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Abstract

Background

One difficulty in testing the hypothesis that the Australasian dingo is a functional
intermediate between wild wolves and domesticated breed dogs is that there is no reference
specimen. Here we link a high-quality de novo long read chromosomal assembly with
epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It
was critical to establish an Alpine dingo reference because this ecotype occurs throughout

coastal eastern Australia where the first drawings and descriptions were completed.

Findings

We generated a high-quality chromosome-level reference genome assembly (Canfam ADS)
using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and
Hi-C technologies. Compared to the previously published Desert dingo assembly, there are
large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of
chromosomal data from Cooinda the Alpine dingo and nine previously published de novo
canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network
analyses show that the mtDNA genome clusters within the southeastern lineage, as expected
for an Alpine dingo. Comparison of regulatory regions identified two differentially
methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes
that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo.
Morphological data, comprising geometric morphometric assessment of cranial morphology
place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic
resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized

domestic dog.
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91  Conclusions

92  These combined data support the hypothesis that the dingo Cooinda fits the spectrum of

93  genetic and morphological characteristics typical of the Alpine ecotype. We propose that she
94  be considered the archetype specimen for future research investigating the evolutionary

95  history, morphology, physiology, and ecology of dingoes. The female has been

96  taxidermically prepared and is now at the Australian Museum, Sydney.

97

98  Key Words: type specimen, cranium, long-read sequencing, de novo genome assembly,

99  biogeography

100
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101  Introduction

102 The most influential book on evolution, Darwin’s 1859 On the origin of species [1], starts
103 with a chapter on domestication to reverse engineer natural selection. Some nine years later
104  Darwin [2] expanded his initial thinking into the book The variation of animals and plants
105  under domestication. He hypothesized that the process of domestication proceeded in a

106  stepwise manner first by unconscious selection (wild —tamed) followed by what we now call
107 artificial selection (tamed —domesticated), with the key distinction between these processes
108  being the involvement of humans on mating and reproduction. A gap in our ability to test
109  Darwin’s hypothesis has been the identification of a model system with an extant plant or
110  animal that is intermediate between the wild ancestor and the domesticate. Here we explore
111  the overarching hypothesis that the Australasian dingo (Canis (familiaris) dingo) is

112 evolutionarily intermediate between the wild wolf (Canis lupus) and domestic dogs (Canis
113 familiaris) [3]. One alternate hypothesis is that the process of domestication is continual and
114  does not proceed in a stepwise manner [4], instead representing a series of phases reflecting
115 an intensification of the relationship between a wild animal (or plant) and human societies

116 [5].

117  The taxonomic name of the dingo remains unstable, however, it is now clear the Australasian
118  dingo is a distinct evolutionary lineage closely related to domestic dogs [6]. The first

119  European drawing of an animal referred to as a “dingo” appears in White 1790 [7] with a

120 more complete anatomical description appearing in Meyer 1793 [8]. A "large dog" from

121  coastal eastern Australia near Sydney was earlier illustrated by George Stubbs in 1772, based
122 on arecorded description by Joseph Banks from 1770; it is now clear that this animal was a
123 dingo, but the name had not yet been learned from the local Aboriginal people. We follow the
124 precedent that when zoologists disagree over whether a certain population is a subspecies or a

125  full species, the species name may be written in parentheses. Scientists advocating a General
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126  Lineage Species Concept consider dingoes to be distinct species (Canis dingo) or a
127  subspecies of domestic dog (Canis familiaris dingo) [9-11]. Others advocating a Biological
128  Species Concept [12] consider the dingo to be a breed of dog (Canis familiaris breed dingo)

129 due to the interfertility between dingo and domestic dog [11, 13, 14].

130 Corbett [15] mentioned the possibility of three different dingo ecotypes existing in north,
131  central and southeastern Australia. These are now referred to Tropical, Desert, and Alpine
132 dingoes [16]. Subsequently, Corbett [17] noted that dingo skulls from southeastern Australia
133 (Alpine dingoes) were genuinely different from those of the rest of the country, but posited
134 the differences may be due to hybridization with domestic dogs rather than independent

135  lineages. Jones [18] agreed that the southeastern dingoes, were distinct and suggested a

136  revaluation of ecotype morphologies to resolve the conundrum.

137  Analyses of mitochondrial variation in canids from Southeast Asia supports the hypothesis
138  that there are distinct dingo lineages [19-22]. Zhang et al. [19] found a strong Bayesian

139  posterior value supporting the separation of Australian dingoes into two groups. One is a
140  northwestern group, whereas the other is a southeastern group that clusters with New Guinea
141  Singing dogs (Canis (familiaris) hallstromi). Support for two, or perhaps three, distinct

142 lineages of dingoes has also come from Y-chromosome and SNP-chip data [23, 24].

143 The dog is the first species to be domesticated [25]. They are likely the most frequently kept
144  domestic animal, exhibit exceptional levels of morphological variation, and many breeds
145  have been developed by strong artificial selection in the past 200 years [26-28]. The

146  Australasian dingo has been proposed to be a functional [29] and evolutionary [6]

147  intermediate between wild wolves and domesticated dogs. Unfortunately, the absence of a

148  dingo holotype reference specimen impedes our ability to definitively determine whether
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149  dingoes are a tamed intermediate or a feral canid because we do not have a single reference

150  point that links the scientific name to a specific specimen [30].

151  This study aims to link high resolution long-read de novo chromosomal assembly,

152  mitochondrial DNA sequence and the DNA methylome with morphological descriptions of
153  head shape and computed tomography data of brain data to describe the ‘archetype’ dingo
154  (Fig. 1). This designation will support future comparisons with a reference enabling further
155  characterization of the evolutionary history of the dingo. In this case we do not propose any
156  formal taxonomic name for the specimen as it is a regional morphotype that is being

157  characterized however we suggest the principle of having a ‘type’ specimen makes biological

158  sense and will enable the focusing of future research.

159

160  Figure 1 title: Cooinda the dingo.

161  Figure 1 legend: The genomic and morphological data in this study is based upon a single
162  individual named Cooinda from Dingo Sanctuary Bargo in the southern highland region of
163 New South Wales. Based on her parentage, broad skull, and stocky appearance the Sanctuary

164  considers her an Alpine dingo. We compare her with other dingoes found in southeastern
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165  Australia and with those found in the center and northwest of the continent including Desert
166  dingo Sandy [6]. (A) Dingo Cooinda as an adult female. (B) Brother Typia (RHS) and
167  Cooinda (LHS) as 8-week-old puppies.

168

169 Results

170  Chromosome-level genome assembly

171 Workflow

172 The genome was assembled following a similar pipeline to Field et al. [28] (Supplementary
173 Fig. 1). Briefly, 1722 contigs were assembled from SMRT and ONT sequence data with a
174  total length of 2.38 Gb and N50 length of 12.4 Mb [31]. The contig assembly was then

175  polished for two rounds with SMRT reads, correcting ~5 million bases in the first round and
176  ~15 thousand in the second [32, 33]. The assembled sequence contigs were scaffolded

177  sequentially using 10X linked-reads and polished with 10X linked-reads [33]. The scaffolded
178  assembly was then super scaffolded with Bionano and Hi-C proximity ligation.

