approved iron chelator, significantly decreased the salivary iron levels
559 and *C. albicans* CFUs of tongue tissue in a murine OPC model, and ultimately relieves

560 neutrophil-mediated inflammation (Puri et al., 2019). Sepsis is a systemic inflammatory
561 response induced by an infection (e.g., bacteria or fungi), leading to organ dysfunction and
562 mortality. During sepsis, iron homeostasis becomes disrupted and an excess of ROS is
563 generated, causing damage to tissues. This can be potentially suppressed using iron chelators
564 that selectively bind iron to prevent its participation in ROS-associated inflammatory
565 reactions. Given the importance of Hap43 degradation in ROS detoxification and *C. albicans*
566 commensalism, it is plausible that iron chelator therapy by blocking the process of protein
567 phosphorylation and degradation could be considered as an alternative therapeutic approach
568 against invasive fungal infection. Our findings may deliver new clues for the development of
569 innovative drugs to fight invasive fungal infection.

570 **Materials and Methods**

571 **Ethics statement**

572 All animal experiments were carried out in strict accordance with the regulations in the Guide
573 for the Care and Use of Laboratory Animals issued by the Ministry of Science and
574 Technology of the People's Republic of China. All efforts were made to minimize suffering.
575 The protocol was approved by IACUC at the Institut Pasteur of Shanghai, Chinese Academy
576 of Sciences (Permit Number: A160291).

577 **Media**

578 *C. albicans* strains were grown at 30 °C in YPD (1% yeast extract, 2% Bacto peptone, 2%
579 glucose) or SD (0.67% yeast nitrogen base plus 2% dextrose) as ‘iron-replete’ medium.
580 ‘Iron-depleted’ medium is YPD or SD supplemented with one of the specific iron chelators,
581 500 µM bathophenanthroline disulfonic acid (BPS). Doxycycline (50 µg/ml) was added to
582 YPD for Tet-induced expression. When required, MG132 (100 µM) or Chloroquine (100 mM)
583 was added to growth medium to inhibit protein degradation.

584 **Plasmid and strain construction**

585 SC5314 genomic DNA was used as the template for all PCR amplifications of *C. albicans*
586 genes. The *C. albicans* strains used in this study are listed in Table S1A. The primers used for
587 PCR amplification are listed in Table S2. Plasmids used for Hap43-Myc tagging and
588 knockout gene complementation are listed in Table S1B. Construction of *C. albicans*
589 knockout mutants, complemented strains, strains expressing Myc-tagged Hap43 fusion
590 protein, and overexpression strain for Hap43 was performed as previously described (Chen et
591 al., 2011).

592 To generate tetO-Hap43-Myc strains (CB247), we used the pNIM1 and replaced the caGFP
593 reporter gene by *HAP43*-13xMyc. *HAP43*-13xMyc was amplified with primers (CBO838 and
594 CBO839) that introduced SalI and BglII sites from pSN161. The PCR product was
595 appropriately digested and inserted into SalI/BglII-digested vector pNIM1 to generate
596 pCB127. *hap43Δ/Δ* strain (SN694) was transformed with the following gel-purified, linear
597 SacII- KpnI digested DNA fragments from pCB127. To generate tetO-HA-Ub strain (CB453

598 and CB494), 3xHA-Ubiquitin (*Saccharomyces cerevisiae*) was synthesized by company (Gen
599 Script Nanjing Co.,Ltd.). The plasmid was appropriately digested and inserted into
600 Sall/BglII-digested vector pNIM1 to generate pCB193. Hap43-Myc strain (SN856) or
601 Hap43-Myc, *ssn3Δ/Δ* strain (CB12) was transformed with the following gel-purified, linear
602 the SacII- KpnI digested DNA fragments from pCB193 respectively.

603 **In vitro growth assay**

604 For agar plate assays, fresh overnight yeast cultures were washed and diluted in PBS to adjust
605 the optical density (OD₆₀₀) to 1.0. Then 10-fold serial dilutions were prepared and 5 μ l
606 aliquots of each dilution were spotted onto appropriate agar plates. For growth curves in
607 liquid media, cells from overnight cultures were diluted to a starting OD₆₀₀ of 0.15 into the
608 indicated medium. At indicated time intervals optical density at 600 nm (OD₆₀₀) was
609 measured. Presented data (means and SDs) from three technical replicates were shown and
610 plotted in Graphpad Prism.

611 **Fluorescence microscopy**

612 *C. albicans* was grown at 30 °C for 5~6 hours in YPD or YPD supplemented with 500 μ M
613 BPS medium to OD600 = 0.8~1.0. Cells were fixed by 4.5% formaldehyde for 1 hour and
614 digested by 80 μ g/ml Zymolase-20T in 37 °C for 15 min. Cells were transformed to
615 polylysine-d coated culture dishes and remove most of the un-attached cells. To flatten cells,
616 add pre-cold (-20 °C) methanol for 5 min followed by pre-cold (-20 °C) acetone for 30s. The

617 9E10 anti-c-Myc antibody was used at a 1:150 dilution overnight after cells were completely
618 dry. A 1:400 dilution of Cy2-conjugated secondary antibody was used for 1h. Images were
619 acquired under oil objective using an inverted microscope. DIC, DAPI and FITC images
620 acquired.

621 **Promoter shutdown assays**

622 *C. albicans* strains containing Hap43-Myc or 3xHA-Ubiquitin under the regulation of the
623 tetO promoter were grown in YPD at 30 °C overnight, then diluted 1:100 into YPD plus 50
624 µg/ml doxycycline to induce the expression of Hap43-Myc. Then the medium was replaced
625 by fresh YPD medium at 30 °C to shut off the promoter. Aliquots were collected after the
626 times indicated.

627 **Protein extraction and immunoblotting**

628 *C. albicans* protein extracts were prepared under denaturing conditions. Briefly, lysates
629 corresponding to 1 OD₆₀₀ of cells were analyzed by SDS-PAGE and immunoblotted with
630 either anti-c-Myc (9E10, Covance Research) for Myc-tagged proteins or anti-peroxidase
631 soluble complex antibody (Sigma, P2416) for TAP-tagged proteins. Immunoblots were also
632 probed with anti-alpha tubulin antibody (Novus Biologicals, NB100-1639) as a loading
633 control. At least three biological replicates were obtained for each experiment shown and
634 ImageJ software was used for densitometry.

635 **Lambda phosphatase treatment**

636 100 ml *C. albicans* cells in log phage was washed with 1ml ice-cold 1.2M sorbitol twice and
637 split into two tubes. Add 500 μ l protein extraction buffer (420 mM NaCl, 200 μ M EDTA, 1.5
638 mM MgCl₂, 10% Glycerol, 0.05% Tween-20, 50 mM Tris-Cl, pH 7.5) containing 0.5M
639 fresh-made DTT and protease inhibitor cocktails (Roche, USA). Add 0.5mm glass beads and
640 break cells by vortex (6x 30s, 2 min interval on ice, top speed, 4 °C). Spin at top speed and
641 transfer supernatant to a new tube. Add 5 μ l 10x PMP buffer, 5 μ l 10 mM MnCl₂ buffer and 0
642 or 2 μ l lambda phosphatase (NEB #P0753S, USA) in 38 μ l supernatant. The mix was
643 incubated for 60 min at 30 °C, followed by 10 min in 65 °C.

644 **Immunoprecipitation and pull-down assay**

645 100 ml cells expressing TAP-tagged Hap43 or Ssn3 as well as cells expressing HA-tagged
646 ubiquitin were collected by centrifugation in log phage. Cells were washed three times with
647 ice-old water, and resuspended in 1 ml of lysis buffer (20 mM Tris, pH 7.4, 100 mM KCl, 5
648 mM MgCl₂, 20% glycerol) with protease and phosphatase inhibitors (Roche). Cells were
649 lysed using a Bead Beater and 300 μ l of glass beads. Cell lysates were centrifuged for at max
650 speed at 4 °C for 15min. Protein concentration of the supernatants was measured by the
651 Bradford assay and whole cell extracts were collected in freezer. 3 mg of proteins was used
652 for immunoprecipitation with 50 ml of immunoglobulin G-Sepharose resin (IgG Sepharose 6
653 Fast Flow, GE Healthcare) or Anti-HA affinity matrix beads (Roche, USA). After protein
654 overnight rotation at 4°C, the resin was washed 3 times with lysis buffer. For TAP-tagged
655 proteins, the resin was washed twice with tobacco etch virus (TEV) protease cleavage buffer

656 (10 mM Tris-HCl, pH 8, 150 mM NaCl, 0.5 mM EDTA, 0.1% Tween-20). Halo TEV
657 protease (Promega, USA) cleavage was performed in 1 ml buffer at 4 °C overnight. The TEV
658 eluate was collected and proteins were recovered by TCA (trichloroacetic acid) precipitation.
659 For HA-tagged proteins, the resin was boiled in SDS-PAGE loading buffer (50 mM Tris-HCl,
660 pH 6.8, 2% SDS, 10% (v/v) Glycerol, 2 mM DTT, 0.01% (w/v) Bromophenol Blue).

661 **Nuclear fraction separation**

662 The nuclear fraction was prepared as a described method (von Hagen & Michelsen, 2013). 50
663 ml *C. albicans* cells in log phage was washed with preincubation buffer (100 mM
664 PIPES-KOH pH 9.4, 10 mM DTT). The pellet was resuspended preincubation buffer and
665 incubate in 30 °C for 10 min. Spin down and resuspend in 2 ml Lysis buffer (50 mM
666 Tris-HCl pH 7.5, 10 mM MgCl₂, 1.2 M sorbitol, 1 mM DTT) plus 80 µl Zymolase 20T (2.5
667 mg/ml) and incubate in 30 °C for 60 min. Cells were centrifuged and washes in lysis buffer
668 twice and were resuspended in 2 ml Ficoll buffer (18% Ficoll 400, 100 mM Tris-HCl, pH 7.5,
669 20 mM KCl, 5 mM MgCl₂, 3 mM DTT, 1 mM EDTA) containing protease inhibitors as
670 described above. The cells were lysed using a Dounce homogenizer. Unlysed cells and cell
671 debris were removed by 3000 rpm 15 min centrifugation. The supernatant was equally
672 divided in two portions: one was saved as whole cell extract and the other was centrifuged at
673 max speed for 15 min. The pellet (nuclear) was washed by PBS twice and resuspended in
674 SDS loading buffer.

675 **Fungal genomic DNA isolation and total RNA preparation for RT-qPCR**

676 Fungal genomic DNA isolation was performed as previously described (Chen & Noble, 2012).

677 Samples were harvested by centrifugation and the pellets were resuspended in a DNA

678 extraction solution containing 200 μ l of breaking buffer (2% Triton X-100, 1% SDS, 100 mM

679 NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0), 200 μ l of acid Phenol: Chloroform:

680 Isoamyl alcohol (pH 8.0, Ambion) and a slurry of acid-washed glass beads (Sigma-Aldrich).

681 Fungal cells were mechanically disrupted with a FastPrep-24TM 5G (MP Biomedicals, USA)

682 and genomic DNA were extracted and precipitated with isopropanol.

683 Fungal RNA was prepared as described previously (Chen & Noble, 2012), 1–2 μ g of each

684 RNA was treated with RNase-free Dnase I (Promega, Madison WI, USA) and reverse

685 transcribed using the PrimeScript RT reagent Kit (TaKaRa). qPCR was performed using the

686 SYBR Green Master Mix (High ROX Premixed) (Vazyme, Nanjing, China) using the primers

687 in Table S2. Normalization of expression levels was carried out using the *ACT1* genes and the

688 primers for *ACT1* was used as previously described. At least three biological replicates were

689 performed per strain per condition.

690 **Chromatin Immunoprecipitation**

691 ChIP experiments were performed essentially as described (Nobile et al., 2009). Unless

692 otherwise noted, cells were crosslinked with 1% formaldehyde for 20 min at 30 °C, followed

693 by 125 mM glycine for 5 min. Cell pellets were resuspended in 700 μ l ice-cold lysis buffer

694 (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X 100, 0.1% NaDOC)

695 with protease inhibitor cocktails (Roche, USA). Vortex with 300 μ l glass beads at max speed

696 for ~2hr at 4 °C. Recover the lysate by inverting and centrifuging the tubes with punctures on
697 bottom and top of tubes by a 26G needle. Hap43-Myc were immunoprecipitated with 2–5 mg
698 antibody (anti-Myc, 9E10, Covance Research) from lysates corresponding to optical density
699 600 (OD₆₀₀) of cells at 4 °C overnight. Add 50 ul of prepared A or G beads suspension to each
700 IP sample and rotate for 2 hr at 4 °C. Wash twice with lysis buffer, high salt lysis buffer (50
701 mM HEPES-KOH pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% Triton X 100, 0.1% NaDOC)
702 and wash buffer (10 mM Tris-Cl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% NaDOC, 1 mM
703 EDTA) respectively and resuspend in TE buffer. Products were eluted in elution buffer and
704 incubated in 65 °C. DNA was de-crosslinked by proteinase K (Sigma, USA) and 4 M LiCl
705 and purified by phenol: chloroform: isoamyl alcohol. Immunoprecipitated DNA was
706 quantified by real-time PCR (qPCR) with primers and normalized against *ACT1*.

707 **Measurement of ROS production**

708 3'(4-Hydroxyphenyl)-fluorescein (HPF; Molecular Probes, OR, USA) was used for detecting
709 •OH production (Avci et al., 2016). Log-phased *C. albicans* cells were washed in PBS buffer
710 twice. HPF fluorescent probe was added to washed cells and kept in a 37 °C shaker for 30
711 min. Subsequently, cells were centrifuged (3200 rpm, 3 min) immediately and were
712 resuspended in PBS. The stained cells were detected by a fluorescent microplate reader
713 (Thermo Fisher, USA) or BD LSR Fortessa flow cytometer (BD Bioscience). Cells were also
714 counted using a hemocytometer. The relative fluorescence density of each sample was
715 calculated as FLU divided by the cell number to evaluate intracellular ROS levels.

