

1 **KDM2B regulates hippocampal morphogenesis by transcriptionally
2 silencing Wnt signaling in neural progenitors**

3

4 Bo Zhang^{1, #}, Chen Zhao^{1, #}, Wencheng Shen¹, Wei Li¹, Yue Zheng¹, Xiangfei
5 Kong¹, Junbao Wang¹, Xudong Wu², Ying Liu^{1,*}, Yan Zhou^{1,*}

6

7 ¹Department of Neurosurgery, Medical Research Institute, Frontier Science
8 Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan
9 University, Wuhan University, Wuhan, China

10 ²Department of Cell Biology, Tianjin Medical University; Department of
11 Neurosurgery, Tianjin Medical University General Hospital; Tianjin, China

12 [#]Equal contribution

13 *Correspondence to Dr. Ying Liu, y.liu@whu.edu.cn; Dr. Yan Zhou,
14 yan.zhou@whu.edu.cn

15

16 **Abstract**

17 The hippocampus plays major roles in learning and memory. Similar to other
18 parts of the brain, the development of hippocampus requires precise
19 coordination of patterning, cell proliferation, differentiation, and migration, with
20 both cell-intrinsic and extrinsic mechanisms involved. Here we genetically
21 removed the chromatin-association capability of KDM2B - a key component of
22 the variant Polycomb repressive complex 1 (PRC1) - in the progenitors of
23 developing dorsal telencephalon (*Kdm2b*^{ΔCxxC}) to surprisingly discover that the
24 size of *Kdm2b*^{ΔCxxC} hippocampus, particularly the dentate gyrus, became
25 drastically smaller with disorganized cellular components and structure.
26 *Kdm2b*^{ΔCxxC} mice displayed prominent defects in spatial memory, motor
27 learning and fear conditioning. The differentiation trajectory of the developing
28 *Kdm2b*^{ΔCxxC} hippocampus was greatly delayed, with a significant amount of
29 TBR2-expressing intermediate progenitors stuck along the
30 migratory/differentiation path. Transcriptome and chromatin

31 immunoprecipitation studies of neonatal hippocampi and their progenitors
32 indicated that genes implicated in stemness maintenance, especially
33 components of canonical Wnt signaling, could not be properly silenced by
34 PRC1 and PRC2. Activating the Wnt signaling disturbed hippocampal
35 neurogenesis, recapitulating the effect of KDM2B loss. Together, we unveiled a
36 previously unappreciated gene repressive program mediated by KDM2B that
37 controls progressive fate specifications and cell migration, hence
38 morphogenesis of hippocampus during development.

39

40 **Introduction**

41 The hippocampus of the mammalian brain includes three major
42 compartments: the hippocampus proper, which can be divided into three
43 pyramidal subregions [cornu ammonis (CA) fields], the dentate gyrus (DG), and
44 the subiculum. The hippocampus plays essential roles in spatial memory that
45 enables navigation, in the formation of new memories, as well as in regulating
46 mood and emotions(Anacker & Hen, 2017). Constructing a functional
47 hippocampus requires precise production, migration, and assembly of a variety
48 of distinct cell types during embryonic and early postnatal stages. Largely
49 resembling neurogenesis of neocortical pyramidal neurons, the production of
50 pyramidal neurons in CAs and granule cells in dentate gyrus follows the path
51 of indirect neurogenesis(G. Li & Pleasure, 2014), i.e., PAX6-expressing radial
52 glial progenitor cells (RGCs) first give rise to TBR2⁺ intermediate progenitor
53 cells (IPCs), which then produce NeuN⁺ neurons. Particularly, the formation of
54 the dentate gyrus relies on sequential emergence of germinative foci at different
55 locations, including the dentate notch around embryonic (E) day 13.5 in mice,
56 the fimbriodentate junction (FDJ) around E15.5 and the hilus around birth,
57 which generate granule cells at different parts of DG(G. Li & Pleasure, 2014;
58 Nelson et al., 2020). Cell fate defects and skewed cell migration during
59 hippocampal development underly a cohort of human neurologic and
60 psychiatric diseases(Zhong et al., 2020). Moreover, the subgranule zone (SGZ)

61 of adult DG contains neural stem cells (NSCs) to support neurogenesis, which
62 might have implications in the formation of new memory.

63

64 The cell fate specification during development requires coordinated
65 actions of transcription factors (TFs), epigenetic factors and *cis*-acting elements
66 to ensure precise gene expression and silencing. Notably, repressive histone
67 modifications including mono-ubiquitinated histone H2A at lysine 119
68 (H2AK119ub1) and trimethylated histone H3 at lysine 27 (H3K27me3),
69 respectively modified by the Polycomb repressive complex 1 (PRC1) and PRC2,
70 are essential fate regulators in embryogenesis, organogenesis and tissue
71 homeostasis(Blackledge & Klose, 2021; Laugesen & Helin, 2014; Piunti &
72 Shilatifard, 2016; Schuettengruber & Cavalli, 2009; von Schimmelmann et al.,
73 2016). The PRC1 can be recruited to the chromatin *via* either one of the CBX
74 proteins – *a.k.a.* canonical PRC1, or other adapter proteins including KDM2B –
75 *a.k.a.* variant PRC1(Farcas et al., 2012; Fursova et al., 2019; Z. Gao et al.,
76 2012; He et al., 2013; Wu, Johansen, & Helin, 2013). Interestingly, PRC1 and
77 PRC2 can reciprocally recognize repressive histone modifications mediated by
78 each other or itself to stabilize repressive chromatin environments(Blackledge
79 et al., 2014; Kalb et al., 2014; Margueron et al., 2009; Sugishita et al., 2021;
80 Tamburri et al., 2020). It has been reported that the PRC2 is required for
81 hippocampal development and the maintenance of adult neural stem cell pool
82 of the DG, but the underlying cellular processes and molecular mechanisms
83 were large elusive(Liu et al., 2019; Zhang et al., 2014). Furthermore, very little
84 is known to what extent and how PRC1 is involved in hippocampal development.

85

86 KDM2B, previously known as JHDM1B, FBXL10, or NDY1, can recruit
87 PRC1 to non-methylated CpG islands (CGIs), particularly at promoter regions,
88 *via* its CxxC Zinc finger (ZF)(Farcas et al., 2012; Gearhart, Corcoran, Wamstad,
89 & Bardwell, 2006; He et al., 2013; Z. Wang et al., 2018; Wu et al., 2013). The
90 long isoform of KDM2B – KDM2BLF – contains a Jmjc demethylation domain

91 which removes the di-methylated lysine 36 of histone H3 (H3K36me2) to
92 regulate pluripotency and early embryogenesis(Huo et al., 2022). Mutations of
93 human *KDM2B* gene are associated with neurodevelopment defects including
94 intellectual disability (ID), speech delay and behavioral abnormalities(Labonne
95 et al., 2016; van Jaarsveld et al., 2022; Yokotsuka-Ishida et al., 2021). A recent
96 study indicated that heterozygosity of *Kdm2b* in mice impaired neural stem cell
97 self-renewal and leads to ASD/ID-like behaviors(Y. Gao et al., 2022). However,
98 there is no in-depth analysis to dissect how PRC1- and/or demethylase-
99 dependent roles of KDM2B participates in multiple facets of neural
100 development, including self-renewal, migration, differentiation and localization
101 of neural progenitors and their progeny.

102

103 We previously showed that KDM2B controls neocortical neuronal
104 differentiation and the transcription of *Kdm2blf* is *cis*-regulated by a long non-
105 coding RNA which is divergently transcribed from the promoter of *Kdm2blf*(W.
106 Li et al., 2020). However, questions remain regarding to what extent and how
107 KDM2B regulates neural development. Here we ablated the chromatin
108 association capability of KDM2B in the developing dorsal forebrain to
109 surprisingly find the morphogenesis of hippocampus, especially the DG, was
110 greatly hampered. Moreover, intermediate progenitors could not properly
111 migrate and differentiate upon dissociating KDM2B from the chromatin. The
112 canonical Wnt signaling were aberrantly activated in mutant hippocampi,
113 probably due to decreased enrichment of H2AK119ub and H3K27me3 in CGI
114 promoters of key Wnt pathway genes.

115

116 **Results**

117 **Removing KDM2B's chromatin association capability causes agenesis of 118 the hippocampus**

119 KDM2B has two main isoforms: the long isoform KDM2BLF contains a
120 demethylase JmjC domain while both isoforms share the CxxC zinc finger (ZF),

121 the PHD domain, a F-box and the LRR domain. We generated the conditional
122 knockout allele of *Kdm2b* by flanking exon 13 that encodes the CxxC ZF with
123 two *loxP* sequences (**Figure S1A**). These floxed *Kdm2b* mice, *Kdm2b*^{flx(CxxC)},
124 were crossed with *Emx1*-Cre and *Nestin*-Cre mice to generate conditional
125 *Kdm2b*^{Emx1-ΔCxxC} and *Kdm2b*^{Nestin-ΔCxxC} conditional knockout (cKO) mice
126 respectively to abolish KDM2B's association with the chromatin. Although
127 *Kdm2b*^{Nestin-ΔCxxC} mice could not survive past postnatal day 7 (P7), *Kdm2b*<sup>Emx1-
128 ΔCxxC</sup> mice were born at the mendelian ratio and thrive through adulthood
129 without gross abnormality (**Figure S1B-S1C**). Quantitative RT-PCR
130 experiments confirmed the deletion of exon 13, while transcriptions of other
131 parts of *Kdm2b*, including the region encoding the C-terminal LRR domain,
132 remained intact in cKO neocortices (**Figure S1D-S1F**). We then performed *in
133 situ* hybridization of neonatal (postnatal day 0, P0) brains using probes
134 targeting exon 13, which showed *Kdm2b* is expressed in the developing
135 hippocampus across the CA region and the DG of control *Kdm2b*^{flx/flx} brains
136 (**Figure S1G**). Importantly, the expression of *Kdm2b*-CxxC was almost gone in
137 the *Kdm2b*^{Emx1-ΔCxxC} hippocampi (**Figure S1H**). Moreover, immunoblotting of
138 embryonic day 15.5 *Kdm2b*^{Nestin-ΔCxxC} neocortex revealed truncated long and
139 short isoforms of KDM2B, confirming the selective deletion of the CxxC ZF,
140 which could abolish the CGI association by KDM2B and variant PRC1.1
141 (**Figure S1I**).
142

143 Strikingly, the hippocampi, particularly the DGs, of adult *Kdm2b*^{Emx1-ΔCxxC}
144 cKO brains were greatly shrunk in size in all examined sections (**Figure 1A,
145 S2B**). Although Wfs1-expressing pyramidal cells could be detected in the CA1
146 region of *Kdm2b*^{Emx1-ΔCxxC} cKO brains (**Figure S2A**), Calbindin-expressing cells
147 were mostly diminished (**Figure 1B**). Both upper and lower blades of cKO DGs
148 were much shorter than controls (**Figure 1C; S1C**), with numbers of NeuN+
149 granule cells and HopX+ NSCs decreased by 39.7% and 56.8% respectively
150 (**Figure 1D-1G**). Immuno-staining showed irregularity and ectopic dispersion of

151 Calbindin+, ZBTB20+ or NeuN+ granule cells in cKO DGs (**Figure 1B-1D**),
152 accompanied with fewer SOX2+ or GFAP+ NSCs, fewer TBR2+ neuroblasts,
153 and fewer PROX1+ or DCX+ neurons in the cKO SGZ (**Figure 1H; S1C**).
154 Interestingly, many HOPX+ NSCs were found to be ectopically localized inside
155 the granule cell layer of cKO DGs (**Figure 1F**, red arrows). The ventricles were
156 also enlarged in cKO brains along with thinner neocortices (**Figure 1A, S2D**).
157 The enlarged ventricles of cKO brains could already be seen at P0 for unknown
158 reasons without thinning of neocortices (**Figure S2G-S2K**). At P7, numbers of
159 upper-layer (SATB2+) and lower-layer (CTIP2+) neocortical neurons were not
160 significantly altered upon CxxC deletion of KDM2B (**Figure S2L-S2M**).
161 Consistently, numbers of PAX6-expressing radial glial progenitors and TBR2-
162 expressing intermediate progenitors were not changed in E16.5 cKO
163 neocortices (data not shown). Together, ablation of the chromatin association
164 capability of KDM2B in developing dorsal forebrains causes hippocampal
165 agenesis, while the thinning of adult cKO neocortices could be secondary to
166 ventricle dilation.

167
168 ***Kdm2b*^{Emx1-ΔCxxC} mice displays defects in spatial memory, motor learning
169 and fear conditioning**

170 Since hippocampus is essential for spatial navigation and memory
171 consolidation, as well as for anxiety and depression behaviors, we conducted
172 a series of behavior tests. First, open field tests showed reluctance of
173 *Kdm2b*^{Emx1-ΔCxxC} mice to explore center regions of open fields (**Figure 2A-2B**),
174 which could be decreased willingness of cKO mice to explore and/or increased
175 anxiety. The distance and velocity traveled, and immobility time in open field
176 tests were not significantly altered in *Kdm2b*^{Emx1-ΔCxxC} mice (**Figure S3A**). The
177 immobility time of *Kdm2b*^{Emx1-ΔCxxC} mice in forced swimming tests were a tad
178 shorter than control mice (no statistical significance), whereas the immobility
179 time of cKO mice in tail suspension test was the same as controls, suggesting
180 cKO mice did not display depression-related behavior (**Figure S3B-S3C**).

181 Interestingly, cKO mice spent shorter time in open arms of elevated plus maze
182 (no statistical significance), indicating that cKO mice tend to be hypersensitive
183 to anxiety (**Figure S3D**). Secondly, the rotarod performance tests indicated that
184 *Kdm2b*^{Emx1-ΔCxxC} cKO mice have compromised capacity for motor coordination
185 and learning, as they endured shorter time in rotarods than controls (**Figure**
186 **2C**). Third, Morris water maze tests revealed that *Kdm2b*^{Emx1-ΔCxxC} cKO mice
187 were defective in spatial learning. It took cKO mice longer time to find the
188 platform in the training stage (**Figure 2D**). Consistently, in the probe trial,
189 *Kdm2b*^{Emx1-ΔCxxC} cKO mice spent shorter time in quadrant holding the platform
190 (**Figure 2I**), whereas control and cKO mice showed no differences in swimming
191 distances and velocity (**Figure 2E-2H**). Fourth and most importantly, in contrast
192 to control mice, *Kdm2b*^{Emx1-ΔCxxC} cKO mice failed to display prolonged freezing
193 time in both context- and sound-induced fear conditioning tests (**Figure 2J-2M**).
194 Together, ablation of the chromatin association capability of KDM2B leads to
195 development failure of the hippocampus, which might cause defects in spatial
196 memory, motor learning and fear conditioning.

197
198 **Deletion of the CxxC ZF of KDM2B has no effect on adult neurogenesis of**
199 **the DG**

200 The shrunken hippocampi and diminished NSC pool in *Kdm2b*^{Emx1-ΔCxxC}
201 cKO mice prompted us to investigate whether the ablation of KDM2B's
202 chromatin association capability could hamper adult neurogenesis of the DG.
203 We thus crossed the *Kdm2b*^{flx(CxxC)} mice with *Nestin-CreERT2* mice to produce
204 *Kdm2b*^{Nestin-CreERT2-ΔCxxC} cKO mice. Adult *Kdm2b*^{Nestin-CreERT2-ΔCxxC} cKO and
205 control mice were administered with tamoxifen (TAM) for six consecutive days
206 to ablate the CxxC ZF in adult NSCs and their progeny. BrdU was also
207 administered for six consecutive days to label NSCs' progeny (**Figure S3E**).
208 Brains were collected at day 8 and day 35 of post-TAM injection for
209 immunofluorescent staining of BrdU, along with DCX (day 8) or PROX1 (day
210 35), two markers for new-born and mature granule neurons respectively. Data

211 showed numbers of BrdU-labelled cells and DCX⁺BrdU⁺ double-positive cells,
212 and ratios for DCX⁺BrdU⁺/BrdU⁺ cell were comparable between *Kdm2b*^{Nestin-CreERT2-ΔCxxC} cKO and control DGs in all examined sections at day 8 (**Figure S3F-S3G**). Similarly, at day 35, numbers of BrdU-labelled cells and
213 PROX1⁺BrdU⁺ double-positive cells, and ratios for PROX1⁺BrdU⁺/BrdU⁺ cell
214 were not altered in *Kdm2b*^{Nestin-CreERT2-ΔCxxC} cKO DGs (**Figure S3H-S3J**). Thus,
215 removal of KDM2B's chromatin association capability in adult NSCs exerts no
216 effect on adult neurogenesis of DGs.
217

218
219
220 **Hampered migration of intermediate progenitors and neurogenesis of**
221 **granule cells upon loss of KDM2B**

222 In DG development, neural progenitors, especially TBR2-expressing
223 intermediate progenitor cells (IPCs) migrate from the dentate neuroepithelial
224 (DNe) stem zone (the primary - 1ry matrix) through the dentate migratory
225 stream (DMS, the secondary - 2ry matrix) to the developing DG (the 3ry matrix),
226 while being distributed in multiple transient niches (**Figure 3D**). The prominent
227 DG defects in *Kdm2b*^{Emx1-ΔCxxC} cKO brains prompted us to examine
228 distributions of intermediate progenitors and neurons along the migratory path.
229 P0 brain sections were co-stained with TBR2 to label IPCs and with GFAP to
230 label astrocytic scaffold at the fimbriodentate junction (FDJ) of the DMS and the
231 fimbria. Total number of IPCs were increased by 15.3% upon loss of KDM2B-
232 CxxC. Strikingly, in *Kdm2b*^{Emx1-ΔCxxC} cKO brains, significant more TBR2+ IPCs
233 were accumulated at the DNe and the DMS, along with significant fewer TBR2+
234 IPCs at the DG (**Figure 3A-3E**). Of note, TBR2+ IPCs were more loosely
235 distributed at the FDJ, with GFAP-labelled astrocytic scaffold scattered at FDJ
236 but constricted at fimbria (**Figure 3A-3C**). We next carried out EdU birthdating
237 experiments by administering EdU at E15.5 followed by EdU and PROX1 co-
238 labelling at P2. Consistently, 31.3% fewer PROX1-labelled granule cells could
239 be detected in cKO DGs but 259.0% more in the cKO FDJ. In cKO brains, 33.3%
240 fewer E15.5-labelled EdU cells reached the DG and co-stained with PROX1,

241 while ectopic PROX1 cells were detected at FDJ (**Figure 3F-3H**). Furthermore,
242 proportions of PROX1+ cells in lower and upper blades of DGs were switched
243 into a lower-more and upper-fewer status in cKO DGs (**Figure 3I-3K**).
244 Congruently, by P7, a big chunk of PROX1+ cells could be seen at the FDJ of
245 *Kdm2b*^{Emx1-ΔCxxC} brains (**Figure S4F**). Together, loss of KDM2B-CxxC impedes
246 migration and differentiation of IPCs, hence proper production and localization
247 of granule neurons during hippocampal formation.

248

249 The hampered migration of IPCs upon loss of KDM2B-CxxC could be due
250 to defects of the cortical hem (CH) derived astrocytic scaffolds at the fimbria.
251 To exclude the possibility, *Kdm2b*^{Nestin-ΔCxxC} cKO brains were inspected,
252 because *Nestin* is mostly not expressed in CH derived astrocytic
253 scaffolds(Caramello, Galichet, Rizzoti, & Lovell-Badge, 2021). Data showed
254 that P0 *Kdm2b*^{Nestin-ΔCxxC} brains displayed almost the same phenotypes as
255 those in *Kdm2b*^{Emx1-ΔCxxC} brains, *i.e.*, overproduction of TBR2+ IPCs, significant
256 more IPCs accumulated at the DNe and the FDJ, but fewer IPCs at the DG,
257 suggesting that the migrating defects of IPCs upon loss of KDM2B-CxxC were
258 largely cell-intrinsic (**Figure S4A-S4E**).

259

260 **Disturbed differentiation of neural progenitors on loss of KDM2B-CxxC**

261 We next investigated how the RGC-IPC-Neuron neurogenesis path of
262 hippocampi were influenced on loss of KDM2B-CxxC. At E13.5, when the
263 hippocampal primordia just emerged, the distribution of BLBP, the marker for
264 astrocytic progenitors at CH, were unaltered in *Kdm2b*^{Emx1-ΔCxxC} cKO brains
265 (**Figure S5A-S5B**). Similarly, the expression pattern of SOX2, the marker for
266 neocortical and hippocampal RGCs, were not changed in CH, DNe and
267 hippocampal neuroepithelium (HNe) upon loss of KDM2B-CxxC (**Figure S5A**,
268 the middle panel). In addition, the distribution of PAX6 and TBR2, markers for
269 RGC and IPCs respectively, at E13.5 were almost the same between cKOs and
270 controls (**Figure S5A**, the bottom panel). We further examined whether the

271 capacity of proliferation and differentiation of hippocampal progenitors was
272 affected at E14.5 by co-labeling brain sections with PAX6, TBR2 and EdU (2
273 hours pulse). Data showed that deletion of KDM2B-CxxC had no effect on
274 abundance and proliferation of PAX6+ RGCs and TBR2+ IPCs in DNEs and
275 CHs. Consistently, the differentiation capability from RGCs to IPCs was
276 unchanged in cKO brains, because the number of PAX6+TBR2+ cells and the
277 ratio of PAX6+TBR2+ cells among all PAX6+ cells were comparable between
278 cKOs and controls (**Figure S5C-S5D**). Thus, the hippocampal agenesis in
279 *Kdm2b*^{Emx1-ΔCxxC} cKO brains was not due to specification, maintenance, and
280 differentiation of early neural progenitors.

281

282 We then moved onto E16.5, when migration and neurogenesis of
283 hippocampal progenitors are at the climax. In control brains, most PAX6+ RGCs
284 were localized at the DNe, while TBR2+ IPCs were more evenly distributed
285 along the DNe-FDJ-DG migratory/differentiating path (**Figure 4A-4D**). Although
286 total numbers of PAX6+ RGCs and TBR2+ IPCs were not significantly altered
287 in cKO hippocampi (**Figure 4E-4F**), their distribution along the DNe-FDJ-DG
288 path were dramatically delayed. The cKO DNes were significantly enriched with
289 more PAX6+, PAX6+EdU+ (dividing) and TBR2+ cells (**Figure 4G-4I**). In
290 contrast, the distribution of total and dividing PAX6+ and TBR2+ cells in cKO
291 FDJs and DGs was drastically reduced, except for that of TBR2+ cells in the
292 FDJ (**Figure 4G-4L**). Furthermore, the differentiating rate from RGCs to IPCs
293 (PAX6+TBR2+/PAX6+) at FDJ is 60% higher in cKOs (**Figure 4N**), but
294 PAX6+TBR2+ cells were 73.9% fewer in cKO DGs (**Figure 4M**). By P7,
295 numbers of total and dividing TBR2+ IPCs were significantly decreased at cKO
296 DGs, whereas those at hippocampal SVZ and FDJ were greatly increased
297 (**Figure 4O-4S; S6A**). In summary, the migratory and differentiating trajectory
298 of hippocampal progenitors were greatly delayed upon loss of KDM2B-CxxC.

299

300 We next asked whether neuronal maturation was impeded on loss of

301 KDM2B-CxxC. To this end, we crossed the *Kdm2b*^{flx(CxxC)} mice with *Nex-Cre*
302 mice to obtain *Kdm2b*^{Nex-ΔCxxC} cKO mice, where KDM2B-CxxC was specifically
303 ablated in all postmitotic neurons but not progenitors of neocortices and
304 hippocampi. Phenotypic analyses revealed that hippocampal morphology and
305 cellular components, including PROX1+ DG granule cells, of P7 *Kdm2b*^{Nex-ΔCxxC}
306 cKOs did not show any abnormality, suggesting that hippocampal agenesis was
307 not due to defects on postmitotic neuron differentiation (**Figure S6B**). Together,
308 KDM2B regulates hippocampal morphogenesis by controlling multiple
309 behaviors, including coordinated RGC to IPC differentiation, migration and
310 divisions of neural progenitors (**Figure S6C**).

