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Abstract

Motivation: Knowing the relation between cell types is crucial for translating experimental results from mice to humans.
Establishing cell type matches, however, is hindered by the biological differences between the species. A substantial
amount of evolutionary information between genes that could be used to align the species is discarded by most of the
current methods since they only use one-to-one orthologous genes. Some methods try to retain the information by ex-
plicitly including the relation between genes, however, not without caveats.

Results: In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis (TACTICS). First,
TACTICS uses a natural language processing model to match genes using their protein sequences. Next, TACTICS
employs a neural network to classify cell types within a species. Afterwards, TACTICS uses transfer learning to propagate
cell type labels between species. We applied TACTICS on scRNA-seq data of the primary motor cortex of human, mouse
and marmoset. Our model can accurately match and align cell types on these datasets. Moreover, at a high resolution,
our model outperforms the state-of-the-art method SAMap. Finally, we show that our gene matching method results in
better matches than BLAST, both in our model and SAMap.

Availability: https://github.com/kbiharie/TACTIiCS

Contact: a.mahfouz@Ilumc.nl

Traditionally, cell types were characterized solely based on morphol-
ogy, but using single-cell RNA sequencing (scRNA-seq), the expression

1 Introduction

Model organisms, such as mouse and marmoset, are often used in brain
research as a substitute for humans. However, because of differences be-

pattern across thousands of genes can now be used to describe a cell type.

This has resulted in the identification of an increasing number of cell types
tween species, experiments performed on model organisms do not directly  ithin specific brain regions (Tasic ef al., 2018; Siletti ef al., 2022). Alt-
translate to humans. For example, widely-used antidepressants that target hough this improves our understanding of biological processes in the
brain, when comparing species, it introduces the need for a method that

can match these new cell types accurately between species.

serotonin receptors are often tested on mice, while the expression pattern
of serotonin receptors is highly divergent between human and mouse,
likely leading to differences in cell function between species (Hodge et
al., 2019). Consequently, to facilitate translational research, it is important
to better characterize cell type matches between species. This facilitates

Unfortunately, this is not a trivial task as genes are modified, duplicated
and deleted throughout evolution, resulting in complicated many-to-many
gene-gene relationships between species. These relationships become

studying how drugs then alter biological processes within specific cell even more complicated when evolutionary distances increase.

types between these species.
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Fig. 1: Schematic overview of TACTiCS. We use human and mouse as example, but cell types from any two species can be matched. (a) Matching genes on protein sequences using

ProtBERT. (b) Bipartite graph of gene matches. Gene expression is imputed by taking the weighted average from connected genes in the bipartite graph. (c) Creating cell embeddings using

linear layers on the shared feature space. The weights of the linear layers are shared. (d) Classifying within-species cells during training. The classifier consists of a linear layer outputting

the cell type probabilities followed by a softmax. (e) Classifying cross-species cells using transfer learning. The predictions are used to match cell types.

Current methods that match cell types across species based on scRNA-
seq data can be divided into two groups, mainly based on how they solve
the gene-matching problem. The first group only uses the one-to-one
orthologous genes, which are genes with exactly one match in the other
species based on sequence similarity (e.g. using BLAST (Altschul et al.,
1990)). Methods such as scANVI (Xu et al., 2021), MetaNeighbour (Crow
et al., 2018), and LAMbDA (Johnson et al., 2019) belong to this group.
While this is a straightforward approach, it ignores genes with a more
complex evolutionary history which might have caused divergent func-
tional specification of cell types between species. The second group of
methods, including SAMap (Tarashansky et al., 2021), CAME (Liu et al.,
2021), Kmermaid (Botvinnik et al., 2021), and C3 (Kabir ef al., 2018),
overcomes this limitation by considering many-to-many relationships be-
tween the genes based on sequence similarity. All these methods rely on
the classical assumption that sequence similarity is a good measure of how
genes functionally relate to each other. However, sequence similarity of-
ten considers one nucleotide/amino acid at a time, which to a large extent

ignores sequence contexts important for functional characterization (e.g.
secondary structures and sequence motifs). A growing body of evidence
suggests that language models are a powerful approach to capture func-
tional similarities between genes (Villegas-Morcillo et al., 2021; Rives et
al., 2021; Heinzinger et al., 2019; Elnaggar et al., 2021). Similarly, we
hypothesize that using language models to match genes between species
can be beneficial for cell type matching.

