

1 **The Australasian dingo archetype: *De novo* chromosome-length genome assembly, DNA
2 methylome, and cranial morphology**

3

4 J. William O. Ballard,^{1,2*} Matt A. Field,^{3,4} Richard J. Edwards,⁵ Laura A.B. Wilson,^{6, 7} Loukas
5 G. Koungoulos,⁸ Benjamin D. Rosen,⁹ Barry Chernoff,¹⁰ Olga Dudchenko,^{11, 12} Arina
6 Omer,¹² Jens Keilwagen,¹³ Ksenia Skvortsova,¹⁴ Ozren Bogdanovic,¹⁴ Eva Chan,^{14,15} Robert
7 Zammit,¹⁶ Vanessa Hayes,^{14,17} Erez Lieberman Aiden^{11,12,18,19,20}

8

9

10 1 School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria
11 3052, Australia. Bill.Ballard@unimelb.edu.au

12 2 Department of Environment and Genetics, SABE, La Trobe University, Melbourne
13 Victoria 3086, Australia Bill.Ballard@unimelb.edu.au

14 3 Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health,
15 Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870,
16 Australia. matt.field@jcu.edu.au

17 4 Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW,
18 Australia. matt.field@jcu.edu.au

19 5 School of Biotechnology and Biomolecular Sciences, University of New South Wales,
20 Sydney NSW 2052, Australia. Richard.edwards@unsw.edu.au

21 6. School of Archaeology and Anthropology, The Australian National University, Acton,
22 ACT 2600, Australia. Laura.Wilson@anu.edu.au

23 7. School of Biological, Earth and Environmental Sciences, University of New South
24 Wales, Sydney, NSW 2052, Australia. Laura.Wilson@anu.edu.au

25 8. Department of Archaeology, School of Philosophical and Historical Inquiry, the
26 University of Sydney, Sydney, Australia 2006. lkou2342@uni.sydney.edu.au

27 9. Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA,
28 Beltsville, MD 20705. ben.rosen@usda.gov

29 10. College of the Environment, Departments of Biology, and Earth & Environmental
30 Sciences, Wesleyan University, Middletown, CT 06459, USA.
31 B.chernoff@wesleyan.edu.

32 11. The Center for Genome Architecture, Department of Molecular and Human Genetics,
33 Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA.
34 Olga.Dudchenko@bcm.edu, erez@erez.com, arinaomer@gmail.com,

35 1.2 Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005,
36 USA. Olga.Dudchenko@bcm.edu, erez@erez.com

37 13. Julius Kühn-Institut, Erwin-Baur-Str. 27 06484 Quedlinburg, Germany
38 Jens.keilwagen@julius-kuehn.de

39 14. Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
40 k. Skvortsova@garvan.org.au, o.bogdanovic@gmail.com,
41 eva.chan@health.nsw.gov.au, vanessa.hayes@sydney.edu.au

42 15. Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle NSW
43 2300, Australia

44 16. Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia.
45 razammit@me.com

46 17. Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney,
47 Camperdown, NSW, Australia. vanessa.hayes@sydney.edu.au

48 18. UWA School of Agriculture and Environment, The University of Western Australia,
49 Perth, WA 6009, Australia. erez@erez.com

50 19. Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong

51 201210, China. erez@erez.com

52 20. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. erez@erez.com

53

54

55 **ORCID IDs:**

56 J. William O. Ballard [0000-0002-2358-6003]; Matt A. Field [0000-0003-0788-6513];

57 Richard J. Edwards [0000-0002-3645-5539]; Laura A. B. Wilson [0000-0002-3779-8277].

58 Loukas Koungoulos [0000-0002-5148-0142]; Benjamin D. Rosen [0000-0001-9395-8346];

59 Barry Chernoff [0000-0001-8439-4542]; Olga Dudchenko [0000-0001-9163-9544]; Arina

60 Omer [0000-0003-1336-2505], Jens Keilwagen [0000-0002-6792-7076]; Ksenia Skvortsova

61 [0000-0003-1400-1998], Ozren Bogdanovic [0000-0001-5680-0056], Eva Chan [0000-0002-

62 6104-3763]; Rob Zammit [0000-0002-7520-8338]; Vanessa Hayes [0000-0002-4524-7280];

63 Lieberman Aiden [0000-0003-0634-6486].

64

65 **Correspondence address.** Bill.Ballard@unimelb.edu.au. School of Biosciences, University
66 of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia.

67 .

68 **Abstract**

69 **Background**

70 One difficulty in testing the hypothesis that the Australasian dingo is a functional
71 intermediate between wild wolves and domesticated breed dogs is that there is no reference
72 specimen. Here we link a high-quality *de novo* long read chromosomal assembly with
73 epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It
74 was critical to establish an Alpine dingo reference because this ecotype occurs throughout
75 coastal eastern Australia where the first drawings and descriptions were completed.

76 **Findings**

77 We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS)
78 using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and
79 Hi-C technologies. Compared to the previously published Desert dingo assembly, there are
80 large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of
81 chromosomal data from Cooinda the Alpine dingo and nine previously published *de novo*
82 canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network
83 analyses show that the mtDNA genome clusters within the southeastern lineage, as expected
84 for an Alpine dingo. Comparison of regulatory regions identified two differentially
85 methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes
86 that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo.
87 Morphological data, comprising geometric morphometric assessment of cranial morphology
88 place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic
89 resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized
90 domestic dog.

91 ***Conclusions***

92 These combined data support the hypothesis that the dingo Cooinda fits the spectrum of
93 genetic and morphological characteristics typical of the Alpine ecotype. We propose that she
94 be considered the archetype specimen for future research investigating the evolutionary
95 history, morphology, physiology, and ecology of dingoes. The female has been
96 taxidermically prepared and is now at the Australian Museum, Sydney.

97

98 **Key Words:** type specimen, cranium, long-read sequencing, de novo genome assembly,
99 biogeography

100

101 **Introduction**

102 The most influential book on evolution, Darwin's 1859 *On the origin of species* [1], starts
103 with a chapter on domestication to reverse engineer natural selection. Some nine years later
104 Darwin [2] expanded his initial thinking into the book *The variation of animals and plants
105 under domestication*. He hypothesized that the process of domestication proceeded in a
106 stepwise manner first by unconscious selection (wild → tamed) followed by what we now call
107 artificial selection (tamed → domesticated), with the key distinction between these processes
108 being the involvement of humans on mating and reproduction. A gap in our ability to test
109 Darwin's hypothesis has been the identification of a model system with an extant plant or
110 animal that is intermediate between the wild ancestor and the domesticate. Here we explore
111 the overarching hypothesis that the Australasian dingo (*Canis (familiaris) dingo*) is
112 evolutionarily intermediate between the wild wolf (*Canis lupus*) and domestic dogs (*Canis
113 familiaris*) [3]. One alternate hypothesis is that the process of domestication is continual and
114 does not proceed in a stepwise manner [4], instead representing a series of phases reflecting
115 an intensification of the relationship between a wild animal (or plant) and human societies
116 [5].

117 The taxonomic name of the dingo remains unstable, however, it is now clear the Australasian
118 dingo is a distinct evolutionary lineage closely related to domestic dogs [6]. The first
119 European drawing of an animal referred to as a "dingo" appears in White 1790 [7] with a
120 more complete anatomical description appearing in Meyer 1793 [8]. A "large dog" from
121 coastal eastern Australia near Sydney was earlier illustrated by George Stubbs in 1772, based
122 on a recorded description by Joseph Banks from 1770; it is now clear that this animal was a
123 dingo, but the name had not yet been learned from the local Aboriginal people. We follow the
124 precedent that when zoologists disagree over whether a certain population is a subspecies or a
125 full species, the species name may be written in parentheses. Scientists advocating a General

126 Lineage Species Concept consider dingoes to be distinct species (*Canis dingo*) or a
127 subspecies of domestic dog (*Canis familiaris dingo*) [9-11]. Others advocating a Biological
128 Species Concept [12] consider the dingo to be a breed of dog (*Canis familiaris* breed dingo)
129 due to the interfertility between dingo and domestic dog [11, 13, 14].

130 Corbett [15] mentioned the possibility of three different dingo ecotypes existing in north,
131 central and southeastern Australia. These are now referred to Tropical, Desert, and Alpine
132 dingoes [16]. Subsequently, Corbett [17] noted that dingo skulls from southeastern Australia
133 (Alpine dingoes) were genuinely different from those of the rest of the country, but posited
134 the differences may be due to hybridization with domestic dogs rather than independent
135 lineages. Jones [18] agreed that the southeastern dingoes, were distinct and suggested a
136 revaluation of ecotype morphologies to resolve the conundrum.

137 Analyses of mitochondrial variation in canids from Southeast Asia supports the hypothesis
138 that there are distinct dingo lineages [19-22]. Zhang et al. [19] found a strong Bayesian
139 posterior value supporting the separation of Australian dingoes into two groups. One is a
140 northwestern group, whereas the other is a southeastern group that clusters with New Guinea
141 Singing dogs (*Canis (familiaris) hallstromi*). Support for two, or perhaps three, distinct
142 lineages of dingoes has also come from Y-chromosome and SNP-chip data [23, 24].

143 The dog is the first species to be domesticated [25]. They are likely the most frequently kept
144 domestic animal, exhibit exceptional levels of morphological variation, and many breeds
145 have been developed by strong artificial selection in the past 200 years [26-28]. The
146 Australasian dingo has been proposed to be a functional [29] and evolutionary [6]
147 intermediate between wild wolves and domesticated dogs. Unfortunately, the absence of a
148 dingo holotype reference specimen impedes our ability to definitively determine whether

149 dingoes are a tamed intermediate or a feral canid because we do not have a single reference
150 point that links the scientific name to a specific specimen [30].

151 This study aims to link high resolution long-read *de novo* chromosomal assembly,
152 mitochondrial DNA sequence and the DNA methylome with morphological descriptions of
153 head shape and computed tomography data of brain data to describe the ‘archetype’ dingo
154 (Fig. 1). This designation will support future comparisons with a reference enabling further
155 characterization of the evolutionary history of the dingo. In this case we do not propose any
156 formal taxonomic name for the specimen as it is a regional morphotype that is being
157 characterized however we suggest the principle of having a ‘type’ specimen makes biological
158 sense and will enable the focusing of future research.

159

160 **Figure 1 title:** Cooinda the dingo.

161 **Figure 1 legend:** The genomic and morphological data in this study is based upon a single
162 individual named Cooinda from Dingo Sanctuary Bargo in the southern highland region of
163 New South Wales. Based on her parentage, broad skull, and stocky appearance the Sanctuary
164 considers her an Alpine dingo. We compare her with other dingoes found in southeastern

165 Australia and with those found in the center and northwest of the continent including Desert
166 dingo Sandy [6]. (A) Dingo Cooinda as an adult female. (B) Brother Typia (RHS) and
167 Cooinda (LHS) as 8-week-old puppies.

168

169 **Results**

170 **Chromosome-level genome assembly**

171 ***Workflow***

172 The genome was assembled following a similar pipeline to Field et al. [28] (Supplementary
173 Fig. 1). Briefly, 1722 contigs were assembled from SMRT and ONT sequence data with a
174 total length of 2.38 Gb and N50 length of 12.4 Mb [31]. The contig assembly was then
175 polished for two rounds with SMRT reads, correcting ~5 million bases in the first round and
176 ~15 thousand in the second [32, 33]. The assembled sequence contigs were scaffolded
177 sequentially using 10X linked-reads and polished with 10X linked-reads [33]. The scaffolded
178 assembly was then super scaffolded with Bionano and Hi-C proximity ligation.

179 Supplementary Fig. 2 shows the contact matrices generated by aligning the Hi-C data set to
180 the genome assembly after Hi-C scaffolding [34, 35]. To increase the contiguity of the
181 assembly we used the SMRT and ONT reads to fill gaps, which was then followed by a final
182 round of SMRT read polishing. The gap filling successfully closed 282 gaps increasing
183 contig N50 to the final figure of 23.1 Mb. A final round of polishing was performed with 10X
184 linked reads. The resulting chromosome-length genome assembly and its gene annotation
185 was deposited to NCBI with accession number GCA_012295265.2.

186 ***Assembly statistics and completeness***

187 The final assembly had a total length of 2,398,209,015 bp in 477 scaffolds with a scaffold
188 and contig N50 of 64.8 Mb and 23.1 Mb, respectively (Table 1). Chromosome-level scaffolds

189 accounted for 98.4 % of the assembly with only 0.9 % (21.1 Mb) of all sequences not
190 aligning to a CanFam4.1 chromosome [36].

191 Evaluation by Benchmarking Universal Single-Copy Orthologs (BUSCO v5.2.2 [37]) against
192 Carnivora_odb10 data set (n=14,502) indicated that 95.1 % of the conserved single-copy
193 genes were complete (Table 1, Supplementary Fig. 3A). Only 3 of 13,791 complete (single-
194 copy or duplicated) BUSCO genes were not on the 39 nuclear chromosome scaffolds.

