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Abstract

Synthetic lethality (SL) is a promising concept in cancer research. A wide array of computational
tools has been developed to predict and exploit synthetic lethality for the identification of
tumour-specific vulnerabilities. Previously, we introduced the concept of genetic Minimal Cut
Sets (gMCSs), a theoretical approach to SL for genome-scale metabolic networks. The major
challenge in our gMCS framework is to go beyond metabolic networks and extend existing
algorithms to more complex protein-protein interactions. We present here a novel computation
approach that adapts our previous gMCS formulation to incorporate linear regulatory pathways.
Our novel approach is applied to calculate gMCSs in integrated metabolic and regulatory models
of human cells. In particular, we integrate the most recent genome-scale metabolic network,
Humanl, with 3 different regulatory network databases: Omnipath, Dorothea and TRRUST.
Based on the computed gMCSs and transcriptomic data, we detail new essential genes and their
associated synthetic lethals for different cancer cell lines. The performance of the different
integrated models is assessed with available large-scale in-vitro gene silencing data. Finally, we
discuss the most relevant gene essentiality predictions based on published literature in cancer

research.
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Introduction

Two (or more) genes are synthetic lethal when the loss of function of either gene on its own is
compatible with cell viability, while the co-occurrence of them leads to cellular death (O’Neil et
al., 2017). Given the plethora of tumour-specific genetic alterations, synthetic lethality (SL) is an
attractive approach to identify selective and novel drug targets in cancer cells. This has propelled
the development of robust methods to identify synthetic lethals from very different
perspectives (Jerby-Arnon et al., 2014; Blomen et al., 2015; Lee et al., 2018; Zhang et al., 2021;
Gimeno et al., 2022).

In previous works (Apaolaza et al., 2017; Apaolaza et al. 2019), we introduced the concept of
genetic Minimal Cut Sets (gMCSs), a theoretical approach to SL based on genome-scale
metabolic networks. gMCSs define minimal set of gene knockouts that blocks a particular
metabolic task, typically the biomass reaction in cancer studies. They can be easily integrated
with -omics data and used to elucidate metabolic vulnerabilities in cancer cells. Recently, based
on data from the Cancer Dependency Map (DepMap) (Ghandi et al., 2019; Meyers et al., 2017),
we assessed the capacity of our gMCS approach to predict gene essentiality in cancer cell lines
and reported a superior performance than other network-based algorithms (Valcarcel et al.,
2022). In a different work (Apaolaza et al., 2022), we also integrated nutritional perturbations

into our gMCS framework, leading to nutrient dependencies in cancer cell lines.

Unfortunately, our current gMCS framework is constrained to the metabolic space, which
represents only a fraction of all the interactions that occur within a cell. For instance, the latest
reconstruction of the human metabolism, Human 1 (Robinson et al., 2020), only represents 22%
of the genes available in Omnipath (Tirei et al., 2016), one of the biggest protein-protein
interactions database. For this reason, the main challenge of our gMCS approach is to go beyond
metabolic networks and extend existing algorithms to more complex protein-protein

interactions, such as signalling or regulatory networks.

Our gMCS approach is built on gene-protein-reaction (GPR) rules available in genome-scale
metabolic models (Ponce-De-Ledn et al., 2020). A natural way to extend our gMCS formulation
is to incorporate regulatory information into these GPR rules, as done in other constraint-based
modelling tools (Chandrasekaran and Price, 2010; Marmiesse et al., 2015; Wang et al., 2017).
However, GPR rules in metabolic models are simple Boolean networks without negation terms
and cycles, which are typically present in regulatory networks. This fundamental difference
makes particularly challenging the integration of regulatory networks with our gMCS approach,
which currently cannot deal with Boolean equations involving negation terms and cycles

(Apaolaza et al., 2019).
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Here, we present a novel computation approach that adapts our previous gMCS formulation to
incorporate linear regulatory pathways. Our novel approach is applied to calculate gMCSs in
integrated metabolic and regulatory models of human cells. In particular, we consider Human1
(Robinson et al., 2020) with 3 different regulatory network databases: Omnipath (Tirei et al.,
2016), Dorothea (Garcia-Alonso et al., 2019) and TRRUST (Han et al., 2018). Based on the
computed gMCSs and transcriptomic data, we detail new essential genes and their associated
synthetic lethals for different cancer cell lines. The performance of the different integrated
models is assessed with available large-scale in-vitro gene silencing data (Hart et al., 2015;
Ghandi et al., 2019; Meyers et al., 2017). Finally, we discuss the most relevant gene essentiality

predictions based on published literature in cancer research.
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Methods