311

312 **Aberrantly activated Wnt signaling due to alterations of key histone**
313 **modifications in *Kdm2b* mutant hippocampus**

314 We next sought to unveil molecular events and mechanisms underlying
315 hippocampal agenesis caused by KDM2B mutation. First, hippocampal tissue
316 from P0 control and *Kdm2b*^{Emx1-ΔCxxC} cKO brains were harvested and subjected
317 to RNA-seq transcriptome analyses. Data showed 886 genes and 575 genes
318 were activated and repressed respectively in *Kdm2b*^{Emx1-ΔCxxC} cKO hippocampi.
319 In line with aforementioned phenotypic analyses, expression levels of markers
320 for progenitor cells including *Pax6*, *Neurog2* and *TBR2/Eomes* were increased
321 in cKO hippocampi (**Figure 5A**). Gene ontology (GO) analyses revealed that
322 up-regulated genes were involved in pattern formation, morphogenesis, cell
323 proliferation and canonical Wnt signal pathways (**Figure 5B, S8A**), whereas
324 down-regulated genes encompassing those associated with neuronal
325 structures and functions (**Figure 5C**). Notably, a series of canonical Wnt
326 pathway components, including ligands, receptors, and signal transducers,
327 were significantly activated upon loss of KDM2B-CxxC (**Figure 5D-5F**). To
328 validate whether the canonical Wnt signaling was enhanced in cKO hippocampi,
329 *Kdm2b*^{Emx1-ΔCxxC} cKO mice were crossed with the BAT-GAL (B6.Cg-Tg(BAT-
330 lacZ)3Picc/J) Wnt-reporter mice. Beta-galactosidase staining showed that P0

331 cKO hippocampi had stronger canonical Wnt activity, including the CA region
332 and FDJ. The ventricular surface of hippocampi and neocortices of cKO brains
333 also displayed elevated Wnt signaling (**Figure 5G-5I**). In particular, components
334 of canonical Wnt signaling genes such as *Lef1* and *Sfrp2* were elevated. *In situ*
335 hybridization verified that the expression of *Lef1*, the gene encoding the
336 transcriptional co-factor of β -Catenin to activate Wnt signaling, is significantly
337 up-regulated in E16.5 cKO hippocampi (**Figure 5J-5L**). LEF1 not only has an
338 early role in specifying the hippocampus, but also controls the generation of
339 dentate gyrus granule cells(Galceran, Miyashita-Lin, Devaney, Rubenstein, &
340 Grosschedl, 2000). Similarly, the expression of *Sfrp2*, another Wnt signaling
341 pathway component was greatly enhanced in E16.5 cKO hippocampi and
342 VZ/SVZ of neocortices (**Figure 5M-5O**). Although members of the SFRP family
343 were first reported as Wnt inhibitors, *Sfrp2* regulates anteroposterior axis
344 elongation, optic nerve development, and cardiovascular and metabolic
345 processes by the promoting or inhibiting Wnt signaling pathway(Guan et al.,
346 2021; Marcos et al., 2015; Satoh, Gotoh, Tsunematsu, Aizawa, & Shimono,
347 2006; von Marschall & Fisher, 2010),

348

349 Since P0 hippocampi contained multiple cell types ranging from RGCs to
350 IPCs to neurons, we propagated RGCs *in vitro* under the serum-free
351 neurosphere condition (**Figure S7A**). RNA-seq transcriptome studies revealed
352 that a significant portion of activated and repressed genes in cKO neurospheres
353 overlapped with those in cKO hippocampal tissue (**Figure S7B-S7E**). GO
354 analyses indicated genes involved in cell division and canonical Wnt signaling
355 were activated in cKO hippocampal neurospheres (**Figure S7F**).

356

357 KDM2B is a key component of variant PRC1 to mediate repressive histone
358 modification H2AK119ub and subsequent H3K27me3 (**Figure 6A**) and its long
359 isoform KDM2BLF also bears demethylase activity for H3K36me2. We then
360 examined how loss of KDM2B-CxxC affects these modifications in hippocampal

361 tissue and neurospheres, and whether these effects were associated with
362 enhanced Wnt signaling. To this end, chromatin immunoprecipitation
363 sequencing (ChIP-seq) was performed using P0 hippocampal tissue and
364 neurospheres. As expected, the overall levels of H2AK119ub and H3K27me3
365 were decreased in cKO hippocampal tissues and neurospheres (**Figure 6B-**
366 **6C**). However, the level of H3K36me2 was not altered in cKO tissue but slightly
367 increased in neurospheres (**Figure 6B-6C; S8H-S8I**). Moreover, assay for
368 transposase-accessible chromatin using sequencing (ATAC-seq) showed that
369 chromatin became more accessible in cKO hippocampi (**Figure 6C**).
370

371 We next verified changes of Wnt signaling pathway and investigated how
372 histone modifications and chromatin accessibilities correlate with changes of
373 gene expression. Since PRC1.1 could be recruited to CGIs *via* KDM2B's CxxC
374 zinc finger to catalyze H2AK119ub, we paid special attention to chromatin
375 status of CGIs. Quantitative reverse transcription PCR (RT-qPCR) revealed
376 that the transcripts of multiple Wnt ligands and *Sfrp2* in cKO hippocampi were
377 significantly elevated throughout developmental time points (**Figure 6D-6G;**
378 **S8B-S8G**).
379

380 Importantly, peaks for H2AK119ub and H3K27me3 were decreased on
381 CGI-enriched promoters of many activated genes, including *Wnt7b*, *Wnt3*,
382 *Wnt6*, *Wnt10a* and *Sfrp2*, as well as *Pax6*, *Eomes* and *Neurod1*; but peaks for
383 H3K36me2 on these sites were not significantly altered in P0 cKO hippocampi
384 (**Figure 6H; S8J**). Consistently, ATAC-seq showed these CGI promoters were
385 more accessible in cKO hippocampi (**Figure 6H; S8J**). For *Lef1*, the enrichment
386 of H2AK119ub and H3K27me3 was diminished around its CGI promoter in cKO
387 neurospheres (**Figure S8K**). To ask whether activating the Wnt pathway could
388 hamper hippocampal neurogenesis, we electroporated a mix of plasmids
389 expressing Wnt ligands into E14.5 hippocampal primordia. Since *Sfrp2* is one
390 of the most enhanced Wnt signaling components upon loss of KDM2B-CxxC,

391 constructs overexpressing *Sfrp2* were separated transduced into E14.5
392 hippocampal primordia (**Figure 6I-6J**). Data showed that overexpressing Wnt
393 ligands or *Sfrp2* could significantly block hippocampal neurogenesis, as more
394 transduced cells resided in VZ and IZ but fewer in the pyramidal cell layer (Py)
395 compared to controls (**Figure 6K-6L**), with significantly more transduced cell
396 co-expressing TBR2 (**Figure 6M**).

397

398 **Loss of Ring1B did not cause accumulation of neural progenitors**

399 KDM2B recruits other component of PRC1.1, including the ubiquitin protein
400 ligase Ring1B, to CGIs to initiate and stabilize gene silencing. We then asked
401 whether the impeded migration and differentiation of neural progenitors in
402 *Kdm2b* cKO hippocampi is caused by PRC1's loss-of-function. We obtained
403 *Rnf2* (the gene encoding Ring1B) cKO mice - *Rnf2*^{*Emx1-cKO*} – by crossing floxed
404 *Rnf2* mice with *Emx1*-Cre mice (**Figure S9A**). As expected, ablation of *Rnf2*
405 greatly decreased the level of H2AK119ub in P0 neocortical tissues, with levels
406 of H3K27me3 also slightly decreased (**Figure S9B**). We then stained P0 brains
407 with TBR2 (**Figure S9C-S9D**) to find *Rnf2*^{*Emx1-cKO*} hippocampi were smaller
408 than controls and the number of TBR2+ progenitors in *Rnf2*^{*Emx1-cKO*} hippocampi
409 was decreased by 9.2%. Moreover, the distribution of TBR2+ progenitors in
410 DGs, but not DNE and FDJ, was significantly decreased in the *Rnf2*^{*Emx1-cKO*}
411 hippocampi. However, to our surprise, there was no accumulation and
412 dispersion of TBR2+ IPCs in the FDJ region (2ry) of the *Rnf2*^{*Emx1-cKO*}
413 hippocampi as found in *Kdm2b*^{*Emx1-ΔCxxC*} cKO brains (**Figure S9E**). Therefore,
414 although PRC1's loss-of-function also causes hippocampal agenesis, it did not
415 lead to buildup of neural progenitors in the migrating path of developing
416 hippocampi.

417

418 Together, loss of KDM2B-CxxC reduces repressive histone modifications
419 on key Wnt signal genes, hence leading to the block of their attenuation over
420 time, which causes hampered differentiation and migration of hippocampal

421 progenitors (**Graphic abstract**).

422

423 **Discussion**

424 The hippocampus is evolutionarily more ancient than the
425 neocortex(Bingman, Salas, & Rodriguez, 2009) and the production and
426 localization of CA pyramidal neurons also follows the birthdate-dependent
427 inside-out pattern(Supèr, Soriano, & Uylings, 1998). In neocortical development,
428 Pax6+ RGCs and TBR2+ IPCs largely reside in the VZ and SVZ respectively,
429 with their nuclei undergoing local oscillation. Although many cellular and
430 epigenetic programs were found to control numbers and differentiation of
431 neocortical RGCs and IPCs, it remains unclear how these mechanisms were
432 applied in hippocampal development, which involves migration and dispersion
433 of neural progenitors. Here we revealed that the chromatin association of
434 KDM2B, an essential component of variant PRC1.1, is required for
435 hippocampal formation. KDM2B mediates silencing of Wnt signaling genes to
436 facilitate proper migration and differentiation of hippocampal progenitors.

437

438 Our knowledge on the mammalian Polycomb repressive system has mostly
439 come from studies in pluripotent stem cells and in embryos at early
440 developmental stages(Chen, Djekidel, & Zhang, 2021; Laugesen & Helin, 2014;
441 O'Carroll et al., 2001; Sugishita et al., 2021; Voncken et al., 2003), when the
442 establishment of repressive domains is initiated(Bonnet et al., 2022).
443 Nonetheless, how Polycomb controls sequential fate determination in specific
444 tissues and at later developmental stages largely remains elusive. Both PRC1
445 and PRC2 are essential players in neocortical development(Eto et al., 2020;
446 Morimoto-Suzuki et al., 2014; Pereira et al., 2010; Piper et al., 2014; Sun, Chang,
447 Gerhartl, & Szele, 2018). The deletion of Ring1B, the core enzymatic
448 component of PRC1, prolonged neocortical neurogenesis at the expense of
449 gliogenesis. PRC1 regulates the chromatin status of neurogenic genes of
450 neural progenitors, hence altering their responsiveness to neurogenic Wnt

451 signals over developmental time(Hirabayashi et al., 2009). Ring1B was also
452 found to regulate dorsoventral patterning of the forebrain(Eto et al., 2020) and
453 sequential production of deep and upper-layer neocortical PNs(Morimoto-Suzuki
454 et al., 2014). However, we surprisingly revealed that ablation of Ring1B did not
455 significantly hamper migration and distribution of TBR2+ neural progenitors of
456 developing hippocampi, whereas these defects are prominent in the
457 *Kdm2b*^{Emx1-ΔCxxC} hippocampi. In addition, removal of KDM2B from the
458 chromatin only have mild effects on neocortical development and overall
459 H2AK119ub1 and H3K27me3 levels. Therefore, KDM2B likely controls fate
460 determination of hippocampal progenitors by selectively repressing a series of
461 progenitor genes including those in the Wnt pathway *via* PRC1.1.

462

463 Knocking out EED, one of the core components of PRC2, results in
464 hampered neurogenesis of postnatal DG. However, unlike *Kdm2b* cKO brains,
465 the EED knockouts did not display any hippocampal malformation at P0(Liu et
466 al., 2019). Moreover, deletion of *Ezh2* in adult NSCs leads to disturbed
467 neurogenesis of DG(Zhang et al., 2014), which was unseen in *Kdm2b* cKO DGs.
468 These discrepancies echoes either distinct roles or spatiotemporal activities of
469 PRC1 and PRC2. It would be worthy of dissecting functions of distinct PRC1/2
470 variants or their components in neural development and homeostasis(Lan et
471 al., 2022). A number of studies indicated that PRC1 and PRC2 can directly or
472 indirectly regulate Wnt signaling in developmental, physiological and disease
473 conditions(Chiacchiera et al., 2016; Oittinen et al., 2016; Jiajia Wang et al.,
474 2020). Wnt signaling governs multiple aspects of neural development including
475 neurulation, pattern formation, and fate choices of neural progenitors(Bengoa-
476 Vergniory & Kypta, 2015; Chenn & Walsh, 2002; Machon, van den Bout,
477 Backman, Kemler, & Krauss, 2003). Moreover, the strength and gradient of the
478 canonical Wnt signaling in the RGC-IPC-neuron path and through
479 developmental time ensures proper cell fate establishment and transition(Lie et
480 al., 2005; Munji, Choe, Li, Siegenthaler, & Pleasure, 2011; Junbao Wang et al.,

481 2022), including those in hippocampal morphogenesis(Galceran et al., 2000;
482 Zhong et al., 2020). Deletion of KDM2B-CxxC greatly elevated Wnt signaling in
483 hippocampi of multiple developing stages and in hippocampal progenitors,
484 which could lead to impeded migration and differentiation of IPCs. Of note,
485 however, the ablation of KDM2B-CxxC has minimal effects on neocortical
486 development, reflecting regional difference between neocortical and
487 hippocampal progenitors.

488

489 The deletion of KDM2B-CxxC would totally abolish KDM2B's association
490 with CGIs, thus disabling KDM2B's two major functions on chromatin -
491 mediating H2AK119Ub *via* PRC1.1 and demethylating H3K36me2, the latter of
492 which is solely executed by the JmjC-containing KDM2BLF. Previous studies
493 indicated that the demethylase activity of KDM2A/B is required for PRC
494 establishment at CGIs of peri-implantation embryos(Huo et al., 2022), but
495 contributes moderately to the H3K36me2 state at CGI-associated promoters
496 and is dispensable for normal gene expression in mouse embryonic stem
497 cells(Turberfield et al., 2019). Interestingly, levels of H3K36me2 were not
498 significantly altered globally or locally in KDM2B-CxxC deleted hippocampi.
499 Moreover, *Kdm2blf*^{KO} mice did not display hippocampal agenesis or
500 malformation(Fukuda, Tokunaga, Sakamoto, & Yoshida, 2011; W. Li et al.,
501 2020). Thus, the H3K36me2 demethylase activity of KDM2B is likely
502 dispensable for hippocampal development.

503

504 *KDM2B* is implicated in neurological disorders including ID and behavior
505 abnormalities, and the region encoding the CxxC ZF is the mutational
506 hotspot(van Jaarsveld et al., 2022). Consistently, *Kdm2b*^{Emx1-ΔCxxC} cKO mice
507 displayed prominent defects in spatial and motor learning and memory, as well
508 as contextual fear conditioning. It would be essential to explore whether
509 patients with *KDM2B* mutations have defects of hippocampal morphogenesis
510 and function, and how KDM2B mediated gene repression is implicated in

511 human brain development.

512

513 **MATERIALS AND METHODS**

514 **Mice and genotyping**

515 All animal procedures were approved by the Animal Care and Ethical
516 Committee of Wuhan University. Wild-type CD-1 (ICR) and C57BL/6 mice
517 were obtained from the Hunan SJA Laboratory Animal Company (Changsha,
518 China). Mice were housed in a certified specific-pathogen-free (SPF) facility.
519 The noon of the day when the vaginal plug was found was counted as embryo
520 (E) day 0.5.

521 Mice with conditional deletion of *Kdm2b-CxxC* were obtained by first
522 crossing *Kdm2b*^{f/f} (generated by Applied Stem Cell) females with *Emx1-Cre*
523 (Jackson Laboratories, stock number 005628), *Nestin-Cre* (Jackson
524 Laboratories, stock number 003771) or *Nex-Cre* males [*Neurod6*^{tm1(cre)Kan},
525 MGI:2668659]. *Emx1-Cre*; *Kdm2b*^{f/+}, *Nestin-Cre*; *Kdm2b*^{f/+} or *Nex-Cre*;
526 *Kdm2b*^{f/+} males were crossed with *Kdm2b*^{f/f} females to obtain conditional
527 knockout mice (*Kdm2b*^{Emx1-ΔCxxC}, *Kdm2b*^{Nestin-ΔCxxC}, *Kdm2b*^{Nex-ΔCxxC}). *Kdm2b*^{f/+}
528 and *Kdm2b*^{f/f} were phenotypically indistinguishable from each other, and
529 used as controls. The primer set forward 5'- cctgtagtcctggattcctggc-
530 3'/reverse 5' - cccaaacttgccttaggccc-3' was used for mice genotyping, and
531 band sizes for *Kdm2b*^{f/+} mice are 364 bp (WT allele) and 404 bp (targeted
532 allele with 5' loxP). Forward 5'- cctgttacgtatagccaaa-3'/reverse 5'-
533 cttagcgccgtaaatcaatc-3' was used for *Emx1-Cre*, *Nestin-Cre* and *Nex-Cre*
534 genotyping with band size 319 bp (Cre allele).

535

536 To analyse adult neurogenesis, the *Nestin-CreERT2* (Jackson
537 Laboratories, stock number 016261) and *Kdm2b*^{f/f} mice were crossed to
538 generate *Nestin-CreERT2*; *Kdm2b*^{f/+} animals. *Nestin-CreERT2*; *Kdm2b*^{f/+}
539 mice were further crossed with *Kdm2b*^{f/f} mice to obtain homozygous

540 *Kdm2b*^{NestinCreERT2-ΔCxxC} animals, which were used for the experiment. Forward
541 5'- gaccaggttcgttcactca-3'/reverse 5'- caagtttaggagcaaacagtagc-3' was used
542 for *Nestin-CreERT2* genotyping with band size 993 bp (CreERT2 allele).

543

544 BAT-Gal mice were kind gifts from Dr. Junlei Chang (Jackson Lab, stock
545 number 005317). To explore the Wnt signaling pathway in *Kdm2b*^{Emx1-ΔCxxC}
546 mice, the BAT-Gal and *Kdm2b*^{f/f} mice were crossed to generate *Kdm2b*^{f/+};
547 BAT-Gal animals. *Emx1-Cre*; *Kdm2b*^{f/+} mice were further crossed with
548 *Kdm2b*^{f/+}; BAT-Gal mice to obtain *Kdm2b*^{Emx1-ΔCxxC}; BAT-Gal animals, which
549 were used for the experiment. The primer set forward 5'-atcctctgcatggtcaggc-
550 3'/reverse 5'-cgtggcctgattcattcc-3' was used for BAT-Gal mice with band size
551 315 bp (LacZ allele).

552

553 Mice with conditional deletion of *Rnf2* were obtained by first crossing
554 *Rnf2*^{f/f} (purchased from GemPharmatech, Strain NO. T014803) females with
555 *Emx1-Cre* males (Jackson Laboratories, stock number 005628). The primer
556 set forward 5'- agctgtggcctgcgttcatttc-3'/reverse 5' -
557 gctctactgtgttacaaccctagccc-3' was used for *Rnf2*^{f/+} mice genotyping, and
558 band sizes for *Rnf2*^{f/+} mice are 289 bp (WT allele) and 391 bp (targeted allele
559 with 5' loxP).

560

561 **Tamoxifen and BrdU administration**

562 To activate Cre-mediated recombination, tamoxifen (TAM; Sigma-Aldrich)
563 was used, which was made fresh daily and dissolved in sunflower oil solution
564 (Sigma-Aldrich). 8-week-old *Kdm2b*^{NestinCreERT2-ΔCxxC} mice were daily
565 administered with 30 mg/kg prewarmed TAM intraperitoneally for 6 consecutive
566 days (d1-d6). From day 2 to day 7, mice were injected with 50 mg/kg BrdU
567 (Sigma-Aldrich) intraperitoneally for 6 consecutive days and were sacrificed 1
568 day later (day 8, Short-Term) or 4 weeks later (day 35, Long-Term) to identify
569 BrdU-positive adult-born cells.

570

571 **Tissue fixation and sectioning**

572 The pregnant dam was anesthetized with 0.7% w/v pentobarbital sodium
573 (105 mg/kg body weight) in 0.9% sodium chloride. Embryos were sequentially
574 removed from the uterus. Brains of embryos were dissected out in cold PBS
575 and immersed in 4% paraformaldehyde (PFA) overnight at 4°C. For P0, P2,
576 P7 and adult mice, animals were anesthetized with 0.7% w/v pentobarbital
577 sodium solution followed by trans-cardiac perfusion with 4% PFA in PBS (P0,
578 5 ml; P7, 10 ml; adult, 30 ml). Brains were dissected and post-fixed in 4% PFA
579 overnight at 4°C. Next day, brains were dehydrated in 20% w/v sucrose
580 overnight at 4°C. For sectioning, brains were embedded in OCT (SAKURA)
581 and cut at 20 µm for adult brains and 14 µm for other stages with a cryostat
582 (Leica CM1950).

583

584 **Nissl staining**

585 Adult brain sections were stained with 0.25% Cresyl Violet (Sigma-Aldrich)
586 solution for 15 min at 65°C. Sections were then decolorized in ethanol for 0.5-
587 1 min, dehydrated in gradient ethanol solutions for 5 min each and cleared
588 twice in xylene for 5 min. Sections were mounted in the neutral balsam.

589

590 ***In situ* hybridization (ISH)**

591 Sections were dried in a hybridization oven at 50°C for 15 min and fixed in
592 4% PFA for 20 min at room temperature, followed by permeabilization in 2 µg/ml
593 proteinase K in PBS for 10 min at room temperature. Prior to hybridization,
594 sections were acylated in 0.25% acetic anhydride for 10 min. Then, sections
595 were incubated with a digoxigenin-labeled probe diluted (0.2 ng/µl) in
596 hybridization buffer (50% deionized formamide, 5x SSC, 5x Denhart's, 250
597 µg/ml tRNA, and 500 µg/ml Herring sperm DNA) under coverslips in a
598 hybridization oven overnight at 65°C. The next day, sections were washed 4
599 times for 80 min in 0.1x SSC at 65°C. Subsequently, they were treated with 20

600 μ g/ml RNase A for 20 min at 37°C, then blocked for 3.5 h at room temperature
601 in 10% normal sheep serum. Slides were incubated with 1:5,000 dilution of anti-
602 digoxigenin-AP conjugated antibody (Roche) overnight at 4°C. BCIP/NBT
603 (Roche) was used as a color developing agent. ISH primers used are listed in
604 Table S1.