179  Supplementary Fig. 2 shows the contact matrices generated by aligning the Hi-C data set to
180  the genome assembly after Hi-C scaffolding [34, 35]. To increase the contiguity of the

181  assembly we used the SMRT and ONT reads to fill gaps, which was then followed by a final
182  round of SMRT read polishing. The gap filling successfully closed 282 gaps increasing

183  contig N50 to the final figure of 23.1 Mb. A final round of polishing was performed with 10X
184  linked reads. The resulting chromosome-length genome assembly and its gene annotation

185  was deposited to NCBI with accession number GCA_012295265.2.

186  Assembly statistics and completeness
187  The final assembly had a total length of 2,398,209,015 bp in 477 scaffolds with a scaffold

188  and contig N50 of 64.8 Mb and 23.1 Mb, respectively (Table 1). Chromosome-level scaffolds
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189  accounted for 98.4 % of the assembly with only 0.9 % (21.1 Mb) of all sequences not

190  aligning to a CanFam4.1 chromosome [36].

191  Evaluation by Benchmarking Universal Single-Copy Orthologs (BUSCO v5.2.2 [37]) against
192  Carnivora odbl10 data set (n=14,502) indicated that 95.1 % of the conserved single-copy
193  genes were complete (Table 1, Supplementary Fig. 3A). Only 3 of 13,791 complete (single-

194 copy or duplicated) BUSCO genes were not on the 39 nuclear chromosome scaffolds.

195  Next, we compared single-copy “Complete” BUSCO genes in Alpine dingo Cooinda and
196  nine canid genomes [6, 27, 28, 36, 38-41]). Of the 13,722 genes, 13,711 were found in the
197  assembly using BUSCOMP v1.0.1. Only Sandy the Desert Dingo v2.2 (13,715 genes) and

198  China the Basenji v1.2 (13,712 genes) had more.

199  Additional kmer analysis of the final assembly [42] yielded 97.32 % (97.2% in
200  chromosomes) and an overall Q-score estimate of 37.5 (38.4 for chromosomes). No sign of

201  retained haplotigs was evident (Supplementary Fig. 3B).

202

203  Table 1: Genome assembly and annotation statistics for Alpine dingo (Cooinda) vs Desert

204  dingo assembly (Sandy)

Statistic Alpine dingo Desert dingo
Total sequence length 2,398,209,015 2,349,862,946
Total ungapped length 2,390,794,485 2,349,829,267
Number of contigs 802 228

Contig N50 23,108,747 40,716,615
Contig L50 36 20

Number of scaffolds 477 159

10
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Scaffold N50 64,752,584 64,250,934

Scaffold L50 15 14

Number of gaps 325 69

BUSCO complete (single/ 95.1% (S: 92.7% D:2.4%) 95.3% (S: 92.9% D:2.5%)
duplicate copy)

BUSCO fragmented 0.8% 0.8%

BUSCO missing 4.1% 3.8%

205

206  Comparison of dingo genomes

207  We generated a Circos plot [43] to represent the single-nucleotide variants (SNV) and small
208  indel variation between the Alpine and Desert dingo (Fig. 2) using MUMmer4 [44], and

209  sniffles v1.0.11 [45]. In comparison to the autosomes, these plots show low variation on the
210 X chromosome (Fig. 2). To further investigate the low variation, we compared each of the
211  dingoes to CanFam4 (Supplementary Fig. 4, Supplementary Table 1). We then generated a
212 conservative consensus set of structural variants (SV) by merging PacBio, and Nanopore SV
213 calls generated with sniffles [45, 46]. Overall, we found ~half the number of SV and small
214  variants calls relative to Desert dingo than to CanFam4 (32798 v 62524 and 1729790 v

215 3839712, respectively).

11
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Figure 2 title: Circos plot comparing Alpine and Desert dingo genomes
Figure 2 legend: Plot compares the 38 autosomes and X chromosome of the Alpine and
Desert dingo. The plot shows the low variation on the X chromosome compared to the

autosomes.

We generated synteny plots using MUMmer plot and GenomeSym [47]. Synteny plots
between the dingo genomes show several large-scale chromosomal events. On chromosome
16 there is a 3.45Mb inverted region and a 0.9Mb complex rearrangement (Supplementary
Fig. 5). This 3.45Mb inversion does not appear in the wolf or domestic dogs, so we speculate
it is unique to the Desert Dingo assembly [6]. The inversion overlaps 60 unique ENSEMBL

transcripts and was enriched for gene ontology terms of cellular metabolic processes,

12
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228  including glycolysis and glucose metabolism [6]. Also, on Chromosome 16, the 0.9Mb

229  complex rearrangement occurs between 55 — 57 Mb downstream (Supplementary Fig. 5).
230  Additional structural events include small inversions on Chromosome 11 and on

231  Chromosome 25 (Supplementary Fig. 5). On the X chromosome, there appear to be multiple
232 small nonsyntenic regions (Supplementary Fig. 5); however, further examination of these
233 apparent differences is required to establish whether they are true biological differences or

234 assembly artifacts.

235  In parallel, we used GeMoMa gene predictions [48] to investigate chromosomal level events.
236  Like the synteny analyses, this approach revealed a large inversion and a disordered region
237  on chromosome 16 as well as smaller inversions on Chromosomes 11 and 25. We also found
238  two structural events on chromosome 26 (Supplementary Fig. 6) containing mostly short
239  genes that are not perfectly conserved (Supplementary Fig. 5F). A MUMmer4 nucmer

240  alignment plot [44] for chromosome 26 corroborated these events (Supplementary Fig. 6)

241  The Alpine and Desert dingo both have a single copy pancreatic amylase gene (AMY2B) on
242 Chromosome 6. The Alpine dingo assembly does not include a 6.4kb long LINE that was

243 previously reported in the Desert dingo [6].

244 Phylogenetic analyses

245  All 39 full-length chromosomes in the final assembly were aligned to the corresponding
246  chromosomes in nine published canine de novo genome assemblies [6, 27, 28, 36, 38-41]).
247  SNVs and small indels (deletions and insertions <50bp) were called using MUMmer4 call-
248  SNPs module for all possible pairings (Supplementary Table 2). Distance matrices were
249  generated from the inter-canid differences in SN'Vs and indels and then transformed to WA
250  distance [6, 49]. Fig. 3AC show the phylogenetic tree from SNVs and indels respectively.

251  Both figures show strong support for monophyly of dingoes and dogs relative to the wolf.

13
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252 These figures also strongly support the hypothesis that dingoes are the sister group to
253  domestic dogs. Fig. 3BD show the ordination analyses from SNVs and indels, respectively.
254  Scores for the taxa calculated from the largest two axes (Axis 1 and Axis 2) describe 75.6%

255  of the variance in SNV’s and 73.2% of the variance in indels (Fig. 3BD).
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257  Figure 3 title: Phylogenetic and ordination analyses of nuclear DNA from SNVs and indels
258  from 10 canines.

259  Figure 3 legend: (A) Phylogenetic tree from SNVs. Branch length proportional to the

260  number of changes and bootstrapping percentage in circles. (B) Ordination analyses from
261  SNVs showing first two axes from non-metric multidimensional scaling (NMDS). (C)

262  Phylogenetic tree from indels. Branch length proportional to the number of changes and
263  bootstrapping percentage in circles. (D) Ordination analyses from indels showing the first
264  two axes from non-metric multidimensional scaling (NMDS). Abbreviations: Lab —

265  Labrador; GSD — German Shepherd Dog; GDane — Great Dane; Wolf — Greenland wolf

14
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266

267 Mitochondrial genome

268  Genome assembly workflow

269 A 46,192 bp contig from the assembly mapped onto the CanFam reference mtDNA. It

270  constituted a repeat of approximately 2.76 copies of the mtDNA. Following additional

271  polishing and circularization, a final 16,719 bp mtDNA genome was extracted and has been

272  uploaded to GenBank (OP476512).