Enumeration of gMCSs via Mixed-Integer Linear Programming

Assume we have a metabolic network involving m metabolites and n reactions. This is typically
represented with the stoichiometry matrix S, where each column represents a different reaction
and each row a single metabolite. Reaction products and substrates have positive and negative
coefficients, respectively. The flux vector r denotes the activity of the reactions. Here, reversible
reactions were split into two irreversible steps and, therefore, reaction fluxes are non-negative
(Eq. (2)).

r=0 (1)

The application of the mass balance equation under steady state leads to Eq. (2), where the sum

of fluxes which produce a certain metabolite is equal to the sum of fluxes which consume it.
S-r=0 (2)

Our objective is to block a given metabolic task making use of the least number of gene

knockouts. The metabolic task to disrupt can be represented as in Eq. (3):
th-r=r* (3

being t a null vector with a 1 in the position of the reactions involved in the metabolic task to

target and r* a positive constant.

In order to calculate gMCSs, i.e. minimal subsets of gene knockouts that disrupt an essential
metabolic task, we need to define the possible gene knockout constraints, which take the

following form:
G-r<0 (4

, Where the binary G matrix, of dimensions Ixn, defines for each row i the set of blocked
reactions, G(i)={k|Gi=1}, arising from the knockout of an irreducible subset of genes. The subset
of genes associated with each row in G is interrelated and their simultaneous knockout is
required to delete at least one of the reactions in the metabolic network. This information is
stored in the binary matrix F of dimensions Ixg, which defines the subset of gene deletions
involved in each row i in G, F(i)={p|Fix=1}. In other words, the deletion of genes in F(i) leads to
the disruption of reactions in G(i). An example metabolic network, including gene-protein-
reaction (GPR) rules, can be found in Figure 1a. For illustration, Figure 1b show its associated G
and F matrices, where, according to their second row, the knockout of gene 2 (g.) leads to the

blockage of reaction 2 and 3 (rs, r3).
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From the infeasible primal problem defined by Egs. (1)-(4), we formulate the unbounded dual
problem and minimize the number of gene knockouts to block the target metabolic task with

the following mathematical model:

minimize .2} d; - z; (5)
st.
u u
N-<v>=[sT GT —t]'(”)ZO (6)
w w

az<v<Mz (7)
r-w<-c c>0 (8

zszz5  V(6,B)|F(B)>F(8) (9)

f:ll 7’ z; < :zllzl] —1(10)

i
v>0,w>0 (1)
u€ERMveR,weRzeB (12

where u, v and w are dual variables associated with the mass balance equation, gene knockout
constraints and the target metabolic task equation, respectively; z are binary variables linked to
v through Eq. (7), namely z=0 <> v=0, z=1 <> v>0. Note here that a and M are small and large
positive constants, respectively. Eq. (8) forces w to be non-zero, which makes the target
metabolic task equation part of the infeasible primal problem. Eq. (9) considers the
dependencies between dual variables v that may lead to non-minimal solutions, as it is described
in Apaolaza et al., 2019. In addition, d is a known vector storing the number of gene deletions
exclusively provided by its associated dual variable v and not by its dependent dual variables
(see Figure 1b for illustration). Dependencies between dual variables can be easily obtained
from F matrix. Finally, Eq. (10) allows us to eliminate previously obtained solutions (Z) from the

solution space and identify new gMCSs.

In summary, the mixed-integer linear program defined by Egs. (5)-(12) (MILP1) allows us to
enumerate gMCSs in increasing order of gene knockouts. Figure 1c shows the resulting set of
gMCSs for the example network considered. Note here that a similar approach can be built for
Minimal Cut Sets (MCSs), which involves reaction knockouts instead of gene knockouts, as
developed in different works (von Kamp and Klamt, 2014) (Figure 1c). In particular, for the
computation of MCSs, the matrix G in Eqg. (6) becomes the identity matrix (if all reactions are

irreversible) and, thus, dependency constraints in Eq. (9) can be neglected.
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Figure 1. lllustration of gMCSs and MCSs. a) Example metabolic network and GPR rules. It
involves 5 reactions (rs, 1z, 3, 4, 'vio) and 5 genes (g1, g2, g3, 94, gs); b) Matrices of gene knockout
constraints, G and F, and net contribution of each row in G in terms of gene knockouts, d. For
example, the second row in G is dependent on the third row in G and, thus, ds=2-1=1; c) Resulting
set of gMCSs and MCSs.

