

1 **Integration of genetic fine-mapping and multi-omics data**
2 **reveals candidate effector genes for hypertension**

3

4 Stefan van Duijvenboden^{1,2,3*}, Julia Ramírez^{1,4,5*}, William J. Young^{1,6}, Kaya J. Olczak¹,
5 Farah Ahmed¹, Mohammed J.A.Y. Alhammadi⁷, International Consortium of Blood
6 Pressure[†], Christopher G. Bell^{1‡}, Andrew P. Morris^{8,9‡}, & Patricia B. Munroe^{1,10‡}

7

8 ¹William Harvey Research Institute, Barts and the London Faculty of Medicine and
9 Dentistry, Queen Mary University of London, London, EC1M 6BQ, U.K.

10 ²Institute of Cardiovascular Science, University College London, London, U.K.

11 ³Nuffield Department of Population Health, University of Oxford, Oxford, U.K.

12 ⁴Aragon Institute of Engineering Research, University of Zaragoza, Spain.

13 ⁵Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y
14 Nanomedicina, Spain.

15 ⁶Barts Heart Centre, St Bartholomew's Hospital, London, EC1A 7BE, U.K.

16 ⁷Khalifa University, Abu Dhabi, United Arab Emirates.

17 ⁸Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal
18 Research, The University of Manchester, Manchester, U.K.

19 ⁹National Institute of Health and Care Research, Manchester Biomedical Research
20 Centre, Manchester University NHS Foundation Trust, Manchester Academic Health
21 Science Centre, Manchester, U.K.

22 ¹⁰National Institute of Health and Care Research, Barts Cardiovascular Biomedical
23 Research Centre, Queen Mary University of London, London, EC1M 6BQ, U.K.

24

25 *These first authors contributed equally

26 †Membership of the consortium is listed in the Supplementary Material

27 ‡These authors directed the study equally

28

29 **Abstract**

30 Genome-wide association studies of blood pressure (BP) have identified >1000 loci
31 but the effector genes and biological pathways at these loci are mostly unknown. Using
32 published meta-analysis summary statistics, we conducted annotation-informed fine-
33 mapping incorporating tissue-specific chromatin segmentation to identify causal
34 variants and candidate effector genes for systolic BP, diastolic BP, and pulse pressure.
35 We observed 532 distinct signals associated with ≥ 2 BP traits and 84 with all three.
36 For >20% of signals, a single variant accounted for >75% posterior probability, 65 were
37 missense variants in known (*SLC39A8*, *ADRB2*, *DBH*) and previously unreported BP
38 candidate genes (*NRIP1*, *MMP14*). In disease-relevant tissues, we colocalized >80
39 and >400 distinct signals for each BP trait with *cis*-eQTLs, and regulatory regions from
40 promoter capture Hi-C, respectively. Integrating mouse, human disorder, tissue
41 expression data and literature review, we provide consolidated evidence for 394 BP
42 candidate genes for future functional validation and identifies several new drug targets.

43 **Introduction**

44

45 Elevated blood pressure (BP) affects over 1 billion people and is one of the most
46 important risk-factors for cardiovascular disease (CVD), leading to significant mortality
47 and morbidity worldwide¹. It is estimated to cause more than 10 million deaths per
48 year². Genome-wide association studies (GWAS), bespoke targeted arrays (Cardio
49 Metabochip) and Exome-array wide association studies (EAWAS) have identified over
50 1,000 BP-associated loci for this heritable polygenic trait³⁻⁸. However, for most loci,
51 the effector genes and relevant biological processes through which BP associations
52 are mediated have yet to be characterised. Here, we use published GWAS meta-
53 analysis results (n >757,000) of systolic BP (SBP), diastolic BP (DBP) and pulse
54 pressure (PP)³ to perform fine mapping of causal variants at BP loci. Through the
55 integration of GWAS with tissue specific epigenomic annotations, and colocalisation
56 of BP associations with expression quantitative loci (eQTLs) and Hi-C promoter
57 interactions in relevant BP tissues, we identify high confidence effector genes and
58 causal pathways, and assess their potential for drug target identification or
59 repurposing opportunities

60

61 **Results**

62

63 *Study overview and reporting of loci*

64 We utilised previously reported meta-analyses of GWAS of BP traits in up to 757,601
65 individuals of European ancestry from the International Consortium of BP and UK
66 Biobank (ICBP+UKBB)³. Each contributing GWAS had been imputed up to reference
67 panels from the 1000 Genomes Project^{9,10} and/or Haplotype Reference Consortium¹¹.
68 After quality control, meta-analysis association summary statistics for SBP, DBP and
69 PP were reported for up to 7,160,657 single nucleotide variants (SNVs). An overview
70 of the study design is provided in Supplementary Figure 1.

71

72 We considered a total of 606 genomic regions encompassing previously reported lead
73 SNVs for SBP, DBP or PP that attained genome-wide significance ($P < 5 \times 10^{-8}$) for at
74 least one BP trait (**Methods**, Supplementary Table 1). Through approximate cross-
75 trait conditional analyses (**Methods**), we partitioned BP associations at the 606

76 genomic regions into a total of 1,850 distinct signals that were associated with at least
77 one BP trait at genome-wide significance (Figure 1, Supplementary Table 2). Of these
78 signals, 532 were associated with at least two BP traits (333 with SBP and DBP, 267
79 with SBP and PP, and 100 with DBP and PP), and 84 were associated with all three
80 traits. The only discordancy in direction of effect was for 17 of the 100 signals shared
81 across DBP and PP, where the DBP increasing allele was the PP decreasing allele).

82

83 The cross-trait approximate conditional analyses revealed several genomic regions
84 with complex patterns of associations with SBP, DBP and PP. For six genomic
85 regions, more than 20 distinct signals of association were observed for at least one
86 BP trait. The most complex associations were observed across: (i) a 6.4Mb region of
87 chromosome 17, encompassing previously reported loci that include *PLCD3*, *GOSR2*,
88 *HOXB7*, *ZNF652*, and *PHB* (locus ID 576, 37 distinct signals); (ii) a 5.8Mb region of
89 chromosome 10, encompassing previously reported loci that include *PAX2*, *CYP17A1*,
90 *NT5C2*, and *OBFC1* (locus ID 403, 34 distinct signals); and (iii) the major
91 histocompatibility complex region of chromosome 6 (5.7Mb, locus ID 251, 32 distinct
92 signals) that encompasses previously reported loci that include *BAT2*, *BAT5*, and *HLA*
93 *DQB1*.

94

95 *Fine-mapping and genomic annotation reveals high-confidence causal variants for BP*
96 *traits*

97 Previous studies have demonstrated that improved localisation of causal variants
98 driving association signals for complex human traits can be attained by integrating
99 GWAS data with genomic annotation¹². By mapping SNVs to functional and regulatory
100 annotations from GENCODE^{13,14} and the Roadmap Epigenomics Consortium¹⁵
101 (**Methods**), we observed significant joint enrichment ($P < 0.0002$, Bonferroni
102 correction for 253 annotations) for BP associations mapping to protein coding exons
103 and 3' UTRs, enhancers in heart and adrenal gland, and promoters in adipose and
104 heart (Supplementary Table 3, Supplementary Figure 2).

105

106 For each distinct signal, we then derived credible sets of variants that together account
107 for 99% of the posterior probability (π) of driving the BP trait association under an
108 annotation-informed prior model of causality in which SNVs mapping to the genomic
109 annotations in the globally enriched signatures for SBP, DBP and PP are upweighted

110 **(Methods)**. The median 99% credible set size was 20 variants for SBP and DBP, and
111 22 for PP (Supplementary Table 4). For 208 (24%), 224 (24.8%) and 159 (22.9%)
112 SBP, DBP and PP signals, respectively, a single SNV accounted for more than 75%
113 of the posterior probability of driving the BP association under the annotation-informed
114 prior, which we defined as “high-confidence” for causality (Figure 2, Supplementary
115 Table 5).

116

117 *High-confidence SNVs are enriched for BP-related phenotypes*

118 We used the Genomic Regions Enrichment of Annotations Tool (GREAT) v4.0.4¹⁶
119 **(Methods)** to explore the potential biological impact of all high confidence SNVs
120 through their enrichment within trait-related genomic regions including *cis*-regulatory
121 elements (CREs). We explored SNVs separately for the three BP traits and
122 physiologically consistent enrichment results were identified for these location data for
123 Gene Ontology Biological Processes (e.g., circulatory system processes, regulation of
124 BP), Human Phenotype (e.g., abnormality systemic blood pressure, abnormality of
125 vasculature), Mouse Phenotype and Knockout data (e.g., abnormal blood vessel
126 morphology, increased systemic arterial blood pressure) (Supplementary Figure 3 and
127 Supplementary Table 6).

128

129 *Missense variants implicate causal candidate genes*

130 We identified 65 high-confidence missense variants for BP association signals
131 (Supplementary Table 7). Among these, 20 were driving the same association signal
132 across two BP traits, and one (*RGL3* p.Pro162His) was driving the same association
133 signal across all three BP traits (Table 1). *RGL3* is not well characterised, but several
134 missense variants in the gene have been previously identified in BP EAWAS⁷. In our
135 study, three distinct association signals are driven by *HFE* missense variants (*HFE*
136 p.His63Asp, *HFE* p. Ser65Cys and *HFE* p.Cys282Tyr). These variants are associated
137 with predisposition to hereditary hemochromatosis, of which, portal hypertension and
138 restrictive diastolic function are recognised phenotypes¹⁷.

139

140 Fifteen missense variants were, in fact, identified to have a posterior probability of
141 >99.9% of driving distinct BP association signals. These variants implicate several well
142 characterised BP genes (including *SLC39A8* p.Ala391Thr; *ADRB2* p.Gly16Arg and
143 p.Thr164Ile; and *DBH* p.Arg549Cys), but also highlight less well-established candidate

144 genes, including *NRIP1*, *MMP14* and *PLCB3*. *NRIP1* is a regulator of the
145 mineralocorticoid receptor, and *MMP14* is an endopeptidase with a key role in
146 degrading components of the extracellular matrix and regulation of blood vessel
147 stability¹⁸. EAWAS have identified missense variants in *PLCB3* to be associated with
148 BP traits⁷, a gene that encodes an enzyme involved in intracellular signal transduction
149 found to be increased in a mouse model of hypertension and hypertrophy¹⁹.

150

151 Several high-confidence missense variants implicate genes associated with kidney
152 traits/disorders including *NCOA7* p. Ser399Ala, *LAMB2* p. Ala1765Thr and *NPHS2* p.
153 Arg229Gln. *NCOA7* encodes the nuclear receptor coactivator 7, a vacuolar proton
154 pumping ATPase (V-ATPase) interacting protein. It is highly expressed in the kidney
155 with knock out mice observed to have lower BP²⁰. *LAMB2* encodes beta chain isoform
156 laminin, and mutations in this gene cause Pierson syndrome (OMIM# 609049), a
157 congenital nephrotic syndrome, in which the phenotype includes hypertension²¹.
158 Mutations in *NPHS2* cause steroid-resistant nephrotic syndrome²².

159

160 *Non-coding BP association signals map to trait-related transcription factor binding*
161 *sites*

162 Whilst the high-confidence missense variants identified have directly interpretable
163 effects, the majority of the posterior probability of causality for BP trait associations
164 maps to non-coding sequence. To explore these high-confidence non-coding SNVs,
165 we firstly sought evidence for enrichment of transcription factor binding site (TFBS)
166 motifs. We interrogated sets of sequences obtained by expanding 10bp either side of
167 these SNVs for each of the three traits (see **Methods**). This identified significant
168 enrichment for 7 SBP, 10 DBP, and 5 PP TFBS motifs that were partially overlapping
169 (Supplementary Table 8). The motif for *PAX2* was significant across all three traits (top
170 corrected $P = 2.8 \times 10^{-25}$ for DBP), with this transcription factor involved in nephron
171 development, as well as implicated in monogenic renal abnormalities²³.

