

1 Jan 17, 2023

2 **Structure of human Nav1.6 channel reveals Na^+ selectivity and pore**
3 **blockade by 4,9-anhydro-tetrodotoxin**

4 Yue Li^{1,2,3*}, Tian Yuan^{4*}, Bo Huang⁶, Feng Zhou⁶, Chao Peng⁴, Xiaojing Li^{1,3}, Yunlong

5 Qiu^{1,3}, Bei Yang¹, Yan Zhao^{1,3**}, Zhuo Huang^{4,5**}, Daohua Jiang^{2,3**}

6 ¹ National Laboratory of Biomacromolecules, CAS Center for Excellence in
7 Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing
8 100101, China

9 ² Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences,
10 Beijing 100190, China

11 ³ University of Chinese Academy of Sciences, Beijing 100049, China

12 ⁴ State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and
13 Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health
14 Science Center, Beijing, 100191, China

15 ⁵ IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China;

16 ⁶ Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing,
17 China

18

19 * These authors contributed equally to this project.

20 ** Correspondence emails: jiangdh@iphy.ac.cn (D.J.), huangz@hsc.pku.edu.cn (Z.H.) &
21 zhaoy@ibp.ac.cn (Y.Z.)

22

23

24

25

26

27

28

29

30 **Abstract**

31 The sodium channel $\text{Na}_v1.6$ is widely expressed in neurons of the central and
32 peripheral nervous systems, which plays a critical role in regulating neuronal excitability.
33 Dysfunction of $\text{Na}_v1.6$ has been linked to epileptic encephalopathy, intellectual disability
34 and movement disorders. Here we present cryo-EM structures of human $\text{Na}_v1.6/\beta 1/\beta 2$
35 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-
36 TTX), revealing molecular mechanism of $\text{Na}_v1.6$ inhibition by the blocker. In the apo-
37 form structure, two potential Na^+ binding sites were revealed in the selectivity filter,
38 suggesting a possible mechanism for Na^+ selectivity and conductance. In the 4,9-ah-
39 TTX-bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX)
40 binding site, which occupies the Na^+ binding sites and completely blocks the channel.
41 Molecular dynamics simulation results show that subtle conformational differences in the
42 selectivity filter affect the affinity of TTX analogues. Taken together, our results provide
43 important insights into $\text{Na}_v1.6$ structure, ion conductance, and inhibition.

44

45 Introduction

46 Voltage-gated sodium (Na_V) channels mediate the generation and propagation of
47 action potentials in excitable cells^{1,2}. In humans, nine Na_V channel subtypes ($Na_V1.1-1.9$)
48 had been identified, which are involved in a broad range of physiological processes due
49 to their tissue-specific distributions in various excitable tissues^{3,4}. Subtype $Na_V1.6$,
50 encoded by the gene *SCN8A*, is ubiquitously expressed in neurons of both the central
51 nervous system (CNS) and the peripheral nervous system (PNS), especially enriched in
52 the distal end of axon initial segment (AIS) and in the node of Ranvier of myelinated
53 excitatory neurons. The $Na_V1.6$ channel is believed to play a primary role in the initiation
54 and propagation of action potentials in those neurons by lowering the threshold voltage⁵⁻¹¹
55. Emerging evidence suggests that $Na_V1.6$ is also expressed in some inhibitory
56 interneurons and plays a role in establishing synaptic inhibition in the thalamic
57 networks¹²⁻¹⁴. Compared with other Na_V channel subtypes, $Na_V1.6$ possesses unique
58 biophysical properties including activation at more hyperpolarized voltage, higher levels
59 of persistent current and resurgent current, and higher frequency of repetitive neuronal
60 firing in neurons such as cerebellar Purkinje cells¹⁵⁻²³. These features make $Na_V1.6$ a
61 critical and favorable mediator in regulating neuronal excitability in those neurons.
62 Meanwhile, dozens of mutations in $Na_V1.6$ have been linked to human diseases, most of
63 which exhibit gain-of-function phenotypes, increase neuronal excitability, and cause
64 different types of epileptic encephalopathy²⁴⁻²⁸; whereas loss-of-function mutations are
65 often associated with later onset seizures, intellectual disability, isolated cognitive
66 impairment and movement disorders²⁹⁻³¹. Thus, $Na_V1.6$ is an important drug target;
67 effective and subtype-selective therapeutics are eagerly awaited for the treatment of
68 $Na_V1.6$ -related epilepsy and other neurological diseases.