Calculation of G matrix in metabolic networks

MILP1 requires as input data different matrices: S, G, F and t. The construction of G and F
matrices is not a trivial task, as demonstrated in Apaolaza et al., 2019 where we presented an
efficient algorithm for their computation in complex metabolic networks. This technical
improvement has allowed us to enumerate thousands of gMCSs in genome-scale metabolic

networks in human cells (Valcarcel et al., 2022).

Our G matrix construction algorithm involves 2 stages: i) calculation of irreducible subsets of
gene knockouts that block each reaction separately using GPR rules; ii) integration of these
irreducible subsets for the definition of G and F matrices. The first stage is the most challenging
part, but it could be elegantly solved by transforming GPR rules into artificial reaction networks,
called here GPR networks, and apply the MCS approach to block the target reaction(Apaolaza et
al., 2019) only considering the deletion of exchange reactions. Figure 2a shows the GPR rule for
reaction 4 (r4) present in the example in Figure 1, the associated GPR network and the 2 resulting
MCSs. This strategy could be followed because GPR rules define Boolean networks that do not
involve i) negation (inhibition) terms and ii) cycles that could lead to oscillatory behaviour, as it

is typically found in complex regulatory networks.
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Here, we extend our computational approach to calculate gMCSs in metabolic networks that
integrate linear (acyclic) regulatory pathways. In particular, we amend the G matrix construction
algorithm to deal with the resulting acyclic Boolean networks that control metabolic reactions.
The inclusion of inhibitory interactions (negation terms) in regulatory pathways requires the
redefinition of our previous GPR networks and the algorithm to calculate MCSs. Figure 2b shows
an example reaction that includes the regulatory information for the genes implied in its
associated GPR rule. We describe below how these extended GPR (eGPR) rules are transformed
into reaction networks, referred now as extended GPR (eGPR) networks, and how the MCS

approach is applied to them.
Calculation of G matrix in integrated metabolic and regulatory networks

1. Construction of eGPR networks. For the sake of clarity, for each target reaction k, denoted R,
we define B(k) as the subset of genes implied in its associated eGPR rules. Each of these genes,
denoted g; (i=1,...,| B(k)|), are interconnected through their corresponding Boolean equations.
We denote L(k) the subset of those nodes without Boolean equations (in Figure 2b, we have gs,
g7 and gs). Nodes in L(k) represent input genes for the resulting Boolean network and can freely
take 0/1 values. In order to build the eGPR network for each reaction, we follow 5 different

steps:

i.  The Boolean equation for each gene in B(k) is first updated with a necessary auxiliary
node y; (i=1,...,| B(k)|), which allows us to consider the effect of gene knockouts without
affecting the network upstream. The resulting Boolean network and updated eGPR rules
can be found in Figure 2c. Note here that we introduce intermediate nodes (shown in
green) to consider OR rules.

ii. Nodes from the Boolean network in the previous step are split into ON and OFF nodes,
namely yl-ON, yiOFF, gfm, g{)FF, R,?N, R,?FFand, following the De Morgan’s laws, eGPR
rules are updated. This strategy duplicates the number of nodes and interactions but
negation terms disappear from the Boolean equations, which make it possible to model
them as a reaction network. The resulting network is shown in Figure 2d.

iii.  Addition of an input exchange reaction for nodes with no input arcs, namely yiON and
yl-OFF. The removal of these exchange reactions represents the knockout/activation of

the genes involved in our reaction network. This set of input exchange reactions is

denoted Y(k). They are coloured red in Figure 2d.


https://doi.org/10.1101/2023.01.27.525829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.27.525829; this version posted January 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

iv. Addition of an input exchange reaction for glpFF nodes such thati € L(k). In general, we

F

can reach gloF nodes from different pathways but, in the case of input genes L(k),

gf)FFcan be freely active (depending on the initial conditions). They are coloured blue

in Figure 2d.
v.  Addition of an output exchange reaction for RZ¥and RZFF, which are denoted,

respectively, r,onv and r,orF (see Figure 2d).
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Figure 2. lllustration of extended GPR networks. a) Resulting GPR network for reaction 4 (r4) in
Figure 1, its associated GPR rules and output MCSs; b) GPR rules including the regulation of
metabolic genes involved in (r4) using Boolean equations. Three new genes are incorporated into
eGPR rules: gs, g7, gs; ¢) Addition of auxiliary nodes y representing gene knockouts in Boolean
equations; d) Resulting extended GPR (eGPR) network after dividing each node into two
different ON/OFF nodes and including input and output exchange reactions. Regulatory
interactions are represented through arcs in dashed line.

