
The omnitig framework can improve genome assembly contiguity
in practice

Sebastian Schmidt1[0000−0003−4878−2809], Santeri Toivonen1, Paul Medvedev2,3,4,⋆, and
Alexandru I. Tomescu1,⋆[0000−0002−5747−8350]

1 University of Helsinki, Finland {sebastian.schmidt,santeri.toivonen,alexandru.tomescu}@helsinki.fi
2 Department of Computer Science and Engineering, The Pennsylvania State University pzm11@psu.edu

3 Huck Institutes of the Life Sciences, The Pennsylvania State University
4 Department of Biochemistry and Molecular Biology, The Pennsylvania State University

Abstract. Despite the long history of genome assembly research, there remains a large gap between
the theoretical and practical work. There is practical software with little theoretical underpinning of
accuracy on one hand and theoretical algorithms which have not been adopted in practice on the
other. In this paper we attempt to bridge the gap between theory and practice by showing how the
theoretical safe-and-complete framework can be integrated into existing assemblers in order to improve
contiguity. The optimal algorithm in this framework, called the omnitig algorithm, has not been used
in practice due to its complexity and its lack of robustness to real data. Instead, we pursue a simplified
notion of omnitigs, giving an efficient algorithm to compute them and demonstrating their safety under
certain conditions. We modify two assemblers (wtdbg2 and Flye) by replacing their unitig algorithm
with the simple omnitig algorithm. We test our modifications using real HiFi data from the Drosophilia
melanogaster and the Caenorhabditis elegans genome. Our modified algorithms lead to a substantial
improvement in alignment-based contiguity, with negligible computational costs and either no or a
small increase in the number of misassemblies.

Keywords: genome assembly · omnitigs · safe-and-complete framework · HiFi sequencing data · as-
sembly evaluation

⋆ Shared last-author contribution

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


1 Introduction

Genome assembly is a classical problem in bioinformatics that has received a lot of both theoretical and
practical attention. On the practical side, many successful assemblers have been developed and have led
to numerous biological discoveries (e.g. [Nur+22; Rhi+21]). On the theoretical side, there have been many
attempts at modelling the problem and coming up with algorithms whose accuracy is optimal with respect
to these models (e.g. [TM17; OMT18; Cai+19; Cai+21; Cai+20; Cai+22]). Unfortunately, there remains a
large gap between the theoretical and practical work, resulting in practical software with little theoretical
underpinning of accuracy on the one hand and theoretical algorithms which have not been adopted in practice
on the other [Med22].

The first group of theoretical approaches formulated assembly as the problem of finding a complete recon-
struction of the genome (i.e. one string per genome). Initially, the proposed algorithm was to find a Eulerian
cycle in a genome graph [PTW01]. Later work described more sophisticated algorithms that maximised the
probability of successfully finding the complete reconstruction, if one exists [BBT13]. However, these formu-
lations did not capture the fact that the conditions under which a complete reconstruction is feasible are
extremely rare [BBT13; MP21]. Therefore, the second group of theoretical approaches formulated assembly
as the problem of finding a set of sequences (called omnitigs) that were as long as possible and were guaran-
teed to be substrings of the genome (i.e. safe) [TM17]. It was possible to formally characterise how omnitigs
looked like in the genome graph and how to efficiently find all possible omnitigs (i.e. a complete algorithm)
in an idealised setting [Cai+19; Cai+21; Cai+20]. However, the omnitig algorithm requires complex data
structures [Cai+21; GIP20] and omnitigs themselves are not safe in the presence of sequencing errors, missing
coverage, or linear chromosomes [TM17]; as a result, omnitigs have not been applied in practice. Instead,
most assembly software use the much simpler and more accurate unitig algorithm.

In this paper we attempt to bridge the gap between theory and practice by showing how the safe-and-
complete framework can be integrated into existing assemblers in order to improve contiguity. To do so, we
pursue a relaxed notion of omnitigs, called simple omnitigs. Simple omnitigs are walks having a non-branching
core, such that all nodes to the right of the core have out-degree one (i.e., a unique right extension), and
all nodes to the left of the core have in-degree one (i.e., a unique left extension) (see Figure 1(a) for an
illustration). The idea behind simple omnitigs was in fact known in the literature also before the safety
framework (e.g. [Med+07; Jac09; KSP10]), and also called Y-to-V transformation [TM17]. Though simple
omnitigs are known to be not complete, they are nevertheless safe for a single circular chromosome [TM17].
On perfect data, they were shown to significantly improve length and contiguity over unitigs, while almost
reaching that of omnitigs [TM17]. We therefore consider simple omnitigs as the “compromise candidate” for
adopting the safe-and-complete framework to be used in practice.

In this paper, we prove that simple omnitigs remain safe even when there are multiple linear chromosomes,
as long as no chromosome starts or ends inside them. We give a linear output-sensitive time algorithm for
finding all simple omnitigs. We then integrate simple omnitigs into two widely-known graph-based genome
assemblers, Flye [Kol+19] and wtdbg2 [RL20]. We use real HiFi data to demonstrate that the integration
substantially improves assembly contiguity with negligible computational cost. On D. melanogaster, such
assemblies have the same level of correctness, while having substantially higher alignment-based contiguity
metrics than the original assemblers. Our extension of wtdbg2 results in similar contiguity and accuracy
as the most accurate assembler on this dataset (HiCanu [Nur+20]) but is more than 20 times faster. On
C. elegans, we improve the alignment-based contiguity of the best performing assembler Flye, albeit with
a small increase in misassembly errors. We also improve the contiguity of wtdbg2, this time without any
additional errors.

2 Results

2.1 Simple omnitigs

Many assemblers work by constructing some kind of genome graph and outputting unitigs from it. A unitig
is a path whose inner nodes have in- and out- degree one. Instead, we propose outputting simple omnitigs.

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


A B C A D C

A C

B

D

(c)

(a) w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

A R B R C

A

R

B

C
(b)

A R B R C

A

R

B

C
(d)

Fig. 1: Overview of simple omnitigs. In (a), we show a simple omnitig, with its core highlighted in red. By definition,
the core is a unitig (only the first and last node are branching). Since the walk is a simple omnitig, nodes w2, w3, w4

have exactly one incoming arc, and nodes w6, w7, w8, w9 have exactly one outgoing arc. The inner nodes of the core
(i.e., w5) have exactly one incoming and exactly one outgoing arc. In (b) and (c), on top, we show the repeat structure
at genome level, where we assume each labelled substring corresponds to a unitig; on the bottom, we show the repeat
structure at assembly graph level, where we draw each unitig as a length-two path. Simple omnitigs are shown as
coloured lines. In (b), there are two occurrences of a repeat R, with simple omnitigs providing more context to R,
in this case even capturing the full substring from the first to the second occurrence of R. In (c), a substring ABC
also appears in the variant ADC (with B replaced by D), which at the graph level induces a bubble. Simple omnitigs
provide context around the variants B and D, in this case by recovering the full strings ABC and ADC. In (d), we
show the omnitigs of the genome graph of (b) for comparison. Omnitigs allow to safely extend the repeat R both
forwards and backwards within a single walk (ARBR and RBRC). The omnitigs in (c) are equivalent to simple
omnitigs.