69 Eukaryotic Na_V channels are composed of a pore-forming α subunit and auxiliary β
70 subunits³². The four-domain α subunit exerts voltage sensing, gate opening, ion

71 permeation, and inactivation^{4,33}. Meanwhile, one or two β subunits bind to the α subunit
72 to regulate Na_v channel kinetics and trafficking. Among the four types of β subunits³⁴⁻³⁷,
73 $\beta 1$ and $\beta 3$ subunits non-covalently bind to the α subunit, while $\beta 2$ and $\beta 4$ subunits are
74 covalently linked to the α subunit via a disulfide bond^{32,38}. To date, high-resolution cryo-
75 electron microscopy (cryo-EM) structures of seven mammalian Na_v channels ($\text{Na}_v 1.1$ -
76 1.5, $\text{Na}_v 1.7$ -1.8) have been reported³⁹⁻⁴⁵. Together with the resting-state⁴⁶, open-state⁴⁷
77 and multiple ligand-bound Na_v channel structures⁴⁸⁻⁵⁰, these structures revealed the
78 general molecular mechanisms of voltage-sensing, electromechanically coupling, fast
79 inactivation, sodium permeation, and ligand modulation. Among those Na_v channel
80 modulators, the guanidinium neurotoxin tetrodotoxin (TTX) has long been used as a
81 useful tool to study Na_v channels, which can potently inhibit $\text{Na}_v 1.1$ -1.4 and $\text{Na}_v 1.6$ -1.7
82 at nanomolar level (TTX-sensitive Na_v channels), and less potently inhibit $\text{Na}_v 1.5$,
83 $\text{Na}_v 1.8$, and $\text{Na}_v 1.9$ at a micromolar concentration (TTX-insensitive Na_v channels). The
84 detailed binding mode of TTX had been revealed in the Na_v channel-TTX complex
85 structures^{44,51}. Furthermore, two guanidinium neurotoxin derivatives, ST-2262 and ST-
86 2530, were reported as potent and selective inhibitors for $\text{Na}_v 1.7$, indicating that TTX
87 analogs could potentially be developed as selective therapeutics^{52,53}. Interestingly, 4,9-
88 anhydro-tetrodotoxin (4,9-ah-TTX), a metabolite of TTX, has been reported to selectively
89 block $\text{Na}_v 1.6$ with a blocking efficacy of 40- to 160-fold higher than other TTX-sensitive
90 Na_v channels⁵⁴. However, the structure of $\text{Na}_v 1.6$ and how 4,9-ah-TTX blocks $\text{Na}_v 1.6$
91 remain elusive.

92 In this study, we optimized a fully-functional shorter-form construct of human $\text{Na}_v 1.6$
93 suitable for structural studies, and present cryo-EM structures of $\text{Na}_v 1.6/\beta 1/\beta 2$ apo-form
94 and in complex with 4,9-ah-TTX. Complemented with electrophysiological results and
95 molecular dynamics (MD) simulations, our structures reveal $\text{Na}_v 1.6$ structural features,
96 sodium conductance, and pore-blockade by 4,9-ah-TTX.