2. Calculation of MCSs in eGPR networks. eGPR networks can be modelled as a reaction system

that satisfies irreversibility constraints and the mass balance equation:
>0 (13)
Sk.rk=0 (14
, where r* denotes the flux through the artificial reactions involved in the eGPR network for the

target reaction k and S¥ its associated stoichiometry matrix of dimensions m*xn*.

In order to calculate MCSs that blocks the target reaction R,?N, we can adapt Eqg. (3) to force flux
through this reaction and Eq. (4) to define the knockout space for the input exchange reactions

in Y(k):
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w7 27" (15)

k<0 Vi €Y(k) (16)
, Where t;,ng is a null vector with a 1 in the position of the target reaction R,?N. Note here that
in Eq. (16) we only include input exchange reactions in Y(k) because they represent the decision

as to whether (or not) a gene is knocked out. The knockout of yiON and yiOFF nodes are not

independent, but they are coordinated in the dual problem that is presented below.

The dual problem of this infeasible primal problem, Egs. (13)-(16), takes a similar form than the
one presented in Eqs. (5)-(12):

i= IB(k)I

minimize };_ (17)
st.
T uk
[ 1 —tpon] (;;;) >0  (18)
vk =0,wk =0 (19)

uk € Rm* vk € RIYWI wk € R, 7k € B (20)
r'wk < —c (21)

az® < vk < Mz* (22)

Z}I/(ON + Z}IICOFF = 1, i = 1, ey |B(k)| (23)

y=IE® ;‘ >1 (24)

i=1

k J k j
S 2o 2on < BTV 2o’ —1 - (25)
l

However, Egs. (17)-(25), called MILP2, differ from MILP1 in the following points:

i) the knockout space only considers input exchange reactions associated with y N and yOFF,

which allow us to decide which gene i is knocked out (T'ypN < 0) or not (ry_opp < 0) to block the
A L
target reaction;
ii) Eq. (23) forces that for each gene i exactly one these two constraints: T,0N < 0and T, 0FF <
12 1

0 takes part in the infeasible primal problem. This constraint is specific of MILP2 and it is due to
the inherent coupling between yiONand yiOFFnodes. This constraint establishes that if a gene is

knocked out, i.e. T,0N < 0, then T, 0FF cannot be forced to be zero, and vice versa.
L 1A
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iii) the objective function, Eq. (17), minimizes the number of knockouts of input exchange
reactions associated with yl-ON, since they represent gene knockouts (yl-ON < 0). The same logic

applies to the solution elimination constraint in Eq. (25).
iv) We force the optimal solution to involve at least one gene knockout in Eq. (24).

MILP2, Egs. (17)-(25), allows us to enumerate MCSs for eGPR networks. Figure 2d shows the

resulting MCSs for the eGPR network of reaction 4 in Figure 1.

3. Calculation of G matrix. Using as input data the GPR rules and regulation available for a specific
metabolic network, MILP2 is applied to each different reaction. For illustration, Figure 3a shows
the example metabolic network in Figure 1a, but additionally including the regulation for some
of the metabolic genes involved (eGPR rules). Figure 3b shows the resulting MCSs for each target
reaction after applying MILP2 to its associated eGPR network. MCSs for different reactions are
then integrated in order to build G and F matrix (see Figure 3b). We have developed a MATLAB
function for building the G matrix in integrated metabolic and regulatory models, called
‘buildGmatrix_iMRmodel’, which can be integrated in the COBRA toolbox (Heirendt et al., 2019).
Note here that as the size of G matrix increases with the addition regulatory interactions, we
have conducted several improvements in this function, reducing up to 3 times the computation

time with respect our previous implementation.