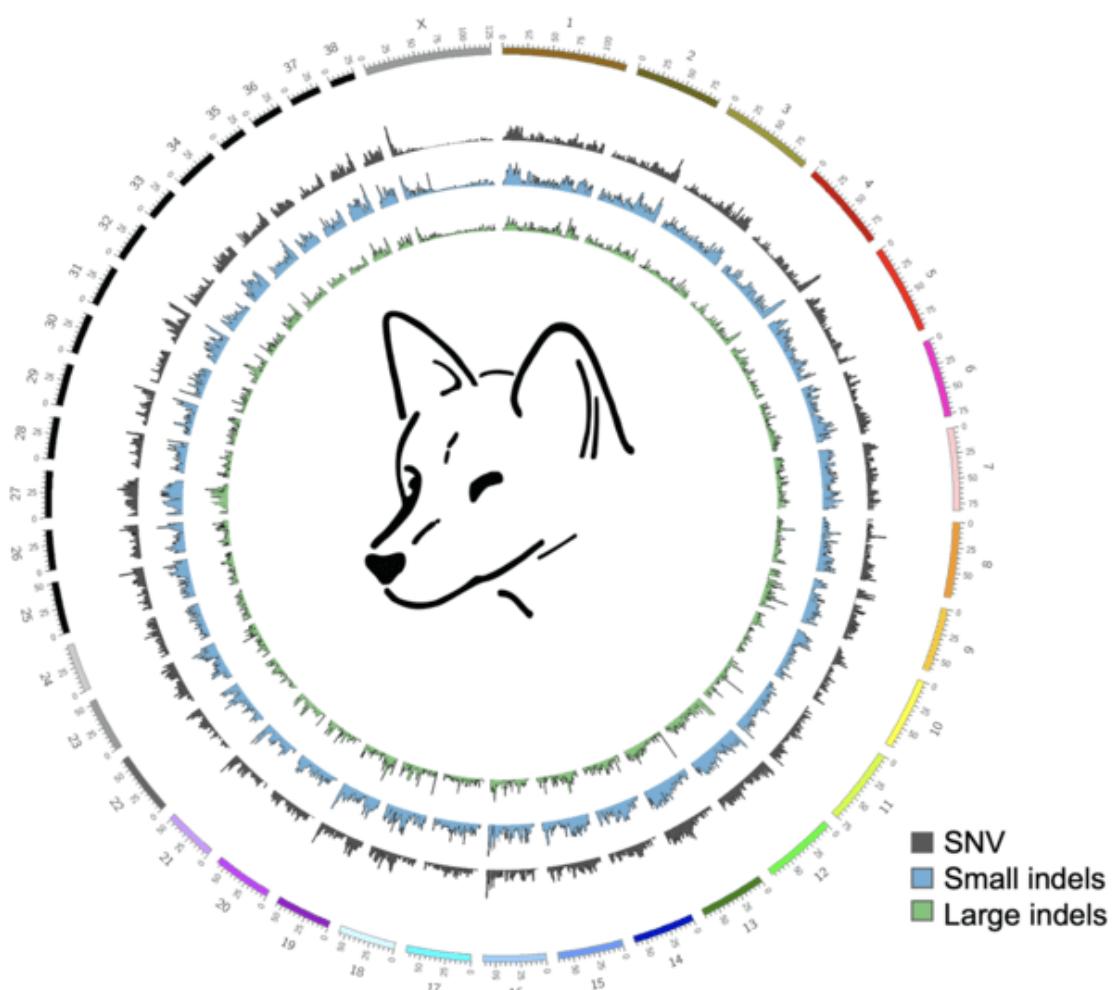
195 Next, we compared single-copy “Complete” BUSCO genes in Alpine dingo Cooinda and
196 nine canid genomes [6, 27, 28, 36, 38-41]). Of the 13,722 genes, 13,711 were found in the
197 assembly using BUSCOMP v1.0.1. Only Sandy the Desert Dingo v2.2 (13,715 genes) and
198 China the Basenji v1.2 (13,712 genes) had more.

199 Additional kmer analysis of the final assembly [42] yielded 97.32 % (97.2% in
200 chromosomes) and an overall Q-score estimate of 37.5 (38.4 for chromosomes). No sign of
201 retained haplotigs was evident (Supplementary Fig. 3B).

202

203 **Table 1:** Genome assembly and annotation statistics for Alpine dingo (Cooinda) vs Desert
204 dingo assembly (Sandy)

Statistic	Alpine dingo	Desert dingo
Total sequence length	2,398,209,015	2,349,862,946
Total ungapped length	2,390,794,485	2,349,829,267
Number of contigs	802	228
Contig N50	23,108,747	40,716,615
Contig L50	36	20
Number of scaffolds	477	159


Scaffold N50	64,752,584	64,250,934
Scaffold L50	15	14
Number of gaps	325	69
BUSCO complete (single/duplicate copy)	95.1% (S: 92.7% D:2.4%)	95.3% (S: 92.9% D:2.5%)
BUSCO fragmented	0.8%	0.8%
BUSCO missing	4.1%	3.8%

205

206 ***Comparison of dingo genomes***

207 We generated a Circos plot [43] to represent the single-nucleotide variants (SNV) and small
208 indel variation between the Alpine and Desert dingo (Fig. 2) using MUMmer4 [44], and
209 sniffles v1.0.11 [45]. In comparison to the autosomes, these plots show low variation on the
210 X chromosome (Fig. 2). To further investigate the low variation, we compared each of the
211 dingoes to CanFam4 (Supplementary Fig. 4, Supplementary Table 1). We then generated a
212 conservative consensus set of structural variants (SV) by merging PacBio, and Nanopore SV
213 calls generated with sniffles [45, 46]. Overall, we found ~half the number of SV and small
214 variants calls relative to Desert dingo than to CanFam4 (32798 v 62524 and 1729790 v
215 3839712, respectively).

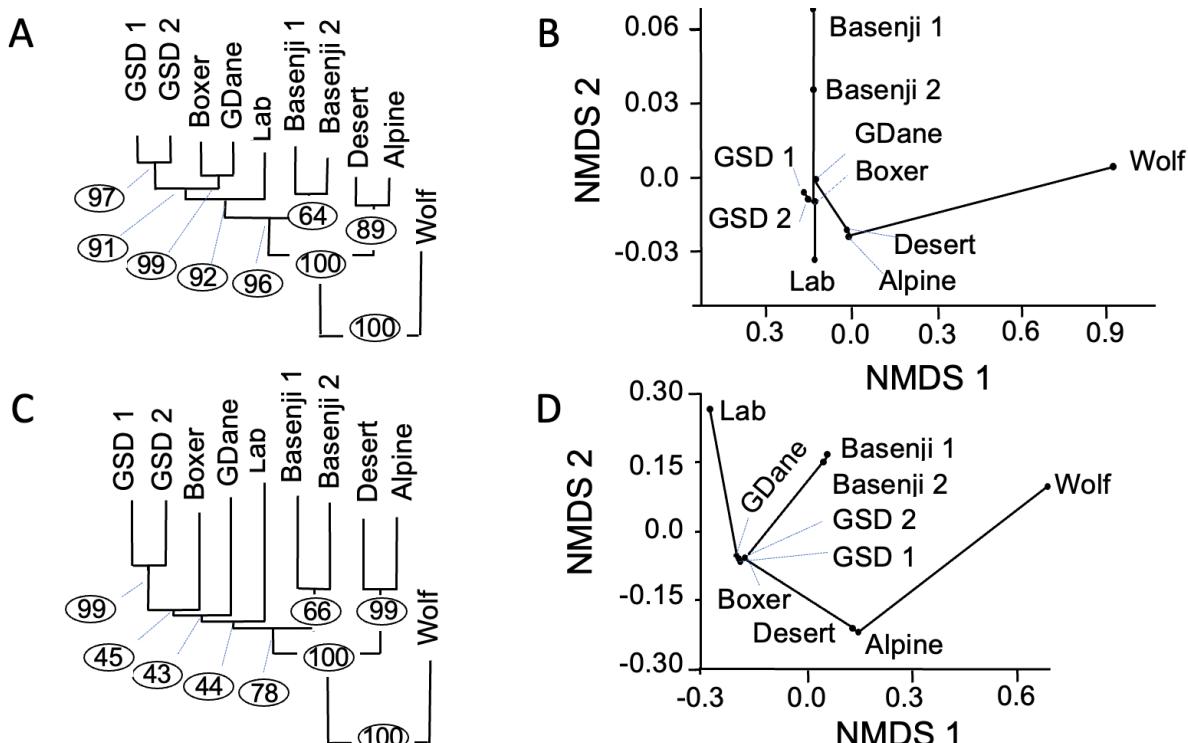
216

217 **Figure 2 title:** Circos plot comparing Alpine and Desert dingo genomes

218 **Figure 2 legend:** Plot compares the 38 autosomes and X chromosome of the Alpine and
219 Desert dingo. The plot shows the low variation on the X chromosome compared to the
220 autosomes.

221

222 We generated synteny plots using MUMmer plot and GenomeSym [47]. Synteny plots
223 between the dingo genomes show several large-scale chromosomal events. On chromosome
224 16 there is a 3.45Mb inverted region and a 0.9Mb complex rearrangement (Supplementary
225 Fig. 5). This 3.45Mb inversion does not appear in the wolf or domestic dogs, so we speculate
226 it is unique to the Desert Dingo assembly [6]. The inversion overlaps 60 unique ENSEMBL
227 transcripts and was enriched for gene ontology terms of cellular metabolic processes,


228 including glycolysis and glucose metabolism [6]. Also, on Chromosome 16, the 0.9Mb
229 complex rearrangement occurs between 55 – 57 Mb downstream (Supplementary Fig. 5).
230 Additional structural events include small inversions on Chromosome 11 and on
231 Chromosome 25 (Supplementary Fig. 5). On the X chromosome, there appear to be multiple
232 small nonsyntenic regions (Supplementary Fig. 5); however, further examination of these
233 apparent differences is required to establish whether they are true biological differences or
234 assembly artifacts.

235 In parallel, we used GeMoMa gene predictions [48] to investigate chromosomal level events.
236 Like the synteny analyses, this approach revealed a large inversion and a disordered region
237 on chromosome 16 as well as smaller inversions on Chromosomes 11 and 25. We also found
238 two structural events on chromosome 26 (Supplementary Fig. 6) containing mostly short
239 genes that are not perfectly conserved (Supplementary Fig. 5F). A MUMmer4 nucmer
240 alignment plot [44] for chromosome 26 corroborated these events (Supplementary Fig. 6).
241 The Alpine and Desert dingo both have a single copy pancreatic amylase gene (AMY2B) on
242 Chromosome 6. The Alpine dingo assembly does not include a 6.4kb long LINE that was
243 previously reported in the Desert dingo [6].

244 ***Phylogenetic analyses***

245 All 39 full-length chromosomes in the final assembly were aligned to the corresponding
246 chromosomes in nine published canine *de novo* genome assemblies [6, 27, 28, 36, 38-41].
247 SNVs and small indels (deletions and insertions <50bp) were called using MUMmer4 call-
248 SNPs module for all possible pairings (Supplementary Table 2). Distance matrices were
249 generated from the inter-canid differences in SNVs and indels and then transformed to WA
250 distance [6, 49]. Fig. 3AC show the phylogenetic tree from SNVs and indels respectively.
251 Both figures show strong support for monophyly of dingoes and dogs relative to the wolf.

252 These figures also strongly support the hypothesis that dingoes are the sister group to
253 domestic dogs. Fig. 3BD show the ordination analyses from SNVs and indels, respectively.
254 Scores for the taxa calculated from the largest two axes (Axis 1 and Axis 2) describe 75.6%
255 of the variance in SNV's and 73.2% of the variance in indels (Fig. 3BD).

256

257 **Figure 3 title:** Phylogenetic and ordination analyses of nuclear DNA from SNVs and indels
258 from 10 canines.

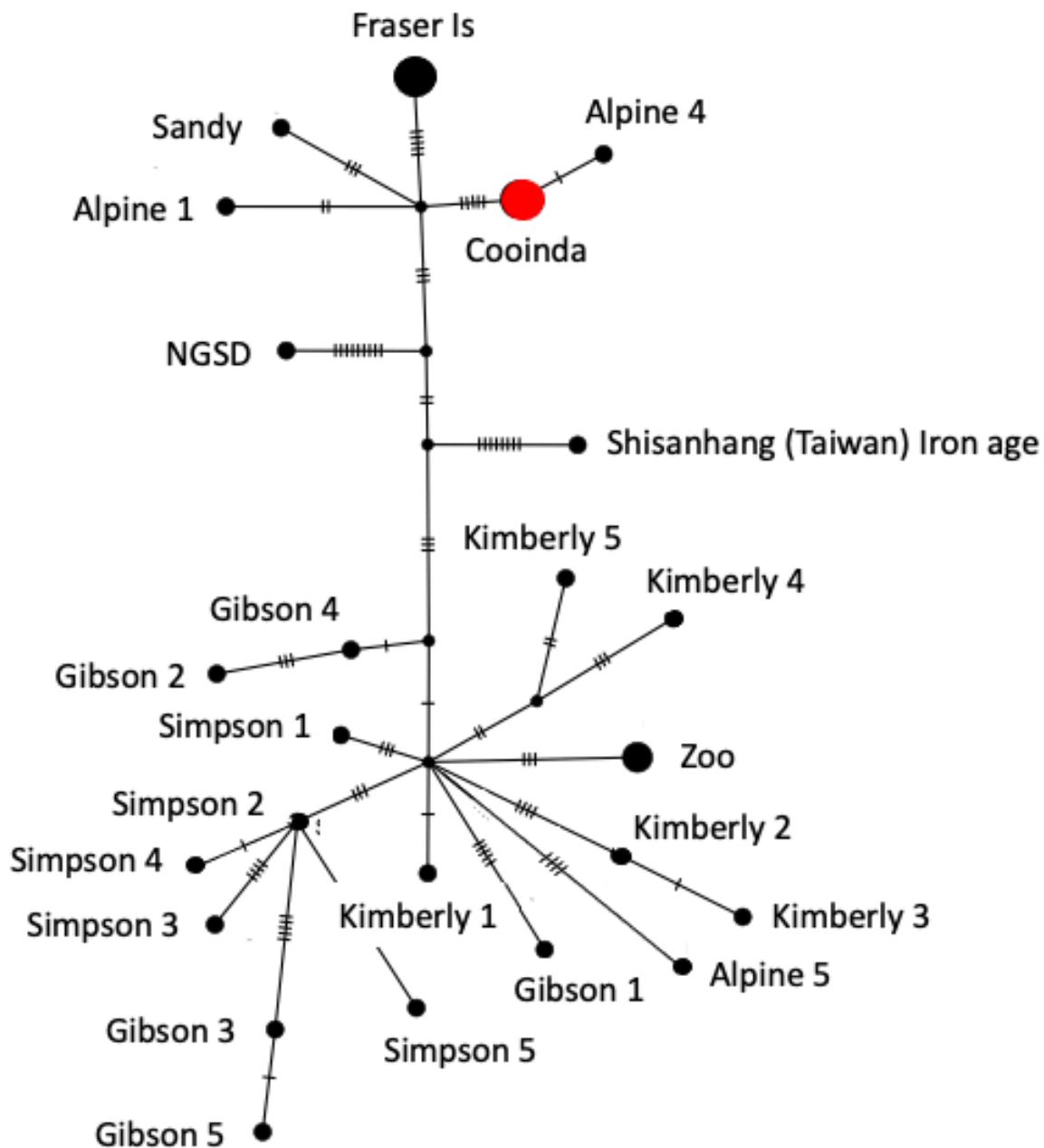
259 **Figure 3 legend:** (A) Phylogenetic tree from SNVs. Branch length proportional to the
260 number of changes and bootstrapping percentage in circles. (B) Ordination analyses from
261 SNVs showing first two axes from non-metric multidimensional scaling (NMDS). (C)
262 Phylogenetic tree from indels. Branch length proportional to the number of changes and
263 bootstrapping percentage in circles. (D) Ordination analyses from indels showing the first
264 two axes from non-metric multidimensional scaling (NMDS). Abbreviations: Lab –
265 Labrador; GSD – German Shepherd Dog; GDane – Great Dane; Wolf — Greenland wolf

266

267 **Mitochondrial genome**

268 ***Genome assembly workflow***

269 A 46,192 bp contig from the assembly mapped onto the CanFam reference mtDNA. It
270 constituted a repeat of approximately 2.76 copies of the mtDNA. Following additional
271 polishing and circularization, a final 16,719 bp mtDNA genome was extracted and has been
272 uploaded to GenBank (OP476512).