Once we identified matching relationships between genes across spe-
cies, the next step is to characterize cell type matches. We and others have
posed cell type matching as a classification task where the agreement of
predictions from two classifiers, trained on two labeled scRNA-seq da-
tasets, is used to match cell types between the datasets (Michielsen et al.,
2021; Johnson et al., 2019; Yuan et al., 2022). Biological differences be-
tween species, however, hinder applying such a method directly. A solu-
tion could be to learn a common embedding space for the cells before
training the classifiers.
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Cell type matching across species using protein embeddings and transfer learning

Here we introduce a method to Transfer and Align Cell Types in Cross-
Species analysis (TACTiCS) that incorporates the two claims that we
make: 1) using language models to match genes functionally between spe-
cies, and 2) training classifiers in a shared embedding space to transfer cell
types from one species to the other. We show that TACTICS correctly
matches human, mouse and marmoset brain cell populations from the pri-
mary motor (M1) cortex at a detailed cell type level, and does so better
than SAMap, the current state-of-the-art method.

2 Methods

TACTICS takes as input two single-cell (sc) or single-nucleus (sn) RNA-
seq datasets, with raw expression counts, from two species A and B. TAC-
TiCS consists of four steps (Fig. 1): 1) matching genes based on the pro-
tein sequences, 2) creating a shared feature space by mapping expression
values with the gene matches obtained in step 1, 3) training within-species
cell type classifiers, and 4) matching cell types by swapping the classifiers.

2.1 Matching genes

First, we created an embedding for every gene using ProtBERT, a trans-
former-based language model (Elnaggar et al., 2021). The protein se-
quences were retrieved from UniProt (The UniProt Consortium et al.,
2023). For human and mouse, we selected only the Swiss-prot sequences,
but for marmoset we selected all protein sequences. We input the protein
sequences to ProtBERT to create an embedding for each protein hP™BERT
(Fig. 1a). ProtBERT generates a 1024-dimensional embedding for every
amino acid in the protein sequence. To allow TACTiCS to work with var-
iable-length proteins, we followed common practice (Heinzinger et al.,
2019) and took the mean embedding over all positions to represent the
whole protein sequence (as well as the corresponding gene). Protein se-
quences longer than 2500 amino-acids (<2% of all sequences) were trun-
cated to the first 2500 to fit into the memory of the GPU.

Next, for every pair of genes from species A and species B, we calcu-
lated the cosine distance between the ProtBERT embeddings. The initial
set of gene matches were pairs with a cosine distance < 0.05. To ensure
that a gene is not connected to too many genes, we kept only the five clos-
est genes, that met the distance threshold, for every gene.

Finally, we filtered the informative gene matches. Hereto, we calculated
the top 2000 highly variable genes per species using Scanpy
highly_variable_genes, and kept only those gene matches where
at least one of the two genes is within the set of highly variable genes in
their respective species (Wolf et al., 2018). From these matches, we con-
struct two sets of genes G, and Gg, corresponding to species A and B re-
spectively, consisting of genes with a match in the other species.

To obtain sequence similarity-based gene matches, we used BLAST in-
stead of ProtBERT to match the genes. We elected matches with an E-
value <le-6 as the initial set of matches. The bitscore of each match is
used as the distance between the genes. Since BLAST scores are not sym-
metrical, one gene match is assigned a separate E-value and bitscore for
each direction. If only one direction meets the E-value threshold, we use
the corresponding bitscore as the gene distance. If both directions meet the
threshold, we use the average of the two bitscores. The list of matches is
then filtered similarly as before on that at least on of the genes in a pair is
highly varying.