605

606 **Immunofluorescence**

607 Frozen brain sections were mounted onto Superfrost plus slides and then
608 dried at room temperature. For heat-mediated antigen retrieval, slides were
609 incubated for 15 min in 10 mM sodium citrate buffer (pH 6.0) at 95°C. For BrdU
610 staining, sections were treated with 20 μ g/ml proteinase K (Sigma) (1:1000 in
611 PBC) for 5 min and 2 N HCl for 30 min at room temperature. Sections were
612 then immersed in blocking buffer (3% normal sheep serum and 0.1% Triton X-
613 100 in PBS; or 5% BSA and 0.5% Triton X-100 in PBS) for 2 h at room
614 temperature. Sections were then incubated in primary antibodies [mouse anti-
615 Calbindin (1:1000; Sigma, C9848), rabbit anti-ZBTB20 (1:1000; Sigma,
616 HPA016815), mouse anti-HopX (1:200; Santa Cruz, sc-398703), rabbit anti-
617 Wfs1 (1:1000; Proteintech, 86995), mouse anti-PROX1 (1:200; Millipore,
618 MAB5654), rabbit anti-GFAP (1:500; DAKO, Z0334), rat anti-CTIP2 (1:500;
619 Abcam, ab18465), rabbit anti-SATB2 (1:500; Abcam, ab92446), rat anti-BrdU
620 (1:500; Abcam, ab6326), mouse anti-BrdU (1:500; Roche, 11170376001),
621 rabbit anti-DCX (1:500; Abcam, ab18723), rabbit anti-TBR2 (1:500; Abcam,
622 ab23345), rat anti-TBR2 (1:500; Thermo Fisher, 14-4875-82), rabbit anti-PAX6
623 (1:500; Millipore, ab2237), and rabbit anti-Ki67 (1:500; Abcam, ab15580] in
624 blocking buffer overnight at 4°C. After three rinses in PBS, sections were
625 incubated in secondary antibodies (Alexa Fluor 488-conjugated anti-mouse,
626 A11029; Alexa Fluor 555-conjugated anti-mouse, A21422; Alexa Fluor 488-
627 conjugated anti-rat, A11006; Alexa Fluor 555-conjugated anti-rat, A21434;
628 Alexa Fluor 647-conjugated anti-rat, A21247; Alexa Fluor 488-conjugated anti-
629 rabbit, A11034; Alexa Fluor 555-conjugated anti-rabbit, A21429; Alexa Fluor

630 647-conjugated anti-rabbit, A21245; Alexa Fluor 488-conjugated anti-chicken,
631 A11039; Thermo Fisher Scientific; 1:1000) for 1 h at room temperature. Nuclei
632 were labeled by incubation in PBS containing 4',6-diamidino-2-phenylindole
633 (DAPI) (0.1 µg/ml) (Sigma-Aldrich), and samples were mounted in ProLong
634 Gold Antifade Mountant (Thermo Fisher Scientific).

635

636 **5-Ethynyl-2'-Deoxyuridine (EdU) staining**

637 Proliferation of cells was investigated with BeyoClickTM EdU Cell
638 Proliferation Kit (C0075S, Beyotime, China) according to the manufacturer's
639 protocols. In brief, frozen brain sections were dried at temperature and
640 permeated with 0.3% Triton X-100 in PBS for 30 min. Sections were then
641 incubated with EdU working solution for 1 h at 37 °C in the dark. After incubation,
642 regular immunofluorescence staining can be followed.

643

644 **Immunohistochemical staining**

645 Frozen brain sections were dried at room temperature, and then pretreated
646 with 0.3% H₂O₂ for 15 min to deactivate endogenous peroxidase. Sections were
647 blocked with 3% normal sheep serum with 0.1% Tween 20 at room temperature
648 for 2 h. Sections were then incubated in primary antibodies [rabbit anti-NeuN
649 (1:500; Abcam, ab177487), rabbit-anti-DCX (1:500; Abcam, ab18723), rabbit
650 anti-SOX2 (1:500; Millipore, ab5603), rabbit anti-TBR2 (1:500; Abcam,
651 ab23345), and rabbit anti-BLBP (1:500; Abcam, ab32423)] in blocking buffer
652 overnight at 4°C, followed by addition of the avidin-biotin-peroxidase complex
653 (1:50; VECTASTAIN Elite ABC system, Vector Laboratories). Peroxidase was
654 reacted in 3,3'-diaminobenzidine (5 mg/ml) and 0.075% H₂O₂ in Tris-HCl (pH
655 7.2). Sections were dehydrated in gradient ethanol (75% ethanol, 95% ethanol,
656 100% ethanol and 100% ethanol, each for 5 min), and cleared twice in xylene
657 for 5 min, then mounted in the neutral balsam.

658

659 **Behavior tests**

660 We used 12- to 16-week-old age-matched male mice for all behavioral tests.
661 Mice were housed (3-5 animals per cage) in standard filter-top cages with
662 access to water and rodent chow at all times, maintained on a 12:12 h light/dark
663 cycle (09:00-21:00 h lighting) at 22°C, with relative humidity of 50%–60%. All
664 behavioral assays were done blind to genotypes.

665

666 *Open field test.* The test mouse was gently placed near the wall-side of a length
667 of 50 cm, a width of 50 cm, and a height of 50 cm open-field arena and allowed
668 to explore freely for 20 min. Only the last 10 min of the movement of the mouse
669 was recorded by a video camera and analyzed with Ethovision XT 13 (Noldus).

670

671 *Rotarod test.* The test consists of 4 trials per day for 10 days with the rotarod
672 (3 cm in diameter) set to accelerate from 4 rpm to 40 rpm over 5 minutes. The
673 trial started once mice were placed on the rotarod rotating at 4 rpm in partitioned
674 compartments. The time for each mouse spent on the rotarod were recorded.
675 At least 20 min recovery time was allowed between trials. The rotarod
676 apparatus was cleaned with 70% ethanol and wiped with paper towels between
677 each trial.

678

679 *Morris water maze.* Mice were introduced into a stainless water-filled circular
680 tank, which is 122 cm in diameter and 51 cm in height with non-reflective interior
681 surfaces and ample visual cues. Two principal axes were drawn on the floor of
682 the tank, each line bisecting the maze perpendicular to one another to create
683 an imaginary ‘+’. The end of each line demarcates four cardinal points: North,
684 South, East and West. To enhance the signal-to-noise ratio, the tank was filled
685 with water colored with powdered milk. A 10-cm circular plexiglass platform was
686 submerged 1 cm below the surface of the water in middle of the southwest
687 quadrant. Mice started the task at fixed points, varied by day of testing (Vorhees
688 & Williams, 2006). Four trials were performed per mouse per day with 20 min
689 intervals for 5 days. Each trial lasted 1 min and ended when the mouse climbed

690 onto and remained on the hidden platform for 10 s. The mouse was given 20 s
691 rest on the platform during the inter-trial interval. The time taken by the mouse
692 to reach the platform was recorded as its latency. Times for four trials were
693 averaged and recorded as a result for each mouse. On day 6, the mouse was
694 subjected to a single 60-s probe trial without a platform to test memory retention.
695 The mouse started the trial from northeast, the number of platform crossings
696 was counted, and the swimming path was recorded and analyzed using the
697 Ethovision XT 13 (Noldus).

698

699 *Fear conditioning (FC).* The FC apparatus consisted of a conditioning box (18
700 × 18 × 30 cm), with a grid floor wired to a shock generator surrounded by an
701 acoustic chamber and controlled by Ethovision XT 13 (Noldus). On Day 1, each
702 mouse was placed in the conditioning box for 2 min, and then a pure tone (80
703 db) was sounded for 30 s followed by a 2 s foot shock (0.4 mA). Two minutes
704 later, this procedure was repeated. After the delivery of the second shock, mice
705 were returned to their home cages. On Day 2, each mouse was first placed in
706 the fear conditioning chamber containing the exact same context, but there was
707 no administration of a tone or foot shock. Freezing was analyzed for 4 min. One
708 hour later, the mice were placed in a new context (containing a different odor,
709 cleaning solution, floor texture, walls and shape) where they were allowed to
710 explore for 3 min before being re-exposed to the fear conditioning tone and
711 freezing was assessed for an additional 3 min. FC was assessed through the
712 continuous measurement of freezing (complete immobility), which is the
713 dominant behavioral fear response. Freezing was measured using the Noldus
714 Ethovision video tracking system (Ethovision XT 13).

715

716 *Forced swimming test.* For the forced swimming test, the test mouse was
717 placed into a 20 cm height and 17 cm diameter glass cylinder filled with water
718 to a depth of 10 cm at 22°C. The test continues 6 min and the immobility time
719 of the last 5 minutes was recorded for further processing.

720

721 *Tail suspension test.* The test mouse was suspended in the middle of a tail
722 suspension box (55 cm height × 60 cm width × 11.5 cm depth) above the ground
723 by its tail. The mouse tail was adhered securely to the suspension bar using
724 adhesive tapes. After 1 min accommodation, the immobility time was recorded
725 by a video camera and analyzed by Ethovision XT 13 (Noldus).

726

727 *Elevated plus maze test.* The elevated plus maze, made of gray polypropylene
728 and elevated about 40 cm above the ground, consists of two open arms and
729 two closed arms (each 9.5 cm wide and 40 cm long). To assess anxiety, the
730 test mouse was placed in the central square facing an open arm and allowed
731 to explore freely for 5 min. The time spent in the open arm was analyzed with
732 the Ethovision XT 13 (Noldus).

733

734 **X-Gal staining**

735 Frozen sections were fixed in fresh cold fixative (0.2% PFA) in buffer L0
736 (0.1M PIPES buffer (pH 6.9), 2mM MgCl₂, 5mM EGTA) for 10 min. Slides
737 were rinsed in PBS plus 2mM MgCl₂ on ice, followed by a 10 min wash in the
738 same solution. Place slides in detergent rinse [0.1M PBS (pH 7.3), 2mM
739 MgCl₂, 0.01% sodium deoxycholate, 0.02% Nonidet P-40] on ice for 10 min.
740 Slides were then moved to a freshly made and filtered X-Gal staining solution
741 [0.1M PBS (pH 7.3), 2mM MgCl₂, 0.01% sodium deoxycholate, 0.02%
742 Nonidet P-40, 5mM K₃Fe(CN)₆, 5mM K₄Fe(CN)₆·3H₂O and 1 mg/ml X-Gal].
743 Sections were incubated at 37 °C from a few minutes to overnight in the dark.
744 Sections were rinsed with water to stop the reaction. Sections were
745 dehydrated with gradient ethanol and xylene sequentially, and mounted with
746 the neutral balsam.

747

748 **RNA isolation and reverse transcription (RT)**

749 RNA isolation was performed using the RNAiso Plus (TAKARA) according

750 to manufacturer's instructions. Tissue or cells were homogenized using a glass-
751 Teflon in 1 ml or 500 μ l RNAiso Plus reagent on ice and phase separation was
752 achieved with 200 μ l or 100 μ l chloroform. After centrifugation at 12,000 \times g for
753 15 min at 4°C, RNA was precipitated by mixing aqueous phase with equal
754 volumes of isopropyl alcohol and 0.5 μ l 20 mg/ml glycogen. Precipitations were
755 dissolved in DNase/RNase-free water (not diethylpyrocarbonate treated,
756 Ambion). 1 μ g of total RNA was converted to cDNA using M-MLV reverse
757 transcriptase (TAKARA) under standard conditions with oligo(dT) or random
758 hexamer primers and Recombinant RNase Inhibitor (RRI, TAKARA). Then the
759 cDNA was subjected to quantitative RT-PCR (qRT-PCR) using the SYBR green
760 assay with 2x SYBR green qPCR master mix (Bimake). Thermal profile was
761 95 °C for 5 min and 40 cycles of 95 °C for 15 sec and 60 °C for 20 sec. *Gapdh*
762 was used as endogenous control genes. Relative expression level for target
763 genes was normalized by the Ct value of *Gapdh* using a $2^{-\Delta\Delta Ct}$ relative
764 quantification method. Reactions were run on a CFX Connect TM Real-Time
765 PCR Detection System (Bio-Rad). The primers used are listed in Table S2.

766

767 **Neurosphere culture**

768 Mouse hippocampal neural progenitor cells (NPCs) were enriched from
769 P0 mouse hippocampi, cultured on ultra-low-attachment plates (Corning, New
770 York, United States) and maintained in indicated culture media (DMEM/F12,
771 Life Technologies) containing N2 and B27 supplements (1x, Life
772 Technologies), 1mM Na-pyruvate, 1 mM N-acetyl-L-cysteine (NAC), human
773 recombinant FGF2, and EGF (20 ng/mL each; Life Technologies). After
774 cultured *in vitro* for three generations, neurospheres were subjected to RNA-
775 seq and ChIP-seq analyses.

776

777 **RNA-seq library construction**

778 Total RNA was extracted as described above. The concentration and
779 quality of RNA was measured with Nanodrop 2000c (Thermo Fisher Scientific)

780 and an Agilent 2100 Bioanalyzer (Agilent Technologies), respectively. RNA-
781 seq libraries were constructed by NEBNext® Ultra™ II RNA Library Prep Kit
782 for Illumina® (NEB #E7775). Briefly, mRNA was extracted by poly-A selected
783 with magnetic beads with poly-T and transformed into cDNA by first and
784 second strand synthesis. Newly synthesized cDNA was purified by AMPure
785 XP beads (1:1) and eluted in 50 μ l nucleotide-free water. RNA-seq libraries
786 were sequenced by Illumina NovaSeq 6000 platform with pair-end reads of
787 150 bp. The sequencing depth was 60 million reads per library.

788

789 **Bulk RNA-Seq data analysis**

790 P0 hippocampus and neurosphere RNA-seq data were checked for
791 quality control by FastQC (version 0.11.9). Paired-end reads were trimmed to
792 remove adaptors and low-quality reads and bases using cutadapt (version
793 3.2). Clean reads were aligned to the mouse UCSC mm10 genome using
794 STAR (version 2.7.10b) with default parameters. The number of covering
795 reads were counted using featureCounts (version v2.0.1). The resulting read
796 counts were processed with R package DESeq2 (version 1.38.1) to identify
797 differential expression genes (\log_2 fold change > 0.4 and p value < 0.05)
798 between datasets. Cufflinks package (version 2.2.1) assembles individual
799 transcripts from reads that have been aligned to reference genome. The gene
800 expression level was normalized by fragments per kilobase of bin per million
801 mapped reads (FPKM). Gene Ontology (GO) analysis and Gene Set
802 Enrichment Analysis (GSEA) in this study were performed using
803 clusterProfiler (version 4.2.2).

804

805 **Chromatin immunoprecipitation (ChIP) assay**

806 For each experiment, single-cell suspensions from P0 hippocampi were
807 collected as described above. The hippocampal tissue was digested into single
808 cells by Papain (20U dissolved in each mL of DMEM/F12 medium, preheated

809 at 37°). Cells were cross-linked with 1% formaldehyde for 10 minutes at room
810 temperature, and quenched with 0.125 M of glycine for 5 minutes. Cross-linked
811 samples were then rinsed twice in PBS, then cells were collected by
812 centrifugation. Next, cells were pretreated with lysis buffer (50 mM of Tris-HCl
813 [pH 8.0], 0.1% SDS, and 5 mM of EDTA) and incubated for 5 minutes with gentle
814 rotation at 4°C. After centrifugation, bottom cells were washed for two times
815 with ice-cold PBS and harvested in ChIP digestion buffer (50 mM of Tris-HCl
816 [pH 8.0], 1 mM of CaCl₂, and 0.2% Triton X-100). DNA was digested to 150-300
817 bp by micrococcal nuclease (NEB; M0247S). Sonicate cells in EP tubes with
818 power output 100 W, 5 min, 0.5 s on, 0.5 s off on ice. The resulting lysate was
819 centrifugation and divided into four parts for 10% input, H2AK119Ub,
820 H3K27me3, and H3K36me2 immunoprecipitation. After diluting each sample
821 (in addition to input) to 1 mL with dilution buffer (20 mM of Tris-HCl [pH 8.0],
822 150 mM of NaCl, 2 mM of EDTA, 1% Triton X-100, and 0.1% SDS),
823 immunoprecipitation was further performed with sheared chromatin and 3 µg
824 rabbit anti-H2AK119Ub antibody (CST, 8240S); or rabbit anti-H3K27me3
825 antibody (CST, 9733S); or rabbit anti-H3K36me2 antibody (CST, 2901S), then
826 incubated with protein A/G beads overnight at 4°C on a rotating wheel. The
827 next day, beads were wash with Wash Buffer I (20 mM Tris-HCl, pH 8.0; 1%
828 Triton X-100; 2 mM EDTA; 150 mM NaCl; 0.1% SDS), Wash Buffer II (20 mM
829 Tris-HCl, pH 8.0; 1% Triton X-100; 2 mM EDTA; 500 mM NaCl; 0.1% SDS),
830 Wash Buffer III (10 mM Tris-HCl, pH 8.0; 1 mM EDTA; 0.25 M LiCl; 1% NP-40;
831 1% deoxycholate) and TE buffer. DNA was eluted by ChIP elution buffer (0.1
832 M of NaHCO₃, 1% SDS, 20 µg/mL of proteinase K). The elution was incubated
833 at 65°C overnight, and DNA was extracted with a DNA purification kit (DP214-
834 03; TIANGEN).

835

836 **ChIP-seq library construction**

837 ChIP-seq libraries were constructed by VAHTS Universal DNA Library

838 Prep Kit for Illumina V3 (Vazyme ND607). Briefly, 50 μ L purified ChIP DNA (5
839 ng) was end-repaired for dA tailing, followed by adaptor ligation. Each adaptor
840 was marked with a barcode of 6 bp which can be recognized after mixing
841 different samples together. Adaptor-ligated ChIP DNA was purified by VAHTS
842 DNA Clean Beads (Vazyme N411) and then amplified by PCR of 10 cycles
843 with primers matching with adaptors' universal part. Amplified ChIP DNA was
844 purified again using VAHTS DNA Clean Beads in 35- μ L EB elution buffer. For
845 multiplexing, libraries with different barcode were mixed together with equal
846 molar quantities by considering appropriate sequencing depth (about 30
847 million reads per library). Libraries were sequenced by Illumina Nova-seq
848 6000 platform with pair-end reads of 150 bp.

849

850 **ChIP-seq data analysis**

851 DNA libraries were sequenced on Illumina NovaSeq 6000 platform. All P0
852 hippocampus and neurosphere ChIP-seq data were checked and removed with
853 adaptor sequences same as the RNA-seq data processing. Clean reads were
854 aligned to the mouse UCSC mm10 genome using Bowtie2 (version 2.4.5).
855 Duplicates were removed using the samtools rmdup module. Regions of peaks
856 were called using the SICER software package, with the input genomic DNA as
857 a background control (parameters: -w 200 -rt 1 -f 150 -egf 0.77 -fdr 0.01 -g 600
858 -e 1000 --significant_reads). The bigwig signal files were visualized using the
859 computeMatrix, plotHeatmap, plotProfile modules in Deeptools (version 3.5.1).
860 Homer was used to identify adjacent genes from the peaks obtained from
861 SICER.

862

863 **ATAC-seq library construction**

864 ATAC-seq libraries were constructed by TruePrep DNA Library Prep Kit
865 V2 for Illumina (Vazyme TD501). Briefly, P0 hippocampi were dissected and
866 gently homogenized in cold nuclear isolation buffer (10 mM Tris-HCl, pH 7.4,

867 10 mM NaCl, 3 mM MgCl₂, 0.1% Igepal CA-630). Nuclei were collected by
868 centrifugal precipitation. 50,000 nuclei were put into the fragmentation reaction
869 for each sample (performed with 30 min incubation time at 37°C). Immediately
870 following the fragmentation, DNA fragments were purified using VAHTS DNA
871 Clean Beads (2X). Purified DNA fragments were added with Illumina i5+i7
872 adapters with unique index to individual samples followed by PCR reaction
873 (PCR program: 72°C for 3 min, 98°C for 30 s, 98°C for 15 s, 60°C for 30 s,
874 72°C for 30 s, repeat 3-5 for 13 cycles, 72°C for 5 min, and hold at 4°C).
875 Generated libraries were purified using VAHTS DNA Clean Beads (1.2X). For
876 multiplexing, libraries with different barcode were mixed together with equal
877 molar quantities by considering appropriate sequencing depth (about 50
878 million reads per library). Libraries were sequenced by Illumina Nova-seq
879 6000 platform with pair-end reads of 150 bp.

880

881 **ATAC-seq data analysis**

882 P0 hippocampus ATAC-seq raw data were trimmed by Cutadapt with
883 parameters -u 3 -u -75 -U 3 -U -75 -m 30 and then aligned to mouse mm10
884 genome using Bowtie2 (-X 2000 --very-sensitive). Subsequently, we
885 downloaded blacklisted regions including a large number of repeat elements in
886 the genome from ENCODE project and then removed these significant
887 background noise. ATAC-seq datasets contained a large percentage of reads
888 that were derived from mitochondrial DNA. We removed mitochondrial reads
889 after alignment using Samtools. Then, we filtered reads to remove exact copies
890 of DNA fragments that arise during PCR using Picard's MarkDuplicates (version
891 2.26.4). All reads aligning to the + strand were offset by +4 bp, and all reads
892 aligning to the – strand were offset –5 bp, since Tn5 transposase has been
893 shown to bind as a dimer and insert two adaptors separated by 9 bp. We
894 adjusted the shift read alignment using alignmentSieve. Next, peaks calling was
895 finished by Macs2 (version 2.2.7.1) with parameters -f BAMPE --nomodel --

896 keep-dup all --shift -100 --extsize 200 -g mm --cutoff-analysis -B. We created
897 bigwig files for visualizing using bamCoverage (parameters: --normalizeUsing
898 RPGC –effectiveGenomeSize 2407883318) in deepTools. Homer took narrow
899 peak files as input and checked for the enrichment of both known sequence
900 motifs and de novo motifs.

901

902 **Defining genomic features**

903 Mm10 CpG island (CGI) regions were downloaded from the UCSC genome
904 browser database. Promoters were defined as all mouse UCSC mm10 gene
905 TSSs, extended by 2 kb upstream and downstream. CGIs in promoters were
906 defined as \pm 2 kb around CGI centers overlap with promoter regions.
907 Overlapped regions between CGIs and promoters were identified using
908 bedtools (version 2.29.2) intersect with parameters -e -f 0.5 -F 0.5.
909 H2AK119ub1 +/- promoter genomic loci were defined as such promoter location
910 with or without H2AK119ub1.

911

912 **Data and code availability**

913 The GEO accession number for the RNA-seq, ChIP-seq and ATAC-seq data
914 reported in this paper is GSE222465. RNA-seq data of P0 hippocampus and
915 P0 neurosphere have been deposited at GEO: GSE222464. ChIP-seq and
916 ATAC-seq data of P0 hippocampus and P0 neurosphere in this study have
917 been deposited at GEO: GSE222463 and GSE222462. All data are publicly
918 available as of the date of publication. Custom codes were described in detail
919 at methods part. Any additional information required to analyze the data in this
920 paper is available from authors upon reasonable request.

921

922 ***In utero* electroporation (IUE)**

923 *In utero* microinjection and electroporation were performed as followed.
924 Pregnant CD-1 mice with E14.5 embryos were anesthetized by injection of

925 pentobarbital sodium (70 mg/kg), and the uteri were exposed through a 2 cm
926 midline abdominal incision. Embryos were carefully pulled out using ring
927 forceps through the incision and placed on sterile gauze wet with 0.9%
928 sodium chloride. Plasmid DNA (prepared using Endo Free plasmid purification
929 kit, Tiangen) mixed with 0.05% Fast Green (Sigma) was injected through the
930 uterine wall into the telencephalic vesicle using pulled borosilicate needles
931 (WPI). For gain-of-function experiments, pCIG (1 μ g/ μ l) was mixed with
932 pCAGGS-Wnt3a, pCAGGS-Wnt5a, pCAGGS-Wnt5b, pCAGGS-Wnt7b,
933 pCAGGS-Wnt8b, (Wnt-mix) (0.5 μ g/ μ l each), or with pCAGGS-SFRP2 (2
934 μ g/ μ l). Control mice were injected with pCIG (1 μ g/ μ l). Five electric pulses (33
935 V, 50 ms duration at 1 s intervals) were generated using CUY21VIVO-SQ
936 (BEX) and delivered across the head of embryos using 5 mm forceps-like
937 electrodes (BEX). The uteri were then carefully put back into the abdominal
938 cavity, and both peritoneum and abdominal skin were sewed with surgical
939 sutures. The whole procedure was completed within 30 min. Mice were
940 warmed on a heating pad until they regained consciousness and were treated
941 with analgesia (ibuprofen in drinking water) until sacrifice at E18.5.

942

943 **Plasmid construction**

944 Full-length mouse *Wnt3a* and *Wnt8b* were amplified from cDNAs of E14.5
945 mouse hippocampi and then cloned into pCAGGS. Full-length *Wnt5a*, *Wnt5b*,
946 *Wnt7b* were amplified from cDNAs of E16.5 mouse cortex, and then cloned
947 into pCAGGS. Full-length mouse *Sfrp2* was amplified from cDNAs of P0
948 mouse cortex and then cloned into pCAGGS. The primers used are listed in
949 Table S3.

