

1 **Integrated post-genomic cell wall analysis reveals floating biofilm formation**
2 **associated with high expression of flocculins in the pathogen *Candida krusei*.**

3 María Alvarado¹, Jesús Alberto Gómez-Navajas¹, María Teresa Blázquez-Muñoz¹,
4 Emilia Gómez-Molero¹, Carmen Berbegal², Elena Eraso³, Gertjan Kramer⁴, Piet W.J. De
5 Groot^{1*}

6 ¹Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology
7 Park, University of Castilla-La Mancha, 02008 Albacete, Spain. ² ENOLAB, Estructura
8 de Recerca Interdisciplinari (ERI) BioTecMed and Departament de Microbiologia i
9 Ecología, Universitat de València, 46100 Burjassot, València, Spain. ³Department of
10 Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University
11 of the Basque Country (UPV/EHU), 48940 Bilbao, Spain. ⁴Mass Spectrometry of
12 Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences
13 Amsterdam, 1098 XH Amsterdam, The Netherlands.

14 *Corresponding author

15

16

17 **Running title:** Cell wall analysis of *Candida krusei*

18 **Keywords:** *Candida krusei*; cell wall; mannan; adhesion; flocculin; proteomics; biofilm;
19 flor.

20 **ABSTRACT**

21 The pathogenic yeast *Candida krusei* is more distantly related to *Candida albicans* than
22 clinically relevant CTG-clade *Candida* species. Its cell wall, a dynamic organelle that is
23 the first point of interaction between pathogen and host, is relatively understudied, and
24 its wall proteome remains unidentified to date. Here, we present an integrated study of
25 the cell wall in *C. krusei*. Our comparative genomic studies and experimental data
26 indicate that the general structure of the cell wall in *C. krusei* is similar to *Saccharomyces*
27 *cerevisiae* and *C. albicans* and is comprised of β -1,3-glucan, β -1,6-glucan, chitin, and
28 mannoproteins. However, some pronounced differences with *C. albicans* walls were
29 observed, for instance, higher mannan and protein levels and altered protein
30 mannosylation patterns. Further, despite absence of proteins with high sequence
31 similarity to *Candida* adhesins, protein structure modeling identified eleven proteins
32 related to flocculins/adhesins in *S. cerevisiae* or *C. albicans*. To obtain a proteomic
33 comparison of biofilm and planktonic cells, *C. krusei* cells were grown to exponential
34 phase and in static 24-h cultures. Interestingly, the 24-h static cultures of *C. krusei*
35 yielded formation of floating biofilm (flor) rather than adherence to polystyrene at the
36 bottom. The proteomic analysis of both conditions identified a total of 32 cell wall
37 proteins. In line with a possible role in flor formation, increased abundance of flocculins,
38 in particular Flo110, was observed in the floating biofilm compared to exponential cells.
39 This study is the first to provide a detailed description of the cell wall in *C. krusei* including
40 its cell wall proteome, and paves the way for further investigations on the importance of
41 flor formation and flocculins in the pathogenesis of *C. krusei*.

42 AUTHOR SUMMARY

43 The yeast *Candida krusei* is among the five most prevalent causal agents of candidiasis
44 but its mechanisms underlying pathogenicity have been scarcely studied. This is also
45 true for its cell wall structure, an essential organelle that governs primary host-pathogen
46 interactions and host immune responses. Solid knowledge about cell wall synthesis and
47 dynamics is crucial for the development of novel antifungal strategies against this
48 pathogenic yeast. Here, through a combination of comparative genomics, protein
49 structure modeling, and biochemical and proteomic analysis of purified walls, we present
50 a detailed study of the cell wall composition in *C. krusei* and identify important
51 architectural differences compared to *C. albicans* cell walls. Cell walls of *C. krusei*
52 contain higher mannan and protein levels with altered mannan branching patterns,
53 governed by expansions and reductions in gene families encoding
54 mannosyltransferases. We also show that, in contrast to other *Candida* species, static
55 cultures produce floating biofilms. Comparative wall proteomic studies of these biofilms
56 show increased abundance of flocculins and hydrolytic enzymes, protein classes
57 implicated in biofilm formation and primary host-pathogen interactions leading to tissue
58 colonization. In conclusion, our study uncovers important keys towards a better
59 molecular understanding of the virulence mechanisms of the important pathogen
60 *C. krusei*.

61 **INTRODUCTION**

62 Candidiasis is one of the most frequent fungal infections in humans. In
63 immunocompromised patients *Candida* infections frequently lead to invasive mycoses or
64 bloodstream infections (candidemia), which are associated with high mortality rates (1).
65 *Candida krusei* is among the most relevant etiological agents of candidiasis and is most
66 often found in patients with hematological malignancies or receiving prolonged azole
67 prophylaxis (2, 3). Infections caused by this organism are of special clinical relevance
68 because of its intrinsic resistance to fluconazole (4).

69 *C. krusei* is a diploid ascomycete yeast belonging to the family *Pichiaceae* in the
70 order *Saccharomycetales*. It is only distantly related to *C. albicans* (4, 5); moreover, it
71 does not belong to the *Candida*-CTG clade (6). Genetic studies have characterized this
72 pathogenic yeast as the asexual (anamorph) form of *Pichia kudriavzevii* (teleomorph),
73 however, the different nomenclature for the pathogenic form (*C. krusei*) and the
74 environmental teleomorph (*P. kudriavzevii*) is still maintained (5).

75 Among the virulence factors described for *C. krusei*, we find similarities with other
76 *Candida* spp., for instance, formation of pseudohyphae that would confer the ability to
77 invade host tissues (7), secretion of phospholipases and proteinases that enhance the
78 yeast ability to colonize host tissues and evade the host immune system (8), phenotypic
79 switching contributing to its adaptation to environmental conditions (9), or formation of
80 monospecies or polymicrobial biofilms (10).

81 Playing a key role in primary host-pathogen interactions, the fungal cell wall is
82 crucial for all the aforementioned virulence mechanisms (11, 12). In related yeasts such
83 as *Saccharomyces cerevisiae* and *C. albicans*, the inner part of the cell wall has been
84 described as a carbohydrate network mostly composed of the polysaccharides
85 β-1,3-glucan, β-1,6-glucan and chitin, whereas the outer cell wall layer is densely packed
86 with highly glycosylated (mostly by mannosyl residues) glycosylphosphatidylinositol

87 (GPI)-modified proteins that are covalently bound to β -1,6-glucan molecules. These
88 proteins belong to different families and have a manifold of functions including enzymatic
89 activities needed for cell wall synthesis and modification, enzymes using (host)
90 substrates in the surrounding environment (e.g aspartic proteases), proteins involved in
91 surface adhesion and biofilm formation, and others (13). Interestingly, genomic analyses
92 showed enrichment of some GPI protein families (e.g. Hyr/Iff adhesins) in pathogenic
93 *Candida* spp. compared to related non-pathogenic species, suggesting a direct
94 relationship to pathogenicity (14).

95 GPI-modified adhesins confer yeasts the ability to adhere onto different
96 substrates such as host cells or abiotic surfaces (medical devices, catheters), and thus
97 play an important role in the establishment of infections (15, 16). In addition, the ability
98 to form biofilms by cell-to-cell adhesion renders an infiltrate stable matrix that enhances
99 resistance to antifungal agents (17). GPI proteins in *C. albicans* include three adhesin
100 families: Als (18), Hyr/Iff (19) and Hwp (20). Genomic analyses have shown that these
101 adhesin families are conserved in other *Candida* species of the CTG clade (14). For the
102 non-CTG clade pathogenic yeast *Candida glabrata* similar genomic studies
103 demonstrated that it contains an extraordinarily large number of more than 70 sequences
104 encoding GPI-modified adhesin-like proteins (21-25). Recent structural studies showed
105 that most of these adhesins can be divided into two groups: (i) Epa1-related proteins with
106 shown or presumed host-binding lectin activities and containing N-terminal PA14-like
107 domains similar to flocculins in *S. cerevisiae* (26, 27), and (ii) proteins with β -helix/ β -
108 sandwich N-terminal domains for which the substrate ligands are still unidentified
109 although involvement in adherence to polystyrene surfaces was demonstrated for Awp2
110 (28).

111 Following adhesion to host cells, *Candida* species secrete enzymes that help to
112 disrupt host membranes and proteins and actively penetrate into tissues (29), as well as
113 improve the efficiency of extracellular nutrient acquisition (30). Three different classes of

114 such secreted/cell wall hydrolases, namely aspartic proteases, phospholipases, and
115 lipases have been described (31). Among the aspartic proteases and phospholipases,
116 some members may be retained into the cell wall through GPI anchoring (14, 32, 33).
117 Expansion of genes encoding aspartic proteases in pathogenic species compared to less
118 pathogenic relatives supports a role for these proteins in the infection process (14, 34).

119 Thorough knowledge of the cell wall structure and its proteomic composition is
120 crucial to better understand biofilm formation and host-pathogen interactions underlying
121 *Candida* pathogenesis. However, in *C. krusei* this remains poorly studied to date. The
122 aim of this study therefore was to enhance our knowledge of the *C. krusei* cell wall
123 through an integrated approach including a comprehensive genomic inventory of its cell
124 wall biosynthetic machinery, analysis of its cell wall composition and proteome, and
125 surface adhesion and biofilm formation studies. Intriguingly, proteomic analysis of flor
126 formed during static culturing revealed increased expression of a Flo11-like wall protein
127 potentially important for biofilm formation during infection.

128 **Results**

129 **The cell wall synthetic genetic machinery of *C. krusei***

130 Here, we present a multidisciplinary study to enhance our knowledge about synthesis
131 and composition of the cell wall in the human pathogenic yeast *C. krusei*. First, an
132 extensive bioinformatic analysis of its cell wall biosynthetic genetic machinery was
133 carried out on the translated genome of reference strain CBS573 using known fungal
134 cell wall biosynthetic genes as search queries. Cell walls of CTG-clade *Candida* species
135 and *S. cerevisiae* are mainly composed of a network of the polysaccharides, β -1,3-
136 glucan, β -1,6-glucan, and chitin, to which a variety of glycoproteins are covalently
137 attached either to β -1,6-glucan through GPI remnants, or to β -1,3-glucan through mild-
138 alkali sensitive linkages (ASL). Synthesis of β -1,3-glucan and chitin is carried out by
139 enzyme complexes located in the plasma membrane. The corresponding genes, as well
140 as those of proteins involved in synthesis of precursor molecules or with regulatory
141 functions, for instance the cell wall integrity pathway, appear mostly conserved in
142 *C. krusei* with similar representation in the genome as described for *C. albicans* and
143 *S. cerevisiae* (Table 1; details in S1 Table) (14). However, the genomic analysis of
144 *C. krusei* revealed reductions in the numbers of genes in glycosyl hydrolase families GH5
145 (Exg), GH81 (Eng), and GH18 (Cht), implicated in modification or hydrolysis of β -1,3-
146 glucan and chitin, for instance during cytokinesis.

