N o oW N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.27.525982; this version posted January 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Exponential increase in QTL detection with increased sample size

Authors: Apurva S. Chitre’, Oksana Polesskaya’, Daniel Munro"'®, Riyan Cheng’, Pejman
Mohammadi'*'*, Katie Holl?, Jianjun Gao', , Hannah Bimschleger', Angel Garcia Martinez®,
Anthony George®, Alexander F. Gileta"'°, Aidan Horvath®, Alesa Hughson*, Keita Ishiwari®,
Christopher P. King®, Alexander Lamparelli®, Cassandra L. Versaggi®, Connor Martin®, Celine L.
St. Pierre'", Jordan A. Tripi®, Jerry B. Richards® Tengfei Wang 3, Hao Chen?®, Shelly B. Flagel'?,
Paul Meyer®, Terry E. Robinson’, Leah C. Solberg Woods®, Abraham A. Palmer'?®

Affiliations:

1 Department of Psychiatry, University of California San Diego

2 Human and Molecular Genetic Center, Medical College of Wisconsin

3 Department of Pharmacology, University of Tennessee Health Science Center
4 Department of Psychiatry, University of Michigan

5 Department of Psychology, University at Buffalo

6 Clinical and Research Institute on Addictions, University at Buffalo

7 Department of Psychology, University of Michigan

8 Institute for Genomic Medicine, University of California San Diego

9 Department of Internal Medicine, Wake Forest School of Medicine

10 Department of Human Genetics, University of Chicago

11 Department of Genetics, Washington University in St. Louis

12 Molecular and Behavioral Neuroscience Institute, University of Michigan

13 Department of Integrative Structural and Computational Biology, Scripps Research
14 Scripps Research Translational Institute, Scripps Research

Abstract

Power analyses are often used to determine the number of animals required for a
genome wide association analysis (GWAS). These analyses are typically intended to estimate
the sample size needed for at least one locus to exceed a genome-wide significance threshold.
A related question that is less commonly considered is the number of significant loci that will be
discovered with a given sample size. We used simulations based on a real dataset that
consisted of 3,173 male and female adult N/NIH heterogeneous stock (HS) rats to explore the
relationship between sample size and the number of significant loci discovered. Our simulations
examined the number of loci identified in sub-samples of the full dataset. The sub-sampling
analysis was conducted for four traits with low (0.15 + 0.03), medium (0.31 £ 0.03 and 0.36 +
0.03) and high (0.46 + 0.03) SNP-based heritabilities. For each trait, we sub-sampled the data
100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an
exponential increase in the number of significant loci with larger sample sizes. Our results are
consistent with similar observations in human GWAS and imply that future rodent GWAS should
use sample sizes that are significantly larger than those needed to obtain a single significant

result.
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Introduction

Genome wide association studies (GWAS) in both humans and rodents have been
extremely successful in understanding the genetics of quantitative traits. Outbred rodent
populations such as Heterogeneous stock (HS) rats, Diversity Outbred (DO) mice, and
Advanced Intercross Lines (AIL) have proven to be an invaluable resource for genetic mapping
studies. The success of these outbred rodent strains can be attributed to the ability to provide
high resolution QTL mapping (Solberg Woods and Palmer 2019). With each generation of
recombination, the number of markers and independent tests increases, which in turn increases
the threshold for statistical significance. In comparison to an F, cross, outbred rodent
populations offer better resolution for mapping QTLs (Solberg Woods 2014; Gonzales and
Palmer 2014). Inbred rodent strains such as the Hybrid Rat Diversity panels (HRDP), Hybrid
Mouse Diversity Panels (HMDP) and Recombinant Inbred (RI) strains (such as the BXD and CC
panels) have also been successfully employed for mapping studies (Williams and Williams
2017). However, the sample size involving these panels is usually limited by the number of
strains available in the population. QTL mapping studies are not limited to rodent populations.
These genetic studies are also conducted in zebrafish (Kwon et al. 2019), fruit flies (Wangler et

al. 2017) and plants such as Arabidopsis thaliana (Togninalli et al. 2020).