273 ***Comparison of dingo mtDNA genomes***

274 When the mtDNA genome of Alpine dingo Cooinda is compared with that of Desert dingo
275 there is a single 10bp SV in the control region that highlights the repeat number difference. In
276 the former, there are 28 repeats (RCGTACACGT) ACGTACGCGCGT, while in the latter,
277 there are 29. Potentially the R(G or A) could represent heteroplasmy [50] that may be further
278 studied with single cell sequencing approaches [51]. Folding this region [52] shows that
279 increasing repeat number increases stem length and overall stability (Supplementary Fig. 7).

280 Next, we conducted a network analysis in Popart [53] to determine whether the mtDNA of
281 dingo Cooinda fell within the previously described dingo southeastern or northwest clade
282 (Fig. 4) [19, 22]. We included dingo mtDNA from four previous studies, a New Guinea
283 Singing Dog, and an ancient Iron Age dog from Taiwan [6, 22, 54-56]. There were 89
284 segregating sites and 32 parsimony informative sites in the dataset. Predictably, there were no
285 differences between the mtDNA genome of Cooinda and that previously published from her
286 brother Typia [54]. Further, as expected, Cooinda and Typia mtDNA clustered with samples
287 that had previously been collected from the Alpine region (Fig. 4). Somewhat unexpectedly,
288 the mtDNA from Sandy the dingo found in the desert [6] did not cluster with dingoes from
289 the northwest clade but was closer to canids in the southeastern clade (Fig. 4). This

290 relationship could imply the introgression of Alpine alleles into the Sandy genome however
291 further work would be needed to confirm this.

292

293

294 **Figure 4 title:** Neighbor-joining network analysis from mtDNA.

295 **Figure 4 legend:** The size of the circle represents the number of identical sequences and
296 small cross lines the number of SNPs on each branch. The analyses show that dingo Cooinda

297 is in the southeastern clade. Cooinda represents Alpine dingo Cooinda sequenced here, as
298 well as Alpine 2, Alpine 3 [22], MH035670 [55], and Typia [57]. Fraser Is represents the
299 Fraser Island 1-5 samples [22]. Zoo represents three dingoes from the New Zealand Zoo [55].
300 Shisanhang (Taiwan) is one of two samples from the region and is considered the root of the
301 network [19].

302

303 **DNA methylome**

304 To explore the regulatory landscape of dingo Cooinda, we performed whole genome bisulfite
305 sequencing [58] on genomic DNA extracted from whole blood. In concordance with other
306 adult vertebrates [59, 60], the Cooinda genome displays a typical bimodal DNA methylation
307 pattern. Over 70% of CpG dinucleotides are hypermethylated (levels higher than 80%), and
308 5% of CpG dinucleotides hypomethylated (methylated at 20% or lower) (Supplementary Fig.
309 8A).

310 Next, to determine the number and genomic distribution of putative regulatory regions, we
311 segmented the methylome into unmethylated regions (UMRs) and low-methylated regions
312 (LMRs) using MethylSeekR [61]. UMRs are fully unmethylated and largely coincide with
313 CpG island promoters, whereas LMRs display partial DNA methylation, characteristic of
314 distal regulatory elements such as enhancers in other mammalian models [62]. MethylSeekR
315 analysis identified ~ 19,000 UMRs and ~44,000 LMRs in line with previously reported
316 numbers of promoters and enhancers (e.g., human: ~18,000-20,000 UMRs and 40,000-
317 70,000 LMRs; mouse: ~17,000-19,000 UMRs and 55,000-90,000 LMRs) [61, 63]
318 (Supplementary Fig. 8BC).

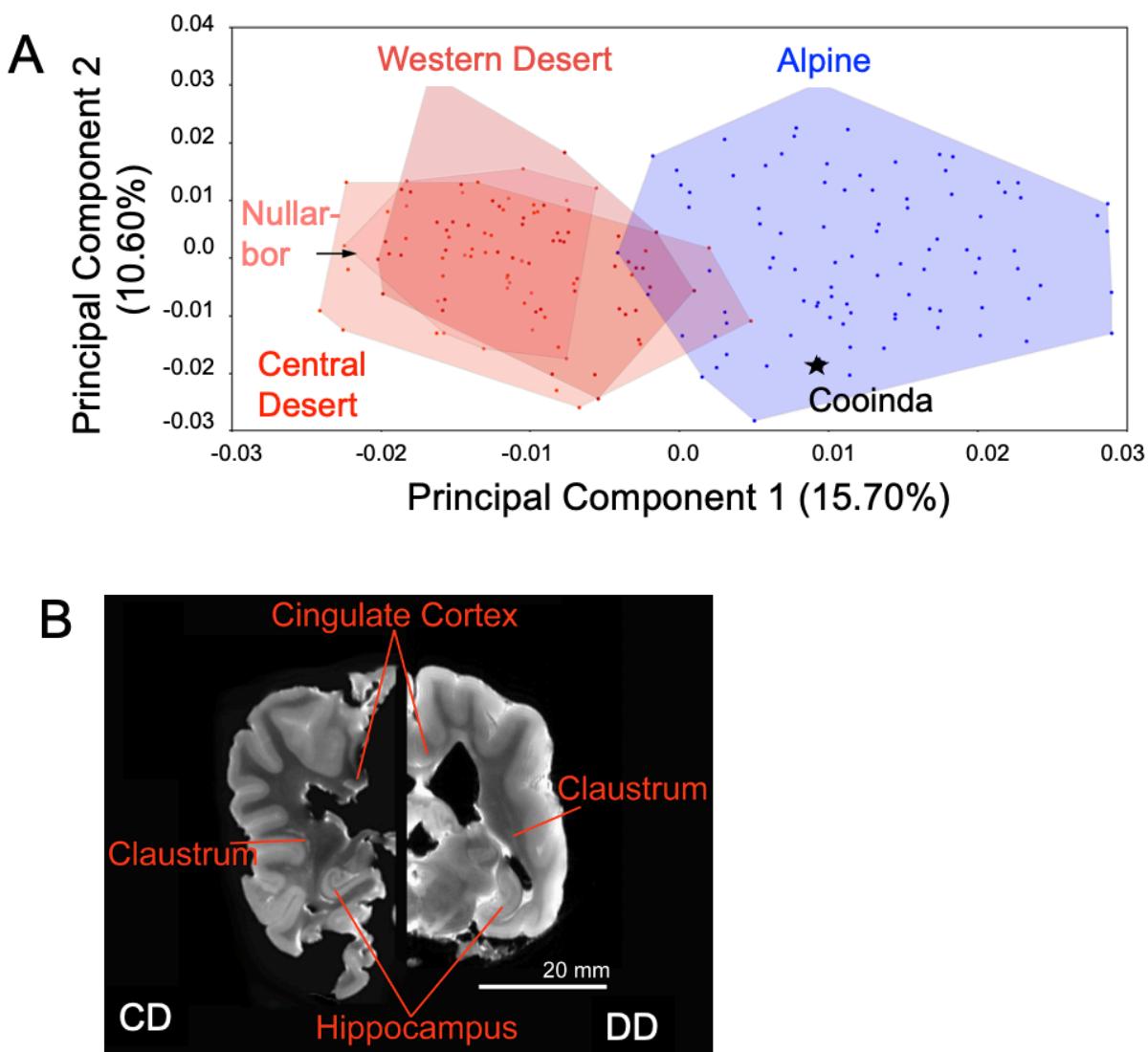
319 To establish whether proximal gene regulatory regions in the dingo Cooinda genome display
320 different methylation states in the Desert dingo, we converted Cooinda UMR coordinates

321 from Cooinda to the Desert dingo genome assembly using LiftOver (see Methods). Next, we
322 calculated average DNA methylation at Cooinda UMRs and their corresponding lifted-over
323 regions in the Desert dingo genome. We found two UMRs in the Cooinda dingo were
324 hypermethylated in the Desert dingo. These regions overlapped gene bodies of glucagon
325 receptor gene GCGR and histone deacetylase HDAC (Supplementary Fig. 8DE). GCGR is on
326 chromosome 9 and has a single transcript. This transcript is 99.8% identical at the amino acid
327 level between the dingoes. HDAC4 occurs on chromosome 25 and has 12 transcripts with all
328 12 transcripts being 100% identical at the amino acid level. Further studies are needed to
329 determine the functional significance of the observed differences in DNA methylation.
330 Altogether, this data provides a genome-wide resource for the putative gene regulatory
331 regions in the Alpine dingo genome, which will be instrumental for future studies.

332

333 **Morphology**

334 ***Skull Morphometrics***


335 Cranial morphology (Supplementary Fig. 9A), quantified using 3D geometric morphometric
336 landmarks, is that of a typical adult female Alpine dingo (Fig. 5). Within the morphospace
337 defined by the principal components explaining the greatest variation between specimens
338 (PC1, PC2), dingo Cooinda's position is clearly within the Alpine cluster (Fig. 5A). Alpine
339 and Desert dingoes are most clearly differentiated from one another along PC1 (15.70%), for
340 which increasing values describe crania with relatively shorter and broader rostra, shallower
341 orbitals with broader zygomatic arches at the glenoid fossa, prominent and anteriorly-
342 positioned frontals, a higher cranial vault, and prominent sagittal cresting tending to
343 terminate in a high, posteriorly-positioned occiput (inion). Positive values along PC2
344 (10.60%) mainly denote relatively gracile crania with posteriorly-angled frontals, poorly-
345 developed sagittal cresting, downward-sloping posterior calvarium and a low occipital

346 termination. The sampled Alpine and Desert groups exhibit a near-identical range of PC2
347 values. As the development of the sagittal cresting, calvarium shape and occipital prominence
348 are related to age and sex, with these traits tending to be more robust and well-developed in
349 males and older dingoes [64], the shared PC2 values across Alpine and Desert groups likely
350 reflect related demographic variation within the respective populations. Within each
351 population (Alpine, Central Desert, Western Desert), males and females overlapped in in
352 their position along PC2 (Supplementary Fig. 9), indicating an absence of strong dimorphism
353 associated with the major axes of shape variance. Despite considerable overlap, PC2 scores
354 tended to be lower in females compared to males in the Alpine and Western Desert
355 populations (see Supplementary Fig. 9, Supplementary Table 3).

356 The regression of cranial shape (Procrustes shape variables) on log centroid size (Procrustes
357 shape variables ~ log(centroid size)) revealed that size contributed significantly to shape
358 variance in the sample (3.91% variance, $p < 0.001$). Size was found to have a non-significant
359 effect on the morphological trajectory described by PC1, which separates Alpine and Desert
360 dingo populations (Fig. 1C), with only 1.23% of related shape-change predicted by centroid
361 size ($p = 0.124$). Conversely, size predicted 19.88% of shape-change associated with PC2 (p
362 < 0.0001). Alpine and Desert dingo populations share overlapping scores along PC2, and
363 variation along this axis reflects intra-population variability in demographic makeup (age,
364 sex) that should be expected within a natural population. As such, size differences play very
365 little to no role in determining Cooinda's morphological relationship to Desert dingoes but
366 are important to her position in the Alpine group (Supplementary Fig. 10BC). The low
367 proportion of variation captured in each principal component is a previously-noted feature of
368 the dingo cranial landmark dataset [65] and is unrelated to allometry.

369 **Brain imaging**

370 To supplement the morphological data, we quantified brain size. Using a thresholding
371 approach, we used the software 3D Slicer [66] to segment the whole brain as the region of
372 interest. Despite the canids being of very similar size the dingo brain (75.25cm^3) was 20%
373 larger than the dog brain (59.53 cm^3) (Fig. 5B).

374

375

376 **Figure 5 title:** Morphometrics and brain image of Cooinda from the Bargo Dingo Sanctuary,
377 NSW, Australia.

378 **Figure 5 legend:** (A) Principal Component ordination of geometric morphometric cranial
379 shape data indicating Cooinda's position in relation to Alpine and Desert dingoes. Blue
380 represents Alpine dingoes, and the red hues indicate dingoes from different Deserts that are
381 broadly overlapping. Dingoes from the Nullarbor overlap most with those from the Alpine
382 region. There is no overlap of dingoes from the Central desert with Alpine dingoes.(B) Brain
383 image, showing a hemispheric comparison of slices generated by Magnetic Resonance (MR)
384 imaging of Cooinda dingo (CD) and a similar-sized domestic dog (DD).

385

386 **Discussion**

387 Domestication has received much attention from diverse fields, reflecting the complexity of
388 the process and variation in its duration and intensity [5]. A notable gap in our understanding
389 of the principles of domestication has been the identification of a model system to test
390 Darwin's two-step predictions [2]. Here we provide the necessary groundwork to explore the
391 potential for dingoes to be a functional and evolutionary intermediate between wild wolves
392 and domestic dogs. One alternate hypothesis is that the process of domestication does not
393 proceed in a stepwise manner [4], but is continual process that represents an intensification of
394 the relationship between a wild species and humans [5].