2.2 Creating a shared feature space by mapping expres-
sion values with the gene matches

We normalized the expression levels of genes as follows: 1) the raw ex-
pression counts of each dataset are normalized by the number of reads per
cell such that the total number of counts in every cell is 10,000, and 2) the
natural logarithm of the normalize;i counts are taken:
_ i 5
Xij ln(ZkEG . *le> +1)
where x;; is the expression of gene j in cell i. Finally, a Z-score per gene
is calculated to form the normalized expression matrices X4 and X& for
genes G, and Gp, respectively. We created a shared feature space for the
two datasets spanning G4 U Gy (Fig. 1b). The shared feature space is partly
equal to the expression matrices X4 and XZ and partly imputed:
XA, fueg,
X=q_1 Z ewXh,  ifu€Gy
euv

ZVEGA vEGA

where E is the normalized expression of cell i from species A for gene
u in the shared feature space. The expression of within species genes does
not change. For a cross-species gene, we imputed the expression by taking
the weighted average of the expression of the within-species genes it is

matched to. The weight between gene u and gene v is calculated as:
3 Similarity(hsrotBERT’ hgrotBERT)

Cuv 0.05
where similarity calculates the cosine distance between the ProtBERT

embeddings. The weights are scaled to the interval [0, 1] by dividing with
the distance threshold. When BLAST is used instead, we used the (aver-
age) bitscore between the two genes directly, since the bitscore does not
have to be inversed. The edge weight is set to O for gene pairs that do not
match according to the threshold and filtering criteria. The resulting ma-
trices X4 and X? both span the same set of genes, and can thus be com-
pared directly.

2.3 Cell embeddings

The shared feature space is put through two linear layers to create the cell
embeddings (Fig. 1¢). Each linear layer is followed by a Rectified Linear
Unit (ReLU) activation function. The first layer creates embeddings of
length 64. The second layer creates embeddings of length 32. These em-
beddings are used to visualize the embedding space with a UMAP. The
weights to embed the cells are shared across the species.

24 Training species-specific cell type classifier

We used these embeddings to train a separate classifier per species. We
used a neural network consisting of one linear layer followed by a softmax
activation function (Fig. 1d). Both classifiers take the cell embedding as

input and output cell type probabilities, h4°%t or hBout

, only for cell types
belonging to its respective species. During training, cells are input only to
the classifier of its corresponding species.

The loss to update the embedding and classification weights consists of
two parts: 1) the classification loss, and 2) the alignment loss. Both losses
are calculated separately per species. For the classification loss, we used

the weighted cross-entropy loss between the predictions and targets:
Na Ta

1
LclsA = mz Z WtYiIES ln(hft'out
i=1t=1
where L, is the classification loss for species A. N, and T, are the num-
ber of cells and cell types in species A respectively. w; is the weight for
cell type t, explained further below. hlfqt'out is the output of classifier A,

specifically the probability that cell i belongs to cell type t. The one-hot
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encoded targets Y are modified with label smoothing to prevent overfitting

and improve stability:
1-— ¢
v = e
T-1’
where € (=0.1) controls the smoothness. The weight of each cell type is

ify, =t

otherwise

updated every epoch based on the accuracy of that cell type:
w,=(1—-acc)*a+1
where acc; is the accuracy of class t in the current epoch. « is a hyperpa-
rameter that controls the influence of the accuracy on the weight. We use
a = 9 such that the weights are in the interval [1,10] which restricts the
relative difference in weight between cell types. By updating the weights,
a cell type with a lower accuracy in the current epoch will have a higher
weight in the next epoch and thus the predictions will shift to that cell type.
The alignment loss aims to integrate the embedding space across the
species, such that cross-species cells with a similar gene expression are
close in the embedding space:

N
1 1 —
LalignA = mz MSE |N.cross| Z XJB‘Xf‘1
i=1 t

i CTross
JEN;

where N4 is the number of cells of species A and are the 20 nearest

NL_CTOSS
cross-species neighbours for cell i. MSE calculates the mean squared error
between the prediction of the shared features of neighbours j and the ac-
tual shared features for cell i. If the alignment loss is minimized, neigh-
bours in the embedding space can be used to predict the gene expression.
The final loss is a combination of the classifier loss, the alignment loss
and a regularization loss:
L= LclsA + LclsB + LalignA + Laligng + VHGII%

where 0 consists of all parameters in the model, and is used for the L2
regularization to prevent overfitting. y is the weight of the L2 norm, which
is set to 0.01. The model is trained for 200 epochs. We used the Adam
optimizer with a learning rate of 0.001. The full training process takes
around 30 minutes.

To efficiently use large scRNA-seq datasets, the neural network is
trained in batches. A batch size of 5000 cells per species is used to speed
up the training while still having enough cells per cell type. Instead of
sequentially iterating over the dataset, each batch is randomly sampled
from the full dataset, while accounting for the size of each cell type. More
specifically, every cell is assigned a probability N4/N# or N¥ /NZ, where
N4 is the total number of cells of species A and N# is the number of cells
of species A belonging to cell type t. These probabilities are then used to
sample a batch of cells per species with a similar number of cells for each
cell type.

2.5 Transferring cell type predictions across species

After the neural network is trained, the cell types are transferred by using
the classifiers on the species they were not trained on (Fig. le). That is,
we calculate h5°% for cells of species A, and h4°%¢ for cells of species
B. The transferred cell type for a single cell is the cell type with the highest
probability. To aggregate the information of the single cells to the cell
type, we calculate the fraction of cells that are predicted to match cell types
across species, which forms a normalized confusion matrix for both trans-
ferring directions. We average the two matrices to create a combined ma-
trix, where high values indicate reciprocal matches. The values in the com-
bined matrix can be used to score a match.

2.6 Dataset

We evaluated TACTiCS on snRNA-seq data taken from the primary mo-
tor cortex of human, mouse and marmoset (Bakken et al., 2021). These
datasets consist of 76k human cells, 159k mouse cells and 69k marmoset
cells, respectively. The cell type distribution varies considerably across
species. For instance, non-neuronal cells make up around a third of both
mouse and marmoset cells, while only 5% of the human cells are non-
neuronal. We use two resolutions of the cell labels assigned by the original
authors: 1) a higher resolution, consisting of 45 cell types present in all
species; and 2) a lower resolution, consisting of 20 human, 23 mouse and
22 marmoset subclass cell types. At the lower resolution not all cell types
occur in all species. SMC is only present in mouse, while Meis2 and Peri
are only present in mouse and marmoset. Species-specific cells are labeled
with “NA” at the higher resolution.

2.7 Evaluation

The combined matrix cannot be evaluated using standard metrics for con-
fusion matrices, such as precision or F1 score, since we cannot distinguish
between false positives and false negatives. Instead, we focus on the
matching scores from corresponding cell types in the combined matrix,
which ideally should be 1. We define the Average Diagonal Score (ADS)
as the average score of the diagonal entries, after excluding species-spe-
cific cell types. A high ADS indicates that many cell types are correctly
and reciprocally matched. However, the ADS does not indicate how many
cell types are correctly matched. To this end, we define the recall as the
fraction of diagonal entries where the score is highest for both that row
and column.

We also compared TACTiCS to SAMap (Tarashansky et al., 2021), a
cell type matching method that iterates between two steps. The first step
matches the genes, which is initially done with BLAST on the DNA or
protein sequences. Instead of taking the top-1 match, SAMap uses the
BLAST bitscore directly in their model which allows for many-to-many
matches. The second step uses the gene matches to first impute genes
across species and then embed the cells by concatenating the principal
components of the original expression and imputed expression. Then, the
correlation between genes in the embedding space is used to update the
gene matches. The two steps are repeated until the process converges.