172

173 *Effector genes identified using gene expression in disease relevant tissues*

174 To gain further insight into mechanisms through which non-coding association signals
175 are mediated, where identification of the cognate effector gene is challenging¹², we
176 integrated genetic fine-mapping data with expression quantitative trait loci (*cis*-eQTL)
177 in disease relevant tissues from the GTEx Consortium²⁴. The tissues included were

178 adipose, adrenal gland, artery, kidney cortex, heart, nerve, and brain. We observed
179 convincing support for colocalization with eQTLs (**Methods**) for 96 SBP, 107 DBP
180 and 84 PP signals (Supplementary Table 9). In total, 54 (56%), 58 (54%), and 41
181 (49%) of the signals colocalized with an eQTL for a single gene in at least one tissue.
182 Across all traits, there was a total of 135 genes with tissue-specific colocalizations, of
183 which 55 (41%) were in arterial tissues, 35 (26%) were in nerve or brain tissues, 21
184 (16%) were in adipose tissue, 13 (10%) were in heart, 9 (7%) were in adrenal, and 2
185 (1%) were in kidney.

186

187 Of the signals associated with all three BP traits, nine colocalized with an eQTL for a
188 single effector gene. These were: *AGT* (brain cerebellum), *ARHGAP24* (tibial artery
189 and aorta), *ARHGAP42* (tibial artery, aorta, and adipose), *CHD13* (aorta), *CTD-*
190 *2336O2.1* (brain tissues), *FES* (tibial artery), *FGF5* (kidney cortex), *IGFBP3* (heart left
191 ventricle), and *JPH2* (adrenal gland). Three genes (*AGT*, *ARHGAP42* and *IGFBP3*)
192 have known or supporting data for a role in BP regulation. *AGT* encodes
193 angiotensinogen, a substrate of the renin-angiotensinogen system – a key regulatory
194 pathway²⁵. *ARHGAP42* is selectively expressed in smooth muscle cells and
195 modulates vascular resistance, and a knockout *Arhgap42* mouse model demonstrates
196 salt mediated hypertension²⁶. *IGFBP3*, which encodes the insulin growth factor
197 binding protein 3, has data supporting association with BP and CVD phenotypes, and
198 a knockout mouse model has increased ventricular wall thickness and shortened ST
199 segment²⁷. It also modulates insulin growth factor 1 (IGF-1) bioactivity with potential
200 regulation of vascular tone *in-vivo* through NO release²⁸. Additionally, there is a high-
201 confidence missense variant implicating *IGFBP3*, highlighting distinct associations
202 mediated by the same gene but through different underlying biological processes.
203 Other colocalized effector genes demonstrate links to cardiovascular phenotypes
204 (*FES*²⁹, *FGF5*³⁰, and *JPH2*³¹) but have not yet been functionally characterised but
205 demonstrate links to cardiovascular phenotypes.

206

207 We observed many individual loci with several distinct signals for each BP trait that
208 colocalized with eQTLs for different genes. The genomic region on chromosome 12
209 encompassing *HDAC7*, *H1FNT*, *CCDC65*, *PRKAG1*, *AM186B*, *CERS5*, and *DIP2B*,
210 spans 3.5Mb, and includes 11 signals for SBP, 12 for DBP and 5 for PP. Three signals
211 colocalized with eQTLs and indicate two effector genes. One signal (associated with

212 both SBP and DBP) colocalized with an eQTL for *CACNB3* (adipose, tibial nerve and
213 artery), which encodes a regulatory beta subunit of the voltage-dependent calcium
214 channel. The regulatory subunit of the voltage-gated calcium channel gives rise to L-
215 type calcium currents³². A *CACNB3* knock-out mouse model has a cardiovascular
216 phenotype that includes abnormal vascular smooth muscle cell hypertrophy,
217 increased heart weight and increased SBP and DBP³³. A second signal, associated
218 with DBP colocalized with an eQTL for *RP4-60503.4* (heart left ventricle), and a third
219 signal (associated with SBP) colocalized with an eQTL in brain and heart left ventricle
220 for this predicted gene.

221
222 A genomic region on chromosome 17 spanning 6.4Mb, which encompasses
223 associations reported in several previous BP GWAS^{3,7,34,35}, includes 19 SBP, 16 DBP
224 and 15 PP signals (Supplementary Table 2). Colocalization of signals with eQTLs
225 implicates six effector genes (*DCAKD*, *NMT1*, *RP11-6N17.4*, *PNPO*, *PRR15LA* and
226 *ZNF652*). Three independent signals colocalized with eQTLs for *NMT1* in brain. The
227 *NMT1* gene encodes N-myristoyltransferase, which catalyses the transfer of myristate
228 from CoA to proteins, and there is no clear association with cardiovascular disease.
229 However, the Malacards database indicates an association with Patent Foramen
230 Ovale, a common post-natal defect of cardiac atrial septation³⁶. One DBP signal
231 colocalized with an eQTL for *DCAKD* in adipose and nerve tissues. PP signals
232 colocalized with eQTLs for *RP11-6N17.4* and *PNPO* in brain tissues. *PNPO* encodes
233 pyridoxamine 5'-phosphate oxidase, an enzyme in the rate limiting step in vitamin B6
234 synthesis. Deficiency of *PNPO* primarily results in seizures, with many systemic
235 symptoms including cardiac abnormalities³⁷. We also observed a SBP signal that
236 colocalized with an eQTL for *PRR15LA* in tibial artery, and a signal associated with
237 both with SBP and DBP that colocalized with an eQTL for *ZNF652* in adipose tissue.

238
239 At a second genomic region on chromosome 17 encompassing *MRC2*, *ACE*,
240 *PECAM1*, and *MILR1*, we observed four signals for SBP, three for DBP and four for
241 PP (Supplementary Table 2), of which three signals colocalized with different genes
242 across multiple tissues (Figure 3). One SBP signal colocalizes with an eQTL for *MRC2*
243 in tibial artery. *MRC2* encodes the mannose receptor C type 2 and plays a role in
244 extracellular matrix remodelling³⁸. A signal associated with both SBP and DBP
245 colocalized with an eQTL for *ACE* in kidney, adipose, and brain tissues. *ACE* encodes

246 the angiotensin-converting enzyme, a central component of the renin–angiotensin–
247 aldosterone system³⁹. A third SBP signal colocalized with an eQTL for two genes
248 across several tissues: *DDX5* (arteries, brain and tibial nerves) and *CEP95* (tibial
249 nerve and arteries). These genes have little prior association with cardiovascular
250 phenotypes. *DDX5* encodes DEAD-Box Helicase 5, which is thought to be a
251 coregulator of transcription or splicing, and recent data indicates a role in smooth
252 muscle cell protection and neointimal hyperplasia⁴⁰. Homozygous *Ddx5* knockout mice
253 die at embryonic day 11.5 and demonstrate blood vessel abnormalities. There is little
254 information on *CEP95*, which encodes centrosomal protein 95, although differential
255 gene expression was observed in spontaneously hypertensive rats⁴¹.

256

257 *Identification of effector genes using promotor-centered long-range chromatin*
258 *interactions in disease relevant tissues*

259 To explore possible long-range enhancer influence on specific target genes, we
260 integrated genetic fine-mapping data with potential functional CREs identified to target
261 the promoters of well-annotated protein-coding genes via long-range chromatin
262 interactions (capture Hi-C data from Jung et al.⁴²). Promoter interactions and
263 candidate genes were identified for 629 signals at 366 genomic regions (RegulomeDB
264 Score ≤ 3) across adrenal gland, dorsolateral prefrontal cortex, hippocampus, aorta,
265 left ventricle, right ventricle, and fat (Supplementary Table 10). We observed signals
266 at 13 genomic regions that included 99% credible set variants with regulatory potential
267 across SBP and DBP, for which several potential target genes of the regulatory
268 variants were indicated. At five signals, one gene was indicated in a single tissue:
269 *ACTRT2* (dorsolateral prefrontal cortex), *ARMC4* (right ventricle), *AP001024.1*
270 (hippocampus), *TBX3* (aorta) and *YES1* (hippocampus). At other genomic regions ,
271 many genes in one tissue were indicated: *HOXA5*, *HOXA6* and *HOXA3* (adrenal
272 gland), *RP11691N7.6*, *C11orf31*, *TIMM10*, *CLP1*, *YPEL4*, *ZDHHC5*, *FAM111A*,
273 *TIMM10*, *AP001350.1*, *GLYATL2*, *GLYATL1* (hippocampus, dorsolateral prefrontal
274 cortex), and *ABHD17C*, *MESDC2* (two brain tissues). At three signals, more than one
275 gene in more than one tissue were highlighted, such as *GPR124*, *DDHD2*, *FGFR1*,
276 *PPAPDC1B*, *LETM2*, *TACC1* (two brain tissues, adrenal gland, aorta, and right
277 ventricle). Candidate genes at three signals have existing functional data supporting
278 an association with BP or cardiovascular traits: *HOXA3*, *ADM* and *TBX3*^{27,43,44}.

279
280 We next explored whether signals that colocalized with eQTLs for effector genes
281 overlapped with those implicated by Hi-C predicted promoter interactions. We focused
282 on the 80 signals that have support for colocalization with eQTLs in relevant tissues
283 across all traits (Supplementary Table 11). For 34 signals, the effector gene indicated
284 by Hi-C was the same as that identified via colocalization with the eQTLs, and for 15
285 of these signals the same gene and tissue was implicated (Supplementary Table 12).
286 The 15 candidate genes were: *AKR1B1*, *ASAP2*, *COL27A1*, *IRF5*, *MAP1B*, *MRPS6*,
287 *MXD3*, *RAD52*, *RERE*, *RNF130*, *SLC5A3*, *SLC20A2*, *TNS3*, *TRIOBP*, and *USP36*. A
288 review of the 15 genes indicates knock-out mouse models of three effector genes
289 (*COL27A1*, *RERE*, and *SLC20A2*) have cardiovascular abnormalities – these genes
290 have not previously been highlighted as potential candidate genes for hypertension
291 (Supplementary Table 12).

292
293 To explore our Hi-C predicted promoter interactions more broadly, we additionally
294 probed our results to see whether there was also support for these potential CREs to
295 target the same effector gene through a completely different prediction methodology
296 from the recent EpiMap analysis⁴⁵. This method is based on an active chromatin
297 correlation with target gene expression. Several physiologically relevant candidate
298 effector transcripts were highlighted, where the two methods predicted the same target
299 for the same SNV in the same tissue or organ (See Supplementary Table 13). Potential
300 targets included genes previously identified as highly plausible trait-related candidates
301 from previous analyses, including *CLIC4*, *TNS1*, and *FERMT2*⁴⁶. Target genes with
302 presently unknown potential roles in SBP and DBP pathophysiology were also
303 identified. These included two active CREs found in brain-related tissue, which would
304 be of interest to explore for additional activity in potentially more physiologically
305 relevant non-assayed tissues: *SHMT1*, the serine hydroxymethyltransferase 1
306 enzyme involved in folic acid metabolism associated, although inconsistently, with
307 hypertension-related stroke⁴⁷ and *PLXNB2*, the Plexin-B2 transmembrane receptor
308 that has an identified role in the developing kidney⁴⁸. For PP this comprised, amongst
309 others, some interesting target genes including *MYH11*, the smooth muscle myosin
310 heavy chain 11 gene, with CRE activity in aortic tissue. Mutations within this gene lead
311 to an autosomal dominant aortic aneurysm and dissection disorder (*AAT4*, OMIM
312 #132900) with altered aortic stiffness^{49,50}. Also, *COL6A3*, which encodes the alpha-3

313 chain of type VI collagen, was a target identified in heart tissue. This collagen gene is
314 important in the developing mammalian heart⁵¹ and is a causative gene in monogenic
315 myopathy and dystonia diseases (OMIM: #158810; #254090; #616411)⁵².

316

317 *Consolidated effector gene evidence*

318 Using complementary fine mapping and computational approaches (high-confidence
319 missense, colocalised eQTLs and Hi-C interactions) we identified 956 candidate
320 genes for SBP, 900 candidate genes for DBP and 773 candidate genes for PP with at
321 least one line of evidence indicating a putative effector gene (Supplementary Tables
322 14-16).