147 Synthesis of cell wall β -1,6-glucan in yeasts is a poorly understood process
148 although the molecule has a crucial role in interconnecting β -1,3-glucan, chitin, and GPI-
149 modified mannoproteins. For instance, a β -1,6-glucan-synthetizing enzyme remains
150 unidentified to date even though Kre6-like GH16 proteins have been postulated as
151 candidates (35, 36). Noteworthy, where *C. albicans* contains four and *S. cerevisiae* two
152 Kre6-like paralogs, Kre6 and its twin paralog Skn1 that arose from the whole genome
153 duplication, *C. krusei* contains only a single Kre6 homolog in its genome.

154

Table 1. Comparative analysis of protein families involved in cell wall biosynthesis of *C. krusei*.

Protein class ¹	Ck ²	Ca	Sc
<i>β-1,3-glucan synthesis and processing</i>			
Fks family. β -1,3-glucan synthases (GT48)	3	3	3
Rho-related GTPases regulating β -1,3-glucan synthesis; Rho1-like	6	6	6
Regulators of cell wall synthesis; Smi1-like	2	2	1
Gas family. β -1,3-Glucanosyltransglycosylases (GH72)	5	5	5
Crh family. Transglycosylases involved in glucan-chitin crosslinking (GH16)	2	3	3
Bgl2 family. Putative β -1,3-transglucosylases (GH17)	4	5	4
Putative endo- β -1,3-glucanases (GH81); Eng1-like	1	2	2
Putative exo- β -1,3-glucanases (GH5); Exg1-like	2	3	3
Sun family. Putative β -glucosidases involved in septation (GH132)	2	2	4
<i>Chitin synthesis and processing</i>			
Chitin synthases (GT2); Chs1-like	4	4	3
Chitinases (GH18); Cts1- or Cts2-like	2	4	2
Chitin deacetylases (CE4), involved in chitosan synthesis; Cda2-like	1	1	2
<i>Protein mannosylation</i>			
Pmt family. Protein-O-mannosyltransferases (GT39)	5	5	7
α -1,6-Mannosyltransferases (GT32). Initiation of N-glycan outer chain branch addition; Och1-like	5	2	2
Anp1-like subunits of a Golgi α -1,6-mannosyltransferase complex (GT62)	3	3	3
Mnn10-like subunits of a Golgi α -1,6-mannosyltransferase complex (GT34)	2	2	2
Mnn4-like regulators of mannosylphosphorylation of N-linked mannans	3	8	2
Bmt family. β -1,2-mannosyltransferase (GT91). β -mannosylation of phosphopeptidomannan	1	9	0
Ktr/Mnt family of α -1,2-mannosyltransferases (GT15)	11	5	9
Mnn2 family of α -1,2-mannosyltransferases (GT71)	12	6	2
Mnn1 family of α -1,3-Mannosyltransferases (GT71)	4	6	4
<i>Other proteins with putative functions in CW synthesis</i>			
Kre6-like putative transglycosylases (GH16) required for β -1,6-glucan biosynthesis	1	4	2
Dfg5 family. Putative endo-mannanases (GH76-family) with a possible role in GPI-CWP incorporation	3	2	2
Ecm33 family. Possible role in CWP incorporation (GH NC)	2	3	4
Pir family. Putative role in β -1,3-glucan crosslinking	5	2	5

¹Classification of carbohydrate-active enzymes according to CAZy Database (<http://www.cazy.org/>).

²Ck, *C. krusei*; Ca, *C. albicans*; Sc, *S. cerevisiae*.

155

156

157

158 The Dfg5 GH76 family of putative endo-mannanases is described to hydrolyze
 159 glycan moieties of GPI anchors for subsequent attachment of GPI proteins to non-
 160 reducing ends of β -1,6-glucan in the cell wall (37-39). Most *Candida* species and
 161 *S. cerevisiae* contain two *DFG5*-related genes, but three paralogs are present in
 162 *C. krusei* (Table 1). In contrast, for the Ecm33 family, proposed to have a - still
 163 unresolved - role in CWP or β -1,6-glucan incorporation (40, 41), only two genes are
 164 present in *C. krusei* whereas *C. albicans* contains three and *S. cerevisiae* four (two twin
 165 pairs) paralogs.

166 Proteins that are destined to be covalently bound to the cell wall polysaccharide
 167 network are secretory proteins. After synthesis of their precursors, they are translocated

168 to the cell surface and usually become highly glycosylated during their passage through
169 the endoplasmic reticulum and Golgi apparatus. Glycosylation in *Candida* occurs via two
170 different processes, O- and N-glycosylation. O-glycans are short mannan chains of up
171 to five residues connected to hydroxyl side chains of serine (Ser) and threonine (Thr)
172 residues. As CWP_s usually have a high percentage of these residues, O-glycosylation
173 contributes significantly to the mannan present in the cell wall of *Candida*.
174 N-glycosylation occurs less frequently, as its acceptor molecules are side chain nitrogen
175 atoms of asparagine (Asn) residues that are part of an Asn–X–Ser/Thr consensus
176 sequence (where X is any amino acid except proline). However, individual N-glycan
177 chains may contain up to 200 mannose residues, added by diverse families of
178 mannosyltransferases, and thus also greatly contribute to the cell wall mannan content.
179 Interestingly, in *C. krusei* clear differences are observed in the gene copy repertoire of
180 mannosyltransferases compared to *C. albicans*. While *C. albicans* contains two Och1-
181 like GT32 α-1,6-mannosyltransferases needed for N-glycan outer chain backbone
182 formation, *C. krusei* contains five Och1 paralogs. Further, the GT15 (Ck 11 vs Ca 5
183 genes) and GT71 (Ck 12 vs Ca 6 genes) families of presumed α-1,2-
184 mannosyltransferases are also largely extended in *C. krusei*. On the other hand, the
185 analyzed genome of *C. krusei* contains only one GT91 β-1,2-mannosyltransferase gene,
186 whereas this family consists of nine paralogs in *C. albicans*, and the number of Mnn4-
187 like regulators of mannosylphosphorylation of N-linked mannans is also reduced (Ck 3
188 vs Ca 9 genes). The Pmt family of protein-O-mannosyltransferases (GT39) comprises
189 five paralogs in both species.

190 We also identified putative GPI proteins and CWP_s covalently bound through
191 mild-alkali sensitive linkages (ASL). Our bioinformatic pipeline selected 43 putative GPI
192 protein candidates (S2 Table), which is less than described for pathogenic CTG-clade
193 *Candida* spp. (14, 19, 42), *C. glabrata* (about 100) (43) and *S. cerevisiae* (about 70) (42)
194 using similar approaches. Nonetheless, the list of predicted *C. krusei* GPI proteins

195 includes most of the protein families also described in the abovementioned species, for
196 example, Gas, Crh, Ecm33, Dfg5, adhesins/flocculins, aspartyl proteases, and
197 phospholipases. Detailed manual inspection of protein sequences identified during mass
198 spectrometric CWP analysis (see below) indicated that some GPI proteins were not
199 picked up (false negatives) by our GPI protein pipeline, probably mostly due to erroneous
200 automated annotations.

201 Blast searches identified ten probable aspartyl proteases in *C. krusei*, six of which
202 are predicted to be GPI anchored. For comparison, 13 aspartyl proteases have been
203 described in *C. albicans*, two of which are documented as GPI proteins with cell wall
204 localization (33). In *C. glabrata*, nine predicted GPI-modified aspartyl proteases were
205 identified (24) but, consistent with their absence in cell wall preparations, these proteins
206 present dibasic motifs in the region immediately upstream of the GPI attachment site,
207 favoring plasma membrane retention (44).

208 Eleven ORFs showing adhesin properties and/or weak similarity to Flo1, 5, 9 and
209 10 and Flo11 flocculins in *S. cerevisiae* or Ywp1/Hwp1 adhesins in *C. albicans* were
210 identified (Table 2 and S2 Table). Despite the low level or even absence of sequence
211 similarity, their identifications as putative flocculins and adhesins was supported by
212 tertiary (3D) structure modeling and subsequent structure-similarity analysis (Fig 1).
213 Remarkably, (part of) the tertiary structures of the three ORFs with weak primary
214 structure similarity to Ywp1 showed more reminiscence, albeit with relatively high RMSD
215 values, to β -sandwich structures encountered in Als3. We tentatively designated these
216 proteins adhesin-like proteins 1-3 (Alp1-3; Table 2). Manual inspection of the flocculin
217 ORF sequences revealed that the majority seems to have incorrect ORF boundaries (S1
218 Table), providing a likely explanation why half of the flocculins were not identified by the
219 GPI prediction pipeline but probably are genuine GPI proteins, in accordance with their
220 presence in cell wall preparations (Tables 2 and S3 Table).

221

222

Table 2. Identified adhesin/flocculin-like proteins in *C. krusei* strain CBS573.