A simple omnitig is a walk in a graph, defined as the univocal extension of a unitig. The univocal extension
is the maximal superwalk of the unitig that contains only inner nodes with in-degree one, including the first
node of the unitig, then the unitig, and then only inner nodes with out-degree one, including the last node
of the unitig. The unitig that “produces” a simple omnitig in this way is called a core (note that simple
omnitigs may contain multiple unitigs, but only one of them can be the core). Figure 1 (a) shows an example
of a unitig and a simple omnitig. In Section 3.2, we will prove that, under idealised assumptions, simple
omnitigs in the de Bruijn graph of the reads are mostly guaranteed to be correct (Theorem 1). Then, in
Section 3.3, we show how the core is a useful algorithmic building block (Theorem 2) and give an algorithm
to output all simple omnitigs in linear time.

Simple omnitigs are longer than unitigs and thus provide more context in the final assembly. They are
effective for example in repeats or bubbles, as the contigs do not need to stop at the start or end of the
structure, but can continue through the flanks as well. See Figure 1 (b) and (c) for an example, and also
Figure 1 (d) for a comparison to omnitigs. Besides these examples, simple omnitigs also increase contig length
in tangled regions of the graph that contain more complex structures than bubbles and repeats. Whenever
there is a node with indegree 1 but larger outdegree (or vice-versa), simple omnitigs can connect the unitigs
starting or ending in such a node to produce longer contigs.

2.2 Injecting simple omnitigs into existing assemblers

In order for an assembler to be modifiable to output simple omnitigs instead of unitigs, it needs to work
by building some kind of assembly graph and outputting unitigs from it. Furthermore, if the assembler
does additional processing of the unitigs, then this processing needs to be either disabled or modified so
that it becomes compatible with simple omnitigs. We identified two assemblers that lent themselves to the
integration of simple omnitigs. Full details are in Appendix A, but we summarise the changes here.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


Reference Reads

N. chr Raw len Length N50 N75 Num N50 Coverage

D. melanogaster 7 138 mil 97 mil 18 mil 17 mil 1.1 mil 18k 94x

C. elegans 6 100 mil 67 mil 12 mil 10 mil 130k 10k 19x

Table 1: Properties of the reference genomes and the HiFi reads we use. All numbers (except “Raw len” and “Cov-
erage”) are shown in homopolymer compressed space. Coverage is given with respect to the diploid genome length.

The first assembler is wtdbg2 [RL20], which builds a “fuzzy de Bruijn graph” and then uses unitigs from
this graph to build a “fragment graph.” It then performs further error corrections on the fragment graph
before finally outputting the consensus sequences of its unitigs as contigs. We made two modifications. First,
we changed the fuzzy de Bruin graph construction so that it takes advantage of homopolymer compressed
space. This was needed to improve the underlying quality of the graph, which is especially important for
simple omnitigs. Second, we changed the final output to be the consensus of simple omnitigs (rather than of
unitigs) on the error-corrected fragment graph.

The second assembler is Flye [Kol+19], which constructs a “repeat graph” followed by a repeat resolving
and polishing step prior to outputting unitigs. We modified Flye by 1) disabling the post construction step
of repeat resolving and polishing, and 2) outputting simple omnitigs instead of unitigs. We disabled the
resolving and polishing steps because they were incompatible with injecting simple omnitigs. To make sure
that this did not hamper Flye, we verified that this change did not significantly alter the contiguity of the
assembly by running it with only the first modification.

2.3 Experimental setup

To evaluate the performance of our modified assemblers, we use two real datasets of Pacbio HiFi reads,
one from D. melanogaster and the other from C. elegans. We use all chromosomes from each dataset for
evaluation. Table 1 shows the properties of these reference genomes and the corresponding reads. We measure
accuracy and contiguity using a modified QUAST-LG [Mik+18] tool and the reference genome of the same
D. melanogaster individual (GCF 000001215.4) and a different C. elegans individual (GCA 000002985.3).
Following the observations of [Ban+22], we modified QUAST-LG to work in homopolymer compressed
space. Otherwise, as [Ban+22] observed, QUAST-LG falsely reports misassemblies on genomic regions with
long homopolymer runs.

Unlike unitigs, simple omnitigs can overlap, resulting in the same reference sequence being potentially
present in more than one simple omnitig. This makes some QUAST-LG metrics misleading or inappropriate.
In particular, we did not use the NGA50/NGA75 contiguity metrics that QUAST-LG reports by default.
Instead, we implemented and used the EA50max and EA75max metrics, which are similar but robust against
overlapping contigs. These work by aligning the contigs against the reference, identifying for each reference
position the longest alignment (i.e. to a contig or part of a contig, if the contig is misassembled), and then
reporting the 50th and 75th percentiles of the distribution of these lengths. For example, an EA50max value
of ℓ means that 50% of the genomic positions are covered by a contig (or part of a contig, if misassembled)
of length at least ℓ. The choice for the longest alignment was made because otherwise assemblers would be
penalised for overlaps between longer and shorter contigs, even though the existence of the shorter contig
does not reduce the quality of the longer contig (see Section 3.4 for more details). Furthermore, we modified
QUAST-LG to only report at most one misassembly per reference position. Otherwise, a single misassembly
in a unitig will count multiple times if there are numerous simple omnitigs containing that unitig. Section 3.4
describes these modifications, as well as their justifications, in more detail.

In order to establish a baseline of the state-of-the-art assembly performance on our datasets, we ran
hifiasm [Che+21], LJA [Ban+22] and HiCanu [Nur+20]. All were run with default parameters (using the
predefined mode for HiFi reads in HiCanu).

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
x

0

2

5

8

10

12

15

18

20
EA

xm
ax

 [m
illi

on
 b

p]
Assembler

W
W-so
F
F-so

(a) D. melanogaster

0 20 40 60 80 100
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EA
xm

ax
 [m

illi
on

 b
p]

Assembler
W
W-so
F
F-so

(b) C. elegans

Fig. 2: Assembly contiguity of wtdbg2 (denoted by “W”) and Flye (denoted by “F”) and their simple omnitig versions
(denoted with a “-so” suffix). The y-axis shows the EAxmax metric, for 0 ≤ x ≤ 100. Differences between the curves
on smaller x pertain changes in longer contigs, and for larger x they pertain changes in shorter contigs (same as with
the well-known NGAx metric family).

wtdbg2 Flye Others

W W-int W-so F F-int F-so hifiasm LJA HiCanu

EA50max (×106) 13.7 12.2 14.5 0.7† 0.7 1.0 14.1 6.0 13.4

EA75max (×106) 4.0 3.8 9.9 0.3 0.3 0.5 4.8 1.7 13.0

N. misassemblies 1 1 4 3 3 5 1 1 0

N. contigs 405 369 363 856 951 576 1,871 925 1,110

Genome fraction (%) 90.1 89.2 89.1 94.9 94.9 94.7 95.7 95.5 95.3

Duplication ratio 1.02 1.01 1.55 1.68 1.68 1.98 1.99 1.74 1.81

Table 2: Assembly accuracy on D. melanogaster. All statistics are shown in homopolymer compressed space. “W-int”
is wtdbg2 with the homopolymer modification but without simple omnitigs, and “F-int” is Flye with the post-
construction steps disabled but without simple omnitigs. †: Note that this number is much worse than the NGA50
reported for D. melanogaster on https://github.com/fenderglass/Flye. This is likely due to us using the highly
heterozygous cross of the A4 and ISO1 strains of D. melanogaster, while the variant assembled on the Flye website
is plain ISO1.

