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Abstract 
Motivation: Knowing the relation between cell types is crucial for translating experimental results from mice to humans. 

Establishing cell type matches, however, is hindered by the biological differences between the species. A substantial 

amount of evolutionary information between genes that could be used to align the species is discarded by most of the 

current methods since they only use one-to-one orthologous genes. Some methods try to retain the information by ex-

plicitly including the relation between genes, however, not without caveats. 

Results: In this work, we present a model to Transfer and Align Cell Types in Cross-Species analysis (TACTiCS). First, 

TACTiCS uses a natural language processing model to match genes using their protein sequences. Next, TACTiCS 

employs a neural network to classify cell types within a species. Afterwards, TACTiCS uses transfer learning to propagate 

cell type labels between species. We applied TACTiCS on scRNA-seq data of the primary motor cortex of human, mouse 

and marmoset. Our model can accurately match and align cell types on these datasets. Moreover, at a high resolution, 

our model outperforms the state-of-the-art method SAMap. Finally, we show that our gene matching method results in 

better matches than BLAST, both in our model and SAMap. 

Availability: https://github.com/kbiharie/TACTiCS 

Contact: a.mahfouz@lumc.nl 

1 Introduction 

Model organisms, such as mouse and marmoset, are often used in brain 

research as a substitute for humans. However, because of differences be-

tween species, experiments performed on model organisms do not directly 

translate to humans. For example, widely-used antidepressants that target 

serotonin receptors are often tested on mice, while the expression pattern 

of serotonin receptors is highly divergent between human and mouse, 

likely leading to differences in cell function between species (Hodge et 

al., 2019). Consequently, to facilitate translational research, it is important 

to better characterize cell type matches between species. This facilitates 

studying how drugs then alter biological processes within specific cell 

types between these species.

 

Traditionally, cell types were characterized solely based on morphol-

ogy, but using single-cell RNA sequencing (scRNA-seq), the expression 

pattern across thousands of genes can now be used to describe a cell type. 

This has resulted in the identification of an increasing number of cell types 

within specific brain regions (Tasic et al., 2018; Siletti et al., 2022). Alt-

hough this improves our understanding of biological processes in the 

brain, when comparing species, it introduces the need for a method that 

can match these new cell types accurately between species. 

Unfortunately, this is not a trivial task as genes are modified, duplicated 

and deleted throughout evolution, resulting in complicated many-to-many 

gene-gene relationships between species. These relationships become 

even more complicated when evolutionary distances increase. 
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Fig. 1: Schematic overview of TACTiCS. We use human and mouse as example, but cell types from any two species can be matched. (a) Matching genes on protein sequences using 

ProtBERT. (b) Bipartite graph of gene matches. Gene expression is imputed by taking the weighted average from connected genes in the bipartite graph. (c) Creating cell embeddings using 

linear layers on the shared feature space. The weights of the linear layers are shared. (d) Classifying within-species cells during training. The classifier consists of a linear layer outputting 

the cell type probabilities followed by a softmax. (e) Classifying cross-species cells using transfer learning. The predictions are used to match cell types. 

 

Current methods that match cell types across species based on scRNA-

seq data can be divided into two groups, mainly based on how they solve 

the gene-matching problem. The first group only uses the one-to-one 

orthologous genes, which are genes with exactly one match in the other 

species based on sequence similarity (e.g. using BLAST (Altschul et al., 

1990)). Methods such as scANVI (Xu et al., 2021), MetaNeighbour (Crow 

et al., 2018), and LAMbDA (Johnson et al., 2019) belong to this group. 

While this is a straightforward approach, it ignores genes with a more 

complex evolutionary history which might have caused divergent func-

tional specification of cell types between species. The second group of 

methods, including SAMap (Tarashansky et al., 2021), CAME (Liu et al., 

2021), Kmermaid (Botvinnik et al., 2021), and C3 (Kabir et al., 2018), 

overcomes this limitation by considering many-to-many relationships be-

tween the genes based on sequence similarity. All these methods rely on 

the classical assumption that sequence similarity is a good measure of how 

genes functionally relate to each other. However, sequence similarity of-

ten considers one nucleotide/amino acid at a time, which to a large extent 

ignores sequence contexts important for functional characterization (e.g. 

secondary structures and sequence motifs). A growing body of evidence 

suggests that language models are a powerful approach to capture func-

tional similarities between genes (Villegas-Morcillo et al., 2021; Rives et 

al., 2021; Heinzinger et al., 2019; Elnaggar et al., 2021). Similarly, we 

hypothesize that using language models to match genes between species 

can be beneficial for cell type matching.  