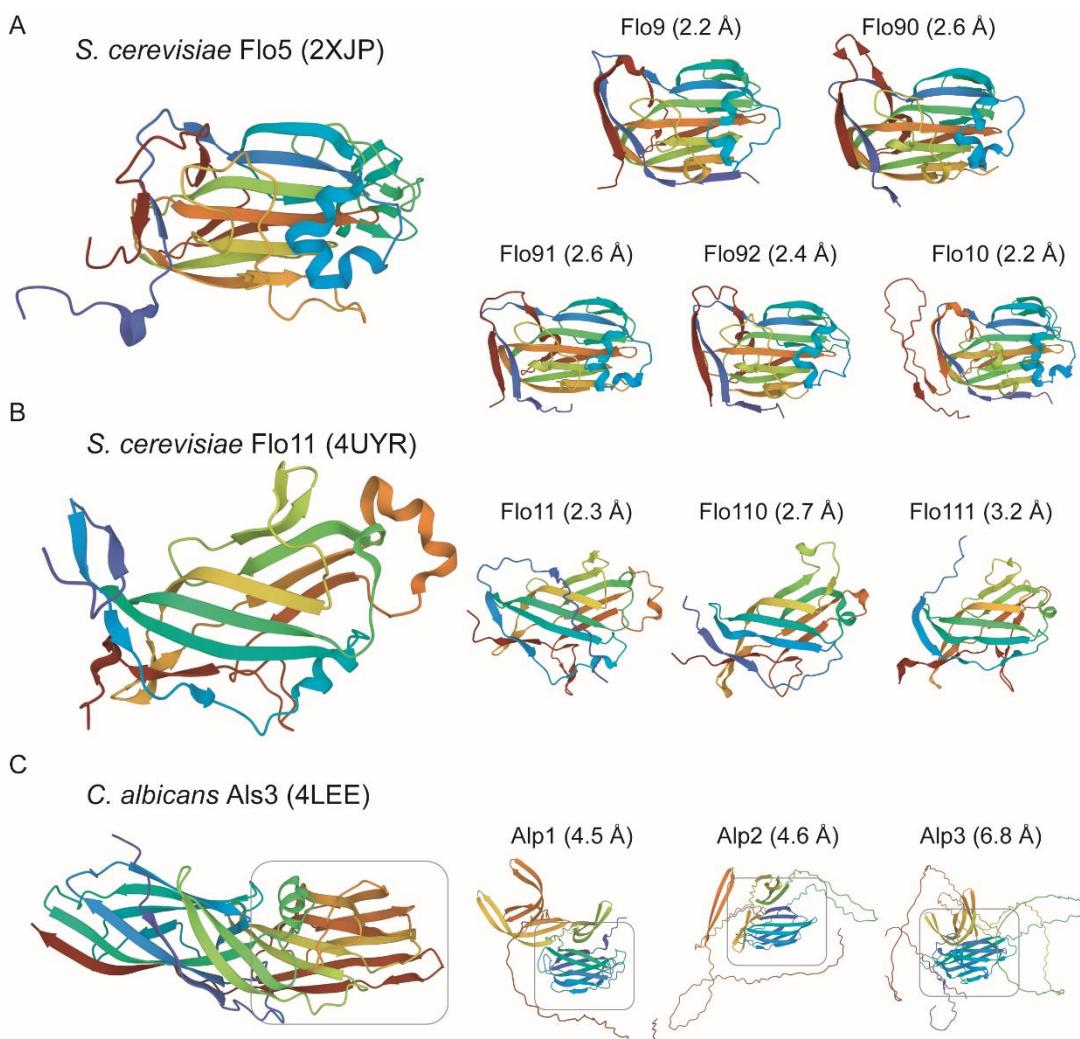
NCBI Refseq	Proposed Name	Closest Sc or Ca Blast homolog ¹	Closest PDB homolog (RMSD (Å))	Identified in cell wall
XP_029321299	Flo9	Flo9	ScFlo5, 2XJP (2.2)	Yes
XP_029321005 + XP_029321006	Flo90	Flo9	ScFlo5, 2XJP (2.6)	Yes
XP_029320844	Flo91	Flo9	ScFlo5, 2XJP (2.6)	
XP_029323952	Flo92	Flo9	ScFlo5, 2XJP (2.4)	Yes
XP_029322636	Flo10	Flo9	ScFlo5, 2XJP (2.2)	Yes
XP_029322875	Flo11	Flo11	ScFlo11, 4UYR (2.3)	
XP_029321007	Flo110	no hits	ScFlo11, 4UYR (2.7)	Yes
XP_029322143	Flo111	no hits	ScFlo11, 4UYR (3.2)	Yes
XP_029319891	Alp1	Ywp1	CaAls3, 4LEE (4.5)	
XP_029319890	Alp2	Ywp1	CaAls3, 4LEE (4.6)	
XP_029323142	Alp3	Ywp1	CaAls3, 4LEE (6.8)	

223

¹Sc, *S. cerevisiae*; Ca, *C. albicans*.

224

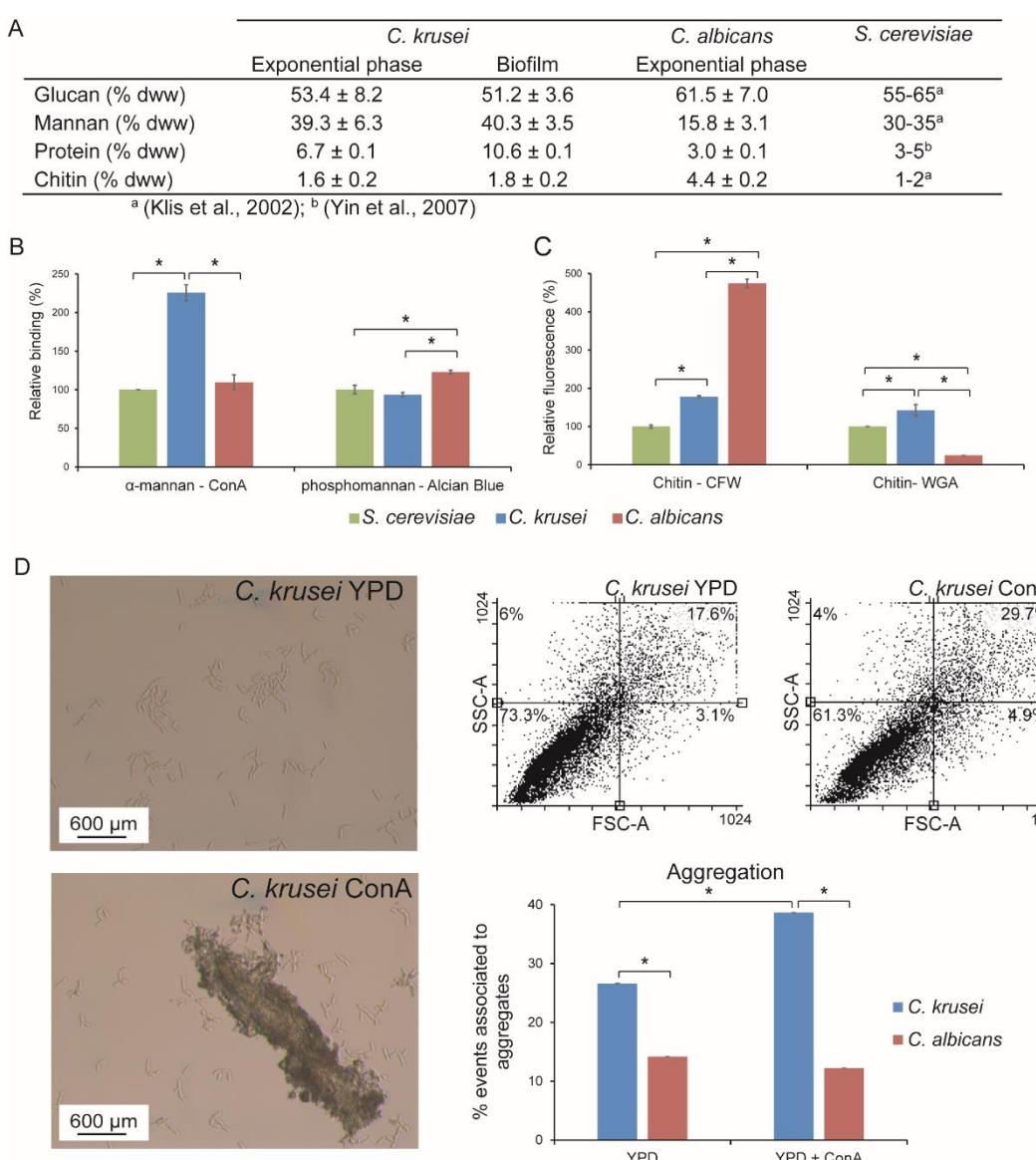
225 Known ASL wall proteins in baker's yeast and *Candida* spp. are Pir proteins, Bgl2
226 and Sun4 family proteins (described above), and Tos1. Homologs of these proteins were
227 also identified in *C. krusei* (S1 Table). The Pir protein family has a proposed role in cell
228 wall reinforcement through β-1,3-glucan crosslinking. The P/R family in *C. krusei* and
229 *S. cerevisiae* is expanded compared to *C. albicans* (Ck and Sc 5 vs Ca 2 genes).


230

231 **The cell wall composition of *C. krusei***

232 To establish relationships between the biosynthetic machinery as deduced from genomic
233 studies and the abundance of cell wall macromolecules in *C. krusei*, we determined its
234 cell wall composition. First, the amount of glucan and mannan was determined by HPLC
235 analysis after acid hydrolysis of purified walls from exponentially growing cells and
236 biofilms (Fig 2A). In both conditions *C. krusei* contained about 50% glucan (determined
237 as glucose), which is slightly less than the 61.5% in *C. albicans*. In contrast, a significantly
238 higher amount of mannan is present in walls of *C. krusei* (Ck: 40% vs. Ca: 16%),
239 consistent with differences in gene copy numbers of mannosyltransferase protein
240 families discovered in the genomic analysis. In a complementary approach, α-mannan

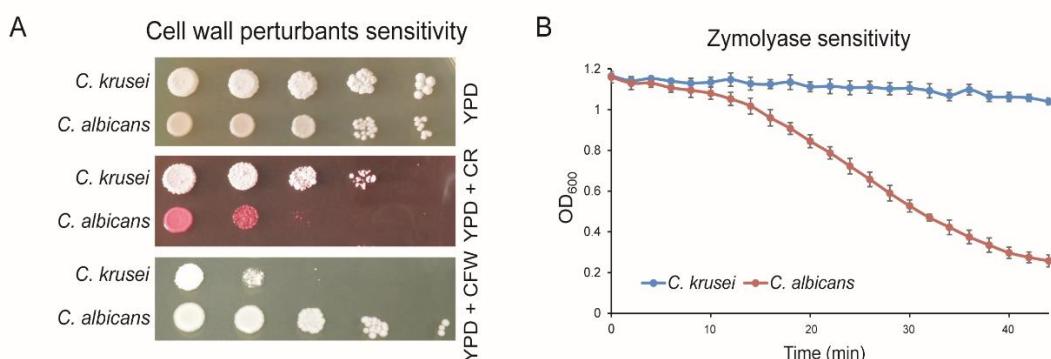
241 was determined by binding to ConA and phosphomannan by Alcian blue binding.
242 Coherent with the HPLC and genomic data, the flow cytometry (FC) analysis showed
243 elevated levels of ConA binding in *C. krusei* compared to *C. albicans* (Fig 2B), also
244 leading to increased cell aggregation in *C. krusei* but not in *C. albicans* (Fig 2D). In
245 contrast, reduced Alcian blue binding was observed (Fig 2B), consistent with the reduced
246 gene copy number of β -mannosyltransferases in the genome of *C. krusei*.


247

248
249 **Figure 1.** Tertiary (3D) structure analysis of *C. krusei* adhesins by AlphaFold modeling of putative ligand-
250 binding domains. Structures are shown in rainbow-color representation from blue (N-terminus) to red (C-
251 terminus). *C. krusei* ORFs with similarity to (A) *S. cerevisiae* flocculins Flo1,5,9 and 10 (five ORFs), (B)
252 *S. cerevisiae* flocculin Flo11 (three ORFs), or (C) containing a β -sandwich similar to the structure present in
253 *C. albicans* adhesin Als3 (three ORFs).

254

255 Protein and chitin levels were determined using colorimetric assays upon alkali
 256 and acid hydrolysis, respectively, and further explored using FC of CFW and WGA-FITC
 257 binding. Walls from exponentially growing *C. krusei* cells contained 6.7% protein, about
 258 twofold higher than the amount in *C. albicans* (Fig 2A).