716 **Determination of Colonic H₂O₂**

717 Determination of H₂O₂ was performed according to the protocol of Beyotime kit (Cat #S0038,
718 Beyotime, China). Briefly, 50 mg of colon tissue fragment was homogenized with 200 ul of
719 lysis buffer and was centrifuged at max speed for 5 min in 4 °C. Subsequently, 50 ul of
720 supernatant was mixed with 100 ul test buffer and incubate for 30 min in room temperature.
721 Then A560 was detected by a fluorescent microplate reader (Thermo Fisher, USA). Readings
722 were calculated by the standard curve that was prepared from three series of calibration
723 experiments with 5 increasing H₂O₂ concentrations (range 1-100 uM/l).

724 ***Drosophila* infection assays**

725 The gut infection assays were performed as described previously (He et al., 2017). The oreR
726 flies were used as our wild-type background flies. All flies were maintained on maize malt
727 molasses food in bottles and reared pre-infection at 25 °C under a normal light/dark cycle.
728 Mid-log phase *C. albicans* cells were harvested and resuspended in 5% sucrose and adjusted
729 to an OD₆₀₀ of 100. 3-5 days old male flies were dehydrated for 2 h without food and water,
730 and then transferred into a vial covered with filter paper soaked with 5% sucrose solution
731 containing the indicated *C. albicans* cells. Flies that had fed on 5% sucrose only were used as
732 control. Both infected and control flies were incubated at 29 °C and transferred to
733 conventional food after infection. Flies were ground in an Eppendorf tube with 200 µl of PBS
734 6 or 8 hours after infection with pipette tips and serial dilutions of the homogenates were
735 plated onto YPD agar for CFUs.

736 **Mice infection assays**

737 Female C57BL/6 mice (6-8 weeks old, weighing 18-20g) were purchased from Beijing Vital
738 River Laboratory Animal Technology Company (Beijing, China). The mice were routinely
739 maintained in a pathogen-free animal facility at Institut Pasteur of Shanghai, Chinese
740 Academy of Sciences. All mice had free access to food and water in a specific pathogen-free
741 animal facility with controlled temperature, humidity and a pre-set dark-light cycle (12 h: 12
742 h). Infections were performed under SPF conditions. The “normal diet” was a standard chow
743 diet (37mg/kg iron; Shanghai SLAC Laboratory Animal Co.,Ltd). The “high-iron diet” was a
744 diet supplemented with 400mg/kg iron (Shanghai SLAC Laboratory Animal Co.,Ltd). For
745 competed infection, mice were received penicillin (1.5 mg/ml) and streptomycin (2 mg/ml) in
746 their drinking water for 3 days prior to gavage with 1×10^8 CFUs of 1:1 mixtures. Stool
747 samples were homogenized in PBS and cultured in Sabouraud plates supplemented with
748 ampicillin 50 μ g/ml and gentamicin 15 μ g/ml. Genome DNA were was extracted for fitness
749 value of each strain by qPCR using strain-specific primers. For iron staining, colons were
750 fixed with 10% formalin, and paraffin-embedded sections were stained with fresh-made
751 Prussian blue staining solution. For ROS staining, colons were ‘snap-frozen’ in optimum
752 cutting temperature compound, and frozen sections were stained with dihydroethidium (DHE)
753 and DAPI. For colonic RNA, RNA was extracted with TRIzol according to the
754 manufacturer’s instructions (Invitrogen).

755 **Statistical analysis**

756 Data were presented as mean \pm SD for continuous variables. All statistical analyses were
757 performed with GraphPad Prism 8 (San Diego, Calif, USA) and details were provided in the
758 Figure legends. The following p -values were considered: $*p < 0.05$; $**p < 0.01$; $***p <$
759 0.001 ; $****p < 0.0001$.

760 **References**

761 Aguirre, J., Rios-Momberg, M., Hewitt, D., & Hansberg, W. (2005). Reactive oxygen species
762 and development in microbial eukaryotes. *Trends Microbiol*, 13(3), 111-118.
763 <https://doi.org/10.1016/j.tim.2005.01.007>

764 Andrews, N. C. (2008). Forging a field: the golden age of iron biology. *Blood*, 112(2),
765 219-230. <https://doi.org/10.1182/blood-2007-12-077388>

766 Avci, P., Freire, F., Banvolgyi, A., Mylonakis, E., Wikonkal, N. M., & Hamblin, M. R.
767 (2016). Sodium ascorbate kills *Candida albicans* in vitro via iron-catalyzed Fenton
768 reaction: importance of oxygenation and metabolism. *Future Microbiol*, 11,
769 1535-1547. <https://doi.org/10.2217/fmb-2016-0063>

770 Barber, M. F., & Elde, N. C. (2015). Buried Treasure: Evolutionary Perspectives on
771 Microbial Iron Piracy. *Trends Genet*, 31(11), 627-636.
772 <https://doi.org/10.1016/j.tig.2015.09.001>

773 Becker, D. M., Fikes, J. D., & Guarente, L. (1991). A cDNA encoding a human
774 CCAAT-binding protein cloned by functional complementation in yeast. *Proc Natl
775 Acad Sci U S A*, 88(5), 1968-1972. <https://doi.org/10.1073/pnas.88.5.1968>

776 Bink, A., Vandenbosch, D., Coenye, T., Nelis, H., Cammue, B. P., & Thevissen, K. (2011).
777 Superoxide dismutases are involved in *Candida albicans* biofilm persistence against
778 miconazole. *Antimicrob Agents Chemother*, 55(9), 4033-4037.
779 <https://doi.org/10.1128/AAC.00280-11>

780 Bjorklund, S., & Gustafsson, C. M. (2005). The yeast Mediator complex and its regulation.
781 *Trends Biochem Sci*, 30(5), 240-244. <https://doi.org/10.1016/j.tibs.2005.03.008>

782 Chen, C., & Noble, S. M. (2012). Post-transcriptional regulation of the Sef1 transcription
783 factor controls the virulence of *Candida albicans* in its mammalian host. *PLoS Pathog*,
784 8(11), e1002956. <https://doi.org/10.1371/journal.ppat.1002956>

785 Chen, C., Pande, K., French, S. D., Tuch, B. B., & Noble, S. M. (2011). An iron homeostasis
786 regulatory circuit with reciprocal roles in *Candida albicans* commensalism and
787 pathogenesis. *Cell Host Microbe*, 10(2), 118-135.
788 <https://doi.org/10.1016/j.chom.2011.07.005>

789 Chi, Y., Huddleston, M. J., Zhang, X., Young, R. A., Annan, R. S., Carr, S. A., & Deshaies, R.
790 J. (2001). Negative regulation of Gcn4 and Msn2 transcription factors by Srb10
791 cyclin-dependent kinase. *Genes Dev*, 15(9), 1078-1092.
792 <https://doi.org/10.1101/gad.867501>

793 Cohen, P. (2001). The role of protein phosphorylation in human health and disease. The Sir
794 Hans Krebs Medal Lecture. *Eur J Biochem*, 268(19), 5001-5010.
795 <https://doi.org/10.1046/j.0014-2956.2001.02473.x>

796 da Silva Dantas, A., Lee, K. K., Raziunaite, I., Schaefer, K., Wagener, J., Yadav, B., & Gow,
797 N. A. (2016). Cell biology of *Candida albicans*-host interactions. *Curr Opin
798 Microbiol*, 34, 111-118. <https://doi.org/10.1016/j.mib.2016.08.006>

799 Dantas Ada, S., Day, A., Ikeh, M., Kos, I., Achan, B., & Quinn, J. (2015). Oxidative stress
800 responses in the human fungal pathogen, *Candida albicans*. *Biomolecules*, 5(1),
801 142-165. <https://doi.org/10.3390/biom5010142>

802 Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell
803 death. *Nat Chem Biol*, 10(1), 9-17. <https://doi.org/10.1038/nchembio.1416>

804 Donko, A., Morand, S., Korzeniowska, A., Boudreau, H. E., Zana, M., Hunyady, L., Geiszt,
805 M., & Leto, T. L. (2014). Hypothyroidism-associated missense mutation impairs
806 NADPH oxidase activity and intracellular trafficking of Duox2. *Free Radic Biol Med*,
807 73, 190-200. <https://doi.org/10.1016/j.freeradbiomed.2014.05.006>

808 Dorn, A., Bollekens, J., Staub, A., Benoist, C., & Mathis, D. (1987). A multiplicity of
809 CCAAT box-binding proteins. *Cell*, 50(6), 863-872.
810 [https://doi.org/10.1016/0092-8674\(87\)90513-7](https://doi.org/10.1016/0092-8674(87)90513-7)

811 El-Benna, J., Hurtado-Nedelec, M., Marzaioli, V., Marie, J. C., Gougerot-Pocidalo, M. A., &
812 Dang, P. M. (2016). Priming of the neutrophil respiratory burst: role in host defense
813 and inflammation. *Immunol Rev*, 273(1), 180-193. <https://doi.org/10.1111/imr.12447>

814 Frawley, E. R., Crouch, M. L., Bingham-Ramos, L. K., Robbins, H. F., Wang, W., Wright, G.
815 D., & Fang, F. C. (2013). Iron and citrate export by a major facilitator superfamily
816 pump regulates metabolism and stress resistance in *Salmonella Typhimurium*. *Proc
817 Natl Acad Sci U S A*, 110(29), 12054-12059.
818 <https://doi.org/10.1073/pnas.1218274110>

819 Galaris, D., Barbouti, A., & Pantopoulos, K. (2019). Iron homeostasis and oxidative stress:
820 An intimate relationship. *Biochim Biophys Acta Mol Cell Res*, 1866(12), 118535.
821 <https://doi.org/10.1016/j.bbamcr.2019.118535>

822 Ghosh, S., & Dass, J. F. P. (2016). Study of pathway cross-talk interactions with NF-kappaB
823 leading to its activation via ubiquitination or phosphorylation: A brief review. *Gene*,
824 584(1), 97-109. <https://doi.org/10.1016/j.gene.2016.03.008>

825 Glittenberg, M. T., Kounatidis, I., Christensen, D., Kostov, M., Kimber, S., Roberts, I., &
826 Ligoxygakis, P. (2011). Pathogen and host factors are needed to provoke a systemic
827 host response to gastrointestinal infection of *Drosophila* larvae by *Candida albicans*.
828 *Dis Model Mech*, 4(4), 515-525. <https://doi.org/10.1242/dmm.006627>

829 Grass, G., Otto, M., Fricke, B., Haney, C. J., Rensing, C., Nies, D. H., & Munkelt, D. (2005).
830 FieF (YiiP) from *Escherichia coli* mediates decreased cellular accumulation of iron
831 and relieves iron stress. *Arch Microbiol*, 183(1), 9-18.
832 <https://doi.org/10.1007/s00203-004-0739-4>

833 Gupta, M., & Outten, C. E. (2020). Iron-sulfur cluster signaling: The common thread in
834 fungal iron regulation. *Curr Opin Chem Biol*, 55, 189-201.
835 <https://doi.org/10.1016/j.cbpa.2020.02.008>

836 He, X., Yu, J., Wang, M., Cheng, Y., Han, Y., Yang, S., Shi, G., Sun, L., Fang, Y., Gong, S.
837 T., Wang, Z., Fu, Y. X., Pan, L., & Tang, H. (2017). Bap180/Baf180 is required to
838 maintain homeostasis of intestinal innate immune response in *Drosophila* and mice.
839 *Nat Microbiol*, 2, 17056. <https://doi.org/10.1038/nmicrobiol.2017.56>

840 Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. *Annu Rev Biochem*, 67,
841 425-479. <https://doi.org/10.1146/annurev.biochem.67.1.425>

842 Hsu, P. C., Yang, C. Y., & Lan, C. Y. (2011). *Candida albicans* Hap43 is a repressor induced
843 under low-iron conditions and is essential for iron-responsive transcriptional
844 regulation and virulence. *Eukaryot Cell*, 10(2), 207-225.
845 <https://doi.org/10.1128/EC.00158-10>

846 Jiang, X., Hoehenwarter, W., Scheel, D., & Lee, J. (2020). Phosphorylation of the CAMTA3
847 Transcription Factor Triggers Its Destabilization and Nuclear Export. *Plant Physiol*,
848 184(2), 1056-1071. <https://doi.org/10.1104/pp.20.00795>

849 Jung, W. H., Saikia, S., Hu, G., Wang, J., Fung, C. K., D'Souza, C., White, R., & Kronstad, J.
850 W. (2010). HapX positively and negatively regulates the transcriptional response to
851 iron deprivation in *Cryptococcus neoformans*. *PLoS Pathog*, 6(11), e1001209.
852 <https://doi.org/10.1371/journal.ppat.1001209>

853 Kato, M. (2005). An overview of the CCAAT-box binding factor in filamentous fungi:
854 assembly, nuclear translocation, and transcriptional enhancement. *Biosci Biotechnol
855 Biochem*, 69(4), 663-672. <https://doi.org/10.1271/bbb.69.663>

856 Kobayashi, D., Kondo, K., Uehara, N., Otokozawa, S., Tsuji, N., Yagihashi, A., & Watanabe,
857 N. (2002). Endogenous reactive oxygen species is an important mediator of
858 miconazole antifungal effect. *Antimicrob Agents Chemother*, 46(10), 3113-3117.
859 <https://doi.org/10.1128/AAC.46.10.3113-3117.2002>