273 Comparison of dingo mtDNA genomes

274  When the mtDNA genome of Alpine dingo Cooinda is compared with that of Desert dingo
275  there is a single 10bp SV in the control region that highlights the repeat number difference. In
276  the former, there are 28 repeats (RCGTACACGT) ACGTACGCGCGT, while in the latter,
277  there are 29. Potentially the R(G or A) could represent heteroplasmy [50] that may be further
278  studied with single cell sequencing approaches [51]. Folding this region [52] shows that

279  increasing repeat number increases stem length and overall stability (Supplementary Fig. 7).

280  Next, we conducted a network analysis in Popart [53] to determine whether the mtDNA of
281  dingo Cooinda fell within the previously described dingo southeastern or northwest clade

282  (Fig. 4)[19, 22]. We included dingo mtDNA from four previous studies, a New Guinea

283  Singing Dog, and an ancient Iron Age dog from Taiwan [6, 22, 54-56]. There were 89

284  segregating sites and 32 parsimony informative sites in the dataset. Predictably, there were no
285  differences between the mtDNA genome of Cooinda and that previously published from her
286  brother Typia [54]. Further, as expected, Cooinda and Typia mtDNA clustered with samples
287  that had previously been collected from the Alpine region (Fig. 4). Somewhat unexpectedly,
288  the mtDNA from Sandy the dingo found in the desert [6] did not cluster with dingoes from

289  the northwest clade but was closer to canids in the southeastern clade (Fig. 4). This
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290  relationship could imply the introgression of Alpine alleles into the Sandy genome however
291  further work would be needed to confirm this.

292
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294  Figure 4 title: Neighbor-joining network analysis from mtDNA.
295  Figure 4 legend: The size of the circle represents the number of identical sequences and

296  small cross lines the number of SNPs on each branch. The analyses show that dingo Cooinda
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297  isin the southeastern clade. Cooinda represents Alpine dingo Cooinda sequenced here, as
298  well as Alpine 2, Alpine 3 [22], MH035670 [55], and Typia [57]. Fraser Is represents the
299  Fraser Island 1-5 samples [22]. Zoo represents three dingoes from the New Zealand Zoo [55].
300  Shisanhang (Taiwan) is one of two samples from the region and is considered the root of the

301  network [19].

302

303 DNA methylome

304  To explore the regulatory landscape of dingo Cooinda, we performed whole genome bisulfite
305 sequencing [58] on genomic DNA extracted from whole blood. In concordance with other
306  adult vertebrates [59, 60], the Cooinda genome displays a typical bimodal DNA methylation
307  pattern. Over 70% of CpG dinucleotides are hypermethylated (levels higher than 80%), and
308 5% of CpG dinucleotides hypomethylated (methylated at 20% or lower) (Supplementary Fig.

309 8A).

310  Next, to determine the number and genomic distribution of putative regulatory regions, we
311  segmented the methylome into unmethylated regions (UMRSs) and low-methylated regions
312 (LMRs) using MethylSeekR [61]. UMRs are fully unmethylated and largely coincide with
313 CpG island promoters, whereas LMRs display partial DNA methylation, characteristic of
314  distal regulatory elements such as enhancers in other mammalian models [62]. MethylSeekR
315  analysis identified ~ 19,000 UMRs and ~44,000 LMRs in line with previously reported

316  numbers of promoters and enhancers (e.g., human: ~18,000-20,000 UMRs and 40,000-

317 70,000 LMRs; mouse: ~17,000-19,000 UMRs and 55,000-90,000 LMRs) [61, 63]

318  (Supplementary Fig. 8BC).

319  To establish whether proximal gene regulatory regions in the dingo Cooinda genome display

320  different methylation states in the Desert dingo, we converted Cooinda UMR coordinates
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321  from Cooinda to the Desert dingo genome assembly using LiftOver (see Methods). Next, we
322 calculated average DNA methylation at Cooinda UMRs and their corresponding lifted-over
323 regions in the Desert dingo genome. We found two UMRs in the Cooinda dingo were

324 hypermethylated in the Desert dingo. These regions overlapped gene bodies of glucagon

325  receptor gene GCGR and histone deacetylase HDAC (Supplementary Fig. 8DE). GCGR is on
326  chromosome 9 and has a single transcript. This transcript is 99.8% identical at the amino acid
327  level between the dingoes. HDAC4 occurs on chromosome 25 and has 12 transcripts with all
328 12 transcripts being 100% identical at the amino acid level. Further studies are needed to

329  determine the functional significance of the observed differences in DNA methylation.

330  Altogether, this data provides a genome-wide resource for the putative gene regulatory

331 regions in the Alpine dingo genome, which will be instrumental for future studies.

332

333  Morphology

334 Skull Morphometrics

335  Cranial morphology (Supplementary Fig. 9A), quantified using 3D geometric morphometric
336  landmarks, is that of a typical adult female Alpine dingo (Fig. 5). Within the morphospace
337  defined by the principal components explaining the greatest variation between specimens
338  (PC1, PC2), dingo Cooinda’s position is clearly within the Alpine cluster (Fig. S5A). Alpine
339  and Desert dingoes are most clearly differentiated from one another along PC1 (15.70%), for
340  which increasing values describe crania with relatively shorter and broader rostra, shallower
341  orbitals with broader zygomatic arches at the glenoid fossa, prominent and anteriorly-

342  positioned frontals, a higher cranial vault, and prominent sagittal cresting tending to

343  terminate in a high, posteriorly-positioned occiput (inion). Positive values along PC2

344  (10.60%) mainly denote relatively gracile crania with posteriorly-angled frontals, poorly-

345  developed sagittal cresting, downward-sloping posterior calvarium and a low occipital
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346  termination. The sampled Alpine and Desert groups exhibit a near-identical range of PC2

347  values. As the development of the sagittal cresting, calvarium shape and occipital prominence
348 are related to age and sex, with these traits tending to be more robust and well-developed in
349  males and older dingoes [64], the shared PC2 values across Alpine and Desert groups likely
350  reflect related demographic variation within the respective populations. Within each

351  population (Alpine, Central Desert, Western Desert), males and females overlapped in in

352 their position along PC2 (Supplementary Fig. 9), indicating an absence of strong dimorphism
353  associated with the major axes of shape variance. Despite considerable overlap, PC2 scores
354  tended to be lower in females compared to males in the Alpine and Western Desert

355  populations (see Supplementary Fig. 9, Supplementary Table 3).