In GWAS studies power is defined as the likelihood of detecting a single significant QTL
of a certain effect size. Power analyses are often performed for GWAS studies so that an
appropriate sample size can be selected. In general, larger sample sizes increase the power to
detect significant loci in humans (Spencer et al. 2009), rodents (Li et al. 2006; Keele et al.
2019), livestock (Wittenburg et al. 2020) and crops (Wang and Xu 2019). Software to perform
power analyses has also typically focused on power to detect a single locus given its effect size
(Sen et al. 2007; Delongchamp et al. 2018).

In this study, we sought to examine a related question, namely the relationship between
sample size and the number of significant loci discovered. We used simulations based on a real
dataset that consisted of 3,173 male and female adult N/NIH heterogeneous stock (HS) rats.
This dataset is part of our recent publication on the GWAS of obesity related traits in HS rats,
which is among the largest rodent GWAS ever performed (Chitre et al. 2020). The dataset in
Chitre et al. was collected as part of a large multi-site project focused on genetic analyses of

behavioral phenotypes related to drug abuse in HS rats (www.ratgenes.org). We repeatedly

subsampled this dataset to determine the number of significant loci that could be identified with

various sample sizes.
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73
74  Results
75 The number of significant loci discovered increased exponentially as sample size

76  increased. Figure 1 shows the average number of significant loci detected for each trait at each
77  sample size. When we ran the analysis with the maximum number of individuals, we detected
78 28 loci for body weight (h? = 0.46 + 0.03), 16 loci for body length_Tail (h? = 0.36 + 0.03), 5 loci
79  for BMI_Tail (h? = 0.31 + 0.03) and 3 for fasting glucose (h? = 0.15 + 0.03). As expected, fewer
80  QTLs were discovered with smaller sample sizes. We note the largest increase in the number of
81  QTL detected for body weight, the trait with the highest heritability, with more than a ten-fold

82 increase in detected QTL when the sample size is increased from 500 to 2500. Similar trends

83  are seen for both BMI and fasting glucose.

84 To determine whether the increase in the number of significant loci was more consistent
85  with a linear or an exponential (log-linear) function, we fitted both models on the data to identify

86 least squares parameters. The two models we defined as

87

88 Linear:y=bgx+bs+e,

89 and

90 Exponential: y = exp(bg x + by) + €
91

92  where, bg and b, are the model parameters, x is the sample size, y is the average number of

93 QTLs and e is the error term.

94

95  Since both models have the same number of parameters we compared them in terms of

96 residual sum of squares (RSS) and used bootstrapping to ascertain statistical boundaries of the
97 estimates. We found that an exponential curve fits better; the estimated 95% confidence interval
98 is (0.344, 7.67) for the exponential fit, and (9.57, 217.522) for the linear fit.

99

100
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102  Figure 1. Number of detected QTLs increases with the increase of sample size. Each dot is
103  an average number of QTLs obtained in 100 GWAS, each performed on a randomly selected
104  subset of the actual dataset. Error bars indicate standard deviation. The final point (at ~3100
105 animals for body weight, body length_Tail, BMI_Tail and at 2,246 for fasting glucose) used the
106  full dataset and therefore does not include error bars. This simulation was performed on four
107 traits with different heritability: body weight (h? = 0.46 + 0.03), body length_Tail (h? =0.36 +

108  0.03), BMI_Tail (h? = 0.31 + 0.03) and fasting glucose (h? = 0.15 + 0.03).