323

324 We next looked for additional supportive evidence for each gene by combining
325 information from mouse model data, human cardiovascular and renal phenotypes, and
326 differential gene and protein expression across cardiovascular tissues (Methods). We
327 selected as consolidated effector genes those which had two or more additional lines
328 of evidence. In total, 197 SBP, 184 DBP and 180 PP genes were identified
329 (Supplementary Tables 17-19), which together reflect 394 unique candidate genes. To
330 gain insights into the biological role of these consolidated evidence effector genes for
331 each BP trait we performed gene-set enrichment analyses. We found significant
332 enrichment for 390, 333, and 299 gene ontology (GO) biological processes for SBP,
333 DBP, and PP respectively (following removal of redundant processes, see Methods).
334 There were 629 unique GO ID terms across the three traits, with 153, 106 and 103
335 unique to SBP, DBP and PP respectively. In total, 141 pathways were associated with
336 two BP traits and 126 pathways with all three BP traits (Supplementary Tables 20-22).
337 Some of the pathways associated with all three BP traits included: blood vessel
338 remodelling, regulation of the immune system, circulatory and renal system processes,
339 sodium ion transport and ion homeostasis, aging, smooth muscle cell migration, lipid
340 metabolism processes and cytoskeletal organisation – all processes previously
341 highlighted as important in BP control. The most significant SBP unique processes
342 included: neurogenesis ($P = 1.9 \times 10^{-17}$), heart development ($P = 1.2 \times 10^{-11}$) and
343 regulation of cell death ($P = 3.4 \times 10^{-7}$); for DBP, embryonic organ development ($P =$
344 5.0×10^{-11}) and positive regulation of RNA biosynthetic processes ($P = 1.1 \times 10^{-9}$);
345 and, for PP, muscle organ development ($P = 5.1 \times 10^{-9}$) and trabecular formation ($P =$
346 0.007) and morphogenesis ($P = 0.004$).

347

348 *Drug target identification and repositioning opportunities*

349 We assessed the druggability of the consolidated candidate effector genes for each
350 BP trait via the druggable genome dataset from Finan et al.⁵³ (Supplementary Table
351 23, see Methods). We observed DBP to have a greater number of candidate effector
352 genes that encode proteins that are the main drug targets for anti-hypertensive
353 medications (*ACE*, *ADRA1A*, *ADRB1* and *NR3C2*), compared with SBP (*ACE*) and
354 PP (none). For several effector genes that are targets of existing drugs, there was
355 support as potential therapeutic targets for hypertension (e.g., *AKR1B1*, *PDE3A* and
356 *MAP2K1*). *AKR1B1* (aldo-keto reductase family 1 member B) is a target of aldose
357 reductase inhibitors that have been investigated for use in diabetes and also have
358 effects on BP⁵⁴. *PDE3A* (phosphodiesterase 3A) is a target for hypertension with
359 bradydactyly, a rare autosomal dominant disorder and there is recent data indicating
360 several common variant associations also in the general population^{7,55}. *PDE3A* is
361 targeted by several existing drugs, including Cilostazol (peripheral vascular disease),
362 Levosimendan for intravenous therapy for acutely decompensated heart failure and
363 Enoximone (pulmonary hypertension). There are no data currently indicating the use
364 of *PDE3A* inhibitors for hypertension, however a recent study suggests activation of
365 *PDE3A* in the heart may protect it from hypertrophy and failure⁵⁶. *MAP2K1* (*MEK1*) is
366 a target of anti-neoplastic agents (*MAP2K1* is altered in 1% of lung and head and neck
367 squamous cell carcinomas)^{57,58}. The *MAPK* pathway is well recognised in BP control
368 and p38-MAPK inhibition has been considered previously as a therapeutic target
369 (which *MAP2K* activates). Our study applied rigorous multiple evidence methodology
370 employing differing datasets from the Evangelou et al to derive a consolidated effector
371 gene list.³ This impacted the identification of potential therapeutic targets as we were
372 not able to replicate in our analysis the five candidate genes (*CA7*, *CACNA1C*,
373 *CACNB4*, *PKD2L1* and *SLC12A2*) reported in their paper as the target of anti-
374 hypertensive drug classes. However, *PKD2L1* did show individual Hi-C evidence as
375 bring the effector gene at the locus.

376

377 To further ascertain drug repositing opportunities, we tested for enrichment of these
378 consolidated candidate effector genes in clinical indication categories. We observed
379 significant enrichment of gene sets for cardiovascular and renal conditions

380 (Supplementary Table 24), with the results supporting the findings from interrogation
381 of the Finan et al. druggable genome database.
382

383 **Discussion**

384

385 Strongly replicated human genetic associations with BP traits have been identified
386 over the last decade. In this study, we have used a robust contemporary fine mapping
387 pipeline to advance from these initial broadly associated genomic regions to the
388 identification of hundreds of plausible previously-unreported effector genes (Figure 4).
389 These candidates are now excellent targets for future focused functional validation.

390

391 We were able to localise approximately a quarter of all associations across all three
392 BP traits to a single causal variant with >75% posterior probability. Of these high-
393 confidence SNVs, 65 were missense variants, including 20 for two BP traits, and one
394 in *RGL3* for all three traits. For the high confidence non-coding and potentially *cis*-
395 regulatory variants, we employed pathogenic tissue-specific expression and chromatin
396 conformation to identify their target genes. Of these SNVs, ~100 per trait colocalized
397 with *cis*-eQTLs. Plausible effector genes included the well-known Angiotensin (*AGT*)
398 and angiotensin converting enzyme (*ACE*), also more recently described genes from
399 GWAS with functional data including sodium/potassium- transporting ATPase subunit
400 beta-1 (*ATP1B1*) and Rho GTPase activating protein 42 (*ARHGAP42*). Other possible
401 but less well functionally evaluated genes identified through eQTL analysis included
402 *CDH13*, *FES*, *FGF5*, and *JPH2*.

403

404 We identified many loci with multiple complex signals within the same genomic region
405 affecting different genes in different tissue types. Also, of note that whilst we observed
406 high-confidence missense variants in kidney genes, as well as an enrichment for non-
407 coding variants to overlap a nephron developmental TFBS, we identified only a very
408 small proportion of eQTL colocalization in this tissue (*FGF5* and *ACE* and the lncRNA
409 *AC021218.2*). This may reflect reduced power due to the relatively smaller numbers
410 in GTEx for kidney than other tissues²⁴. Using over 400 human kidneys and the same
411 ICBP+UKBB GWAS dataset, Eales and colleagues reported nearly 31% of BP
412 associated variants contained kidney eSNPs⁵⁹. These results strongly emphasise the

413 importance of access to larger tissue banks for robust identification of all possible
414 effector genes.

415

416 Focusing on the overlap between the eQTL and Hi-C results in disease relevant
417 tissues identified a subset of 15 target genes identified in the same tissue. Of these,
418 the genes *COL27A1*, *RERE*, and *SLC20A2* also had supportive mouse data.
419 Furthermore, there is evidence that target genes consistently predicted across multiple
420 methods are the most robust⁶⁰. We also explored overlap with the recent EpiMap⁶¹,
421 highlighting, amongst others, *MYH11* and *COL6A3* as strong effector candidates for
422 PP. In total, our pipeline identified consolidated evidence effector genes for ~20% of
423 BP association signals (196 genes for 865 SBP associations; 184 genes for 904 DBP
424 associations; and 184 genes for 697 PP associations), an overview of the main
425 findings from the study are illustrated in Figure 4. Of the plausible BP genes, 14%
426 were identified to be drug targets, and several of these have good support for potential
427 repurposing for BP control.

428

429 The main strength of this work is that it combines robust GWAS associations, derived
430 from a powerfully large dataset, with comprehensive genetic annotation and tissue-
431 specific epigenomic maps derived from the Epigenomics Roadmap consortium. In the
432 exploration of the putative functional non-coding variants, a further strength was that
433 we were able to benefit from the expanded GTEx dataset²⁴, publicly available promoter
434 capture Hi-C data in pathogenically relevant tissues⁴², as well as exploration of target
435 gene prediction overlap with EpiMap⁴⁵. These analyses identified many biologically
436 plausible effector genes.

437

438 Current weaknesses are the lack of population diversity in our GWAS dataset, as
439 these are comprised of associations only from European ancestry individuals.
440 Consequently, they will be missing population-specific findings, as have been
441 identified in other common diseases⁶². Furthermore, this lack of diversity is not only
442 limited to the genetic findings. The epigenomic maps, whilst being derived from a
443 breadth of cell-types giving good representation of strong tissue-specific regulatory
444 differences, are within each cell-type drawn from very small numbers. Therefore, they
445 lack detail regarding potential population variation in these functional units⁶³. Another
446 weakness is that whilst benefitting from dense genotyping and imputation of common

447 SNVs, this is not exhaustive in capturing all the potential phenotypically associated
448 genetic variation within each locus. This will miss the possible impact of rare SNVs, as
449 well as any poorly tagged larger variants (copy number variants, short tandem repeats,
450 inversions, etc.). Furthermore, these large variants may themselves facilitate
451 functional epigenomic variation⁶⁴. Future exploration of the phased interplay of genetic
452 and epigenetic allelic elements by advancing long-read technologies will help to fill in
453 these gaps⁶⁵.

454

455 In conclusion, we have identified plausible causal common genetic variants enriched
456 in BP pathways. Their investigation through experimental biosystems will not only
457 improve functional understanding of the biology of BP and its pathogenesis, but also
458 potentially enable novel preventative and therapeutic opportunities.

459 **Methods**

460

461 *Study data and detection of distinct association signals*

462 We utilised previously reported GWAS meta-analyses of blood pressure traits in up to
463 757,601 individuals of European ancestry from the ICBP and UK Biobank³
464 (ICBP+UKBB). Each contributing GWAS had been imputed up to reference panels
465 from the 1000 Genomes Project^{9,10} and/or Haplotype Reference Consortium¹¹. After
466 quality control, meta-analysis association summary statistics for SBP, DBP and PP
467 were reported for 7,088,121, 7,160,657 and 7,088,842 SNVs, respectively. We began
468 by considering autosomal lead SNVs that have been reported at genome-wide
469 significance (variable threshold according to study design) for SBP, DBP or PP in
470 previously published GWAS of blood pressure traits, which we have collated and are
471 summarised in the recent review by Magavern and colleagues⁸. We initially defined
472 genomic regions as mapping 500kb up- and down-stream of each lead SNV. However,
473 where genomic regions overlapped, they were combined as a single genomic region
474 to account for potential LD between previously reported lead SNVs. Genomic regions
475 that did not attain genome-wide significance ($P < 5 \times 10^{-8}$) in the ICBP+UKBB meta-
476 analysis for any BP trait were not considered for downstream interrogation. We then
477 performed approximate conditional analyses using GCTA-COJO⁶⁶ to detect distinct
478 association signals at each genomic region for each BP trait separately, using
479 European ancestry haplotypes from the 1000 Genomes Project (Phase 3, October
480 2014 release)⁹ as a reference for LD. Within each genomic region variants attaining
481 genome-wide significance ($P < 5 \times 10^{-8}$) in the joint GCTA-COJO model were selected
482 as index SNVs for distinct association signals.

483

484 We next assessed the evidence that distinct association signals for SBP, DBP and PP
485 were shared across multiple BP traits. At each genomic region distinct association
486 signals for two traits were considered to be the same if: (i) the index SNVs were the
487 same for both traits; (ii) the index SNVs were colinear in the joint GCTA-COJO models
488 for each trait after including the index SNV for the other trait in the model; or (iii) the
489 P-value of the index SNV for one trait increased to $P > 0.05$ after including the index
490 SNV for the other trait in the model, and the P-value of the index SNP for the other
491 trait increased to $P > 0.0001$ for the corresponding reciprocal conditioning.

492

493 *Enrichment of BP associations for genomic annotations*

494 We used fGWAS⁶⁷ to identify genomic annotations enriched for SBP, DBP or PP
495 association signals. We considered a total of 253 functional and regulatory annotations
496 derived from: (i) genic regions (protein coding exons, 3' UTRs and 5' UTRs) as defined
497 by the GENCODE Project¹³; and (ii) chromatin state predictions of promoters and
498 enhancers across 125 tissues from the Roadmap Epigenome Consortium¹⁵ via
499 Epilogs (<http://compbio.mit.edu/epilogs/>). For each BP trait separately, we used a
500 forward-selection approach to derive a joint model of enriched annotations. At each
501 iteration, we added the annotation to the joint fGWAS model that maximised the
502 improvement in the penalised likelihood. We continued until no additional annotations
503 improved the fit of the joint model ($P < 0.00020$, Bonferroni correction for 253
504 annotations).