Once the G matrix has been obtained, the list of gMCSs can be calculated using the function
‘calculateGeneMCS’, also presented in Apaolaza et al., 2019, which makes use of MILP1. The

resulting gMCSs for our toy example can be found in Figure 3c.
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Figure 3. lllustration of gMCSs in integrated metabolic and regulatory models. A) Example
integrated metabolic and regulatory model that extends the metabolic network in Figure 1. B)
Resulting MCSs for each target reaction after applying MILP2 to its associated eGPR network. In
addition, G and F matrices are provided. C) Resulting gMCSs for this toy example integrated
network.


https://doi.org/10.1101/2023.01.27.525829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.27.525829; this version posted January 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Definition of regulation layers in metabolic models

In order to define the regulation layer of the metabolic network under study, we first find, using
different databases (see Results section), signed interactions for each metabolic gene involved
in GPR rules. Then, we create a new Boolean equation that integrates the identified interactions

for each metabolic gene using ‘OR’ operators, as observed in Figure 3A, leading to eGPR rules.

As noted above, the methodology developed in this work (MILP2) is not able to deal with cyclic
behaviors that are common in Boolean networks. For that reason, at the time of adding a
regulatory layer, we must check that there are no cycles in the resulting eGPR network. This is

done by solving the following linear programming problem (LP1) for each reaction R:
minimize $i=7" rk (26)
s.t.
yeErrk=1 (27)
Sk.rk=0 (28)
k=0, i€eEF (29
k>0 (30
, where E¥ is the subset of input and output exchanges in the eGPR network for reaction Rx.

If we delete input and output exchanges fluxes with Eq. (29), LP1 is only feasible in the case we
have cycles in the eGPR network, otherwise the solution is infeasible. Once it is tested that the
eGPR network does not present cycles (LP1 is infeasible), the regulatory layer is added to the
model. Note here that adding a layer involves including more genes to the model which can be
regulated by other genes. Therefore, we can search for all the regulatory interactions related to
the genes added in the previous layer and insert new genes to the network as explained above.
Then, the absence of cycles is checked and the layer is added. This process can be repeated as
many times as layers are desired to be added to the model. Supplementary Figure 1 shows the

toy example in Figure 1 with one, two and three regulation layers.
Implementation

For the different studies conducted in the Results section, we used the University of Navarra’s
computing cluster, limiting to 8 cores and 8 GB of RAM (in 2 cases we required 32 GB of RAM).
A time limit of 5 minutes was set for each solution derived from the function
‘CalculateGeneMCS’. MATLAB and The COBRA toolbox was used to implement the function

‘buildGmatrix_iMRmodel’, with help of IBM llog Cplex for the underlying MILP model.
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Results

In order to assess the performance of our novel approach, we integrated the extensively curated
and most recent published metabolic network of human cells, Human1 (Robinson et al., 2020)
(v1.10.0), with the protein-protein interaction network of Omnipath (Tirei et al., 2016)
(accessed online 2021-09-29) (OmnipathR, v.3.0.4) (Valdeolivas A, Turei D, 2019), the gene
regulatory network of signed transcription factors Dorothea (Garcia-Alonso et al., 2019) and the
manually curated database of human transcriptional regulatory networks TRRUST (Han et al.,
2018). In summary, we built 3 different integrated models: Humanl + Omnipath (Human1-0);
Humanl + Dorothea (Human1-D), Humanl + TRRUST (Humanl-T). We present below the
analysis of identified gMCSs for these integrated models with single and multiple regulatory

layers.
Analysis of gMCSs in single-layer integrated metabolic and regulatory models

Tablel shows the details for the different models mentioned above including a unique layer of
regulatory interactions for each metabolic gene (see Methods section). The addition of the
regulatory layer significantly increases the number of genes in the 3 cases, being Human1-0O1
the one with the highest increase. However, we obtained the most complex G matrix and highest
computation time with Human1-D1. It can be observed that the computation time scales linearly

with the number of rows of G matrix (Pearson’s correlation=0.99, p-value=0.007672).

Table 1. Summary of single-layer integrated metabolic and regulatory models and computed gMCSs.
Computation time is given in seconds (s). Abbreviations: ‘Human1-01’: integrated model with Humanl
and Omnipath with one regulatory layer; ‘Human1-D1’: integrated model with Humanl and Dorothea
with one regulatory layer; ‘Human1-T1’: integrated model with Human1 and TRRUST with one regulatory
layer. In the column ‘Number of gMCSs (length<5)’, the number in parenthesis is the number of gMCSs
arising from the addition of the regulatory layer.