395 In this study we compare our high-quality chromosome-level *de novo* assembly of the dingo
396 Cooinda genome with that of the Desert dingo [6], seven domestic dogs [27, 28, 36, 38-40]
397 and the Greenland Wolf [41]. Relative to the wolf and the domestic breeds the Australasian
398 dingo ecotypes are monophyletic. Future studies may include ancient dingo and south east
399 Asian specimens [3], the New Guinea Singing dog [4] and Chinese indigenous dogs [4].
400 Ancient specimens have potential to give insight into the evolutionary history of dingoes [3]
401 and further instruct the influence of domestic dog admixture [17]. New Guinea Singing Dog
402 may be the sister group to a monophyletic dingo lineage or perhaps more closely related to

403 the Alpine ecotype as suggested by the mtDNA network analyses [19] and cranial shape
404 studies [65]). Inclusion of Chinese indigenous dogs will facilitate determination of the
405 relationships among crown domestic dog breeds [4] and thereby facilitate determination of
406 the divergence date of dingoes and modern dogs.

407 Multiple large scale chromosomal inversions occur between the two dingo assemblies. There
408 are two large rearrangements on chromosome 16 and likely structural events on
409 Chromosomes 11, 25 and 26 (Supplementary Figs 7, 8). It is also possible that there are
410 multiple small inversions on the X chromosome. It is important to determine the frequency of
411 these events and whether breakpoints affect any regulatory regions or protein coding genes.
412 Inversions may maintain locally adapted ecotypes, while breakpoints may disrupt regulatory
413 regions or protein coding genes. Hager et al. [67] discovered a 41-megabase chromosomal
414 inversion that characterized defining traits of deer mice (*Peromyscus maniculatus*) and
415 implicated divergent selection in maintaining distinct ecotypes in the wild despite high levels
416 of gene flow. An inversion disrupting FAM134b has been associated with sensory
417 neuropathy in Border Collie dogs [68].

418 There is a single copy of AMY2B in both dingo genomes; however, they differ by a 6.4 kb
419 retrotransposon insertion present in the Desert dingo. As the retrotransposon is absent in the
420 Greenland wolf and Alpine dingo it would seem likely that the retrotransposon has inserted
421 into the Desert dingo and domestic dog lineages independently. LINE elements can generate
422 duplications through an RNA intermediate and have been associated with amylase
423 expansions in a range of species from humans to mice and rats to dogs [69, 70]. A 1.3kb
424 canid-specific LINE element in domestic dogs is associated with each amylase copy [70].
425 This expansion is predicted to increase the ability to digest starch [6, 71]. Field et al. [28]
426 compared the influence of *AMY2B*_copy number on the microbiomes of dingoes and German

427 Shepherd dogs. They observed distinct and reproducible differences that they hypothesized
428 may influence feeding behaviors. Further studies on *AMY2B* may be fruitful as copy number
429 may be an ecologically relevant mechanism to establish the role of a canid in the ecosystem.

430 Both dingo ecotypes exhibited low variation on the X chromosome, although it could be
431 argued that variation along the chromosome is not uniform (Fig. 2). Theoretical models
432 predict that genes on the X chromosome can have unusual patterns of evolution due to
433 hemizygosity in males. Sex chromosomes are predicted to exhibit reduced diversity and
434 greater divergence between species and populations compared to autosomes due to
435 differences in the efficacy of selection and drift in these regions [72, 73]. In canids, Plassais
436 et al. [74] show genetic variation in three genes on the X chromosome is strongly associated
437 with body size. Further studies of genetic variation of genes on the X chromosome within and
438 between ecotypes are likely informative.

439 We integrate the mtDNA genome assembly data with that previously collected from 29
440 canids in Australasia [6, 22, 54-56]. The mitochondrial genome has been used to infer
441 historical events in various species including canids, but the D-loop region has been difficult
442 to align. Here we show that the region can be folded to increase structural stability with
443 repeat number (Supplementary Fig. 8AB). We found 28, 10-bp repeats in dingo Cooinda
444 compared to 29 in the Desert dingo. The function of the proposed structures is unknown.
445 Still, folding the region into an extended repeat-dependent stem is expected to decrease the
446 time the DNA in the D-loop is single-stranded during replication. More speculatively, the
447 structure may have a regulatory function that influences mitochondrial bioenergetics and the
448 evolution of mtDNA [75]. Björnerfeldt et al. [76], found that domestic dogs have
449 accumulated nonsynonymous changes in mitochondrial genes at a rate faster than wolves
450 implying a relaxation of selective constraint during domestication.

451 Phylogenetic and network analyses show that dingo Cooinda has the dingo southeastern
452 Australian mtDNA type of the canine A1b4 subhaplogroup. This southeastern type has been
453 proposed to originate in southern China and includes dogs from Papua New Guinea [19, 22].
454 Based on mtDNA data, Zhang et al. [19] propose that the TMRCA for most dingoes dates to
455 6,844 years ago (8,048–5,609 years ago). This estimate is about 3,000 years older than the
456 first known fossil record [77] suggesting that at least two dingo mtDNA haplotypes colonized
457 Australia or older fossil records of dingoes in Australia have yet to be found.

458 Next, we compare the regulatory landscape of Cooinda dingo with that previously published
459 for the Desert dingo. In comparison to the Alpine dingo, the glucagon receptor gene GCGR
460 and HDAC4 are hypermethylated in the Desert dingo suggesting the potential for dietary or
461 immune differences between ecotypes. Highly methylated gene promoters often indicate a
462 transcriptionally repressed state, while unmethylated gene promoters specify a permissive
463 state [78]. Field et al. [6] previously proposed differences in the feeding behavior of dingoes
464 and wild dogs linked to their *AMY2B* copy number. GCGR is activated by glucagon and
465 initiates a signal transduction pathway that begins with the activation of adenylate cyclase,
466 which in turn produces cyclic AMP. Glucagon is considered the main catabolic hormone of
467 the body and is central to regulating blood glucose and glucose homeostasis [79]. In mice,
468 glucagon has anti-inflammatory properties [80]. HDAC4 is a member of the ubiquitously
469 important family of epigenetic modifier enzymes and has been implicated in processes
470 related to the formation and function of the central nervous system and metabolism. HDAC4
471 acts as a regulator of pattern-recognition receptor signaling and is involved in regulating
472 innate immune response [81]. In humans, mutations in HDAC4 have been linked with eating
473 disorders [82]. Overlapping conserved Nanopore/PacBio structural variants with these genes
474 identified no variants within GCGR and a single 35bp intronic insertion in HDAC4. The
475 functional impact (if any) of this insertion is unknown.

476 Dingo Cooinda's cranial morphology is consistent with the Alpine ecotype from the 20th
477 century. As the first cranial morphological assessment of an Alpine dingo considered to be
478 "pure" by genomic verification, this result is significant in that it suggests that the phenotypic
479 distinctiveness of Alpine dingoes from Desert dingoes is not exclusively the result of recent
480 domestic dog ancestry. Dog admixture has been the predominant explanation given [83]
481 primarily based on the fact that such ancestry is relatively enriched in the southeast region of
482 Australia compared to the north and west [84, 85]. An alternative explanation is that the
483 Alpine and Desert dingoes represent distinct evolutionary lineages. Koungoulos [65]
484 suggested that the cranial shape of Alpine and other southeastern dingoes shares broad
485 similarities with that of New Guinea Singing Dogs and is distinct from the more widespread
486 northwestern lineage [22]. However, these two scenarios are not mutually exclusive. Most
487 introgression likely occurs when a female dingo mates with a male domestic dog. In such
488 cases, extensive backcrossing will not exclude the domestic dog Y. Therefore, examining the
489 Y chromosome of males shown to be pure with the current battery of nuclear-encoded
490 microsatellites will illuminate genetic history. A combination of direct radiocarbon dating,
491 genetic sequencing and morphometric assessment for subfossil material will provide a more
492 confident picture of the nature of change or continuity between ancient and modern Alpine
493 dingoes.

494 Finally, we supplement our morphological data with magnetic resonance and computed
495 tomography data of Alpine dingo Cooinda's brain. Her brain was 20% larger than the
496 similarly sized domestic dog, which is consistent with the hypothesis that she was tamed but
497 not domesticated [3] (Fig. 1C). Our brain imaging data are also compatible with prior
498 comparisons that have used endocranial volume as a proxy for brain size, examining a small
499 sample of dingoes (see Geiger et al. [86]) compared to wolves, domestic, basal and
500 archaeological dogs [3]. Endocranial volume in a mixed sample of domestic dogs was shown

501 to be around 30 cm³ smaller than in wolves and jackals [87, 88], which is greater than the
502 15.7 cm³ difference between the brains of Cooinda and the domestic dog sampled here.
503 Similarly, brain mass has been shown to be 28.8% smaller in a broad sample (>400) of
504 domestic dogs as compared to wolves [87, 89], which also places the 20% difference between
505 Cooinda and the domestic dog as less pronounced than is seen for comparisons with the wild
506 counterpart (wolf). Brain size reductions are common among domesticated animals compared
507 to their wild counterparts, having been observed across many species, including sheep, pigs,
508 cats, and dogs [87, 90]. Smaller-sized brains, especially size reductions in regions of the
509 forebrain involved in the fight-or-flight response, have been associated with tameness and
510 reductions in fear-based response among domestic animals compared to wild animals [91].
511 These changes have also been linked to potential reductions in cognitive processing
512 requirements associated with inhabiting anthropogenic environments with lower complexity
513 [92, 93]. Moreover, brain size reductions appear to persist where domestic animals have re-
514 entered a wild environment and exist as feralized animals, at least under certain
515 circumstances [94-96], suggesting that prolonged past exposure to the human niche may be
516 detectable in brain traits. An alternative hypothesis is that differences in brain size is due to
517 environmental adaptation or perhaps Cooinda was an anomaly. Examination of brain size
518 may represent a fruitful pathway for further investigation determining the status of the dingo
519 as a potential feralized animal.

520 There are at least three possible explanations supporting the existence of two dingo ecotypes
521 (Alpine and Desert). The first is they are ancient Asian lineages that have come into sympatry
522 in Australia. One alternate hypothesis is that a single lineage spread through southeast Asia
523 and then diverged in Australia. There are no major geographical divides in continental
524 Australia, suggesting any differences may reside at the level of biological interactions or they
525 are influenced by climate. In the former case, one possibility is that one or more inversions

526 may maintain the ecotypes [67]. An intriguing alternate hypothesis is that responses to
527 parasites or venomous animals may occur if there are genetic differences in the responses of
528 the ecotypes. In Nigeria, population genomic analyses of 19 indigenous dogs identified 50
529 positively selected genes including those linked immunity that likely involve adaptations to
530 local conditions [97]. Experimentally it has been shown that adaptation to different parasites
531 or snakes can influence the invasion success of three-spined sticklebacks (*Gasterosteus*
532 *aculeatus*) and may represent a barrier to gene flow, even between closely related connected
533 populations [98]. In Australia, various parasites and venomous animals have broadly similar
534 distributions to the Alpine ecotype, such as the paralysis tick (*Ixodes holocyclus*) and the red-
535 bellied black snake (*Pseudechis porphyriacus*) [99].

536

537 **Conclusions**

538 Here we characterize dingo Cooinda and propose that she be considered the archetype for
539 Australasian dingoes. Characterizing an archetype opens potential for testing Darwin's [2]
540 two-step model of domestication as an alternative to the hypothesis that domestication
541 represents a continuum [5]. Under the scenario that the dingo has been unconsciously
542 selected, we predict genomic signatures of tameness, as an outcome of unconscious
543 selection [100-102]. Morphologically, we predict lowest shape variation in the rostrum
544 and facial skeleton in the wolf (natural selection), intermediate in the dingo (unconscious
545 selection) and highest in domestic breeds (artificial selection) (i.e., rank order wolf < dingo
546 < modern breeds). Wild populations are more likely to show a narrow range of shape
547 variation about a fitness optimum, whereas changed environmental conditions could
548 support and promote the survival of forms that are farther from the adaptive peak. This is
549 evidenced by earlier research that has shown cranial morphological variation in domestic
550 dogs exceeds that exhibited by the Order Carnivora [26]. In terms of brain size, we predict

551 the magnitude of relative brain size difference will be greater between dingoes and modern
552 breeds than between wolves and dingoes (i.e., rank order wolf> dingo >> modern breeds).
553 Brain size reduction is pronounced in artificial selection and associated with the lack of
554 fear avoidance behavior in domesticates [103]. Dingoes do not show domesticate level
555 reductions in ‘fight or flight’ response [29], and our initial data appear to be at least
556 consistent with this based on the relative brain volume we report.

557

558 **Methods**

559 **Sampling: Cooinda the dingo**

560 In selecting an animal for the project, it was considered essential to select an individual that
561 represented the Alpine ecotype, which is found around Sydney, New South Wales (NSW).
562 The individual selected was bred at the Dingo Sanctuary Bargo, NSW, approximately 100km
563 west of Sydney, and has been included in multiple previous studies [6, 29]. Cooinda is the
564 litter sister to Typia from whom short read data had previously been obtained [54]. Cooinda’s
565 parents (Mirri Mirri and Maka), her brothers Typia and Gunya and her were all ginger in
566 color and determined to be pure by microsatellite testing [104]. Mirri Mirri and Maka were
567 independently found in the Alpine region of New South Wales.

568 An aim of the study is to link genetic and morphological variation, so we provide a brief
569 description of her here. As is typical of Alpine dingoes Cooinda was stocky in appearance
570 with a broad skull and prominent eyes. She was light ginger in color, with dark brown eyes
571 with white paws and chest (Fig. 1AB). Her double coat was not oily like many modern breed
572 dogs and did not have a dog-like odor when wet. She had a pointed muzzle with a broad skull
573 and hooded erect ears. She could turn her neck 180 degrees in any direction. She had lean
574 muscular legs with a long bottle-shaped bushy tail. She weighed 22kg and stood 46cm at the

575 withers. She did not have dewclaws and came into estrus annually. Dingo Cooinda had a loud
576 and clear howl and did not have a modern-dog bark [105]. Cooinda died in 2019 at 10 years
577 of age.