Once we identified matching relationships between genes across spe-

cies, the next step is to characterize cell type matches. We and others have 

posed cell type matching as a classification task where the agreement of 

predictions from two classifiers, trained on two labeled scRNA-seq da-

tasets, is used to match cell types between the datasets (Michielsen et al., 

2021; Johnson et al., 2019; Yuan et al., 2022). Biological differences be-

tween species, however, hinder applying such a method directly. A solu-

tion could be to learn a common embedding space for the cells before 

training the classifiers. 
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Here we introduce a method to Transfer and Align Cell Types in Cross-

Species analysis (TACTiCS) that incorporates the two claims that we 

make: 1) using language models to match genes functionally between spe-

cies, and 2) training classifiers in a shared embedding space to transfer cell 

types from one species to the other. We show that TACTiCS correctly 

matches human, mouse and marmoset brain cell populations from the pri-

mary motor (M1) cortex at a detailed cell type level, and does so better 

than SAMap, the current state-of-the-art method. 

2 Methods 

TACTiCS takes as input two single-cell (sc) or single-nucleus (sn) RNA-

seq datasets, with raw expression counts, from two species A and B. TAC-

TiCS consists of four steps (Fig. 1): 1) matching genes based on the pro-

tein sequences, 2) creating a shared feature space by mapping expression 

values with the gene matches obtained in step 1, 3) training within-species 

cell type classifiers, and 4) matching cell types by swapping the classifiers. 

2.1 Matching genes  

First, we created an embedding for every gene using ProtBERT, a trans-

former-based language model (Elnaggar et al., 2021). The protein se-

quences were retrieved from UniProt (The UniProt Consortium et al., 

2023). For human and mouse, we selected only the Swiss-prot sequences, 

but for marmoset we selected all protein sequences. We input the protein 

sequences to ProtBERT to create an embedding for each protein ℎProtBERT 

(Fig. 1a). ProtBERT generates a 1024-dimensional embedding for every 

amino acid in the protein sequence. To allow TACTiCS to work with var-

iable-length proteins, we followed common practice (Heinzinger et al., 

2019) and took the mean embedding over all positions to represent the 

whole protein sequence (as well as the corresponding gene). Protein se-

quences longer than 2500 amino-acids (<2% of all sequences) were trun-

cated to the first 2500 to fit into the memory of the GPU.  

Next, for every pair of genes from species A and species B, we calcu-

lated the cosine distance between the ProtBERT embeddings. The initial 

set of gene matches were pairs with a cosine distance ≤ 0.05. To ensure 

that a gene is not connected to too many genes, we kept only the five clos-

est genes, that met the distance threshold, for every gene. 

Finally, we filtered the informative gene matches. Hereto, we calculated 

the top 2000 highly variable genes per species using Scanpy 

highly_variable_genes, and kept only those gene matches where 

at least one of the two genes is within the set of highly variable genes in 

their respective species (Wolf et al., 2018). From these matches, we con-

struct two sets of genes 
� and 
�, corresponding to species A and B re-

spectively, consisting of genes with a match in the other species. 

To obtain sequence similarity-based gene matches, we used BLAST in-

stead of ProtBERT to match the genes. We elected matches with an E-

value <1e-6 as the initial set of matches. The bitscore of each match is 

used as the distance between the genes. Since BLAST scores are not sym-

metrical, one gene match is assigned a separate E-value and bitscore for 

each direction. If only one direction meets the E-value threshold, we use 

the corresponding bitscore as the gene distance. If both directions meet the 

threshold, we use the average of the two bitscores. The list of matches is 

then filtered similarly as before on that at least on of the genes in a pair is 

highly varying. 