Model Number of G matrix G matrix Number of gMCSs
genes dimension computation time (s) (length < 5)
Humanl 2,975 1,706x10,342 314 9881
Humanl-01 3,419 2,407x10,342 634 12751 (2870)
Humanil-D1 3,072 5,233x10,342 1,332 11020 (1139)
Humanl-T1 3,214 2,724x10,342 634 10557 (676)

For each model, we calculated gMCSs until length 5 that block biomass production (Table 1).
9881 gMCSs were identified for Human1. All of them were included in our 3 integrated models
(Supplementary Figure 2); however, we found 4686 new gMCSs: 2870 in Human1-01, 1177 in
Human1-D1 and 677 in Humanl1-T1l. We observed that the new subset of gMCSs identified
strongly depends on the regulatory database employed and shows limited overlap

(Supplementary Figure 2).
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Given the differences found in the different integrated models, we compared their capacity to
predict essential genes in cancer, following the gMCS approach recently developed in our group
(Valcarcel et al., 2022). We used as a gold-standard the genome-wide CRISPRi experiments from
5 cancer cell lines published by Hart and colleagues (Hart et al., 2015), referred them to as
Hart2015. In Valcarcel et al., 2022, a gene is classified as essential in a sample if it is the unique
highly expressed gene in at least one gMCS and the rest of genes of that gMCS are lowly
expressed. For the definition of highly and lowly expressed genes for each sample, we applied
the gmcsTH5 threshold presented in that work (Valcarcel et al., 2022) and gene expression data
from CCLE (Ghandi et al., 2019). For consistency, gmcsTH5 was derived for each sample using
the gMCSs calculated for Human1 and applied to the rest of the models. Once the list of essential
genes per cell line and per integrated model were computed, we compared them with the
essentiality scores of Hart2015. We determined the number of true positives (TPs) and false
positives (FPs), as well as the positive predictive value (PPV), which is the ratio TPs to all of the

genes that were defined as positive (TP + FP) (Figure 4).

As shown in Figure 4A, the addition of a regulatory layer involves a significant increase in the
number of TPs. However, FPs also rise under the addition of the regulatory layer and, for this
reason, the PPV of the integrated models is slightly lower than in Human1. Interestingly, as it is
shown in the plot TPs vs PPV, although the PPV value decreases by the addition of the regulatory
layer, the integrated models always dominate Human1 in terms of TPs. Dorothea seems to be
the regulatory database that leads to the detection of more TPs, but it is also the one with the
highest value of FPs and, so, the lowest PPV of all the models. TRRUST database seems to present
the best proportion of TPs and FPs in relation to Human1. A similar conclusion was obtained for

DepMap data (Ghandi et al., 2019; Meyers et al., 2017) (Supplementary Figure 3).

Each regulatory database led to the detection of specific subsets of essential genes. For example,
in the cell line HELA, we found the same 145 metabolic essential genes in all the models; 26 new
essential genes with Human1-D1, among which 4 are shared with Human1-T1 and 1 with
Human1-01; 9 new essential genes with Human1-01, among which 1 is shared with Human1-
D1; and 11 new essential genes in Human1-T1, among which 4 are shared with Human1-D1
(Supplementary Figure 4). In addition, new essential genes are transcription factors but also
metabolic enzymes. An example in this cell line is TXN2. In Human1, it appears in a unique gMCSs
of length 2: TXN & TXN2. TXN is expressed in HELA, and, for that reason, TXN2 is not predicted
as essentialin Human1. However, in Human1-T1, TXN2 appears in 2 gMCSs: {TXN2 & TXN}, {TXN2
& PPARDY}. In HELA, the gene PPARD is not expressed and, thus, TXN2 is predicted as an essential

gene.
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Figure 4. Gene essentiality comparison between Human1l and single-layer integrated metabolic and
regulatory models. True Positives (TPs), False Positives (FPs), Positive Predictive Value (PPV) and TPs vs
PPV arising from our different models (Humanl, Human1-O1, Human-D1, Humanl-T1) using the
essentiality data presented in Hart2015 as a gold-standard. Asterisk * represents the mean value for the
5 cell lines considered.

Analysis of gMCSs in multiple-layer integrated metabolic and regulatory models

Table2 shows the details for the different integrated models including a 1, 2 and 3 layers of
regulatory interactions for each metabolic gene (see Methods section). The addition of multiple
layers has particularly an impact in Human1-0, which involves 4371 genes in the third layer
(Human1-03). In Human1-D and Human1-T, the impact of multiple layers is moderate and the
third layer seems irrelevant, because they are smaller databases. In addition, we obtained the
most complex G matrix and highest computation time with Human1-02 and Human1-03 (see
Table 2). As it was found in the single layer analysis, the computation time scales linearly with