97 Results

98 Construct optimization of Nav1.6 for cryo-EM study

99 To conduct structural studies of Nav1.6, human wide-type Nav1.6 (named $\text{Na}_V1.6^{\text{WT}}$)
100 was co-expressed with human $\beta 1$ and $\beta 2$ subunits in HEK293F cells and was purified
101 similarly to previously reported Na_V channels^{41,44}. Although the amino acid sequence of
102 Nav1.6 is highly conserved with other Na_V channel subtypes (e.g., 70% identity with
103 Nav1.7); however, the purified $\text{Na}_V1.6^{\text{WT}}$ sample exhibited poor quality and did not permit
104 high-resolution structural analysis (Supplementary Fig. 1a and b). Construct optimization
105 had been proven to be successful in improving the sample quality of Nav1.7 and
106 Nav1.5^{55,56}, we therefore carried out construct screening of human Nav1.6 by removing
107 unstructured intracellular loops and C-terminus. We found that deletion of S478-G692
108 between D_I and D_{II} ($\text{Na}_V1.6^{\Delta D_I-D_{II}}$), S1115-L1180 between D_{II} and D_{III} ($\text{Na}_V1.6^{\Delta D_{II}-D_{III}}$), or
109 R1932-C1980 of the C-terminus ($\text{Na}_V1.6^{\Delta \text{Cter}}$) showed improved sample homogeneity
110 based on the size-exclusion chromatography (SEC) profiles (Supplementary Fig. 1a).
111 Strikingly, when we combined these modifications and deleted all of the three
112 unstructured regions, it displayed a sharp mono-disperse SEC profile, which is much
113 better than that of $\text{Na}_V1.6^{\text{WT}}$ and any of the single-deletion constructs (Fig.1a and b,
114 Supplementary Fig. 1a). We next examined the functional characteristics of the triple-
115 deletion construct by whole-cell voltage-clamp recording of $\text{Na}_V1.6$ -expressing HEK293T
116 cells. The candidate construct exhibits typical voltage-dependent activation and
117 inactivation (Fig. 1c). The resulting $V_{1/2}$ values of the voltage-dependence of activation
118 and steady-state fast inactivation are -31.3 ± 0.3 mV (n=15) and -77.3 ± 0.2 mV (n=15),
119 respectively, which are close to the reported $V_{1/2}$ values of human wide-type $\text{Na}_V1.6$ ^{57,58}.
120 These results confirmed that the triple-deletion construct fulfills similar
121 electrophysiological functions to the $\text{Na}_V1.6^{\text{WT}}$. The preliminary cryo-EM analysis of this
122 triple-deletion construct showed that the micrograph contains a rich distribution of

123 monodisperse particles, which gave rise to much better 2D class averages with well-
124 resolved features than the $\text{Na}_v1.6^{\text{WT}}$ (Supplementary Fig. 1b and c). Thus, this triple-
125 deletion construct (named $\text{Na}_v1.6^{\text{EM}}$) was selected for further structural studies.

126 **The overall structure of human $\text{Na}_v1.6$**

127 The purified $\text{Na}_v1.6^{\text{EM}}/\beta 1/\beta 2$ sample was frozen in vitreous ice for cryo-EM data
128 collection (Supplementary Fig. 2). After processing, the final reconstruction map from the
129 best class of ~41 k particles was refined to an overall resolution of 3.4 Å (Fig. 2a,
130 Supplementary Fig. 3-5). As expected, the resulting $\text{Na}_v1.6^{\text{EM}}/\beta 1/\beta 2$ structure closely
131 resembles the reported structures of human Na_v channels due to the high sequence
132 similarity (Fig. 2b). For example, the binding modes of the β subunits are consistent with
133 the structures of human $\text{Na}_v1.7/\beta 1/\beta 2$ and $\text{Na}_v1.3/\beta 1/\beta 2$ ^{41,44}; the pore-forming α -subunit
134 of $\text{Na}_v1.6^{\text{EM}}$ can be well superimposed with $\text{Na}_v1.7$ with a backbone (1107 residues) root
135 mean square deviation (RMSD) of 1.4 Å (Fig. 2c). However, marked local conformational
136 differences were observed between the two structures, especially in the extracellular
137 loops (ECLs) (Fig. 2c and d). The ECLs are less conserved regions among the nine Na_v
138 channel subtypes (Supplementary Fig. 6a), which form the outer mouth of the selectivity
139 filters (SFs) and contribute to the binding of β subunits. Superposition of the Domain I
140 ECLs of $\text{Na}_v1.6^{\text{EM}}$ and $\text{Na}_v1.7$ shows that the ECL_I of $\text{Na}_v1.6^{\text{EM}}$ lacks the short $\alpha 2$ helix
141 which instead forms an extended hairpin-like turn (Fig. 2d). Importantly, the ECL_I of
142 $\text{Na}_v1.6^{\text{EM}}$ exhibits more N-linked glycosylation modification sites than $\text{Na}_v1.7$; N308-
143 linked glycosylation site appears to be unique for $\text{Na}_v1.6$ based on the sequence
144 alignment (Supplementary Fig. 6a). Although these structural differences in the ECLs do
145 not affect the binding of β subunits to $\text{Na}_v1.6$ (Fig. 2a), the glycosylation and other
146 modifications shape the surface properties of $\text{Na}_v1.6$, which play important roles in its
147 trafficking, localization, and pathology^{59,60}. For instance, a unique glycosylation site in the
148 ECL_I of $\text{Na}_v1.5$ blocks the binding of the $\beta 1$ subunit to $\text{Na}_v1.5$ ⁴³.