2.2 Creating a shared feature space by mapping expres-

sion values with the gene matches 

We normalized the expression levels of genes as follows: 1) the raw ex-

pression counts of each dataset are normalized by the number of reads per 

cell such that the total number of counts in every cell is 10,000, and 2) the 

natural logarithm of the normalized counts are taken: 
�� = ln( 
��∑ 
�� �∈� ∗ 1e� + 1) 

where 
�� is the expression of gene j in cell i. Finally, a Z-score per gene 

is calculated to form the normalized expression matrices �� and �� for 

genes 
� and 
�, respectively. We created a shared feature space for the 

two datasets spanning 
� ∪ 
� (Fig. 1b). The shared feature space is partly 

equal to the expression matrices  �� and �� and partly imputed: 

�!"�  ##### = $ ��"� , if ( ∈ 
�1∑ )"**∈�+ , )"*��*�*∈�+
, if ( ∈ 
� 

where �!"�  ##### is the normalized expression of cell - from species A for gene ( in the shared feature space. The expression of within species genes does 

not change. For a cross-species gene, we imputed the expression by taking 

the weighted average of the expression of the within-species genes it is 

matched to. The weight between gene ( and gene . is calculated as: )"* = 1 − 0-1-234-56(ℎ"ProtBERT, ℎ*ProtBERT)0.05  

where 0-1-234-56 calculates the cosine distance between the ProtBERT 

embeddings. The weights are scaled to the interval [0, 1] by dividing with 

the distance threshold. When BLAST is used instead, we used the (aver-

age) bitscore between the two genes directly, since the bitscore does not 

have to be inversed. The edge weight is set to 0 for gene pairs that do not 

match according to the threshold and filtering criteria. The resulting ma-

trices ��#### and ��#### both span the same set of genes, and can thus be com-

pared directly. 

2.3 Cell embeddings 

The shared feature space is put through two linear layers to create the cell 

embeddings (Fig. 1c). Each linear layer is followed by a Rectified Linear 

Unit (ReLU) activation function. The first layer creates embeddings of 

length 64. The second layer creates embeddings of length 32. These em-

beddings are used to visualize the embedding space with a UMAP. The 

weights to embed the cells are shared across the species. 

2.4 Training species-specific cell type classifier  

We used these embeddings to train a separate classifier per species. We 

used a neural network consisting of one linear layer followed by a softmax 

activation function (Fig. 1d). Both classifiers take the cell embedding as 

input and output cell type probabilities, ℎ�,:"; or ℎ�,:";, only for cell types 

belonging to its respective species. During training, cells are input only to 

the classifier of its corresponding species. 

The loss to update the embedding and classification weights consists of 

two parts: 1) the classification loss, and 2) the alignment loss. Both losses 

are calculated separately per species. For the classification loss, we used 

the weighted cross-entropy loss between the predictions and targets: 

<=>?+ = 1@� , , A;B�;CD lnEℎ�;�,:";FG+
;HI  J+

�HI  

where <=>?+ is the classification loss for species A. @� and K� are the num-

ber of cells and cell types in species A respectively. A; is the weight for 

cell type 5, explained further below. ℎ�;�,:";
 is the output of classifier A, 

specifically the probability that cell - belongs to cell type 5. The one-hot 
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encoded targets B are modified with label smoothing to prevent overfitting 

and improve stability: 

B�;CD =  L1 −  M, if B� = 5MK − 1 , otherwise 

where M (=0.1) controls the smoothness. The weight of each cell type is 

updated every epoch based on the accuracy of that cell type: A; = (1 − acc;) ∗ S + 1 

where acc; is the accuracy of class 5 in the current epoch. S is a hyperpa-

rameter that controls the influence of the accuracy on the weight. We use S = 9 such that the weights are in the interval U1,10V which restricts the 

relative difference in weight between cell types. By updating the weights, 

a cell type with a lower accuracy in the current epoch will have a higher 

weight in the next epoch and thus the predictions will shift to that cell type. 