259

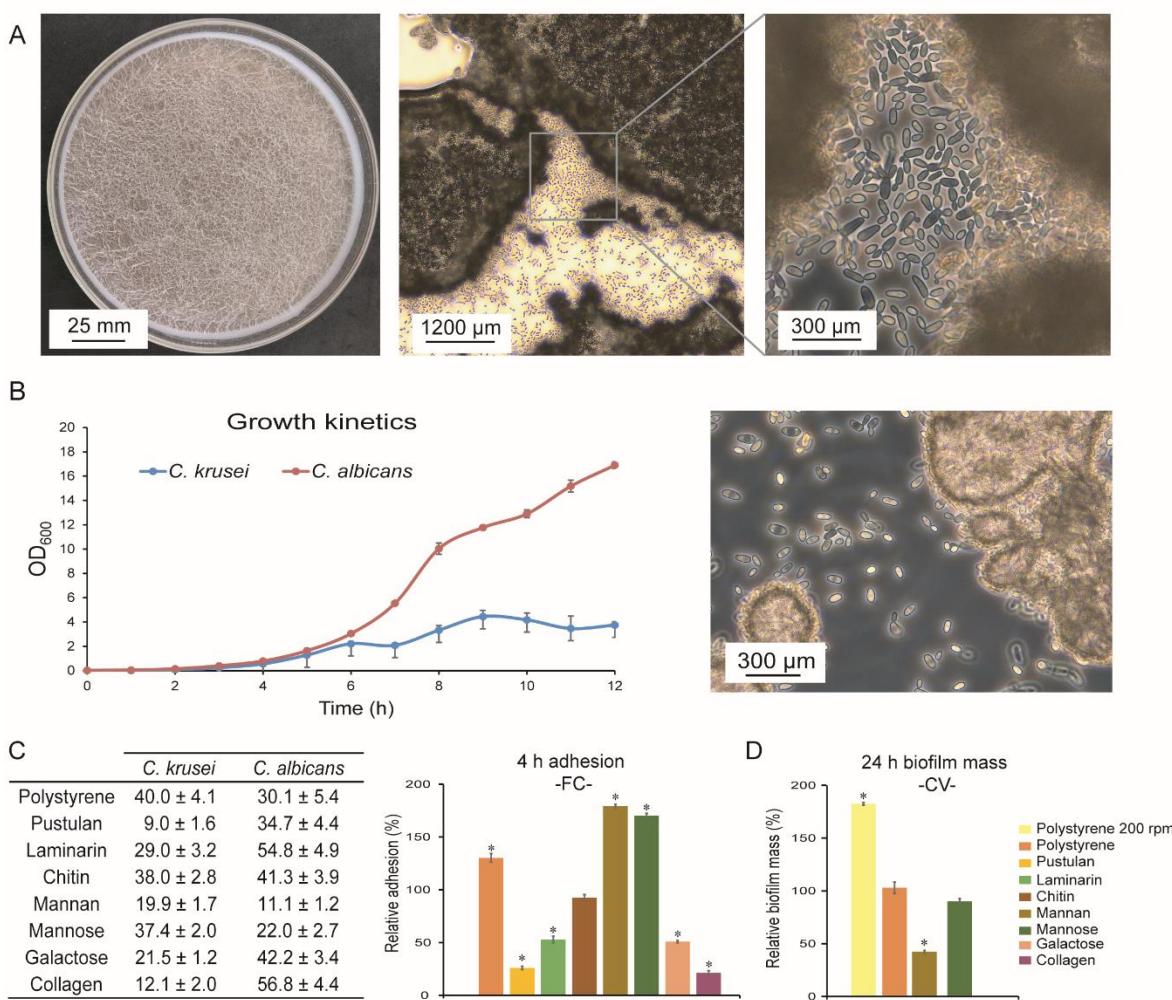
260 **Figure 2.** *C. krusei* cell wall composition analysis. (A) Glucan, mannan, protein and chitin levels in the cell
 261 wall of *C. krusei* determined upon chemical hydrolysis. (B and C) Flow cytometry (FC) and colorimetric
 262 analysis of (B) Concanavalin A (ConA) α -mannan binding and Alcian blue β -mannan binding (C) chitin-
 263 binding Calcofluor white (CFW) and Wheat germ agglutinin (WGA). (D) Aggregation. Events associated to
 264 aggregates were quantified by flow cytometry, by measuring 10,000 cell particles per strain in the
 265 presence/absence of Concanavalin A (ConA), FSC-A, particle size; SSC-A, particle complexity. Percentage
 266 of cell particles in each quadrant are indicated, cell aggregation data was supported by optical microscopy.
 267 *C. albicans* (A, B, C, and D) and *S. cerevisiae* (B and C) are added for comparative reasons. Data in (B) and
 268 (C) are normalized against *S. cerevisiae*.

269

270 This further increased to 10.6% in biofilm cell walls (Fig 2A). The determined amount of
271 chitin present in the cell wall of *C. krusei* was lower than in *C. albicans* (Ck/Ca = 0.37)
272 but similar to *S. cerevisiae*, and this was supported by CFW binding (Fig 2A and 2C).
273 On the other hand, while WGA-FITC binding was also similar as in *S. cerevisiae*, it was
274 about fivefold lower in *C. albicans* (Fig 2C), which is possibly related to lowered binding
275 to *N*-acetylglucosamine monomers present in CWPs.

276 The above-described differences in cell wall composition between *C. krusei* and
277 *C. albicans* may affect cell surface properties. Indeed, compared to *C. albicans*, *C. krusei*
278 shows reduced sensitivity to zymolyase and Congo red (CR) while its sensitivity to CFW
279 is increased (Fig 3A-B).

280 **Figure 3.** Cell surface properties of *C. krusei* compared to *C. albicans*. (A) Spot assays to determine
281 sensitivity to cell wall-perturbing agents Congo red (CR) and Calcofluor white (CFW). (B) Zymolyase
282 sensitivity.

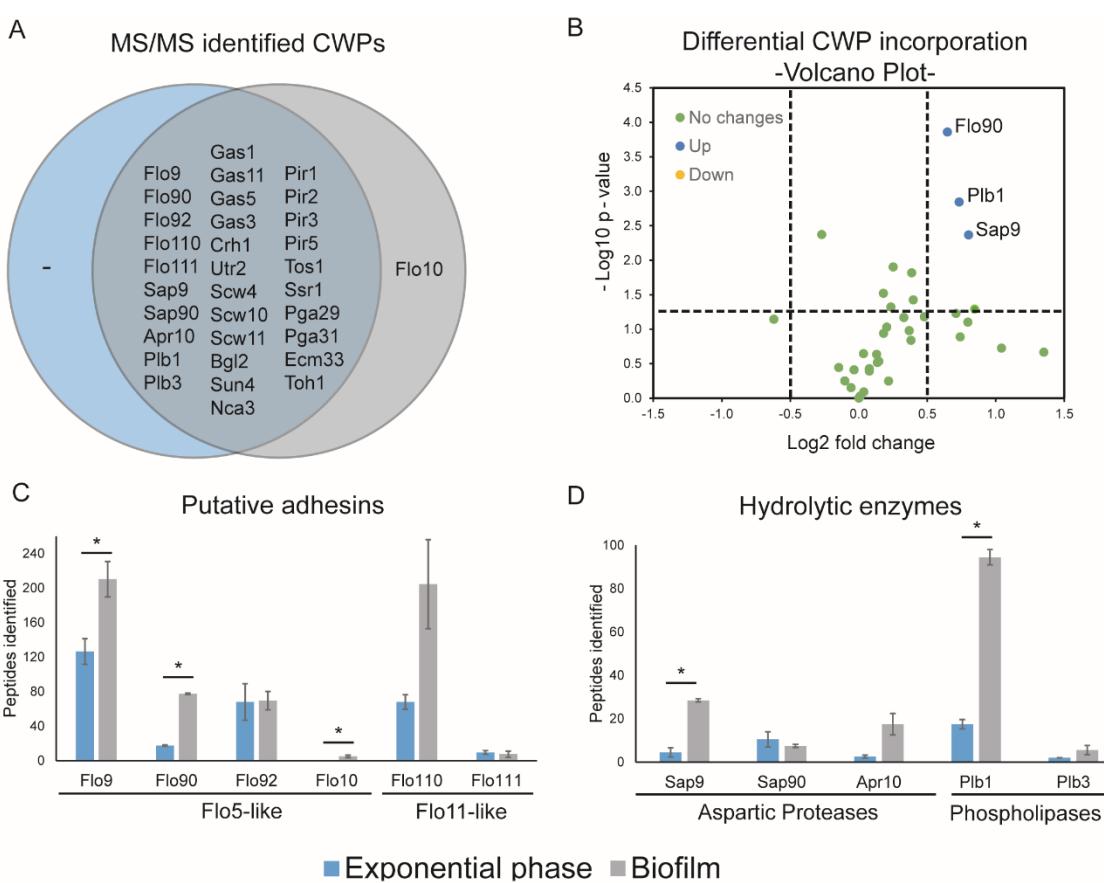

283

284 Floating biofilm formation and adhesion

285 We then performed experiments to evaluate *C. krusei* biofilm formation and adherence.
286 First, biofilm formation onto polystyrene during 24 h of incubation in YPD without shaking
287 was analyzed. In *C. albicans* this leads to cell sedimentation and subsequent biofilm
288 formation onto the plastic. Interestingly, under these conditions *C. krusei* did not
289 sediment but in contrast formed a film of floating cells, adhered to each other, at the air-
290 liquid interface (Fig 4A). Nevertheless, adhesion of *C. krusei* to polystyrene at the air-
291 liquid interface equaled the biofilm mass of *C. albicans* formed as a layer at the bottom

292 in static cultures (Fig 4C). Aeration by agitation (200 rpm) leads to the formation of
293 *C. krusei* flocs that, compared to *C. albicans*, showed higher adhesion to polystyrene,
294 probably because agitation diminishes biofilm formation of the latter (Fig 4C). Consistent
295 with the observed flocculation (Fig 4B), growth (OD_{600}) measurements of liquid cultures
296 showed that *C. krusei* reached a lower maximum cell density (Fig 4B).

297 Adhesion tests in PBS after 4 h of incubation (without shaking) showed that
298 adhesion to polystyrene was also higher in *C. krusei* than in *C. albicans* (Fig 4C). We
299 then tested whether binding to cell wall components may play a role in the observed cell-
300 cell interactions (Fig 4C). However, binding experiments to immobilized molecules that
301 form the internal polysaccharide layer of the cell wall, pustulan (β -1,6-glucan), laminarin
302 (β -1,3-glucan), and chitin, showed less adhesion of *C. krusei* to these molecules
303 compared to *C. albicans* (Fig 4C). In contrast, a significant increase was observed in
304 binding of *C. krusei* to mannan and mannose (Fig 4C). With regard to host surface
305 molecules, adhesion of *C. krusei* to collagen and galactose was lower than in *C. albicans*
306 (Fig 4C). The presence of mannose did not affect polystyrene-adhered biofilm formed by
307 *C. krusei* but addition of mannan led to decreased biofilm (Fig 4C), again implicating a
308 role for cell wall mannoproteins.


309 **Figure 4.** Adhesion and biofilm-forming properties of *C. krusei*. (A) *C. krusei* floating biofilm formation after
310 24 h static incubation at 37 °C. Left, Petri dish showing floating biofilm; Middle and right, light microscopy
311 images (B) Growth kinetics. On the right, floc formation of *C. krusei* after 12 h. (C) Adhesion to polystyrene
312 and different cell wall and host surface molecules after 4 h of incubation measured by flow cytometry (FC).
313 (D) Biofilm biomass after 24 h measured by Crystal Violet (CV) staining. *C. krusei* data presented in the
314 histograms of (C) and (D) are normalized to *C. albicans*.