109

110 We also conducted linkage analysis using haplotypes to confirm that our findings were in

111  agreement with those obtained from GWAS analysis that utilized SNPs. We found that, similar
112  to the GWAS analysis, an exponential increase in the number of QTL identified with increasing
113  sample size for linkage analysis using haplotypes (Supplementary Figure 1). We performed
114  this analysis for BMI with tail (SNP h? = 0.31 + 0.03) using R/qtl2 (Broman et al. 2019) using a
115  permutation derived threshold of 18.2 LOD at alpha = 0.05. We used the residual sum of

116  squares to compare the linear and exponential models. The RSS values for exponential fit

117  (0.069) are smaller than for linear fit (1.217), suggesting that an exponential curve fits better

118 than a linear curve.
119
120 Discussion

121 In this study, we used a real dataset to explore the effect of sample size on the number
122 of significant loci identified. This represents a conceptually different approach compared to
123 conventional power analyses, which focus on estimating power to detect at least one genome-

124  wide significant locus. We found an exponential increase in the number of QTL identified with
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125  increasing sample size, particularly for body weight, a trait with relatively high heritability. Our
126  results suggest (but do not prove) that our findings would generalize to other similar laboratory
127  populations (HS/Npt, HS-CC, DO, etc.). The results from the haplotype-based linkage mapping
128  analysis also support an exponential increase in the number of QTL identified with increasing
129  sample size for the trait BMI with tail (SNP h? = 0.31 + 0.03).

130 Similar observations in human genetics (Visscher et al. 2012; Sullivan et al. 2018)

131  suggest an initial exponential growth in the number of loci, which is what we have observed,
132  followed by a linear phase when increasing sample size produces a linear increase in the

133 number of significant loci. In the current study, we did not find strong evidence of this linear

134  phase. This could reflect the fact that our sample size, which is still small by the standards of
135 human genetics, was not large enough to get beyond the initial exponential phase. As is the
136  case in human GWAS, the effect size of loci that require larger sample sizes will tend to be

137  smaller than those identified with larger sample sizes, assuming a constant allele frequency.
138  There are several reasons that this dataset was able to identify multiple significant loci despite
139  having a sample size that is smaller than those typically used for human GWAS. First, the effect
140  sizes of alleles discovered in model systems are often much larger than alleles found in

141  humans. The reasons for this are unknown but might include relaxed selection in captive

142  breeding populations, which allows alleles that would have been selected against in a natural
143  population to rise to high frequency. A second reason that smaller sample sizes are sufficient in
144  model systems is that the linkage disequilibrium among SNPs is greater, meaning that fewer
145  tests are performed, thus reducing the multiple testing burden and correspondingly the

146  threshold for significance. The greater LD might also mean that multiple smaller alleles are

147  inherited in blocks that have greater effect sizes. A third advantage of model systems is that
148  they are often created by crossing a small number of inbred strains, meaning that allele

149  frequencies are higher; greater power is always available when alleles are more common.

150 Despite these differences, our observation of exponential growth in the number of significant loci

151  with increasing sample size is very similar to observations in human genetics.

152 Our result indicates that many previous studies, which have performed power analyses
153  designed to assure that they find a single significant locus, are likely underpowered to find

154  multiple loci that have diminishing effect sizes. Our recommendation is that future studies of
155  complex traits in outbred rodents should use significantly larger sample sizes since they are
156 likely to provide a larger number of findings; this recommendation assumes that the cost of

157  increasing sample size is linear, however in some cases there might be efficiencies of scale that
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158  would make the addition of each additional subject less expensive. Fewer studies with larger
159  sample sizes, rather than larger numbers of studies with modest sample sizes might be

160  preferable. Alternatively, multiple traits from separate studies that are genetically correlated

161  might be jointly analyzed, since this can provide some of the advantages of larger sample sizes

162  assuming that certain loci are important for more than one of the traits under study.
163
164  Materials and Methods

165 The data used in this study are thoroughly described in our recent publication (Chitre et
166  al. 2020). Briefly, phenotypic data on body weight and length (which permit calculation of BMI),
167 fat pad weight, and fasting glucose levels of adiposity traits were collected at three different
168  research sites at multiple ages. We used data from all three sites. Prior to combining data from
169 the three sites, we regressed out the effects of covariates and then performed quantile

170  normalizations within each site and within each sex after which data from all sites and sexes
171 were combined and jointly analyzed to explore the relationship between sample size and the

172 number of significant loci identified.