2.8 Implementation

TACTICS is implemented in Python 3.9. Pytorch (Paszke et al., 2019) was
used for the model architecture. The scRNA-seq data is stored as Anndata
(Virshup et al., 2021) objects, containing both the gene expression and the
cell type annotations. The implementation of TACTICS is available at
https://github.com/kbiharie/TACTiCS.

As Tarashanky et al. have noted, the runtime of SAMap increases sig-
nificantly for larger datasets, and we were unable to run SAMap for the
full datasets (Tarashansky et al., 2021). Instead, we used SAMap on sub-
sets of 50k cells per species. We subsampled the data to keep the cell type
proportions similar while making sure that all cell types are included.
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3 Reslults

3.1 Matching genes using sequence embeddings is com-
parable to sequence alignment with notable differ-
ences

First, we investigate how similar the gene matches returned by ProtBERT
and BLAST are. We retrieved 14,875 human and 13,601 mouse protein
sequences, discarding 5% of the human genes and 13% of the mouse genes
for which we do not have the protein sequence. We used both ProtBERT
and BLAST to generate gene matches.

For 14,437 human genes, we found a mouse match using BLAST (gene
with smallest E-value < le-6). For these human genes, we defined the
ProtBERT match as the mouse gene with the most similar ProtBERT em-
bedding. For 12,866 out of 14,437 human genes (89%), the BLAST match
is identical to the ProtBERT match. Thus, the top-1 match is identical for
the vast majority of genes. We ranked the BLAST matches according to
the ProtBERT embedding distance to all mouse genes (Fig. 2a). Most of
the BLAST matches have a rank close to 1 and over 95% of the BLAST
matches have a rank below 100. Additionally, 31% of the BLAST matches
that differ from the ProtBERT match are in the top-5 and thus considered
in the many-to-many matches. Thus, if the BLAST match is not consid-
ered to be the best match by ProtBERT, it is still relatively similar based
on the embedding distance.

Next, we focus on the 1571 human genes for which the ProtBERT and
BLAST match differ to investigate which method returns the most func-
tionally similar match. We assess functional similarity here in terms of
gene expression similarity across cell types. Therefore, we calculated the
Pearson correlation coefficient across cell types in humans and mouse. We
considered the harmonized cell types as defined in (Bakken et al., 2021)
(Fig. 2b). For 1014 out of 1571 (65%) genes, the BLAST match has a
higher gene correlation than the ProtBERT match. This is to be expected
since the harmonized cell types were defined using the BLAST matches.
However, for some genes, the ProtBERT match has a higher correlation
than the BLAST match. For example, human /LI8R! is matched to mouse
111r] according to ProtBERT with a correlation coefficient of 0.945, while
BLAST matches the gene to mouse ///8r] with a correlation coefficient
of 0.103 (Fig. 3). Human /L/8R1 and mouse ///r] both show an increased
expression for the endothelial and VLMC cells, while mouse //18r/ does
not show this pattern, and is lowly expressed in all cell types.
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Fig. 2: Comparison of ProtBERT and BLAST matches. (A) Rank of BLAST match ac-
cording to ProtBERT embedding distances. Rank 1 indicates that the best ProtBERT match
and the best BLAST match are the same. (B) Scatterplot of the correlation of the expression
of human and mouse genes when considering the best BLAST match (x-axis) and the best
ProtBERT match (y-axis). The expression correlation is calculated as the Pearson correla-
tion across the average expression profiles of the Cross-species harmonized cell types. We
omitted human genes where the BLAST match and ProtBERT match are the same. Gene
matches where either the human gene, ProtBERT match or BLAST match is highly varia-

ble, are colored orange.