505

506 *Fine-mapping distinct association signals for BP traits*

507 For each trait, we began by approximating the Bayes' factor (BF), Λ_{ij} , in favour of
508 association of the j th SNV at the i th distinct association signal using summary
509 statistics from the ICBP+UKBB meta-analyses. Specifically,

510
$$\Lambda_{ij} = \exp \left[\frac{D_{ij} - \ln K_{ij}}{2} \right],$$

511 where $D_{ij} = b_{ij}^2 / \nu_{ij}$, and b_{ij} and ν_{ij} are the allelic log-OR and corresponding variance,
512 respectively, across K_{ij} contributing GWAS to the ICBP+UKBB meta-analysis (here
513 $K_{ij} = 2$)⁶⁸. At genomic regions with a single association signal, b_{ij} and ν_{ij} were taken
514 from the unconditional meta-analysis. However, for genomic regions with multiple
515 association signals, b_{ij} and ν_{ij} were taken from the joint GCTA-COJO model,
516 conditioning on the index SNVs for all other signals at the locus. The posterior
517 probability for the j th SNV at the i th distinct signal, was then given by $\pi_{ij} \propto \gamma_j \Lambda_{ij}$,
518 where γ_j is the relative prior probability of causality for the j th SNV. We considered an
519 annotation-informed prior model, for which

520
$$\gamma_j = \exp \left[\sum_k \hat{\beta}_k z_{jk} \right],$$

521 where the summation is over the enriched annotations, $\hat{\beta}_k$ is the estimated log-fold
522 enrichment of the k th annotation from the final joint fGWAS model, and z_{jk} is an
523 indicator variable taking the value 1 if the j th SNV maps to the k th annotation, and 0
524 otherwise. Finally, we derived a 99% credible set⁶⁹ for the i th distinct association

525 signal by: (i) ranking all SNVs according to their posterior probability π_{ij} ; and (ii)
526 including ranked SNVs until their cumulative posterior probability attains or exceeds
527 0.99.

528

529 *High Confidence SNV Gene Set Enrichment Analysis*

530 Genomic Regions Enrichment of Annotations Tool (GREAT) v4.0.4¹⁶ was used to
531 explore the high confidence SNVs potential biological impact. The default GREAT
532 association parameters for gene regulatory domains (Proximal 5 kb upstream, 1 kb
533 downstream, plus Distal up to 1 Mb) were used and curated regulatory domains
534 included. Input was SNV BED files for each of the three traits (SBP n = 208, DBP n =
535 224 and PP n = 158). GREAT analysis included gene ontology (GO) Biological
536 Processes, Human Phenotype, Mouse Phenotype and Knockout data.

537

538 *Functional annotation*

539 We use Variant-effect predictor (VEP) analysis to identify missense variants and
540 queried their overlap with high confidence causal variants from the credible set
541 analysis (https://grch37.ensembl.org/Homo_sapiens/Tools/VEP)⁷⁰.

542

543 *Transcription Factor Binding Motif Analysis*

544 We used the Transcription Factor Affinity Prediction (TRAP) v3.0.5⁷¹ multiple
545 sequences option to explore any enrichment for Transcription Factor (TF) binding
546 motifs within the high confidence non-coding variants for each of the three traits (SBP
547 n= 178; DBP n=187; and PP n =137). Sequences around each non-coding SNV were
548 expanded to +/-10bp (via AWK) and the FASTA sequence extracted (hg19) via the
549 BEDtools v2.30.0 command getfasta⁷². The Transfac 2010.1 Vertebrate matrix set
550 was interrogated with human_promoter set as background model and the results were
551 required to pass a Benjamini-Hochberg multiple-testing correction.

552

553 *Colocalization with gene expression data*

554 We performed a Bayesian statistical procedure to assess whether our annotation
555 informed GWAS results were colocalised with eQTL results. We used all available
556 eQTL tissues relevant for blood pressure (adipose, adrenal gland, artery, kidney
557 cortex, heart, nerve, and brain) from the publicly available eQTL results from GTEx

558 version 8²⁴. The annotation informed BF in favour of association of the j th SNV at the
559 i th distinct association signal was defined as:

560

$$\Lambda_{ij} = \pi_{ij} \sum_j \Lambda_{ij}$$

561 In this expression, π_{ij} is the annotation-informed posterior probability, and Λ_{ij} is the
562 BF defined above. GWAS results were lifted from hg19 to hg38 used lift Over
563 software⁷³ [to allow direct comparison with the hg38 eQTL data. We undertook
564 colocalization using the annotation informed BF using the COLOC software package
565 in R⁷⁴, only for those signals for which a 99% credible set variant was the lead eQTL
566 SNV.

567

568 *Long-range chromatin interaction (Hi-C) analyses*

569 We identified potential target genes of regulatory SNVs using long-range chromatin
570 interaction (Hi-C) data from tissues and cell types relevant for blood pressure
571 regulation (adrenal gland, left and right ventricles, hippocampus, and cortex)⁴². Hi-C
572 data is corrected for genomic biases and distance using the Hi-C Pro and Fit-Hi-C
573 pipelines according to Schmitt et al. (40 kb resolution—correction applied to
574 interactions with 50 kb- 5Mb span)⁷⁵. We selected the most significant promoter
575 interactions for all potential regulatory SNPs (RegulomeDB score ≤ 3) that were
576 included in the 99% credible sets and report the interactors with the SNPs of highest
577 regulatory potential to annotate the loci.

578

579 *Collation of evidence for effector BP genes*

580 A full list of candidate effector genes for each BP trait was collated from the results of
581 our fine-mapping pipeline and computational approaches. A gene was indicated for a
582 signal if there was support from a coding and high confidence variant in the gene at
583 the locus, or if the gene was indicated from eQTL colocalization or Hi-C analyses. To
584 refine the list of putative candidate effector genes we next collated additional
585 information for each gene using data from GeneCards
586 (<https://genealacart.genecards.org>). This included the following: 1) a mouse model
587 from Mouse Genome Informatics (MGI) which has a cardiovascular or renal
588 phenotype. 2) A cardiovascular, vascular or renal phenotype described for the
589 candidate gene in the Human Phenotype Ontology database 3) Differential RNA

590 expression of the candidate gene in the GTEx database in cardiovascular, vascular or
591 renal tissues, only genes with fold changes >4 in a tissue were selected. 4) Differential
592 protein expression of the candidate gene based on 69 integrated normal proteomics
593 datasets in HIPED (the Human Integrated Protein Expression Database). Genes with
594 a fold change value of >6 and protein abundance value of >0.1 PPM in an anatomical
595 were selected. The top effector candidate genes for each BP trait were selected if
596 there were at least 2 additional lines of evidence.

597

598 *Effector gene pathway analysis*

599 We used the Gene2Function analysis tool in FUMA (v1.4.0) to perform geneset
600 enrichment and identify significantly associated GO terms and pathways⁷⁶.
601 Hypergeometric tests were performed to test if genes were over-represented in any
602 predefined gene set and multiple testing correction was performed per category. The
603 gene sets used are from MsigDB, WikiPathways and genes from the GWAS-catalog.
604 The analysis included the putative top effector genes only. The analysis was done for
605 all BP traits and we report results with adjusted p-values of <0.05. Redundant GO
606 terms were removed using the Reduce and Visualize Gene Ontology (REVIGO) web
607 application⁷⁷. REVIGO uses a hierarchical clustering method to remove highly similar
608 terms, incorporating enrichment P-values in the selection process. Default settings
609 (dispensability cut off <0.7) were used in this analysis.

610

611 *Druggability of prioritised effector genes*

612 To identify candidate druggable targets, a look-up was performed in a previously
613 published database of the druggable genome developed by Finan et al.⁵³ This list
614 contains protein-coding genes categorised into three tiers: Tier 1 are targets of
615 approved drugs and some drugs in clinical development, including targets of small
616 molecules and biotherapeutics; Tier 2 are proteins closely related to drug targets or
617 associated with drug-like compounds ($\geq 50\%$ shared protein sequence identity); Tier 3
618 includes extracellular proteins and members of key drug target families in Tier 1 (e.g.,
619 G protein-coupled receptors). To identify potential opportunities for drug repurposing,
620 a look-up of each BP candidate gene was performed in Tier 1 to identify existing drug
621 targets (<https://www.genome.jp/kegg/genes.html>). Primary targets of
622 antihypertensives were also identified using the KEGG drug database
623 (<https://www.genome.jp/kegg/drug/>). The open targets database was subsequently

624 interrogated to identify disease associations with each gene, to identify potential
625 overlap that could indicate promising drug targets. Target, drug and disease
626 association data was downloaded from the platform
627 (<https://platform.opentargets.org/downloads>). Open targets calculates association
628 scores to capture the data type (e.g., gene level) and source, to aggregate evidence
629 for an association, by calculating the harmonic sum using a weighted vector of data
630 source scores. This sum is divided by the maximum theoretical value, resulting in a
631 score between 0 and 1. To identify enrichment of candidate effector genes in clinical
632 indication categories and potentially re-positional drugs, we utilised the Genome for
633 REPositioning drugs (GREP) software⁷⁸. GREP performs a series of Fisher's exact
634 tests, to identify enrichment of a gene-set in genes targeted by a drug in a clinical
635 indication category (Anatomical Therapeutic Chemical Classification System [ATC] or
636 International Classification of Diseases 10 [ICD10] diagnostic codes).

637

638

639

640 **Figure Legends**

641

642 **Figure 1. Overlap of 1,850 distinct signals attaining genome-wide significant**
643 **evidence of association with SBP, DBP and PP in meta-analysis of BP GWAS in**
644 **up to 757,601 individuals of European ancestry.**

645 (a) Venn diagram showing the number of signals shared across BP traits. Sharing of
646 signals across traits is much more common between SBP and DBP or SBP and PP,
647 with just 16 associations shared between only DBP and PP. (b) Comparison of allelic
648 effect sizes on SBP, DBP and PP for the index SNV at the 532 distinct association
649 signals that are shared across multiple BP traits. The effect has been aligned to the
650 SBP or PP increasing allele for the signal. Blue points correspond to the 448
651 association signals that are shared across exactly two BP traits, whilst red points
652 correspond to the 84 association signals that are shared across all three BP traits.
653 When signals are shared between SBP and PP, the direction of effect of the index
654 SNV on the traits is always concordant.

655

656 **Figure 2. Distinct BP association signals.**

657 (a) Summary of distinct association signals for blood pressure traits. SBP: A single
658 signal at 277 genomic regions and at least two at 180; DBP: A single signal at 262
659 genomic regions, and at least two at 188; PP: A single signal at 265 genomic regions,
660 and at least two at 144. (b) Distribution of the posterior probability of causality of the
661 variants in credible sets. SBP, systolic blood pressure; DBP, diastolic blood pressure;
662 PP, pulse pressure.

663

664 **Figure. 3. Colocalization between GWAS signals for systolic blood pressure and**
665 **multi-tissue expression data at locus ID 580 on chromosome 17.**

666 The top panel shows the unconditional GWAS data of the genomic region at
667 chromosome 17 (60.2Mb – 62.9Mb) for systolic blood pressure. The lower four panels
668 show the log annotation informed Bayesian factors of the conditional GWAS signal
669 (blue, left axis) and gene expression data from GTEx eQTL data (red, right axis). Three
670 distinct annotation informed signals colocalized with gene expression data from:
671 *MRC2* (second panel) in tibial artery tissue, *ACE* (third panel) in kidney cortex tissue,
672 and *CEP95* and *DDX5* in aortic artery tissue (bottom panels).

673 The x-axis shows the physical position on the chromosome (Mb) and the y-axes show
674 the log annotation informed Bayesian factor from the GWAS (left axis) and the gene
675 expression data (right axis). The intensity of the color indicates the linkage
676 disequilibrium with respect to the sentinel GWAS SNP (blue) or top eQTL SNP (red).