The alignment loss aims to integrate the embedding space across the 

species, such that cross-species cells with a similar gene expression are 

close in the embedding space: 

<W>�XY+ =  1@� , MSE \ 1]@�=^:??] , �_�####
�∈Jàbcdd , �!�####eJ+

�HI  

where @� is the number of cells of species A and @�=^:?? are the 20 nearest 

cross-species neighbours for cell -. MSE calculates the mean squared error 

between the prediction of the shared features of neighbours f and the ac-

tual shared features for cell -. If the alignment loss is minimized,  neigh-

bours in the embedding space can be used to predict the gene expression. 

The final loss is a combination of the classifier loss, the alignment loss 

and a regularization loss: < =  <=>?+  +  <=>?g  + <W>�XY+  + <W>�XYg  + h‖j‖kk 

where j consists of all parameters in the model, and is used for the L2 

regularization to prevent overfitting. h is the weight of the L2 norm, which 

is set to 0.01. The model is trained for 200 epochs. We used the Adam 

optimizer with a learning rate of 0.001. The full training process takes 

around 30 minutes. 

To efficiently use large scRNA-seq datasets, the neural network is 

trained in batches. A batch size of 5000 cells per species is used to speed 

up the training while still having enough cells per cell type. Instead of 

sequentially iterating over the dataset, each batch is randomly sampled 

from the full dataset, while accounting for the size of each cell type. More 

specifically, every cell is assigned a probability @�/@;� or @�/@;�, where @� is the total number of cells of species A and @;� is the number of cells 

of species A belonging to cell type 5. These probabilities are then used to 

sample a batch of cells per species with a similar number of cells for each 

cell type. 

2.5 Transferring cell type predictions across species  

After the neural network is trained, the cell types are transferred by using 

the classifiers on the species they were not trained on (Fig. 1e). That is, 

we calculate ℎ�,:";  for cells of species A, and ℎ�,:"; for cells of species 

B. The transferred cell type for a single cell is the cell type with the highest 

probability. To aggregate the information of the single cells to the cell 

type, we calculate the fraction of cells that are predicted to match cell types 

across species, which forms a normalized confusion matrix for both trans-

ferring directions. We average the two matrices to create a combined ma-

trix, where high values indicate reciprocal matches. The values in the com-

bined matrix can be used to score a match. 

2.6 Dataset 

We evaluated TACTiCS on snRNA-seq data taken from the primary mo-

tor cortex of human, mouse and marmoset (Bakken et al., 2021). These 

datasets consist of 76k human cells, 159k mouse cells and 69k marmoset 

cells, respectively. The cell type distribution varies considerably across 

species. For instance, non-neuronal cells make up around a third of both 

mouse and marmoset cells, while only 5% of the human cells are non-

neuronal. We use two resolutions of the cell labels assigned by the original 

authors: 1) a higher resolution, consisting of 45 cell types present in all 

species; and 2) a lower resolution, consisting of 20 human, 23 mouse and 

22 marmoset subclass cell types. At the lower resolution not all cell types 

occur in all species. SMC is only present in mouse, while Meis2 and Peri 

are only present in mouse and marmoset. Species-specific cells are labeled 

with “NA” at the higher resolution. 

2.7 Evaluation 

The combined matrix cannot be evaluated using standard metrics for con-

fusion matrices, such as precision or F1 score, since we cannot distinguish 

between false positives and false negatives. Instead, we focus on the 

matching scores from corresponding cell types in the combined matrix, 

which ideally should be 1. We define the Average Diagonal Score (ADS) 

as the average score of the diagonal entries, after excluding species-spe-

cific cell types. A high ADS indicates that many cell types are correctly 

and reciprocally matched. However, the ADS does not indicate how many 

cell types are correctly matched. To this end, we define the recall as the 

fraction of diagonal entries where the score is highest for both that row 

and column. 