860 Kumamoto, C. A., Gresnigt, M. S., & Hube, B. (2020). The gut, the bad and the harmless:
861 *Candida albicans* as a commensal and opportunistic pathogen in the intestine. *Curr
862 Opin Microbiol*, 56, 7-15. <https://doi.org/10.1016/j.mib.2020.05.006>

863 Lecker, S. H., Goldberg, A. L., & Mitch, W. E. (2006). Protein degradation by the
864 ubiquitin-proteasome pathway in normal and disease states. *J Am Soc Nephrol*, 17(7),
865 1807-1819. <https://doi.org/10.1681/ASN.2006010083>

866 Lipford, J. R., & Deshaies, R. J. (2003). Diverse roles for ubiquitin-dependent proteolysis in
867 transcriptional activation. *Nat Cell Biol*, 5(10), 845-850.
868 <https://doi.org/10.1038/ncb1003-845>

869 Lu, Y., Su, C., Ray, S., Yuan, Y., & Liu, H. (2019). CO₂ Signaling through the Ptc2-Ssn3
870 Axis Governs Sustained Hyphal Development of *Candida albicans* by Reducing
871 Ume6 Phosphorylation and Degradation. *mBio*, 10(1).
872 <https://doi.org/10.1128/mBio.02320-18>

873 Lund, E. K., Wharf, S. G., Fairweather-Tait, S. J., & Johnson, I. T. (1998). Increases in the
874 concentrations of available iron in response to dietary iron supplementation are
875 associated with changes in crypt cell proliferation in rat large intestine. *J Nutr*, 128(2),
876 175-179. <https://doi.org/10.1093/jn/128.2.175>

877 Lund, E. K., Wharf, S. G., Fairweather-Tait, S. J., & Johnson, I. T. (1999). Oral ferrous
878 sulfate supplements increase the free radical-generating capacity of feces from
879 healthy volunteers. *Am J Clin Nutr*, 69(2), 250-255.
880 <https://doi.org/10.1093/ajcn/69.2.250>

881 Mahalhal, A., Williams, J. M., Johnson, S., Ellaby, N., Duckworth, C. A., Burkitt, M. D., Liu,
882 X., Hold, G. L., Campbell, B. J., Pritchard, D. M., & Probert, C. S. (2018). Oral iron
883 exacerbates colitis and influences the intestinal microbiome. *PLoS One*, 13(10),
884 e0202460. <https://doi.org/10.1371/journal.pone.0202460>

885 Mao, Y., & Chen, C. (2019). The Hap Complex in Yeasts: Structure, Assembly Mode, and
886 Gene Regulation. *Front Microbiol*, 10, 1645.
887 <https://doi.org/10.3389/fmicb.2019.01645>

888 McNabb, D. S., & Pinto, I. (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA
889 complex in *Saccharomyces cerevisiae*. *Eukaryot Cell*, 4(11), 1829-1839.
890 <https://doi.org/10.1128/EC.4.11.1829-1839.2005>

891 Mello, E. O., Ribeiro, S. F., Carvalho, A. O., Santos, I. S., Da Cunha, M., Santa-Catarina, C.,
892 & Gomes, V. M. (2011). Antifungal activity of PvD1 defensin involves plasma
893 membrane permeabilization, inhibition of medium acidification, and induction of
894 ROS in fungi cells. *Curr Microbiol*, 62(4), 1209-1217.
895 <https://doi.org/10.1007/s00284-010-9847-3>

896 Miret, S., Simpson, R. J., & McKie, A. T. (2003). Physiology and molecular biology of
897 dietary iron absorption. *Annu Rev Nutr*, 23, 283-301.
898 <https://doi.org/10.1146/annurev.nutr.23.011702.073139>

899 Muratani, M., & Tansey, W. P. (2003). How the ubiquitin-proteasome system controls
900 transcription. *Nat Rev Mol Cell Biol*, 4(3), 192-201. <https://doi.org/10.1038/nrm1049>

901 Nelson, C., Goto, S., Lund, K., Hung, W., & Sadowski, I. (2003). Srb10/Cdk8 regulates yeast
902 filamentous growth by phosphorylating the transcription factor Ste12. *Nature*,
903 421(6919), 187-190. <https://doi.org/10.1038/nature01243>

904 Nobile, C. J., Nett, J. E., Hernday, A. D., Homann, O. R., Deneault, J. S., Nantel, A., Andes,
905 D. R., Johnson, A. D., & Mitchell, A. P. (2009). Biofilm matrix regulation by
906 *Candida albicans* Zap1. *PLoS Biol*, 7(6), e1000133.
907 <https://doi.org/10.1371/journal.pbio.1000133>

908 Noble, S. M., & Johnson, A. D. (2007). Genetics of *Candida albicans*, a diploid human fungal
909 pathogen. *Annu Rev Genet*, 41, 193-211.
910 <https://doi.org/10.1146/annurev.genet.41.042007.170146>

911 Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., & Mann, M.
912 (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling
913 networks. *Cell*, 127(3), 635-648. <https://doi.org/10.1016/j.cell.2006.09.026>

914 Pierre, J. L., Fontecave, M., & Crichton, R. R. (2002). Chemistry for an essential biological
915 process: the reduction of ferric iron. *Biometals*, 15(4), 341-346.
916 <https://doi.org/10.1023/a:1020259021641>

917 Pinkham, J. L., & Guarente, L. (1985). Cloning and molecular analysis of the HAP2 locus: a
918 global regulator of respiratory genes in *Saccharomyces cerevisiae*. *Mol Cell Biol*,
919 5(12), 3410-3416. <https://doi.org/10.1128/mcb.5.12.3410-3416.1985>

920 Pizarro, F., Amar, M., & Stekel, A. (1987). Determination of iron in stools as a method to
921 monitor consumption of iron-fortified products in infants. *Am J Clin Nutr*, 45(2),
922 484-487. <https://doi.org/10.1093/ajcn/45.2.484>

923 Punga, T., Bengoechea-Alonso, M. T., & Ericsson, J. (2006). Phosphorylation and
924 ubiquitination of the transcription factor sterol regulatory element-binding protein-1
925 in response to DNA binding. *J Biol Chem*, 281(35), 25278-25286.
926 <https://doi.org/10.1074/jbc.M604983200>

927 Puri, S., Kumar, R., Rojas, I. G., Salvatori, O., & Edgerton, M. (2019). Iron Chelator
928 Deferasirox Reduces *Candida albicans* Invasion of Oral Epithelial Cells and Infection
929 Levels in Murine Oropharyngeal Candidiasis. *Antimicrob Agents Chemother*, 63(4).
930 <https://doi.org/10.1128/AAC.02152-18>

931 Reed, C., Ibrahim, A., Edwards, J. E., Jr., Walot, I., & Spellberg, B. (2006). Deferasirox, an
932 iron-chelating agent, as salvage therapy for rhinocerebral mucormycosis. *Antimicrob
933 Agents Chemother*, 50(11), 3968-3969. <https://doi.org/10.1128/AAC.01065-06>

934 Ren, T., Zhu, H., Tian, L., Yu, Q., & Li, M. (2020). *Candida albicans* infection disturbs the
935 redox homeostasis system and induces reactive oxygen species accumulation for
936 epithelial cell death. *FEMS Yeast Res*, 20(4). <https://doi.org/10.1093/femsyr/foz081>

937 Ryan, T. P., & Aust, S. D. (1992). The role of iron in oxygen-mediated toxicities. *Crit Rev
938 Toxicol*, 22(2), 119-141. <https://doi.org/10.3109/10408449209146308>

939 Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress.
940 *Curr Biol*, 24(10), R453-462. <https://doi.org/10.1016/j.cub.2014.03.034>

941 Schwartz, A. J., Das, N. K., Ramakrishnan, S. K., Jain, C., Jurkovic, M. T., Wu, J., Nemeth,
942 E., Lakhal-Littleton, S., Colacino, J. A., & Shah, Y. M. (2019). Hepatic
943 hepcidin/intestinal HIF-2alpha axis maintains iron absorption during iron deficiency
944 and overload. *J Clin Invest*, 129(1), 336-348. <https://doi.org/10.1172/JCI122359>

945 Singh, A., Kaur, N., & Kosman, D. J. (2007). The metalloreductase Fre6p in Fe-efflux from
946 the yeast vacuole. *J Biol Chem*, 282(39), 28619-28626.
947 <https://doi.org/10.1074/jbc.M703398200>

948 Singh, R. P., Prasad, H. K., Sinha, I., Agarwal, N., & Natarajan, K. (2011). Cap2-HAP
949 complex is a critical transcriptional regulator that has dual but contrasting roles in
950 regulation of iron homeostasis in *Candida albicans*. *J Biol Chem*, 286(28),
951 25154-25170. <https://doi.org/10.1074/jbc.M111.233569>

952 Skrahina, V., Brock, M., Hube, B., & Brunke, S. (2017). *Candida albicans* Hap43 Domains
953 Are Required under Iron Starvation but Not Excess. *Front Microbiol*, 8, 2388.
954 <https://doi.org/10.3389/fmicb.2017.02388>

955 Swaney, D. L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N. J., & Villen, J.
956 (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein
957 degradation. *Nat Methods*, 10(7), 676-682. <https://doi.org/10.1038/nmeth.2519>

958 Symeonidis, A. S. (2009). The role of iron and iron chelators in zygomycosis. *Clin Microbiol
959 Infect*, 15 Suppl 5, 26-32. <https://doi.org/10.1111/j.1469-0691.2009.02976.x>

960 Thon, M., Al Abdallah, Q., Hortschansky, P., Scharf, D. H., Eisendle, M., Haas, H., &
961 Brakhage, A. A. (2010). The CCAAT-binding complex coordinates the oxidative
962 stress response in eukaryotes. *Nucleic Acids Res*, 38(4), 1098-1113.
963 <https://doi.org/10.1093/nar/gkp1091>

964 Thrower, J. S., Hoffman, L., Rechsteiner, M., & Pickart, C. M. (2000). Recognition of the
965 polyubiquitin proteolytic signal. *EMBO J*, 19(1), 94-102.
966 <https://doi.org/10.1093/emboj/19.1.94>

967 Tumusiime, S., Zhang, C., Overstreet, M. S., & Liu, Z. (2011). Differential regulation of
968 transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway.
969 *J Biol Chem*, 286(6), 4620-4631. <https://doi.org/10.1074/jbc.M110.195313>

970 Valko, M., Morris, H., Mazur, M., Raptis, P., & Bilton, R. F. (2001). Oxygen free radical
971 generating mechanisms in the colon: do the semiquinones of vitamin K play a role in

972 the aetiology of colon cancer? *Biochim Biophys Acta*, 1527(3), 161-166.
973 [https://doi.org/10.1016/s0304-4165\(01\)00163-5](https://doi.org/10.1016/s0304-4165(01)00163-5)

974 Van Breusegem, F., Vranova, E., Dat, J. F., & Inze, D. (2001). The role of active oxygen
975 species in plant signal transduction. *Plant Science*, 161(3), 405-414.
976 [https://doi.org/10.1016/S0168-9452\(01\)00452-6](https://doi.org/10.1016/S0168-9452(01)00452-6)

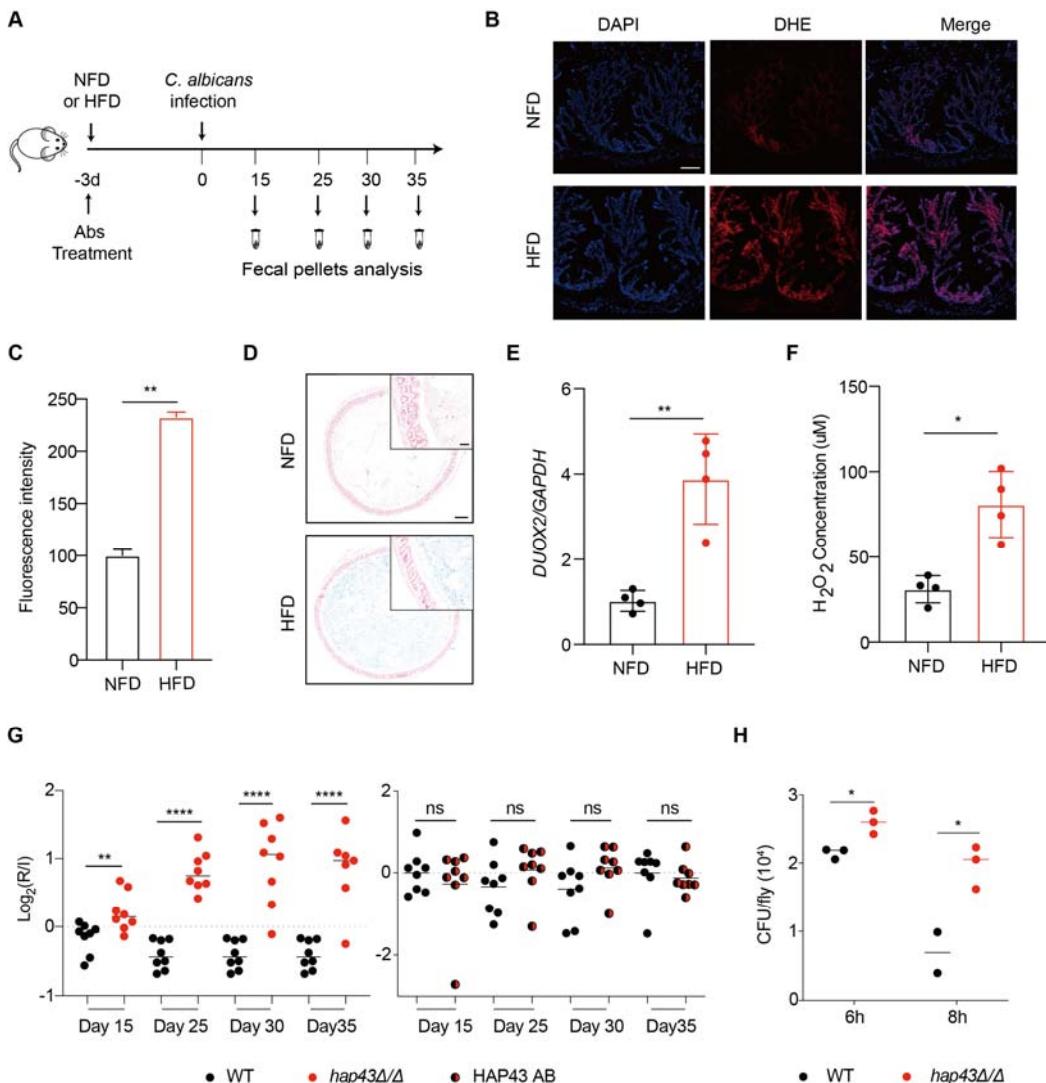
977 von Hagen, J., & Michelsen, U. (2013). Cellular fractionation--yeast cells. *Methods Enzymol*,
978 533, 31-39. <https://doi.org/10.1016/B978-0-12-420067-8.00004-0>