149 We next compared the fast inactivation gate and intracellular activation gate
150 between $\text{Na}_v1.6^{\text{EM}}$ and $\text{Na}_v1.7$, which only display subtle conformational shifts (Fig. 2e
151 and f), indicating that those key structural elements are highly conserved to fulfill their
152 similar biological roles. Consistently, the signature fast inactivation gate, Ile-Phe-Met
153 motif (IFM-motif), binds tightly to its receptor site adjacent to the intracellular activation
154 gate (Fig. 2e), resulting in a non-conductive activation gate constricted by A411, L977,
155 I1464 and I1765 from the four S6 helices respectively (Fig. 2f). The van der Waals
156 diameter of the activation gate is less than 6 Å, suggesting that the gate is functionally
157 closed (Fig. 3a and b).

158 **Potential Na^+ sites in the SF**

159 The ion path of $\text{Na}_v1.6$ has two constriction sites, the extracellular SF and
160 intracellular activation gate respectively (Fig. 3a and b). The sodium selectivity of
161 mammalian Na_v channels is determined by the extracellular SF^{61,62}, which is composed
162 of an Asp from D_I, Glu from D_{II}, Lys from D_{III}, and Ala from D_{IV}, known as the DEKA-
163 locus^{63,64}. Based on structural analysis, the acidic residues of the DEKA-locus are
164 believed to act as a high-field strength site, which attracts and coordinates Na^+ ; and the
165 Lys in D_{III} was proposed as a favorable binding ligand for Na^+ which facilitates the ions
166 passing through the SF^{43,65}. In coincidence with other mammalian Na_v channels^{43,44}, the
167 SF of $\text{Na}_v1.6^{\text{EM}}$ adopts an asymmetric conformation composed of the DEKA-locus (Fig.
168 3b and c). No oblivious Na^+ binding site had been identified in previous structures of
169 mammalian Na_v channels. In contrast, densities for Ca^{2+} were consistently reported in
170 the structures of bacterial CavAb channel and mammalian Cav1.1, Cav2.2, and Cav3.1
171 channels⁶⁶⁻⁶⁹. Interestingly, two strong blobs of EM densities were observed in the SF of
172 $\text{Na}_v1.6^{\text{EM}}$ (Fig. 3d and e), which are deduced as potential Na^+ binding sites because Na^+
173 ions are the only major cations in the solutions throughout the purification processes.
174 The upper site (namely Na1) closely engages E936 of the DEKA-locus and an additional
175 acidic residue E939 (Fig. 3c). The distances of this Na1 to the E936 and E939 are at