2.4 D. melanogaster

Figure 2a shows that simple omnitigs lead to a substantial improvement in assembly contiguity. For wtdbg2,
this especially happens for the shorter contigs. For example, the EA75max is increased to 9.9 mil from 4.0 mil
when incorporating simple omnitigs. This is consistent with previous observations on error-free data [TM17]
and due to the fact that simple omnitigs typically extend contigs through parts of the graph that are more
tangled and hence contain shorter unitigs. For Flye, EAxmax is increased across the board, however the
quality of the Flye assembly pipeline is low on this dataset, with or without modifications.

Table 2 shows the full statistics for D. melanogaster assemblies, including for other assemblers. Overall,
compared to the results of three other assemblers on this data, our modified wtdbg2 pipeline achieves the
highest contiguity on longer contigs (i.e. an EA50max of 14.5 MB), at the cost of three more misassem-
blies. We note that the contiguity metrics take the misassemblies into account, i.e. the length statistics are
calculated after breaking contigs apart at the misassemblies.

We also confirmed that these improvements are due to simple omnitigs and not to the other modifications
we made. Table 2 shows the EA50max and EA75max numbers for the intermediate versions of these assem-

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://github.com/fenderglass/Flye
https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


wtdbg2 Flye Others

W W-int W-so F F-int F-so hifiasm LJA HiCanu

EA50max (×103) 412 425 512 620 620 628 596 591 342

EA75max (×103) 68 66 67 64 63 63 43 - -

N. contigs 389 394 392 280 276 274 346 239 475

N. misassemblies 4 2 4 2 2 5 6 1 0

Genome fraction (%) 80.8 80.8 81.2 79.8 79.8 79.8 77.4 72.4 74.8

Duplication ratio 1.00 1.00 1.02 1.00 1.00 1.05 1.01 1.01 1.01

Table 3: Assembly accuracy on C. elegans. All statistics are shown in homopolymer compressed space. Some of the
assemblers achieve less than 75% genome fraction, hence their EA75max is undefined.

blers which contain all the non-simple omnitig modifications. Their contiguity does not improve relative to
the original assemblers.

Table 2 also shows other assembly statistics. Notably, there is a small increase in the number of misas-
semblies. We believe that this stems from errors of the sequences stored at the branching nodes (i.e. with
an in- or out- degree of more than one) in the graph. In particular, such nodes always lie at the ends of
unitigs (by definition of unitig). An artefact of QUAST-LG is that errors in the last ≈1kbp of a contig are
not counted as a misassembly, hence errors in most branching nodes do not affect the number of misas-
sembled unitigs. However, branching nodes are often absorbed into the middle of simple omnitigs, causing
QUAST-LG to report a misassembly error. Another effect of using simple omnitigs is that there is no longer
a unique contig for each region of the genome. Table 2 shows the duplication ratio, which is higher for simple
omnitigs than for unitigs. This is expected and in fact desired, since a region can flank and provide context
for multiple bubbles at the same time. Note that most assemblers report a duplication ratio higher than one,
since D. melanogaster is diploid, but the reference contains only one copy of each chromosome.

Finally, our modification also have a slight affect on the genome fraction, but, since these are minor, we
did not investigate these further. The major differences in genome fraction between the different baseline
assemblers is due to inherent differences between those assemblers, rather than any effect of our modifications.

2.5 C. elegans

Figure 2b shows that simple omnitigs improve both wtdbg2 and Flye in contiguity for longer contigs (i.e.
small values of x). In Table 3 we see that simple omnitigs increase the EA50max of wtdbg2 by 20% over
the intermediate variant (and even more over default wtdbg2), with the same number of misassemblies as
default wtdbg2. The improvement of Flye is mostly invisible in EA50max or EA75max, since it is only present
within less than 50% of the reference length. Overall, comparing between all assemblers, Flye achieves the
best EA50max among the baseline assemblers, and the simple omnitig variant improves this even further,
albeit at a cost of three more misassemblies (recall, however, that the EAxmax metrics are computed on the
contigs after breaking them at all misassemblies).

Table 3 also show the genome fraction and duplication ratio metrics. As with D.melanogaster, our modi-
fications have a negligible effect on the genome fraction, while increasing the duplication ratio. The increase
is expected, since a single reference position can now be covered by more than one contig. We note that the
genome fraction of all assemblers is only ≤ 81% and the duplication ratio is only ∼ 1, even though the genome
is diploid. We suspect that these numbers may be due to the relatively low coverage of this dataset. In any
case, the genome fraction and duplication ratios are a property of the dataset and the baseline assemblers,
rather than our modifications; hence, we do not investigate them further.

2.6 Time and memory usage

Table 4 shows the time and memory usage of the assemblers. Our modification did not affect the memory
usage for Flye and only slightly for wtdbg2. Adding simple omnitigs to Flye decreased its run-time, since we

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


wtdbg2 Flye Others

W W-so F F-so hifiasm LJA HiCanu

time (s)
D. melanogaster 942 1,521 24,465 20,261 75,936 63,307 39,118

C. elegans 208 226 1,269 830 858 695 769

mem (GiB)
D. melanogaster 17 15 119 119 105 68 19

C. elegans 4.5 5.7 17 17 18 6.6 5.2

Table 4: Time and memory usage.

disabled a post processing step. For wtdbg2, the running time increases by 9-61%, though it remains very
fast (e.g. is is 3−25 times faster than the next fastest assembler). Since the focus of our study was contiguity
and accuracy, we did not optimise our code for speed, and it is likely that the time increase could be mostly
avoided by removing superfluous disk I/O.

3 Methods

In this section, we will give a more formal definition of simple omnitigs, a proof of their safety, and a fast
algorithm for computing them. We also describe our approach to evaluation of assemblies.