950

951 **Quantification and statistical analysis**

952 Sections used for quantification were position-matched for control and
953 experimental brains. Images were binned against proximal-distal transverse
954 axis to quantify the intensity of ISH or LacZ signals of hippocampi. A plot of

955 normalized average signal intensity with standard error of the mean across
956 those regions was generated using ImageJ.

957 Statistical tests were performed using GraphPad Prism (version 8.0.2).
958 Data analyzed by unpaired two-tailed t-test were pre-tested for equal variance
959 by F-tests. Unpaired Student's t-tests (two-tailed) were chosen when the data
960 distributed with equal variance. For normally distributed data with unequal
961 variance, an unpaired t-test with Welch's correction was used. One-way
962 ANOVA followed by Tukey post hoc test was used for multiple group
963 comparison. Significant difference is indicated by a p value less than 0.05 (*p
964 < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). No statistical methods were
965 used to pre-determine sample sizes but our sample sizes are similar to those
966 reported in previous publications. Experiments were not randomized.
967 Investigators were blinded as to the animal genotype during tissue section
968 staining, image acquisition, and image analysis.

969

970 **Acknowledgements**

971 We thank Dr. Junlei Chang for providing BAT-Gal mice. We thank the Core
972 Facility and the Animal Facility of Medical Research Institute of Wuhan
973 University for technical support. We thank all Zhou lab members for critical
974 reading of the manuscript. Yan Zhou was supported by grants from National
975 Key R&D Program of China (2022YFA0806603 and 2018YFA0800700),
976 National Natural Science Foundation of China (31970770 and 32270876) and
977 the Fundamental Research Funds for the Central Universities. Ying Liu was
978 supported by grants from National Key R&D Program of China
979 (2018YFA0800700 and 2022YFA0806603), National Natural Science
980 Foundation of China (31970676) and Hubei Natural Science Foundation
981 (2022CFB128).

982

983 **Conflict of interest**

984 The authors declare no conflict of interest.

985

986 **References**

987 Anacker, C., & Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility - linking
988 memory and mood. *Nat Rev Neurosci*, 18(6), 335-346. doi:10.1038/nrn.2017.45

989 Bengoa-Vergniory, Nora, & Kypta, Robert M. (2015). Canonical and noncanonical Wnt signaling
990 in neural stem/progenitor cells. *Cellular and Molecular Life Sciences*, 72(21), 4157-
991 4172. doi:10.1007/s00018-015-2028-6

992 Bingman, Verner P., Salas, Cosme, & Rodriguez, Fernando. (2009). Evolution of the
993 Hippocampus. In Marc D. Binder, Nobutaka Hirokawa, & Uwe Windhorst (Eds.),
994 *Encyclopedia of Neuroscience* (pp. 1356-1360). Berlin, Heidelberg: Springer Berlin
995 Heidelberg.

996 Blackledge, N. P., Farcas, A. M., Kondo, T., King, H. W., McGouran, J. F., Hanssen, L. L., . . .
997 Klose, R. J. (2014). Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2
998 recruitment and polycomb domain formation. *Cell*, 157(6), 1445-1459.
999 doi:10.1016/j.cell.2014.05.004

1000 Blackledge, N. P., & Klose, R. J. (2021). The molecular principles of gene regulation by
1001 Polycomb repressive complexes. *Nat Rev Mol Cell Biol*, 22(12), 815-833.
1002 doi:10.1038/s41580-021-00398-y

1003 Bonnet, J., Boichenko, I., Kalb, R., Le Jeune, M., Maltseva, S., Pieropan, M., . . . Muller, J.
1004 (2022). PR-DUB preserves Polycomb repression by preventing excessive
1005 accumulation of H2Aub1, an antagonist of chromatin compaction. *Genes Dev*, 36(19-
1006 20), 1046-1061. doi:10.1101/gad.350014.122

1007 Caramello, A., Galichet, C., Rizzoti, K., & Lovell-Badge, R. (2021). Dentate gyrus development
1008 requires a cortical hem-derived astrocytic scaffold. *eLife*, 10. doi:10.7554/eLife.63904

1009 Chen, Z., Djekidel, M. N., & Zhang, Y. (2021). Distinct dynamics and functions of H2AK119ub1
1010 and H3K27me3 in mouse preimplantation embryos. *Nat Genet*, 53(4), 551-563.
1011 doi:10.1038/s41588-021-00821-2

1012 Chenn, A., & Walsh, C. A. (2002). Regulation of cerebral cortical size by control of cell cycle
1013 exit in neural precursors. *Science*, 297(5580), 365-369. doi:10.1126/science.1074192

1014 Chiacchiera, Fulvio, Rossi, Alessandra, Jammula, SriGanesh, Piunti, Andrea, Scelfo, Andrea,
1015 Ordóñez-Morán, Paloma, . . . Pasini, Diego. (2016). Polycomb Complex PRC1
1016 Preserves Intestinal Stem Cell Identity by Sustaining Wnt/β-Catenin Transcriptional
1017 Activity. *Cell Stem Cell*, 18(1), 91-103. doi:<https://doi.org/10.1016/j.stem.2015.09.019>

1018 Eto, H., Kishi, Y., Yakushiji-Kaminatsui, N., Sugishita, H., Utsunomiya, S., Koseki, H., & Gotoh,
1019 Y. (2020). The Polycomb group protein Ring1 regulates dorsoventral patterning of the
1020 mouse telencephalon. *Nat Commun*, 11(1), 5709. doi:10.1038/s41467-020-19556-5

1021 Farcas, A. M., Blackledge, N. P., Sudbery, I., Long, H. K., McGouran, J. F., Rose, N. R., . . .
1022 Klose, R. J. (2012). KDM2B links the Polycomb Repressive Complex 1 (PRC1) to
1023 recognition of CpG islands. *eLife*, 1, e00205. doi:10.7554/eLife.00205

1024 Fukuda, T., Tokunaga, A., Sakamoto, R., & Yoshida, N. (2011). Fbxl10/Kdm2b deficiency
1025 accelerates neural progenitor cell death and leads to exencephaly. *Mol Cell Neurosci*,
1026 46(3), 614-624. doi:10.1016/j.mcn.2011.01.001

1027 Fursova, N. A., Blackledge, N. P., Nakayama, M., Ito, S., Koseki, Y., Farcas, A. M., . . . Klose,

1028 R. J. (2019). Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated
1029 Gene Repression. *Mol Cell*, 74(5), 1020-1036 e1028.
1030 doi:10.1016/j.molcel.2019.03.024

1031 Galceran, J., Miyashita-Lin, E.M., Devaney, E., Rubenstein, J.L., & Grosschedl, R. (2000).
1032 Hippocampus development and generation of dentate gyrus granule cells is regulated
1033 by LEF1. *Development*, 127(3), 469-482. doi:10.1242/dev.127.3.469

1034 Gao, Yuen, Duque-Wilckens, Natalia, Aljazi, Mohammad B, Moeser, Adam J, Mias, George I,
1035 Robison, Alfred J, . . . He, Jin. (2022). Impaired KDM2B-mediated PRC1 recruitment
1036 to chromatin causes defective neural stem cell self-renewal and ASD/ID-like behaviors.
1037 *iScience*, 103742.

1038 Gao, Z., Zhang, J., Bonasio, R., Strino, F., Sawai, A., Parisi, F., . . . Reinberg, D. (2012). PCGF
1039 homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes.
1040 *Mol Cell*, 45(3), 344-356. doi:10.1016/j.molcel.2012.01.002

1041 Gearhart, M. D., Corcoran, C. M., Wamstad, J. A., & Bardwell, V. J. (2006). Polycomb group
1042 and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6
1043 targets. *Mol Cell Biol*, 26(18), 6880-6889. doi:10.1128/MCB.00630-06

1044 Guan, H., Zhang, J., Luan, J., Xu, H., Huang, Z., Yu, Q., . . . Xu, L. (2021). Secreted Frizzled
1045 Related Proteins in Cardiovascular and Metabolic Diseases. *Front Endocrinol
(Lausanne)*, 12, 712217. doi:10.3389/fendo.2021.712217

1046 He, J., Shen, L., Wan, M., Taranova, O., Wu, H., & Zhang, Y. (2013). Kdm2b maintains murine
1047 embryonic stem cell status by recruiting PRC1 complex to CpG islands of
1048 developmental genes. *Nat Cell Biol*, 15(4), 373-384. doi:10.1038/ncb2702

1049 Hirabayashi, Y., Suzuki, N., Tsuboi, M., Endo, T. A., Toyoda, T., Shinga, J., . . . Gotoh, Y. (2009).
1050 Polycomb limits the neurogenic competence of neural precursor cells to promote
1051 astrogenic fate transition. *Neuron*, 63(5), 600-613. doi:10.1016/j.neuron.2009.08.021

1052 Huo, D., Yu, Z., Li, R., Gong, M., Sidoli, S., Lu, X., . . . Wu, X. (2022). CpG island reconfiguration
1053 for the establishment and synchronization of polycomb functions upon exit from naive
1054 pluripotency. *Mol Cell*. doi:10.1016/j.molcel.2022.01.027

1055 Kalb, R., Latwiel, S., Baymaz, H. I., Jansen, P. W., Muller, C. W., Vermeulen, M., & Muller, J.
1056 (2014). Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb
1057 repression. *Nat Struct Mol Biol*, 21(6), 569-571. doi:10.1038/nsmb.2833

1058 Labonne, J. D., Lee, K. H., Iwase, S., Kong, I. K., Diamond, M. P., Layman, L. C., . . . Kim, H.
1059 G. (2016). An atypical 12q24.31 microdeletion implicates six genes including a histone
1060 demethylase KDM2B and a histone methyltransferase SETD1B in syndromic
1061 intellectual disability. *Hum Genet*, 135(7), 757-771. doi:10.1007/s00439-016-1668-4

1062 Lan, Xianchun, Ding, Song, Zhang, Tianzhe, Yi, Ying, Li, Conghui, Jin, Wenwen, . . . Jiang, Wei.
1063 (2022). PCGF6 controls neuroectoderm specification of human pluripotent stem cells
1064 by activating SOX2 expression. *Nature Communications*, 13(1), 4601.
1065 doi:10.1038/s41467-022-32295-z

1066 Laugesen, A., & Helin, K. (2014). Chromatin repressive complexes in stem cells, development,
1067 and cancer. *Cell Stem Cell*, 14(6), 735-751. doi:10.1016/j.stem.2014.05.006

1068 Li, G., & Pleasure, S. J. (2014). The development of hippocampal cellular assemblies. *Wiley
1069 Interdiscip Rev Dev Biol*, 3(2), 165-177. doi:10.1002/wdev.127

1070 Li, W., Shen, W., Zhang, B., Tian, K., Li, Y., Mu, L., . . . Zhou, Y. (2020). Long non-coding RNA

1072 LncKdm2b regulates cortical neuronal differentiation by cis-activating Kdm2b. *Protein*
1073 *Cell*, 11(3), 161-186. doi:10.1007/s13238-019-0650-z

1074 Lie, Dieter-Chichung, Colamarino, Sophia A., Song, Hong-Jun, Désiré, Laurent, Mira, Helena,
1075 Consiglio, Antonella, . . . Gage, Fred H. (2005). Wnt signalling regulates adult
1076 hippocampal neurogenesis. *Nature*, 437(7063), 1370-1375. doi:10.1038/nature04108

1077 Liu, P. P., Xu, Y. J., Dai, S. K., Du, H. Z., Wang, Y. Y., Li, X. G., . . . Liu, C. M. (2019). Polycomb
1078 Protein EED Regulates Neuronal Differentiation through Targeting SOX11 in
1079 Hippocampal Dentate Gyrus. *Stem Cell Reports*, 13(1), 115-131.
1080 doi:10.1016/j.stemcr.2019.05.010

1081 Machon, O., van den Bout, C. J., Backman, M., Kemler, R., & Krauss, S. (2003). Role of β -
1082 catenin in the developing cortical and hippocampal neuroepithelium. *Neuroscience*,
1083 122(1), 129-143. doi:[https://doi.org/10.1016/S0306-4522\(03\)00519-0](https://doi.org/10.1016/S0306-4522(03)00519-0)

1084 Marcos, S., Nieto-Lopez, F., Sandonis, A., Cardozo, M. J., Di Marco, F., Esteve, P., & Bovolenta,
1085 P. (2015). Secreted frizzled related proteins modulate pathfinding and fasciculation of
1086 mouse retina ganglion cell axons by direct and indirect mechanisms. *J Neurosci*, 35(11),
1087 4729-4740. doi:10.1523/JNEUROSCI.3304-13.2015

1088 Margueron, Raphael, Justin, Neil, Ohno, Katsuhito, Sharpe, Miriam L., Son, Jinsook, Drury lii,
1089 William J., . . . Gamblin, Steven J. (2009). Role of the polycomb protein EED in the
1090 propagation of repressive histone marks. *Nature*, 461(7265), 762-767.
1091 doi:10.1038/nature08398

1092 Morimoto-Suzuki, N., Hirabayashi, Y., Tyssowski, K., Shinga, J., Vidal, M., Koseki, H., & Gotoh,
1093 Y. (2014). The polycomb component Ring1B regulates the timed termination of
1094 subcerebral projection neuron production during mouse neocortical development.
1095 *Development*, 141(22), 4343-4353. doi:10.1242/dev.112276

1096 Munji, R. N., Choe, Y., Li, G., Siegenthaler, J. A., & Pleasure, S. J. (2011). Wnt signaling
1097 regulates neuronal differentiation of cortical intermediate progenitors. *J Neurosci*, 31(5),
1098 1676-1687. doi:10.1523/JNEUROSCI.5404-10.2011

1099 Nelson, Branden R., Hodge, Rebecca D., Daza, Ray A. M., Tripathi, Prem Prakash, Arnold,
1100 Sebastian J., Millen, Kathleen J., & Hevner, Robert F. (2020). Intermediate progenitors
1101 support migration of neural stem cells into dentate gyrus outer neurogenic niches. *eLife*,
1102 9, e53777. doi:10.7554/eLife.53777

1103 O'Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., & Jenuwein, T. (2001). The
1104 polycomb-group gene Ezh2 is required for early mouse development. *Mol Cell Biol*,
1105 21(13), 4330-4336. doi:10.1128/mcb.21.13.4330-4336.2001

1106 Oittinen, Mikko, Popp, Alina, Kurppa, Kalle, Lindfors, Katri, Mäki, Markku, Kaikkonen, Minna U.,
1107 & Viiri, Keijo. (2016). Polycomb Repressive Complex 2 Enacts Wnt Signaling in
1108 Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases
1109 Entailing Epithelial Hyperplasia or Neoplasia. *Stem Cells*, 35(2), 445-457.
1110 doi:10.1002/stem.2479

1111 Pereira, J. D., Sansom, S. N., Smith, J., Dobenecker, M. W., Tarakhovsky, A., & Livesey, F. J.
1112 (2010). Ezh2, the histone methyltransferase of PRC2, regulates the balance between
1113 self-renewal and differentiation in the cerebral cortex. *Proc Natl Acad Sci U S A*,
1114 107(36), 15957-15962. doi:10.1073/pnas.1002530107

1115 Piper, M., Barry, G., Harvey, T. J., McLeay, R., Smith, A. G., Harris, L., . . . Richards, L. J. (2014).

1116 NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.
1117 *J Neurosci*, 34(8), 2921-2930. doi:10.1523/JNEUROSCI.2319-13.2014

1118 Piunti, A., & Shilatifard, A. (2016). Epigenetic balance of gene expression by Polycomb and
1119 COMPASS families. *Science*, 352(6290), aad9780. doi:10.1126/science.aad9780

1120 Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S., & Shimono, A. (2006). Sfrp1 and Sfrp2
1121 regulate anteroposterior axis elongation and somite segmentation during mouse
1122 embryogenesis. *Development*, 133(6), 989-999. doi:10.1242/dev.02274

1123 Schuettengruber, B., & Cavalli, G. (2009). Recruitment of polycomb group complexes and their
1124 role in the dynamic regulation of cell fate choice. *Development*, 136(21), 3531-3542.
1125 doi:10.1242/dev.033902

1126 Sugishita, H., Kondo, T., Ito, S., Nakayama, M., Yakushiji-Kaminatsui, N., Kawakami, E., . . .
1127 Koseki, H. (2021). Variant PCGF1-PRC1 links PRC2 recruitment with differentiation-
1128 associated transcriptional inactivation at target genes. *Nat Commun*, 12(1), 5341.
1129 doi:10.1038/s41467-021-24894-z

1130 Sun, B., Chang, E., Gerhartl, A., & Szele, F. G. (2018). Polycomb Protein Eed is Required for
1131 Neurogenesis and Cortical Injury Activation in the Subventricular Zone. *Cereb Cortex*,
1132 28(4), 1369-1382. doi:10.1093/cercor/bhx289

1133 Supèr, H., Soriano, E., & Uylings, H. B. M. (1998). The functions of the preplate in development
1134 and evolution of the neocortex and hippocampus. *Brain Research Reviews*, 27(1), 40-
1135 64. doi:[https://doi.org/10.1016/S0165-0173\(98\)00005-8](https://doi.org/10.1016/S0165-0173(98)00005-8)

1136 Tamburri, S., Lavarone, E., Fernandez-Perez, D., Conway, E., Zanotti, M., Manganaro, D., &
1137 Pasini, D. (2020). Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-
1138 Mediated Transcriptional Repression. *Mol Cell*, 77(4), 840-856 e845.
1139 doi:10.1016/j.molcel.2019.11.021

1140 Turberfield, A. H., Kondo, T., Nakayama, M., Koseki, Y., King, H. W., Koseki, H., & Klose, R. J.
1141 (2019). KDM2 proteins constrain transcription from CpG island gene promoters
1142 independently of their histone demethylase activity. *Nucleic Acids Res*, 47(17), 9005-
1143 9023. doi:10.1093/nar/gkz607

1144 van Jaarsveld, R. H., Reilly, J., Cornips, M. C., Hadders, M. A., Agolini, E., Ahimaz, P., . . .
1145 Oegema, R. (2022). Delineation of a KDM2B-related neurodevelopmental disorder and
1146 its associated DNA methylation signature. *Genet Med*. doi:10.1016/j.gim.2022.09.006

1147 von Marschall, Z., & Fisher, L. W. (2010). Secreted Frizzled-related protein-2 (sFRP2)
1148 augments canonical Wnt3a-induced signaling. *Biochem Biophys Res Commun*, 400(3),
1149 299-304. doi:10.1016/j.bbrc.2010.08.043

1150 von Schimmelmann, M., Feinberg, P. A., Sullivan, J. M., Ku, S. M., Badimon, A., Duff, M. K., . . .
1151 Schaefer, A. (2016). Polycomb repressive complex 2 (PRC2) silences genes
1152 responsible for neurodegeneration. *Nat Neurosci*, 19(10), 1321-1330.
1153 doi:10.1038/nn.4360

1154 Voncken, J. W., Roelen, B. A., Roefs, M., de Vries, S., Verhoeven, E., Marino, S., . . . van
1155 Lohuizen, M. (2003). Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle
1156 inhibition. *Proc Natl Acad Sci U S A*, 100(5), 2468-2473. doi:10.1073/pnas.0434312100

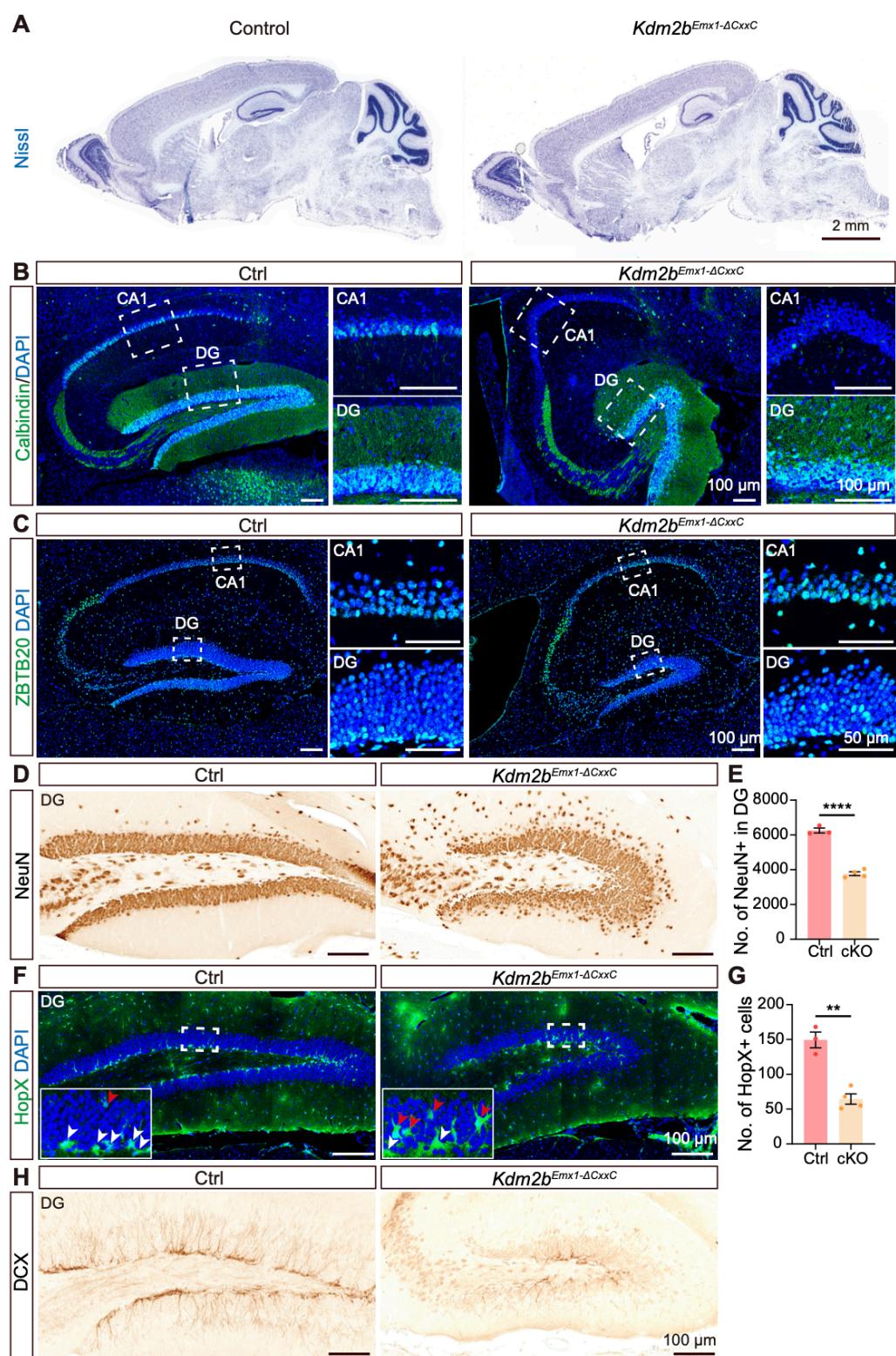
1157 Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial
1158 and related forms of learning and memory. *Nat Protoc*, 1(2), 848-858.
1159 doi:10.1038/nprot.2006.116

1160 Wang, Jiajia, Yang, Lijun, Dong, Chen, Wang, Jincheng, Xu, Lingli, Qiu, Yueping, . . . Lu, Q.
1161 Richard. (2020). EED-mediated histone methylation is critical for CNS myelination and
1162 remyelination by inhibiting WNT, BMP, and senescence pathways. *Science Advances*,
1163 6(33), eaaz6477. doi:doi:10.1126/sciadv.aaz6477

1164 Wang, Junbao, Wang, Andi, Tian, Kuan, Hua, Xiaojiao, Zhang, Bo, Zheng, Yue, . . . Zhou, Yan.
1165 (2022). A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the
1166 abundance of intermediate progenitors. *Cell Discovery*, 8(1), 74. doi:10.1038/s41421-
1167 022-00421-2