979 Wong, Y. H., Lee, T. Y., Liang, H. K., Huang, C. M., Wang, T. Y., Yang, Y. H., Chu, C. H.,
980 Huang, H. D., Ko, M. T., & Hwang, J. K. (2007). KinasePhos 2.0: a web server for
981 identifying protein kinase-specific phosphorylation sites based on sequences and
982 coupling patterns. *Nucleic Acids Res*, 35(Web Server issue), W588-594.
983 <https://doi.org/10.1093/nar/gkm322>

984 **Acknowledgements**

985 C.C. is supported by grants from the MOST Key R&D Program of China (2022YFC2303200;
986 2022YFC2304700); the National Natural Science Foundation (32170195); the Shanghai
987 Municipal Science and Technology Major Project (2019SHZDZX02); the Open Project of the
988 State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical
989 University (SKLKF201803); the Innovation Capacity Building Project of Jiangsu Province
990 (BM2020019). H.L. is supported by the Special Program of PLA (19SWAQ18). Y.W. is
991 supported by a National Postdoctoral fellowship (No.312780) and Shanghai Post-doctoral
992 Excellence Program (No.2022647). X.H. is supported by grants from the National Natural
993 Science Foundation (32070146, 31600119); the Natural Science Foundation of Shanghai
994 (20ZR1463800, 15ZR1444400). The authors thank Dr. Suzanne Noble at UCSF for providing

995 us the *C. albicans* homozygous gene deletion library and related plasmids as gift, and
996 excellent supervision in postdoctoral education and training. We gratefully acknowledge Dr.
997 Aaron P. Mitchell at the University of Georgia for valuable comments and helpful discussions.
998 And we thank all the lab members in the Chen-lab at Institut Pasteur of Shanghai, Chinese
999 Academy of Sciences and the members in the Liang-lab at State Key Laboratory of Trauma,
1000 Burns and Combined Injury, Third Military Medical University, for their help in discussion
1001 and preparation of the manuscript.


1002 **Author contribution**

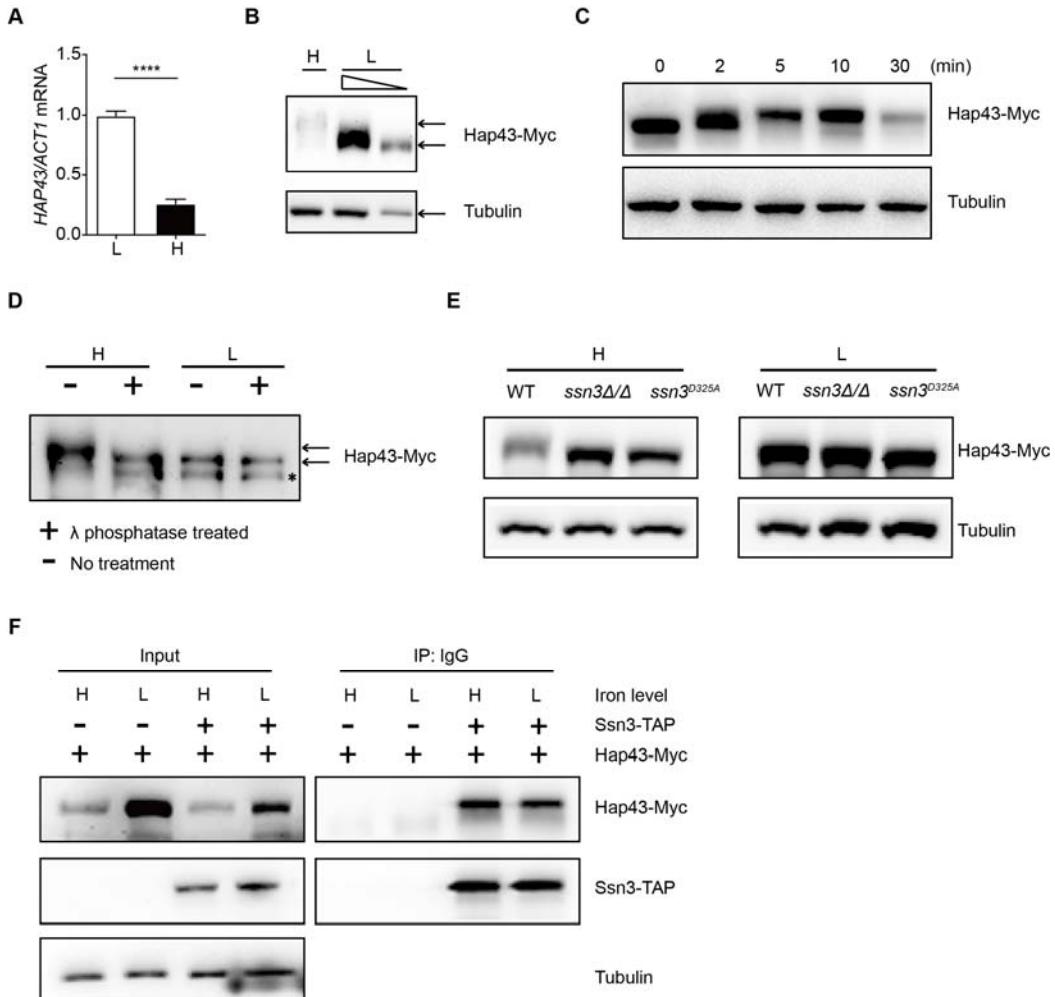
1003 CC and HL conceived and designed the study; CC, HL, YW and YM performed data analysis
1004 and wrote the manuscript; YW, YM, XH, TJ, YZ, CX, ZZ, LT, XM and XW conducted all
1005 the experiments; XC performed the statistical analysis of the data; KY performed the
1006 Drosophila infection; CC, HL, YW, YM and LP discussed the experiments and results.

1007 **Competing interests**

1008 The authors declare no competing interests.

1009 **Figures**

1010

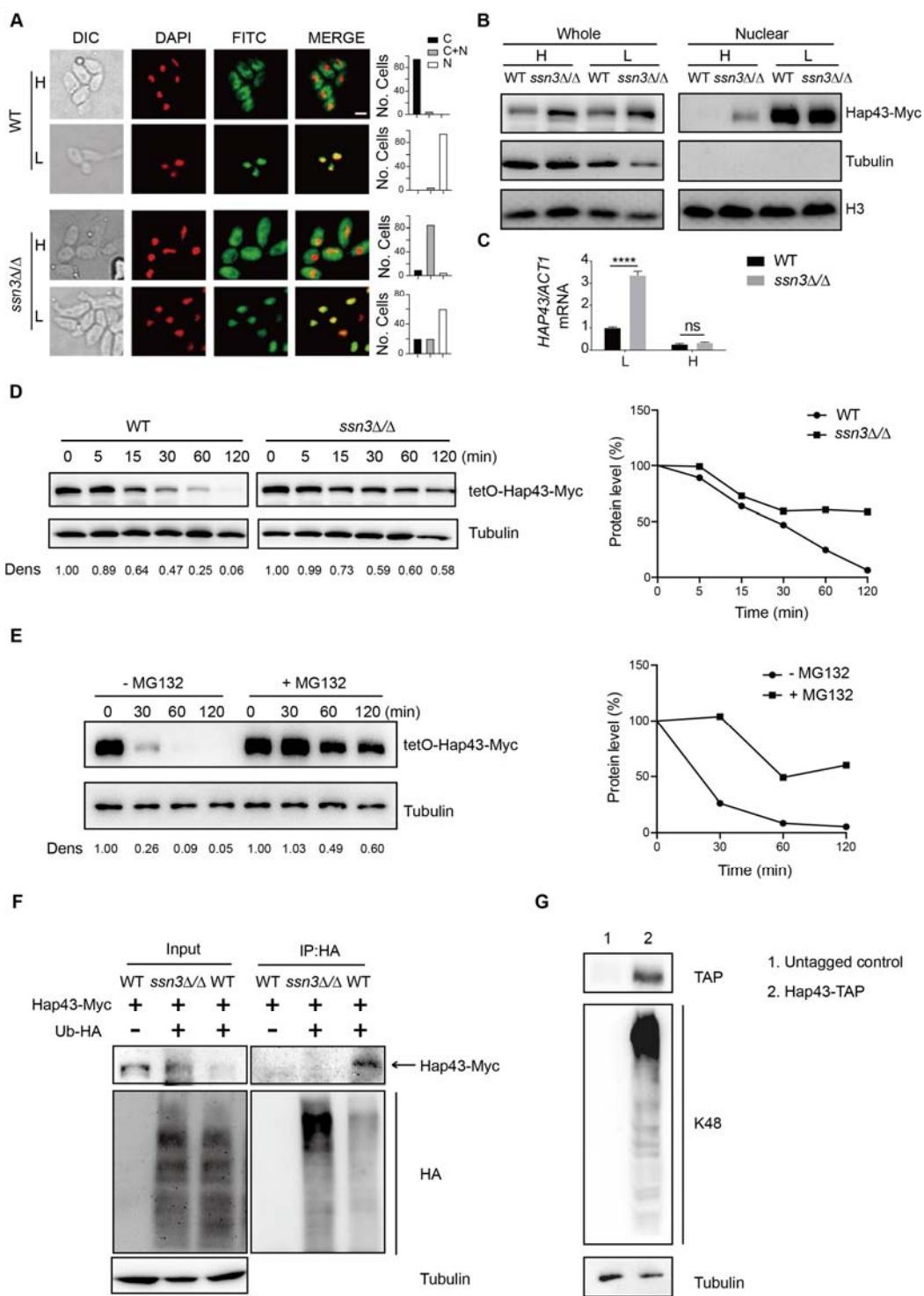

1011 **Figure 1. Deletion of *HAP43* significantly increases the commensal fitness of *C. albicans***

1012 **in GI tract of mice fed a high-Fe diet. (A)** As depicted in the schematics, mice were fed a
 1013 normal Fe (NFD) or high-Fe diet (HFD) for 3 days prior to *C. albicans* inoculation. The mice
 1014 continuously received the same diet during the course of experiments. **(B)** Colonic ROS
 1015 accumulation in mice receiving a NFD or HFD diet for three days. Cryostat colonic sections
 1016 were incubated with dihydroethidium (DHE) and DAPI. Scale bar, 100 μM . **(C)** Quantitative

1017 analysis using fluorescence intensity of DHE (a) in the colon. **(D)** Colonic samples were
1018 collected from mice fed either a NFD or HFD, formalin fixed, paraffin embedded, sectioned,
1019 and stained with Prussian blue for iron. Representative Prussian blue-stained colonic samples
1020 confirmed higher iron deposits in mice receiving HFD (iron blue, nucleus red). Scale bar, 200
1021 μm ; inset, 50 μm . **(E)** The expression of *DUOX2* mRNA in the colonic tissue of mice
1022 receiving NFD or HFD. Values were normalized to the expression levels of *GAPDH*. **(F)**
1023 The effect of iron on hydrogen peroxide (H_2O_2) levels in NFD or HFD-treated mice (n=4
1024 mice per group). **(G)** Mutant lacking *HAP43* exhibits enhanced commensal fitness in
1025 HFD-treated mice. Mice (n=8 mice per group) fed a high Fe diet were inoculated by gavage
1026 with 1:1 mixtures of the wild-type (WT) and either *hap43Δ/Δ* mutant or *HAP43* reintegrant
1027 (*HAP43* AB) cells (1×10^8 CFU per mice). The fitness value for each strain was calculated as
1028 the \log_2 ratio of its relative abundance in the recovered pool from the host (R) to the initial
1029 inoculum (I), and was determined by qPCR using strain-specific primers that could
1030 distinguish one from another. **(H)** Differences in fungal burden (expressed as CFUs) of flies
1031 assessed at different time points after incubation in a fresh vial containing live yeast media
1032 (4×10^8 CFU of WT or *hap43Δ/Δ* mutant cells). Results from three independent experiments
1033 are shown. All data shown are means \pm SD. ns, no significance; * $p<0.05$, ** $p<0.01$, ****
1034 $p<0.0001$; by unpaired Student's *t*-test (C, E, F, G) or two-way ANOVA with Sidak's test
1035 (H).

1036 The following figure supplement for figure 1:

1037 **Figure 1 supplement 1.** Mutant lacking *HAP43* exhibits no change in commensal fitness in
1038 NFD-treated mice.