356  The regression of cranial shape (Procrustes shape variables) on log centroid size (Procrustes
357  shape variables ~ log(centroid size)) revealed that size contributed significantly to shape
358  wvariance in the sample (3.91% variance, p <0.001). Size was found to have a non-significant
359  effect on the morphological trajectory described by PC1, which separates Alpine and Desert
360  dingo populations (Fig. 1C), with only 1.23% of related shape-change predicted by centroid
361  size (p = 0.124). Conversely, size predicted 19.88% of shape-change associated with PC2 (p
362 <0.0001). Alpine and Desert dingo populations share overlapping scores along PC2, and
363  variation along this axis reflects intra-population variability in demographic makeup (age,
364  sex) that should be expected within a natural population. As such, size differences play very
365 little to no role in determining Cooinda’s morphological relationship to Desert dingoes but
366  are important to her position in the Alpine group (Supplementary Fig. 10BC). The low

367  proportion of variation captured in each principal component is a previously-noted feature of

368  the dingo cranial landmark dataset [65] and is unrelated to allometry.
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369  Brain imaging

370  To supplement the morphological data, we quantified brain size. Using a thresholding

371  approach, we used the software 3D Slicer [66] to segment the whole brain as the region of
372  interest. Despite the canids being of very similar size the dingo brain (75.25cm?) was 20%

373  larger than the dog brain (59.53 ¢cm?) (Fig. 5B).
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376  Figure 5 title: Morphometrics and brain image of Cooinda from the Bargo Dingo Sanctuary,

377  NSW, Australia.
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378  Figure 5 legend: (A) Principal Component ordination of geometric morphometric cranial
379  shape data indicating Cooinda’s position in relation to Alpine and Desert dingoes. Blue

380 represents Alpine dingoes, and the red hues indicate dingoes from different Deserts that are
381  broadly overlapping. Dingoes from the Nullarbor overlap most with those from the Alpine
382  region. There is no overlap of dingoes from the Central desert with Alpine dingoes.(B) Brain
383  image, showing a hemispheric comparison of slices generated by Magnetic Resonance (MR)
384  imaging of Cooinda dingo (CD) and a similar-sized domestic dog (DD).

385

386  Discussion

387  Domestication has received much attention from diverse fields, reflecting the complexity of
388  the process and variation in its duration and intensity [5]. A notable gap in our understanding
389  of the principles of domestication has been the identification of a model system to test

390  Darwin's two-step predictions [2]. Here we provide the necessary groundwork to explore the
391  potential for dingoes to be a functional and evolutionary intermediate between wild wolves
392  and domestic dogs. One alternate hypothesis is that the process of domestication does not

393  proceed in a stepwise manner [4], but is continual process that represents an intensification of

394  the relationship between a wild species and humans [5].

395  In this study we compare our high-quality chromosome-level de novo assembly of the dingo
396  Cooinda genome with that of the Desert dingo [6], seven domestic dogs [27, 28, 36, 38-40]
397  and the Greenland Wolf [41]. Relative to the wolf and the domestic breeds the Australasian
398  dingo ecotypes are monophyletic. Future studies may include ancient dingo and south east
399  Asian specimens [3], the New Guinea Singing dog [4] and Chinese indigenous dogs [4].
400  Ancient specimens have potential to give insight into the evolutionary history of dingoes [3]
401  and further instruct the influence of domestic dog admixture [17]. New Guinea Singing Dog

402  may be the sister group to a monophyletic dingo lineage or perhaps more closely related to
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403  the Alpine ecotype as suggested by the mtDNA network analyses [19] and cranial shape
404  studies [65]). Inclusion of Chinese indigenous dogs will facilitate determination of the
405  relationships among crown domestic dog breeds [4] and thereby facilitate determination of

406  the divergence date of dingoes and modern dogs.

407  Multiple large scale chromosomal inversions occur between the two dingo assemblies. There
408  are two large rearrangements on chromosome 16 and likely structural events on

409  Chromosomes 11, 25 and 26 (Supplementary Figs 7, 8). It is also possible that there are

410  multiple small inversions on the X chromosome. It is important to determine the frequency of
411  these events and whether breakpoints affect any regulatory regions or protein coding genes.
412  Inversions may maintain locally adapted ecotypes, while breakpoints may disrupt regulatory
413  regions or protein coding genes. Hager et al. [67] discovered a 41-megabase chromosomal
414  inversion that characterized defining traits of deer mice (Peromyscus maniculatus) and

415 implicated divergent selection in maintaining distinct ecotypes in the wild despite high levels
416  of gene flow. An inversion disrupting FAM134b has been associated with sensory

417  neuropathy in Border Collie dogs [68].

418  There is a single copy of AMY2B in both dingo genomes; however, they differ by a 6.4 kb
419  retrotransposon insertion present in the Desert dingo. As the retrotransposon is absent in the
420  Greenland wolf and Alpine dingo it would seem likely that the retrotransposon has inserted
421  into the Desert dingo and domestic dog lineages independently. LINE elements can generate
422 duplications through an RNA intermediate and have been associated with amylase

423 expansions in a range of species from humans to mice and rats to dogs [69, 70]. A 1.3kb
424  canid-specific LINE element in domestic dogs is associated with each amylase copy [70].
425  This expansion is predicted to increase the ability to digest starch [6, 71]. Field et al. [28]

426  compared the influence of AMY2B copy number on the microbiomes of dingoes and German
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427  Shepherd dogs. They observed distinct and reproducible differences that they hypothesized
428  may influence feeding behaviors. Further studies on AMY2B may be fruitful as copy number

429  may be an ecologically relevant mechanism to establish the role of a canid in the ecosystem.

430  Both dingo ecotypes exhibited low variation on the X chromosome, although it could be

431  argued that variation along the chromosome is not uniform (Fig. 2). Theoretical models

432  predict that genes on the X chromosome can have unusual patterns of evolution due to

433 hemizygosity in males. Sex chromosomes are predicted to exhibit reduced diversity and

434  greater divergence between species and populations compared to autosomes due to

435  differences in the efficacy of selection and drift in these regions [72, 73]. In canids, Plassais
436 et al. [74] show genetic variation in three genes on the X chromosome is strongly associated
437  with body size. Further studies of genetic variation of genes on the X chromosome within and

438  between ecotypes are likely informative.

439  We integrate the mtDNA genome assembly data with that previously collected from 29

440  canids in Australasia [6, 22, 54-56]. The mitochondrial genome has been used to infer

441  historical events in various species including canids, but the D-loop region has been difficult
442  to align. Here we show that the region can be folded to increase structural stability with

443  repeat number (Supplementary Fig. 8AB). We found 28, 10-bp repeats in dingo Cooinda
444  compared to 29 in the Desert dingo. The function of the proposed structures is unknown.
445  Still, folding the region into an extended repeat-dependent stem is expected to decrease the
446  time the DNA in the D-loop is single-stranded during replication. More speculatively, the
447  structure may have a regulatory function that influences mitochondrial bioenergetics and the
448  evolution of mtDNA [75]. Bjornerfeldt et al. [76], found that domestic dogs have

449  accumulated nonsynonymous changes in mitochondrial genes at a rate faster than wolves

450  implying a relaxation of selective constraint during domestication.
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451  Phylogenetic and network analyses show that dingo Cooinda has the dingo southeastern

452  Australian mtDNA type of the canine A1b4 subhaplogroup. This southeastern type has been
453  proposed to originate in southern China and includes dogs from Papua New Guinea [19, 22].
454  Based on mtDNA data, Zhang et al. [19] propose that the TMRCA for most dingoes dates to
455 6,844 years ago (8,048-5,609 years ago). This estimate is about 3,000 years older than the
456  first known fossil record [77] suggesting that at least two dingo mtDNA haplotypes colonized