677

678 **Figure 4. BP fine mapping results and consolidated effector genes.**

679 Overview of results from the fine-mapping pipeline for SBP, DBP and PP. For each
680 trait the number of signals are shown following annotation as missense, eQTL or
681 regulatory, and the number of candidate effector genes based on at least one line of
682 evidence. Using additional evidence from mouse models, human cardiovascular and
683 renal phenotypes and gene/protein expression the list of effector genes was reduced
684 – these are the consolidated effector genes. The consolidated effector genes were
685 used as input to FUMA (methods) for pathway enrichment analysis. Results are
686 shown for GO terms after removal of similar terms using the Reduce and Visualise
687 Gene Ontology (REVIGO) web application (dispensability cut off <0.3), and only
688 pathways which had adjusted P values $<10^{-10}$ were included. Created with
689 Biorender.com

690 **References**

- 691 1. Forouzanfar, M.H. *et al.* Global Burden of Hypertension and Systolic Blood
692 Pressure of at Least 110 to 115 mm Hg, 1990-2015. *JAMA* **317**, 165-182
693 (2017).
- 694 2. G. B. D. Risk Factors Collaborators. Global burden of 87 risk factors in 204
695 countries and territories, 1990-2019: a systematic analysis for the Global
696 Burden of Disease Study 2019. *Lancet* **396**, 1223-1249 (2020).
- 697 3. Evangelou, E. *et al.* Genetic analysis of over 1 million people identifies 535 new
698 loci associated with blood pressure traits. *Nat Genet* **50**, 1412-1425 (2018).
- 699 4. Giri, A. *et al.* Trans-ethnic association study of blood pressure determinants in
700 over 750,000 individuals. *Nat Genet* **51**, 51-62 (2019).
- 701 5. Sakaue, S. *et al.* A cross-population atlas of genetic associations for 220 human
702 phenotypes. *Nat Genet* **53**, 1415-1424 (2021).
- 703 6. Ehret, G.B. *et al.* The genetics of blood pressure regulation and its target organs
704 from association studies in 342,415 individuals. *Nat Genet* **48**, 1171-1184
705 (2016).
- 706 7. Surendran, P. *et al.* Discovery of rare variants associated with blood pressure
707 regulation through meta-analysis of 1.3 million individuals. *Nat Genet* **52**, 1314-
708 1332 (2020).
- 709 8. Magavern, E.F. *et al.* An Academic Clinician's Road Map to Hypertension
710 Genomics: Recent Advances and Future Directions MMXX. *Hypertension* **77**,
711 284-295 (2021).
- 712 9. The 1000 Genomes Project Consortium *et al.* An integrated map of genetic
713 variation from 1,092 human genomes. *Nature* **491**, 56-65 (2012).
- 714 10. The 1000 Genomes Project Consortium. A global reference for human genetic
715 variation. *Nature* **526**, 68-74 (2015).
- 716 11. McCarthy, S. *et al.* A reference panel of 64,976 haplotypes for genotype
717 imputation. *Nat Genet* **advance online publication** (2016).
- 718 12. Schaid, D.J., Chen, W. & Larson, N.B. From genome-wide associations to
719 candidate causal variants by statistical fine-mapping. *Nat Rev Genet* **19**, 491-
720 504 (2018).
- 721 13. Harrow, J. *et al.* GENCODE: the reference human genome annotation for The
722 ENCODE Project. *Genome Res.* **22**(2012).
- 723 14. Bernstein, B.E. *et al.* An integrated encyclopedia of DNA elements in the human
724 genome. *Nature* **489**, 57-74 (2012).
- 725 15. Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference
726 human epigenomes. *Nature* **518**, 317-330 (2015).
- 727 16. McLean, C.Y. *et al.* GREAT improves functional interpretation of cis-regulatory
728 regions. *Nature biotechnology* **28**, 495-501 (2010).
- 729 17. Milman, N.T., Schioedt, F.V., Junker, A.E. & Magnussen, K. Diagnosis and
730 Treatment of Genetic HFE-Hemochromatosis: The Danish Aspect.
Gastroenterology Res **12**, 221-232 (2019).
- 732 18. Sounni, N.E. *et al.* Stromal regulation of vessel stability by MMP14 and
733 TGFbeta. *Dis Model Mech* **3**, 317-32 (2010).
- 734 19. Wu, J. *et al.* Aortic constriction induces hypertension and cardiac hypertrophy
735 via (pro)renin receptor activation and the PLC-beta3 signaling pathway. *Mol
736 Med Rep* **19**, 573-580 (2019).

737 20. Merkulova, M. *et al.* Targeted deletion of the Ncoa7 gene results in incomplete
738 distal renal tubular acidosis in mice. *Am J Physiol Renal Physiol* **315**, F173-
739 F185 (2018).

740 21. Mohney, B.G. *et al.* A novel mutation of LAMB2 in a multigenerational
741 mennonite family reveals a new phenotypic variant of Pierson syndrome.
742 *Ophthalmology* **118**, 1137-44 (2011).

743 22. Larionov, A. *et al.* Cathepsin B increases ENaC activity leading to hypertension
744 early in nephrotic syndrome. *J Cell Mol Med* **23**, 6543-6553 (2019).

745 23. Bower, M. *et al.* Update of PAX2 mutations in renal coloboma syndrome and
746 establishment of a locus-specific database. *Hum Mutat* **33**, 457-66 (2012).

747 24. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects
748 across human tissues. *Science* **369**, 1318-1330 (2020).

749 25. Xu, Y., Rong, J. & Zhang, Z. The emerging role of angiotensinogen in
750 cardiovascular diseases. *J Cell Physiol* **236**, 68-78 (2021).

751 26. Carney, E.F. Hypertension: Role of ARHGAP42 in hypertension. *Nat Rev
752 Nephrol* **13**, 134 (2017).

753 27. Koscielny, G. *et al.* The International Mouse Phenotyping Consortium Web
754 Portal, a unified point of access for knockout mice and related phenotyping
755 data. *Nucleic Acids Res* **42**, D802-9 (2014).

756 28. Tsukahara, H., Gordienko, D.V., Tonshoff, B., Gelato, M.C. & Goligorsky, M.S.
757 Direct demonstration of insulin-like growth factor-I-induced nitric oxide
758 production by endothelial cells. *Kidney Int* **45**, 598-604 (1994).

759 29. Karamanavi, E. *et al.* The FES Gene at the 15q26 Coronary-Artery-Disease
760 Locus Inhibits Atherosclerosis. *Circ Res* **131**, 1004-1017 (2022).

761 30. Seo, H.-R. *et al.* Intrinsic FGF2 and FGF5 promotes angiogenesis of human
762 aortic endothelial cells in 3D microfluidic angiogenesis system. *Scientific
763 Reports* **6**, 28832 (2016).

764 31. Reynolds, J.O. *et al.* Junctophilin-2 gene therapy rescues heart failure by
765 normalizing RyR2-mediated Ca²⁺ release. *International Journal of Cardiology*
766 **225**, 371-380 (2016).

767 32. Collin, T. *et al.* Cloning, chromosomal location and functional expression of the
768 human voltage-dependent calcium-channel beta 3 subunit. *Eur J Biochem* **220**,
769 257-62 (1994).

770 33. Bult, C.J. *et al.* Mouse Genome Database (MGD) 2019. *Nucleic Acids Res* **47**,
771 D801-D806 (2019).

772 34. Newton-Cheh, C. *et al.* Genome-wide association study identifies eight loci
773 associated with blood pressure. *Nat Genet* **41**, 666-76 (2009).

774 35. International Consortium for Blood Pressure Genome-Wide Association, S. *et
775 al.* Genetic variants in novel pathways influence blood pressure and
776 cardiovascular disease risk. *Nature* **478**, 103-9 (2011).

777 36. Rappaport, N. *et al.* MalaCards: an amalgamated human disease compendium
778 with diverse clinical and genetic annotation and structured search. *Nucleic
779 Acids Res* **45**, D877-D887 (2017).

780 37. Wilson, M.P., Plecko, B., Mills, P.B. & Clayton, P.T. Disorders affecting vitamin
781 B(6) metabolism. *J Inherit Metab Dis* **42**, 629-646 (2019).

782 38. Wienke, D. *et al.* The collagen receptor Endo180 (CD280) is expressed on
783 basal-like breast tumor cells and promotes tumor growth in vivo. *Cancer Res*
784 **67**, 10230-40 (2007).

785 39. Imig, J.D. ACE Inhibition and Bradykinin-Mediated Renal Vascular Responses:
786 EDHF Involvement. *Hypertension* **43**, 533-5 (2004).

787 40. Fan, Y. *et al.* Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth
788 Muscle Cell Proliferation and Vascular Remodeling. *Circ Res* **124**, e84-e100
789 (2019).

790 41. Seda, O. *et al.* Connexin 50 mutation lowers blood pressure in spontaneously
791 hypertensive rat. *Physiol Res* **66**, 15-28 (2017).

792 42. Jung, I. *et al.* A compendium of promoter-centered long-range chromatin
793 interactions in the human genome. *Nat Genet* **51**, 1442-1449 (2019).

794 43. Chao, J., Jin, L., Lin, K.F. & Chao, L. Adrenomedullin gene delivery reduces
795 blood pressure in spontaneously hypertensive rats. *Hypertens Res* **20**, 269-77
796 (1997).

797 44. Yan, Y., Liu, F., Dang, X., Zhou, R. & Liao, B. TBX3 induces biased
798 differentiation of human induced pluripotent stem cells into cardiac pacemaker-
799 like cells. *Gene Expr Patterns* **40**, 119184 (2021).

800 45. Boix, C.A., James, B.T., Park, Y.P., Meuleman, W. & Kellis, M. Regulatory
801 genomic circuitry of human disease loci by integrative epigenomics. *Nature*
802 **590**, 300-307 (2021).

803 46. Warren, H.R. *et al.* Genome-wide association analysis identifies novel blood
804 pressure loci and offers biological insights into cardiovascular risk. *Nat Genet*
805 **49**, 403-415 (2017).

806 47. Huo, Y. *et al.* Efficacy of folic acid therapy in primary prevention of stroke among
807 adults with hypertension in China: the CSPPT randomized clinical trial. *JAMA*
808 **313**, 1325-35 (2015).

809 48. Perala, N. *et al.* Sema4C-Plexin B2 signalling modulates ureteric branching in
810 developing kidney. *Differentiation* **81**, 81-91 (2011).

811 49. Zhu, L. *et al.* Mutations in myosin heavy chain 11 cause a syndrome associating
812 thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. *Nat
813 Genet* **38**, 343-9 (2006).

814 50. Kuang, S.Q. *et al.* Rare, nonsynonymous variant in the smooth muscle-specific
815 isoform of myosin heavy chain, MYH11, R247C, alters force generation in the
816 aorta and phenotype of smooth muscle cells. *Circ Res* **110**, 1411-22 (2012).

817 51. Klewer, S.E., Krob, S.L., Kolker, S.J. & Kitten, G.T. Expression of type VI
818 collagen in the developing mouse heart. *Dev Dyn* **211**, 248-55 (1998).

819 52. Zech, M. *et al.* Recessive mutations in the alpha3 (VI) collagen gene COL6A3
820 cause early-onset isolated dystonia. *Am J Hum Genet* **96**, 883-93 (2015).

821 53. Finan, C. *et al.* The druggable genome and support for target identification and
822 validation in drug development. *Sci Transl Med* **9**(2017).

823 54. El-Bassossy, H., Badawy, D., Neamatallah, T. & Fahmy, A. Ferulic acid, a
824 natural polyphenol, alleviates insulin resistance and hypertension in fructose
825 fed rats: Effect on endothelial-dependent relaxation. *Chem Biol Interact* **254**,
826 191-7 (2016).

827 55. Maass, P.G. *et al.* PDE3A mutations cause autosomal dominant hypertension
828 with brachydactyly. *Nat Genet* **47**, 647-53 (2015).

829 56. Ercu, M. *et al.* Mutant Phosphodiesterase 3A Protects From Hypertension-
830 Induced Cardiac Damage. *Circulation* **146**, 1758-1778 (2022).

831 57. Jain, A.P. *et al.* MAP2K1 is a potential therapeutic target in erlotinib resistant
832 head and neck squamous cell carcinoma. *Sci Rep* **9**, 18793 (2019).

833 58. Olzinski, A.R. *et al.* Hypertensive target organ damage is attenuated by a p38
834 MAPK inhibitor: role of systemic blood pressure and endothelial protection.
835 *Cardiovasc Res* **66**, 170-8 (2005).

836 59. Eales, J.M. *et al.* Uncovering genetic mechanisms of hypertension through
837 multi-omic analysis of the kidney. *Nat Genet* **53**, 630-637 (2021).

838 60. Gazal, S. *et al.* Combining SNP-to-gene linking strategies to identify disease
839 genes and assess disease omnigenicity. *Nat Genet* **54**, 827-836 (2022).