315

316 **Proteomic analysis of *C. krusei* flor reveals increased incorporation of adhesins
317 and hydrolytic enzymes**

318 Cell aggregation in *S. cerevisiae* has been shown to be related to the expression of cell
319 wall proteins that act as flocculins (45). Our genomic studies revealed the presence of a
320 similar family of flocculins in *C. krusei*. This prompted us to perform a detailed
321 investigation of the cell wall proteome in *C. krusei*.

322 Proteomic analysis of cell walls from exponentially growing cultures and 24-h
323 floating biofilms identified a total of 33 genuine CWP s whose precursors either contain
324 signal peptides for secretion or have homology to known CWP s in other species (Fig 5A,
325 S3 Table). All proteins except one were identified in both conditions, the remaining one,
326 Flo10, was identified only in floating biofilms (Fig 5A and S3 Table). Consistent with our
327 previous analyses in other *Candida* spp, the identified proteins can roughly be divided
328 into two groups: (i) core wall proteins with similar abundance in both conditions, and (ii)
329 condition-dependent proteins, mostly adhesins, upregulated during biofilm formation.

330 **Figure 5.** Comparative proteomic analysis of *C. krusei* cell walls. (A) Venn diagram showing comparative
331 analysis of exponential phase cells and biofilms. (B) Analysis of individual protein abundance in biofilms
332 versus exponential phase cells based on normalized peptide counts. Indicated are proteins with at least
333 twofold and statistically significant changes in abundance. Peptide counts of (C) putative adhesins and (D)
334 hydrolytic enzymes. Statistically significant changes ($p<0.05$) between the two conditions are marked by
335 asterisks.

336

337 The identified core wall proteome includes carbohydrate-active enzymes from Crh, Gas,
338 and Bgl2/Scw4 families involved in cell wall polysaccharide remodeling, non-enzymatic
339 Pir and Srp1/Tip1 proteins with proposed roles in crosslinking of β -glucan chains, and
340 proteins with unknown functions including Ssr1 and the widely distributed Ecm33
341 (Fig 5A).

342 Semi-quantitative Volcano plot analysis of the proteomic data by peptide counting
343 after normalizing the spectral counts of the core proteome in both conditions (S4 Table),
344 showed elevated incorporation of the adhesin Flo90 as well as the aspartyl protease
345 Sap9, and phospholipase Plb1 in flor biofilms (Fig 5B). Although only Flo90 reached a
346 statistically significant twofold change, four of the six identified putative flocculins appear
347 to have increased abundance in biofilms. Flo9 is abundantly present in flor cells (210
348 peptides identified) but did not reach a twofold increase, Flo10 was identified only in
349 biofilm (5 peptides). Flo110, was also very abundant in biofilms (205 peptides) and
350 reached a threefold change but lacked statistical significance due to variation between
351 the biological duplicates (Fig 5C and S3 Table). Inferred from its similarity to
352 *S. cerevisiae* Flo11, this protein probably plays an important role in the observed flor
353 formation of *C. krusei*.

354 With respect to the hydrolytic enzymes found in the cell wall of *C. krusei*, the
355 abundance of aspartyl proteases tripled (18 vs. 54 peptides), while phospholipases
356 almost sextupled (20 vs. 112 peptides) (Fig 5D and S3 Table). Besides the above-
357 mentioned hydrolytic enzymes, abundance in biofilms also appeared increased for Apr10
358 (protease) and Plb3 (phospholipase), however, in both cases, without reaching statistical
359 significance. This is the first time that such a significant increase of these hydrolytic
360 enzymes has been observed in *Candida* cell walls during biofilm formation, which
361 perhaps might be related to the special characteristics of the floating biofilm produced
362 by this yeast.

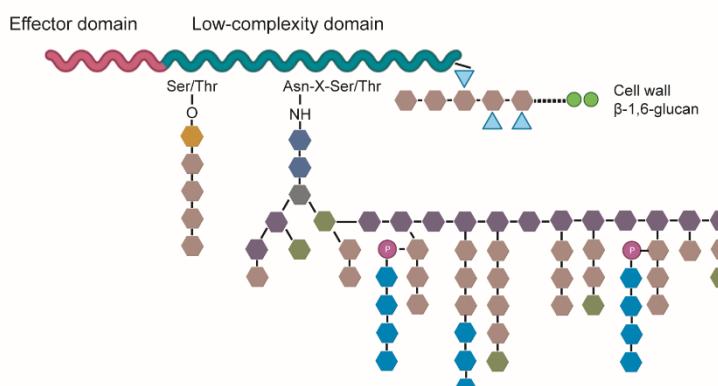
363

364 **Discussion**

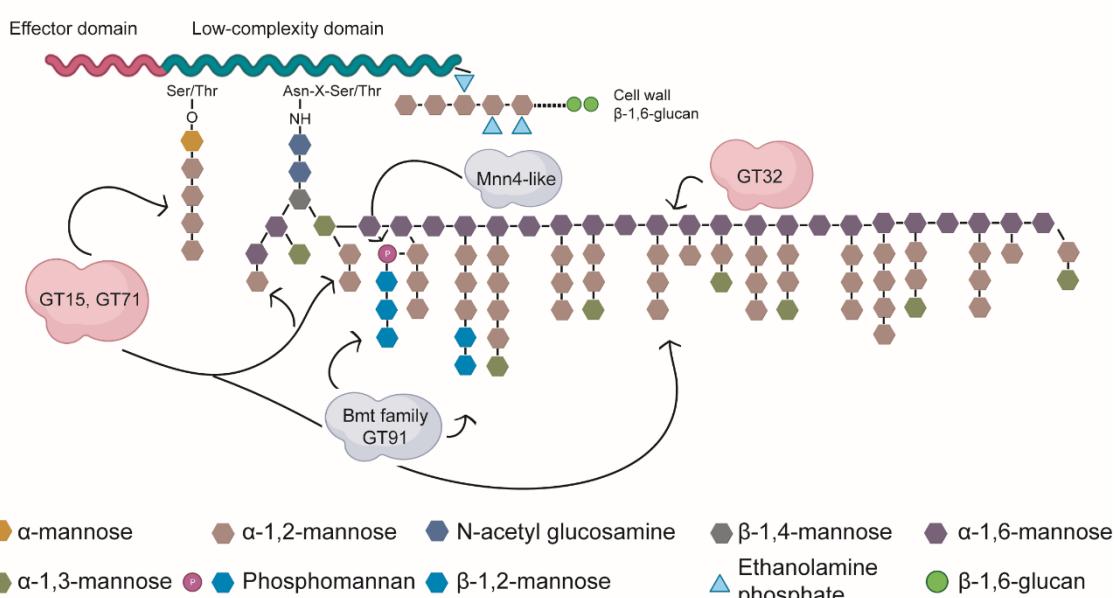
365 The yeast *Candida krusei* (teleomorph *Pichia kudriavzevii*) is among the five most
366 frequent etiological agents of candidiasis but is phylogenetically very distinct to
367 *C. albicans* and other clinically relevant *Candida* species. Perhaps for this reason,
368 *C. krusei* is relatively understudied (4). This is also the case for its cell wall composition
369 even though it is well known that the yeast cell wall plays an important role in the primary
370 host-pathogen interactions that underlie the establishment of infections.

371 Here, we shed light on the cell wall composition of *C. krusei* through an integrative
372 study including bioinformatic, biochemical, microscopic, and proteomic studies. First,
373 through detailed *in silico* analysis the genetic machinery available to synthesize the cell
374 wall of *C. krusei* is presented. Although our analysis included search queries for enzymes
375 synthesizing cell wall components that have not been described in ascomycetous
376 budding yeasts, such as α -glucan and cellulose (46), only protein families also described
377 for *C. albicans* and/or *S. cerevisiae* yielded positive results, indicating that the
378 composition and general architecture of the cell wall in *C. krusei* is similar to these
379 yeasts. In this respect, our data corroborate the data presented by Navarro-Arias and
380 colleagues (47) who documented the presence of β -1,3-glucan, chitin, *N*- and *O*-linked
381 mannan and phosphomannan in *C. krusei*. Our bioinformatic analysis revealed that the
382 biosynthetic glucan and chitin gene repertoire is very similar as in *C. albicans*, from which
383 one could hypothesize that roughly similar amounts of these polysaccharides could be
384 expected in the cell wall of *C. krusei*. The biochemical analyses mostly support this
385 notion, however, two independent approaches, canonical acid hydrolysis with hot 6 N
386 HCl followed by a colorimetric assay and CFW staining indicate that the level of cell wall
387 chitin is about twofold lower in *C. krusei* than in *C. albicans*. The latter contrasts with
388 Navarro-Arias et al. who documented elevated levels of chitin in *C. krusei* (47). However,
389 their data are relative (and not absolute) values produced by combined HPLC
390 measurements of glucan, mannan, and chitin monomers in cell wall hydrolysates and

391 assumed to account for 100% of the cell wall weight, obviously not a correct assumption.
392 Interestingly, in contrast to CFW, our WGA-FITC binding assays showed increased
393 staining of *C. krusei* compared to *C. albicans*, which was also observed by Navarro-Arias
394 et al. The difference between the CFW and WGA results may be explained by differential
395 binding specificities of these molecules for different types of chitin molecules (48), a more
396 difficult access of the larger molecule WGA to chitin buried in internal layers of lateral
397 walls (49), or to the fact that CFW not only binds chitin but also has some affinity for
398 linear β -1,3-glucan (50).


399 In contrast to synthesis of glucan and chitin, differences in gene numbers for
400 families related to degradation or modification of these polymers were observed between
401 the genomes of *C. albicans* and *C. krusei*. Lowered numbers of glucanases and
402 chitinases whose orthologs in other species are involved in cytokinesis (51) does not
403 directly imply that cell division is occurring less in *C. krusei* as cell clumping is infrequent
404 under unlimiting growth conditions. However, it is noteworthy that, even under standard
405 laboratory conditions, *C. krusei* cultures tend to show a high percentage of cells that are
406 more elongated (Figs 2 and 4) and can easily be distinguished from cultures with typical
407 oval-shaped *C. albicans* cells.

408 Strikingly, large differences in some of the gene families responsible for protein
409 mannosylation during secretion were observed between *C. krusei* and *C. albicans*,
410 suggesting major differences in glycosylation structures, especially of *N*-glycans
411 between the two species. More specifically, the extended family of GT32 α -1,6-
412 mannosyltransferases in *C. krusei* suggests it may have longer *N*-glycan α -1,6-mannan
413 outer chain backbones. These backbones may be (more) heavily decorated with short
414 α -1,2-linked branches because of the expansion of GT15 and GT71 α -1,2-
415 mannosyltransferases, which might also result in longer O-glycans. On the other hand,
416 reduced Mnn4 (GT34) and Bmt (GT91) gene families suggests a lower level of
417 phosphomannan with fewer additions of β -1,2-linked mannopyranosides to the branches


418 (Fig 6). Our biochemical analyses are consistent with these genomic data; while the
419 mannan content in *C. krusei* is 2.5-fold higher than in *C. albicans*, a reduction in
420 phosphomannan was detected. Of course, we need to keep in mind that the mannan
421 level will be related to the cell wall protein content, which is also twofold higher in
422 *C. krusei* than in *C. albicans*. Interestingly though, where the protein content was further
423 increased in biofilm cells, this was not or hardly the case for the mannan level.