457  Australia or older fossil records of dingoes in Australia have yet to be found.

458  Next, we compare the regulatory landscape of Cooinda dingo with that previously published
459  for the Desert dingo. In comparison to the Alpine dingo, the glucagon receptor gene GCGR
460 and HDACH4 are hypermethylated in the Desert dingo suggesting the potential for dietary or
461  immune differences between ecotypes. Highly methylated gene promoters often indicate a
462  transcriptionally repressed state, while unmethylated gene promoters specify a permissive
463  state [78]. Field et al. [6] previously proposed differences in the feeding behavior of dingoes
464  and wild dogs linked to their AMY2B copy number. GCGR is activated by glucagon and

465 initiates a signal transduction pathway that begins with the activation of adenylate cyclase,
466  which in turn produces cyclic AMP. Glucagon is considered the main catabolic hormone of
467  the body and is central to regulating blood glucose and glucose homeostasis [79]. In mice,
468  glucagon has anti-inflammatory properties [80]. HDAC4 is a member of the ubiquitously
469  important family of epigenetic modifier enzymes and has been implicated in processes

470  related to the formation and function of the central nervous system and metabolism. HDAC4
471  acts as a regulator of pattern-recognition receptor signaling and is involved in regulating

472  innate immune response [81]. In humans, mutations in HDAC4 have been linked with eating
473  disorders [82]. Overlapping conserved Nanopore/PacBio structural variants with these genes
474  identified no variants within GCGR and a single 35bp intronic insertion in HDAC4. The

475  functional impact (if any) of this insertion is unknown.
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476  Dingo Cooinda’s cranial morphology is consistent with the Alpine ecotype from the 20™

477  century. As the first cranial morphological assessment of an Alpine dingo considered to be
478  “pure” by genomic verification, this result is significant in that it suggests that the phenotypic
479  distinctiveness of Alpine dingoes from Desert dingoes is not exclusively the result of recent
480  domestic dog ancestry. Dog admixture has been the predominant explanation given [83]

481  primarily based on the fact that such ancestry is relatively enriched in the southeast region of
482  Australia compared to the north and west [84, 85]. An alternative explanation is that the

483  Alpine and Desert dingoes represent distinct evolutionary lineages. Koungoulos [65]

484  suggested that the cranial shape of Alpine and other southeastern dingoes shares broad

485  similarities with that of New Guinea Singing Dogs and is distinct from the more widespread
486  northwestern lineage [22]. However, these two scenarios are not mutually exclusive. Most
487  introgression likely occurs when a female dingo mates with a male domestic dog. In such
488  cases, extensive backcrossing will not exclude the domestic dog Y. Therefore, examining the
489 Y chromosome of males shown to be pure with the current battery of nuclear-encoded

490  microsatellites will illuminate genetic history. A combination of direct radiocarbon dating,
491  genetic sequencing and morphometric assessment for subfossil material will provide a more
492  confident picture of the nature of change or continuity between ancient and modern Alpine

493  dingoes.

494  Finally, we supplement our morphological data with magnetic resonance and computed

495  tomography data of Alpine dingo Cooinda’s brain. Her brain was 20% larger than the

496  similarly sized domestic dog, which is consistent with the hypothesis that she was tamed but
497  not domesticated [3] (Fig. 1C). Our brain imaging data are also compatible with prior

498  comparisons that have used endocranial volume as a proxy for brain size, examining a small
499  sample of dingoes (see Geiger et al. [86]) compared to wolves, domestic, basal and

500 archaeological dogs [3]. Endocranial volume in a mixed sample of domestic dogs was shown
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501  to be around 30 cm? smaller than in wolves and jackals [87, 88], which is greater than the

502  15.7 em? difference between the brains of Cooinda and the domestic dog sampled here.

503  Similarly, brain mass has been shown to be 28.8% smaller in a broad sample (>400) of

504  domestic dogs as compared to wolves [87, 89], which also places the 20% difference between
505  Cooinda and the domestic dog as less pronounced than is seen for comparisons with the wild
506  counterpart (wolf). Brain size reductions are common among domesticated animals compared
507  to their wild counterparts, having been observed across many species, including sheep, pigs,
508 cats, and dogs [87, 90]. Smaller-sized brains, especially size reductions in regions of the

509 forebrain involved in the fight-or-flight response, have been associated with tameness and
510  reductions in fear-based response among domestic animals compared to wild animals [91].
511  These changes have also been linked to potential reductions in cognitive processing

512 requirements associated with inhabiting anthropogenic environments with lower complexity
513 [92, 93]. Moreover, brain size reductions appear to persist where domestic animals have re-
514  entered a wild environment and exist as feralized animals, at least under certain

515  circumstances [94-96], suggesting that prolonged past exposure to the human niche may be
516  detectable in brain traits. An alternative hypothesis is that differences in brain size is due to
517  environmental adaptation or perhaps Cooinda was an anomaly. Examination of brain size

518  may represent a fruitful pathway for further investigation determining the status of the dingo

519  asapotential feralized animal.

520  There are at least three possible explanations supporting the existence of two dingo ecotypes
521  (Alpine and Desert). The first is they are ancient Asian lineages that have come into sympatry
522  in Australia. One alternate hypothesis is that a single lineage spread through southeast Asia
523  and then diverged in Australia. There are no major geographical divides in continental

524 Australia, suggesting any differences may reside at the level of biological interactions or they

525  are influenced by climate. In the former case, one possibility is that one or more inversions
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526  may maintain the ecotypes [67]. An intriguing alternate hypothesis is that responses to

527  parasites or venomous animals may occur if there are genetic differences in the responses of
528  the ecotypes. In Nigeria, population genomic analyses of 19 indigenous dogs identified 50
529  positively selected genes including those linked immunity that likely involve adaptations to
530  local conditions [97]. Experimentally it has been shown that adaptation to different parasites
531  or snakes can influence the invasion success of three-spined sticklebacks (Gasterosteus

532 aculeatus) and may represent a barrier to gene flow, even between closely related connected
533 populations [98]. In Australia, various parasites and venomous animals have broadly similar
534  distributions to the Alpine ecotype, such as the paralysis tick (Ixodes holocyclus) and the red-
535  bellied black snake (Pseudechis porphyriacus) [99].

536

537 Conclusions

538 Here we characterize dingo Cooinda and propose that she be considered the archetype for
539 Australasian dingoes. Characterizing an archetype opens potential for testing Darwin’s [2]
540 two-step model of domestication as an alternative to the hypothesis that domestication
541 represents a continuum [5]. Under the scenario that the dingo has been unconsciously

542 selected, we predict genomic signatures of tameness, as an outcome of unconscious

543 selection [100-102]. Morphologically, we predict lowest shape variation in the rostrum

544 and facial skeleton in the wolf (natural selection), intermediate in the dingo (unconscious
545 selection) and highest in domestic breeds (artificial selection) (i.e., rank order wolf< dingo
546 < modern breeds). Wild populations are more likely to show a narrow range of shape

547 variation about a fitness optimum, whereas changed environmental conditions could

548 support and promote the survival of forms that are farther from the adaptive peak. This is
549 evidenced by earlier research that has shown cranial morphological variation in domestic

550 dogs exceeds that exhibited by the Order Carnivora [26]. In terms of brain size, we predict
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551 the magnitude of relative brain size difference will be greater between dingoes and modern
552 breeds than between wolves and dingoes (i.e., rank order wolf> dingo >> modern breeds).
553 Brain size reduction is pronounced in artificial selection and associated with the lack of
554 fear avoidance behavior in domesticates [103]. Dingoes do not show domesticate level

555 reductions in ‘fight or flight’ response [29], and our initial data appear to be at least
556 consistent with this based on the relative brain volume we report.