We also compared TACTiCS to SAMap (Tarashansky et al., 2021), a 

cell type matching method that iterates between two steps. The first step 

matches the genes, which is initially done with BLAST on the DNA or 

protein sequences. Instead of taking the top-1 match, SAMap uses the 

BLAST bitscore directly in their model which allows for many-to-many 

matches. The second step uses the gene matches to first impute genes 

across species and then embed the cells by concatenating the principal 

components of the original expression and imputed expression. Then, the 

correlation between genes in the embedding space is used to update the 

gene matches. The two steps are repeated until the process converges. 

2.8 Implementation 

TACTiCS is implemented in Python 3.9. Pytorch (Paszke et al., 2019) was 

used for the model architecture. The scRNA-seq data is stored as Anndata 

(Virshup et al., 2021) objects, containing both the gene expression and the 

cell type annotations. The implementation of TACTiCS is available at 

https://github.com/kbiharie/TACTiCS.  

As Tarashanky et al. have noted, the runtime of SAMap increases sig-

nificantly for larger datasets, and we were unable to run SAMap for the 

full datasets (Tarashansky et al., 2021). Instead, we used SAMap on sub-

sets of 50k cells per species. We subsampled the data to keep the cell type 

proportions similar while making sure that all cell types are included. 
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3 Results 

3.1 Matching genes using sequence embeddings is com-

parable to sequence alignment with notable differ-

ences 

First, we investigate how similar the gene matches returned by ProtBERT 

and BLAST are. We retrieved 14,875 human and 13,601 mouse protein 

sequences, discarding 5% of the human genes and 13% of the mouse genes 

for which we do not have the protein sequence. We used both ProtBERT 

and BLAST to generate gene matches.  

For 14,437 human genes, we found a mouse match using BLAST (gene 

with smallest E-value < 1e-6). For these human genes, we defined the 

ProtBERT match as the mouse gene with the most similar ProtBERT em-

bedding. For 12,866 out of 14,437 human genes (89%), the BLAST match 

is identical to the ProtBERT match. Thus, the top-1 match is identical for 

the vast majority of genes. We ranked the BLAST matches according to 

the ProtBERT embedding distance to all mouse genes (Fig. 2a). Most of 

the BLAST matches have a rank close to 1 and over 95% of the BLAST 

matches have a rank below 100. Additionally, 31% of the BLAST matches 

that differ from the ProtBERT match are in the top-5 and thus considered 

in the many-to-many matches. Thus, if the BLAST match is not consid-

ered to be the best match by ProtBERT, it is still relatively similar based 

on the embedding distance. 

Next, we focus on the 1571 human genes for which the ProtBERT and 

BLAST match differ to investigate which method returns the most func-

tionally similar match. We assess functional similarity here in terms of 

gene expression similarity across cell types. Therefore, we calculated the 

Pearson correlation coefficient across cell types in humans and mouse. We 

considered the harmonized cell types as defined in (Bakken et al., 2021) 

(Fig. 2b). For 1014 out of 1571 (65%) genes, the BLAST match has a 

higher gene correlation than the ProtBERT match. This is to be expected 

since the harmonized cell types were defined using the BLAST matches. 

However, for some genes, the ProtBERT match has a higher correlation 

than the BLAST match. For example, human IL18R1 is matched to mouse 

Il1r1 according to ProtBERT with a correlation coefficient of 0.945, while 

BLAST matches the gene to mouse Il18r1 with a correlation coefficient 

of 0.103 (Fig. 3). Human IL18R1 and mouse Il1r1 both show an increased 

expression for the endothelial and VLMC cells, while mouse Il18r1 does 

not show this pattern, and is lowly expressed in all cell types. 

 

Fig. 2:  Comparison of ProtBERT and BLAST matches. (A) Rank of BLAST match ac-

cording to ProtBERT embedding distances. Rank 1 indicates that the best ProtBERT match 

and the best BLAST match are the same. (B) Scatterplot of the correlation of the expression 

of human and mouse genes when considering the best BLAST match (x-axis) and the best 

ProtBERT match (y-axis). The expression correlation is calculated as the Pearson correla-

tion across the average expression profiles of the Cross-species harmonized cell types. We 

omitted human genes where the BLAST match and ProtBERT match are the same. Gene 

matches where either the human gene, ProtBERT match or BLAST match is highly varia-

ble, are colored orange. 