the number of rows of G matrix (Pearson’s correlation=0.99, p-value=4.646e-08).
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Table 2. Summary of multiple-layer integrated metabolic and regulatory models and computed gMCSs.
Results correspond to models including 1, 2 and 3 regulatory layers. Computation time is given in seconds
(s). In the column ‘Number of gMCSs (length<3), the number in parenthesis is the number of gMCSs
arising from the addition of the regulatory layer. Abbreviations: ‘Human1-01’: integrated model with
Humanl and Omnipath with one regulatory layer; ‘Human1-02’: integrated model with Humanl and
Omnipath with two regulatory layers; ‘Human1-03’: integrated model with Human1 and Omnipath with
three regulatory layers; ‘Human1-D1’: integrated model with Human1 and Dorothea with one regulatory
layer; ‘Human1-D2’: integrated model with Human1 and Dorothea with two regulatory layers; ‘Human1-
D3’: integrated model with Human1 and Dorothea with three regulatory layers; ‘Human1-T1': integrated
model with Human1 plus TRRUST and one regulatory layer; ‘Human1-T2’: integrated model with Human1
plus TRRUST and two regulatory layers; ‘Human1-T3’: integrated model with Humanl and TRRUST with
three regulatory layers.

Model Number of G matrix G matrix Number of gMCSs
genes dimension computation time (s) (length < 3)
Humanl 2,975 1,706x10,342 314 249
Human1-01 3,419 2,407x10,342 634 269 (20)
Human1-02 4,371 19,791x10,342 8,623 621 (372)
Human1-03 4,525 20,494x10,342 9,308 441 (192)
Humanl1-D1 3,072 5,233x10,342 1,332 292 (43)
Humanl1-D2 3,081 6,077x10,342 2,078 296 (47)
Humanl1-D3 3,081 6,178x10,342 2,154 298 (49)
Humanl-T1 3,214 2,724x10,342 634 260 (11)
Humanl-T2 3,358 6,534x10,342 1,581 266 (17)
Humanl1-T3 3,382 8,438x10,342 2,168 291 (42)

For each model, we calculated gMCSs until length 3 that block biomass production (Table 2). 248
gMCSs were identified for Human1. All of them were included in our 9 integrated models
(Supplementary Figure 5). Human1-02 and Human1-03 increased significantly the number of
gMCSs. This is not observed either in Human1-D2 and Human1-D3 or in Humanl-T2 and
Human1-T3, in line with the dimension of G matrix. Again, we observed that the new subset of
gMCSs identified strongly depends on the regulatory database employed and the intersection
between databases is limited (Supplementary Figure 5). Note here that the memory
requirement in Humanl-02 and Human-O3 exceeded 16Gb, which made it impossible

performing the computation of gMCSs in a standard computer.

We conducted the same gene essentiality analysis shown above for multiple-layer integrated
models (Figure 5). In the case of Human1-0O, the number of TPs increased to significantly lower
rate than the number of FPs after adding the second and third layer (Human1-02 and Human1-
03), which substantially decreased PPV in comparison with Human1. In the case of Human1-D
and Humanl-T, the effect of multiple layers seems less relevant. We obtained similar

conclusions with DepMap data (Supplementary Figure 6).
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Figure 5. Gene essentiality comparison between Human1 and multiple-layer integrated metabolic and
regulatory models. True Positives (TPs), False Positives (FPs), Positive Predictive Value (PPV) and TPs vs
PPV arising from our different models (Humanl, Human1-O1, Human1-02, Human1-03, Human-D1,
Human-D2, Human-D3, Human1-T1, Human1-T2, Human1-T3) using the essentiality data presented in
Hart2015 as a gold-standard. Asterisk * represents the mean value for the 5 cell lines considered.
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Discussion

The integration of genome-scale metabolic and regulatory models has received considerable
attention in the literature. Most algorithms aim to integrate regulatory networks to refine the
prediction of metabolic fluxes (Chandrasekaran and Price, 2010; Marmiesse et al., 2015; Wang
et al., 2017). However, the identification of synthetic lethals from these integrated models have
been little explored. Early approaches rely on pathway enumeration, which are not tractable for
genome-scale models (Jungreuthmayer and Zanghellini, 2012). Here, using the concept of

gMCSs, we present the first approach to address this issue in large-scale networks.