173 HS rats used in this study were obtained from the NMcwi:HS colony which was initiated
174 by the NIH in 1984 by interbreeding eight inbred founder strains and were subsequently

175  maintained as an outbred population, making them ideal for fine mapping of genetic loci

176  (Hansen and Spuhler 1984; Solberg Woods and Palmer 2019). Rats were genotyped at 3.4
177  million autosomal SNPs, however, because there was extensive LD among these SNPs and to
178  reduce computational burden, we used LD pruning (r*<0.95) which yielded a set of 128,477

179  SNPs that were used for all analyses described in this paper.

180 To determine the number of QTLs detected by different samples sizes, we subsampled
181  data from four phenotypes chosen to have low (0.15 = 0.03; fasting glucose), medium (0.36 +
182  0.030; body length_Tail and .31 + 0.03; BMI) and high (0.46 = 0.03; body weight) chip

183  heritabilities (calculated using GCTA). For each dataset, we performed 100 random

184  subsamples in which we retained 500, 1,000, 1,500, 2,000, or 2,500 individuals (for fasting

185  glucose we could not include 2,000 and 2,500 because the total sample size was smaller than
186  2,000). Thus, we produced 1,300 total subsamples for the three phenotypes. We then

187 performed a GWAS for each subsampled dataset using an automated pipeline based on the
188  LMM software package GEMMA (Zhou and Stephens 2012); we implemented the leave one
189  chromosome out (LOCO) method (Cheng et al. 2013). We have previously shown that an LMM
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190 in conjunction with the LOCO methods effectively controls type | error rate (Gonzales et al.
191 2018; Gileta et al. 2022), meaning that our observations in this study are unlikely to be due to

192  type | errors that can be caused by population structure.

193 Our pipeline used an algorithm to automatically record the number of significant QTLs in
194  each subsampled dataset. First, we scanned each chromosome to determine if there was at
195 least one SNP that exceeded the threshold of —logo(p) > 5.6, which is the threshold used in
196  Chitre et al. 2020. To avoid situations where only a single, presumably anomalous, SNP

197 showed a significant association, we required that at least one other SNP within 0.5 Mb have a
198  p-value that was within 2 —log.o(p) of the index SNP. If we found a second supporting SNP, we
199  recorded the identification of a QTL for that dataset. Some chromosomes were expected to

200  contain more than one independent QTL, but we were also concerned that we might count a
201  single locus twice. To avoid counting the same locus twice, we excluded all SNPs with r* > 0.4
202  relative to the just identified index SNP. We then rescanned the chromosome to see if any

203  additional SNPs on this chromosome exceeded the threshold of —log+o(p) > 5.6. If they did and
204  they were supported by a second SNP within 0.5 Mb that had a p-value that was within 2 —

205  logqo(p) of the index SNP, we recorded an additional QTL for that dataset. We then repeated
206  these steps as often as needed until no further significant QTLs could be identified on a given
207  chromosome. We then continued this process for all subsequent chromosomes. After scanning
208 the last chromosome, we tabulated the number of QTLs detected for that dataset. We repeated
209  this procedure for each of the 1,300 subsampled datasets. In this way, we determined the

210  number of significant QTLs in 100 possible sub-samplings of each of four traits when using
211 500, 1,000, 1,500, 2,000, and 2,500 individuals, and in the maximal number of individuals

212 (~3100 for all traits except fasting glucose).

213 We performed linkage mapping with haplotypes using R/qtl2 (Broman et al. 2019). We
214  estimated founder haplotypes using the calc_genoprob_fst function with the cohort and founder
215  strain genotypes. We used the scan1perm function to perform 1,000 permutations for

216  establishing the significance threshold. The kinship matrices were derived using the “leave one
217  chromosome out” method with the calc_kinship function. For each sub-sampled dataset for the
218  trait BMI with tail, we performed a genome scan using a linear mixed model with the scan1

219  function. We used the function find_peaks to identify LOD peaks that exceeded the permutation
220  derived threshold of 18.2.

221
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222  Data availability

223  The data presented in the study are deposited in the UC San Diego Library Digital Collections
224 repository at https://library.ucsd.edu/dc/object/bb9156620z (DOI
225  https://doi.org/10.6075/J0Q240F0).
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