578

579 **Chromosome-level genome assembly**

580 ***DNA extraction and sequencing***

581 Genomic DNA for the Pacific Bioscience Single Molecule Real-Time (SMRT) sequencing
582 was prepared from 2 mL of fresh blood using the genomic-tip 100/G kit (Qiagen, Hilden,
583 Germany). This was performed with additional RNase (Astral Scientific, Taren Point,
584 Australia) and proteinase K (NEB, Ipswich, MA, USA) treatment following manufacturer's
585 instructions. Isolated gDNA was further purified using AMPure XP beads (Beckman Coulter,
586 Brea, CA, USA) to eliminate sequencing inhibitors. DNA purity was calculated using a
587 Nanodrop spectrophotometer (Thermo Fisher Scientific). Molecular integrity was assessed by
588 pulse-field gel-electrophoresis using the PippinPulse (Sage Science) with a 0.75% KBB gel,
589 Invitrogen 1kb Extension DNA ladder and 150 ng of DNA on the 9hr 10-48kb (80V)
590 program. SMRTbell libraries with 20kb insert size were CLR sequenced on Sequel I
591 machines with 2.0 chemistry. Sequencing included 18 SMRT cells with a total polymerase
592 read length 94.25 Gb.

593 DNA for the Oxford Nanopore (ONT) PromethION sequencing DNA (1 μ g) was prepared
594 for ONT sequencing using the 1D genomic DNA ligation kit (SQK-LSK109, ONT)
595 according to the standard protocol. Long fragment buffer was used for the final elution to
596 exclude fragments shorter than 1000 bp. In total, 119 ng of adapted DNA was loaded onto a
597 FLO-PRO002 PromethION flow cell and run on an ONT PromethION sequencing device
598 (PromethION, RRID:SCR_017987) using MinKNOW (18.08.2) with MinKNOW core (v1.
599 14.2). Base-calling was performed after sequencing with the GPU-enabled guppy basecaller

600 (v3.0.3) using the PromethION high accuracy flip-flop model with config
601 ‘dna_r9.4.1_450bps_hac.cfg’.

602 For the 10X Genomics Chromium sequencing, DNA was prepared following the protocol
603 described above for SMRT sequencing. A 10X GEM library was barcoded from high-
604 molecular-weight DNA according to the manufacturers recommended protocols. The
605 protocol used was the Chromium Genome Reagent Kits v2 (Document # CG00043 revision
606 B). QC was performed using LabChip GX (PerkinElmer, MA, USA) and Qubit 2.0
607 Flurometer (Life Technologies, CA, USA). The library was run on a single lane of a v2
608 patterned flowcell. Sequencing was performed in 150bp paired-end sequencing mode on a
609 single lane on the Illumina HiSeq X Ten platform with a version 2 patterned flowcell.

610 For the Bionano optical mapping high molecular weight (HMW) DNA was isolated from
611 fresh blood (stored at 4°C) using the Bionano Prep Blood DNA Isolation Protocol following
612 [28]. HMW DNA (~190 ng/µL) was labelled (BNG, Part #20351) at DLE-1 recognition sites,
613 following the Bionano PrepTM Direct Label and Stain Protocol (BNG, Document #30206
614 revision C). Labelled DNA was loaded directly onto Bionano Saphyr Chips (BNG, Part
615 #20319), without further fragmentation or amplification, and imaged using a Saphyr
616 instrument to generate single-molecule optical maps. Multiple cycles were performed to
617 reach an average raw genome depth of coverage of 180X.

618 For the Hi-C sequencing the assembly was scaffolded to chromosome-length by the DNA
619 Zoo following the methodology described here: www.dnazoo.org/methods. Briefly, an *in situ*
620 Hi-C library was prepared [106] from a blood sample of the same female and sequenced to
621 29X coverage (assuming 2.6 Gb genome size).

622 ***Workflow***

623 For the initial assembly, The SMRT and ONT reads were corrected and assembled with the
624 Canu assembler (Canu, RRID:SCR_015880; v1.8.0) [31] with the command “canu
625 correctedErrorRate=0.105 corMhapSensitivity=normal corOutCoverage=100 -p Cooinda -d
626 assembly genomesize=2.3g -pacbio-raw Cooinda_SMRT_ONT_combined.fasta. The
627 resulting contigs were polished with two rounds of the Arrow pipeline, each consisting of
628 aligning the raw SMRT reads to the assembly with pbmm2
629 (<https://github.com/PacificBiosciences/pbmm2>) and correcting the sequencing errors using
630 gcpp [32].

631 The Arrow-polished SMRT/ONT assembly was scaffolded using Alpine dingo 10X linked-
632 reads as in ARCS [107]. The 10X data was aligned using the linked-read analysis software
633 provided by 10X Genomics, Long Ranger, v2.1.6 [108]. Misaligned reads and reads not
634 mapping to contig ends were removed, and all possible connections between contigs
635 were computed keeping best reciprocal connections. Finally, contig sequences were joined,
636 spaced by 10kb with stretches of N's, and if required reverse complemented.

637 To further improve the assembly, another round of polishing was performed by aligning the
638 Illumina short reads from the 10X Chromium sequencing to the assembly using minimap2
639 [109] (v2.16) and correcting the sequencing errors using Racon (Racon, RRID:SCR_017642;
640 v1.3.3) [110].

641 The Hi-C data was processed using Juicer (Juicer, RRID:SCR_017226) [111], and used as
642 input into the 3D-DNA pipeline [112] to produce a candidate chromosome-length genome
643 assembly. We performed additional curation of the scaffolds using Juicebox Assembly Tools
644 [113].

645 After scaffolding and correction, all raw SMRT and ONT reads were separately aligned to
646 the assembly with Minimap2 (v2.16) (-ax map-pb/map-ont) [109]. The combined alignments
647 were used by PBJelly (pbsuite v.15.8.24) [114] for one round of gap filling.

648 Following scaffolding, another round of polishing was done to further improve the assembly.
649 Polishing was performed by aligning the Illumina short reads from the Chromium sequencing
650 to the assembly using Long Ranger v2.2.2 and correcting the SNVs and indels using Pilon
651 (Pilon, RRID:SCR_014731) [33].

652 The Pilon-polished genome underwent a final scaffold clean-up using Diploidocus as
653 described in Edwards et al. [27] to generate a high-quality core assembly, remove low-
654 coverage artefacts and haplotig sequences, and filter any remaining vector/adapter
655 contamination. This reduced the final number of scaffolds to 632 (780 contigs), including the
656 mtDNA.

657 Assembly completeness was evaluated using BUSCO v5.2.2 [37] short mode against the
658 Carnivora_ob10 data set (n=14,502) implementing BLAST+ v2.11.0 [115], HMMer v3.3
659 [116], and Metaeuk v20200908 [117]. “Complete” BUSCO genes with available sequences
660 were compiled across Alpine dingo Cooinda and nine canid genomes (Desert dingo [6], two
661 Basenji’s (China and Wags) [27], two German shepherd dogs (Nala and Mischa) [28, 36],
662 Great Dane [38], Labrador [39], Dog10K Boxer [40], and Greenland Wolf [41]) using
663 BUSCOMP v1.0.1. Additional kmer-based assembly completeness and quality evaluations
664 were performed using Merquary v21.3 [42] from the 10x reads.

665 ***Chromosome mapping and variation***

666 Chromosome mapping was completed in 2019 using the CanFam v3.1 reference genome
667 downloaded from Ensembl (GCF_000002285.3 [118]). Full length chromosomes were
668 renamed with a CANFAMCHR prefix and used for reference mapping. The final Cooinda

669 Alpine dingo genome assembly was mapped onto the CanFam3.1 reference genome using
670 Minimap2 v2.16 [109] (-x asm5 --secondary=no --cs) to generate PAF output. Scaffolds were
671 assigned to CanFam3.1 chromosomes using PAFScaff v0.2.0 [119] based on Minimap2-
672 aligned assembly scaffold coverage against the reference chromosomes. Scaffolds were
673 assigned to the chromosome with highest total coverage. Scaffolds failing to map onto a
674 chromosome were rated as "Unplaced".

675 ***Comparison of Alpine and Desert dingo genomes***

676 To investigate the variation between the dingo ecotypes we used Circos [43]. Circos uses a
677 circular ideogram layout to facilitate the display of relationships between the genomes using
678 ribbons, which encode the position and number of SNV's, small indels and large indels for
679 each of the 38 autosomes and the X chromosome. SNV and indel numbers were calculated
680 using MUMmer4 'show-snp' script following pairwise alignments [44] (v4.0.0 beta 2).

681 Synteny plot between the Alpine and published Desert dingo assembly [6] was conducted
682 using GenomeSyn [47]. With GenomeSyn the position of the genome is indicated by a black
683 horizontal ruler with tick marks. Syntenic blocks between the genomes are displayed as light
684 grey regions with white illustrating non-syntenic regions. Inversions are represented by red-
685 brown curves.

686 We used GeMoMa v1.6.2beta [48] to further investigate whole chromosomal events. Here we
687 mapped genes onto the Alpine Dingo assembly following previously described
688 protocols [28]. Subsequently, we checked the synteny of the genes in the reference genome
689 and the target genome using the module GeMoMa module SynthenyChecker. This module
690 uses the GeMoMa annotation with information for reference gene and alternative to
691 determine the best homolog of each transcript. Comparing the order of genes in the reference
692 and the target genome, it allows to determine breakpoints of chromosomal events.

693 **Phylogenetic analyses**

694 All 39 full-length chromosomes in the final assembly were aligned to the corresponding
695 chromosomes in nine published canine *de novo* genome assemblies (Desert dingo [6], two
696 basenjis (China and Wags) [27], two German shepherd dogs (Nala and Mischa) [28, 36],
697 Great Dane [38], Labrador [39], Dog10K Boxer [40], and Greenland Wolf [41]) using
698 MUMmer4 [44]. SNVs and small indels (deletions and insertions <50bp) were called using
699 MUMmer4 call-SNPs module for all possible pairings (Supplementary Table 2). Copy
700 number (CNV) and SVs were also called using svmu (v0.2) [120] however these were not
701 included in the phylogeny. SNV's and indels were analyzed separately. Distance matrices
702 were generated from the inter-canid differences in SNV's and indels and then transformed to
703 WA distance [49]. Glazko et al. [49] report WA has better phylogenetic properties against
704 normalization of genome sizes than other coefficients.

705 Phylogenetic analyses using maximum parsimony were generated from the R-package
706 'phangorn' version 2.8.1 [121]. The analyses were run as unrooted networks to test the
707 hypothesis that the wolf was the outgroup. To test the stability of the nodes, a Bayesian
708 bootstrap was applied to the original distance matrix using the program bayesian_bootstrap
709 (github.com/lmc2179/bayesian_bootstrap) and the phylogenetic analysis was re-calculated.
710 This process was iterated 500,000 times. The consensus phylogenetic trees were rooted on
711 the branch leading to wolf, the values indicate the percentage of times that a node occurred.
712 The Y-axis and branch lengths were rescaled to the original number of differences in SNV's
713 and indels among the taxa. The retention index that measures the fit of the network to the
714 distance matrix exceeded 94% for all 500,000 trees of SNVs and indels.

715 Non-metric multidimensional scaling (NMDS) was calculated from the distance matrices and
716 scores for the taxa calculated from the largest two axes. Minimum spanning trees were

717 calculated among the scores in NMDS space. NMDS and minimum spanning trees were
718 calculated in Past 4.04 [122].

719

720 **Mitochondrial genome**

721 *Genome assembly workflow*

722 A 46,192 bp contig from the assembly mapped onto the CanFam reference mtDNA
723 (NC_002008.4), constituting a repeat of approx. 2.76 copies of the mtDNA. The CanFam
724 mtDNA was mapped onto this contig using GABLAM v2.30 [123] and full-length mtDNA
725 copy with highest similarity to CanFam mtDNA was extracted along with 8 kb each side.
726 PacBio reads were mapped onto this mtDNA contig using minimap2 v2.22 [109] and 10x
727 linked reads mapped using BWA v0.7.17 [124] for polishing with HyPo v1.0.3 [125] (32.7
728 kb assembly size at 673X coverage). The CanFam mtDNA was re-mapped onto the polished
729 assembly using GABLAM v2.30.5 [123] and a 16,719 bp sequence extracted, starting at
730 position 1 of the CanFam sequence. The mtDNA was annotated with the MITOS2 server
731 [126] for submission to NCBI GenBank (accession: OP476512).

732 *Comparison of dingo mtDNA genomes*

733 The mtDNA genome of Alpine dingo Cooinda was compared with the Desert dingo [6].
734 Direct observation of the D-loop region in the two dingoes suggested there was a 10bp repeat
735 and the canids differed in the number of repeats. Imperfect tandem repeats have previously
736 been reported in canids [50]. The D-loop region in Alpine dingo Cooinda was folded using
737 the program mfold [52] to determine any underlying structures.

738 To test whether the mtDNA from dingo Cooinda fell within the previously described SE
739 clade we compared the assembly with 33 other canids, including dogs from New Guinea and
740 Taiwan [6, 22, 54, 55]. In this case multiple large gaps were in some of the ancient samples,

741 so the initial assembly was modified based on the predicted secondary structure folding. A
742 inter neighbor-joining network analysis with $\alpha = 0.5$ was completed in POPART [53]. A
743 limitation of this analyses is that large sections of multiple mtDNA's were unknown, so it
744 was not possible to distinguish deletions from missing data. Understanding these differences
745 may be biologically important, particularly if the predicted folding of the D-loop region is
746 biologically significant.

747 **DNA methylome**

748 *MethylC-seq library preparation*

749 Genomic DNA was extracted from whole blood using DNeasy Blood & Tissue kit (Qiagen,
750 USA). MethylC-seq library preparation was performed as described previously [127].
751 Briefly, 1 ug of genomic DNA was sonicated to an average size of 300 bp using a Covaris
752 sonicator. Sonicated DNA was then purified, end-repaired and 3'-adenylated followed by the
753 ligation of methylated Illumina TruSeq sequencing adapters. Library amplification was
754 performed with KAPA HiFi HotStart Uracil+ DNA polymerase (Millenium Science Pty Ltd).