The search of synthetic lethals in these integrated metabolic and regulatory models poses
different challenges. Complex regulatory networks, represented here by Boolean networks,
involve negation terms and cycles, which are not present in metabolic GPR rules. In this work,
we partially address this problem and adapt our previous gMCS formulation to integrate linear
regulatory pathways. The consideration of regulatory cycles in our approach is pendant and it

will be addressed in future works.

Our novel gMCS approach was applied to predict synthetic lethality in human cells. To that end,
we integrated the most recent draft metabolic model of human cells, Human1 (Robinson et al.,
2020), with Omnipath (Tirei et al., 2016), Dorothea (Garcia-Alonso et al., 2019) and TRRUST
(Han et al., 2018). For each regulatory network, we built a different integrated model and
effectively enumerated gMCSs. In particular, we present results for these integrated models
under a single (gMCSs up to length 5) and multiple (gMCSs up to length 3) regulatory layers. Our
gMCS approach was effective in all the cases considered, including networks involving more than

4500 genes, which opens the door to incorporate other regulatory layers.

We compared the performance of the different integrated models with gene essentiality data
from human cancer cell lines. As shown in Figure 5, we found that models with single regulation
layers seem more accurate than models with multiple regulation layers. This is particularly true
in the case of Omnipath, where models with multiple regulation layers substantially increased
the number of genes and resulting gMCSs, but the accuracy in the essentiality predictions is
significantly lower. This lack of accuracy may be caused by different reasons: 1) Omnipath
integrates different sources of information with a different quality of annotation; 2) the bias
introduced in our predictions for not considering cyclic interactions; 3) annotation errors are
propagated along multiple regulatory layers. In the case of Dorothea and TRRUST, considerably
smaller databases than Omnipath, the negative effect of multiple regulatory layers is less
relevant and the differences between single and multiple regulatory layers are small in terms of

number of genes, gMCSs and essential genes.
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We also compared the gene essentiality predictions obtained from the different regulatory
networks. A significant number of new essential genes was obtained for the different integrated
models. However, we found that TRRUST returned the most accurate results. Interestingly, the
overlap between TRRUST and the other 2 databases is low, which suggests that the integration
of them could lead to more accurate regulatory models. In fact, we assessed an integrated model
with TRRUST and Dorothea (deleting contradicting interactions), finding that gene essentiality
predictions are slightly better than exclusively TRRUST (Supplementary Figure 7). Thus,
integrating and comparing different regulatory databases in the light of gene essentiality

predictions could be an interesting future direction.

We analysed in detail essential genes and synthetic lethals obtained with TRRUST. We found 5
new essential genes for all cell lines (gMCSs of length 1): E2F1, KLF5, NR1H4, SP1 and SREBF2.
We found extensive literature supporting our predictions for E2F1 and KLF5 (Wu et al., 2001,
Dong and Chen, 2009). In addition, we found that SP1 is over-expressed in most tumours and an
attractive target for cancer cells (Vizcaino et al., 2015), and that SREBF2 is essential for tumour

growth and initiation in colon cancer (Wen et al., 2018).

Regarding to the new synthetic lethals and context-specific essential genes obtained with
TRRUST, a summary list can be found in Supplementary Table 1. Interestingly, we predicted two
essential metabolic genes that were not captured by Human1: PISD and TXN2, which shows the
potential of our integrated approach to complement previous predictions. In particular, PISD
was predicted essential in HCT116 and HELA cell lines, in line with Bellance and collegues
(Bellance et al., 2020), where they demonstrated that doxorubicin inhibits PISD and induces cell
death in HELA cells. Similarly, TXN2 was predicted essential in DLD1 and HELA cells, in agreement
with the work presented in Zhang et al., 2011, where they proved that knockdown of TXN2
caused a significant decrease of cell viability in HELA. On the other hand, we predicted the
essentiality of CREB1 in all cell lines in Hart2015. CREB1 is a transcription factor that comprises
a synthetic lethal with ACACB, a metabolic gene implied in fatty acid biosynthetis and biotin
metabolism (Supplementary Figure 8). ACACB is lowly expressed in all the cell lines, and so, the
inhibition of CREB1 leads to cell death. The literature is also supporting of our prediction, since
Fang et al., 2016 showed that the downregulation of CREB1 is lethal in HCT116. This synthetic

lethal shows again the functional interaction between the metabolic and regulatory layers.

Overall, our novel gMCS approach opens avenues to predict mechanistically synthetic lethal
interactions between metabolic and regulatory genes. The computational and functional
(biological) analysis presented here shows that our tool can be robustly used to study the

regulation of cancer metabolism and associated dependencies.
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