424

A

B

425

426 **Figure 6.** Schematic model showing cell wall protein mannosylation. (A) *C. albicans* protein mannosylation
427 as described (52). (B) Protein mannosylation in *C. krusei* as proposed in this study. Indicated in clouds are
428 protein families expanded (pink) and reduced (grey) compared to *C. albicans*.

429

Evaluation of biofilm formation and adherence in *C. krusei* led to the formation of floating biofilms and flocs, phenotypes that in *S. cerevisiae* are associated with the expression of flocculins in the cell wall (27). The flocculin (Flo) family of *S. cerevisiae* includes homologous Flo1, Flo5, Flo9 and Flo10 lectins that promote cell-cell adhesion by binding to mannose, which may lead to floc formation. Interestingly, their N-terminal domains, so-called PA14 domains, show structural similarity to those in Epa proteins of the pathogen *C. glabrata*, which have been shown to bind oligosaccharides with terminal galactosyl residues of human glycoproteins, suggesting a direct role in host-pathogen interaction (53, 54). On the other hand, *S. cerevisiae* also contains the apparently unrelated Flo11 that promotes cell-cell adhesion in a weaker manner, contains sequences promoting the formation of amyloids (55) (S1 Fig), and is essentially required for biofilm formation (56). The *C. krusei* genome encodes at least eight putative flocculins, including five Flo5-like and three Flo11-like proteins. Mass spectrometric analysis of purified walls revealed the presence of six of these flocculins (four Flo5-like and two Flo11-like), four of which are upregulated in floating biofilm cells compared to the exponential growth phase, as judged by peptide counting. Presence of peptide sequences with possible roles in β -aggregation was suggested by Tango prediction for both Flo11-like proteins (S1 Fig). Interestingly, Flo110 is one of the most abundant wall proteins in *C. krusei* floating biofilm cells. Altogether, this suggests that these proteins, but especially Flo110, may play a key role in mediating formation of the floating biofilm.

Finally, the increased abundance in biofilm cells of hydrolytic enzymes, the aspartic proteases Sap9 and Apr10 and phospholipases Plb1 and Plb3, fits well with increased Sap9 and Plb5 levels in walls of *C. albicans* cells grown with lactate as carbon source compared to glucose-grown cells (57). Increased Sap9 levels in *C. albicans* cell walls have also been observed under increased temperatures and fluconazole stress (58, 59), and expression of *C. albicans* SAP9 has been associated with adhesion and damage of epithelial cells (60).

457 In conclusion, our integrated study provides important novel insights into the
458 biosynthesis, composition, and architecture of the cell wall of *C. krusei*, including the
459 identification of cell wall proteins that might play key roles in biofilm formation and host-
460 pathogen interactions of this pathogenic yeast.

461

462 **Materials and Methods**

463 ***In silico* genomic analysis**

464 *C. krusei* bioinformatic analysis was carried out with the genome sequence of reference
465 strain CBS573, assembly ASM305444v1 (5), retrieved from NCBI
466 (<https://www.ncbi.nlm.nih.gov>). Annotations, functional assignment, and homology
467 studies were performed using a local BLAST tool downloaded from EMBOSS
468 <http://emboss.sourceforge.net/>, for which known fungal cell-wall related protein
469 sequences from related species, mostly *S. cerevisiae* and *C. albicans*, were used as
470 queries. Predicted homologs were judged by identity levels over the whole sequence
471 (generally >30%) and the presence of known functional domains. Putative GPI proteins
472 were identified using a pipeline approach as described (61). In brief, prediction of C-
473 terminal GPI-modification sites was performed using two complementary approaches: (i)
474 a selective fungal-specific algorithm named Big-PI, available at
475 http://mendel.imp.ac.at/gpi/fungi_server.html (62), and (ii) a more inclusive pattern and
476 composition scanning using the web tool ProFASTA, available at
477 <http://www.bioinformatics.nl/tools/profasta/>, as detailed in (61). Positive proteins from
478 both approaches were filtered using ProFASTA, and further analyzed to select proteins
479 that contain N-terminal signal peptides but lack internal transmembrane domains using
480 SignalP and TMHMM servers at DTU (<https://services.healthtech.dtu.dk/>), followed by
481 ProFASTA parsing. As a last step in the pipeline, possible false positives were removed
482 following NCBI-BLAST analysis.

483

484 **Protein structural modeling and analysis**

485 Three-dimensional structures of CWP_s were modeled using the AlphaFold2 algorithm
486 available at the ColabFold server (63) and subsequently visualized using iCn3D (64).
487 Structure similarity analysis against the proteins in the PDB database was performed
488 using two free available algorithms: the DALI server (65) and PDBeFold, both with a
489 default cut-off for lowest acceptable similarity match of 70% (66). Structural pairwise
490 alignment was executed with a web tool from the RCSB Protein Data Bank available at
491 <https://www.rcsb.org/alignment>. TANGO was used for prediction of β -aggregation
492 (<http://tango.crg.es/about.jsp>)

493

494 **Cell culturing**

495 Yeast strains used in this study are the reference strains *C. krusei* CBS573, *C. albicans*
496 SC5314 and *S. cerevisiae* CEN.PK113-7D, the latter two for comparative purposes.
497 Culturing was performed in liquid YPD (1% yeast extract, 2% peptone, 2% glucose) at
498 37 °C and 200 rpm unless mentioned otherwise. For development of *C. krusei* biofilms,
499 cells were precultured overnight in YPD at 37 °C, and then adjusted to a cell density of
500 OD₆₀₀ = 0.5 in fresh YPD. Twenty mL of the cell suspension was pipetted into a
501 polystyrene Petri dish and incubated at 37 °C for 24 h in a humid environment without
502 shaking. Floating biofilm (flor) was recovered from the top of the culture with a spatula,
503 and biofilm cells were resuspended in PBS and collected by centrifuging.

504

505 **Cell wall isolation**

506 Cell wall isolation was performed as described by De Groot et al. (2004). Briefly, cells
507 were harvested by centrifugation and washed with cold 10 mM Tris-HCl, pH 7.5. After

508 resuspension in 10 mM Tris-HCl, pH 7.5, the cells were disintegrated with glass beads
509 using a FastPrep-24 instrument (MP Biomedicals) in the presence of a yeast/fungal
510 protease inhibitor cocktail (Sigma). To remove intracellular contaminants and non-
511 covalently associated proteins, the cell walls were washed extensively with 1 M NaCl,
512 incubated twice for 5 min at 100 °C in a buffer containing 2% SDS, 150 mM NaCl, 100
513 mM Na-EDTA, 100 mM β-mercaptoethanol and 50 mM Tris-HCl, pH 7.8, and afterwards
514 washed five times with water, each step followed by centrifugation (5 min at 3300 g).
515 Purified walls were lyophilized and stored at -80 °C until use.

516

517 **Cell wall components content determination**

518 For the determination of total cell wall glucan and mannan, purified cell walls were
519 hydrolyzed with sulfuric acid (67) and the amount of glucose and mannose was
520 determined by HPLC according as described (68). Values shown are the mean of
521 duplicate measurements from two independent experiments.

522 Protein and chitin content were determined using colorimetric assays as
523 described by Kapteyn et al. (69). Similarly, the phosphomannan content was also
524 determined colorimetrically using the Alcian Blue (Sigma) binding assay as described by
525 Li et al. (2009) (70).

526 Mannoproteins were fluorescently stained with Rhodamine-ConA (Fisher
527 Scientific, 100 µg/ mL). Chitin was stained with CFW (Glenham Life Science, 25 µg/ mL)
528 and Wheat germ agglutinin (WGA)-FITC (Sigma, 100 µg/ mL). Fluorescent staining was
529 performed with exponential phase cultures. The fluorescence intensity of the different
530 samples was determined by flow cytometry.

531

532 **Aggregation**

533 Cell aggregation of log phase cultures in YPD was analyzed with a Leica DM1000
534 microscope mounted with a MC170 HD digital camera and by flow cytometry by
535 measuring size (FSC-A) and granularity (SSC-A) of 10,000 cell particles. Effects on the
536 addition of Concanavalin A (ConA) on aggregate formation were studied by incubating
537 log phase cultures for at least 45 min at 37 °C.

538

539 **Congo red and Calcofluor white sensitivity spot assays**

540 To reveal possible alterations in cell wall organization, sensitivity to the cell wall-
541 perturbing compounds Congo red (CR) and Calcofluor white (CFW) was assayed using
542 drop tests. Overnight precultures were diluted to an $OD_{600} = 1$. From these, tenfold
543 dilution series were prepared, and four μL aliquots were spotted on YPD plates
544 containing different concentrations of CFW (50 and 100 $\mu g/mL$) and CR (100 and 200
545 $\mu g/mL$). Growth was monitored after 24 h of incubation at 37 °C.

546

547 **Zymolyase sensitivity assay**

548 Cells were grown to exponential phase ($OD_{600} = 1$), centrifuged, and resuspended in 10
549 mM Tris-HCl, pH 7.5 at an $OD_{600} = 2$. Then, 2.5 $\mu L/mL$ β -mercaptoethanol was added,
550 and the cells were incubated for 1 h at room temperature. After this, 1.8 mL of the cell
551 suspension and 200 μL of up to 100 U/mL zymolyase 20T were mixed, and decrease in
552 OD_{600} because of cell lysis was measured every two min after a short mixing over a
553 period of 45 min.

554

555 **Quantitation of biofilm formation**

556 For analysis of the biofilm formation capacity, the OD_{600} of overnight precultures was
557 adjusted to 2, and polystyrene 96-wells plates were filled with 50 μL of the cell

558 suspension and 150 μ L of fresh YPD medium. After a 24 h incubation in a humid
559 environment with or without shaking, the spent medium was removed, and the biofilms
560 were washed once by immersion in a mQ water bath to remove unbound cells. Biofilm
561 cells were stained with a 0.1% crystal violet (CV) (Sigma-Aldrich) solution for 30 min.
562 Excess of CV was removed, and the cells were washed two times with mQ water. Stained
563 adhered cells were resuspended in 33% acetic acid, and the intensity of CV staining was
564 measured as OD₅₉₅ using a microtiter plate reader SpectraMax 340PC (Molecular
565 Devices, CA).

566

567 **Measurement of 4 h adhesion to polystyrene**

568 For the analysis of the capacity to adhere (rather than form biofilms) to polystyrene,
569 overnight precultures of strains of interest were adjusted to 10⁶ cells/mL in PBS, and
570 polystyrene 12-wells plates were filled with 500 μ L of the cell suspension. After a 4 h
571 incubation at 37 °C, unbound cells were removed by two washes with PBS. Adhered
572 cells were then disentangled by enzymatic digestion using 100 μ L of a 2.5% trypsin
573 (Sigma-Aldrich) solution and resuspended in 500 μ L PBS. The quantity of adhered cells
574 was measured using a MacsQuant flow cytometer (Miltenyi Biotec, Madrid, España).