3.2 TACTiCS accurately matches cortical cell types
across mouse and human

Now that we have seen that ProtBERT matches can be a powerful way to
capture gene relationships, we use them in TACTiCS to match cell types
in mouse and human cortex data. We use the Allen Brain Data, since the
cell types have been carefully matched and harmonized by curators. We
train TACTICS for the human-mouse comparison for both the subclass
and cross-species resolution. At the subclass resolution, TACTiCS returns
the correct cell type for all 23 cell types that are present in both human and
mouse (Fig. 4A). The species-specific cell types, mouse Meis2 and Peri,
do not have a one-to-one match with a human cell type. For instance,
mouse Meis2 matches human L6-IT and Vip with a low matching score
in the combined matrix for both. Mouse Peri only matches human Sncg
with a score of 0.5, but human Sncg matches mouse Sncg with a score of
0.8. Cell types present in both species have matching scores of > 0.8 while
wrong matches all have matching scores < 0.6.
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Fig. 3: Average expression of human /L/8R] and mouse matches across harmonized cell types. The mouse matches are ordered according to the ProtBERT embedding distances. BLAST

matches human /L/8R1 to mouse 1118r1.
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Fig. 5: Performance of (A) TACTiCS and (B) SAMap on when matching human and mouse cell types at cross-species resolution. Cross-species cell types are grouped per subclass (indicated

with the light-grey lines) and class (indicated with dark-grey lines).

To get better insight into TACTiCS performance, we visualized the 32-
dimensional cell embeddings using UMAP (Fig. 4b,c). Individual human
and mouse cells do not mix well in the embedding space, but the UMAP
does seem to align at the cell type level, i.e. corresponding cell types either
overlap partially in the embedding space, or are relatively close. For ex-
ample, Vip cells form a large cluster with partly human and mouse cells
separated, and cells of mixed origin in the middle. The Sst cells also form
a larger cluster, but the separation between the human and mouse cells is
more visible. The Oligodendrocytes form two separate clusters, but they
are closer to each other than to other cell types. The cell type proportions
do seem to have an effect on the alignment in the embedding space. Cell
types with a similar number of cells in human and mouse, such as Vip (6%
in human and 2% in mouse), are clustered more coherently. Cell types
with a large difference of occurrence within human and mouse, such as
Astro (1% in human and 11% in mouse), cluster into one larger cluster
with a smaller distinct but connected cluster for the species with the fewer
number of cells. The mouse-specific cell types Meis2, Peri, and SMC are
(correctly) clustered separately from the human cells. Thus, the

embedding space can align the cell types across the species, but not the
individual cells. Note that this can be due to unresolved batch effects or
actual biological differences between the two species.

At the cross-species resolution, TACTiCS returns correct matches for
the majority of cell types, with a recall of 0.89 (Fig. 5a, S1). Some cell
types are not properly matched, namely the L5-IT subtype, some Lamp5
subtypes, some Sncg subtypes, and the Vip subtype. Thus, TACTiCS be-
comes relatively less accurate when there are a lot of subtypes that are not
very distinct. In most cases, when there is a mismatch, TACTiCS matches
a cell type with a subtype that belongs to the same subclass. The human
Sncg subtypes are an exception since some of its subtypes are matched to
mouse L5 IT or Lamp5 subtypes.

To evaluate the performance of TACTICS across species with variable
evolutionary distance, we tested TACTiCS on cortical cell types between
human-marmoset and mouse-marmoset (Table 1). At the subclass resolu-
tion, TACTICS performs similar on all three comparisons with a recall of
1.0. At the cross-species resolution, TACTiCS performs best for the hu-

man-marmoset comparison and worst for the mouse-marmoset
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comparison. These results indicate that the performance of TACTICS is
dependent on the evolutionary distance between the species, since the evo-
lutionary distance to the closest common ancestors from human and mar-
moset (~40mya) is a lot less than human and mouse (~70mya).