755 *MethylC-seq data analysis*

756 The methylome library was sequenced on the Illumina HiSeq X platform (150 bp, PE),
757 generating 377M reads. Sequenced reads in fastq format were trimmed using the
758 Trimmomatic software (ILLUMINACLIP:adapter.fa:2:30:10 SLIDINGWINDOW:5:20
759 LEADING:3 TRAILING:3 MINLEN:50). Trimmed reads were mapped
760 (GCA_012295265.2_UNSW_AlpineDingo_1.0_genomic.fna genome reference, containing
761 the lambda genome as chrLambda) using WALT with the following settings: -m 10 -t 24 -N
762 10000000 -L 2000. Mapped reads in SAM format were converted to BAM format; BAM files
763 were sorted and indexed using SAMtools. Duplicate reads were removed using Picard Tools
764 v2.3.0. Genotype and methylation bias correction were performed using MethylDackel

765 (MethylDackel extract dingo_lambda.fasta \$input_bam -o \$output --mergeContext --
766 minOppositeDepth 5 --maxVariantFrac 0.5 --OT 10,140,10,140 --OB 10,140,10,140). The
767 numbers of methylated and unmethylated calls at each genomic CpG position were
768 determined using MethylDackel (MethylDackel extract dingo_lambda.fasta \$input_bam -o
769 output --mergeContext). Segmentation of hypomethylated regions into CpG-rich
770 unmethylated regions (UMRs) and CpG-poor low-methylated regions (LMRs) was
771 performed using MethylSeekR (segmentUMRsLMRs(m=meth, meth.cutoff=0.5,
772 nCpG.cutoff=5, PMDs = NA, num.cores=num.cores, myGenomeSeq=build,
773 seqLengths=seqLengths(build), nCpG.smoothing = 3, minCover = 5).
774 Cooinda UMR coordinates were converted to the Desert dingo genome assembly using
775 LiftOver following genomewiki.ucsc.edu pipeline
776 (http://genomewiki.ucsc.edu/index.php?title=Minimal_Steps_For_LiftOver). Briefly, the
777 query (Desert dingo) genome build was split into individual scaffolds using *faSplit* (i). The
778 we performed pairwise sequence alignment of query sequences from (i) against the Cooinda
779 genome build using BLAT, Then, coordinates of .psl files were changed to parent coordinate
780 system using *liftUp* and alignments were chained together using *axtChain*. Chain files were
781 combined and sorted using *chainMergeSort*; alignment nets were made using *chainNet*.
782 Finally, liftOver chain file was created using *netChainSubset*. Cooinda UMRs in .bed format
783 were lifted over to Desert dingo genome assembly using created liftOver chain file. Average
784 methylation was calculated for Cooinda UMRs and compared to that of corresponding lifted-
785 over regions in the Desert dingo genome. Cooinda UMRs with >50% methylation increase in
786 Desert dingo genome were considered as hypermethylated in the Desert dingo.
787

788 **Morphology**

789 ***Skull Morphometrics***

790 To examine cranial morphology, we obtained a 3D model of Cooinda's cranium using an
791 Artis Pheno Computed Tomography (CT) Scanner. The skull was damaged slightly when the
792 brain was extracted, so the damaged region (dorsal part of the calvarium) was reconstructed
793 using Blender to reassemble the separated fragment following guidelines for digital specimen
794 reconstruction outlined by Lautenschlager [128] (Supplementary Fig. 10A). Geometric
795 morphometric landmarks (n=45) were collected on the 3D cranial model using Stratovan
796 Checkpoint (Stratovan Corporation, Davis, CA version 2018.08.07) and analyzed with
797 MorphoJ [129], following the landmarking protocol used for dingo crania by Koungoulos
798 [65]. This approach uses 45 landmarks along the left side of the cranium, covering all major
799 anatomical features and regions, excepting a few fragile processes which are frequently lost
800 in prepared specimens (Supplementary Fig. 11; Supplementary Table 4). The cranial
801 landmarks collected on the Cooinda cranium were incorporated into an existing data set
802 comprising 91 Alpine dingoes and 101 Desert dingoes [65] and subject to Procrustes
803 superimposition to remove all non-shape differences, due to translation, rotation and scaling
804 [130]. The resultant Procrustes shape variables were ordinated using Principal Component
805 Analysis (PCA) to assess the cranial morphology of Cooinda in relation to other dingoes. To
806 assess the impact of allometry on cranial shape variation in the sample, a regression of
807 Procrustes shape variables against log centroid size was performed using MorphoJ [129].
808 Residuals were extracted from this regression and ordinated using PCA (see Supplementary
809 Material).

810 ***Brain imaging***

811 Cooinda's brain and that of a domestic dog (Kelpie) of the same body size were extracted.
812 Brains of these animals, which died within 2 weeks of each other, were fixed in Sigma-

813 Aldrich 10% Neutral Buffered Formalin (NBF) after extraction and were washed with Gd
814 DTPA (gadolinium-diethylenetriamine pentaacetic acid) solution prior to imaging. Brains
815 were scanned using high-resolution magnetic resonance imaging (MRI). A Bruker Biospec
816 94/20 9.4T high field pre-clinical MRI system was used to acquire MRI data of a fixed dingo
817 and domestic dog brain. The system was equipped with microimaging gradients with a
818 maximum gradient strength of 660mT/m and a 72mm Quadrature volume coil. Images were
819 acquired in transverse and coronal orientation using optimized 2D and 3D Fast Spin Echo
820 (FSE) and Gradient Echo (MGE) methods. Image resolution was 200x200x500 and 300x300
821 microns isotropic for type 3D and 2D pulse sequences, respectively. To quantify brain size,
822 we used the open-source software 3D Slicer “Segment Statistics” module [66]. The software
823 considers the pixel spacing and slice thickness set to calculate the volume accurately. The
824 threshold was empirically set to the grayscale intensity 1495, where everything below that is
825 background, and ventricles and everything above that is the brain.

826 Acknowledgements

827 Comments from four reviewers improved the manuscript. We would like to thank Luci
828 Ellem, and Dingo Sanctuary Bargo for providing frequent access to Cooinda. Picture of
829 Cooinda was taken by Luci Ellem. Staff at the Vineyard Veterinary Hospital provided
830 constant encouragement. Mike Archer suggested the usage of the term “archetype” and we
831 thank him for valuable taxonomic discussions. Richard Melvin conformed the purity of
832 Cooinda using microsatellites. We thank Shyam Gopalakrishnan and Simon Ho for
833 discussions and Hauke Koch for assistance with translation. SMRT sequencing was
834 conducted at the Ramaciotti Center for Comparative Genomics at University of New South
835 Wales (UNSW). The ONT, 10X Chromium and Bionano genomics data were collected
836 within the Kinghorn Centre for Clinical Genomics at the Garvan Institute of Medical
837 Research, Sydney, Australia and the Hi-C data at Baylor College of Medicine. The high field

838 pre-clinical MRI system was located at the Biological Resources imaging Laboratory at
839 UNSW. Thanks to Jiaming Song for the GenomeSyn analyses, Mihwa Lee for help with
840 DNA folding and Tim Smith for synteny plots. Bootstrapping was on the Wesleyan
841 computing cluster. Thanks go to the facilities of Sydney Imaging at the University of Sydney,
842 and the expertise of Pranish Kolakshyapati in generating the Artis Pheno CT scans of
843 Cooinda's cranium. Finally, we thank Sandy Ingelby and Harry Parnaby of the Australian
844 Museum for their assistance in facilitating scans of Cooinda's cranium.

845

846

847 **Availability of supporting data and materials**

848 The chromosomal assembly is available at GCA_012295265.2. The mtDNA and has been
849 submitted to NCBI GenBank (accession: OP476512). The methylation data is available at
850 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212509>. The 3D Cranial landmark
851 data are available on Figshare at
852 https://figshare.com/articles/dataset/Cooinda_Alpine_Dingo_3D_Cranial_Landmarks/205230
853 [4](#). The raw Dicom data for the magnetic resonance imaging (MRI) of the Alpine dingo and
854 domestic dog brain are available on Figshare at
855 https://figshare.com/articles/dataset/Dicom_data_MRI_Alpine_dingo_and_domestic_dog_bra
856 [in/20514693](#).

857

858

859

860 **Abbreviations**

861 **BLAST**: Basic Local Alignment Search Tool; **BMG**: Bionano Genomics; **bp**: base pairs;
862 **BUSCO**: Benchmarking Universal Single-Copy Orthologs; **CHD**: Canine hip dysplasia; **d.p.**:
863 decimal point; **CNV**: Copy number variant; **gDNA**: genomic DNA; **GSD**: German Shepherd
864 Dog; **HMM**: hidden Markov model; **HME**: High Molecular Weight; **ONT**: Oxford Nanopore
865 Technologies; **ORF**: open reading frame; **PacBio**: Pacific Biosciences; **PCR**: polymerase
866 chain reaction; **qPCR**: quantitative polymerase chain reaction; **RNA-seq**: RNA sequencing;
867 **s.f.**: significant figure; **SMRT**: single-molecule real time; **SNV**: single-nucleotide variant; **SV**;
868 structural variant

869

870 **Ethics approval and consent to participate**

871 All experimentation was performed under the approval of the University of New South Wales
872 Ethics Committee (ACEC ID: 16/77B).

873

874 **Competing interests**

875 The authors declare that they have no competing interests.

876

877 **Funding**

878 This work was supported by an Australian Research Council Discovery award to J.W.O.B.
879 (DP150102038). M.A.F. is funded by NHMRC APP5121190. M.A.F. is supported by a
880 National Health and Medical Research Council fellowship (APP5121190). L.A.B.W. is
881 supported by an Australian Research Council Future Fellowship (FT200100822). E.L.A. was
882 supported by the Welch Foundation (Q-1866), a McNair Medical Institute Scholar Award, an
883 NIH Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375), a US-Israel
884 Binational Science Foundation Award (2019276), the Behavioral Plasticity Research Institute

885 (NSF DBI-2021795), NSF Physics Frontiers Center Award (NSF PHY-2019745), and an
886 NIH CEGS (RM1HG011016-01A1). Hi-C data were created by the DNA Zoo Consortium
887 (www.dnazoo.org). DNA Zoo is supported by Illumina, Inc.; IBM; and the Pawsey
888 Supercomputing Center. The Ramaciotti Centre for Genomics acknowledge infrastructure
889 funding from the Australian Research Council (LE150100031), the Australian Government
890 NCRIS scheme administered by Bioplatforms Australia, and the New South Wales
891 Government RAAP scheme.

892 **Author contributions**

893 JWOB coordinated the project and wrote the initial draft. MAF performed variation analyses.
894 BDR and RJE performed and assisted with the genome assembly, polishing and KAT
895 analysis. LABW and LGK undertook cranial imaging and LGK collected cranial
896 morphometric data. The DNA Zoo initiative, including OD, AO, EA performed and funded
897 the Hi-C experiment. OD and ELA conducted the Hi-C analyses. BC performed the
898 phylogenomic analyses. JK performed the GeMoMa analyses including gene order
899 predictions. OB and KS performed and funded the whole genome bisulphite sequencing and
900 analysis. Eva Chan and Vanessa Hayes collected the Bionano data and performed the
901 analyses. Rob Zammit obtained the initial blood samples and extracted the brain. All authors
902 edited and approved the final manuscript. All authors edited and approved the final
903 manuscript.

904

905

906 References

- 907 1. Darwin C. *On the origin of species*. London: John Murray; 1858.
- 908 2. Darwin C. *The variation of animals and plants under domestication*. New York:
909 Orange Judd & Co; 1868.
- 910 3. Ballard JWO and Wilson LAB. The Australian dingo: untamed or feral? *Front Zool*.
911 2019;16:19. doi:10.1186/s12983-019-0300-6.
- 912 4. Zhang SJ, Wang GD, Ma P, Zhang LL, Yin TT, Liu YH, et al. Genomic regions
913 under selection in the feralization of the dingoes. *Nat Comm*. 2020;11:671.
914 doi:10.1038/s41467-020-14515-6.
- 915 5. Vigne JD. The origins of animal domestication and husbandry: a major change in the
916 history of humanity and the biosphere. *C R Biol*. 2011;334 3:171-81.
917 doi:10.1016/j.crvi.2010.12.009.
- 918 6. Field MA, Yadav S, Dudchenko O, Esvaran M, Rosen BD, Skvortsova K, et al. The
919 Australian dingo is an early offshoot of modern breed dogs. *Sci Adv*.
920 2022;8:eabm5944.
- 921 7. White J. *Journal of a voyage to New South Wales : with sixty-five plates of non
922 descript animals, birds, lizards, serpents, curious cones of trees and other natural
923 productions*. London: Debrett, J.; 1790.
- 924 8. Meyer FAA. *Systematisch-summarische Uebersicht der neuesten zoologischen
925 Entdeckungen in Neuholland und Afrika: nebst zwey andern zoologischen
926 Abhandlungen*. Leipzig: Dykische Buchhandlung; 1793.
- 927 9. Crowther MS, Fillios M, Colman N and Letnic M. An updated description of the
928 Australian dingo (*Canis dingo* Meyer, 1793). *J Zool*. 2014;293 3:192-203.
929 doi:10.1111/jzo.12134.
- 930 10. Smith BP, Cairns KM, Adams JW, Newsome TM, Fillios M, Deaux EC, et al.
931 Taxonomic status of the Australian dingo: the case for *Canis dingo* Meyer, 1793.
932 *Zootaxa*. 2019;4564:173-97. doi:10.11646/zootaxa.4564.1.6.
- 933 11. Jackson SM, Fleming PJS, Eldridge MDB, Archer M, Ingleby S, Johnson RN, et al.
934 Taxonomy of the dingo: It's an ancient dog. *Aust Zool*. 2021;41 3:347-57.
- 935 12. Mayr E. *Genetics and the origin of species*. New York: Columbia University Press;
936 1942.
- 937 13. Jackson SM, Fleming PJS, Eldridge MDB, Ingleby S, Flannery T, Johnson RN, et al.
938 The dogma of dingoes-taxonomic status of the dingo: a reply to Smith et al. *Zootaxa*.
939 2019;4564 1.
- 940 14. Jackson SM, Groves CP, Fleming PJS, Aplin KP, Eldridge MDB, Gonzalez A, et al.
941 The wayward dog: Is the Australian native dog or dingo a distinct species? *Zootaxa*.
942 2017;4317 2:201-24. doi:10.11646/zootaxa.4317.2.1.
- 943 15. Corbett LK. *The dingo in Australia and Asia*. Sydney: University of New South
944 Wales Press; 1995.
- 945 16. Corbett L. The conservation status of the dingo *Canis lupus dingo* in Australia, with
946 particular reference to New South Wales: threats to pure dingoes and potential
947 solutions. In: Dickman CR and Lunney D, editors. *A Symposium on the Dingo*
948 Sydney: R Zool Soc NSW; 2001.
- 949 17. Corbet L. *The Australian dingo*. In: Merrick JR, Archer M, Hickey GM and Lee SY,
950 editors. *Evolution and biogeography of Australian vertebrates*. Oatlands, NSW:
951 Australian Scientific Publishing Ltd.; 2006.
- 952 18. Jones E. Hybridisation between the dingo, *Canis lupus dingo*, and the domestic dog,
953 *Canis lupus familiaris*, in Victoria: a critical review. *Aust Mammal*. 2009;31:1-7.