1168 Wang, Z., Gearhart, M. D., Lee, Y. W., Kumar, I., Ramazanov, B., Zhang, Y., . . . Ivanova, N. B.
1169 (2018). A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs
1170 in Human ESCs. *Cell Stem Cell*, 22(2), 235-251 e239. doi:10.1016/j.stem.2017.12.002

1171 Wu, X., Johansen, J. V., & Helin, K. (2013). Fbxl10/Kdm2b Recruits Polycomb Repressive
1172 Complex 1 to CpG Islands and Regulates H2A Ubiquitylation. *Mol Cell*.
1173 doi:10.1016/j.molcel.2013.01.016


1174 Yokotsuka-Ishida, S., Nakamura, M., Tomiyasu, Y., Nagai, M., Kato, Y., Tomiyasu, A., . . . Sano,
1175 A. (2021). Positional cloning and comprehensive mutation analysis identified a novel
1176 KDM2B mutation in a Japanese family with minor malformations, intellectual disability,
1177 and schizophrenia. *J Hum Genet*, 66(6), 597-606. doi:10.1038/s10038-020-00889-4

1178 Zhang, J., Ji, F., Liu, Y., Lei, X., Li, H., Ji, G., . . . Jiao, J. (2014). Ezh2 regulates adult
1179 hippocampal neurogenesis and memory. *J Neurosci*, 34(15), 5184-5199.
1180 doi:10.1523/JNEUROSCI.4129-13.2014

1181 Zhong, S., Ding, W., Sun, L., Lu, Y., Dong, H., Fan, X., . . . Wang, X. (2020). Decoding the
1182 development of the human hippocampus. *Nature*, 577(7791), 531-536.
1183 doi:10.1038/s41586-019-1917-5

1184

1185 **Figures**

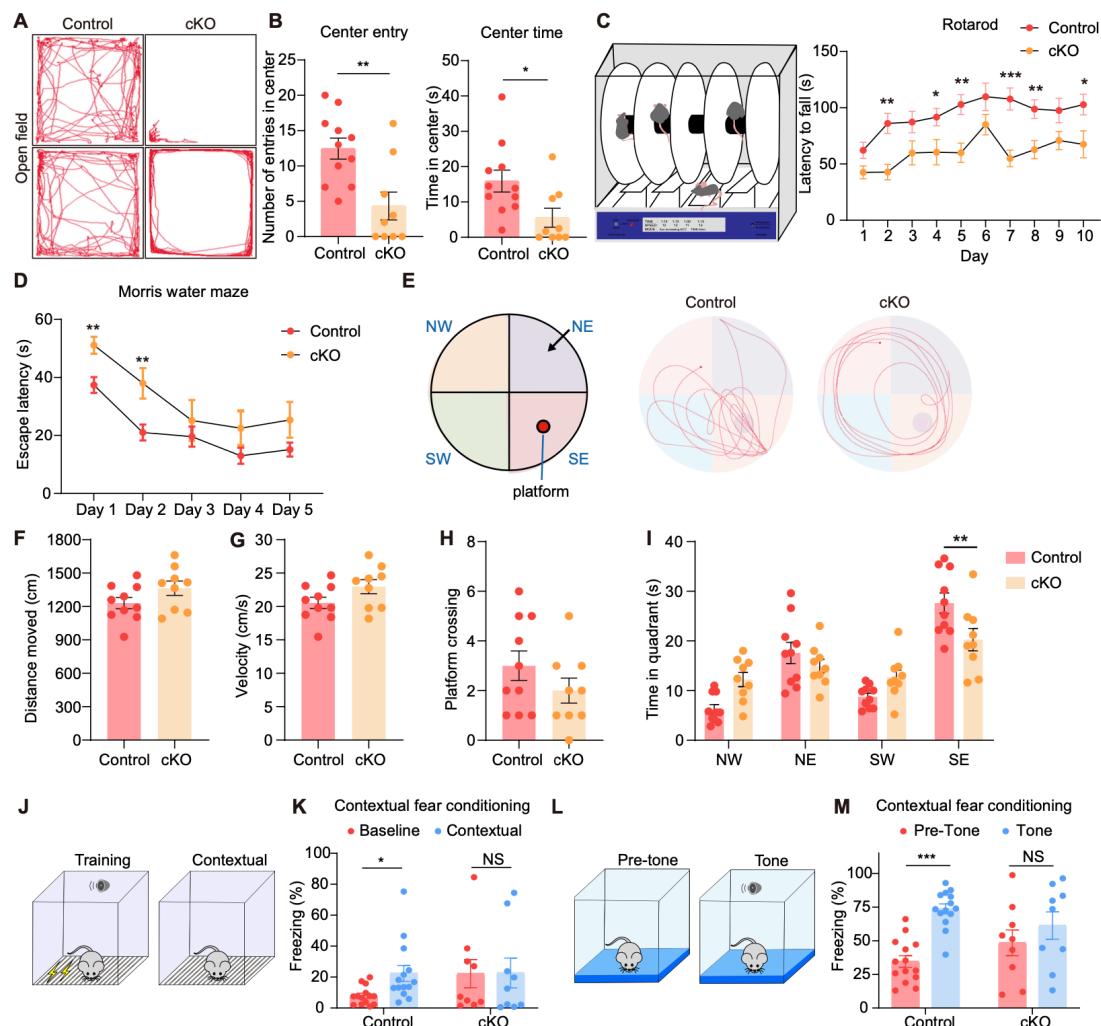
Figure 1

1186

1187 **Figure 1. Deletion of the KDM2B-CxxC causes agenesis of hippocampus.**

1188 (A) Representative images showing Nissl staining on sagittal sections of adult
1189 control and *Kdm2b*^{Emx1-ΔCxxC} brains.

1190 (B, C) Immunofluorescent (IF) staining of Calbindin (B) and ZBTB20 (C) on
1191 sagittal sections of adult control (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) hippocampi.
1192 Nuclei were labeled with DAPI (blue). Boxed CA1 and dentate gyri (DG) were
1193 enlarged on the right.


1194 (D, H) Immunohistochemical (IHC) staining of NeuN (D) and DCX (H) on
1195 sagittal sections of adult control (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) dentate gyri
1196 (DG).

1197 (F) IF staining of HopX on sagittal sections of adult control (left) and *Kdm2b*<sup>Emx1-
1198 ΔCxxC</sup> (right) DG. Boxed regions were enlarged on bottom-left corners. White
1199 and red arrows denote HopX+ signals in the subgranule zone (SGZ) and
1200 granule cell layer respectively.

1201 (E, G) Quantification of NeuN+ (E) and HopX+ (G) cells in the DG. n = 3 for
1202 control brains and n = 4 for *Kdm2b*^{Emx1-ΔCxxC} brains.

1203 Data are represented as means ± SEM. Statistical significance was determined
1204 using an unpaired two-tailed Student's t-test (E, G). **P<0.01; ****P<0.0001.

1205 Scale bars, 2mm (A), 100 µm (B-D, F, H), 50 µm (C CA1 and DG). DG, dentate
1206 gyrus.

Figure 2

1207
1208 **Figure 2. *Kdm2b*^{Emx1-ΔCxxC} mice exhibit defects in motor learning, spatial**
1209 **memory, and contextual fear conditioning.**

1210 (A) Representative traces of control mice and *Kdm2b*^{Emx1-ΔCxxC} mice in the
1211 open-field arena.

1212 (B) Quantification of number of entries in center, and time spent in the center in
1213 the open-field test.

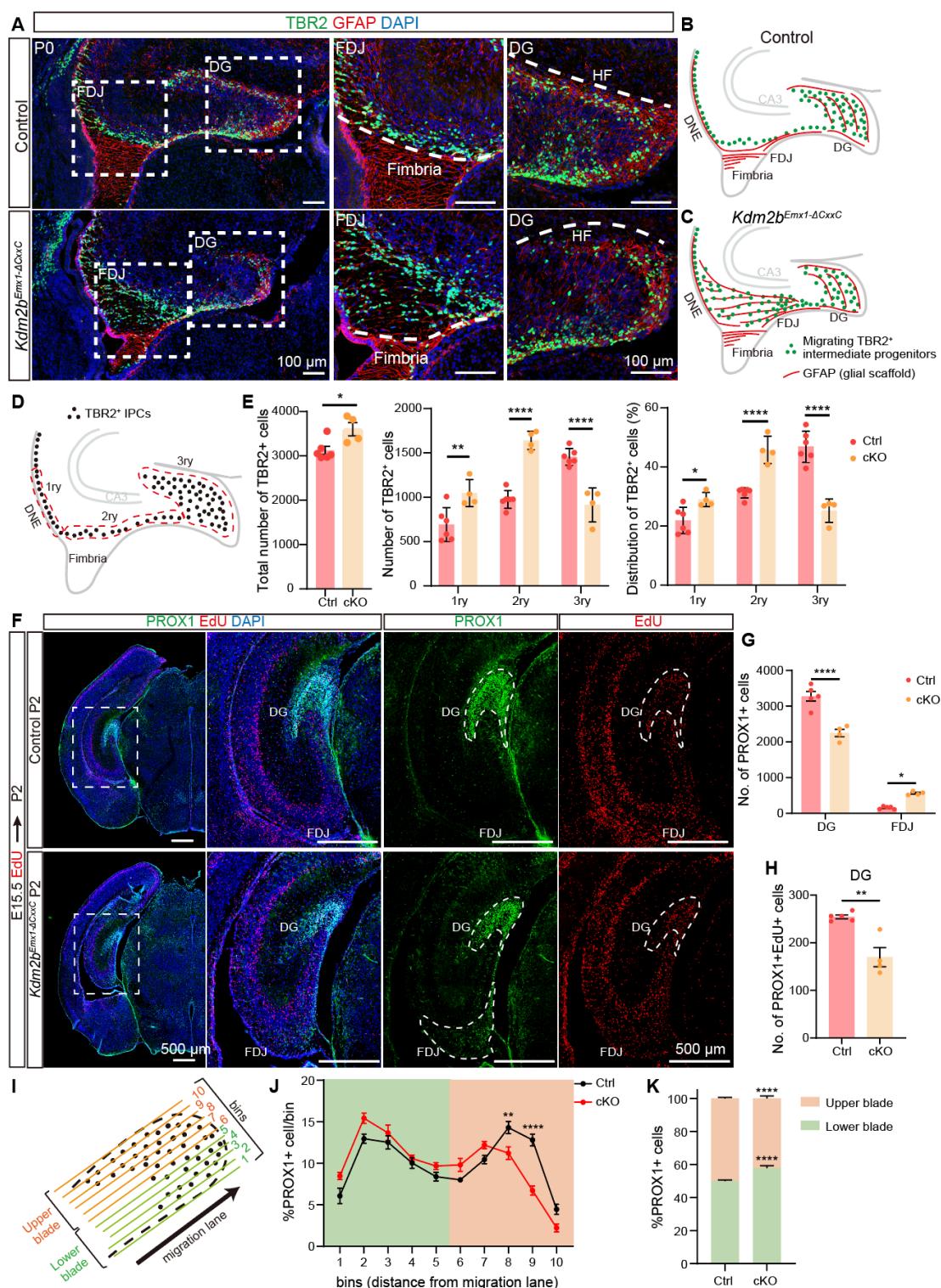
1214 (C) Latency to fall during the rotarod test.

1215 (D) Latency to find the hidden platform across training period in the Morris water
1216 maze test.

1217 (E) An overhead view of the Morris water maze, and representative swim paths
1218 of control mice and *Kdm2b*^{Emx1-ΔCxxC} mice during the probe trial. The
1219 platform was set in the SE quadrant.

1220 (F, G) Distance moved (F) and velocity (G) during the probe trial (platform
1221 removed).

1222 (H) Frequencies of platform crossing during the probe trial.


1223 (I) Time spent in each quadrant during the probe trial.

1224 (J, K) The proportion of freezing time in context before training (Baseline) and
1225 after training (Contextual).

1226 (L, M) The proportion of freezing time in a new context before tone (Pre-Tone)
1227 and after tone (Tone).

1228 Data are represented as means \pm SEM. Statistical significance was determined
1229 using two-way ANOVA followed by Sidak's multiple comparisons test (E, M), or
1230 using an unpaired two-tailed Student's t-test (F, H-K). *P < 0.05, **P < 0.01, ***P
1231 < 0.001, and ****P < 0.0001; NS, not significant. n = 11 mice in (A-C), n = 10 in
1232 (D-I), n = 14 in (J-M) for control and n = 10 mice for *Kdm2b*^{Emx1-ΔCxxC}.

1233

Figure 3

1234
1235 **Figure 3. Ablation of the KDM2B-CxxC impedes the migration of**
1236 **intermediate progenitors and production of granular cells.**
1237 (A) Double immunofluorescence of TBR2 (green) and GFAP (red) on P0 wild-
1238 type and *Kdm2b*^{Emx1-ΔCxxC} hippocampi. Nuclei were labeled with DAPI (blue).

1239 Boxed regions of FDJ and DG were enlarged on the right.

1240 (B, C) The schematic of P0 wild-type and *Kdm2b*^{*Emx1-ΔCxxC*} hippocampi. Green
1241 dots represent migrating TBR2+ intermediate progenitors, and red lines
1242 represent GFAP+ glial scaffold.

1243 (D, E) Distribution of TBR2+ cells along the three matrices, where dashed lines
1244 demarcate regions considered as 1ry, 2ry, and 3ry matrix (D). n = 6 for control
1245 brains and n = 4 for *Kdm2b*^{*Emx1-ΔCxxC*} brains.

1246 (F) EdU was administrated at E15.5 and double labeling of PROX1 and EdU
1247 was performed on P2 coronal sections. Boxed regions were enlarged on the
1248 right, and single channel fluorescence staining of PROX1 and EdU were shown
1249 respectively. Dashed lines indicate DG and FDJ.

1250 (G) Quantification of PROX1+ cells in DG and FDJ.

1251 (H) Quantification of PROX1+EdU+ cells in DG.

1252 (I) Analysis of the distribution of PROX1+ granule neurons within the upper and
1253 lower blade of the forming DG at P2: the 3ry matrix was divided into 10 ventral-
1254 -to-dorsal bins spanning the lower to upper blade domain.

1255 (J) PROX1+ cells were counted within each bin. The percentage of PROX1+
1256 cells in each bin is represented.

1257 (K) Quantification of the percentage of PROX1+ granule neurons positioned in
1258 the DG lower blade (bins 1–5), versus the DG upper blade (bins 6–10) in P2
1259 controls and *Kdm2b*^{*Emx1-ΔCxxC*}.

1260 n = 5 for control brains and n = 4 for *Kdm2b*^{*Emx1-ΔCxxC*} brains (F-K). Data are
1261 represented as means ± SEM. Statistical significance was determined using an
1262 unpaired two-tailed Student's t-test (E left, H), or using two-way ANOVA
1263 followed by Sidak's multiple comparisons test (E middle and right, G, J, K). *P
1264 < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Scale bars, 100 µm (A),
1265 500 µm (F). DG, dentate gyrus; DMS, dentate migratory stream; FDJ,
1266 fimbriodentate junction; HF, hippocampal fissure; 1ry, primary matrix; 2ry,
1267 secondary matrix; 3ry, tertiary matrix.

1268

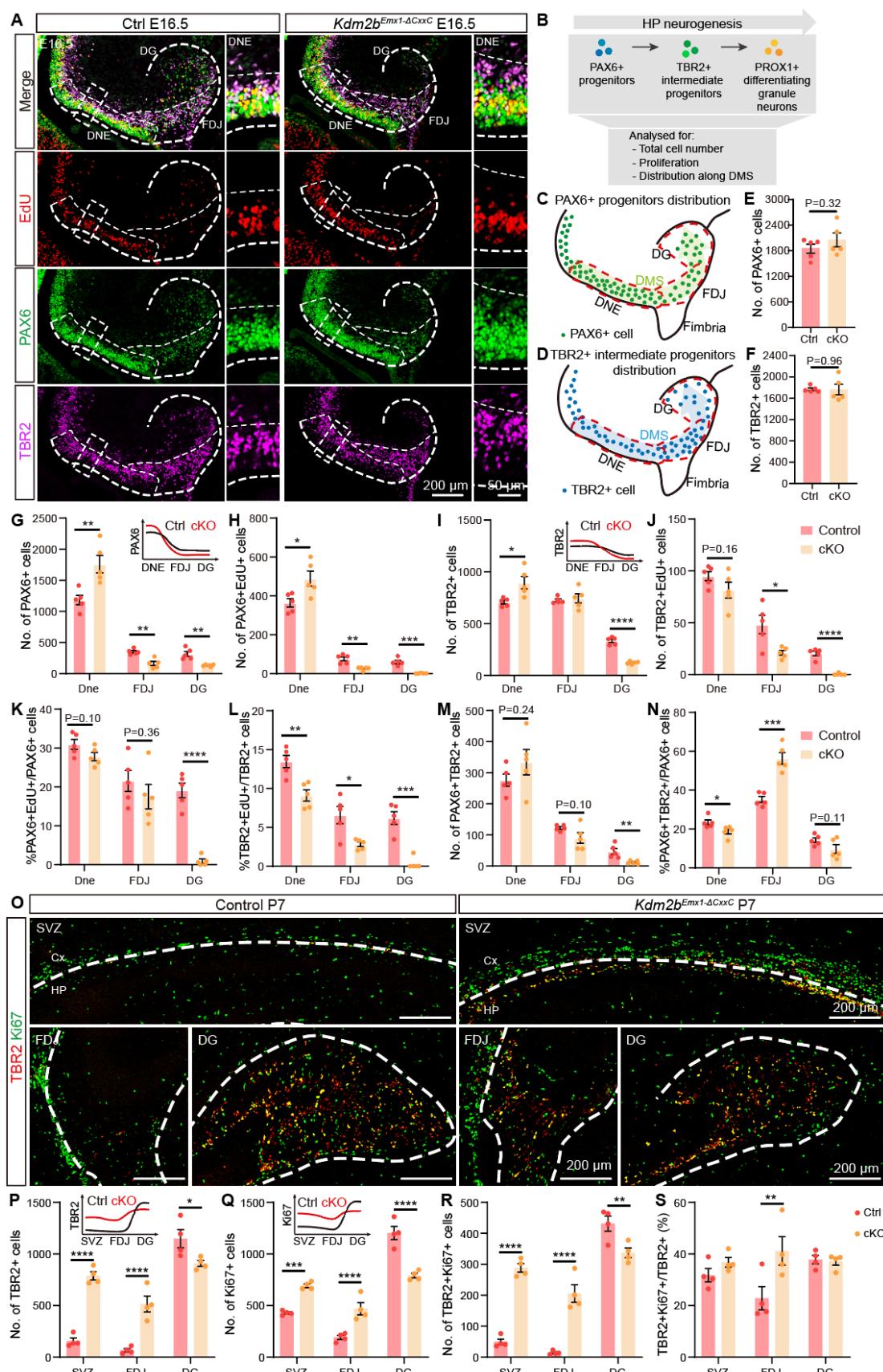


Figure 4

1269

1270 Figure 4. Blocked differentiation of neural progenitors on loss of KDM2B-

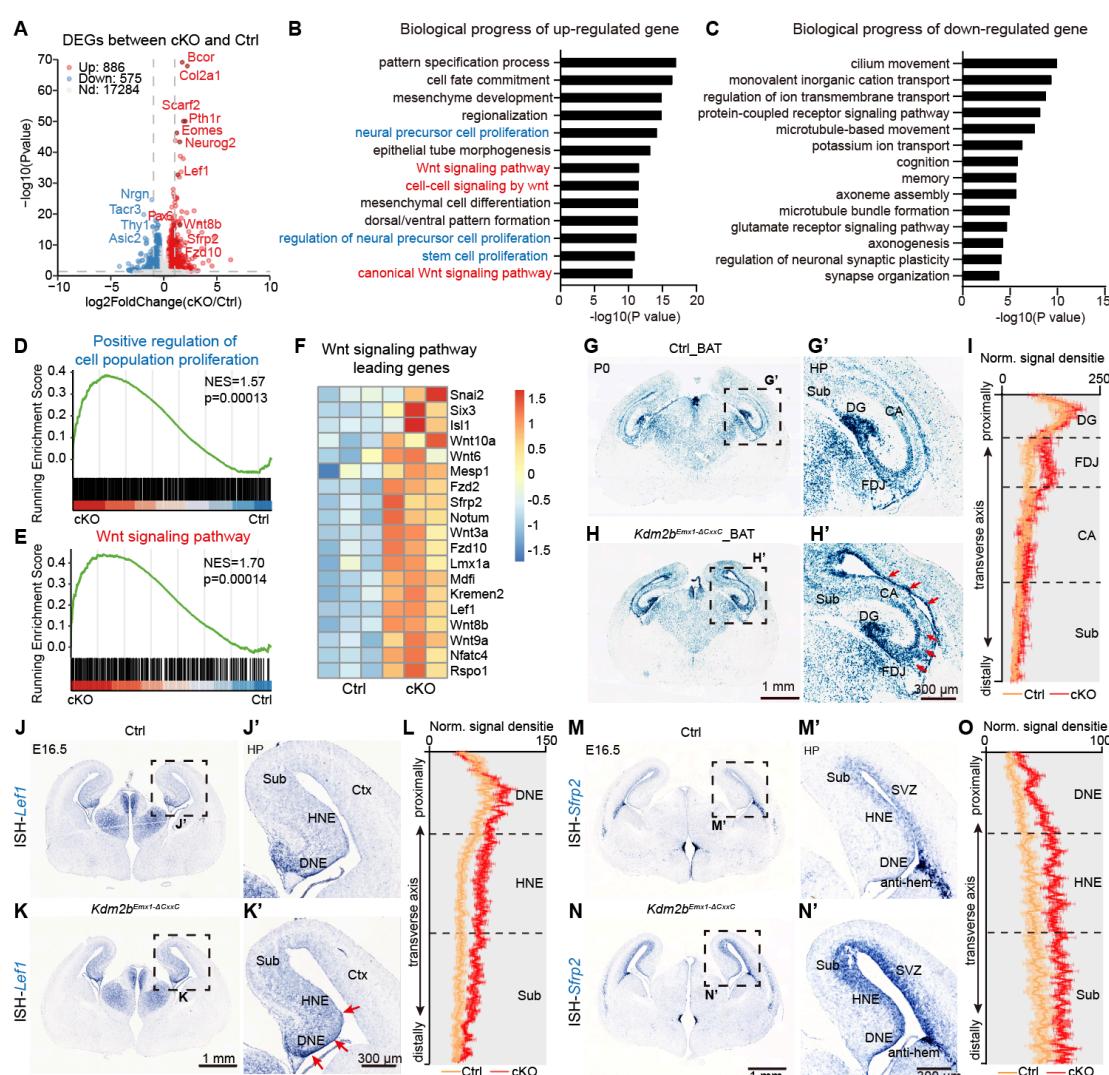
1271 **CxxC**

1272 (A) Triple-labeling of PAX6 (green), TBR2 (violet) and EdU (red) on E16.5
1273 control and *Kdm2b*^{*Emx1-ΔCxxC*} brain sections. Boxed regions were enlarged
1274 on the right, and single channel fluorescence staining of PAX6, TBR2 and
1275 EdU were shown respectively. Dashed lines outline the hippocampi and
1276 distinguish DNE, FDJ and DG.

1277 (B) Experimental analysis scheme: total number of cells, the proportion of
1278 proliferative cells, and the distribution of cells along the DMS were quantified.

1279 (C, D) The schematic of E16.5 wild-type hippocampi. Green dots represent
1280 PAX6+ progenitors and blue dots represent migrating TBR2+ intermediate
1281 progenitors. Red dashed lines distinguish DNE, FDJ and DG.

1282 (E, F) Quantification of PAX6+ and TBR2+ cells.