Table 1: Average Diagonal Score (ADS) and recall for TACTiCS and
SAMap on human, mouse and marmoset. The gene-gene matching is ei-
ther done using ProtBERT (P) or BLAST (B).

Comp Meth Matching Subclass Cross-species
od

ADS Recall ADS Recall
Hu-mo TACTICS P 0.976 1.0 0.794 0.911
Hu-mo SAMap B 0.854 1.0 0.584 0.6
Hu-ma TACTICS P 0.968 1.0 0.905 0.956
Hu-ma SAMap B 0.925 1.0 0.776 0.889
Mo-ma TACTICS P 0.975 1.0 0.682 0.756

..Moma __SAMap_______ B | 0.839___ 0909 1 _0.595 __0.578 _

Hu-mo TACTICS B 0.840  0.85 0.506 0.578
Hu-mo SAMap P 0.855 1.0 0.597 0.644

33 TACTIiCS outperforms SAMap in matching cortical
cell types across mouse, human, and marmoset

To benchmark TACTICS, we compare its performance to SAMap using
three pair-wise comparisons (human-mouse, human-marmoset, and
mouse-marmoset). Across all comparisons, TACTiCS has a higher ADS
and recall than SAMap (Table 1). Both methods perform well at the sub-
class resolution for all comparisons with a recall of 1.0. However, TAC-
TiCS assigns higher scores to correct matches than SAMap. For instance,
SAMap correctly matches human L6b to mouse L6b, but with a very low
matching score equal to 0.35, while TACTiCS matches the same cell types
with a matching score of 0.99. Interestingly, for the species-specific cell
types, TACTiCS suggests matches that have a low score (0.18-0.68), al-
lowing to detect the species-specific cell types. The performance of
SAMap for the species-specific cell types is not consistent across all cell
types and comparisons. For example, SAMap correctly assigns zero scores
to mouse Peri and SMC in the human-mouse comparison, but incorrectly
matches mouse SMC to marmoset Peri with a high matching score.

At the cross-species resolution the performance of both methods drops
compared to the subclass level as expected, but the difference between the
methods becomes more apparent (Fig. 5, S1). For mismatches between
subtypes, TACTiCS usually matches to subtypes within the same sub-
class, while SAMap regularly maps to cell types from another subclass.
While both TACTiCS and SAMap partly match human Sncg to mouse
Lamp5, SAMap additionally shows similarity between human Sncg and
mouse Vip. SAMap also mismatches mouse Chandelier with human
Pvalb, while TACTiCS matches human and mouse Chandelier with high
confidence.

34 Using ProtBERT matches improves the cell type
matching for both TACTiCS and SAMap

Finally, we assessed the importance of using the ProtBERT embeddings
to match genes compared to using BLAST on the final cell type matches .
To this end, we trained TACTiCS based on the BLAST matches and
SAMap using the ProtBERT matches on the human-mouse data. For a fair
comparison of ProtBERT to BLAST in SAMap, we only apply the em-
bedding distance threshold to the ProtBERT matches, rather than filtering
the gene matches thoroughly. Training TACTIiCS at the cross-species

resolution using the BLAST matches results in an ADS of 0.54 and a recall
of 0.56, which is a lot worse than using the ProtBERT matches (Table 1).
For SAMap, the ADS increased from 0.58 to 0.60 and the recall increased
from 0.60 to 0.64 (Table 1) when ProtBERT matches were used instead
of the BLAST matches. Thus, for both TACTiCS and SAMap it is bene-
ficial to use ProtBERT embeddings to match genes.