3.2 TACTiCS accurately matches cortical cell types 

across mouse and human 

Now that we have seen that ProtBERT matches can be a powerful way to 

capture gene relationships, we use them in TACTiCS to match cell types 

in mouse and human cortex data. We use the Allen Brain Data, since the 

cell types have been carefully matched and harmonized by curators. We 

train TACTiCS for the human-mouse comparison for both the subclass 

and cross-species resolution. At the subclass resolution, TACTiCS returns 

the correct cell type for all 23 cell types that are present in both human and 

mouse (Fig. 4A). The species-specific cell types, mouse Meis2 and Peri, 

do not have a one-to-one match with a human cell type. For instance, 

mouse Meis2 matches human L6-IT and Vip with a low matching score 

in the combined matrix for both. Mouse Peri only matches human Sncg 

with a score of 0.5, but human Sncg matches mouse Sncg with a score of 

0.8. Cell types present in both species have matching scores of ≥ 0.8 while 

wrong matches all have matching scores ≤ 0.6. 

 

 

 

 

Fig. 3: Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse matches are ordered according to the ProtBERT embedding distances. BLAST 

matches human IL18R1 to mouse Il18r1. 
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Fig. 4: TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. (A) Average confusion matrix of transferred cell types. (B) UMAP of cell embeddings, 

colored by species. (C) UMAP of cell embeddings, colored by cell type. 

 

 

Fig. 5: Performance of (A) TACTiCS and (B) SAMap on when matching human and mouse cell types at cross-species resolution. Cross-species cell types are grouped per subclass (indicated 

with the light-grey lines) and class (indicated with dark-grey lines). 

 

To get better insight into TACTiCS performance, we visualized the 32-

dimensional cell embeddings using UMAP (Fig. 4b,c). Individual human 

and mouse cells do not mix well in the embedding space, but the UMAP 

does seem to align at the cell type level, i.e. corresponding cell types either 

overlap partially in the embedding space, or are relatively close. For ex-

ample, Vip cells form a large cluster with partly human and mouse cells 

separated, and cells of mixed origin in the middle. The Sst cells also form 

a larger cluster, but the separation between the human and mouse cells is 

more visible. The Oligodendrocytes form two separate clusters, but they 

are closer to each other than to other cell types. The cell type proportions 

do seem to have an effect on the alignment in the embedding space. Cell 

types with a similar number of cells in human and mouse, such as Vip (6% 

in human and 2% in mouse), are clustered more coherently. Cell types 

with a large difference of occurrence within human and mouse, such as 

Astro (1% in human and 11% in mouse), cluster into one larger cluster 

with a smaller distinct but connected cluster for the species with the fewer 

number of cells. The mouse-specific cell types Meis2, Peri, and SMC are 

(correctly) clustered separately from the human cells. Thus, the 

embedding space can align the cell types across the species, but not the 

individual cells. Note that this can be due to unresolved batch effects or 

actual biological differences between the two species.  

At the cross-species resolution, TACTiCS returns correct matches for 

the majority of cell types, with a recall of 0.89 (Fig. 5a, S1). Some cell 

types are not properly matched, namely the L5-IT subtype, some Lamp5 

subtypes, some Sncg subtypes, and the Vip subtype. Thus, TACTiCS be-

comes relatively less accurate when there are a lot of subtypes that are not 

very distinct. In most cases, when there is a mismatch, TACTiCS matches 

a cell type with a subtype that belongs to the same subclass. The human 

Sncg subtypes are an exception since some of its subtypes are matched to 

mouse L5 IT or Lamp5 subtypes. 

To evaluate the performance of TACTiCS across species with variable 

evolutionary distance, we tested TACTiCS on cortical cell types between 

human-marmoset and mouse-marmoset (Table 1). At the subclass resolu-

tion, TACTiCS performs similar on all three comparisons with a recall of 

1.0. At the cross-species resolution, TACTiCS performs best for the hu-

man-marmoset comparison and worst for the mouse-marmoset 
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comparison. These results indicate that the performance of TACTiCS is 

dependent on the evolutionary distance between the species, since the evo-

lutionary distance to the closest common ancestors from human and mar-

moset (~40mya) is a lot less than human and mouse (~70mya). 