3.1 Definitions

A graph G = (V,E) is defined to be directed with n nodes in V and m arcs in E. The tail of an arc e = (u, v)
is tail(e) = u and its head is head(e) = v. A w1-wℓ walk W = (w1, . . . , wℓ) is a sequence of adjacent nodes.
Its tail is tail(W ) = w1 and its head is head(W ) = wℓ. A graph is strongly connected if each pair of nodes is
connected by a walk. The concatenation of two walks W = (w1, . . . , wℓ) and X = (x1, . . . , xℓ) where wℓ = x1

is a walk WX = (w1, . . . , wℓ, x2, . . . , xℓ). A split is a node with at least two outgoing arcs and a join is a
node with at least two incoming arcs. Let W = (w1, . . . , wℓ) be a walk with ℓ ≥ 2. The inner nodes of W
are w2, . . . , wℓ−1. A unitig is a walk whose inner nodes have in- and out-degree one 1 . Let wi be its first
inner join, or wℓ if W has no inner join. Let wj be its last inner split, or w1 if W has no inner split. The
core of a walk is its subwalk from wj to wi if j < i, and walks with i ≥ j have no core. A simple omnitig
is a walk W that has a core2. The univocal extension of a walk W to be the maximal walk constructed by
iteratively adding the unique out-neighbour of tail(W ) to the end of W and iteratively adding the unique
in-neighbour of head(W ) to the beginning of W .

The k-spectrum Sk of a set of strings S is its set of substrings of length k. The (arc-centric) de Bruijn
graph of a k-spectrum Sk is defined by vertex set Sk−1 and for each x ∈ Sk, an edge from the k− 1 prefix of
x to the k − 1 suffix of x. In a de Bruijn graph, each walk spells a string by spelling out its first node, and
then appending the last character of each subsequent node in order.

3.2 Safety of simple omnitigs

Informally, a walk in a genome graph is safe if it is guaranteed to be in any genome that could have generated
the genome graph. Here we will focus on the arc centric de Bruijn graph of the reads as the genome graph.
We cannot hope to generate only safe contigs if sequencing errors remain in the graph, so we assume, as in
previous work, that all errors have been corrected [TM17]. A recent work also showed that if there are gaps
in coverage, then even the unitig algorithm is not safe [RM22]. We therefore assume in our theoretical model

1 This is the definition that is consistently used throughout the safe-and-complete literature (e.g. [Cai+20]), but we
note that it is slightly different from one used in graph compaction literature (e.g. [CLM16]).

2 Note that this definition of simple omnitigs is equivalent to that in Section 2.1, except that it also allows subwalks
of simple omnitigs to be simple omnitigs. This is to make our theoretical results more general, but in practice we
only use maximal simple omnitigs.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


that we have error-free reads with perfect coverage, and so our genome graph is the de Bruijn graph built
on the k-spectrum of the genome.

In this setting, it is already known that simple omnitigs are guaranteed to be substrings of a singe-
chromosome circular genome [Cai+20]. However, linear multi-chromosome genomes pose a challenge; for
example, no safe and complete algorithm is known in this setting. However, as the following Theorem shows,
the conditions for a simple omnitig to not be substring in this setting are very narrow.

Theorem 1. Let k ∈ N and let Sk be the error-free k-spectrum of a linear genome with multiple chromo-
somes. Let G = (V,E) be the arc-centric de Bruijn graph of Sk. Let L be the set of k − 1-mers that are the
first or last k-mer of some chromosome. If none of the inner nodes of a simple omnitig are in L, then its
spelled string is a substring of some chromosome of the genome.

Proof. Let W ′ = (w1, . . . , wj , . . . , wi, . . . wℓ) be a simple omnitig, where W = (wj , . . . , wi) is its core with j <
i by definition. By definition, all nodes w2, . . . , wi−1 have a single incoming arc, and all nodes wj+1, . . . , wℓ−1

have a single outgoing arc. Hence, for a walk that does not start or end with any inner node of W ′ to contain
the arc (wj , wj+1), it needs to contain W ′ as subwalk.

Since each arc in E represents a k-mer of the genome, (wj , wj+1) is part of the genome, so it is contained
in some chromosome. Each chromosome is an s-t walk C in G where s, t ∈ L, so there is some C that contains
(wj , wj+1). By the argument above, this means that it contains W ′ as subwalk, so since G is error-free, W ′

is substring of the original genome. ⊓⊔

Thus, simple omnitigs are safe in the case of multiple linear chromosomes, as long as they do not con-
tain the start or end k-mer of a chromosome. Note that these conditions are not complete, since it is
known [Cai+20] that there are also simple omnitigs containing ends of chromosomes that are safe, based on
more complex conditions about the topology of the graph.

In practice, missing coverage and errors in the reads may still cause simple omnitigs to contain more
misassemblies than unitigs, even though both are safe in theory. Missing coverage or errors may cause
branching nodes to miss some branches, allowing simple omnitigs to extend over a branching node where a
unitig would stop. For example, if a node has two incoming arcs and one outgoing arc, then a unitig would
stop there, while a simple omnitig may extend over the node. However, if the node is actually missing a
second outgoing arc due to missing coverage or errors, then the simple omnitig would not be safe in the
error-free graph that includes the missing branch. Hence it possibly has a misassembly at the branching
node.

3.3 Computing simple omnitigs

In this section, we give an algorithm to compute simple omnitigs in any graph in linear output-sensitive time.
Note that we cannot simply output all univocal extensions of maximal unitigs, because that would generate
simple omnitigs that are non-maximal (i.e. a simple omnitig may have more than one unitig as a subwalk).
Instead, our algorithm iterates over all maximal unitigs and checks that 1) if the first node has exactly one
outgoing arc then it has no incoming arcs, and that 2) if the last node has exactly one incoming arc, then it
has no outgoing arc. As we prove below, these two conditions hold if and only if the unitig is a core of some
maximal simple omnitig. For those unitigs where these conditions hold, the algorithm outputs their univocal
extension as a simple omnitig. The correctness of the algorithm follows from the following theorem:

Theorem 2. The core of a maximal simple omnitig is a walk W = (w1, . . . , wℓ) with ℓ ≥ 1 such that
(a) the core of W is W , and
(b) if w1 has exactly one outgoing arc, then it has no incoming arcs, and
(c) if wℓ has exactly one incoming arc, then it has no outgoing arcs.

Proof. Note that the cores of maximal simple omnitigs are unitigs by definition. (⇒) Let W ′ be the univocal
extension of W , and a maximal simple omnitig. Then by definition, W is its core. Further, by definition,
the core of a core W is W itself, so (a) holds. Next, if w1 has exactly one outgoing arc, then, since W ′ is

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


maximal, w1 cannot have exactly one incoming arc. If it had more than one incoming arc, then W ′ would
start at w1 and the univocal extension of any incoming arc would contain W , and hence the whole W ′. Since
it is a univocal extension, it is a simple omnitig, so W ′ would not be maximal. Hence, if w1 has exactly one
outgoing arc, then it has no incoming arcs, so (b) holds. Symmetrically, if wℓ has exactly one incoming arc,
then it has no outgoing arcs, so (c) holds.