1039

1040 **Figure 2. High iron triggers Ssn3-mediated phosphorylation of Hap43. (A)** qRT-PCR
1041 analysis for *HAP43* mRNA in WT strain grown under iron-replete (H, high iron) or
1042 iron-depleted (L, low iron) conditions. Transcript levels were normalized to the level of *ACT1*
1043 mRNA. Results from three independent experiments are shown. All data shown are means ±
1044 SD. **** $p<0.0001$; by unpaired Student's *t*-test. **(B)** Immunoblots of C-terminally tagged

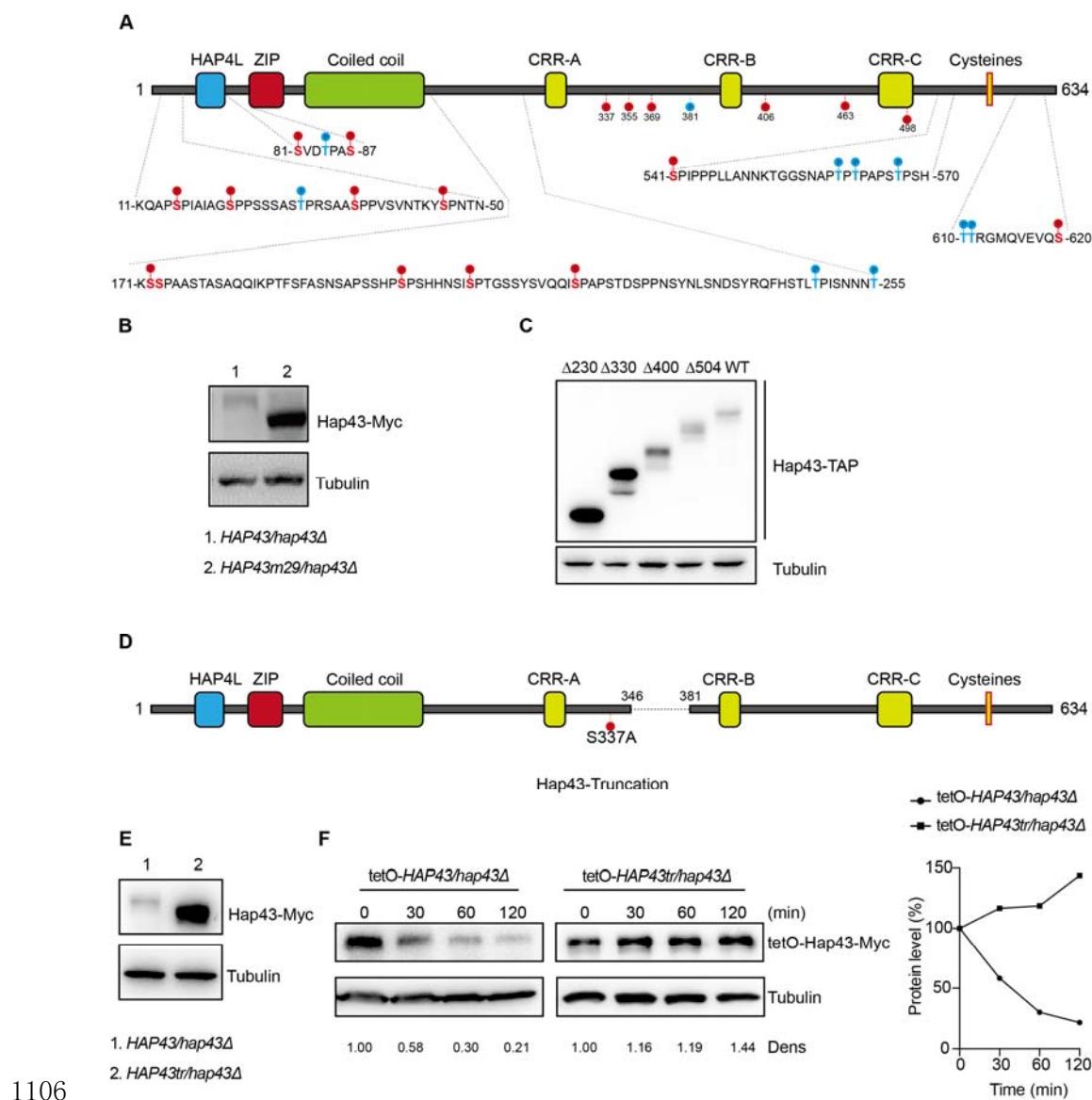
1045 Hap43 (Hap43-Myc) in WT cells propagated under iron-replete (H) or iron-depleted (L)
1046 conditions. To better display the mobility-shift on protein, we added additional lane and
1047 loaded smaller quantities of total proteins from low-iron culture. α -tubulin, internal standard.
1048 **(C)** Time course for electrophoretic mobility of Hap43-Myc in WT cells during a shift from
1049 iron-depleted to iron-replete conditions. **(D)** Immunoblots of purified Hap43-Myc protein
1050 either treated (+) or not treated (-) with λ phosphatase. Note that higher amounts of total
1051 proteins from high-iron cultures were loaded. * indicates a presumed Hap43-Myc C-terminal
1052 proteolysis product. **(E)** Immunoblots of Hap43-Myc recovered from WT, *ssn3Δ/Δ* or
1053 *SSN3^{D325A}* cells under iron-replete (H) or iron-depleted (L) conditions. α -tubulin, internal
1054 standard. **(F)** Hap43-Myc is co-immunoprecipitated with Ssn3-TAP. WT strains containing
1055 only Ssn3-TAP or both Ssn3-TAP and Hap43-Myc were grown under iron-replete (H) or
1056 iron-depleted (L) conditions. Lysates were prepared under nondenaturing conditions, and
1057 IgG-sepharose affinity column was used to immune-precipitate Ssn3-TAP and interacting
1058 proteins.

1059 The following source data for figure 2:

1060 **Figure 2-source data.** Uncropped images of gels and blots in **Figure 2**.

1062 **Figure 3. Ssn3-mediated phosphorylation induces cytoplasmic localization and protein**
 1063 **degradation of Hap43 by ubiquitin-proteasome pathway. (A)** Left panels: Indirect
 1064 immunofluorescence of Hap43-Myc in WT and *ssn3* Δ/Δ mutant strains grown under

1065 iron-replete (H, high iron) or iron-depleted (L, low iron) conditions. DIC represents phase
1066 images, DAPI represents nuclear staining, FITC represents Hap43-Myc staining, and Merge
1067 represents the overlay of Hap43-Myc and nuclear staining. Right panels: Quantification of the
1068 cellular distribution of Hap43. Each bar represents the analysis of at least 100 cells. C
1069 representing >90% cytoplasmic staining, N >90% nuclear staining, and C+N a mixture of
1070 cytoplasmic and nuclear staining. Scale bar, 5 μ m. **(B)** Immunoblots of Hap43-Myc in whole
1071 cell extracts and nuclear fraction of WT or *ssn3Δ/Δ* mutant cells propagated under
1072 iron-replete (H) or iron-depleted (L) conditions. Cellular contents were separated into
1073 cytosolic and nuclear fractions according to the protocol described in *Materials and Methods*.
1074 The nuclear marker H3 and cytoplasmic marker α -tubulin were used to display the purities of
1075 nucleus and cytoplasm. **(C)** qRT-PCR analysis for *HAP43* mRNA in WT and *ssn3Δ/Δ* strains
1076 grown under iron-replete (H) or iron-depleted (L) conditions. Transcript levels were
1077 normalized to the level of *ACT1* mRNA. Results from three independent experiments are
1078 shown. All data shown are means \pm SD. ns, no significance; **** p <0.0001; by two-way
1079 ANOVA with Sidak's test. **(D)** Hap43 protein is stabilized in a *ssn3Δ/Δ* mutant. WT or
1080 *ssn3Δ/Δ* strains stably expressing doxycycline-inducible Myc-tagged Hap43
1081 (TetO-Hap43-Myc) were treated with doxycycline. Cells were harvested in the exponential
1082 phase of growth, washed to remove doxycycline, and resuspended in fresh iron-replete
1083 medium. The turnover of Hap43-Myc in WT or *ssn3Δ/Δ* cells was then evaluated following
1084 the tetO promoter shut-off by removal of doxycycline, through time-course experiments.
1085 Right panel: Hap43-Myc quantification after intensity analysis using Image J. **(E)** Similar to


1086 **D**, after treatment with doxycycline, WT cells (a copy of *ERG6* was deleted) stably
1087 expressing doxycycline-inducible Myc-tagged Hap43 (TetO-Hap43-Myc) were harvested,
1088 washed and treated with or without the proteasomal inhibitor MG132 (100 μ M). The turnover
1089 of Hap43-Myc in WT cells was evaluated through time-course experiments. Right panel:
1090 Hap43-Myc quantification after intensity analysis using Image J. **(F)** Detection of Hap43
1091 ubiquitination in *C. albicans*. WT and *ssn3Δ/Δ* mutant strains were engineered by stably
1092 expressing either Hap43-Myc alone or both Hap43-Myc plus tetO-HA-Ub. Both strains were
1093 incubated under iron-replete plus 50 μ g/ml doxycycline conditions and cell extracts were
1094 subjected to immunoprecipitation with anti-HA-conjugated beads followed by Western blot
1095 analysis with anti-Myc antibodies for detection of ubiquitinated Hap43. **(G)** Detection of
1096 Hap43 polyubiquitination in *C. albicans*. The WT strain was engineered by stably expressing
1097 Hap43-TAP and grown under iron replete conditions. Cell extracts were immunoprecipitated
1098 with IgG-sepharose followed by Western blot analysis with anti-K48 linkage antibody for
1099 detection of K48-linked polyubiquitination of Hap43.

1100 The following source data and figure supplement(s) for figure 3:

1101 **Figure 3-source data.** Uncropped images of gels and blots in **Figure 3**.

1102 **Figure 3 supplement 1.** Chloroquine had no effect on Hap43 degradation under high iron
1103 conditions.

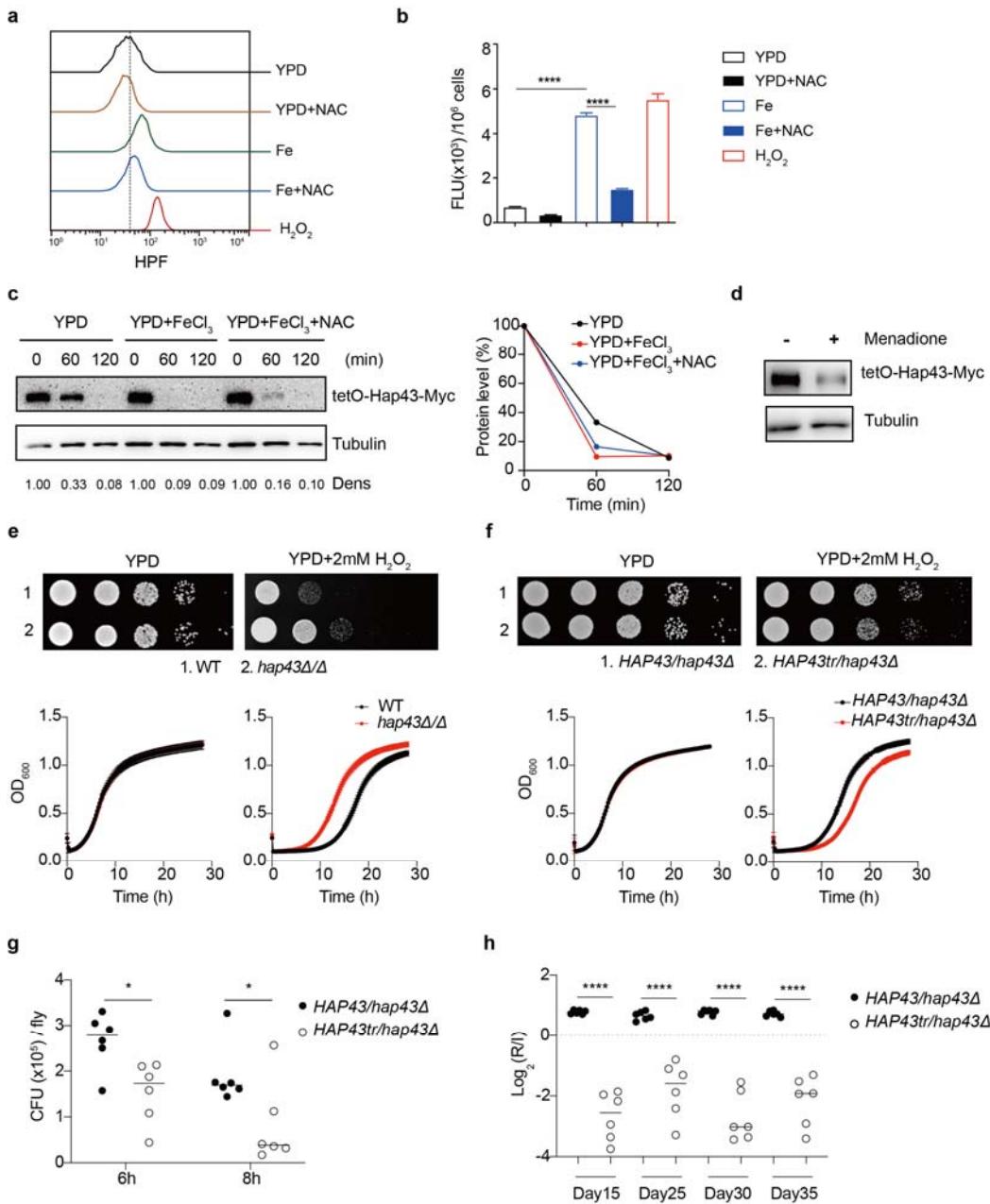
1104 **Figure 3 supplement 2.** Immunoblots showing the induction of an epitope-tagged
1105 3xHA-ubiquitin under the control of the doxycycline (DOX) inducible promoter.