575

576 **Adhesion to fungal cell wall components and host surface molecules**

577 Differences in the binding capacity to fungal cell wall components or to the mammalian
578 extracellular matrix (ECM) molecules collagen and galactose was evaluated by flow
579 cytometry. Twelve-wells microtiter plates were coated with pustulan (β -1,6-glucan,
580 Calbiochem; 250 μ g/mL in 50 mM potassium acetate buffer), laminarin (β -1,3-glucan,
581 Thermo Fisher; 250 μ g/mL in milli-Q water), chitin (Sigma; 250 μ g/mL in 1% acetic acid),
582 mannan (mannan from *S. cerevisiae*, Sigma; 250 μ g/ml in milli-Q water), mannose (D-
583 (+)-mannose, Sigma; 250 μ g/ml in milli-Q water), galactose (D-(+)-galactose LS,

584 Panreac; 250 µg/ml in milli-Q water) or bovine collagen (Sigma; 250 µg/mL in 0.2 M
585 bicarbonate buffer, pH 9.6) by adding 500 µL of the respective solutions, and allowing
586 for evaporation (overnight at 37 °C), in the case of laminarin, pustulan, mannan,
587 mannose, and galactose, or passive adsorption (1 h at 30 °C followed by overnight
588 incubation at 4 °C), in the case of chitin and collagen. The plates were then washed with
589 PBS. Overnight cultures of strains of interest were adjusted to 10⁶ cells/mL in PBS, and
590 coated wells were filled with 500 µL of the cell suspension. After 4 h of incubation at
591 37 °C, unbound cells were aspirated and further removed by two washes with PBS.
592 Adhered cells were loosened with a 2.5% trypsin solution, resuspended in 500 µL PBS,
593 and measured using a MacsQuant flow cytometer.

594

595 **Growth kinetics**

596 Cells from overnight precultures were diluted to an OD₆₀₀ = 0.1 in fresh YPD and
597 incubated at 37 °C and 200 rpm for 12 h, measuring the OD₆₀₀ every hour. Cell
598 aggregation was determined at the end of the assay by optical microscopy.

599

600 **Mass spectrometric identification of CWP**

601 Sample preparation. Reduction, S-alkylation, and proteolytic digestion of cell walls with
602 Trypsin Gold (Promega, Madrid, Spain) were performed as described (71). Released
603 peptides were freeze-dried and taken up in 50% acetonitrile (ACN) and 2% formic acid.
604 Samples were diluted with a 0.1% trifluoroacetic acid (TFA) solution to reach a peptide
605 concentration of about 250–500 fmol/µL. Duplicate biological samples were analyzed by
606 LC-MS/MS using a timsTOF Pro (trapped ion mobility spectrometry coupled with
607 quadrupole time of flight Pro) mass spectrometer (Bruker Daltonics) equipped with an
608 Ultimate 3000 RSLC nano ultra-high-performance liquid chromatography (UHPLC
609 system) (Thermo Scientific). Two hundred ng of a tryptic digest cleaned on a TT2

610 TopTips column was injected into a C18 Aurora column (IonOpticks) (25-cm length by
611 75- μ m inner diameter, 1.6- μ m particle size). The peptides were eluted from the column
612 by applying a gradient, from 0.1% formic acid 3% ACN to 0.1% formic acid 85% ACN
613 (flow rate, 400 nl/min), in 140 min. For the acquisition cycle, scans were acquired with a
614 total cycle time of 1.16 s. MS and MS/MS spectra were recorded from 100 to 1,700 m/z.

615 MS/MS database searching. Raw MS/MS data were processed with Data
616 Analysis software (Bruker, Billerica, MA, USA). Resulting .mgf data files were used for
617 searching with licensed Mascot software (Version 2.5.1) against a non-redundant
618 *Candida krusei* protein database containing protein sequences downloaded from NCBI.
619 Simultaneously, searches were performed against a common contaminants database
620 (compiled by the Max Planck Institute of Biochemistry, Martinsried, Germany) to
621 minimize false identifications. Mascot search parameters were: a fixed modification of
622 carbamidomethylated cysteine, variable modification of oxidized methionine,
623 deamidated asparagine or glutamine, trypsin with the allowance of one missed cleavage,
624 peptide charge state +2, +3 and +4, and decoy database activated. Peptide and MS/MS
625 mass error tolerances were 0.3 Da. Probability-based MASCOT scores
626 (<http://www.matrixscience.com/>, accessed on 15 February 2021) were used to evaluate
627 the protein identifications with a 1% false discovery rate as the output threshold. Peptides
628 with scores lower than 20 were ignored. Unmatched peptides were subjected to a second
629 Mascot search with semitrypsin as the protease setting, N/Q deamidation as extra
630 variable modification, and a cutoff peptide ion score of 40. Semitryptic peptides identified
631 in the second search served solely to extend the sequence coverage of proteins
632 identified in the first trypsin search. Protein identifications based on a single peptide
633 match were only taken into consideration if identified in multiple samples and at least
634 one time in duplicate samples. The total number of peptides (TP) identified for each
635 protein was determined by adding up all MS/MS fragmentation spectra, leading to protein
636 identification in the two duplicate samples.

637 Protein quantitation. Relative abundance of identified CWP_s in biofilms and
638 exponentially growing cells was determined by their total spectral MS/MS counts.
639 Proteins were considered to have differential abundance when an at least twofold
640 statistically significant change is detected between biofilms and exponentially growing
641 cells.

642

643 **Statistical analysis**

644 Each assay was performed with at least two biological and two technical replicates
645 unless otherwise stated. Statistical analysis was performed using SPSS v21.0 (IBM).
646 Distribution of the data was analyzed by means of a Shapiro-Wilk test. When data
647 showed a normal distribution, parametric Student's t-test (if two samples), or ANOVA (if
648 > two samples) followed by post hoc Delayed Matching to Sample (DMS) tests were
649 applied. Data showing non-parametric distribution were analyzed with Mann-Whitney's
650 U-test (if two samples), or Kruskal-Wallis (if > two samples) followed by pairwise U-test
651 comparison. P values <0.05 were considered statistically significant

652

653 **Acknowledgments**

654 We thank Henk L. Dekker (Mass Spectrometry of Biomolecules, University of
655 Amsterdam) and Dr. Sergi Ferrer (University of Valencia) for technical support in the
656 analysis of the cell wall protein and sugar composition, respectively.

657

658 **References**

- 659 1. Quindos G. Epidemiology of candidaemia and invasive candidiasis. A changing
660 face. *Rev Iberoam Micol.* 2014;31(1):42-8.
- 661 2. McCarty TP, Pappas PG. Invasive Candidiasis. *Infect Dis Clin North Am.*
662 2016;30(1):103-24.
- 663 3. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ.
664 Invasive candidiasis. *Nat Rev Dis Primers.* 2018;4:18026.
- 665 4. Gomez-Gaviria M, Mora-Montes HM. Current Aspects in the Biology, Pathogeny,
666 and Treatment of *Candida krusei*, a Neglected Fungal Pathogen. *Infect Drug Resist.*
667 2020;13:1673-89.
- 668 5. Douglass AP, Offei B, Braun-Galleani S, Coughlan AY, Martos AAR, Ortiz-Merino
669 RA, et al. Population genomics shows no distinction between pathogenic *Candida krusei*
670 and environmental *Pichia kudriavzevii*: One species, four names. *PLoS Pathog.*
671 2018;14(7):e1007138.
- 672 6. Yadav JS, Bezawada J, Yan S, Tyagi RD, Surampalli RY. *Candida krusei*:
673 biotechnological potentials and concerns about its safety. *Can J Microbiol.*
674 2012;58(8):937-52.
- 675 7. Samaranayake YH, Wu PC, Samaranayake LP, Ho PL. The relative
676 pathogenicity of *Candida krusei* and *C. albicans* in the rat oral mucosa. *J Med Microbiol.*
677 1998;47(12):1047-57.
- 678 8. Costa CR, Passos XS, e Souza LK, Lucena Pde A, Fernandes Ode F, Silva Mdo
679 R. Differences in exoenzyme production and adherence ability of *Candida* spp. isolates
680 from catheter, blood and oral cavity. *Rev Inst Med Trop Sao Paulo.* 2010;52(3):139-43.
- 681 9. Vargas K, Srikantha R, Holke A, Sifri T, Morris R, Joly S. *Candida albicans* switch
682 phenotypes display differential levels of fitness. *Med Sci Monit.* 2004;10(7):BR198-206.
- 683 10. Park SJ, Han KH, Park JY, Choi SJ, Lee KH. Influence of bacterial presence on
684 biofilm formation of *Candida albicans*. *Yonsei Med J.* 2014;55(2):449-58.
- 685 11. Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. *Candida albicans*
686 morphogenesis and host defence: discriminating invasion from colonization. *Nat Rev
687 Microbiol.* 2011;10(2):112-22.
- 688 12. Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of
689 *Candida albicans*. *Med Mycol.* 2001;39 Suppl 1:1-8.
- 690 13. De Groot PWJ, Ram AF, Klis FM. Features and functions of covalently linked
691 proteins in fungal cell walls. *Fungal Genet Biol.* 2005;42(8):657-75.
- 692 14. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et
693 al. Evolution of pathogenicity and sexual reproduction in eight *Candida* genomes. *Nature.*
694 2009;459(7247):657-62.
- 695 15. Sundstrom P. Adhesion in *Candida* spp. *Cell Microbiol.* 2002;4(8):461-9.
- 696 16. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms
697 in human pathogenic fungi. *Med Mycol.* 2008;46(8):749-72.
- 698 17. d'Enfert C. Biofilms and their role in the resistance of pathogenic *Candida* to
699 antifungal agents. *Curr Drug Targets.* 2006;7(4):465-70.
- 700 18. Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the *Candida*
701 *albicans* agglutinin-like sequence (ALS) gene family--a sticky pursuit. *Med Mycol.*
702 2008;46(1):1-15.
- 703 19. Richard ML, Plaine A. Comprehensive analysis of glycosylphosphatidylinositol-
704 anchored proteins in *Candida albicans*. *Eukaryotic Cell.* 2007;6(2):119-33.
- 705 20. Hayek P, Dib L, Yazbeck P, Beyrouthy B, Khalaf RA. Characterization of Hwp2,
706 a *Candida albicans* putative GPI-anchored cell wall protein necessary for invasive
707 growth. *Microbiol Res.* 2010;165(3):250-8.
- 708 21. de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human
709 fungal pathogens: glue with plenty of stick. *Eukaryot Cell.* 2013;12(4):470-81.

710 22. Desai C, Mavrianos J, Chauhan N. *Candida glabrata* Pwp7p and Aed1p are
711 required for adherence to human endothelial cells. *FEMS Yeast Res.* 2011;11(7):595-
712 601.

713 23. Marcet-Houben M, Alvarado M, Ksiezopolska E, Saus E, de Groot PWJ,
714 Gabaldon T. Chromosome-level assemblies from diverse clades reveal limited structural
715 and gene content variation in the genome of *Candida glabrata*. *BMC Biol.*
716 2022;20(1):226.