(⇐) Assume that W is not the core of a maximal simple omnitig. Then either (a) does not hold, or W
is the core of a non-maximal simple omnitig, in which case its univocal extension W ′ is the subwalk of a
maximal simple omnitig X ′ with a core X ̸= W . Also, W is inside the univocal extension of X, and they
share at most one node, which is the first of one and the last of the other. If W is right of X in X ′, then w1

has exactly one outgoing arc, but at least one incoming arc, so (b) does not hold. Symmetrically, if W is left
of X in X ′, then wℓ has exactly one incoming arc, but at least one outgoing arc, so (c) does not hold. ⊓⊔

Iterating all maximal unitigs takes O(m) time, and there are at most O(m) maximal unitigs (not neces-
sarily a tight bound). The check if a maximal unitig is the core of a maximal simple omnitig takes constant
time, and computing and outputting the univocal extension takes time linear in the length of the univocal
extension. Hence, computing all maximal simple omnitigs takes O(m + out) time, where out is the total
length of the maximal simple omnitigs in the graph.

The algorithm is implemented in Rust in [Sch22c]. The code is in the subfolder implementation and can
be run with cargo run --release -- 3compute-trivial-omnitigs --non-scc (plus arguments specify-
ing input and output files and formats). Note that since the assemblers use bidirected graphs, we first convert
the bidirected graphs to doubled graphs as in [RM22].

3.4 Modifying QUAST-LG

We evaluate the assembly using QUAST-LG 5.0.2 [Mik+18]. Since QUAST uses minimap2 [Li18] for align-
ment which was reported in [Ban+22] to work better on homopolymer-compressed data, we run QUAST
in homopolymer-compressed space by passing it a homopolymer-compressed reference and homopolymer-
compressed contigs. When using simple omnitigs, contigs may overlap even when reported from a perfectly
correct genome graph. Hence, none of the metrics that QUAST uses by default is able to accurately cap-
ture the contiguity of the assembly. Even the most advanced metric built into QUAST, the NGAx group of
metrics (e.g. NGA50 or NGA75), produce higher numbers than they should if an assembler e.g. outputs the
same contigs twice or outputs overlapping contigs.

We instead implement the EAxmax group of metrics within QUAST. It is inspired by the E-size [Sal+12]
which gives the expected value of the average length of a contig aligned to a uniformly randomly chosen base
in the reference. The E-size has some weaknesses though. First, it is not robust against misassemblies. This
is easily fixed in the same way as it is done for NGAx, by aligning the contigs to the reference and using
continuous (enough) alignments to compute the metric. Second, the E-size uses averaging for each base,
resulting in unwanted effects such as a reduced E-size for assemblers that report many short contigs that
potentially overlap with others. This might not actually have been intended by the designers of the E-size,
which wanted it to answer the question: “How many genes will be completely contained within assembled
contigs or scaffolds, rather than split into multiple pieces?” [Sal+12]. A gene that is completely contained
inside a long contig is not affected by also being contained partially within a short contig. So we choose
to compute the maximum alignment to each reference base, instead of the average. Lastly, most works in
genome assembly [RL20; Kol+19; Ban+22; Che+21; Nur+20] use percentile-based metrics like N50, NG50
or NGA50 and do not compute the expected value over a uniform distribution of the reference bases. To
stick with existing literature, we therefore compute the EAxmax metrics percentile-based as well.

We define the EAxmax metric on the alignments as follows:

a) For each reference base, store the length of the maximum alignment to the reference base.
b) Sort the reference bases by length of maximum alignment descending, and report the value at index

x/100 ∗G, where G is the length of the reference.

3 This space is on purpose.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


We additionally modified QUAST to output misassemblies that occur at the same position on the ref-
erence just once. Otherwise, since a single unitig could be output multiple times as part of different simple
omnitigs, we would count the same misassembly on the same unitig multiple times. But a misassembly within
a unitig is not introduced by reporting simple omnitigs, but instead an error produced by the assembler itself,
so we only want to count it once. To compute the unique misassemblies, we first sort all misassemblies by
their position on the reference, and then merge those that are less than X bp apart, however keeping the
maximum length of a unique misassembly below X (instead of transitively merging misassemblies into one
big unique one much longer than X). X is given by the extensive misassembly threshold in QUAST, which
is 3000 by default for large genomes.

The modified version of QUAST is available at [Sch22d]. We run it with the following parameters:
--large -t 28 --min-alignment 20000 --extensive-mis-size 500000 --min-identity 90 (plus ar-
guments specifying input and output files and formats). Increasing the minimum size of extensive mis-
assemblies to 500000 is inspired by [Nur+20], which employ the same parameters to evaluate HiCanu on
the same D. melanogaster data to avoid falsely reported misassemblies due to heterozygosity. We use the
same parameters for C. elegans, to avoid misassemblies for the same reason, and additionally because our
C. elegans individuum does not exactly match the reference.

3.5 Data availability and reproducibility

Our experiments are implemented with snakemake [Möl+21] and available here [Sch22c]. The repository
contains a conda environment.yml file at the root, and in this conda environment the experiments can
be reproduced by running snakemake --cores 28 report all. We have run our experiments on a cluster
running slurm [YJG03].

For D. melanogaster, we use the same data as in [Nur+20], using the reference with the accession
GCF 000001215.4 and HiFi reads from the sequence read archive with the accession SRR10238607 with
a median and mean read length of 24.4kbp. We filtered the reference to include only assigned sequences
(keep only Chr 2L, Chr 2R, Chr 3L, Chr 3R, Chr 4, Chr M, Chr X and Chr Y).

For C. elegans, we use the official reference of the C. elegans Sequencing Consortium [Seq98], available
with accession GCA 000002985.3. We use HiFi reads submitted by the Korea Research Institute of Bioscience
and Biotechnology with accession SRR22137522. The reference includes all autosomes I to V and one sex
chromosome X.

4 Conclusions

Despite much work on both the theoretical and practical aspects of genome assembly, it has remained
challenging to apply novel theoretical ideas to the practical setting. Omnitigs are a powerful construct
within the safe-and-complete theoretical framework, however, due to their complexity, they have not been
applied in practice. Instead, we have taken a simpler construct, called simple omnitigs, and shown that
it both has provable theoretical guarantees and is amenable to being plugged into existing assemblers. By
combining co-located unitigs, simple omnitigs are able to provide correct flanking context around repeats
and variations.

On the theoretical side, we have shown that given a multi-chromosomal linear genome, error-free reads,
and perfect coverage, simple omnitigs are safe except for some corner cases; in other words, they are guaran-
teed to be substrings of the original genome. Note that both the perfect coverage and error-free requirements
are necessary to prove correctness even in the simpler case of unitigs [RM22].

On the practical side, we have injected simple omnitigs into two popular assemblers (wtdbg2 and Flye)
and tested them on two HiFi datasets. On D. melanogaster, this gave substantial improvements in alignment-
based assembly contiguity. In particular, our modifications to wtdbg2 improved the EAxmax metrics to the
point where they were higher than those of the previously best assembler HiCanu, while being more than
20 times faster than HiCanu. On C. elegans, we saw similar contiguity improvements, with simple omnitigs

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


improving the EAxmax metrics of both wtdbg2 and Flye; compared with other tested assemblers, the highest
EA50max was due to the modified Flye assembler.