1107 **Figure 4. The critical phosphorylation sites are essential for Hap43 stabilization. (A)**
1108 Schematic representation of *C. albicans* Hap43. Putative phosphorylation sites predicted by
1109 the Kinasephos 2.0 server and Cdk8-dependent phosphorylation sites are represented. **(B)**
1110 Immunoblots of Hap43-Myc in strains expressing either the WT or the amino acid mutation
1111 (*HAP43m29*; all 29 putative S/T phosphorylation sites were replaced with alanine residues)
1112 allele of Hap43. Cells were treated at high iron conditions. **(C)** Immunoblots of Hap43-TAP

1113 in WT and truncation mutant strains grown under iron-replete conditions. **(D)** Schematic
1114 representation of *C. albicans* Hap43 truncation. Hap43 truncation mutation (*HAP43tr*) was
1115 generated by deleting the 36 residues (346-381 aa) of Hap43 in $HAP43^{S337A}$ strain. **(E)**
1116 Immunoblots of Hap43-Myc in strains expressing either the WT or the truncation mutation
1117 (*HAP43tr*) allele of Hap43. Cells were treated at high iron conditions. **(F)** Strains expressing
1118 either the WT or the truncation mutation (*HAP43tr*) allele of Hap43 under control of the
1119 inducible tetO promoter were treated with doxycycline. Cells were harvested in the
1120 exponential phase of growth, washed to remove doxycycline, and resuspended in fresh
1121 iron-replete medium (YPD). The turnover of Hap43-Myc in WT or truncation mutant cells
1122 was then evaluated following the tetO promoter shut-off by removal of doxycycline, through
1123 time-course experiments. Right panel: Hap43-Myc quantification after intensity analysis
1124 using Image J.

1125 The following source data and figure supplement(s) for figure 4:

1126 **Figure 4-source data.** Uncropped images of gels and blots in **Figure 4**.


1127 **Figure 4 supplement 1.** The Hap43 mutants harboring serine/threonine-to-alanine
1128 substitutions in its one or two putative phosphorylation sites showed the WT-like degradation
1129 patterns of Hap43 under high iron conditions.

1130 **Figure 4 supplement 2.** The mutants harboring amino acid substitutions or fragment
1131 truncation showed no defects in vegetative growth.

1132 **Figure 4 supplement 3.** The critical phosphorylation region is essential for Hap43
1133 stabilization.

1134 **Figure 4 supplement 4.** The mutants harboring amino acid substitutions or fragment
1135 truncation showed no defects in vegetative growth.

1136 **Figure 4 supplement 5.** Identification of potential phosphorylation sites of Hap43.

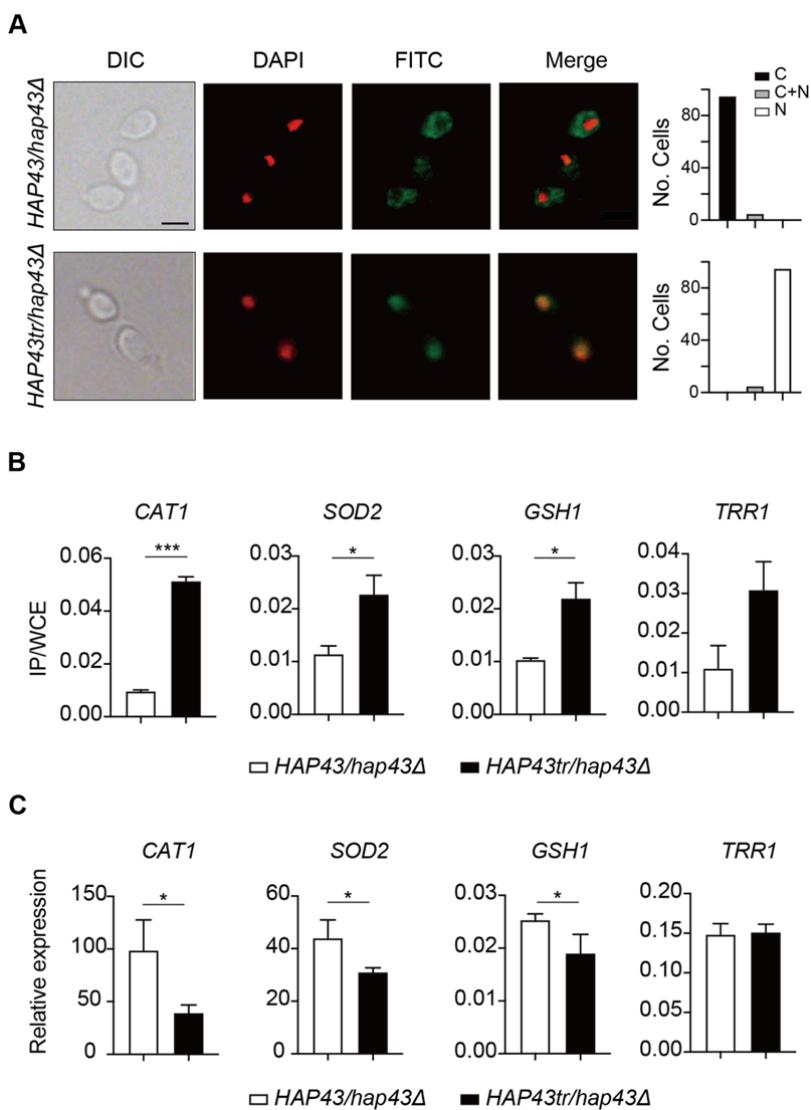
1137

1138 **Figure 5. Hap43 phosphorylation is important for alleviating Fenton reaction-induced**
1139 **ROS toxicity and for GI colonization. (A, B)** Intracellular ROS production of *C. albicans*

1140 under different experimental conditions. *C. albicans* yeast cells were grown on YPD
1141 supplemented with indicated reagents. About 1×10^7 cells in exponential growth phase were
1142 collected, washed with PBS, stained with 5mM of HPF, and analyzed using FACS **(A)** or the
1143 microplate reader **(B)**. **(C, D)** Hap43 stability assay by immunoblots in WT strain stably
1144 expressing doxycycline-inducible Myc-tagged Hap43 (TetO-Hap43-Myc). Cells were
1145 incubated in YPD and YPD supplemented with 200 μ M FeCl₃, a combination of 200 μ M
1146 FeCl₃ and 20 mM N-acetyl-L-cysteine (NAC) **(C)** or 20 μ M menadione for 120 min **(D)**. **(E)**
1147 Growth of *hap43Δ/Δ* mutant under oxidative stresses. Top panel: WT and *hap43Δ/Δ* mutant
1148 cells were spotted with 10-fold serial dilutions onto YPD or YPD supplemented with 2 mM
1149 H₂O₂ and grown for 2 days at 30 °C. Bottom panel: Growth curve analysis of WT and
1150 *hap43Δ/Δ* in YPD liquid medium supplemented with 2 mM H₂O₂ at 30°C. OD₆₀₀ readings
1151 were obtained every 15 min in a BioTek TM Synergy TM 2 Multi-mode Microplate Reader. **(F)**
1152 Growth of the truncation mutant (*Hap43tr*) under oxidative stresses. The experiments were
1153 conducted the same way as describe in **E**. **(G)** Similar to Figure. **1G**, flies were fed on live
1154 yeast cells of indicated strains and the fungal burden of each strain (expressed as CFUs) was
1155 determined at different time points. **(H)** The truncation mutant of Hap43 exhibits decreased
1156 commensal fitness in mice. Similar to Figure. **1F**, mice (n=6) were inoculated by gavage with
1157 1:1 mixtures of the WT and the truncation mutant (*Hap43tr*) cells (1×10^8 CFU per mice). The
1158 fitness value for each strain was calculated as the log₂ ratio of its relative abundance in the
1159 recovered pool from the host (R) to the initial inoculum (I), and was determined by qPCR
1160 using strain-specific primers that could distinguish one from another. Results from three

1161 independent experiments are shown. All data shown are means \pm SD. * $p < 0.05$;

1162 **** $p < 0.0001$; by one-way ANOVA with Sidak's test (**B**), two-way ANOVA with Sidak's


1163 test (**G**) or unpaired Student's *t*-test (**H**).

1164 The following source data and figure supplement(s) for figure 5:

1165 **Figure 5-Source data.** Uncropped images of gels and blots in **Figure 5**.

1166 **Figure 5 supplement 1.** Hap43 phosphorylation is important for alleviating Fenton

1167 reaction-induced ROS toxicity and for GI colonization.

1168 **Figure 6. Iron-induced phosphorylation and degradation of Hap43 leads to**
1169 **de-repression of antioxidant genes. (A)** Left panels: Indirect immunofluorescence of
1170 Hap43-Myc in *HAP43/hap43Δ* and *HAP43tr/hap43Δ* strains grown under iron-replete
1171 conditions. DIC represents phase images, DAPI represents nuclear staining, FITC represents
1172 Hap43-Myc staining, and Merge represents the overlay of Hap43-Myc and nuclear staining.
1173 Right panels: Quantification of the cellular distribution of Hap43. Each bar represents the
1174 analysis of at least 100 cells. C representing >90% cytoplasmic staining, N >90% nuclear

1176 staining, and C+N a mixture of cytoplasmic and nuclear staining. Scale bar, 5 μ m. **(B)** ChIP

1177 of Hap43-Myc on the promoters that contain CCAAT boxes in a set of anti-oxidant genes.

1178 Overnight cultures of WT (*HAP43/hap43Δ*) and truncation mutant (*HAP43tr/hap43Δ*) cells

1179 were diluted in YPD plus 400 mM FeCl₃ and grown to log phase at 30 °C before

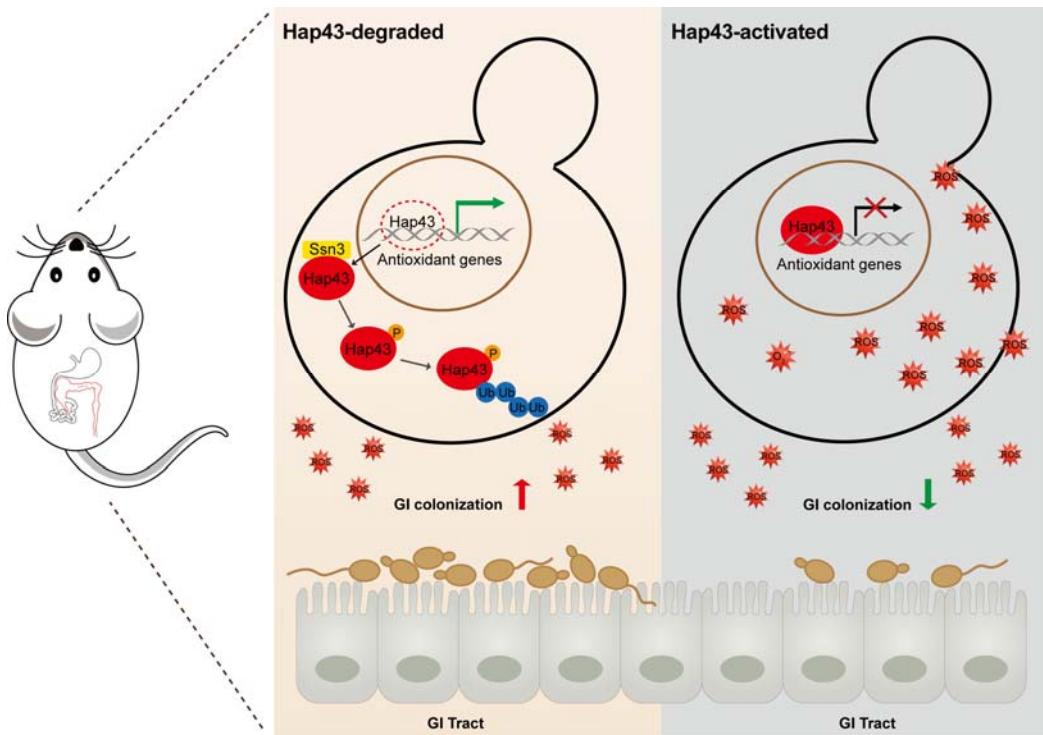
1180 formaldehyde. Enrichment is presented as a ratio of qPCR of the indicated gene promoter IP

1181 (bound/input) over an *ACT1* control region IP (bound/input) of the tagged strain, further

1182 normalized to the control strain. **(C)** qRT-PCR analysis for mRNA levels of a set of

1183 antioxidant genes in WT (*HAP43/hap43Δ*) and truncation mutant (*HAP43tr/hap43Δ*) strains

1184 grown under iron-replete conditions. Transcript levels were normalized to the level of *ACT1*


1185 mRNA. Results from three independent experiments are shown. All data shown are means \pm

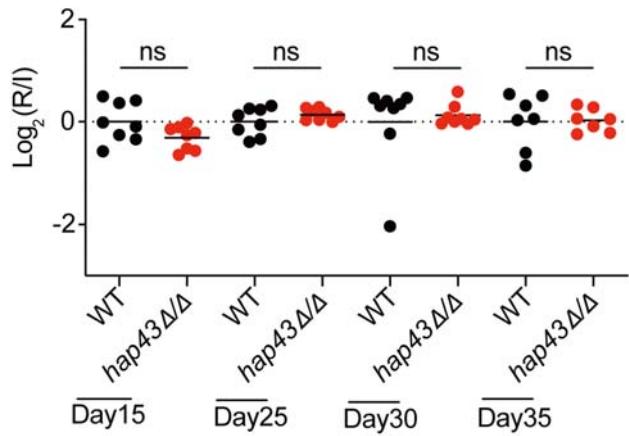
1186 SD. ns, no significance; * p <0.05; ** p <0.01; *** p <0.001; by unpaired Student's *t*-test (B, C).