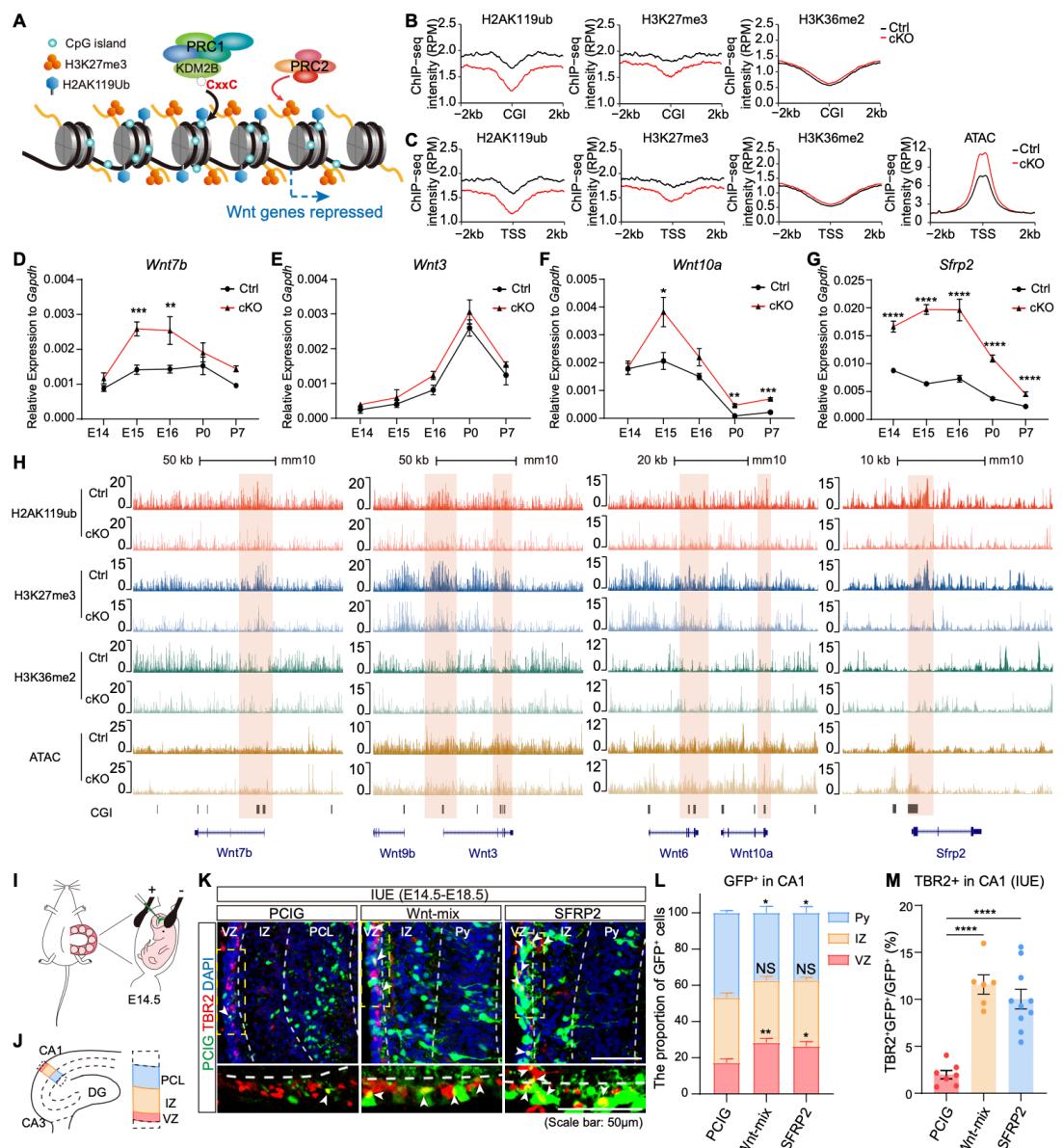

1283 (G-N) Quantification of the distribution of PAX6+ (G), PAX6+EdU+ (H), TBR2+
1284 (I), TBR2+EdU+ (J) and PAX6+TBR2+ cells (M), and quantification of the
1285 proportion of PAX6+EdU+/PAX6+ (K), TBR2+EdU+/TBR2+ (L) and
1286 PAX6+TBR2+/PAX6+ (N) along DMS. The distribution patterns of PAX6+ (G)
1287 and TBR2+ (I) cells in control and cKO hippocampi were shown as line graphs
1288 on the upper right corners. n = 5 for control brains and n = 5 for *Kdm2b*^{*Emx1-ΔCxxC*}
1289 brains.

1290 (O) Double-labeling of TBR2 (red) and Ki67 (green) on P7 coronal section of
1291 control and *Kdm2b*^{*Emx1-ΔCxxC*} SVZ, FDJ and DG. Dashed lines outline the
1292 hippocampi. Immunofluorescence staining of whole brain sections were shown
1293 in **Fig. S6A**.

1294 (P-S) Quantification of the distribution of TBR2+ (P), Ki67+ (Q) and
1295 TBR2+Ki67+ cells (R), and the proportion of TBR2+Ki67+/TBR2+ (S) at SVZ,
1296 FDJ and DG. n = 4 for control brains and n = 4 for *Kdm2b*^{*Emx1-ΔCxxC*} brains.

1297 Data are represented as means ± SEM. Statistical significance was determined
1298 using an unpaired two-tailed Student's t-test (E, F), or using two-way ANOVA
1299 followed by Sidak's multiple comparisons test (G-N, P-S). *P < 0.05, **P < 0.01,
1300 ***P < 0.001, and ****P < 0.0001. Scale bars, 200 µm (A, left), 50 µm (A, right),

1301 200 μ m (O). DNE, dentate neuroepithelium; FDJ, fimbriodentate junction; DG,
 1302 Dentate Gyrus; SVZ, subependymal ventricular zone; Cx, Cortex; HP,
 1303 Hippocampus.
 1304


Figure 5

1305
 1306 **Figure 5. Loss of KDM2B-CxxC results in activation of the Wnt signaling**
 1307 **pathway in the hippocampus.**

1308 (A) The volcano plot of genes up-regulated (red) and down-regulated (blue) in
 1309 P0 *Kdm2b^{Emx1-ΔCxxC}* hippocampi compared to controls.

1310 (B) GO analysis of the biological progress of up-regulated genes in P0
 1311 *Kdm2b^{Emx1-ΔCxxC}* hippocampi revealed terms related to cell proliferation
 1312 (blue) and Wnt signaling pathways (red).

1313 (C) GO analysis of the biological process of down-regulated genes in P0
1314 $Kdm2b^{Emx1-\Delta CxxC}$ hippocampi.
1315 (D) GSEA analysis of positive regulation of cell population proliferation.
1316 (E) GSEA analysis of Wnt signaling pathway.
1317 (F) The heat map of leading genes in the GSEA of Wnt signaling pathway.
1318 (G-H) X-gal staining on P0 coronal sections of Control_BAT (G) and $Kdm2b^{Emx1-\Delta CxxC}$ _BAT (H) brains. Boxed regions were enlarged on the right (G' and H').
1319 Red arrows indicate areas where X-gal signals are significantly enhanced.
1320 (I) Quantification of normalized X-gal signal density on the DG-CA-FDJ-Sub
1321 path. n = 4 for Control_BAT brains and n = 3 for $Kdm2b^{Emx1-\Delta CxxC}$ _BAT brains.
1322 (J-K) *In situ* hybridization (ISH) of *Lef1* on E16.5 Control (J) and $Kdm2b^{Emx1-\Delta CxxC}$
1323 (K) coronal brain sections, with boxed regions magnified on the right (J' and K'). Red arrows indicate areas where the *Lef1* expression is significantly
1325 elevated.
1326 (L) Quantification of normalized ISH signal density of *Lef1* on the DNE-HNE-
1327 Sub path. n = 4 for Control_BAT brains and n = 4 for $Kdm2b^{Emx1-\Delta CxxC}$ _BAT
1328 brains.
1329 (M-N) ISH of *Sfrp2* on E16.5 Control (M) and $Kdm2b^{Emx1-\Delta CxxC}$ (N) coronal brain
1330 sections, with boxed regions magnified on the right (M' and N').
1331 (O) Quantification of normalized ISH signal density of *Sfrp2* on the DNE-HNE-
1332 Sub path. n = 4 for Control_BAT brains and n = 4 for $Kdm2b^{Emx1-\Delta CxxC}$ _BAT
1333 brains.
1334 Scale bars, 1 mm (G, H, J, K, M and N), 300 μ m (G', H', J', K', M' and N'). HP,
1335 Hippocampus; DG, dentate gyrus; FDJ, fimbriodentate junction; CA, Cornu
1336 Ammonis; Sub, Subiculum; DNE, dentate neuroepithelium; HNE, hippocampal
1337 neuroepithelium; Cx, cortex; SVZ, subependymal ventricular zone.
1338
1339

Figure 6

Figure 6. KDM2B epigenetically silences components of Wnt signaling genes in developing hippocampi.

(A) The working diagram of KDM2B: KDM2B-CxxC recognizes and binds to CpG islands (CGI) of DNA, therefore recruiting PRC1 to CpG islands (CGIs). Reciprocal recognition of modifications by PRC1 and PRC2 leads to enrichment of H2AK119ub and H3K27me3, hence stabilizing gene repression.

(B) Line charts showing average H2AK119ub, H3K27me3 and H3K36me2 signals at CGIs (\pm 2 kb flanking regions) in P0 control (black lines) and

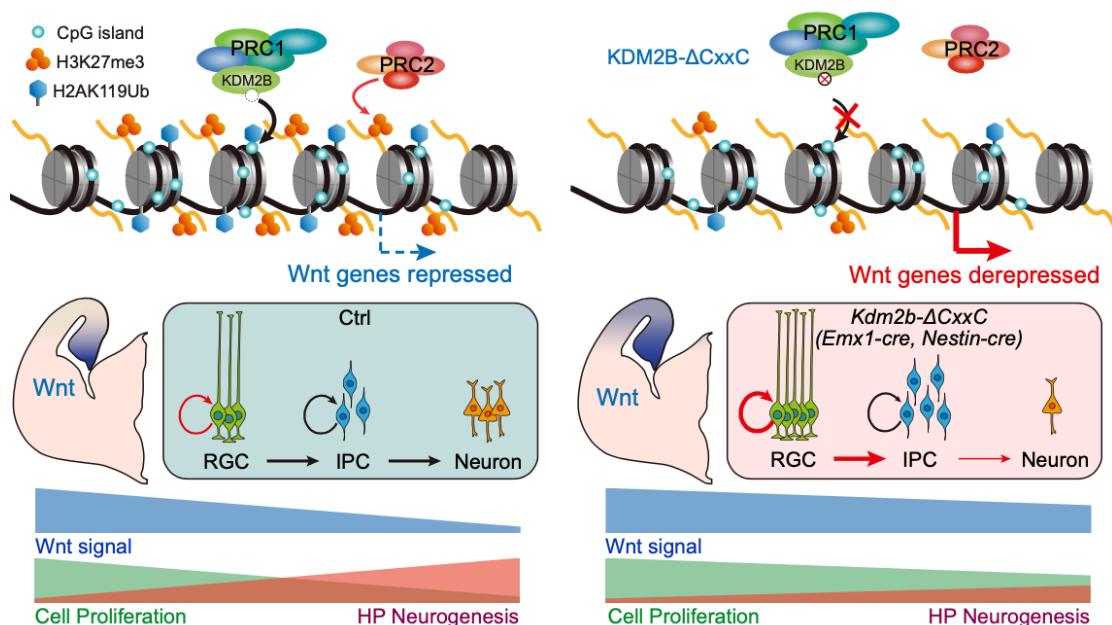
1350 *Kdm2b*^{*Emx1-ΔCxxC*} (cKO) (red lines) hippocampi.

1351 (C) Line charts showing average H2AK119ub, H3K27me3, H3K36me2 and
1352 ATAC-seq signals at CGI+ TSS (± 2 kb flanking regions) in P0 control (black
1353 lines) and *Kdm2b*^{*Emx1-ΔCxxC*} (cKO) (red lines) hippocampi. TSS, transcription
1354 starting sites.

1355 (D-G) RT-qPCR showing relative expressions of *Wnt7b*, *Wnt3*, *Wnt10a* and
1356 *Sfrp2* in control (black lines) and *Kdm2b*^{*Emx1-ΔCxxC*} (red lines) hippocampi of
1357 indicated developmental stages (E14.5, E15.5, E16.5, P0 and P7).

1358 (H) The UCSC genome browser view of H2AK119ub, H3K27me3 and
1359 H3K36me2 enrichment and ATAC-seq signal in P0 control and *Kdm2b*^{*Emx1-ΔCxxC*}
1360 (cKO) hippocampi at Wnt gene loci [corresponding to (D-G), *Wnt7b*, *Wnt3*,
1361 *Wnt10a* and *Sfrp2*]. CGIs were shown as black columns at the bottom, and
1362 signals represent ChIP-seq RPM (reads per million). Colored regions marked
1363 enrichment differences between control and cKO.

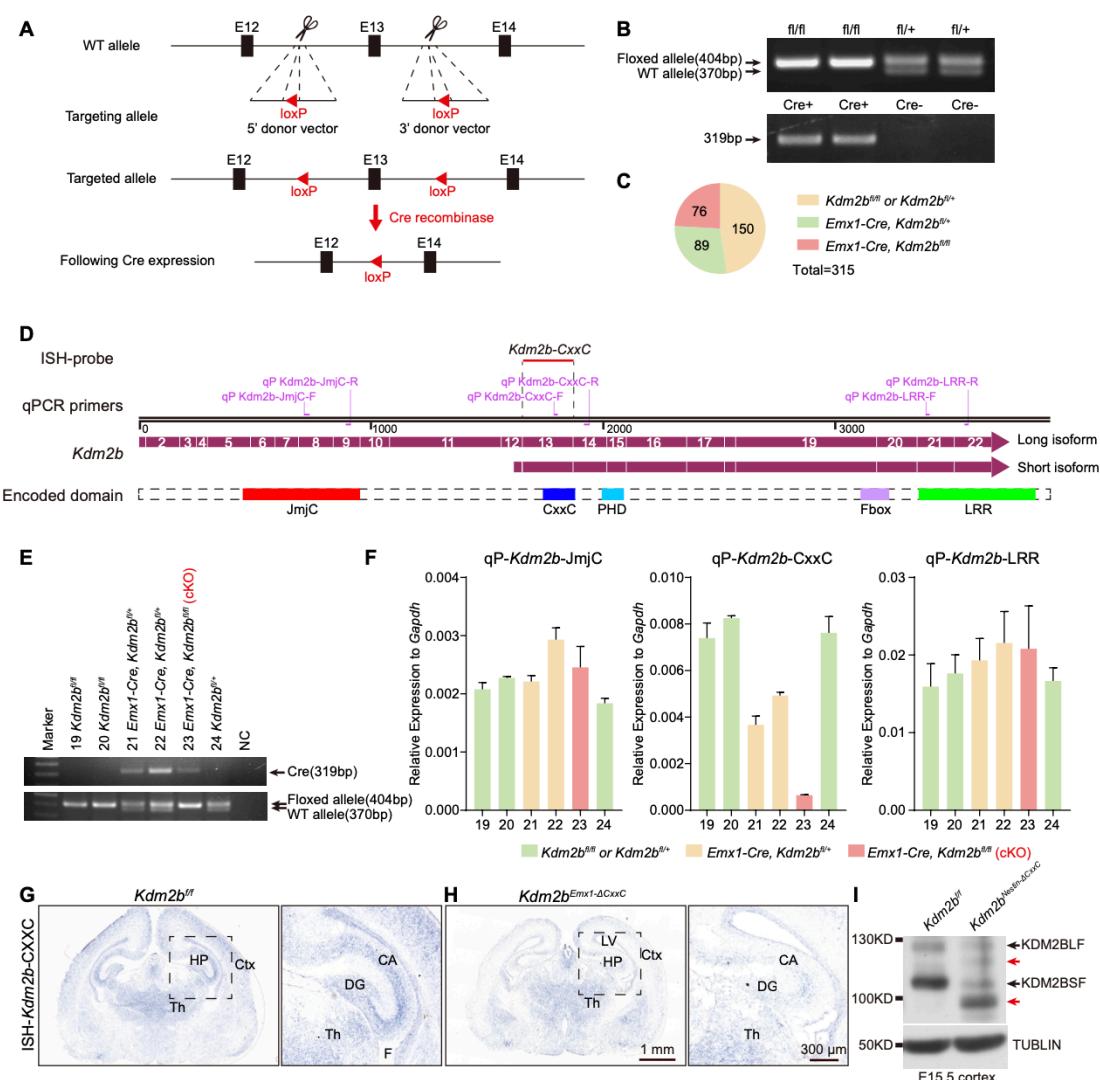
1364 (I) The schematic diagram of *in utero* electroporation (IUE) to target the
1365 developing hippocampi.


1366 (J) The schematic diagram of hippocampal structure, and the hierarchical
1367 partition of CA1 region (VZ, IZ, Py).

1368 (K) E14.5 mouse hippocampi were electroporated with empty or Wnt-mix-
1369 expressing vector (*Wnt3a*, *Wnt5a*, *Wnt5b*, *Wnt7b*, and *Wnt8b*) or SFRP2-
1370 expressing vector, along with the GFP-expressing vector (PCIG) to label
1371 transduced cells. Embryos were sacrificed at E18.5 for immunofluorescent
1372 analysis. Representative immunofluorescent images showing expression of
1373 TBR2+ (red) in GFP+ (green) transduced cells at E18.5 CA1 regions. Nuclei
1374 were labeled with DAPI (blue). Arrowheads denote double-labeled cells. White
1375 dashed lines distinguish three layers of CA1: VZ, IZ, Py. The VZ layer marked
1376 by the yellow dashed box is enlarged below.

1377 (L) The relative location of GFP+ cells in VZ, IZ and Py were quantified. n = 7
1378 for PCIG, n = 6 for Wnt-mix and n = 10 for SFRP2.

1379 (M) Quantification of the proportion of TBR2+GFP+/TBR2+ in CA1 of PCIG,


1380 Wnt-mix and SFRP2. n = 7 for PCIG, n = 6 for Wnt-mix and n = 10 for SFRP2.
1381 Data are represented as means \pm SEM. Statistical significance was determined
1382 using two-way ANOVA followed by Sidak's multiple comparisons test (D-G),
1383 using two-way ANOVA followed by Tukey's multiple comparisons test (L), or
1384 using one-way ANOVA analysis (M). *P < 0.05, **P < 0.01, ***P < 0.001, and
1385 ****P < 0.0001. Scale bars, 50 μ m (K). CA, Cornu Ammonis; VZ, ventricular
1386 zone; IZ, intermediate zone; Py, pyramidal cell layer of the hippocampus.
1387
1388

1389
1390 **Graphic Abstract**
1391 Loss of KDM2B-CxxC reduces repressive histone modifications – H2AK119ub
1392 and H3K27me3 - on key Wnt signal genes, hence leading to the block of their
1393 attenuation over time. Hampered differentiation and migration of hippocampal
1394 progenitors leads to hippocampal agenesis.
1395

1396 **Supplementary figures**

1397

1398 **Figure S1**

1399

1400 **Figure S1. Selective ablation of the KDM2B-CxxC in the developing**
***Kdm2b*^{Emx1-ΔCxxC} hippocampi.**

1401 (A) Schematic representation of the *Kdm2b* genomic structure (top), targeting
1402 allele (middle) and targeted allele (bottom). Exon 13 is flanked by two loxP
1403 sites and will be excised after mating with Cre-recombinase-expressing
1404 mice.

1405 (B) PCR products for respective genotypes.

1406 (C) Offspring distribution of indicated genotypes at P0 from *Kdm2b*^{fl/fl} females
1407 crossing with *Emx1-Cre*; *Kdm2b*^{fl/+} males.

1408 (D) Schematic diagram of *Kdm2b* transcripts and corresponding protein
1409 domains. Positions of qPCR primers and the ISH probe were indicated.
1410 (E, F) Genotyping of a litter of P0 pups (E) and detection of *Kdm2b* expression
1411 by RT-qPCR (F).
1412 (G, H) Representative ISH images showing *Kdm2b* expression in coronal
1413 sections of P0 control (G) and *Kdm2b*^{Emx1-ΔCxxC} (H) brains. Hippocampi (HP)
1414 were enlarged on the right.
1415 (I) Immunoblots of KDM2B and TUBLIN using extracts of E15.5 control and
1416 *Kdm2b*^{Nestin-ΔCxxC} neocortices.
1417 Scale bars, 1mm (G, H left), 300 μm (G, H right). HP, Hippocampus; Ctx, cortex;
1418 Th, Thalamus; CA, Cornu Ammonis; DG, dentate gyrus; LV, lateral ventricle; F,
1419 fimbria.

1420

1421 **Figure supplement 1-source data**

1422 Figure S1B source data 1: Genotyping of *Cre*.
1423 Figure S1B source data 2: Genotyping of floxed *Kdm2b*.
1424 Figure S1E source data: Genotyping of a litter of P0 pups for RT-qPCR.
1425 Figure S1I source data: Immunoblotting of KDM2B and TUBLIN (E15.5
1426 control and *Kdm2b*^{Nestin-ΔCxxC} neocortices).

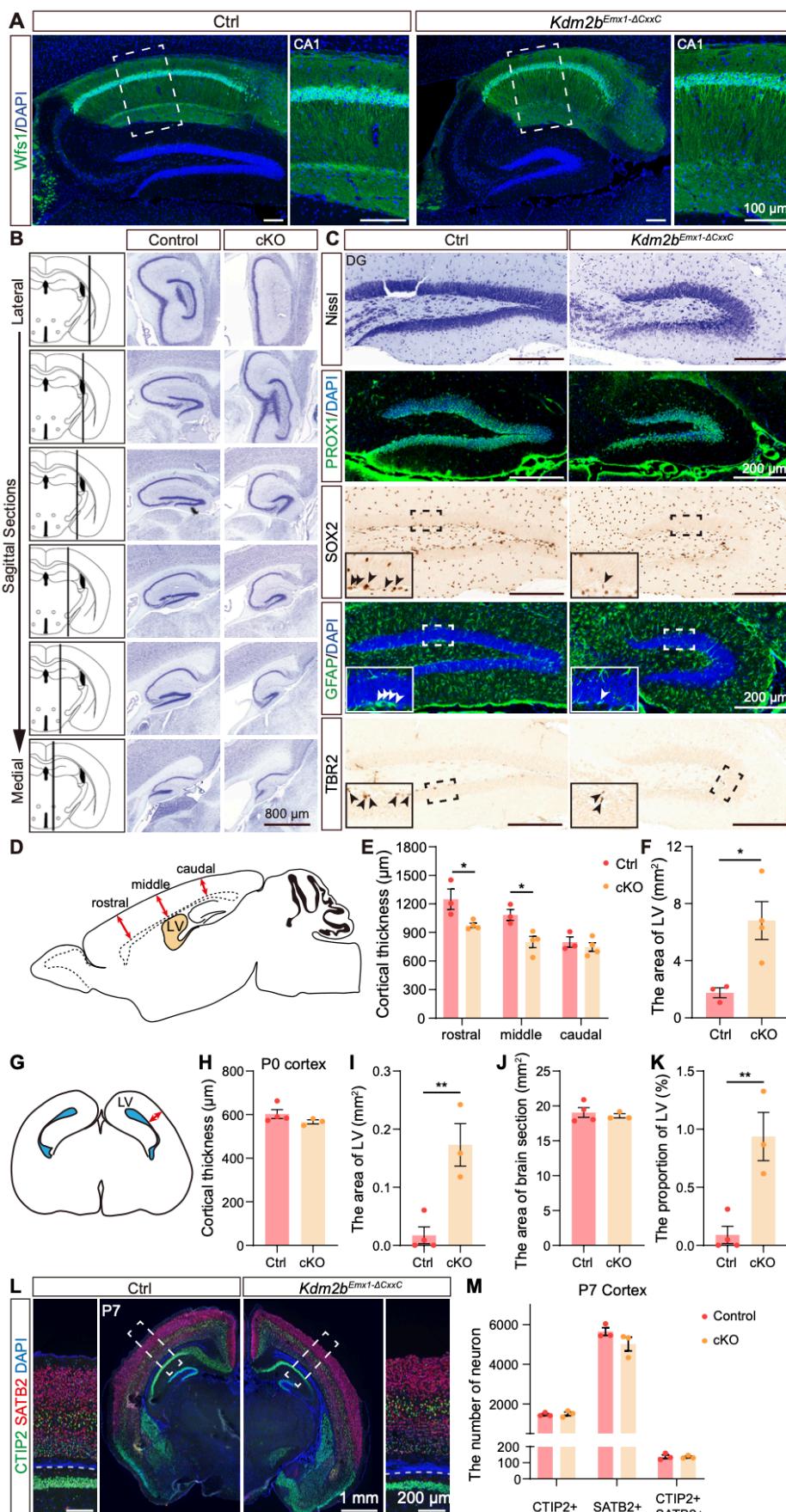


Figure S2

1428 **Figure S2. Deletion of the KDM2B-CxxC causes agenesis of hippocampus.**

1429 (A) Immunofluorescent (IF) staining of Wfs1 on sagittal sections of adult control
1430 (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) hippocampi. Nuclei were labeled with DAPI
1431 (blue). Boxed regions of CA1 were enlarged on the right.