954 19. Zhang M, Sun G, Ren L, Yuan H, Dong G, Zhang L, et al. Ancient DNA evidence
955 from China reveals the expansion of Pacific dogs. *Mol Biol Evol.* 2020;37:1462-9.
956 doi:10.1093/molbev/msz311.

957 20. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E and Lundeberg J. A detailed
958 picture of the origin of the Australian dingo, obtained from the study of mitochondrial
959 DNA. *Proc Natl Acad Sci USA.* 2004;101 33:12387-90.
960 doi:10.1073/pnas.0401814101.

961 21. Gonzalez A, Clark G, O'Connor S and Matisoo-Smith L. A 3000 year old dog burial
962 in Timor-Leste. *Aust Archaeol.* 2013;76:13-9.

963 22. Cairns KM and Wilton AN. New insights on the history of canids in Oceania based
964 on mitochondrial and nuclear data. *Genetica.* 2016;144 5:553-65.
965 doi:10.1007/s10709-016-9924-z.

966 23. Cairns KM, Brown SK, Sacks BN and Ballard JWO. Conservation implications for
967 dingoes from the maternal and paternal genome: multiple populations, dog
968 introgression, and demography. *Ecol Evol.* 2017;7 22:9787-807.
969 doi:10.1002/ece3.3487.

970 24. Cairns KM, Shannon LM, Koler-Matznick J, Ballard JWO and Boyko AR.
971 Elucidating biogeographical patterns in Australian native canids using genome wide
972 SNPs. *PLoS One.* 2018;13 6:e0198754. doi:10.1371/journal.pone.0198754.

973 25. Freedman AH and Wayne RK. Deciphering the origin of dogs: from fossils to
974 genomes. *Annu Rev Anim Biosci.* 2017;5:281-307. doi:10.1146/annurev-animal-
975 022114-110937.

976 26. Drake AG and Klingenberg CP. Large-scale diversification of skull shape in domestic
977 dogs: disparity and modularity. *Am Nat.* 2010;175 3:289-301. doi:10.1086/650372.

978 27. Edwards RJ, Field MA, Ferguson JM, Dudchenko O, Keilwagen J, Rosen BD, et al.
979 Chromosome-length genome assembly and structural variations of the primal Basenji
980 dog (*Canis lupus familiaris*) genome. *BMC Genom.* 2021;22 1:188.
981 doi:10.1186/s12864-021-07493-6.

982 28. Field MA, Rosen BD, Dudchenko O, Chan EKF, Minoche AE, Edwards RJ, et al.
983 Canfam_GSD: De novo chromosome-length genome assembly of the German
984 Shepherd Dog (*Canis lupus familiaris*) using a combination of long reads, optical
985 mapping, and Hi-C. *Gigascience.* 2020;9 4:giaa027. doi:10.1093/gigascience/giaa027.

986 29. Ballard JWO, Gardner C, L. Ellem L, Yadav S and R.I. K. Eye-contact and sociability
987 data suggest that Australian dingoes have never been domesticated. *Curr Zool.*
988 2021;68 4:423-32.

989 30. Sluys R. Attaching names to biological species: the use and value of type specimens
990 in systematic zoology and Natural History collections
991 . *Biol Theory.* 2021;16:49-61.

992 31. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH and Phillippy AM. Canu:
993 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
994 separation. *Genome Res.* 2017;27 5:722-36. doi:10.1101/gr.215087.116.

995 32. PacificBiosciences and GenomicConsensus. [https://](https://github.com/PacificBiosciences/gcpp)
996 github.com/PacificBiosciences/gcpp.

997 33. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
998 integrated tool for comprehensive microbial variant detection and genome assembly
999 improvement. *PLoS One.* 2014;9 11:e112963. doi:10.1371/journal.pone.0112963.

1000 34. Robinson JT, Turner D, Durand NC, Thorvaldsdottir H, Mesirov JP and Aiden EL.
1001 Juicebox.js provides a cloud-based visualization system for Hi-C data. *Cell Syst.*
1002 2018;6 2:256-8 e1. doi:10.1016/j.cels.2018.01.001.

1003 35. DNAZoo: Alpine dingo assembly at DNA Zoo. www.dnazon.org/.

1004 36. Wang C, Wallerman O, Arendt ML, Sundstrom E, Karlsson A, Nordin J, et al. A
1005 novel canine reference genome resolves genomic architecture and uncovers transcript
1006 complexity. *Commun Biol.* 2021;4:1:185. doi:10.1038/s42003-021-01698-x.

1007 37. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM. BUSCO:
1008 assessing genome assembly and annotation completeness with single-copy orthologs.
1009 *Bioinformatics.* 2015;31:3210-2. doi:10.1093/bioinformatics/btv351.

1010 38. Halo JV, Pendleton AL, Shen F, Doucet AJ, Derrien T, Hitte C, et al. Long-read
1011 assembly of a Great Dane genome highlights the contribution of GC-rich sequence
1012 and mobile elements to canine genomes. *Proc Natl Acad Sci USA.* 2021;118:11
1013 doi:10.1073/pnas.2016274118.

1014 39. Player RA, Forsyth ER, Verratti KJ, Mohr DW, Scott AF and Bradburne CE. A novel
1015 *Canis lupus familiaris* reference genome improves variant resolution for use in breed-
1016 specific GWAS. *Life Sci Alliance.* 2021;4:4 doi:10.26508/lسا.202000902.

1017 40. Jagannathan V, Hitte C, Kidd JM, Masterson P, Murphy TD, Emery S, et al.
1018 Dog10K_Boxer_Tasha_1.0: A Long-Read Assembly of the Dog Reference Genome.
1019 *Genes.* 2021;12:6 doi:10.3390/genes12060847.

1020 41. Sinding MS, Gopalakrishnan S, Raundrup K, Dalen L, Threlfall J, Darwin Tree of
1021 Life Barcoding c, et al. The genome sequence of the grey wolf, *Canis lupus* Linnaeus
1022 1758. *Wellcome Open Res.* 2021:310. doi:10.12688/wellcomeopenres.17332.1.

1023 42. Rhie A, Walenz BP, Koren S and Phillippy AM. Merqury: reference-free quality,
1024 completeness, and phasing assessment for genome assemblies. *Genome Biol.* 2020;21
1025 1:245. doi:10.1186/s13059-020-02134-9.

1026 43. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos:
1027 an information aesthetic for comparative genomics. *Genome Res.* 2009;19:1639-45.
1028 doi:10.1101/gr.092759.109.

1029 44. Marcais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL and Zimin A.
1030 MUMmer4: A fast and versatile genome alignment system. *PLoS Comput Biol.*
1031 2018;14:1:e1005944. doi:10.1371/journal.pcbi.1005944.

1032 45. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al.
1033 Accurate detection of complex structural variations using single-molecule sequencing.
1034 *Nat Methods.* 2018;15:461-8. doi:10.1038/s41592-018-0001-7.

1035 46. Waardenberg AJ and Field MA. consensusDE: an R package for assessing consensus
1036 of multiple RNA-seq algorithms with RUV correction. *PeerJ.* 2019;7:e8206.
1037 doi:10.7717/peerj.8206.

1038 47. Zhou ZW, Yu ZG, Huang XM, Liu JS, Guo YX, Chen LL, et al. GenomeSyn: A
1039 bioinformatics tool for visualizing genome synteny and structural variations. *J Genet*
1040 *Genom.* 2022; doi:10.1016/j.jgg.2022.03.013.

1041 48. Keilwagen J, Hartung F and Grau J. GeMoMa: Homology-Based Gene Prediction
1042 Utilizing Intron Position Conservation and RNA-seq Data. *Methods Mol Biol.*
1043 2019;1962:161-77. doi:10.1007/978-1-4939-9173-0_9.

1044 49. Glazko G, Gordon A and Mushegian A. The choice of optimal distance measure in
1045 genome-wide datasets. *Bioinformatics.* 2005;21 Suppl 3:iii3-11.
1046 doi:10.1093/bioinformatics/bti1201.

1047 50. Savolainen P, Arvestad L and Lundeberg J. mtDNA tandem repeats in domestic dogs
1048 and wolves: mutation mechanism studied by analysis of the sequence of imperfect
1049 repeats. *Mol Biol Evol.* 2000;17:474-88.
1050 doi:10.1093/oxfordjournals.molbev.a026328.

1051 51. Marshall AS and Jones NS. Discovering cellular mitochondrial heteroplasmy
1052 heterogeneity with single cell RNA and ATAC sequencing. *Biology (Basel).* 2021;10
1053 6 doi:10.3390/biology10060503.

1054 52. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. *Nuc*
1055 *Acids Res.* 2003;31 13:3406-15. doi:10.1093/nar/gkg595.

1056 53. Leigh JW and Bryant D. Popart: full-feature software for haplotype network
1057 construction. *Methods Ecol Evol.* 2015;6:1110-6.

1058 54. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, et
1059 al. Genome sequencing highlights the dynamic early history of dogs. *PLoS Genet.*
1060 2014;10 1:e1004016. doi:10.1371/journal.pgen.1004016.

1061 55. Greig K, Gosling A, Collins CJ, Boocock J, McDonald K, Addison DJ, et al.
1062 Complex history of dog (*Canis familiaris*) origins and translocations in the Pacific
1063 revealed by ancient mitogenomes. *Sci Rep.* 2018;8 1:9130. doi:10.1038/s41598-018-
1064 27363-8.

1065 56. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, et al. mtDNA data
1066 indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago,
1067 from numerous wolves. *Mol Biol Evol.* 2009;26 12:2849-64.
1068 doi:10.1093/molbev/msp195.

1069 57. Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield DL, et al.
1070 Complete mitochondrial genomes of ancient canids suggest a European origin of
1071 domestic dogs. *Science.* 2013;342:871-4. doi:10.1126/science.1243650.

1072 58. Urich MA, Nery JR, Lister R, Schmitz RJ and Ecker JR. MethylC-seq library
1073 preparation for base-resolution whole-genome bisulfite sequencing. *Nat Protoc.*
1074 2015;10 3:475-83. doi:10.1038/nprot.2014.114.

1075 59. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-
1076 scale DNA methylation maps of pluripotent and differentiated cells. *Nature.* 2008;454
1077 7205:766-70. doi:10.1038/nature07107.

1078 60. Bogdanovic O, Smits AH, de la Calle Mustienes E, Tena JJ, Ford E, Williams R, et al.
1079 Active DNA demethylation at enhancers during the vertebrate phylotypic period. *Nat*
1080 *Genet.* 2016;48 4:417-26. doi:10.1038/ng.3522.

1081 61. Burger L, Gaidatzis D, Schubeler D and Stadler MB. Identification of active
1082 regulatory regions from DNA methylation data. *Nucleic Acids Res.* 2013;41 16:e155.
1083 doi:10.1093/nar/gkt599.

1084 62. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, et al. DNA-binding
1085 factors shape the mouse methylome at distal regulatory regions. *Nature.* 2011;480
1086 7378:490-5. doi:10.1038/nature10716.

1087 63. Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, et al. Epigenomic
1088 signatures of neuronal diversity in the mammalian brain. *Neuron.* 2015;86 6:1369-84.
1089 doi:10.1016/j.neuron.2015.05.018.

1090 64. Gollan K. *Prehistoric dingo.* Australian National University, Canberra, 1982.

1091 65. Kounoulos K. Old dogs, new tricks: 3D geometric analysis of cranial morphology
1092 supports ancient population substructure in the Australian dingo. *Zoomorphology.*
1093 2020;139:263-75.

1094 66. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al.
1095 3D Slicer as an image computing platform for the quantitative imaging network.
1096 *Magn Reson Imaging.* 2012;30 9:1323-41. doi:10.1016/j.mri.2012.05.001.

1097 67. Hager ER, Harringmeyer OS, Wooldridge TB, Theingi S, Gable JT, McFadden S, et
1098 al. A chromosomal inversion contributes to divergence in multiple traits between deer
1099 mouse ecotypes. *Science.* 2022;377 6604:399-405.

1100 68. Forman OP, Hitti RJ, Pettitt L, Jenkins CA, O'Brien DP, Shelton GD, et al. An
1101 inversion disrupting FAM134B is associated with sensory neuropathy in the Border
1102 Collie dog breed. *G3.* 2016;6 9:2687-92. doi:10.1534/g3.116.027896.

1103 69. Tan S, Cardoso-Moreira M, Shi W, Zhang D, Huang J, Mao Y, et al. LTR-mediated
1104 retrotransposition as a mechanism of RNA-based duplication in metazoans. *Genome Res.*
1105 2016;26:1663-75. doi:10.1101/gr.204925.116.

1106 70. Pajic P, Pavlidis P, Dean K, Neznanova L, Romano RA, Garneau D, et al.
1107 Independent amylase gene copy number bursts correlate with dietary preferences in
1108 mammals. *Elife.* 2019;8 doi:10.7554/eLife.44628.

1109 71. Arendt M, Cairns KM, Ballard JWO, Savolainen P and Axelsson E. Diet adaptation in
1110 dog reflects spread of prehistoric agriculture. *Heredity.* 2016;117 5:301-6.
1111 doi:10.1038/hdy.2016.48.