1187 The following figure supplement(s) for figure 6:

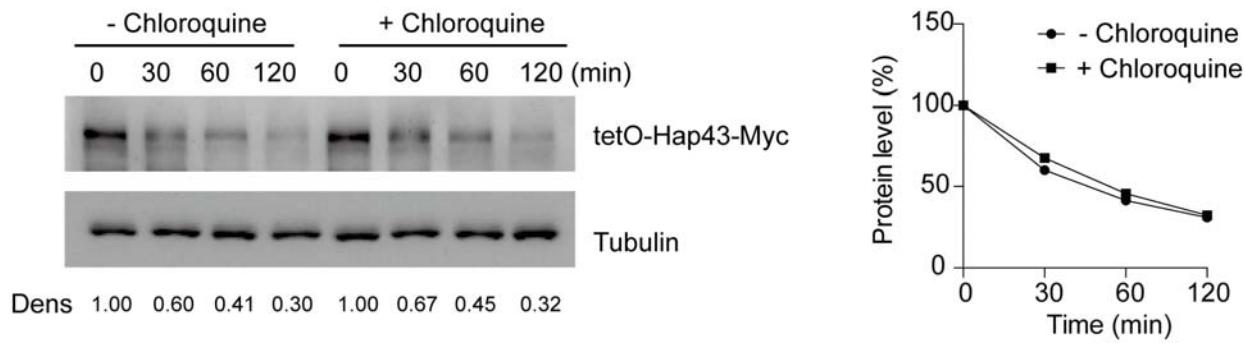
1188 **Figure 6 supplement 1.** Iron-induced phosphorylation and degradation of Hap43 leads to

1189 de-repression of antioxidant genes.

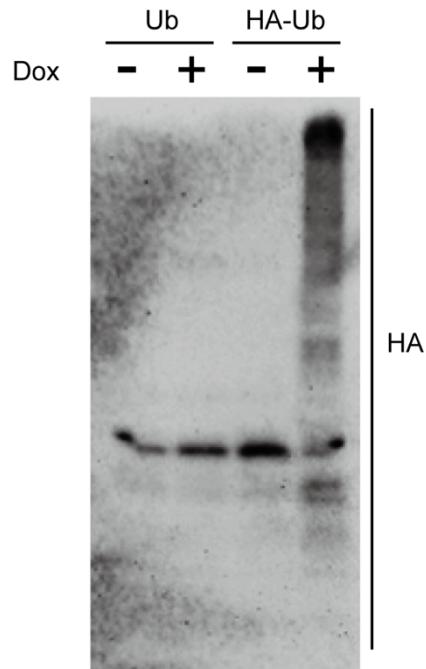
1191 **Figure 7. Model for the role of post-translational modification of Hap43 in promoting**
1192 **GI commensalism of *C. albicans*.** In the iron rich environment such as GI tract, the
1193 iron-responsive regulator Hap43 is subject to covalent posttranslational modifications,
1194 including phosphorylation and ubiquitination, and causes cytoplasm-nuclear relocation and
1195 protein degradation via proteasome activity, thus serving as a positive signal to de-repress the
1196 expression of a set of antioxidant genes (e.g., *CAT1* and *SOD2*), an event that is most
1197 effective in lowering cytotoxicity induced by iron-mediated ROS production and promotes *C.*
1198 *albicans* commensalism in GI tract.

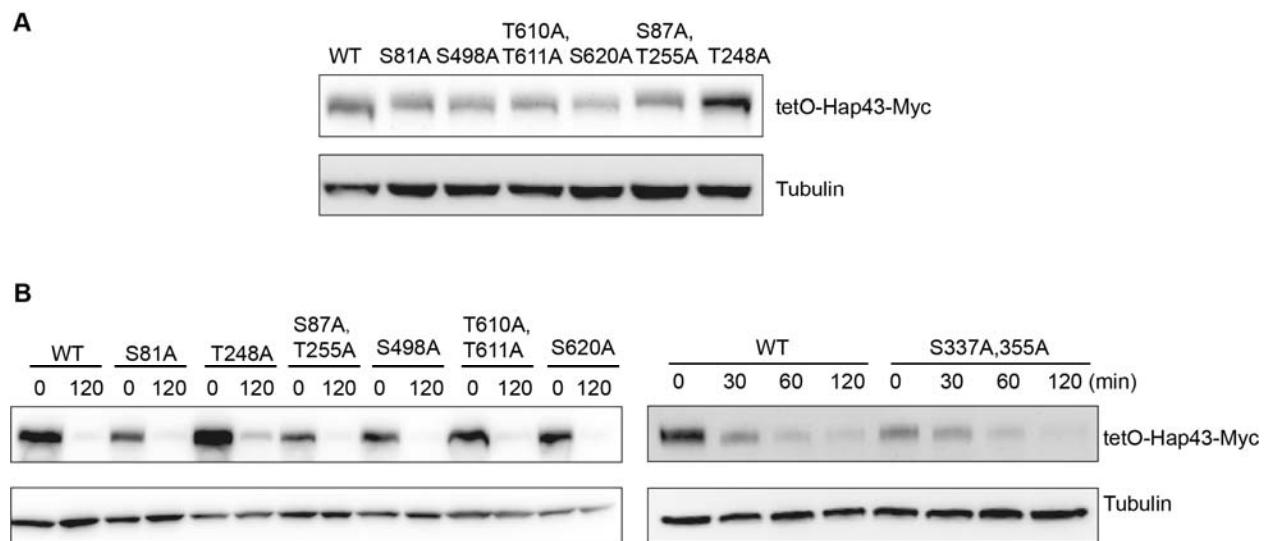

1199 **Supplementary Materials**

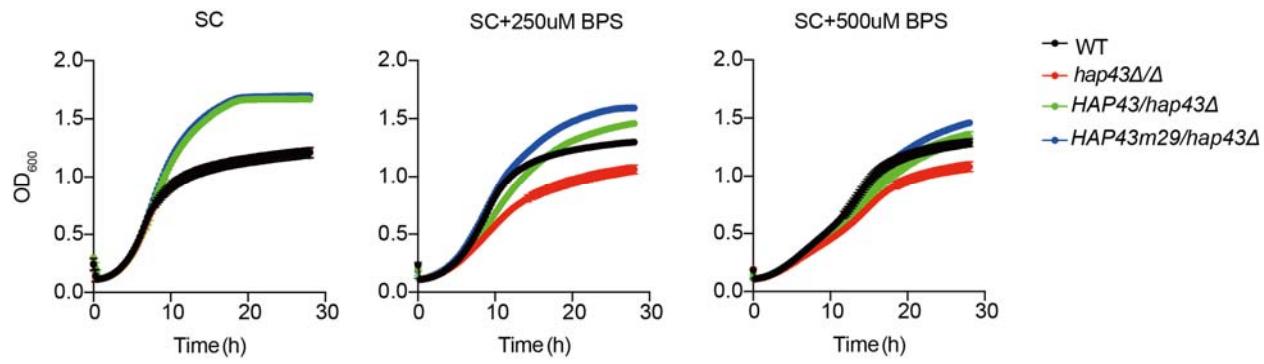
1200 **Figure supplement(s).**

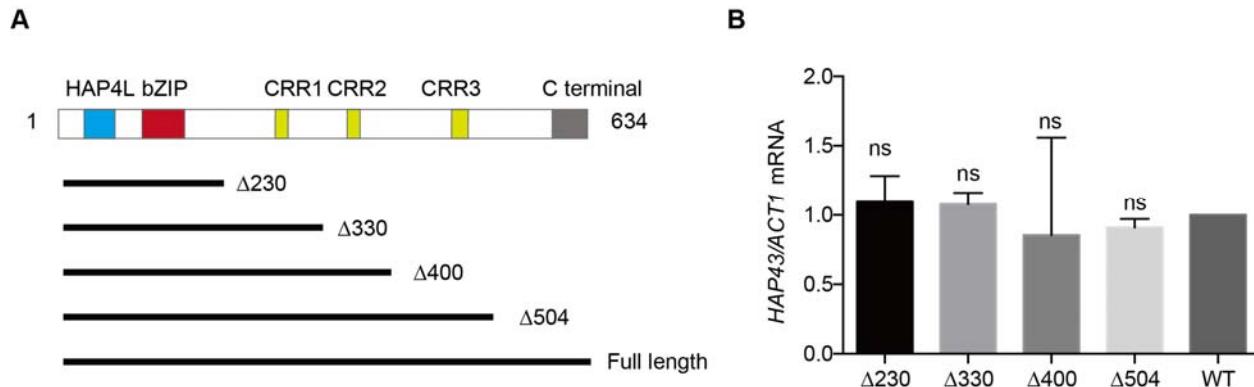

1201 **Table S1.** Strains used in this study.

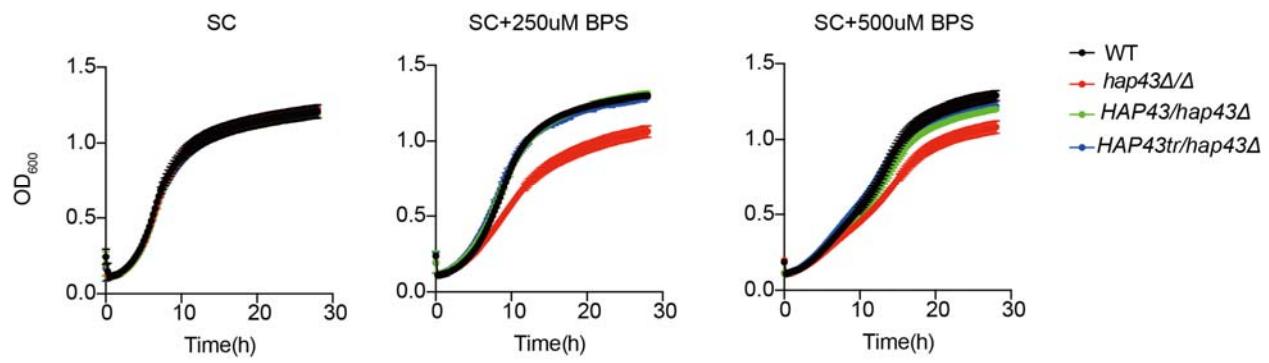
1202 **Table S2.** Plasmids used in this study.

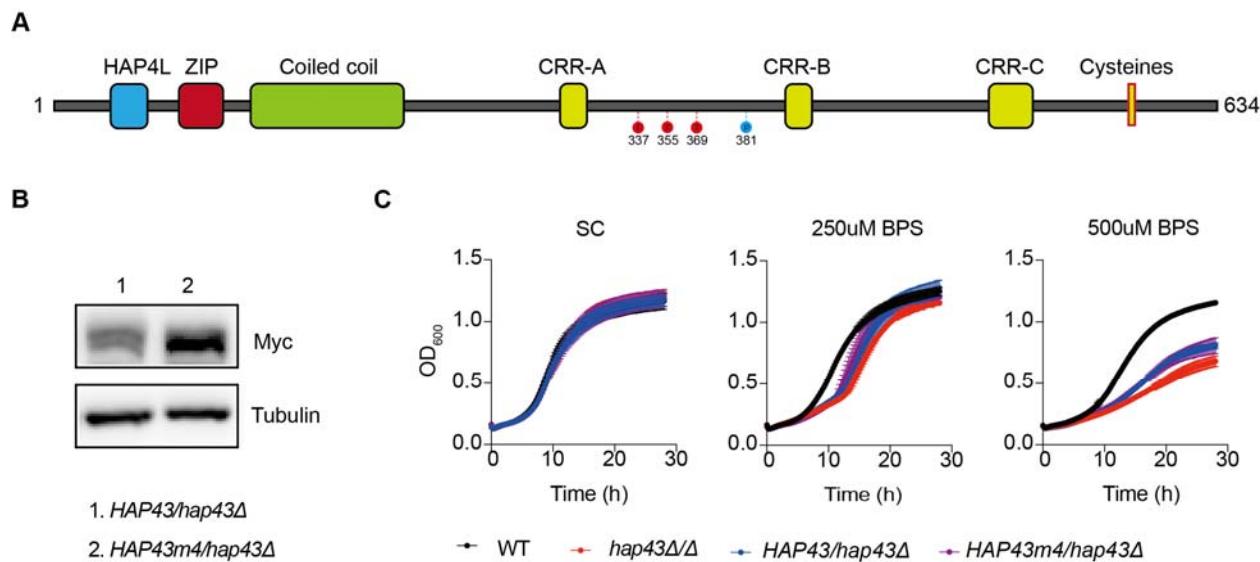

1203 **Table S3.** Primers used in this study.


Figure 1—figure supplement 1. Mutant lacking *HAP43* exhibits no change in commensal fitness in NFD-treated mice. Mice (n=8) fed a normal Fe diet (NFD) were inoculated by gavage with 1:1 mixtures of the wild-type (WT) and *hap43Δ/Δ* mutant cells (1×10^8 CFU per mice). The fitness value for each strain was calculated as the \log_2 ratio of its relative abundance in the recovered pool from the host (R) to the initial inoculum (I), and was determined by qPCR using strain-specific primers that could distinguish one from another. ns, no significance; by unpaired Student's *t*-test.


Figure 3—figure supplement 1. Chloroquine had no effect on Hap43 degradation under high iron conditions. After treatment with doxycycline, the WT cells stably expressing doxycycline-inducible Myc-tagged Hap43 (TetO-Hap43-Myc) were harvested, washed and treated with or without the lysosomal protease inhibitor chloroquine (100 mM). The turnover of Hap43-Myc in WT cells was evaluated through time-course experiments. Right panel: Hap43-Myc quantification after intensity analysis using Image J. For raw blots see **Figure 3—figure supplement 1—source data**.


Figure 3—figure supplement 2. Immunoblots showing the induction of an epitope-tagged 3xHA-ubiquitin under the control of the doxycycline (DOX) inducible promoter. *C. albicans* cells co-expressing 3xHA-tagged ubiquitin and Hap43-Myc as well as Hap43-Myc cells were incubated in YPD supplemented with 50 µg/ml doxycycline (Dox) for 6 h. Log-phase cells were collected and lysed, followed by immunoblots of whole cell extracts with anti-HA antibodies. For raw blots see **Figure 3—figure supplement 2—source data**.