557

558 Methods

559  Sampling: Cooinda the dingo

560 In selecting an animal for the project, it was considered essential to select an individual that
561  represented the Alpine ecotype, which is found around Sydney, New South Wales (NSW).
562  The individual selected was bred at the Dingo Sanctuary Bargo, NSW, approximately 100km
563  west of Sydney, and has been included in multiple previous studies [6, 29]. Cooinda is the
564 litter sister to Typia from whom short read data had previously been obtained [54]. Cooinda’s
565  parents (Mirri Mirri and Maka), her brothers Typia and Gunya and her were all ginger in

566  color and determined to be pure by microsatellite testing [ 104]. Mirri Mirri and Maka were

567  independently found in the Alpine region of New South Wales.

568  An aim of the study is to link genetic and morphological variation, so we provide a brief

569  description of her here. As is typical of Alpine dingoes Cooinda was stocky in appearance
570  with a brad skull and prominent eyes. She was light ginger in color, with dark brown eyes
571  with white paws and chest (Fig. 1AB). Her double coat was not oily like many modern breed
572 dogs and did not have a dog-like odor when wet. She had a pointed muzzle with a broad skull
573  and hooded erect ears. She could turn her neck 180 degrees in any direction. She had lean

574  muscular legs with a long bottle-shaped bushy tail. She weighed 22kg and stood 46¢cm at the
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575  withers. She did not have dewclaws and came into estrus annually. Dingo Cooinda had a loud
576  and clear howl and did not have a modern-dog bark [105]. Cooinda died in 2019 at 10 years
577  of age.

578

579  Chromosome-level genome assembly

580  DNA extraction and sequencing

581  Genomic DNA for the Pacific Bioscience Single Molecule Real-Time (SMRT) sequencing
582  was prepared from 2 mL of fresh blood using the genomic-tip 100/G kit (Qiagen, Hilden,

583  Germany). This was performed with additional RNase (Astral Scientific, Taren Point,

584  Australia) and proteinase K (NEB, Ipswich, MA, USA) treatment following manufacturer’s
585  instructions. Isolated gDNA was further purified using AMPure XP beads (Beckman Coulter,
586  Brea, CA, USA) to eliminate sequencing inhibitors. DNA purity was calculated using a

587  Nanodrop spectrophotometer (Thermo Fisher Scientific). Molecular integrity was assessed by
588  pulse-field gel-electrophoresis using the PippinPulse (Sage Science) with a 0.75% KBB gel,
589  Invitrogen 1kb Extension DNA ladder and 150 ng of DNA on the 9hr 10-48kb (80V)

590  program. SMRTbell libraries with 20kb insert size were CLR sequenced on Sequel I

591  machines with 2.0 chemistry. Sequencing included 18 SMRT cells with a total polymerase

592  read length 94.25 Gb.

593  DNA for the Oxford Nanopore (ONT) PromethION sequencing DNA (1 ng) was prepared
594  for ONT sequencing using the 1D genomic DNA ligation kit (SQK-LSK109, ONT)

595  according to the standard protocol. Long fragment buffer was used for the final elution to
596  exclude fragments shorter than 1000 bp. In total, 119 ng of adapted DNA was loaded onto a
597  FLO-PRO002 PromethION flow cell and run on an ONT PromethION sequencing device
598  (PromethION, RRID:SCR_017987) using MinKNOW (18.08.2) with MinKNOW core (v1.

599  14.2). Base-calling was performed after sequencing with the GPU-enabled guppy basecaller
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600  (v3.0.3) using the PromethION high accuracy flip-flop model with config

601  ‘dna r9.4.1 450bps_hac.cfg’.

602  For the 10X Genomics Chromium sequencing, DNA was prepared following the protocol
603  described above for SMRT sequencing. A 10X GEM library was barcoded from high-

604  molecular-weight DNA according to the manufacturers recommended protocols. The

605  protocol used was the Chromium Genome Reagent Kits v2 (Document # CG00043 revision
606  B). QC was performed using LabChip GX (PerkinElmer, MA, USA) and Qubit 2.0

607  Flurometer (Life Technologies, CA, USA). The library was run on a single lane of a v2

608  patterned flowcell. Sequencing was performed in 150bp paired-end sequencing mode on a

609  single lane on the Illumina HiSeq X Ten platform with a version 2 patterned flowcell.

610  For the Bionano optical mapping high molecular weight (HMW) DNA was isolated from

611  fresh blood (stored at 4°C) using the Bionano Prep Blood DNA Isolation Protocol following
612  [28]. HMW DNA (~190 ng/puL) was labelled (BNG, Part #20351) at DLE-1 recognition sites,
613  following the Bionano PrepTM Direct Label and Stain Protocol (BNG, Document #30206
614  revision C). Labelled DNA was loaded directly onto Bionano Saphyr Chips (BNG, Part

615  #20319), without further fragmentation or amplification, and imaged using a Saphyr

616  instrument to generate single-molecule optical maps. Multiple cycles were performed to

617  reach an average raw genome depth of coverage of 180X.

618  For the Hi-C sequencing the assembly was scaffolded to chromosome-length by the DNA
619  Zoo following the methodology described here: www.dnazoo.org/methods. Briefly, an in situ
620  Hi-C library was prepared [106] from a blood sample of the same female and sequenced to

621 29X coverage (assuming 2.6 Gb genome size).
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622  Workflow

623  For the initial assembly, The SMRT and ONT reads were corrected and assembled with the
624  Canu assembler (Canu, RRID:SCR_015880; v1.8.0) [31] with the command “canu

625  correctedErrorRate=0.105 corMhapSensitivity=normal corOutCoverage=100 -p Cooinda -d
626  assembly genomesize=2.3g -pacbio-raw Cooinda SMRT ONT combined.fasta. The

627  resulting contigs were polished with two rounds of the Arrow pipeline, each consisting of
628  aligning the raw SMRT reads to the assembly with pbmm?2

629  (https://github.com/PacificBiosciences/pbmm?2) and correcting the sequencing errors using

630  gcpp [32].

631  The Arrow-polished SMRT/ONT assembly was scaffolded using Alpine dingo 10X linked-
632  reads as in ARCS [107]. The 10X data was aligned using the linked-read analysis software
633  provided by 10X Genomics, Long Ranger, v2.1.6 [108]. Misaligned reads and reads not
634  mapping to contig ends were removed, and all possible connections between contigs

635  were computed keeping best reciprocal connections. Finally, contig sequences were joined,

636  spaced by 10kb with stretches of N's, and if required reverse complemented.

637  To further improve the assembly, another round of polishing was performed by aligning the
638  Illumina short reads from the 10X Chromium sequencing to the assembly using minimap2
639  [109] (v2.16) and correcting the sequencing errors using Racon (Racon, RRID:SCR _017642;

640  v1.3.3)[110].