1112 72. Vicoso B and Charlesworth B. Evolution on the X chromosome: unusual patterns and
1113 processes. *Nat Rev Genet.* 2006;7 8:645-53. doi:10.1038/nrg1914.

1114 73. Mank JE, Vicoso B, Berlin S and Charlesworth B. Effective population size and the
1115 faster-X effect: empirical results and their interpretation. *Evolution.* 2010;64 3:663-
1116 74. doi:10.1111/j.1558-5646.2009.00853.x.

1117 74. Plassais J, Rimbault M, Williams FJ, Davis BW, Schoenebeck JJ and Ostrander EA.
1118 Analysis of large versus small dogs reveals three genes on the canine X chromosome
1119 associated with body weight, muscling and back fat thickness. *PLoS Genet.* 2017;13
1120 3:e1006661. doi:10.1371/journal.pgen.1006661.

1121 75. Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE and Patel SS. Structure,
1122 mechanism, and regulation of mitochondrial DNA transcription initiation. *J Biol
1123 Chem.* 2020;295 52:18406-25. doi:10.1074/jbc.REV120.011202.

1124 76. Bjornerfeldt S, Webster MT and Vila C. Relaxation of selective constraint on dog
1125 mitochondrial DNA following domestication. *Genome Res.* 2006;16 8:990-4.
1126 doi:10.1101/gr.5117706.

1127 77. Milham PT, P. Relative antiquity of human occupation and extinct fauna at Madura
1128 Cave, Southeastern Western Australia. *Mankind.* 1976;10:175-80.

1129 78. Schubeler D. Function and information content of DNA methylation. *Nature.*
1130 2015;517 7534:321-6. doi:10.1038/nature14192.

1131 79. Wewer Albrechtsen NJ, Kuhre RE, Pedersen J, Knop FK and Holst JJ. The biology of
1132 glucagon and the consequences of hyperglucagonemia. *Biomark Med.* 2016;10
1133 11:1141-51. doi:10.2217/bmm-2016-0090.

1134 80. Insuela DBR, Azevedo CT, Coutinho DS, Magalhaes NS, Ferrero MR, Ferreira TPT,
1135 et al. Glucagon reduces airway hyperreactivity, inflammation, and remodeling
1136 induced by ovalbumin. *Sci Rep.* 2019;9 1:6478. doi:10.1038/s41598-019-42981-6.

1137 81. Yang Q, Tang J, Pei R, Gao X, Guo J, Xu C, et al. Host HDAC4 regulates the
1138 antiviral response by inhibiting the phosphorylation of IRF3. *J Mol Cell Biol.*
1139 2019;11:158-69. doi:10.1093/jmcb/mjy035.

1140 82. Cui H, Moore J, Ashimi SS, Mason BL, Drawbridge JN, Han S, et al. Eating disorder
1141 predisposition is associated with ESRRA and HDAC4 mutations. *J Clin Invest.*
1142 2013;123 11:4706-13. doi:10.1172/JCI71400.

1143 83. Radford CG, Letnic M, Fillios M and Crowther MS. An assessment of the taxonomic
1144 status of wild canids in south-eastern New South Wales: phenotypic variation in
1145 dingoes. *Aust J Zool.* 2012;60:73-80.

1146 84. Stephens D, Wilton AN, Fleming PJ and Berry O. Death by sex in an Australian icon:
1147 a continent-wide survey reveals extensive hybridization between dingoes and
1148 domestic dogs. *Mol Ecol.* 2015;24 22:5643-56. doi:10.1111/mec.13416.

1149 85. Cairns KM, Crother MS, Nesbit B and Letnik M. The myth of wild dogs in Australia:
1150 are there any out there? *Aust Mamm.* 2020;44:67-75.

1151 86. Geiger M, Evin A, Sanchez-Villagra MR, Gascho D, Mainini C and Zollikofer CPE.
1152 Neomorphosis and heterochrony of skull shape in dog domestication. *Sci Rep.* 2017;7
1153 1:13443. doi:10.1038/s41598-017-12582-2.

1154 87. Balcárcel AM, Geiger M, Clauss M and Sanchez-Villagra MR. The mammalian brain
1155 under domestication: discovering patterns after a century of old and new analyses. *J*
1156 *Exp Zool B Mol Dev Evol.* 2022;338 8:460-83. doi:10.1002/jez.b.23105.

1157 88. Klatt B. Über die veränderung der schädelkapazität in der somestikation.
1158 *Sitzungsbericht der Gesellschaft naturforschender Freunde.* 1912:3.

1159 89. Röhrs M and Ebinger P. Die Berteilung von Hirngrossenunterschieden. *Journal of*
1160 *Zoological Systematics and Evolutionary Research.* 1978;16:1-14.

1161 90. Kruska D. Mammalian domestication and its effect on brain structure and behavior.
1162 In: Jerison H, J, and Jerison I, editors. *Intelligence and Evolutionary Biology.* New
1163 York: Academic Press; 1988.

1164 91. Brusini I, Carneiro M, Wang C, Rubin CJ, Ring H, Afonso S, et al. Changes in brain
1165 architecture are consistent with altered fear processing in domestic rabbits. *Proc Natl*
1166 *Acad Sci USA.* 2018;115 28:7380-5. doi:10.1073/pnas.1801024115.

1167 92. Kruska DC. On the evolutionary significance of encephalization in some eutherian
1168 mammals: effects of adaptive radiation, domestication, and feralization. *Brain Behav*
1169 *Evol.* 2005;65 2:73-108. doi:10.1159/000082979.

1170 93. Barrickman NL, Bastian ML, Isler K and van Schaik CP. Life history costs and
1171 benefits of encephalization: a comparative test using data from long-term studies of
1172 primates in the wild. *J Hum Evol.* 2008;54 5:568-90.
1173 doi:10.1016/j.jhevol.2007.08.012.

1174 94. Rohrs M and Ebinger P. Wild is not really wild: brain weight of wild domestic
1175 mammals. *Berl Munch Tierarztl Wochenschr.* 1999;112 6-7:234-8.

1176 95. Kruska D and M. R. Comparative-quantitative investigations on brains of feral pigs
1177 from the Galapagos Islands and of European domestic pigs. *Z Anat*
1178 *Entwicklungsgesch.* 1974;144:61–73.

1179 96. Lord KA, Larson G and Karlsson EK. Brain size does not rescue domestication
1180 syndrome. *Trends Ecol Evol.* 2020;35 12:1061-2. doi:10.1016/j.tree.2020.10.004.

1181 97. Liu YH, Wang L, Xu T, Guo X, Li Y, Yin TT, et al. Whole-genome sequencing of
1182 African dogs provides Insights into adaptations against tropical parasites. *Mol Biol*
1183 *Evol.* 2018;35 2:287-98. doi:10.1093/molbev/msx258.

1184 98. Erin NI, Benesh DP, Henrich T, Samonte IE, Jakobsen PJ and Kalbe M. Examining
1185 the role of parasites in limiting unidirectional gene flow between lake and river
1186 sticklebacks. *J Anim Ecol.* 2019;88 12:1986-97. doi:10.1111/1365-2656.13080.

1187 99. Bradley C. Venomous bites and stings in Australia to 2005. In: Welfare AIOHa, (ed.).
1188 Canberra: Australian Government, 2014, p. 119.

1189 100. Gulevich RG and et al. Effect of selection for behavior on pituitary-adrenal axis and
1190 proopiomelanocortin gene expression in silver foxes (*Vulpes vulpes*). *Physiol Behav.*
1191 2004;82 2-3:513-8. doi:10.1016/j.physbeh.2004.04.062.

1192 101. Heyne HO, Lautenschläger S, Nelson R, Besnier F, Rotival M, Cagan A, et al.
1193 Genetic influences on brain gene expression in rats selected for tameness and
1194 aggression. *Genetics.* 2014;198 3:1277-90. doi:10.1534/genetics.114.168948.

1195 102. Matsumoto Y, Nagayama.H., Nakaoka H, Toyoda A, Goto T and Koide T. Combined
1196 change of behavioral traits for domestication and gene-networks in mice selectively
1197 bred for active tameness. *Genes Brain Behav.* 2021;20:e12721.
1198 doi:10.1111/gbb.12721.

1199 103. Albert FW and et al. A comparison of brain gene expression levels in domesticated
1200 and wild animals. PLoS Genet. 2012;8 9:e1002962.
1201 doi:10.1371/journal.pgen.1002962.

1202 104. Wilton AN. DNA methods of assessing dingo purity. . Sydney: R. Zool. Soc. N.S.W.;
1203 2001.

1204 105. Deaux EC, Allen AP, Clarke JA and Charrier I. Concatenation of 'alert' and 'identity'
1205 segments in dingoes' alarm calls. Sci Rep. 2016;6:30556. doi:10.1038/srep30556.

1206 106. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al.
1207 A 3D map of the human genome at kilobase resolution reveals principles of chromatin
1208 looping. Cell. 2014;159 7:1665-80. doi:10.1016/j.cell.2014.11.021.

1209 107. Yeo S, Coombe L, Warren RL, Chu J and Birol I. ARCS: scaffolding genome drafts
1210 with linked reads. Bioinformatics. 2018;34:725-31.
1211 doi:10.1093/bioinformatics/btx675.

1212 108. Chromium X: 10X Genomics linked-read alignment, variant calling, phasing, and
1213 structural variant calling <https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-ranger> (2020). Accessed 2020.

1214 109. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics.
1215 2018;34 18:3094-100. doi:10.1093/bioinformatics/bty191.

1216 110. Vaser R, Sovic I, Nagarajan N and Sikic M. Fast and accurate de novo genome
1217 assembly from long uncorrected reads. Genome Res. 2017;27 5:737-46.
1218 doi:10.1101/gr.214270.116.

1219 111. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al.
1220 Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom.
1221 Cell Syst. 2016;3 1:99-101. doi:10.1016/j.cels.2015.07.012.

1222 112. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. *De*
1223 *novo* assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length
1224 scaffolds. Science. 2017;356 6333:92-5. doi:10.1126/science.aal3327.

1225 113. Dudchenko O, Shamim MS, Batra SS, Durand NC, Musial NT, Mostofa R, et al. The
1226 Juicebox Assembly Tools module facilitates *de novo* assembly of mammalian
1227 genomes with chromosome-length scaffolds for under \$1000. bioRxiv. 2018:254797.
1228 doi:10.1101/254797.

1229 114. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap:
1230 upgrading genomes with Pacific Biosciences RS long-read sequencing technology.
1231 PLoS One. 2012;7 11:e47768. doi:10.1371/journal.pone.0047768.

1232 115. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. Basic local alignment
1233 search tool. J Mol Biol. 1990;215 3:403-10. doi:10.1016/S0022-2836(05)80360-2.

1234 116. Finn RD, Clements J and Eddy SR. HMMER web server: interactive sequence
1235 similarity searching. Nucleic Acids Res. 2011;39 Web Server issue:W29-37.
1236 doi:10.1093/nar/gkr367.

1237 117. Levy KE, Mirdita M and Soding J. MetaEuk-sensitive, high-throughput gene
1238 discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome.
1239 2020;8 1:48. doi:10.1186/s40168-020-00808-x.

1240 118. Hoeppner MP, Lundquist A, Pirun M, Meadows JR, Zamani N, Johnson J, et al. An
1241 improved canine genome and a comprehensive catalogue of coding genes and non-
1242 coding transcripts. PLoS One. 2014;9 3:e91172. doi:10.1371/journal.pone.0091172.

1243 119. Edwards R: PAFScuff biotools.
1244 https://bio.tools/PAFScuff_Pairwise_mApping_Format_reference-based_scaffold_anchoring_and_super-scaffolding. (2020). Accessed Nov 1, 2019.

1247 120. Chakraborty M, Emerson JJ, Macdonald SJ and Long AD. Structural variants exhibit
1248 widespread allelic heterogeneity and shape variation in complex traits. *Nat Commun.*
1249 2019;10 1:4872. doi:10.1038/s41467-019-12884-1.

1250 121. Schliep K, Potts AJ, Morrison DA and Grimm GW. Intertwining phylogenetic trees
1251 and networks. *Methods Ecol Evol.* 2017;8 10:1212-20.

1252 122. Hammer O, Harper DAT and PD. R. *PAST: Paleontological software package for*
1253 *education and data ananlysis.* *Palaeontol Electron.* 2001;4:9pp.

1254 123. Davey NE, Shields DC and Edwards RJ. *SLiMDisc: short, linear motif discovery,*
1255 *correcting for common evolutionary descent.* *Nuc Acids Res.* 2006;34 12:3546-54.
1256 doi:10.1093/nar/gkl486.

1257 124. Li H and Durbin R. *Fast and accurate short read alignment with Burrows-Wheeler*
1258 *transform.* *Bioinformatics.* 2009;25 14:1754-60. doi:10.1093/bioinformatics/btp324.

1259 125. Kundu R, Casey J and Sung W-K. *HyPo: Super fast & accurate polisher for long read*
1260 *genome assemblies.* *bioRxiv.* 2019:doi: 10.1101/2019.12.19.882506.
1261 doi:10.1101/2019.12.19.882506.

1262 126. Donath A, Juhling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, et al.
1263 *Improved annotation of protein-coding genes boundaries in metazoan mitochondrial*
1264 *genomes.* *Nucleic Acids Res.* 2019;47 20:10543-52. doi:10.1093/nar/gkz833.

1265 127. Urich MA, Nery JR, Lister R, Schmitz RJ and Ecker JR. *MethylC-seq library*
1266 *preparation for base-resolution whole-genome bisulfite sequencing.* *Nat Protoc.*
1267 2015;10 3:475-83. doi:10.1038/nprot.2014.114.

1268 128. Lautenschlager S. *Reconstructing the past: methods and techniques for the digital*
1269 *restoration of fossils.* *R Soc Open Sci.* 2016;3 10:160342. doi:10.1098/rsos.160342.

1270 129. Klingenberg CP. *MorphoJ: an integrated software package for geometric*
1271 *morphometrics.* *Mol Ecol Resour.* 2011;11 2:353-7. doi:10.1111/j.1755-
1272 0998.2010.02924.x.

1273 130. Rohlf F and Slice D. *Extensions of the procrustes method for the optimal*
1274 *superimposition of landmarks.* *Syst Zool.* 1990;39.

1275