 

Table 1: Average Diagonal Score (ADS) and recall for TACTiCS and 

SAMap on human, mouse and marmoset. The gene-gene matching is ei-

ther done using ProtBERT (P) or BLAST (B). 

Comp Meth

od 

Matching Subclass Cross-species 

   ADS Recall ADS Recall 

Hu-mo TACTiCS P 0.976 1.0 0.794 0.911 

Hu-mo SAMap B 0.854 1.0 0.584 0.6 

Hu-ma TACTiCS P 0.968 1.0 0.905 0.956 

Hu-ma SAMap B 0.925 1.0 0.776 0.889 

Mo-ma TACTiCS P 0.975 1.0 0.682 0.756 

Mo-ma SAMap B 0.839 0.909 0.595 0.578 

Hu-mo TACTiCS B 0.840 0.85 0.506 0.578 

Hu-mo SAMap P 0.855 1.0 0.597 0.644 

3.3 TACTiCS outperforms SAMap in matching cortical 

cell types across mouse, human, and marmoset 

To benchmark TACTiCS, we compare its performance to SAMap using 

three pair-wise comparisons (human-mouse, human-marmoset, and 

mouse-marmoset). Across all comparisons, TACTiCS has a higher ADS 

and recall than SAMap (Table 1). Both methods perform well at the sub-

class resolution for all comparisons with a recall of 1.0. However, TAC-

TiCS assigns higher scores to correct matches than SAMap. For instance, 

SAMap correctly matches human L6b to mouse L6b, but with a very low 

matching score equal to 0.35, while TACTiCS matches the same cell types 

with a matching score of 0.99. Interestingly, for the species-specific cell 

types, TACTiCS suggests matches that have a low score (0.18-0.68), al-

lowing to detect the species-specific cell types. The performance of 

SAMap for the species-specific cell types is not consistent across all cell 

types and comparisons. For example, SAMap correctly assigns zero scores 

to mouse Peri and SMC in the human-mouse comparison, but incorrectly 

matches mouse SMC to marmoset Peri with a high matching score. 

At the cross-species resolution the performance of both methods drops 

compared to the subclass level as expected, but the difference between the 

methods becomes more apparent (Fig. 5, S1). For mismatches between 

subtypes, TACTiCS usually matches to subtypes within the same sub-

class, while SAMap regularly maps to cell types from another subclass. 

While both TACTiCS and SAMap partly match human Sncg to mouse 

Lamp5, SAMap additionally shows similarity between human Sncg and 

mouse Vip. SAMap also mismatches mouse Chandelier with human 

Pvalb, while TACTiCS matches human and mouse Chandelier with high 

confidence. 

3.4 Using ProtBERT matches improves the cell type 

matching for both TACTiCS and SAMap 

Finally, we assessed the importance of using the ProtBERT embeddings 

to match genes compared to using BLAST on the final cell type matches . 

To this end, we trained TACTiCS based on the BLAST matches and 

SAMap using the ProtBERT matches on the human-mouse data. For a fair 

comparison of ProtBERT to BLAST in SAMap, we only apply the em-

bedding distance threshold to the ProtBERT matches, rather than filtering 

the gene matches thoroughly. Training TACTiCS at the cross-species 

resolution using the BLAST matches results in an ADS of 0.54 and a recall 

of 0.56, which is a lot worse than using the ProtBERT matches (Table 1). 

For SAMap, the ADS increased from 0.58 to 0.60 and the recall increased 

from 0.60 to 0.64 (Table 1) when ProtBERT matches were used instead 

of the BLAST matches. Thus, for both TACTiCS and SAMap it is bene-

ficial to use ProtBERT embeddings to match genes. 