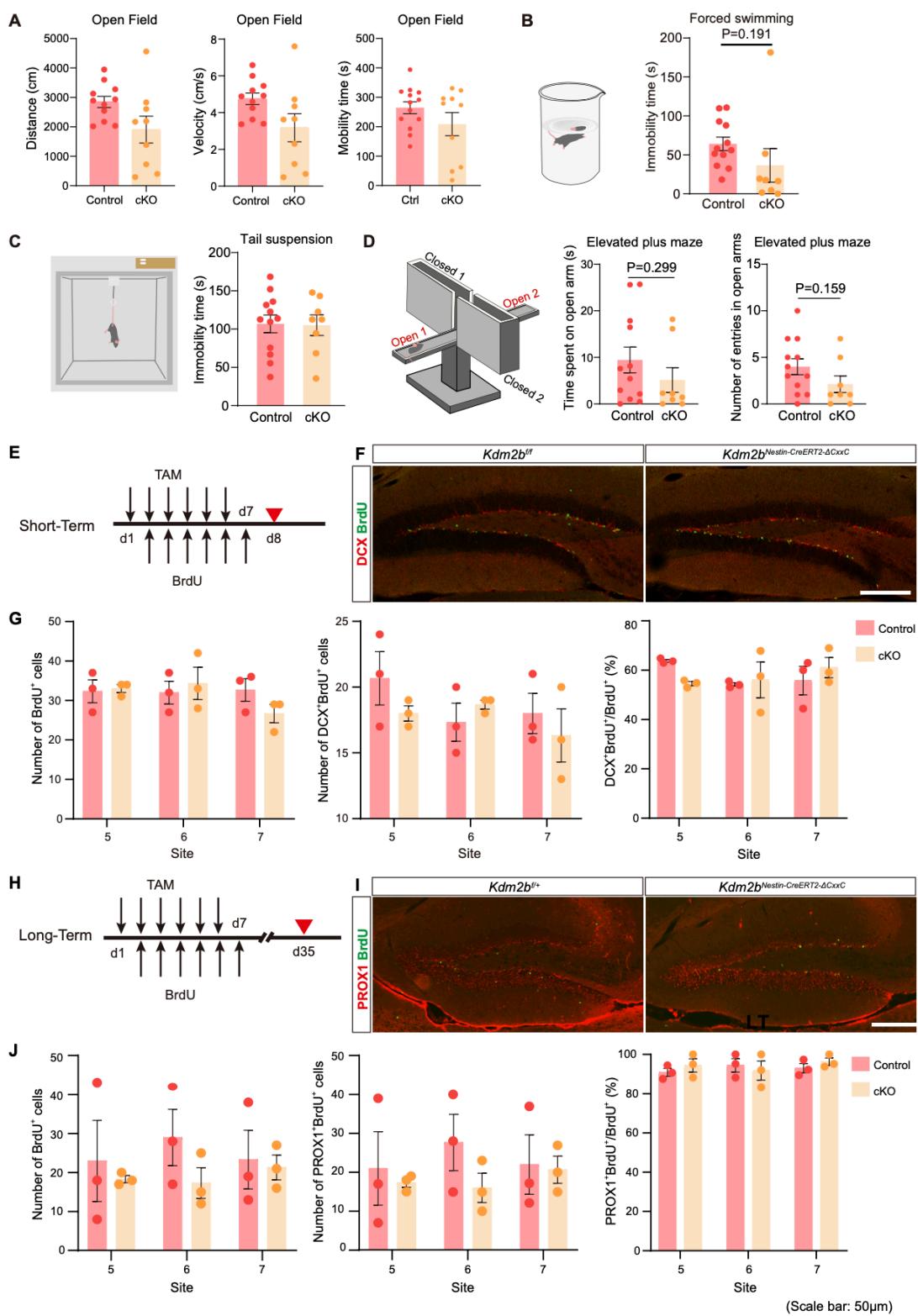
1432 (B) Nissl staining of sagittal sections of adult control and *Kdm2b*^{Emx1-ΔCxxC}
1433 hippocampi. Sections from lateral to medial were displayed sequentially
1434 from top to bottom, with relative positions shown as black lines on the left.

1435 (C) From top to bottom: Nissl staining, IF staining for PROX1, IHC for SOX2, IF
1436 for GFAP and IHC for TBR2, on sagittal sections of adult control (left) and
1437 *Kdm2b*^{Emx1-ΔCxxC} (right) DG. Boxed regions of SGZ were enlarged on the
1438 left-bottom corners.

1439 (D) The schematic diagram of a sagittal section of adult brain. Red bidirectional
1440 arrows show the rostral, middle, and caudal regions of the neocortex.

1441 (E) Quantifications of neocortical thickness of adult control and *Kdm2b*^{Emx1-ΔCxxC}
1442 brains in rostral, middle, and caudal regions.

1443 (F) Quantifications of the area of lateral ventricle in adult control and
1444 *Kdm2b*^{Emx1-ΔCxxC} brain. n = 3 for control brains and n = 4 for *Kdm2b*^{Emx1-ΔCxxC}
1445 brains.


1446 (G) The diagram of a coronal section of P0 brain. The red bidirectional arrow
1447 indicates neocortical thickness. The blue areas indicate the lateral ventricles
1448 (LV).

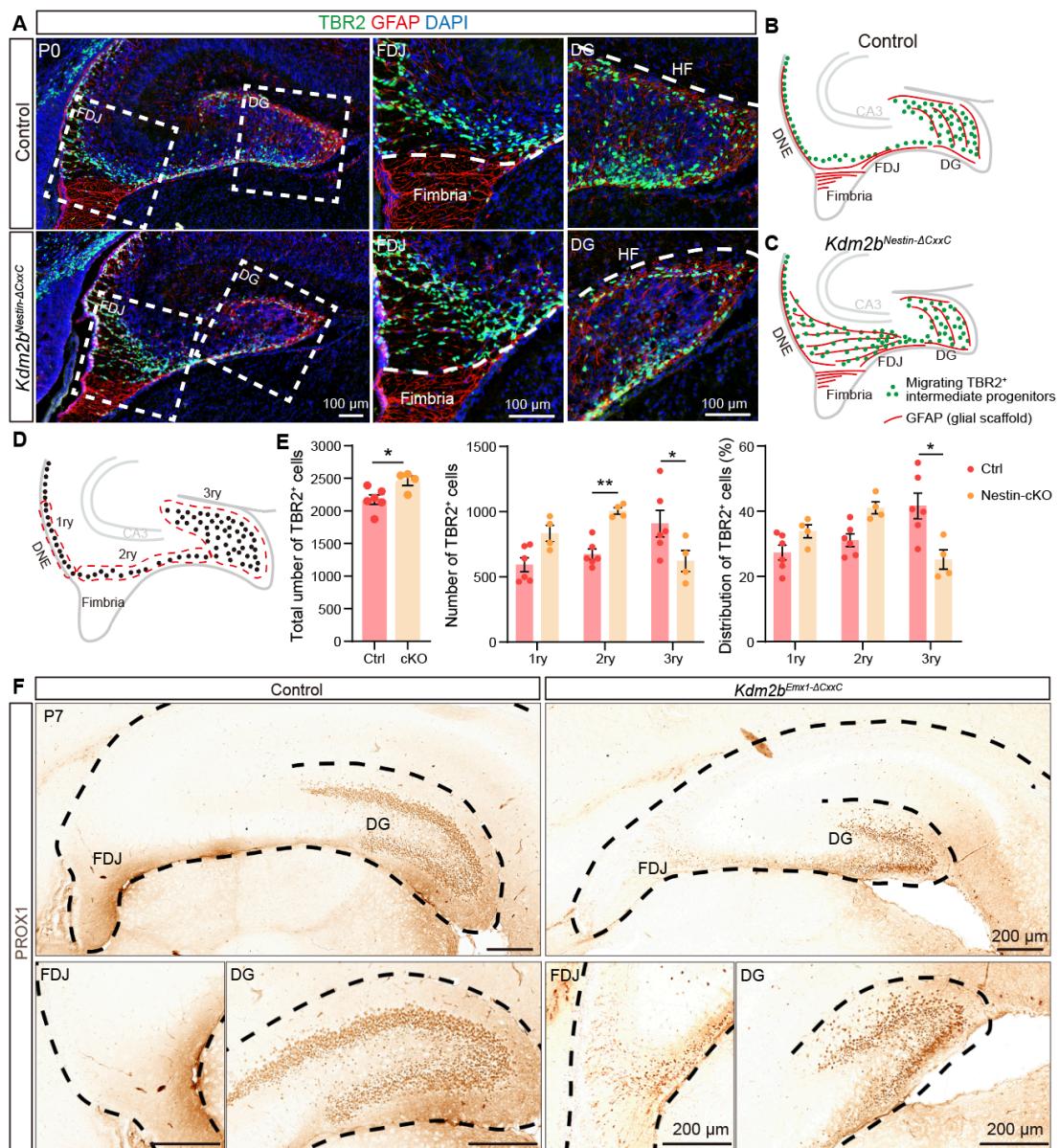
1449 (H-K) Quantifications of neocortical thickness (H), area of lateral ventricles (LV)
1450 (I), area of brain sections (J) and the area proportion of LV (K) in P0 control and
1451 *Kdm2b*^{Emx1-ΔCxxC} brain. n = 4 for control brains and n = 3 for *Kdm2b*^{Emx1-ΔCxxC}
1452 brains.

1453 (L) IF staining for CTIP2 (green) and SATB2 (red) on coronal sections of P7
1454 control (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) mice. Nuclei were labeled with DAPI
1455 (blue). Boxed regions were enlarged on the right.

1456 (M) Quantification of CTIP2+, SATB2+ and CTIP2+SATB2+ cells in P7 cortex
1457 (L). n = 3 for control brains and n = 3 for *Kdm2b*^{Emx1-ΔCxxC} brains.

1458 Data are represented as means \pm SEM. Statistical significance was determined
1459 using two-way ANOVA followed by Sidak's multiple comparisons test (E), or
1460 using an unpaired two-tailed Student's t-test (F). * $P<0.05$, ** $P < 0.01$. Scale
1461 bars, 100 μm (A), 800 μm (B), 200 μm (C), 1 mm (L, whole brain), 200 μm (L,
1462 cortex). LV, lateral ventricles.
1463

1464


Figure S3

1465 **Figure S3. Adult neurogenesis in the SGZ was unaffected on conditional**

1466 **loss of KDM2B-CxxC.**

1467 (A) Quantification of distance, velocity and mobility time in the open-field test.

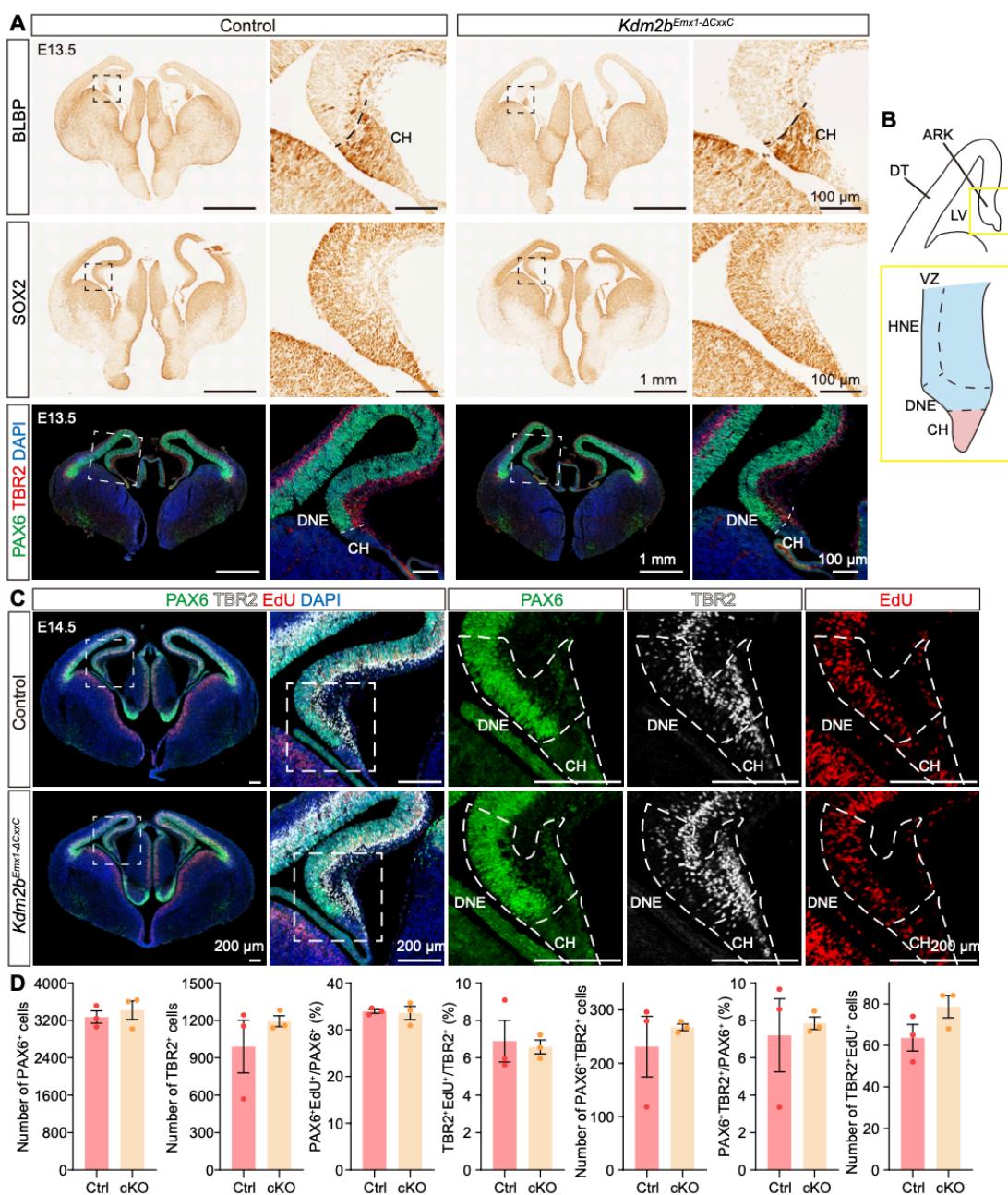

1468 (B, C) Immobility time in forced swimming (B) and tail suspension experiments
1469 (C).
1470 (D) Time spent in open arms and the number of entries in open arms in elevated
1471 plus maze test.
1472 (E, H) Eight-week-old mice (*Kdm2b*^{ff} or *Kdm2b*^{f/+}, and *Kdm2b*^{Nestin-CreERT2-ΔCxxC})
1473 were intraperitoneally injected with TAM and BrdU for 6 consecutive days (BrdU
1474 injection delayed by 1 day). Mice were sacrificed either 1 day later (Short-Term)
1475 or 4 weeks later (Long-Term).
1476 (F) Representative IF images showing DG sections stained with DCX (red) and
1477 BrdU (green).
1478 (G) Quantification of numbers of BrdU+ cells, DCX+Brdu+ cells, and the
1479 proportion of DCX+Brdu+/BrdU+ in the Short-Term experiment.
1480 (I) Representative IF images showing DG sections stained with PROX1 (red)
1481 and BrdU (green).
1482 (J) Quantification of numbers of BrdU+ cells, PROX1+Brdu+ cells, and the
1483 proportion of PROX1+Brdu+/BrdU+ in the Long-Term experiment.
1484 In (A), n = 11 mice for control and n = 9 mice for *Kdm2b*^{Emx1-ΔCxxC}. In (B-D), n =
1485 12 mice for control and n = 8 mice for *Kdm2b*^{Emx1-ΔCxxC}.
1486 Data are represented as means ± SEM. Statistical significance was determined
1487 using an unpaired two-tailed Student's t-test (A-D), or using two-way ANOVA
1488 followed by Sidak's multiple comparisons test (G, J). In (E-J), n = 3 mice for
1489 both control and for *Kdm2b*^{Nestin-CreERT2-ΔCxxC}. Scale bars, 50 μm (F, I).
1490

Figure S4

1491
1492 **Figure S4. Ablation of the KDM2B-CxxC blocked the migration of**
1493 **intermediate progenitors and neurogenesis of granular cells.**
1494 (A) Double immunofluorescence of TBR2 (green) and GFAP (red) on P0 wild-
1495 type and *Kdm2b*^{Nestin-ΔCxxC} hippocampus. Nuclei were labeled with DAPI
1496 (blue). Boxed regions of FDJ and DG were enlarged on the right.
1497 (B, C) The schematic of P0 control and *Kdm2b*^{Nestin-ΔCxxC} hippocampi. Green
1498 dots represent migrating TBR2+ intermediate progenitors, and red lines
1499 represent GFAP+ glial scaffold.
1500 (D, E) Distribution of TBR2+ cells along the three matrices, where dashed lines

1501 indicate areas considered as 1ry, 2ry, and 3ry matrix (D).
1502 (F) Immunohistochemical staining for PROX1 on coronal sections of P7 control
1503 (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) hippocampi. The DG and FDJ regions were
1504 individually enlarged underneath.
1505 n = 6 for control brains and n = 4 for *Kdm2b*^{Nestin-ΔCxxC} brains. Data are
1506 represented as means ± SEM. Statistical significance was determined using an
1507 unpaired two-tailed Student's t-test (E left), or using two-way ANOVA followed
1508 by Sidak's multiple comparisons test (E middle and right). *P < 0.05, **P < 0.01.
1509 Scale bars, 100 µm (A), 200 µm (F). DG, dentate gyrus; DMS, dentate
1510 migratory stream; FDJ, fimbriodentate junction; HF, hippocampal fissure; 1ry,
1511 primary matrix; 2ry, secondary matrix; 3ry, tertiary matrix.
1512

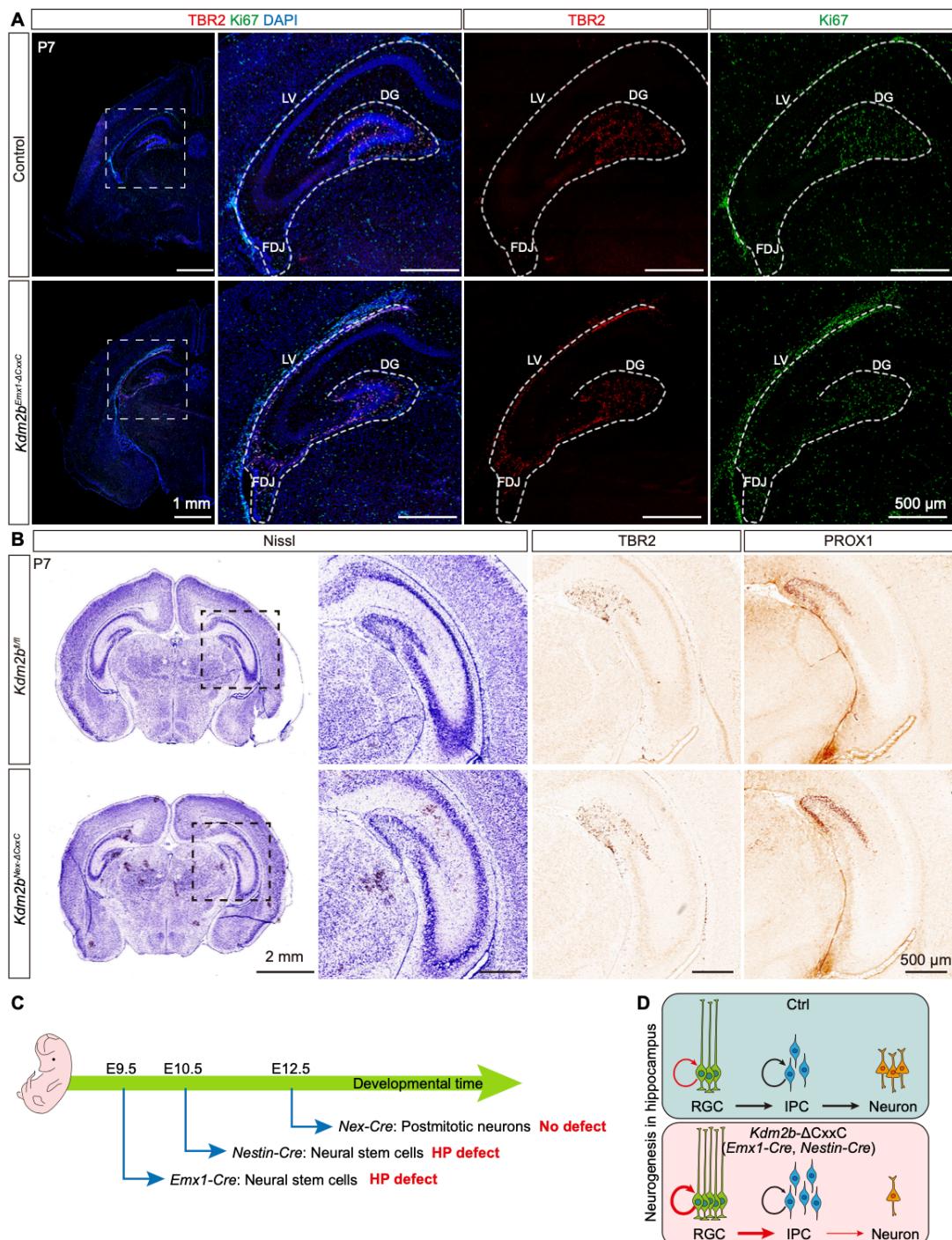
Figure S5

1513

1514 **Figure S5. Unaltered neural progenitor domains in *Kdm2b*^{Emx1-ΔCxxC}**
1515 **hippocampal primordia.**

1516 (A) Immunohistochemical staining for BLBP (top) and SOX2 (middle). Bottom,
1517 immunofluorescent staining for PAX6 (green) and TBR2 (green) on coronal
1518 sections of E13.5 control (left) and *Kdm2b*^{Emx1-ΔCxxC} (right) brain. Nuclei
1519 were labeled with DAPI (blue). Boxed regions were enlarged on the right.

1520 (B) The schematic of E13.5 wild-type hippocampus. The yellow box is enlarged


1521 to show the hippocampal primordia, with dashed lines demarcating HNE,
1522 DNE and CH.

1523 (C) Triple-labeling of PAX6 (green), TBR2 (white) and EdU (red) on E14.5
1524 control and *Kdm2b*^{*Emx1-ΔCxxC*} brain sections. Pregnant mice were injected
1525 with EdU 2 h before sacrifice. Nuclei were labeled with DAPI (blue). Boxed
1526 regions are enlarged on the right, and single channel fluorescence staining
1527 of PAX6, TBR2 and EdU were shown respectively. Dashed lines indicate
1528 DNE and CH.