The above improvements come at the cost of a small increase in the number of misassemblies. To com-
pletely prevent simple omnitigs from introducing misassemblies, the assemblers seem to require additional
modifications before integrating simple omnitigs. Assembler developers usually test the accuracy of the
genome graph relying on unitigs and QUAST-LG metrics. However, by outputting simple omnitigs, we are
uncovering other errors in the graph, including in the topology that connects between unitigs. Fixing those
requires deeper understanding the internals of the assemblers and, perhaps, introducing simple omnitigs at
an earlier stage of the development process. Another cause of misassemblies could be that gaps in cover-
age (which are not covered by the theory) destroy the correctness of some simple omnitigs (as they do for
unitigs [RM22]). It would be interesting to understand the extent of this possible effect.

Though more work is needed to incorporate simple omnitigs into “production-ready” assemblers, our work
overcomes many of the barriers that have held back omnitigs from being used in practice. First, omnitigs
require complicated data structures and algorithms, while our algorithm to compute simple omnitigs is simple
to implement and understand. Second, the theory of omnitig safety does not extend to the linear multi-
chromosome setting, while we showed that, except for corner cases, simple omnitigs remain safe. Third,
the omnitig algorithm is too slow to complete in a multi-chromosome setting, while the simple omnitig
algorithm is fast. In conclusion, we hope this work helps to bridge the gap between theory and practice
of genome assembly by adapting a complicated theoretical construct (i.e. omnitigs) to work in a practical
setting.

Acknowledgements

PM would like to thank John Hutton for early attempts to extend omnitigs to work in practice [Hut18].
The authors wish to thank the Finnish Computing Competence Infrastructure (FCCI) for supporting this
project with computational and data storage resources. This work was partially funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 851093, SAFEBIO), and partially by the Academy of Finland (grants No. 322595,
328877). This material is based upon work supported by the National Science Foundation under Grants No.
DBI-2138585, IIS 1453527 and OAC-1931531. Research reported in this publication was supported by the
National Institute Of General Medical Sciences of the National Institutes of Health under Award Number
R01GM146462. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

References

[Ban+22] Anton Bankevich et al. “Multiplex de Bruijn graphs enable genome assembly from long, high-
fidelity reads”. In: Nature biotechnology (2022), pp. 1–7.

[BBT13] Guy Bresler, Ma’ayan Bresler, and David Tse. “Optimal assembly for high throughput shotgun
sequencing”. In: BMC Bioinformatics 14.S5 (Apr. 2013). doi: 10.1186/1471-2105-14-s5-s18.

[Cai+19] Massimo Cairo et al. “An optimal O (nm) algorithm for enumerating all walks common to
all closed edge-covering walks of a graph”. In: ACM Transactions on Algorithms (TALG) 15.4
(2019), pp. 1–17.

[Cai+20] Massimo Cairo et al. “The hydrostructure: a universal framework for safe and complete algo-
rithms for genome assembly”. In: arXiv preprint arXiv:2011.12635 (2020).

[Cai+21] Massimo Cairo et al. “Genome Assembly, from Practice to Theory: Safe, Complete and Linear-
Time”. In: 48th International Colloquium on Automata, Languages, and Programming (ICALP
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021.

[Cai+22] Massimo Cairo et al. “Cut paths and their remainder structure, with applications”. In: arXiv
preprint arXiv:2210.07530 (2022).

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1186/1471-2105-14-s5-s18
https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


[Che+21] Haoyu Cheng et al. “Haplotype-resolved de novo assembly using phased assembly graphs with
hifiasm”. In: Nature methods 18.2 (2021), pp. 170–175.

[CLM16] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. “Compacting de Bruijn graphs from
sequencing data quickly and in low memory”. In: Bioinformatics 32.12 (2016), pp. i201–i208.

[GIP20] Loukas Georgiadis, Giuseppe F Italiano, and Nikos Parotsidis. “Strong connectivity in directed
graphs under failures, with applications”. In: SIAM Journal on Computing 49.5 (2020), pp. 865–
926.

[Hut18] John Hutton. “Extended Safe Contigs in the Face of Incomplete Coverage”. Masters thesis.
Pennsylvania State University, 2018.

[Jac09] Benjamin Grant Jackson. Parallel methods for short read assembly. Iowa State University, Ph.D.
thesis, 2009.

[Kol+19] Mikhail Kolmogorov et al. “Assembly of long, error-prone reads using repeat graphs”. In: Nature
biotechnology 37.5 (2019), pp. 540–546.

[KSP10] Carl Kingsford, Michael C Schatz, and Mihai Pop. “Assembly complexity of prokaryotic genomes
using short reads”. In: BMC Bioinformatics 11.1 (2010). doi: 10.1186/1471-2105-11-21.

[Li18] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. In: Bioinformatics 34.18
(2018), pp. 3094–3100.

[Med+07] Paul Medvedev et al. “Computability of Models for Sequence Assembly”. In: WABI. 2007,
pp. 289–301.

[Med22] Paul Medvedev. “The limitations of the theoretical analysis of applied algorithms”. In: arXiv
preprint 2205.01785 (2022).

[Mik+18] Alla Mikheenko et al. “Versatile genome assembly evaluation with QUAST-LG”. In: Bioinfor-
matics 34.13 (2018), pp. i142–i150.

[Möl+21] Felix Mölder et al. “Sustainable data analysis with Snakemake”. In: F1000Research 10 (2021).
[MP21] Paul Medvedev and Mihai Pop. “What do Eulerian and Hamiltonian cycles have to do with

genome assembly?” In: PLOS Computational Biology 17.5 (May 2021). Ed. by Francis Ouellette,
e1008928. doi: 10.1371/journal.pcbi.1008928.

[Nur+20] Sergey Nurk et al. “HiCanu: accurate assembly of segmental duplications, satellites, and allelic
variants from high-fidelity long reads”. In: Genome research 30.9 (2020), pp. 1291–1305.

[Nur+22] Sergey Nurk et al. “The complete sequence of a human genome”. In: Science 376.6588 (2022),
pp. 44–53.

[OMT18] Nidia Obscura Acosta, Veli Mäkinen, and Alexandru I Tomescu. “A safe and complete algorithm
for metagenomic assembly”. In: Algorithms for Molecular Biology 13.1 (2018), pp. 1–12.

[PTW01] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. “An Eulerian path approach to DNA
fragment assembly”. In: Proceedings of the National Academy of Sciences 98.17 (2001), pp. 9748–
9753.

[Rhi+21] Arang Rhie et al. “Towards complete and error-free genome assemblies of all vertebrate species”.
In: Nature 592.7856 (2021), pp. 737–746.

[RL20] Jue Ruan and Heng Li. “Fast and accurate long-read assembly with wtdbg2”. In: Nature methods
17.2 (2020), pp. 155–158.

[RM22] Amatur Rahman and Paul Medvedev. “Assembler artifacts include misassembly because of un-
safe unitigs and underassembly because of bidirected graphs”. In: Genome Research 32.9 (2022),
pp. 1746–1753.