4 Discussion

Here, we present TACTiCS, a method to accurately match cell types from
scRNA-seq data across species. We applied TACTiCS to match cell types
across human, marmoset, and mouse motor cortex, species with different
evolutionary distances to each other. Even though TACTiCS matches cell
types from all three species with high confidence, we showed that human
and marmoset cell types are considerably easier to match which correlates
with their closer evolutionary distance. Furthermore, we showed that
TACTICS outperforms the state-of-the-art method SAMap on all compar-
isons with the biggest difference at a higher resolution in favor of TAC-
TiCS. We should note that here we focus on comparisons across species
with a relatively small evolutionary distance while SAMap was originally
developed to match cell types across larger evolutionary distances (Ta-
rashansky et al., 2021).

Even though TACTICS outperforms SAMap on the (finer) cross-spe-
cies resolution, its performance drops as well. We would like to note that
the cell types at this resolution were established by Bakken et al. by inte-
grating datasets from the different species and clustering them in an em-
bedding space (Bakken et al., 2021). This resulted in ambiguous clusters
which were resolved manually by the authors to determine which cell
types would be in one cross-species group. Since these matches are not
perfect, it makes sense that we cannot achieve a perfect performance ei-
ther. Furthermore, the ground-truth matches used for evaluation are based
on analyses performed using BLAST one-to-one matches, also causing
unwanted differences when comparing results.

Gene matching is one of the main components of TACTiCS. We match
genes based on the distance between their corresponding protein embed-
dings, which are generated using ProtBERT instead of the commonly used
sequence similarity based on BLAST. Even though the top-1 matches of
ProtBERT and BLAST are largely similar, we have shown that using Prot-
BERT instead of BLAST distances improves the performance of both
TACTICS and SAMap. When aligning sequences using BLAST, every
amino acid is considered to be equally important, while we speculate that
ProtBERT focuses more on functional domains. A downside, however, of
using ProtBERT distances is that the protein sequence is needed and as a
consequence, we can only use coding genes. Using DNA sequence em-
bedding models, e.g. DNABert (Ji et al., 2021), for non-coding genes,
could in the future be used to overcome this limitation.

Some cell types, such as Meis2 and Peri in mice, are species-specific.
A limitation of our current approach is that the classifiers we built in TAC-
TiCS are missing a rejection option and therefore we cannot identify these
species-specific cells automatically. Since TACTICS usually assigns a
low matching score to these cell types, this score could be used to filter
species-specific cells. This difference in scores, however, is mainly appar-
ent at the subclass resolution. At the cross-species resolution, it would be
more difficult to determine a proper threshold without deteriorating the
performance. In general, SAMap assigns lower scores to species-specific
cell types, but also for SAMap the difference is smaller at the cross-species
resolution.

‘When inspecting the cell embeddings in the low dimensional space, we
notice that the cells from difference species are not well mixed. Matching
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cell types, however, are closest to each other and species-specific cell
types are more separated from all other cells. There are many data integra-
tion methods developed for single-cell data, such as scVI and Seurat
(Lopez et al., 2018; Hao et al., 2021), that would achieve a significantly
better integration. Since data integration is not the main goal of TACTiCS,
we did not add an explicit mixing component to the loss function. The
current loss function enforces that neighboring cells from the other species
can predict the other cell’s gene expression profile. This enforces cells of
the same cell type to be the closest, but not to fully overlap. Adding a
component to the loss that forces cells to be mixed (e.g. to have neighbors
of both species) could greatly improve the integration. Alternatively, if
good integration is a user’s desire, an option would be to replace the com-
ponent of TACTICS that generates the cell embeddings with another data
integration method such as scVI. The flexible architecture of TACTiICS
allows the individual components (gene matching, cell embedding, and
cell classification) to be easily replaced, extended, or integrated with dif-
ferent methods.

With TACTiCS we showed that using protein embeddings to match
genes is a viable alternative to BLAST when matching cell types based on
their scRNA expression levels across species. TACTICS can accurately
match cell types at different resolutions for large datasets, outperforming
SAMap. We envision that this fast and accurate cell type matching
method, will make comparative analyses across species considerably eas-
ier, contributing to, e.g. to the study of cell type evolution or translational
research.
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