840 61. Boix, C.A., James, B.T., Park, Y.P., Meuleman, W. & Kellis, M. Regulatory
841 genomic circuitry of human disease loci by integrative epigenomics. *Nature*
842 (2021).

843 62. Washington, C., 3rd *et al.* African-specific alleles modify risk for asthma at the
844 17q12-q21 locus in African Americans. *Genome Med* **14**, 112 (2022).

845 63. Breeze, C.E., Beck, S., Berndt, S.I. & Franceschini, N. The missing diversity in
846 human epigenomic studies. *Nat Genet* **54**, 737-739 (2022).

847 64. Bell, C.G. *et al.* Obligatory and facilitative allelic variation in the DNA methylome
848 within common disease-associated loci. *Nature Communications* **9**, 8 (2018).

849 65. Battaglia, S. *et al.* Long-range phasing of dynamic, tissue-specific and allele-
850 specific regulatory elements. *Nat Genet* **54**, 1504-1513 (2022).

851 66. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary
852 statistics identifies additional variants influencing complex traits. *Nat Genet* **44**,
853 369-75, S1-3 (2012).

854 67. Pickrell, J.K. Joint analysis of functional genomic data and genome-wide
855 association studies of 18 human traits. *Am J Hum Genet* **94**, 559-73 (2014).

856 68. Kass, R.E. & Raftery, A.E. Bayes Factors. *Journal of the American Statistical
857 Association* **90**, 773-795 (1995).

858 69. Maller, J.B. *et al.* Bayesian refinement of association signals for 14 loci in 3
859 common diseases. *Nature Genetics* **44**, 1294-1301 (2012).

860 70. McLaren, W. *et al.* Deriving the consequences of genomic variants with the
861 Ensembl API and SNP Effect Predictor. *Bioinformatics* **26**, 2069-70 (2010).

862 71. Thomas-Chollier, M. *et al.* Transcription factor binding predictions using TRAP
863 for the analysis of ChIP-seq data and regulatory SNPs. *Nat Protoc* **6**, 1860-9
864 (2011).

865 72. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing
866 genomic features. *Bioinformatics* **26**, 841-2 (2010).

867 73. Hinrichs, A.S. *et al.* The UCSC Genome Browser Database: update 2006.
868 *Nucleic Acids Res* **34**, D590-8 (2006).

869 74. Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of
870 genetic association studies using summary statistics. *PLoS Genet* **10**,
871 e1004383 (2014).

872 75. Schmitt, A.D. *et al.* A Compendium of Chromatin Contact Maps Reveals
873 Spatially Active Regions in the Human Genome. *Cell Rep* **17**, 2042-2059
874 (2016).

875 76. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
876 mapping and annotation of genetic associations with FUMA. *Nat Commun* **8**,
877 1826 (2017).

878 77. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and
879 visualizes long lists of gene ontology terms. *PLoS One* **6**, e21800 (2011).

880 78. Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs.
881 *Bioinformatics* **35**, 3821-3823 (2019).

882

883

884

885 **Acknowledgements**

886 This research was supported by the NIHR Barts Cardiovascular Research Centre
887 and the NIHR Manchester Biomedical Research Centre (NIHR203308). J.R.
888 acknowledges funding from the European Union's Horizon 2020 Research and
889 Innovation Programme under the Marie Skłodowska-Curie grant agreement number
890 786833, from the European Union-NextGenerationEU, and from Grant PID2021-
891 128972OA-I00 funded by MCIN/AEI/ 10.13039/501100011033. W.J.Y. recognises
892 the National Institute for Health Research (NIHR) Integrated Academic Training
893 programme, which supports his Academic Clinical Lectureship post.

894

895 **Ethics declarations**

896 The authors declare no competing interests.

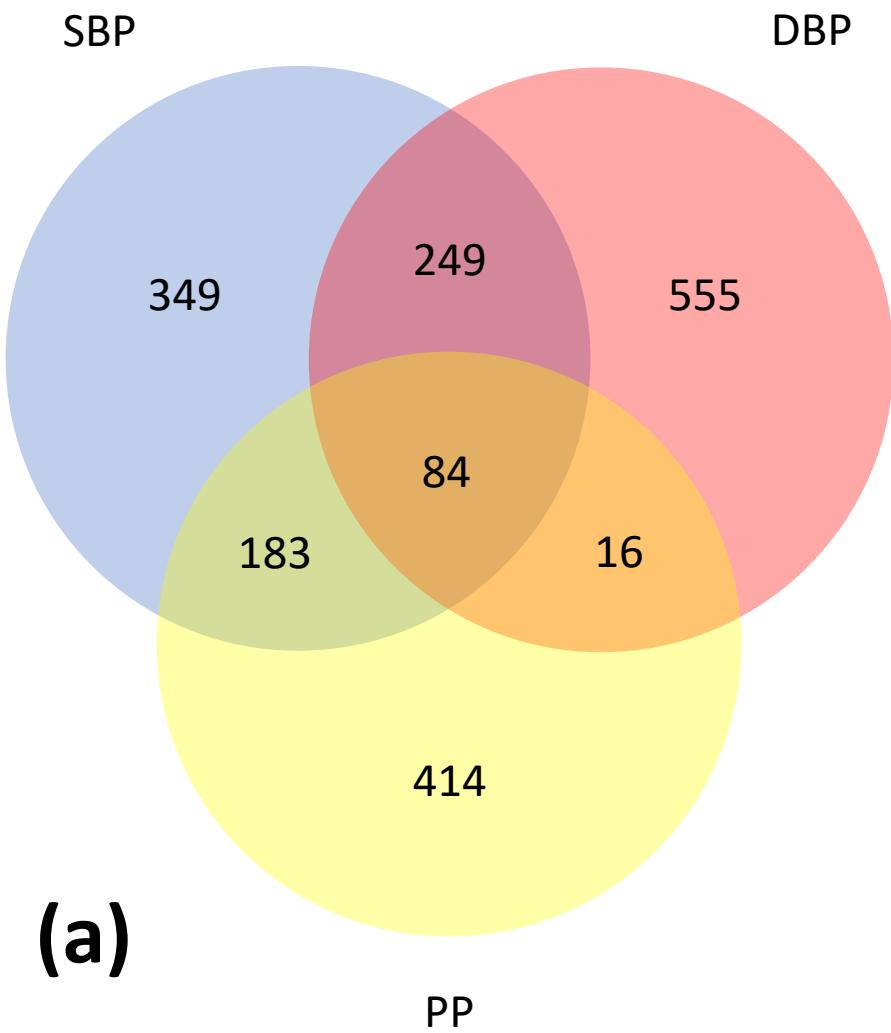
897

898 **Author Contributions**

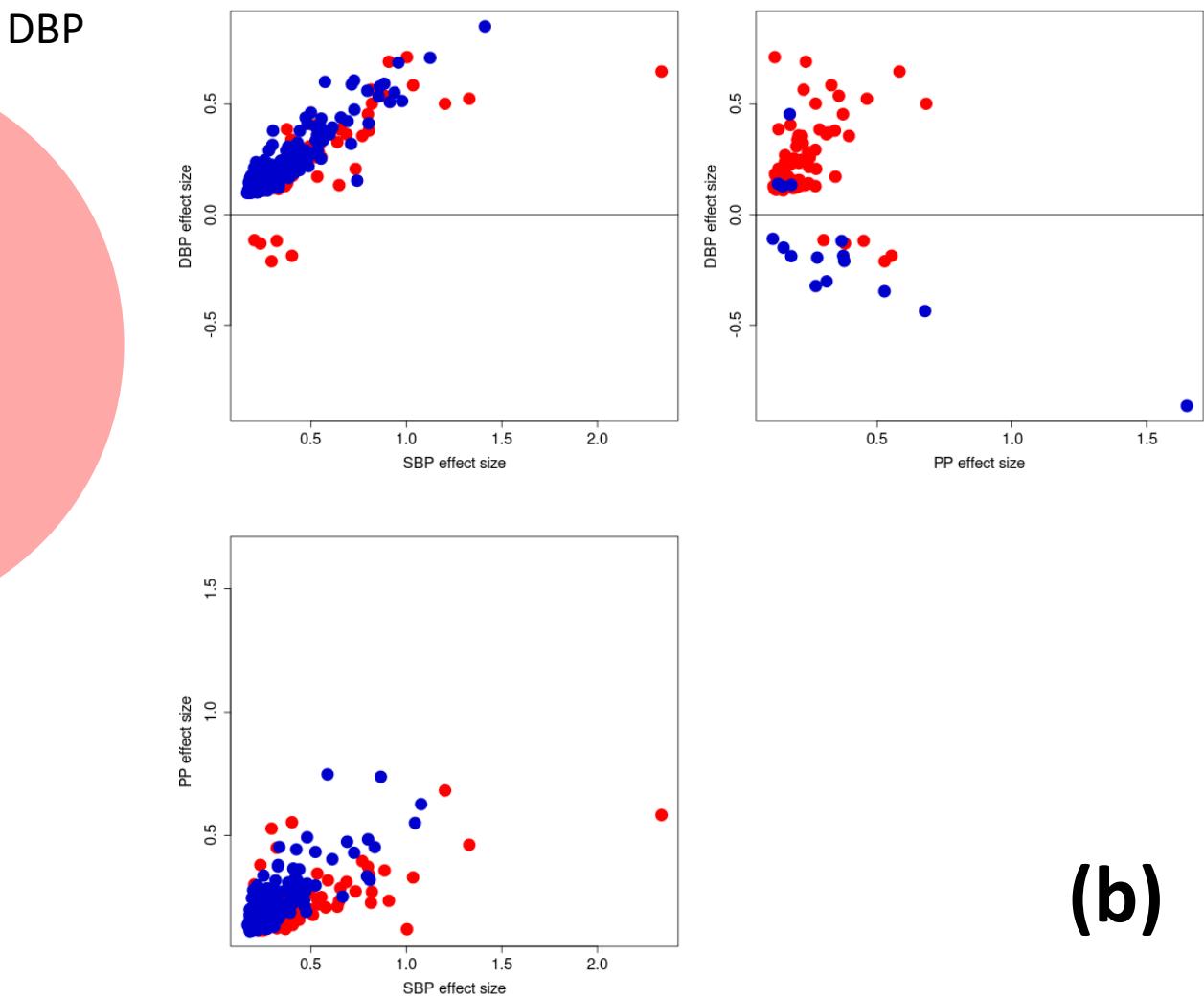
899 S.vD., J.R., W.J.Y., C.G.B., A.P.M., P.B.M designed the study. S.vD., J.R., W.J.Y.,
900 K.J.O., F.A., M.J.A.Y.A., C.G.B., A.P.M., P.B.M. performed analyses. S.vD., J.R.,
901 W.J.Y., C.G.B., A.P.M., P.B.M. drafted the manuscript, and all authors provided
902 critical revisions.