717 24. Weig M, Jansch L, Gross U, De Koster CG, Klis FM, De Groot PW. Systematic
718 identification in silico of covalently bound cell wall proteins and analysis of protein-
719 polysaccharide linkages of the human pathogen *Candida glabrata*. *Microbiology*
720 (Reading). 2004;150(Pt 10):3129-44.

721 25. Xu Z, Green B, Benoit N, Schatz M, Wheelan S, Cormack B. De novo genome
722 assembly of *Candida glabrata* reveals cell wall protein complement and structure of
723 dispersed tandem repeat arrays. *Mol Microbiol.* 2020;113(6):1209-24.

724 26. Essen LO, Vogt MS, Mosch HU. Diversity of GPI-anchored fungal adhesins. *Biol*
725 *Chem.* 2020;401(12):1389-405.

726 27. Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. *Pathogens.*
727 2021;10(11).

728 28. Reithofer V, Fernandez-Pereira J, Alvarado M, de Groot P, Essen LO. A novel
729 class of *Candida glabrata* cell wall proteins with beta-helix fold mediates adhesion in
730 clinical isolates. *PLoS Pathog.* 2021;17(12):e1009980.

731 29. Wachtler B, Citiulo F, Jablonowski N, Forster S, Dalle F, Schaller M, et al.
732 *Candida albicans*-epithelial interactions: dissecting the roles of active penetration,
733 induced endocytosis and host factors on the infection process. *PLoS One.*
734 2012;7(5):e36952.

735 30. Naglik JR, Challacombe SJ, Hube B. *Candida albicans* secreted aspartyl
736 proteinases in virulence and pathogenesis. *Microbiol Mol Biol Rev.* 2003;67(3):400-28,
737 table of contents.

738 31. Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schafer W. Secreted
739 lipases of *Candida albicans*: cloning, characterisation and expression analysis of a new
740 gene family with at least ten members. *Arch Microbiol.* 2000;174(5):362-74.

741 32. Niewerth M, Korting HC. Phospholipases of *Candida albicans*. *Mycoses.*
742 2001;44(9-10):361-7.

743 33. Schild L, Heyken A, de Groot PW, Hiller E, Mock M, de Koster C, et al. Proteolytic
744 cleavage of covalently linked cell wall proteins by *Candida albicans* Sap9 and Sap10.
745 *Eukaryot Cell.* 2011;10(1):98-109.

746 34. Moran GP, Coleman DC, Sullivan DJ. *Candida albicans* versus *Candida*
747 *dubliniensis*: Why Is *C. albicans* More Pathogenic? *Int J Microbiol.* 2012;2012:205921.

748 35. Lesage G, Bussey H. Cell wall assembly in *Saccharomyces cerevisiae*. *Microbiol*
749 *Mol Biol Rev.* 2006;70(2):317-43.

750 36. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R. Molecular organization of
751 the cell wall of *Candida albicans* and its relation to pathogenicity. *FEMS Yeast Res.*
752 2006;6(1):14-29.

753 37. Kitagaki H, Wu H, Shimo H, Ito K. Two homologous genes, DCW1 (YKL046c)
754 and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-
755 anchored membrane proteins required for cell wall biogenesis in *Saccharomyces*
756 *cerevisiae*. *Mol Microbiol.* 2002;46(4):1011-22.

757 38. Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Dragonova J, et al.
758 Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein,
759 beta(1-->3)-glucan, and chitin. *J Biol Chem.* 1997;272(28):17762-75.

760 39. Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP. Roles of *Candida*
761 *albicans* Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. *Eukaryot*
762 *Cell.* 2003;2(4):746-55.

763 40. Chaabane F, Graf A, Jequier L, Coste AT. Review on Antifungal Resistance
764 Mechanisms in the Emerging Pathogen *Candida auris*. *Front Microbiol.* 2019;10:2788.

765 41. Pardo M, Monteoliva L, Vázquez P, Martínez R, Molero G, Nombela C, et al.
766 PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall
767 integrity. *Microbiology (Reading, Engl)*. 2004;150(Pt 12):4157-70.

768 42. De Groot PWJ, Hellingwerf KJ, Klis FM. Genome-wide identification of fungal GPI
769 proteins. *Yeast*. 2003;20(9):781-96.

770 43. de Groot PWJ, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, et al.
771 The cell wall of the human pathogen *Candida glabrata*: differential incorporation of novel
772 adhesin-like wall proteins. *Eukaryotic Cell*. 2008;7(11):1951-64.

773 44. Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K. Amino acid residues
774 in the omega-minus region participate in cellular localization of yeast
775 glycosylphosphatidylinositol-attached proteins. *J Bacteriol*. 1999;181(13):3886-9.

776 45. Veelders M, Bruckner S, Ott D, Unverzagt C, Mosch HU, Essen LO. Structural
777 basis of flocculin-mediated social behavior in yeast. *Proc Natl Acad Sci U S A*.
778 2010;107(52):22511-6.

779 46. de Groot PWJ, Brandt BW, Horiuchi H, Ram AFJ, de Koster CG, Klis FM.
780 Comprehensive genomic analysis of cell wall genes in *Aspergillus nidulans*. *Fungal*
781 *Genet Biol*. 2009;46 Suppl 1:S72-81.

782 47. Navarro-Arias MJ, Hernandez-Chavez MJ, Garcia-Carnero LC, Amezcu-
783 Hernandez DG, Lozoya-Perez NE, Estrada-Mata E, et al. Differential recognition of
784 *Candida tropicalis*, *Candida guilliermondii*, *Candida krusei*, and *Candida auris* by human
785 innate immune cells. *Infect Drug Resist*. 2019;12:783-94.

786 48. Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis.
787 *Curr Opin Microbiol*. 2010;13(4):416-23.

788 49. Mora-Montes HM, Netea MG, Ferwerda G, Lenardon MD, Brown GD, Mistry AR,
789 et al. Recognition and blocking of innate immunity cells by *Candida albicans* chitin. *Infect*
790 *Immun*. 2011;79(5):1961-70.

791 50. Cortes JC, Konomi M, Martins IM, Munoz J, Moreno MB, Osumi M, et al. The
792 (1,3)beta-D-glucan synthase subunit Bgs1p is responsible for the fission yeast primary
793 septum formation. *Mol Microbiol*. 2007;65(1):201-17.

794 51. Bhavsar-Jog YP, Bi E. Mechanics and regulation of cytokinesis in budding yeast.
795 *Semin Cell Dev Biol*. 2017;66:107-18.

796 52. Hall RA, Lenardon MD, Alvarez FJ, Nogueira FM, Mukaremra L, Gow NAR. The
797 *Candida albicans* Cell Wall: Structure and Role in Morphogenesis and Immune
798 Recognition. In: Mora-Montes HM, editor. *The Fungal Cell Wall*: Nova Science
799 Publishers, Inc; 2013.

800 53. Hoffmann D, Diderrick R, Reithofer V, Friederichs S, Kock M, Essen LO, et al.
801 Functional reprogramming of *Candida glabrata* epithelial adhesins: the role of conserved
802 and variable structural motifs in ligand binding. *J Biol Chem*. 2020;295(35):12512-24.

803 54. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP.
804 Glycan microarray analysis of *Candida glabrata* adhesin ligand specificity. *Mol Microbiol*.
805 2008;68(3):547-59.

806 55. Bouyx C, Schiavone M, Francois JM. FLO11, a Developmental Gene Conferring
807 Impressive Adaptive Plasticity to the Yeast *Saccharomyces cerevisiae*. *Pathogens*.
808 2021;10(11).

809 56. Bojsen RK, Andersen KS, Regenberg B. *Saccharomyces cerevisiae*--a model to
810 uncover molecular mechanisms for yeast biofilm biology. *FEMS Immunol Med Microbiol*.
811 2012;65(2):169-82.

812 57. Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, et al.
813 Carbon source-induced reprogramming of the cell wall proteome and secretome
814 modulates the adherence and drug resistance of the fungal pathogen *Candida albicans*.
815 *Proteomics*. 2012;12(21):3164-79.

816 58. Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, et al.
817 Hyphal induction in the human fungal pathogen *Candida albicans* reveals a characteristic
818 wall protein profile. *Microbiology (Reading)*. 2011;157(Pt 8):2297-307.

819 59. Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, et al.
820 Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the
821 clinical fungus *Candida albicans*. *Eukaryot Cell*. 2011;10(8):1071-81.
822 60. Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, et al.
823 Glycosylphosphatidylinositol-anchored proteases of *Candida albicans* target proteins
824 necessary for both cellular processes and host-pathogen interactions. *J Biol Chem*.
825 2006;281(2):688-94.
826 61. de Groot PWJ, Brandt BW. ProFASTA: a pipeline web server for fungal protein
827 scanning with integration of cell surface prediction software. *Fungal Genet Biol*.
828 2012;49(2):173-9.
829 62. Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. A sensitive predictor for
830 potential GPI lipid modification sites in fungal protein sequences and its application to
831 genome-wide studies for *Aspergillus nidulans*, *Candida albicans*, *Neurospora crassa*,
832 *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*. *J Mol Biol*.
833 2004;337(2):243-53.
834 63. Mirdita M, Ovchinnikov S, Steinegger M. ColabFold - Making protein folding
835 accessible to all. *BioRxiv*. 2021.
836 64. Wang J, Youkharibache P, Zhang D, Lanczycki CJ, Geer RC, Madej T, et al.
837 iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular
838 structures. *Bioinformatics*. 2020;36(1):131-5.
839 65. Holm L. Using Dali for Protein Structure Comparison. *Methods Mol Biol*.
840 2020;2112:29-42.
841 66. Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast
842 protein structure alignment in three dimensions. *Acta Crystallogr D Biol Crystallogr*.
843 2004;60(Pt 12 Pt 1):2256-68.
844 67. Pardini G, De Groot PW, Coste AT, Karababa M, Klis FM, de Koster CG, et al.
845 The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted
846 transglycosidase domain affects cell wall organization and virulence of *Candida albicans*.
847 *J Biol Chem*. 2006;281(52):40399-411.
848 68. Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D,
849 Idkowiak-Baldys J, et al. The plant defensin RsAFP2 induces cell wall stress, septin
850 mislocalization and accumulation of ceramides in *Candida albicans*. *Mol Microbiol*.
851 2012;84(1):166-80.
852 69. Kapteyn JC, Hoyer LL, Hecht JE, Müller WH, Andel A, Verkleij AJ, et al. The cell
853 wall architecture of *Candida albicans* wild-type cells and cell wall-defective mutants. *Mol
854 Microbiol*. 2000;35(3):601-11.
855 70. Li D, Williams D, Lowman D, Monteiro MA, Tan X, Kruppa M, et al. The *Candida
856 albicans* histidine kinase Chk1p: signaling and cell wall mannan. *Fungal Genet Biol*.
857 2009;46(10):731-41.
858 71. Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG.
859 Comprehensive proteomic analysis of *Saccharomyces cerevisiae* cell walls:
860 identification of proteins covalently attached via glycosylphosphatidylinositol remnants or
861 mild alkali-sensitive linkages. *J Biol Chem*. 2005;280(21):20894-901.

862