1529 (D) Quantification of data in (C). Quantification of number of PAX6+, TBR2+,
1530 PAX6+TBR2+ and TBR2+EdU+ cells, and the proportion of
1531 PAX6+EdU+/PAX6+, TBR2+EdU+/TBR2+ and PAX6+TBR2+/PAX6+ in
1532 E14.5 control and *Kdm2b*^{*Emx1-ΔCxxC*} DNE.

1533 n = 3 for control brains and n = 3 for *Kdm2b*^{*Emx1-ΔCxxC*} brains. Data are
1534 represented as means ± SEM. Statistical significance was determined using
1535 an unpaired two-tailed Student's t-test (D). Scale bars, 1 mm (A, whole
1536 brain), 100 µm (A, HP), 200 µm (C). CH, cortical hem; LV, lateral ventricle;
1537 DT, dorsal telencephalon; ARK, archicortex; HNE, hippocampal
1538 neuroepithelium; DNE, dentate neuroepithelium; VZ, ventricular zone.

1539

Figure S6

1540

1541 **Figure S6. Neuronal differentiation is not responsible for hippocampal**

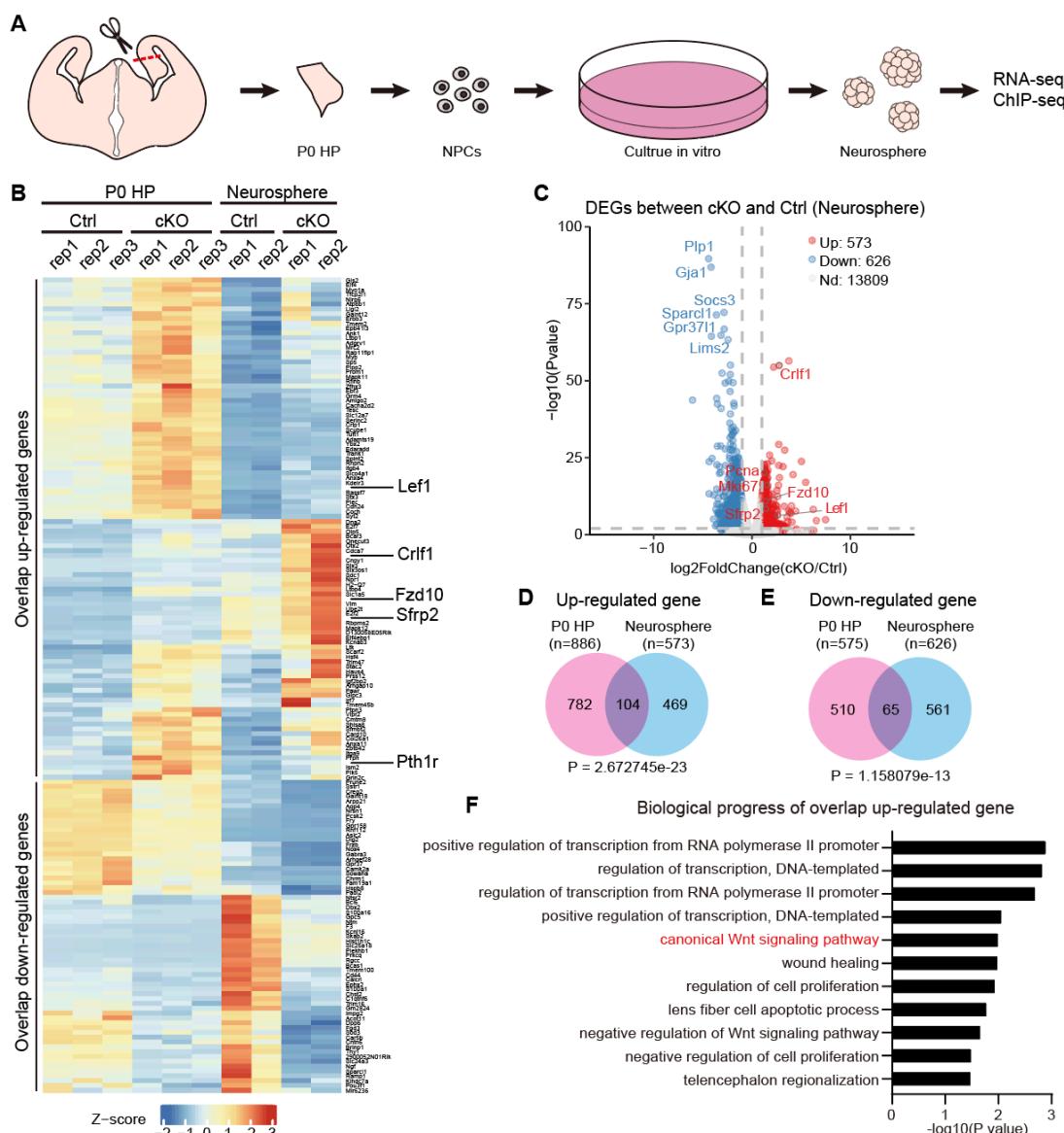
1542 **agenesis caused by loss of KDM2B-CxxC.**

1543 (A) Double-labeling of TBR2 (red) and Ki67 (green) on P7 coronal section of

1544 control and *Kdm2b^{Emx1-ΔCxxC}* brains. Nuclei were labeled with DAPI (blue).

1545 Boxed regions are enlarged on the right, and single channel fluorescence

1546 staining of TBR2 and Ki67 were shown respectively. Dashed lines outline
1547 the hippocampi.


1548 (B) Nissl staining, and immunohistochemical staining of TBR2 and PROX1 on
1549 coronal sections of P7 control and *Kdm2b*^{Nex-ΔCxxC} brains.

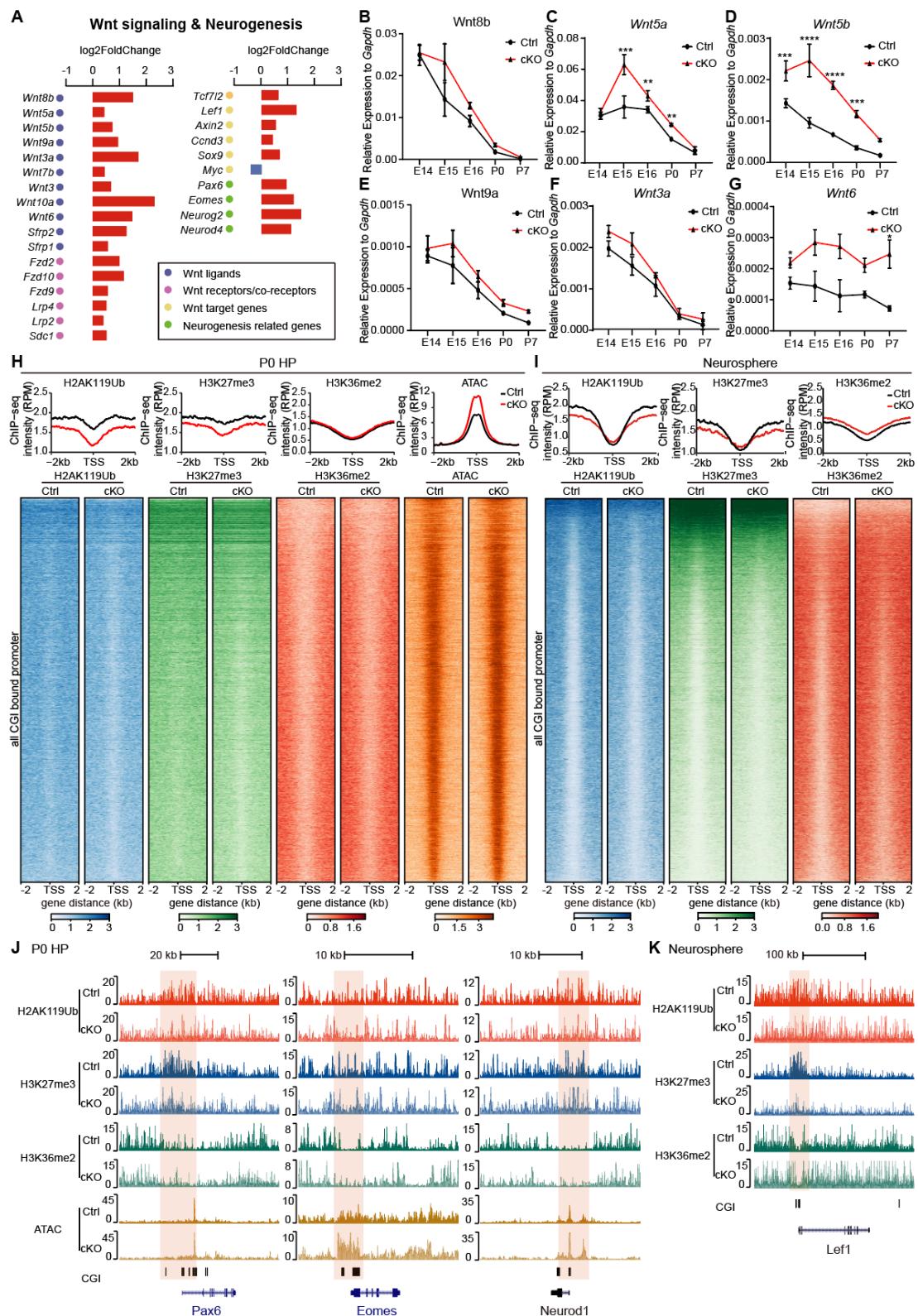
1550 (C) The schematic diagram summarizing expression profiles of three Cre lines,
1551 as well as phenotypes of respective cKO mice.

1552 (D) The diagram showing aberrant neurogenesis during hippocampal
1553 development of *Kdm2b*^{Emx1-ΔCxxC} and *Kdm2b*^{Nestin-ΔCxxC} mice: a bigger RGC
1554 pool with more IPCs produced, but differentiation of IPCs toward neurons
1555 was compromised.

1556 Scale bars, 1 mm (A, whole brain), 100 µm (A, HP), 2 mm (B, whole brain),
1557 500 µm (B, HP). LV, lateral ventricle; FDJ, fimbriodentate junction; DG,
1558 Dentate gyrus; RGC, Radial glia cells; IPC, Intermediate progenitor cell.

1559
1560

Figure S7


1562 **Figure S7. RNA-seq of neurospheres derived from P0 cKO hippocampi**
1563 **showed activation of the Wnt signaling pathway.**
1564 (A) Schematic diagram: hippocampal tissue was collected from P0 brain and
1565 digested into single-cell suspensions. After cultured *in vitro* for three
1566 generations, neurospheres were subjected to RNA-seq and ChIP-seq
1567 analyses.
1568 (B) The heat map of overlapping up- and down-regulated genes of P0 HP and
1569 neurospheres.
1570 (C) The volcano plot of genes up-regulated (red) and down-regulated (blue) in
1571 P0 *Kdm2b*^{Emx1-ΔCxxC} (cKO) neurospheres compared to controls.

1572 (D) Overlapping up-regulated genes (104) of P0 HP (782) and neurospheres
1573 (469).

1574 (E) Overlapping down-regulated genes (65) of P0 HP (510) and neurospheres
1575 (561).

1576 (F) GO analysis of the biological progress of overlapping up-regulated genes in
1577 *Kdm2b*^{Emx1-ΔCxxC} (cKO) neurospheres revealed terms related to canonical
1578 Wnt signaling pathways (red).

1579

Figure S8

1580

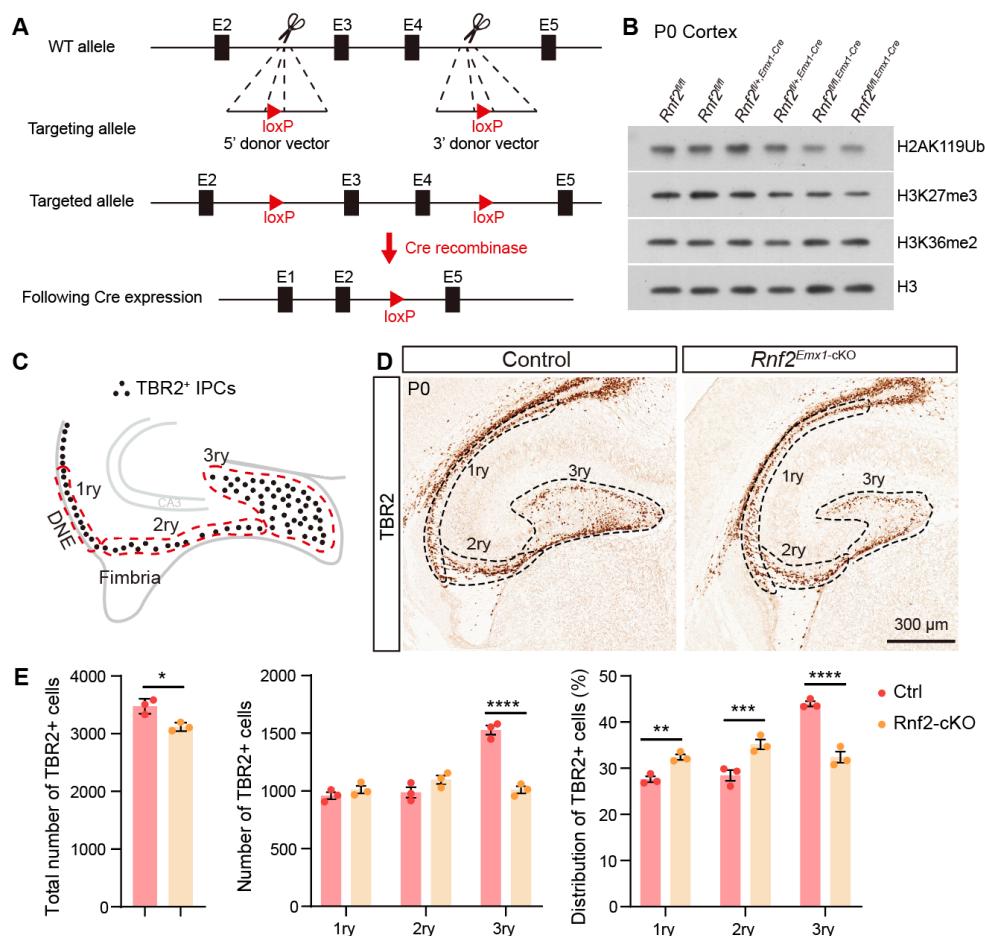
1581 **Figure S8. KDM2B epigenetically silences components of Wnt signaling**
1582 **genes in developing hippocampi.**

1583 (A) Histograms showing the log-fold change of significantly up- or down-

1584 regulated genes in *Kdm2b*^{Emx1-ΔCxxC} (cKO) hippocampi.

1585 (B-G) RT-qPCR showing relative expressions of *Wnt8b*, *Wnt5a*, *Wnt5b*, *Wnt9a*,
1586 *Wnt3a* and *Wnt6* in control (black lines) and *Kdm2b*^{Emx1-ΔCxxC} (red lines)
1587 hippocampi of indicated developmental stages (E14.5, E15.5, E16.5, P0 and
1588 P7).

1589 (H) Heatmaps showing H2AK119ub, H3K27me3, H3K36me2, and ATAC-seq
1590 signals in control and *Kdm2b*^{Emx1-ΔCxxC} (cKO) hippocampi at all CGI-associated
1591 promoters. Colors represent ChIP-seq RPM (reads per million), and rows were
1592 ranked by ChIP-seq signals in control H2AK119ub. Line charts on the top of
1593 each set of heatmap showing average signals, with control in black and
1594 *Kdm2b*^{Emx1-ΔCxxC} (cKO) in red.


1595 (I) Line charts and heatmaps showing H2AK119ub, H3K27me3 and H3K36me2
1596 signals in control and *Kdm2b*^{Emx1-ΔCxxC} (cKO) neurospheres at all CGI-
1597 associated promoters.

1598 (J) The UCSC genome browser view of HA2K119ub, H3K27me3 and
1599 H3K36me2 enrichment and ATAC-seq signal in P0 control and *Kdm2b*^{Emx1-ΔCxxC}
1600 (cKO) hippocampi at *Pax6*, *Eomes* and *Neurod1*. CGIs were shown as black
1601 columns on the bottom. Colored regions marked enrichment differences
1602 between control and cKO.

1603 (K) The UCSC genome browser view of HA2K119ub, H3K27me3 and
1604 H3K36me2 enrichment in control and *Kdm2b*^{Emx1-ΔCxxC} (cKO) neurospheres at
1605 *Lef1*. CGIs were shown as black columns on the bottom. Colored regions
1606 marked enrichment differences between control and cKO.

1607 Data are represented as means ± SEM. Statistical significance was determined
1608 using two-way ANOVA followed by Sidak's multiple comparisons test (B-G). *P
1609 < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

1610

Figure S9

1611

1612 **Figure S9. Loss of Ring1B did not cause accumulation of neural**
1613 **progenitors.**

1614 (A) Schematic representation of the *Rnf2* genomic structure (top), targeting
1615 allele (middle) and targeted allele (bottom). Exon 3-4 is flanked by loxP sites
1616 and will be excised after mating with Cre-recombinase-expressing mice.

1617 (B) Immunoblots of H2AK119ub, H3K27me3, H3K36me2 and H3 using extracts
1618 of P0 *Rnf2*^{fl/fl}, *Rnf2*^{fl/+}, *Emx1-Cre* and *Rnf2*^{fl/fl}, *Emx1-Cre* neocortices.

1619 (C-E) Immunohistochemical staining of TBR2 (D) on coronal sections of P0
1620 control (left) and *Rnf2*^{Emx1-cKO} (right) hippocampi. Distribution of TBR2+ cells
1621 along the three matrices, where dashed lines indicate areas considered as 1ry,
1622 2ry, and 3ry matrix (C). n = 3 for control brains, n = 3 for *Rnf2*^{Emx1-cKO} brains.
1623 Data are represented as means \pm SEM. Statistical significance was determined
1624 using an unpaired two-tailed Student's t-test (E, left) or using two-way ANOVA

1625 followed by Sidak's multiple comparisons test (E, middle and right). *P < 0.05,
1626 **P < 0.01, ***P < 0.001, ****P < 0.0001, and "NS" indicates no significance.
1627 Scale bars, 300 μ m (F). DNE, dentate neuroepithelium; 1ry, primary matrix; 2ry,
1628 secondary matrix; 3ry, tertiary matrix.

1629 **Figure supplement 9-source data**

1630 Figure S9B source data 1: Immunoblotting of H2AK119Ub (P0 *Rnf2*^{fl/fl}, *Rnf2*^{fl/+},
1631 *Emx1-Cre* and *Rnf2*^{fl/fl}, *Emx1-Cre* neocortices).

1632 Figure S9B source data 2: Immunoblotting of H3K27me3 (P0 *Rnf2*^{fl/fl}, *Rnf2*^{fl/+},
1633 *Emx1-Cre* and *Rnf2*^{fl/fl}, *Emx1-Cre* neocortices).

1634 Figure S9B source data 3: Immunoblotting of H3K36me2 (P0 *Rnf2*^{fl/fl}, *Rnf2*^{fl/+},
1635 *Emx1-Cre* and *Rnf2*^{fl/fl}, *Emx1-Cre* neocortices).

1636 Figure S9B source data 4: Immunoblotting of H3 (P0 *Rnf2*^{fl/fl}, *Rnf2*^{fl/+}, *Emx1-Cre*
1637 and *Rnf2*^{fl/fl}, *Emx1-Cre* neocortices).

1638

Supplemental Tables

Supplemental Table S1. ISH primers used in this study

<i>Kdm2b</i> -CxxC-ISH-F	GTCGGCCTAACGGCAAGTT
<i>Kdm2b</i> -CxxC-ISH-R	CACACACAAGGCACACGG
<i>Lef1</i> -ISH-F	AGAGAACACCCTGATGAAGGAA
<i>Lef1</i> -ISH-R	CTTCCTCTTCTTCTTGCCA
<i>Sfrp2</i> -ISH-F	AGCAACTGCAAGCCCATC
<i>Sfrp2</i> -ISH-R	ATGGAGAGAACGCCACCCC

1639

Supplemental Table S2. RT-qPCR primers used in this study

<i>Kdm2b</i> - <i>JmjC</i> -qPCR-F	AACTTGGCTTGTACGAGGAGT
<i>Kdm2b</i> - <i>JmjC</i> -qPCR-R	CACGTTGAAGCTATGCAGGATG
<i>Kdm2b</i> -CxxC-qPCR-F	GTGGAGAGTGCCACTTTGC
<i>Kdm2b</i> -CxxC-qPCR-R	CACTGTGTCCTCCTCCCTG
<i>Kdm2b</i> -LRR-qPCR-F	GCTCATGGATCGCTGTCTCA
<i>Kdm2b</i> -LRR-qPCR-R	AGGCGCAGCTCTACAATGTT
<i>Wnt7b</i> -qPCR-F	GCTGGTCTCCGTCTATTGCC
<i>Wnt7b</i> -qPCR-R	TCACAATGATGGCATCGGGT
<i>Wnt3</i> -qPCR-F	GGGCCAGCAGTACACATCTCT
<i>Wnt3</i> -qPCR-R	CAGGCTGTCATCTATGGTGGT
<i>Wnt10a</i> -qPCR-F	TGAACACCCGGCCATACTTC
<i>Wnt10a</i> -qPCR-R	CATGTTCTCCATCACCGCCT
<i>SFRP2</i> -qPCR-F	GAAGAAATCCGTGCTGTGGC
<i>SFRP2</i> -qPCR-R	TGCGCTGAACTCTCTCTGG
<i>Wnt8b</i> -qPCR-F	CCCGTGTGCGTTCTTAGT
<i>Wnt8b</i> -qPCR-R	CAACGGTCCCAAGCAAATG
<i>Wnt5a</i> -qPCR-F	GTGATGCAAATAGGCAGCCG
<i>Wnt5a</i> -qPCR-R	AGCGTGGATTGTTCCCTTT
<i>Wnt5b</i> -qPCR-F	GTGCCAACACCAGTTTCGAC
<i>Wnt5b</i> -qPCR-R	CTCTCGGGCATCCACAAACT
<i>Wnt9a</i> -qPCR-F	AACAACCTCGTGGGTGTGAAG
<i>Wnt9a</i> -qPCR-R	CTCTCCAGTGGCTTCATTGGT
<i>Wnt3a</i> -qPCR-F	TCTGCCATGAACCGTCACAA
<i>Wnt3a</i> -qPCR-R	GTACGTGTAACGTGGCCTCA
<i>Wnt6</i> -qPCR-F	GAGACGATGTGGACTTCGGG
<i>Wnt6</i> -qPCR-R	AGCCCATGGCACTTACACTC

1640

Supplemental Table S3. Plasmid construction primers used in this study

Wnt3a-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGGCTCT CTCGGATACCTCTAGTGCTC
---------------	--

Wnt3a-R-Not1	ATGGTCTTGTAGCGCGGCCCTGCAGGTGT GCACGTCATAGACAC
Wnt5a-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGAAGAAG CCCATTGGAATATTAAGCCCGG
Wnt5a-R-Not1	ATGGTCTTGTAGCGCGCCGCCTTGCACACGA ACTGATCCACAATCTCC
Wnt5b-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGCCAGC CTGCTGCTGGTGGTCGTGGCA
Wnt5b-R-Not1	ATGGTCTTGTAGCGCGCCGCCTACAGACAT ACTGGTCCACAACCTCGGT
Wnt7b-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGCACAGA AACTTCGAAAGTGGATCTTT
Wnt7b-R-Kpn1	ATGGTCTTGTAGCGGTACCTCACTGCAGGTGAA GACCTCGG
Wnt8b-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGCTTCCC ATCTCTCAATGTTGAGTCGC
Wnt8b-R-Kpn1	ATGGTCTTGTAGCGGTACCTTAGGAGTTCTTCC CGGTTTGTG
SFRP2-F-EcoR1	CATCATTGGCAAAGAATTGCCACCATGCCGCG GGGCCCTGCCTCGC
SFRP2-R-Kpn1	ATGGTCTTGTAGCGGTACCTAGCATTGCAGCTT CGGGATGCTG

1641