Table 1 | High-confidence missense variants for blood pressure association signals

Signal ID	Index SNV	Missense variant	Canonical transcript	Annotation	Chr	Position	Polyphen	SIFT	Trait	p-value	Posterior probability (%)
1_6	rs262695	rs262695	ENST00000545087.1	<i>AL590822.1</i> p.Cys78Arg	1	2,144,788	N/A	N/A	SBP	9.4E-14	96.2
									PP	1.6E-12	99.1
3_1	rs11121483	rs846111	ENST00000377939.4	<i>RNF207</i> p.Gly603Ala	1	6,279,370	benign	tolerated (LC)	PP	1.8E-10	83.5
39_1	rs150816167	rs61747728	ENST00000367615.4	<i>NPHS2</i> p.Arg229Gln	1	179,526,214	possibly damaging	tolerated	DBP	5.7E-11	88.1
52_1	rs699	rs699	ENST00000366667.4	<i>AGT</i> p.Met268Thr	1	230,845,794	benign	tolerated	SBP	5.6E-34	93.6
60_2	rs2384061	rs11676272	ENST00000260600.5	<i>ADCY3</i> p.Ser107Pro	2	25,141,538	benign	tolerated	DBP	5.4E-23	86.8
98_5	rs10497529	rs10497529	ENST00000420890.2	<i>CCDC141</i> p.Ala141Val	2	179,839,888	probably damaging	deleterious	PP	8.1E-18	89.0
108_1	rs1047891	rs1047891	ENST00000430249.2	<i>CPS1</i> p.Thr1412Asn	2	211,540,507	benign	tolerated	SBP	1.4E-14	98.5
									DBP	8.2E-14	99.5
110_1	rs1250259	rs1250259	ENST00000354785.4	<i>FN1</i> p.Gln15Leu	2	216,300,482	benign	tolerated	SBP	7.5E-20	92.3
									PP	8.6E-33	86.1
132_2	rs74951356	rs74951356	ENST00000418109.1	<i>LAMB2</i> p.Ala1765Thr	3	49,158,763	benign	tolerated	DBP	5.0E-09	95.8
135_1	rs3772219	rs3772219	ENST00000338458.4	<i>ARHGEF3</i> p.Leu367Val	3	56,771,251	benign	tolerated	SBP	3.1E-17	75.2
									DBP	1.7E-24	81.1
158_3	rs61762319	rs61762319	ENST00000460393.1	<i>MME</i> p.Met8Val	3	154,801,978	benign	deleterious	SBP	1.5E-09	99.8
170_6	rs2498323	rs2498323	ENST00000382774.3	<i>HGFAC</i> p.Arg644Gln	4	3,451,109	possibly damaging	tolerated	PP	7.4E-13	100.0
174_1	rs2302212	rs2302212	ENST00000514176.1	<i>NCAPG</i> p.Met231Thr	4	17,818,885	benign	deleterious	SBP	4.1E-08	84.2

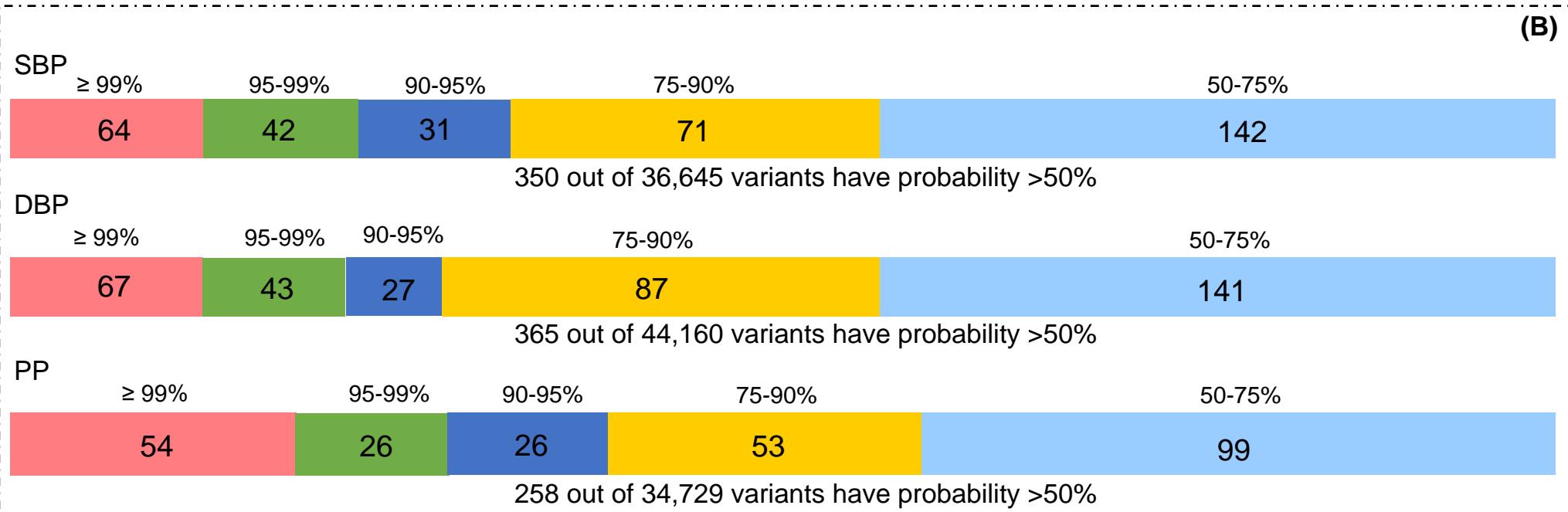
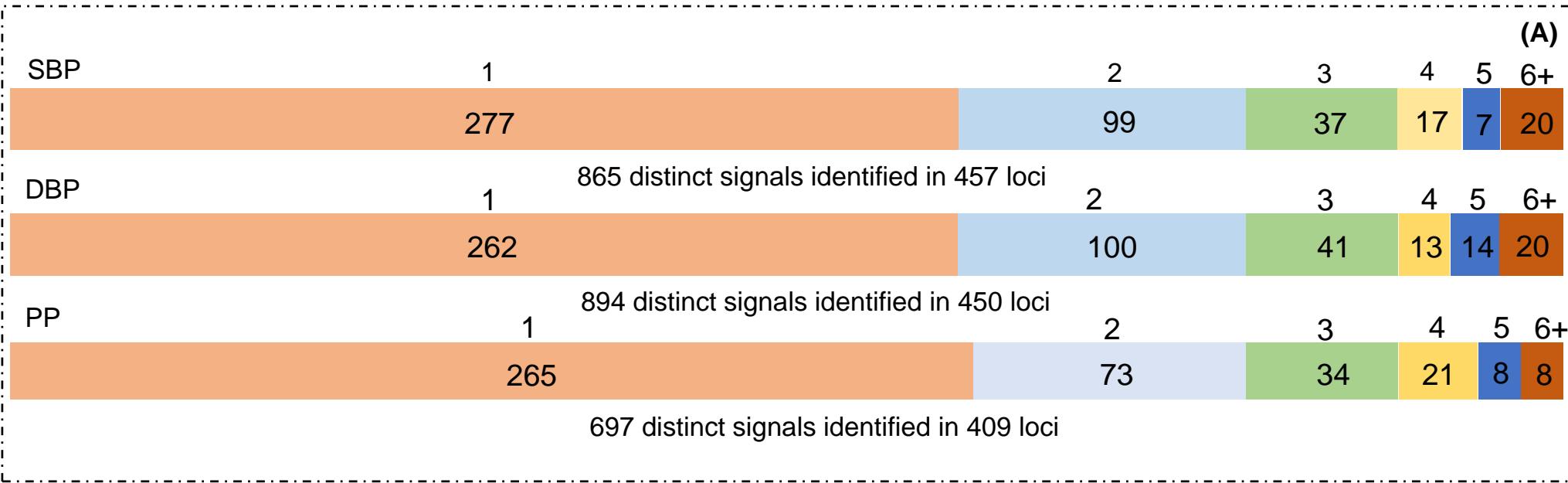

191_3	rs13107325	rs13107325	ENST00000394833.2	<i>SLC39A8</i> p.Ala391Thr	4	103,188,709	possibly damaging	tolerated	SBP	4.2E-53	100.0
									DBP	2.5E-90	100.0
221_1	rs2307111	rs2307111	ENST00000428202.2	<i>POC5</i> p.His36Arg	5	75,003,678	benign	tolerated	DBP	1.6E-22	97.6
237_6	rs12189018	rs1042713	ENST00000305988.4	<i>ADRB2</i> p.Gly16Arg	5	148,206,440	benign	tolerated	DBP	8.1E-09	81.7
237_7	rs1800888	rs1800888	ENST00000305988.4	<i>ADRB2</i> p.Thr164Ile	5	148,206,885	benign	tolerated	DBP	7.4E-13	100.0
249_4	rs198851	rs1799945	ENST00000357618.5	<i>HFE</i> p.His63Asp	6	26,091,179	probably damaging	tolerated	DBP	5.7E-51	85.3
249_1	rs1800730	rs1800730	ENST00000357618.5	<i>HFE</i> p.Ser65Cys	6	26,091,185	probably damaging	deleterious	SBP	2.0E-09	96.4
									DBP	1.6E-18	100.0
249_3	rs1800562	rs1800562	ENST00000357618.5	<i>HFE</i> p.Cys282Tyr	6	26,093,141	probably damaging	deleterious	SBP	2.0E-14	89.1
									DBP	2.1E-37	96.4
251_7	rs41543814	rs41543814	ENST00000376228.5	<i>HLA-C</i> p.Ala97Thr	6	31,239,430	benign	tolerated (LC)	DBP	1.5E-19	100.0
251_10	rs2844573	rs2308655	ENST00000412585.2	<i>HLA-B</i> p.Cys349Ser	6	31,322,303	benign	tolerated (LC)	PP	1.4E-12	99.2
251_11	rs1077393	rs1052486	ENST00000375964.6	<i>BAG6</i> p.Ser625Pro	6	31,610,686	benign	tolerated	DBP	4.6E-24	86.1
252_1	rs3176336	rs2395655	ENST00000448526.2	<i>CDKN1A</i> p.Asp28Gly	6	36,645,696	benign	tolerated (LC)	PP	4.7E-13	98.5
255_1	rs78648104	rs78648104	ENST00000008391.3	<i>TFAP2D</i> p.Phe74Leu	6	50,683,009	benign	tolerated	SBP	2.4E-15	99.9
									DBP	2.9E-20	100.0
272_1	rs6919947	rs6919947	ENST00000368357.3	<i>NCOA7</i> p.Ser399Ala	6	126,210,395	benign	tolerated (LC)	SBP	4.9E-17	100.0
									DBP	2.2E-13	99.9
300_2	rs2107732	rs2107732	ENST00000381112.3	<i>CCM2</i> p.Val74Ile	7	45,077,978	benign	tolerated	DBP	3.3E-10	80.6
300_3	rs2854746	rs2854746	ENST00000381083.4	<i>IGFBP3</i> p.Ala32Gly	7	45,960,645	benign	tolerated	DBP	5.0E-11	97.9