176 ~3.5 Å, suggesting that Na^+ in Na1 site may still be hydrated. Meanwhile, D370 of the
177 DEKA-locus contributes minorly to this Na^+ binding site at a distance of ~7.5 Å (Fig. 3c).
178 This observation is in line with previous studies showing that E936/K1413 of the DEKA-
179 locus are the most prominent residues for Na^+ permeation and selectivity, while D370 of
180 the DEKA-locus is not absolutely required⁶³. This potential Na1 site may represent the
181 first step for Na^+ conductance, that is, E936 of the DEKA-locus attracts and captures one
182 hydrated Na^+ from the extracellular solution with the assistance of E939. The second
183 blob of density is located inside the SF, namely the Na2 site, which is about ~5.3 Å away
184 from the Na1 site (Fig. 3d and e). Interestingly, the Na2 is close to the short side-chain
185 residue A1705 of the DEKA-locus and is coordinated with the strictly conserved E373 at
186 a distance of ~3.3 Å (Fig. 3c and d). We also noticed that D370/E936 of the DEKA-locus
187 contribute negligibly to the Na2 at distances of 5.6-6.6 Å (Fig. 3c). Thus, we hypothesize
188 that the Na2 may represent the second step for sodium conductance, that is, after
189 captured and partially dehydrated in Na1 site, at least partially-dehydrated Na^+ can fit
190 into the Na2 site which is going to enter the narrowest asymmetric constriction site of the
191 SF. The possible partial dehydration of Na^+ in the Na2 site is reflected by its relatively
192 weaker density compared to the Na1 (Fig. 3d and e). Furthermore, the K1413 points its
193 long side-chain deep into the SF, forming the narrowest part of the SF. It has been
194 proposed that this residue serves as a key coordination ligand in favor of Na^+ or Li^+ but is
195 unfavorable for other cations⁴³. In line with this hypothesis, Na^+ from the Na2 site can
196 quickly pass through the SF and enter the central cavity accelerated by the amino group
197 of the K1413. We found additional elongated density below the K1413 at a distance of
198 ~3.5 Å, which may represent a third Na^+ site (namely Na3) (Fig. 3d and e). Consistently,
199 previous MD simulations studies suggested that two Na^+ ions spontaneously occupy the
200 symmetric SF of the bacterial Na_V channels, and three Na^+ sites were proposed in the
201 asymmetric SF of the eukaryotic Na_V channel⁷⁰⁻⁷², which are similar to the Na2, Na3 sites
202 and Na1-3 sites of our $\text{Na}_V 1.6$ structure respectively.

203 In Ca_V channels, the Ca^{2+} binding sites were revealed in the SFs^{66-68,73}, suggesting a
204 possible step-wise “knock-off” mechanism for Ca^{2+} conductance⁶⁶. Superposition of the
205 SFs of the $\text{Na}_\text{V}1.6^\text{EM}$ and the $\text{Ca}_\text{V}1\text{Ab}$ shows that the Na1 and Na2 sites are roughly at the
206 same height levels as Ca1 and Ca2 sites in $\text{Ca}_\text{V}1\text{Ab}$, respectively (Fig. 3d and e).
207 However, the two Na^+ sites are off the central axis of the SF, while the Ca^{2+} sites are in
208 the center (Supplementary Fig. 7). This difference is in agreement with the asymmetric
209 characteristics of the SFs of mammalian Na_V channels. As shown in the $\text{Na}_\text{V}1.6^\text{EM}$
210 structure, similar to the Ca_V channels, two or more potential Na^+ sites exist in the SFs of
211 Na_V channels. In fact, the SFs of Na_V and Ca_V channels are closely related, point-
212 mutations in the SF of the Na_V channel can convert it into a highly Ca^{2+} favorable
213 channel^{66,74}. Nevertheless, these subtle compositional and conformational differences at
214 the SFs determine the ion selectivity and conductance.

215 Blockade of $\text{Na}_\text{V}1.6$ by 4,9-ah-TTX

216 The guanidinium neurotoxin TTX and its derivatives can potently inhibit eukaryotic
217 Na_V channels⁷⁵. TTX was reported to be more potent in inhibiting $\text{Na}_\text{V}1.6$ than other TTX-
218 sensitive Na_V channels⁷⁶. Interestingly, one of the TTX metabolites, 4,9-ah-TTX, has
219 been reported to preferentially block $\text{Na}_\text{V}1.6$ over the other eight Na_V channel subtypes⁵⁴.
220 We first examined the TTX sensitivity of $\text{Na}_\text{V}1.6^\text{EM}$, $\text{Na}_\text{V}1.2$, and $\text{Na}_\text{V}1.7$, yielding IC_{50}
221 values of 1.9 nM (n=5), 4.9 nM (n=5), and 16.7 nM (n=4), respectively. Consistent with
222 previous reports, TTX indeed favors $\text{Na}_\text{V}1.6$ (Supplementary Fig. 6c). Then we tested the
223 inhibitory effects of 4,9-ah-TTX on $\text{Na}_\text{V}1.2$, $\text{Na}_\text{V}1.7$, and $\text{Na}_\text{V}1.6^\text{EM}$. As illustrated in Fig.
224 4a-c, 4,9-ah-TTX gradually inhibits both $\text{Na}_\text{V}1.7$ and $\text{Na}_\text{V}1.6^\text{EM}$ in a concentration-
225 dependent manner. However, the resulting IC_{50} values of 4,9-ah-TTX are significantly
226 different, which are 257.9 nM (n=6) for $\text{Na}_\text{V}1.2$, 1340 nM (n=6) for $\text{Na}_\text{V}1.7$ and 52.0 nM
227 (n=5) for $\text{Na}_\text{V}1.6^\text{EM}$, respectively (Fig. 4c). Those results confirmed that the potency of
228 4,9-ah-TTX is ~27-fold weaker than TTX in inhibiting $\text{Na}_\text{V}1.6^\text{EM}$, and 4,9-ah-TTX is
229 indeed a $\text{Na}_\text{V}1.6$ preferred blocker.