4 Discussion 

Here, we present TACTiCS, a method to accurately match cell types from 

scRNA-seq data across species. We applied TACTiCS to match cell types 

across  human, marmoset, and mouse motor cortex, species with different 

evolutionary distances to each other. Even though TACTiCS matches cell 

types from all three species with high confidence, we showed that human 

and marmoset cell types are considerably easier to match which correlates 

with their closer evolutionary distance. Furthermore, we showed that 

TACTiCS outperforms the state-of-the-art method SAMap on all compar-

isons with the biggest difference at a higher resolution in favor of TAC-

TiCS. We should note that here we focus on comparisons across species 

with a relatively small evolutionary distance while SAMap was originally 

developed to match cell types across larger evolutionary distances (Ta-

rashansky et al., 2021).  

Even though TACTiCS outperforms SAMap on the (finer) cross-spe-

cies resolution, its performance drops as well. We would like to note that 

the cell types at this resolution were established by Bakken et al. by inte-

grating datasets from the different species and clustering them in an em-

bedding space (Bakken et al., 2021).  This resulted in ambiguous clusters 

which were resolved manually by the authors to determine which cell 

types would be in one cross-species group. Since these matches are not 

perfect, it makes sense that we cannot achieve a perfect performance ei-

ther. Furthermore, the ground-truth matches used for evaluation are based 

on analyses performed using BLAST one-to-one matches, also causing 

unwanted differences when comparing results. 

Gene matching is one of the main components of TACTiCS. We match 

genes based on the distance between their corresponding protein embed-

dings, which are generated using ProtBERT instead of the commonly used 

sequence similarity based on BLAST. Even though the top-1 matches of 

ProtBERT and BLAST are largely similar, we have shown that using Prot-

BERT instead of BLAST distances improves the performance of both 

TACTiCS and SAMap. When aligning sequences using BLAST, every 

amino acid is considered to be equally important, while we speculate that 

ProtBERT focuses more on functional domains. A downside, however, of 

using ProtBERT distances is that the protein sequence is needed and as a 

consequence, we can only use coding genes. Using DNA sequence em-

bedding models, e.g. DNABert (Ji et al., 2021), for non-coding genes, 

could in the future be used to overcome this limitation.  

Some cell types, such as Meis2 and Peri in mice, are species-specific. 

A limitation of our current approach is that the classifiers we built in TAC-

TiCS are missing a rejection option and therefore we cannot identify these 

species-specific cells automatically. Since TACTiCS usually assigns a 

low matching score to these cell types, this score could be used to filter 

species-specific cells. This difference in scores, however, is mainly appar-

ent at the subclass resolution. At the cross-species resolution, it would be 

more difficult to determine a proper threshold without deteriorating the 

performance. In general, SAMap assigns lower scores to species-specific 

cell types, but also for SAMap the difference is smaller at the cross-species 

resolution. 

When inspecting the cell embeddings in the low dimensional space, we 

notice that the cells from difference species are not well mixed. Matching 
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cell types, however, are closest to each other and species-specific cell 

types are more separated from all other cells. There are many data integra-

tion methods developed for single-cell data, such as scVI and Seurat 

(Lopez et al., 2018; Hao et al., 2021), that would achieve a significantly 

better integration. Since data integration is not the main goal of TACTiCS, 

we did not add an explicit mixing component to the loss function. The 

current loss function enforces that neighboring cells from the other species 

can predict the other cell’s gene expression profile. This enforces cells of 

the same cell type to be the closest, but not to fully overlap. Adding a 

component to the loss that forces cells to be mixed (e.g. to have neighbors 

of both species) could greatly improve the integration. Alternatively, if 

good integration is a user’s desire, an option would be to replace the com-

ponent of TACTiCS that generates the cell embeddings with another data 

integration method such as scVI. The flexible architecture of TACTiCS 

allows the individual components (gene matching, cell embedding, and 

cell classification) to be easily replaced, extended, or integrated with dif-

ferent methods. 

With TACTiCS we showed that using protein embeddings to match 

genes is a viable alternative to BLAST when matching cell types based on 

their scRNA expression levels across species. TACTiCS can accurately 

match cell types at different resolutions for large datasets, outperforming 

SAMap. We envision that this fast and accurate cell type matching 

method, will make comparative analyses across species considerably eas-

ier, contributing to, e.g. to the study of cell type evolution or translational 

research. 
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