[Sal+12] Steven L Salzberg et al. “GAGE: A critical evaluation of genome assemblies and assembly algo-
rithms”. In: Genome research 22.3 (2012), pp. 557–567.

[Sch22a] [SW] Sebastian Schmidt, Flye YV 2022. swhid: ⟨swh:1:dir:9db98f37fc74842eacb28e740940
4f3162155f4c;origin=https://github.com/sebschmi/Flye;visit=swh:1:snp:14b783a1e2

fa91c7b8681b4375ee844c38946b93;anchor=swh:1:rev:593a527881d4bcfa503d5b9c495cb55

721c95063⟩.
[Sch22b] [SW] Sebastian Schmidt, homopolymer-compress-rs 2022. swhid: ⟨swh:1:dir:f06485cc220b74

892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compr

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1186/1471-2105-11-21
https://doi.org/10.1371/journal.pcbi.1008928
http://archive.softwareheritage.org/swh:1:dir:9db98f37fc74842eacb28e7409404f3162155f4c;origin=https://github.com/sebschmi/Flye;visit=swh:1:snp:14b783a1e2fa91c7b8681b4375ee844c38946b93;anchor=swh:1:rev:593a527881d4bcfa503d5b9c495cb55721c95063
http://archive.softwareheritage.org/swh:1:dir:9db98f37fc74842eacb28e7409404f3162155f4c;origin=https://github.com/sebschmi/Flye;visit=swh:1:snp:14b783a1e2fa91c7b8681b4375ee844c38946b93;anchor=swh:1:rev:593a527881d4bcfa503d5b9c495cb55721c95063
http://archive.softwareheritage.org/swh:1:dir:9db98f37fc74842eacb28e7409404f3162155f4c;origin=https://github.com/sebschmi/Flye;visit=swh:1:snp:14b783a1e2fa91c7b8681b4375ee844c38946b93;anchor=swh:1:rev:593a527881d4bcfa503d5b9c495cb55721c95063
http://archive.softwareheritage.org/swh:1:dir:9db98f37fc74842eacb28e7409404f3162155f4c;origin=https://github.com/sebschmi/Flye;visit=swh:1:snp:14b783a1e2fa91c7b8681b4375ee844c38946b93;anchor=swh:1:rev:593a527881d4bcfa503d5b9c495cb55721c95063
http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


ess-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:re

v:9a979197d2c762f03442a5d584d8c849c9f5ea8e⟩.
[Sch22c] [SW] Sebastian Schmidt, practical-omnitigs 2022. swhid: ⟨swh:1:dir:ca94cf8be13f3fcd3b27

8a146d4385400d1091b0;origin=https://github.com/algbio/practical-omnitigs;visit

=swh:1:snp:eba6fec19d9d6083712bb7719e4a5ae78ca5e168;anchor=swh:1:rev:bb1de69873

c6b48f183e51bca2f48d2a057b8b64⟩.
[Sch22d] [SW] Sebastian Schmidt, QUAST 5.0.2 modified to be robust against overlapping contigs 2022.

swhid: ⟨swh:1:dir:aaed88b6f90318a36e0c7005766f13b533b6a716;origin=https://github
.com/sebschmi/quast;visit=swh:1:snp:37db2094871b0208f41bb3342683aaf58f623f7f;an

chor=swh:1:rev:39cf5f04bd0d127480344d5d1c41226245f08b9b⟩.
[Sch22e] [SW] Sebastian Schmidt, wtdbg2 YV 2022. swhid: ⟨swh:1:dir:ea9b4a6701128abadd4e48d780

5348cb805d1a6a;origin=https://github.com/sebschmi/wtdbg2;visit=swh:1:snp:92dd89

6b9706d5ce2f2d5b3c14e1ff3e6f18e0a9;anchor=swh:1:rev:78c3077b713aaee48b6c0835105

ce6c666f6e796⟩.
[Sch22f] [SW] Sebastian Schmidt, wtdbg2-homopolymer-decompression 2022. swhid: ⟨swh:1:dir:4965e

b73d546564b33f33976ad94391113e3aebf;origin=https://github.com/sebschmi/wtdbg2-h

omopolymer-decompression;visit=swh:1:snp:8e590d8250c2f54c356a746f3e48d7ef88aa6f

2d;anchor=swh:1:rev:3bec6c0b751a70d53312b359171b9a576f67ebb6⟩.
[Seq98] C. elegans Sequencing Consortium*. “Genome sequence of the nematode C. elegans: a platform

for investigating biology”. In: Science 282.5396 (1998), pp. 2012–2018.
[TM17] Alexandru I Tomescu and Paul Medvedev. “Safe and complete contig assembly through omnit-

igs”. In: Journal of Computational Biology 24.6 (2017), pp. 590–602.
[YJG03] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux utility for resource

management”. In: Workshop on job scheduling strategies for parallel processing. Springer. 2003,
pp. 44–60.

A Omitted implementation details

A.1 Modifying wtdbg2

The assembler wtdbg2 [RL20] comes with two binaries, the first wtdbg2 which computes contigs as an
overlapping sequence of reads, and the second wtpoa-cns which computes a consensus sequence for each of
these contigs. All our modification happen in and around the first binary. The wtdbg2 binary first builds
a fuzzy de Bruijn graph and from which it computes unitigs after some error corrections, and then builds
a fragment graph from these unitigs. In the fragment graph the assembler does another round of error
corrections before it reports unitigs from this fragment graph and outputs their overlapping sequences of
reads. We modified wtdbg2 to output simple omnitigs instead of unitigs from the error corrected fragment
graph. For this we run wtdbg2 once and output the fragment graph using its builtin output functions. Then
we compute simple omnitigs on this graph and run wtdbg2 again, this time loading the simple omnitigs
from disk and outputting their sequences of overlapping reads instead of the unitigs in the end. We can run
wtdbg2 two times this way and get consistent node/edge identifiers since these are deterministic, even when
running wtdbg2 in parallel.

In our experiments, we also realised that since HiFi reads have mostly base duplications and deletions as
errors, we can homopolymer-compress the reads to get a more accurate assembly. It turned out that when re-
porting simple omnitigs, we get a lot more misassemblies, but when using homopolymer compression as well,
the misassemblies are not a problem, at least for D. melanogaster. To still get an assembly in uncompressed
space, we decompress the contigs before calling wtpoa-cns. This is simple since the overlapping sequences
of reads that form the contigs of wtdbg2 carry the ids of the original reads, so we can directly replace the
subsequence of characters (adjusting the start and end index according to the compression). Note that,
even though we evaluate in homopolymer compressed space in the end, this decompression is still important
as it makes the consensus stage run in homopolymer decompressed space, thus producing an assembly in