641  The Hi-C data was processed using Juicer (Juicer, RRID:SCR _017226) [111], and used as
642  input into the 3D-DNA pipeline [112] to produce a candidate chromosome-length genome
643  assembly. We performed additional curation of the scaffolds using Juicebox Assembly Tools

644 [113].
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645  After scaffolding and correction, all raw SMRT and ONT reads were separately aligned to
646  the assembly with Minimap2 (v2.16) (-ax map-pb/map-ont) [109]. The combined alignments

647  were used by PBlelly (pbsuite v.15.8.24) [114] for one round of gap filling.

648  Following scaffolding, another round of polishing was done to further improve the assembly.
649  Polishing was performed by aligning the Illumina short reads from the Chromium sequencing
650  to the assembly using Long Ranger v2.2.2 and correcting the SNVs and indels using Pilon

651  (Pilon, RRID:SCR_014731) [33].

652  The Pilon-polished genome underwent a final scaffold clean-up using Diploidocus as

653  described in Edwards et al. [27] to generate a high-quality core assembly, remove low-

654  coverage artefacts and haplotig sequences, and filter any remaining vector/adapter

655  contamination. This reduced the final number of scaffolds to 632 (780 contigs), including the

656 mtDNA.

657  Assembly completeness was evaluated using BUSCO v5.2.2 [37] short mode against the
658  Carnivora ob10 data set (n=14,502) implementing BLAST+ v2.11.0 [115], HMMer v3.3
659  [116], and Metaeuk v20200908 [117]. “Complete” BUSCO genes with available sequences
660  were compiled across Alpine dingo Cooinda and nine canid genomes (Desert dingo [6], two
661  Basenji’s (China and Wags) [27], two German shepherd dogs (Nala and Mischa) [28, 36],
662  Great Dane [38], Labrador [39], Dogl10K Boxer [40], and Greenland Wolf [41]) using

663 BUSCOMP v1.0.1. Additional kmer-based assembly completeness and quality evaluations

664  were performed using Merqury v21.3 [42] from the 10x reads.

665  Chromosome mapping and variation
666  Chromosome mapping was completed in 2019 using the CanFam v3.1 reference genome
667  downloaded from Ensembl (GCF_000002285.3 [118]). Full length chromosomes were

668  renamed with a CANFAMCHR prefix and used for reference mapping. The final Cooinda
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669  Alpine dingo genome assembly was mapped onto the CanFam3.1 reference genome using
670  Minimap2 v2.16 [109] (-x asm5 --secondary=no --cs) to generate PAF output. Scaffolds were
671  assigned to CanFam3.1 chromosomes using PAFScaff v0.2.0 [119] based on Minimap2-

672  aligned assembly scaffold coverage against the reference chromosomes. Scaffolds were

673  assigned to the chromosome with highest total coverage. Scaffolds failing to map onto a

674  chromosome were rated as "Unplaced".

675  Comparison of Alpine and Desert dingo genomes

676  To investigate the variation between the dingo ecotypes we used Circos [43]. Circos uses a
677  circular ideogram layout to facilitate the display of relationships between the genomes using
678  ribbons, which encode the position and number of SNV’s, small indels and large indels for
679  each of the 38 autosomes and the X chromosome. SNV and indel numbers were calculated

680  using MUMmer4 ‘show-snp’ script following pairwise alignments [44] (v4.0.0 beta 2).

681  Synteny plot between the Alpine and published Desert dingo assembly [6] was conducted
682  using GenomeSyn [47]. With GenomeSyn the position of the genome is indicated by a black
683  horizontal ruler with tick marks. Syntenic blocks between the genomes are displayed as light
684  grey regions with white illustrating non-syntenic regions. Inversions are represented by red-

685  brown curves.

686  We used GeMoMa v1.6.2beta [48] to further investigate whole chromosomal events. Here we
687  mapped genes onto the Alpine Dingo assembly following previously described

688  protocols [28]. Subsequently, we checked the synteny of the genes in the reference genome
689  and the target genome using the module GeMoMa module SynthenyChecker. This module
690  uses the GeMoMa annotation with information for reference gene and alternative to

691  determine the best homolog of each transcript. Comparing the order of genes in the reference

692  and the target genome, it allows to determine breakpoints of chromosomal events.
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693  Phylogenetic analyses

694  All 39 full-length chromosomes in the final assembly were aligned to the corresponding
695  chromosomes in nine published canine de novo genome assemblies (Desert dingo [6], two
696  basenjis (China and Wags) [27], two German shepherd dogs (Nala and Mischa) [28, 36],
697  Great Dane [38], Labrador [39], Dogl10K Boxer [40], and Greenland Wolf [41]) using

698 MUMmer4 [44]. SNVs and small indels (deletions and insertions <50bp) were called using
699  MUMmer4 call-SNPs module for all possible pairings (Supplementary Table 2). Copy

700  number (CNV) and SVs were also called using svmu (v0.2) [120] however these were not
701  included in the phylogeny. SNV’s and indels were analyzed separately. Distance matrices
702  were generated from the inter-canid differences in SNV’s and indels and then transformed to
703 WA distance [49]. Glazko et al. [49] report WA has better phylogenetic properties against

704  normalization of genome sizes than other coefficients.

705  Phylogenetic analyses using maximum parsimony were generated from the R-package

706  ‘phangorn’ version 2.8.1 [121]. The analyses were run as unrooted networks to test the

707  hypothesis that the wolf was the outgroup. To test the stability of the nodes, a Bayesian

708  bootstrap was applied to the original distance matrix using the program bayesian_bootstrap
709  (github.com/Imc2179/bayesian_bootstrap) and the phylogenetic analysis was re-calculated.
710  This process was iterated 500,000 times. The consensus phylogenetic trees were rooted on
711  the branch leading to wolf, the values indicate the percentage of times that a node occurred.
712 The Y-axis and branch lengths were rescaled to the original number of differences in SNV’s
713 and indels among the taxa. The retention index that measures the fit of the network to the

714  distance matrix exceeded 94% for all 500,000 trees of SNVs and indels.

715  Non-metric multidimensional scaling (NMDS) was calculated from the distance matrices and

716  scores for the taxa calculated from the largest two axes. Minimum spanning trees were
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717  calculated among the scores in NMDS space. NMDS and minimum spanning trees were

718  calculated in Past 4.04 [122].

719
720  Mitochondrial genome

721  Genome assembly workflow

722 A 46,192 bp contig from the assembly mapped onto the CanFam reference mtDNA

723 (NC_002008.4), constituting a repeat of approx. 2.76 copies of the mtDNA. The CanFam
724  mtDNA was mapped onto this contig using GABLAM v2.30 [123] and full-length mtDNA
725  copy with highest similarity to CanFam mtDNA was extracted along with 8 kb each side.
726  PacBio reads were mapped onto this mtDNA contig using minimap2 v2.22 [109] and 10x
727  linked reads mapped using BWA v0.7.17 [124] for polishing with HyPo v1.0.3 [125] (32.7
728 kb assembly size at 673X coverage). The CanFam mtDNA was re-mapped onto the polished
729  assembly using GABLAM v2.30.5 [123] and a 16,719 bp sequence extracted, starting at
730  position 1 of the CanFam sequence. The mtDNA was annotated with the MITOS2 server

731  [126] for submission to NCBI GenBank (accession: OP476512).

732 Comparison of dingo mtDNA genomes

733  The mtDNA genome of Alpine dingo Cooinda was compared with the Desert dingo [6].

734 Direct observation of the D-loop region in the two dingoes suggested there was a 10bp repeat
735  and the canids differed in the number of repeats. Imperfect tandem repeats have previously
736  been reported in canids [50]. The D-loop region in Alpine dingo Cooinda was folded using

737  the program mfold [52] to determine ay underlying structures.