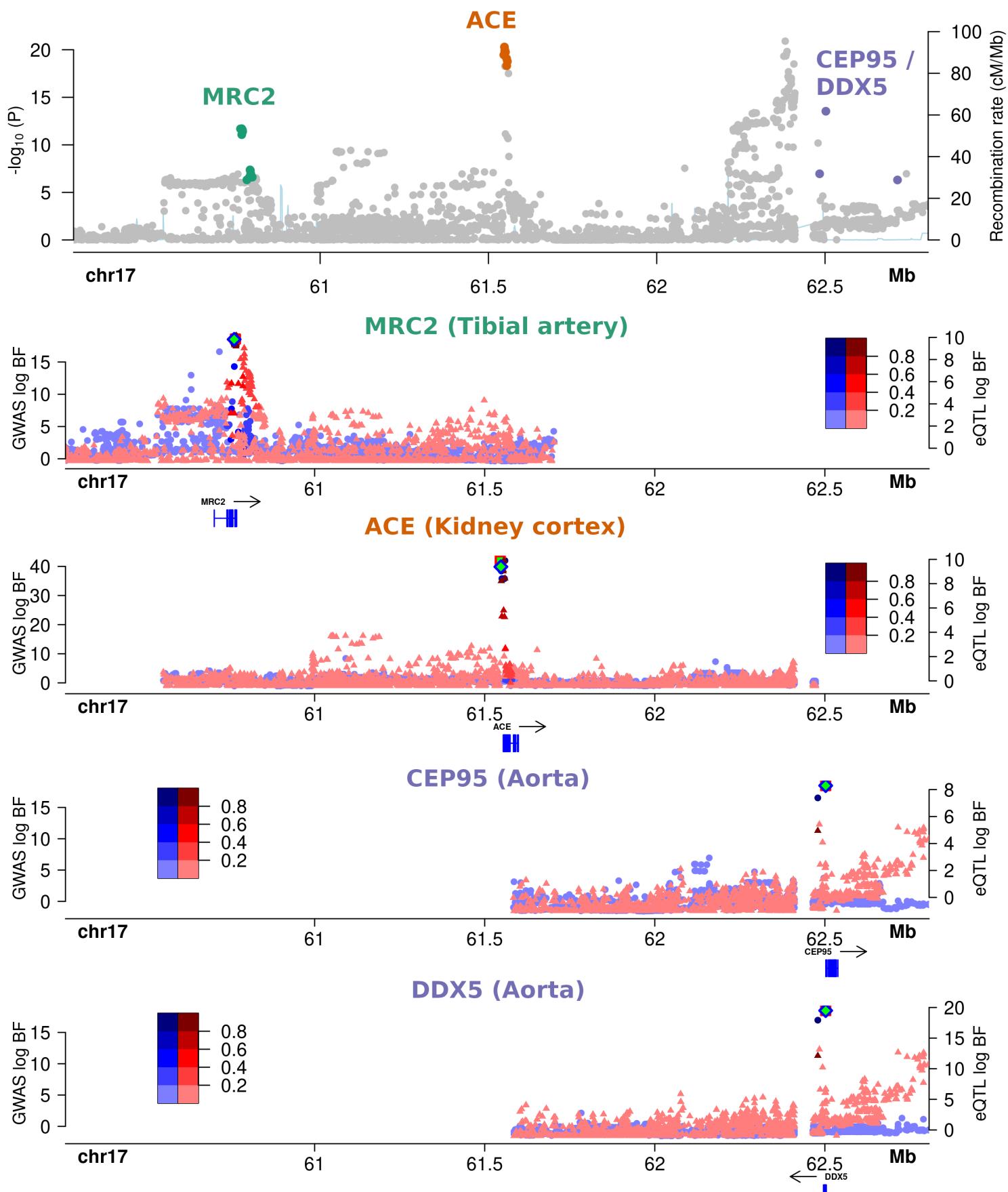
313_2	rs11556924	rs11556924	ENST00000358303.4	<i>ZC3HC1</i> p.Arg363His	7	129,663,496	probably damaging	deleterious	DBP	1.5E-26	98.3
313_4	rs13222308	rs3734928	ENST00000335420.5	<i>KLHDC10</i> p.Ser2Leu	7	129,710,488	benign	deleterious (LC)	SBP	1.3E-10	90.0
353_10	rs34591516	rs34591516	ENST00000377741.3	<i>GPR20</i> p.Gly313Ser	8	142,367,087	benign	tolerated	DBP	1.3E-15	80.8
365_2	rs76452347	rs76452347	ENST00000354323.2	<i>HRCT1</i> p.Arg63Trp	9	35,906,471	possibly damaging	deleterious (LC)	SBP	7.1E-14	100.0
372_3	rs3739451	rs3739451	ENST00000401783.2	<i>SVEP1</i> p.Phe3161Ile	9	113,166,792	benign	N/A	DBP	8.0E-23	100.0
379_2	rs6271	rs6271	ENST00000393056.2	<i>DBH</i> p.Arg549Cys	9	136,522,274	possibly damaging	tolerated	SBP	1.2E-19	97.6
394_1	rs2236295	rs2236295	ENST00000373783.1	<i>ADO</i> p.Gly25Trp	10	64,564,892	possibly damaging	tolerated	DBP	5.7E-35	100.0
402_3	rs2274224	rs2274224	ENST00000371380.3	<i>PLCE1</i> p.Arg1575Pro	10	96,039,597	benign	tolerated	SBP	2.8E-22	96.7
406_5	rs2484294	rs1801253	ENST00000369295.2	<i>ADRB1</i> p.Gly389Arg	10	115,805,056	benign	tolerated	DBP	1.0E-28	89.4
412_3	rs1133400	rs1133400	ENST00000368594.3	<i>INPP5A</i> p.Lys45Arg	10	134,459,388	benign	tolerated	SBP	5.0E-15	77.8
414_7	rs686722	rs686722	ENST00000418975.1	<i>LSP1</i> p.Arg12Trp	11	1,891,722	N/A	N/A	PP	3.0E-10	86.1
417_10	rs10770059 (SBP)	rs415895	ENST00000318950.6	<i>SWAP70</i> p.Gln505Glu	11	9,769,562	benign	tolerated	DBP	8.1E-19	82.6
432_4	rs415895 (DBP)	rs117874826	ENST00000540288.1	<i>PLCB3</i> p.Glu564Ala	11	64,027,666	benign	deleterious	SBP	5.0E-47	96.5
434_1	rs36027301	rs36027301	ENST00000265686.3	<i>TCIRG1</i> p.Arg56Trp	11	67,809,268	probably damaging	deleterious	DBP	3.3E-69	96.8
									PP	2.3E-11	100.0
									SBP	6.0E-11	97.6


										DBP	6.4E-12	77.8
447_7	rs573455	rs573455	ENST00000278935.3	<i>CEP164</i> p.Gln1119Arg	11	117,267,884	benign	tolerated	PP	8.7E-34	100.0	
463_15	rs1126930	rs1126930	ENST00000316299.5	<i>PRKAG1</i> p.Thr98Ser	12	49,399,132	benign	tolerated	PP	4.6E-14	95.6	
499_1	rs17880989	rs17880989	ENST00000311852.6	<i>MMP14</i> p.Met355Ile	14	23,313,633	benign	deleterious	DBP	3.2E-12	100.0	
499_4	rs365990	rs365990	ENST00000405093.3	<i>MYH6</i> p.Val1101Ala	14	23,861,811	benign	tolerated	SBP	2.2E-12	90.8	
523_5	rs11854184	rs11854184	ENST00000559471.1	<i>SECISBP2L</i> p.Val710Leu	15	49,293,194	benign	tolerated	DBP	2.3E-10	86.8	
549_2	rs55861648	rs62622830	ENST00000541260.1	<i>C16orf93</i> p.Lys189Glu	16	30,770,950	N/A	tolerated	PP	1.2E-09	82.7	
558_2	rs62051555	rs62051555	ENST00000268489.5	<i>ZFHX3</i> p.Gln2014His	16	72,830,539	probably damaging	N/A	PP	5.1E-25	89.9	
571_4	rs1043809	rs4924987	ENST00000477478.2	<i>B9D1</i> p.His143Tyr	17	19,247,075	benign	tolerated (LC)	DBP	1.8E-16	77.2	
572_1	rs704	rs704	ENST00000226218.4	<i>VTN</i> p.Thr400Met	17	26,694,861	benign	tolerated	SBP	1.9E-08	96.5	
573_1	rs11080134 (SBP) rs9894838 (DBP)	rs11080134	ENST00000321990.4	<i>ATAD5</i> p.Glu135Gly	17	29,161,503	benign	deleterious	SBP	1.8E-08	91.4	
								DBP	2.2E-08	79.5		
576_26	rs7406910 (SBP) rs9221 (PP)	rs7406910	ENST00000239165.7	<i>HOXB7</i> p.Thr9Ala	17	46,688,256	benign	tolerated	SBP	1.1E-17	79.5	
								PP	5.1E-25	96.3		
582_6	rs34587622	rs34587622	ENST00000427177.1	<i>SEPT9</i> p.Pro145Leu	17	75,398,498	benign	tolerated (LC)	SBP	6.2E-14	99.9	
592_1	rs61735998	rs61735998	ENST00000257209.4	<i>FHOD3</i> p.Val647Phe	18	34,289,285	benign	deleterious (LC)	PP	2.0E-11	87.8	
606_7	rs35918208	rs2291516	ENST00000393423.3	<i>RGL3</i> p.Arg621Cys	19	11,508,177	N/A	tolerated	DBP	9.4E-11	85.7	
606_9	rs167479	rs167479	ENST00000393423.3	<i>RGL3</i> p.Pro162His	19	11,526,765	probably damaging	deleterious	SBP	8.7E-69	100.0	
								DBP	2.4E-79	100.0		

									PP	9.4E-21	100.0
608_1	rs2108622	rs2108622	ENST00000221700.6	<i>CYP4F2</i> p.Val433Met	19	15,990,431	probably damaging	deleterious	DBP	1.1E-08	83.0
608_2	rs4808045	rs3745318	ENST00000248071.5	<i>KLF2</i> p.Leu104Pro	19	16,436,262	benign	tolerated	DBP	3.0E-14	89.1
610_2	rs45522544	rs45522544	ENST00000357324.6	<i>ATP13A1</i> p.Glu556Lys	19	19,765,499	benign	tolerated	DBP	3.1E-08	100.0
616_4	rs34093919	rs34093919	ENST00000308370.7	<i>LTBP4</i> p.Asp752Asn	19	41,117,300	possibly damaging	deleterious	PP	2.8E-14	97.4
616_7	rs1800470	rs1800470	ENST00000221930.5	<i>TGFB1</i> p.Pro10Leu	19	41,858,921	N/A	tolerated (LC)	PP	1.9E-15	99.0
617_2	rs7412	rs7412	ENST00000252486.4	<i>APOE</i> p.Arg176Cys	19	45,412,079	probably damaging	deleterious	SBP	2.0E-14	100.0
								PP	2.8E-20	99.4	
623_3	rs35761929	rs35761929	ENST00000254958.5	<i>JAG1</i> p.Pro871Arg	20	10,622,501	benign	deleterious	DBP	2.6E-18	99.1
636_1	rs2229742	rs2229742	ENST00000400202.1	<i>NRIP1</i> p.Arg448Gly	21	16,339,172	probably damaging	deleterious	SBP	7.4E-16	100.0
								PP	2.3E-11	99.7	

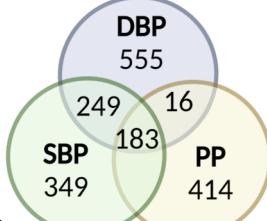
SNV, single nucleotide variant; Chr, chromosome; SIFT, Sorting Intolerant from Tolerant algorithm which predicts the effect of coding variants on protein function; Polyphen, Polymorphism Phenotyping tool predicts possible impact of an amino acid substitution on the structure and function of a human protein; Posterior probability, the SNV's accounted posterior probability of driving the blood pressure association under the annotation-informed prior.


(a)

(b)

Figure 1. Overlap of 1,850 distinct signals attaining genome-wide significant evidence of association with SBP, DBP and PP in meta-analysis of BP GWAS in up to 757,601 individuals of European ancestry. (a) Venn diagram showing the number of signals shared across BP traits. Sharing of signals across traits is much more common between SBP and DBP or SBP and PP, with just 16 associations shared between only DBP and PP. (b) Comparison of allelic effect sizes on SBP, DBP and PP for the index SNV at the 532 distinct association signals that are shared across multiple BP traits. The effect has been aligned to the SBP or PP increasing allele for the signal. Blue points correspond to the 448 association signals that are shared across exactly two BP traits, whilst red points correspond to the 84 association signals that are shared across all three BP traits. When signals are shared between SBP and PP, the direction of effect of the index SNV on the traits is always concordant.



SBP, DBP, PP

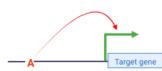
606 genomic regions → 1850 distinct signals

Annotated fine-mapping and computational approaches

High-confidence missense variant

SBP

30 signals


DBP

37 signals

PP

21 signals

Colocalised eQTL

96 signals

107 signals

84 signals

Promoter-capture Hi-C

281 signals

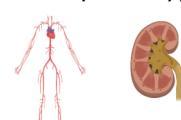
303 signals

231 signals

Candidate Effector Genes
(at least one line of evidence)

956

900


773

Additional supportive evidence

Mouse model

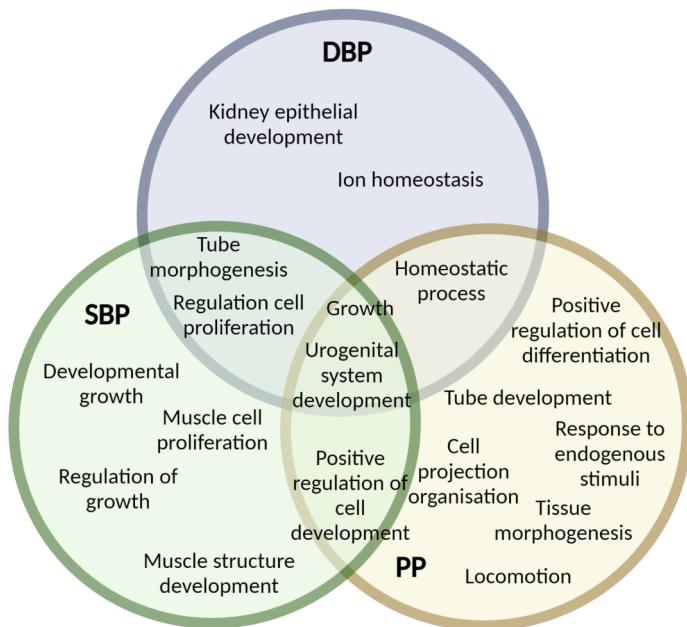
Human cardiovascular and renal phenotypes

Gene and protein expression

Consolidated Effector Genes
(two or more additional lines of evidence)

SBP

197


DBP

184

PP

180

Enrichment analysis