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
http://archive.softwareheritage.org/swh:1:dir:f06485cc220b74892194e9d58e42c4c2b7f45a98;origin=https://github.com/sebschmi/homopolymer-compress-rs;visit=swh:1:snp:d4fd25fb6de9b09bf76084a3633905fa0056eb95;anchor=swh:1:rev:9a979197d2c762f03442a5d584d8c849c9f5ea8e
http://archive.softwareheritage.org/swh:1:dir:ca94cf8be13f3fcd3b278a146d4385400d1091b0;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:eba6fec19d9d6083712bb7719e4a5ae78ca5e168;anchor=swh:1:rev:bb1de69873c6b48f183e51bca2f48d2a057b8b64
http://archive.softwareheritage.org/swh:1:dir:ca94cf8be13f3fcd3b278a146d4385400d1091b0;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:eba6fec19d9d6083712bb7719e4a5ae78ca5e168;anchor=swh:1:rev:bb1de69873c6b48f183e51bca2f48d2a057b8b64
http://archive.softwareheritage.org/swh:1:dir:ca94cf8be13f3fcd3b278a146d4385400d1091b0;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:eba6fec19d9d6083712bb7719e4a5ae78ca5e168;anchor=swh:1:rev:bb1de69873c6b48f183e51bca2f48d2a057b8b64
http://archive.softwareheritage.org/swh:1:dir:ca94cf8be13f3fcd3b278a146d4385400d1091b0;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:eba6fec19d9d6083712bb7719e4a5ae78ca5e168;anchor=swh:1:rev:bb1de69873c6b48f183e51bca2f48d2a057b8b64
http://archive.softwareheritage.org/swh:1:dir:aaed88b6f90318a36e0c7005766f13b533b6a716;origin=https://github.com/sebschmi/quast;visit=swh:1:snp:37db2094871b0208f41bb3342683aaf58f623f7f;anchor=swh:1:rev:39cf5f04bd0d127480344d5d1c41226245f08b9b
http://archive.softwareheritage.org/swh:1:dir:aaed88b6f90318a36e0c7005766f13b533b6a716;origin=https://github.com/sebschmi/quast;visit=swh:1:snp:37db2094871b0208f41bb3342683aaf58f623f7f;anchor=swh:1:rev:39cf5f04bd0d127480344d5d1c41226245f08b9b
http://archive.softwareheritage.org/swh:1:dir:aaed88b6f90318a36e0c7005766f13b533b6a716;origin=https://github.com/sebschmi/quast;visit=swh:1:snp:37db2094871b0208f41bb3342683aaf58f623f7f;anchor=swh:1:rev:39cf5f04bd0d127480344d5d1c41226245f08b9b
http://archive.softwareheritage.org/swh:1:dir:ea9b4a6701128abadd4e48d7805348cb805d1a6a;origin=https://github.com/sebschmi/wtdbg2;visit=swh:1:snp:92dd896b9706d5ce2f2d5b3c14e1ff3e6f18e0a9;anchor=swh:1:rev:78c3077b713aaee48b6c0835105ce6c666f6e796
http://archive.softwareheritage.org/swh:1:dir:ea9b4a6701128abadd4e48d7805348cb805d1a6a;origin=https://github.com/sebschmi/wtdbg2;visit=swh:1:snp:92dd896b9706d5ce2f2d5b3c14e1ff3e6f18e0a9;anchor=swh:1:rev:78c3077b713aaee48b6c0835105ce6c666f6e796
http://archive.softwareheritage.org/swh:1:dir:ea9b4a6701128abadd4e48d7805348cb805d1a6a;origin=https://github.com/sebschmi/wtdbg2;visit=swh:1:snp:92dd896b9706d5ce2f2d5b3c14e1ff3e6f18e0a9;anchor=swh:1:rev:78c3077b713aaee48b6c0835105ce6c666f6e796
http://archive.softwareheritage.org/swh:1:dir:ea9b4a6701128abadd4e48d7805348cb805d1a6a;origin=https://github.com/sebschmi/wtdbg2;visit=swh:1:snp:92dd896b9706d5ce2f2d5b3c14e1ff3e6f18e0a9;anchor=swh:1:rev:78c3077b713aaee48b6c0835105ce6c666f6e796
http://archive.softwareheritage.org/swh:1:dir:4965eb73d546564b33f33976ad94391113e3aebf;origin=https://github.com/sebschmi/wtdbg2-homopolymer-decompression;visit=swh:1:snp:8e590d8250c2f54c356a746f3e48d7ef88aa6f2d;anchor=swh:1:rev:3bec6c0b751a70d53312b359171b9a576f67ebb6
http://archive.softwareheritage.org/swh:1:dir:4965eb73d546564b33f33976ad94391113e3aebf;origin=https://github.com/sebschmi/wtdbg2-homopolymer-decompression;visit=swh:1:snp:8e590d8250c2f54c356a746f3e48d7ef88aa6f2d;anchor=swh:1:rev:3bec6c0b751a70d53312b359171b9a576f67ebb6
http://archive.softwareheritage.org/swh:1:dir:4965eb73d546564b33f33976ad94391113e3aebf;origin=https://github.com/sebschmi/wtdbg2-homopolymer-decompression;visit=swh:1:snp:8e590d8250c2f54c356a746f3e48d7ef88aa6f2d;anchor=swh:1:rev:3bec6c0b751a70d53312b359171b9a576f67ebb6
http://archive.softwareheritage.org/swh:1:dir:4965eb73d546564b33f33976ad94391113e3aebf;origin=https://github.com/sebschmi/wtdbg2-homopolymer-decompression;visit=swh:1:snp:8e590d8250c2f54c356a746f3e48d7ef88aa6f2d;anchor=swh:1:rev:3bec6c0b751a70d53312b359171b9a576f67ebb6
https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/


decompressed space. This allows for a fairer comparison of the modified wtdbg2 to the other assemblers,
which all output contigs in uncompressed space. We call the variant of wtdbg2 that just uses homopolymer
compression “W-int” and the variant that uses both homopolymer compression and simple omnitigs “W-so”.
The modified wtdbg2 is available at [Sch22e]. Homopolymer compression is done with [Sch22b] and decom-
pression is done with [Sch22f]. Hompolymer compression and decompression is implemented in Rust and
run with cargo run --release -- --compute-threads 28 (plus arguments specifying input and output
files and formats). The modified wtdbg2 is run with the parameters proposed for HiFi reads: -x ccs -g

<REFERENCE LENGTH> -t 28 (plus arguments specifying input and output files and formats).

A.2 Modifying Flye

The assembler Flye [Kol+19] runs in multiple stages. We have disabled resolving repeats and polishing,
which does not seem to make any difference in our experiments. Instead, we directly report the unitigs
of the repeat graph as computed by Flye. This variant is called “F-int”. When using simple omnitigs, we
report simple omnitigs from the repeat graph instead of unitigs by calling our tool from within Flye (and we
keep resolving repeats and polishing disabled). This variant is called “F-so”. The modified version of Flye
is available at [Sch22a]. We run it with parameters -g <REFERENCE LENGTH> -t 28 --pacbio-hifi (plus
arguments specifying input and output files and formats). To disable resolving of repeats and polishing, we
add --stop-after contigger.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526175
http://creativecommons.org/licenses/by/4.0/

	The omnitig framework can improve genome assembly contiguity in practice