738  To test whether the mtDNA from dingo Cooinda fell within the previously described SE
739  clade we compared the assembly with 33 other canids, including dogs from New Guinea and

740  Taiwan [6, 22, 54, 55]. In this case multiple large gaps were in some of the ancient samples,
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741  so the initial assembly was modified based on the predicted secondary structure folding. A
742  inter neighbor-joining network analysis with o = 0.5 was completed in POPART [53]. A

743  limitation of this analyses is that large sections of multiple mtDNA’s were unknown, so it
744  was not possible to distinguish deletions from missing data. Understanding these differences
745  may be biologically important, particularly if the predicted folding of the D-loop region is

746  biologically significant.

747  DNA methylome

748  MethylC-seq library preparation

749  Genomic DNA was extracted from whole blood using DNeasy Blood & Tissue kit (Qiagen,
750  USA). MethylC-seq library preparation was performed as described previously [127].

751  Briefly, 1 ug of genomic DNA was sonicated to an average size of 300 bp using a Covaris
752 sonicator. Sonicated DNA was then purified, end-repaired and 3’-adenylated followed by the
753  ligation of methylated Illumina TruSeq sequencing adapters. Library amplification was

754  performed with KAPA HiFi HotStart Uracil+ DNA polymerase (Millenium Science Pty Ltd).

755  MethylC-seq data analysis

756  The methylome library was sequenced on the Illumina HiSeq X platform (150 bp, PE),

757  generating 377M reads. Sequenced reads in fastq format were trimmed using the

758  Trimmomatic software (ILLUMINACLIP:adapter.fa:2:30:10 SLIDINGWINDOW:5:20

759  LEADING:3 TRAILING:3 MINLEN:50). Trimmed reads were mapped

760  (GCA _012295265.2 UNSW_AlpineDingo 1.0 genomic.fna genome reference, containing
761  the lambda genome as chrLambda) using WALT with the following settings: -m 10 -t 24 -N
762 10000000 -L 2000. Mapped reads in SAM format were converted to BAM format; BAM files
763  were sorted and indexed using SAMtools. Duplicate reads were removed using Picard Tools

764 v2.3.0. Genotype and methylation bias correction were performed using MethylDackel
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765  (MethylDackel extract dingo lambda.fasta $Sinput_bam -o $output --mergeContext --

766  minOppositeDepth 5 --maxVariantFrac 0.5 --OT 10,140,10,140 --OB 10,140,10,140). The
767  numbers of methylated and unmethylated calls at each genomic CpG position were

768  determined using MethylDackel (MethylDackel extract dingo lambda.fasta $input_bam -o
769  output —mergeContext). Segmentation of hypomethylated regions into CpG-rich

770  unmethylated regions (UMRs) and CpG-poor low-methylated regions (LMRs) was

771  performed using MethylSeekR (segmentUMRsLMRs(m=meth, meth.cutoff=0.5,

772  nCpG.cutoff=5, PMDs = NA, num.cores=num.cores, myGenomeSeq=build,

773  seqLengths=seqlengths(build), nCpG.smoothing = 3, minCover = 5).

774  Cooinda UMR coordinates were converted to the Desert dingo genome assembly using
775  LiftOver following genomewiki.ucsc.edu pipeline

776  (http://genomewiki.ucsc.edu/index.php?title=Minimal Steps_For_LiftOver). Briefly, the

777  query (Desert dingo) genome build was split into individual scaffolds using faSplit (i). The
778  we performed pairwise sequence alignment of query sequences from (i) against the Cooinda
779  genome build using BLAT, Then, coordinates of .psl files were changed to parent coordinate
780  system using /iftUp and alignments were chained together using axtChain. Chain files were
781  combined and sorted using chainMergeSort; alignment nets were made using chainNet.

782  Finally, liftOver chain file was created using netChainSubset. Cooinda UMRs in .bed format
783  were lifted over to Desert dingo genome assembly using created liftOver chain file. Average
784  methylation was calculated for Cooinda UMRs and compared to that of corresponding lifted-
785  over regions in the Desert dingo genome. Cooinda UMRs with >50% methylation increase in
786  Desert dingo genome were considered as hypermethylated in the Desert dingo.

787
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788  Morphology

789  Skull Morphometrics

790  To examine cranial morphology, we obtained a 3D model of Cooinda’s cranium using an
791  Artis Pheno Computed Tomography (CT) Scanner. The skull was damaged slightly when the
792  brain was extracted, so the damaged region (dorsal part of the calvarium) was reconstructed
793  using Blender to reassemble the separated fragment following guidelines for digital specimen
794  reconstruction outlined by Lautenschlager [128] (Supplementary Fig. 10A). Geometric

795  morphometric landmarks (n=45) were collected on the 3D cranial model using Stratovan
796  Checkpoint (Stratovan Corporation, Davis, CA version 2018.08.07) and analyzed with

797  Morphol [129], following the landmarking protocol used for dingo crania by Koungoulos
798  [65]. This approach uses 45 landmarks along the left side of the cranium, covering all major
799  anatomical features and regions, excepting a few fragile processes which are frequently lost
800 in prepared specimens (Supplementary Fig. 11; Supplementary Table 4). The cranial

801  landmarks collected on the Cooinda cranium were incorporated into an existing data set

802  comprising 91 Alpine dingoes and 101 Desert dingoes [65] and subject to Procrustes

803  superimposition to remove all non-shape differences, due to translation, rotation and scaling
804  [130]. The resultant Procrustes shape variables were ordinated using Principal Component
805  Analysis (PCA) to assess the cranial morphology of Cooinda in relation to other dingoes. To
806  assess the impact of allometry on cranial shape variation in the sample, a regression of

807  Procrustes shape variables against log centroid size was performed using Morphol [129].

808  Residuals were extracted from this regression and ordinated using PCA (see Supplementary

809  Material).

810  Brain imaging
811  Cooinda’s brain and that of a domestic dog (Kelpie) of the same body size were extracted.

812  Brains of these animals, which died within 2 weeks of each other, were fixed in Sigma-
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813  Aldrich 10% Neutral Buffered Formalin (NBF) after extraction and were washed with Gd
814  DTPA (gadolinium-diethylenetriamine pentaacetic acid) solution prior to imaging. Brains
815  were scanned using high-resolution magnetic resonance imaging (MRI). A Bruker Biospec
816  94/20 9.4T high field pre-clinical MRI system was used to acquire MRI data of a fixed dingo
817  and domestic dog brain. The system was equipped with microimaging gradients with a

818  maximum gradient strength of 660mT/m and a 72mm Quadrature volume coil. Images were
819  acquired in transverse and coronal orientation using optimized 2D and 3D Fast Spin Echo
820  (FSE) and Gradient Echo (MGE) methods. Image resolution was 200x200x500 and 300x300
821  microns isotropic for type 3D and 2D pulse sequences, respectively. To quantify brain size,
822  we used the open-source software 3D Slicer “Segment Statistics” module [66]. The software
823  considers the pixel spacing and slice thickness set to calculate the volume accurately. The
824  threshold was empirically set to the grayscale intensity 1495, where everything below that is

825  background, and ventricles and everything above that is the brain.
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