Figure 4—figure supplement 1. The Hap43 mutants harboring serine/threonine-to-alanine substitutions in its one or two putative phosphorylation sites showed the WT-like degradation patterns of Hap43 under high iron conditions. **(A)** Immunoblots of Hap43-Myc in strains expressing the indicated amino acid substitution allele of Hap43. Cells were treated at high iron conditions. **(B)** Strains expressing the indicated amino acid substitution allele of Hap43 under control of the inducible tetO promoter were treated with doxycycline. Cells were harvested in the exponential phase of growth, washed to remove doxycycline, and resuspended in fresh iron-replete medium. The turnover of Hap43-Myc in WT or relative mutant cells was then evaluated at 2 h following the tetO promoter shut-off by removal of doxycycline. For raw blots see **Figure 4—figure supplement 1—source data**.


Figure 4—figure supplement 2. The mutants harboring amino acid substitutions or fragment truncation showed no defects in vegetative growth. Growth curve analysis of *HAP43* mutant strain harboring 29-point mutations in YPD liquid medium supplemented with 250 μ M or 500 μ M the impermeable iron chelator bathophenanthroline disulfonate (BPS) at 30°C. OD₆₀₀ readings were obtained every 15 min in a BioTekTM SynergyTM 2 Multi-mode Microplate Reader.

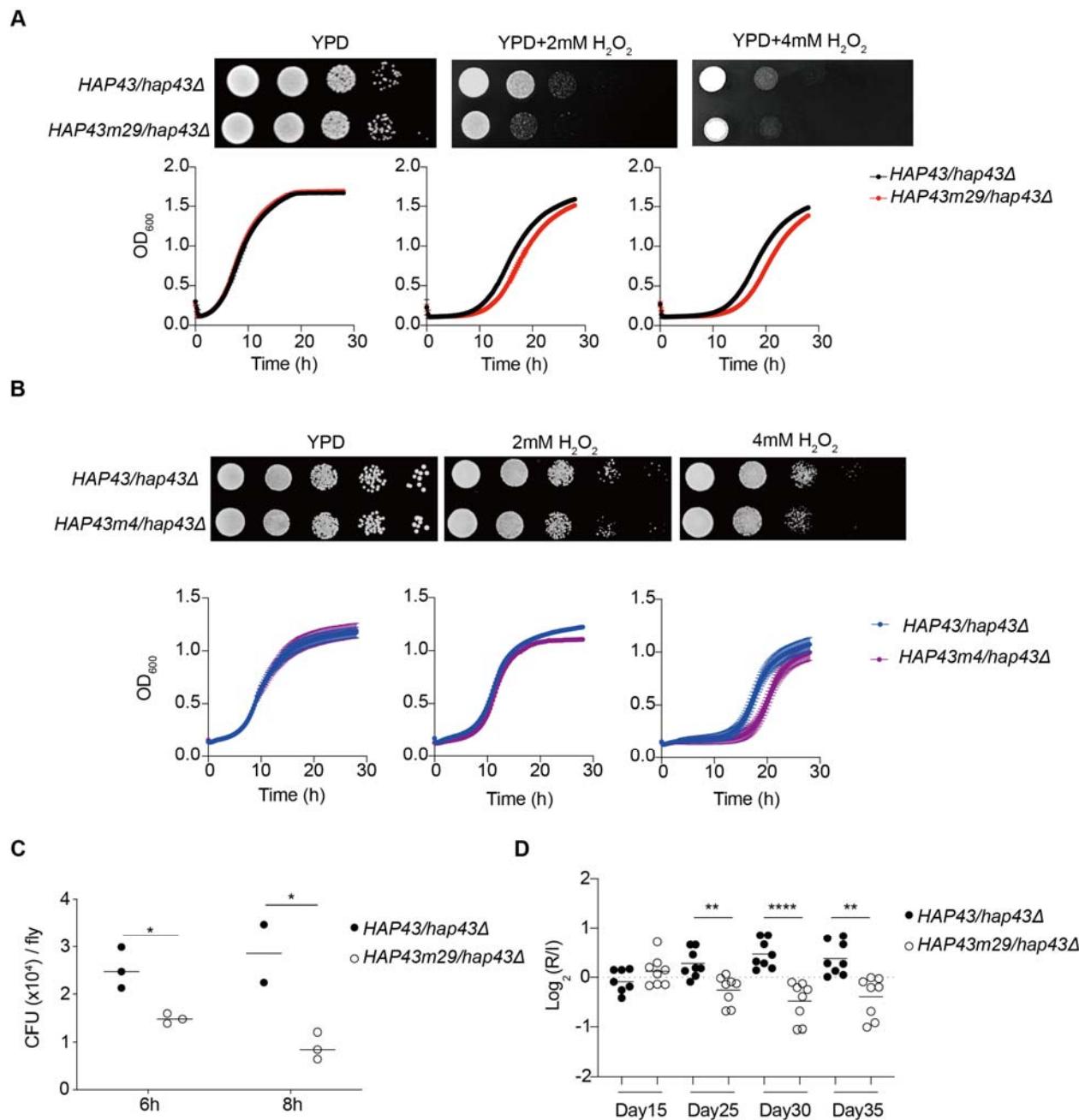

Figure 4—figure supplement 3. The critical phosphorylation region is essential for Hap43 stabilization. **(A)** Schematic diagram illustrating the Hap43 truncation proteins used as part of this study. The positions of the major domains identified in individuals with Hap43 are indicated. Numbers indicate the positions of the first and last amino acids, relative to the full-length protein. **(B)** qRT-PCR analysis for *HAP43* mRNA in WT and truncation mutant strains grown under iron-replete conditions. Transcript levels were normalized to the level of *ACT1* mRNA. Results from three independent experiments are shown. All data shown are means \pm SD. ns, no significance; compared to WT, by one-way ANOVA with Dunnett's test (B).

Figure 4—figure supplement 4. The mutants harboring amino acid substitutions or fragment truncation showed no defects in vegetative growth. Growth curve analysis of Hap43 truncation in YPD liquid medium supplemented with 250 μ M or 500 μ M the impermeable iron chelator bathophenanthroline disulfonate (BPS) at 30°C. OD₆₀₀ readings were obtained every 15 min in a BioTekTM SynergyTM 2 Multi-mode Microplate Reader.

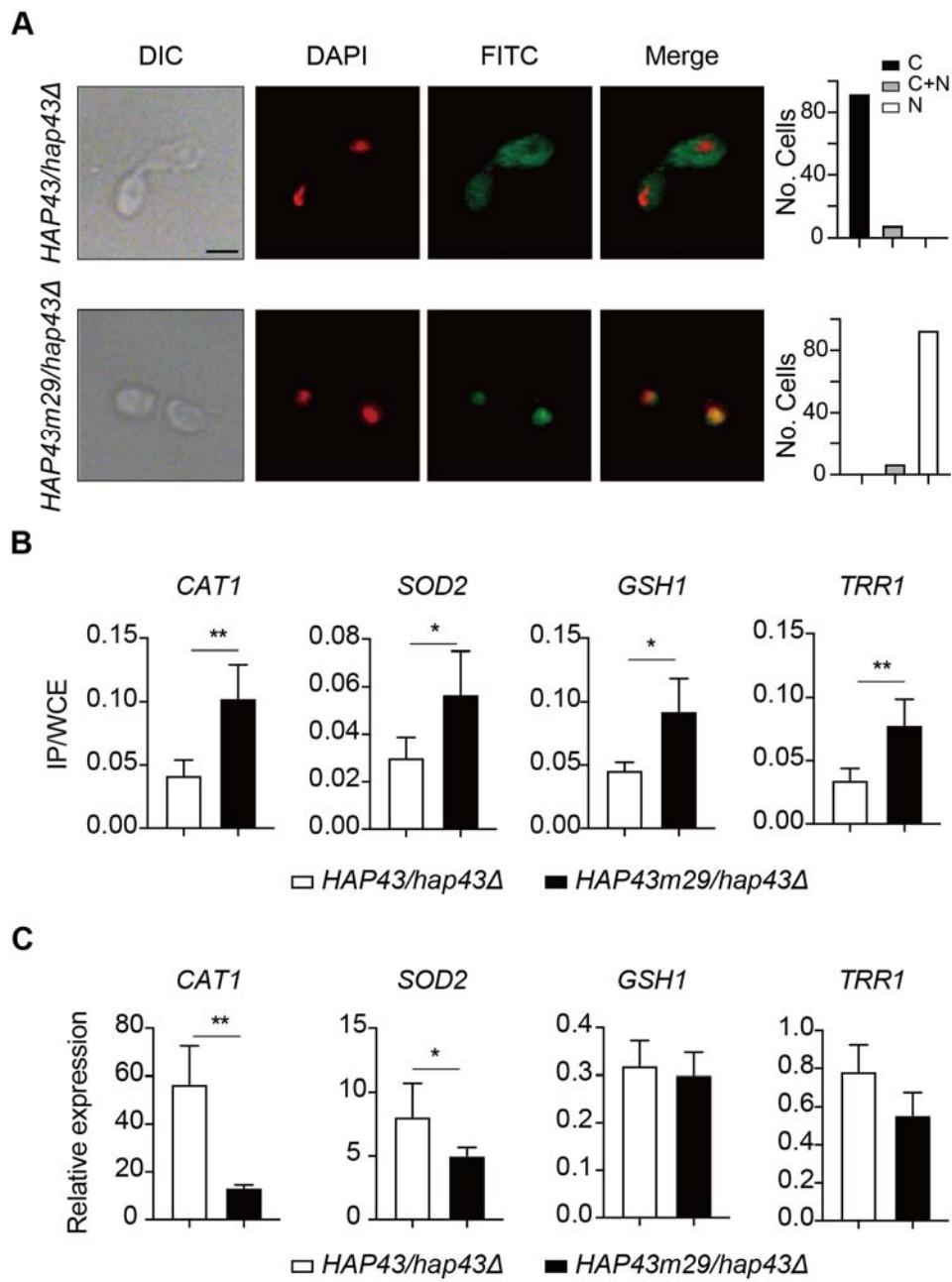


Figure 4—figure supplement 5. Identification of potential phosphorylation sites of Hap43. **(A)** Schematic representation of generating the *C. albicans* Hap43 mutation-4 (*HAP43m4*). Four putative S/T phosphorylation sites (S337/S355/S369/T381) in Hap43 were individually replaced with alanine residues. **(B)** Immunoblots of Hap43-Myc in strains expressing either the WT or the amino acid mutation (*HAP43m4*). Cells were treated at high iron conditions. **(C)** The *HAP43* mutant-4 strain (*HAP43m4/hap43Δ*) harboring amino acid substitutions showed no defects in vegetative growth. Growth curve analysis of indicated strains in SC liquid medium supplemented with 250 μ M or 500 μ M the impermeable iron chelator bathophenanthroline disulfonate (BPS) at 30 °C. OD₆₀₀ readings were obtained every 15 min in a BioTekTM SynergyTM 2 Multi-mode Microplate Reader. For raw blots see **Figure 4—figure supplement 5—source data**.

Figure 5—figure supplement 1. Hap43 phosphorylation is important for alleviating Fenton reaction-induced ROS toxicity and for GI colonization. Growth of *HAP43m29* mutant strain **(A)** or *HAP43m4* mutant strain **(B)** under oxidative stresses. The experiments were conducted the same way as described in Figure 5D. **(C)** Flies were fed on live yeast cells of indicated strains and the fungal burden (expressed as CFUs) were determined at different time points. **(D)** The *HAP43*

mutant strain harboring 29-point mutations (*Hap43m29*) exhibits decreased commensal fitness in mice. Mice (n=8) were inoculated by gavage with 1:1 mixtures of WT and *Hap43m* mutant cells (1×10^8 CFU per mice). The fitness value for each strain was calculated as the \log_2 ratio of its relative abundance in the recovered pool from the host (R) to the initial inoculum (I), and results from three independent experiments are shown. All data shown are means \pm SD. * $p< 0.05$; ** $p<0.01$; *** $p<0.0001$; by two-way ANOVA with Sidak's test (**C**) or unpaired Student's *t*-test (**D**).

Figure 6—figure supplement 1. Iron-induced phosphorylation and degradation of Hap43 leads to de-repression of antioxidant genes. **(A)** Left panels: Indirect immunofluorescence of Hap43-Myc in *HAP43/hap43Δ* and *HAP43m29/hap43Δ* strains grown under iron-replete conditions. DIC represents phase images, DAPI represents nuclear staining, FITC represents Hap43-Myc staining, and Merge represents the overlay of Hap43-Myc and nuclear staining. Right panels:

Quantification of the cellular distribution of Hap43. Each bar represents the analysis of at least 100 cells. C representing >90% cytoplasmic staining, N >90% nuclear staining, and C+N a mixture of cytoplasmic and nuclear staining. Scale bar, 5 μ m. **(B)** ChIP of Hap43-Myc on the promoters that contain CCAAT boxes in a set of anti-oxidant genes. Overnight cultures of WT (*HAP43/hap43Δ*) and mutant harboring 29 substitutions (*HAP43m29/hap43Δ*) were grown and treated exactly the same way as described in Fig. 6b. **c** qRT-PCR analysis for mRNA levels of a set of antioxidant genes in WT (*HAP43/hap43Δ*) and mutant harboring 29 substitutions (*HAP43m29/hap43Δ*) grown under iron-replete conditions. Transcript levels were normalized to the level of *ACT1* mRNA. Results from three independent experiments are shown. All data shown are means \pm SD. ns, no significance; $*p < 0.05$; $**p < 0.01$; by unpaired Student's *t*-test (B, C).