230 To better understand the underlying mechanism of $\text{Na}_v1.6$ modulation by 4,9-ah-
231 TTX, we solved the cryo-EM structure of $\text{Na}_v1.6^{\text{EM}}/\beta 1/\beta 2$ in complex with 4,9-ah-TTX
232 (named $\text{Na}_v1.6^{4,9\text{-ahTTX}}$) at a resolution of 3.3 Å (Supplementary Fig. 4). The overall
233 structure of $\text{Na}_v1.6^{4,9\text{-ahTTX}}$ is indistinguishable to the $\text{Na}_v1.6^{\text{EM}}$ (RMSD at 0.2 Å).
234 However, unambiguous EM density located above the SF of $\text{Na}_v1.6^{4,9\text{-ahTTX}}$ was
235 observed, which fits a 4,9-ah-TTX molecule very well (Fig. 4d and e, Supplementary Fig.
236 4b). A closer look shows that the 4,9-ah-TTX occupies the Na^+ binding sites and sticks
237 into the SF of $\text{Na}_v1.6$ via extensive interactions (Fig. 4f). D370 and E373 from D_I , E936,
238 and E939 from D_{II} , and D1708 from D_{IV} form electrostatic interactions with the 4,9-ah-
239 TTX, Y371 and K1413 also contribute to stabilizing the blocker by forming van der Waals
240 interactions (Fig. 4f). Superposition of the $\text{Na}_v1.6^{4,9\text{-ahTTX}}$ and the TTX bound $\text{Na}_v1.7$
241 ($\text{Na}_v1.7^{\text{TTX}}$) show a very similar binding mode for the two blockers (Fig. 4f-h). This similar
242 binding mode is reasonable because the chemical structures of TTX and 4,9-ah-TTX are
243 very similar; secondly, these key interacting residues are identical among the TTX-
244 sensitive Na_v channels (Supplementary Fig. 6b). However, subtle conformational
245 differences were observed. The 4,9-ah-TTX binds ~1.4 Å deeper in the pocket of $\text{Na}_v1.6$
246 than TTX in $\text{Na}_v1.7$ (Fig. 4h). In addition, the 4,9-ah-TTX lacks two hydroxyl groups at
247 the 4 and 9 positions of TTX, which form two more hydrogen-bonds with E364 and
248 G1407 of $\text{Na}_v1.7$, respectively (Fig. 4g). TTX should form the same interactions with
249 $\text{Na}_v1.6$ as found in $\text{Na}_v1.7$. Thus, the binding of TTX to $\text{Na}_v1.6$ is stronger than the
250 binding of 4,9-ah-TTX, which agrees with the higher potency of TTX in inhibiting $\text{Na}_v1.6$
251 than 4,9-ah-TTX (Fig. 4c and Supplementary Fig. 6c).

252 Then how does 4,9-ah-TTX preferentially inhibit $\text{Na}_v1.6$ over $\text{Na}_v1.7$ in a nearly
253 identical pocket? By carefully checking the pore-loop sequences of $\text{Na}_v1.6$, we found
254 that L1712 in the D_{IV} P-loop of $\text{Na}_v1.6$ is a major different residue in the P-loop regions
255 not similar to other Na_v channels (Supplementary Fig. 6b). We tested the effect of 4,9-
256 ah-TTX on L1712A mutant of $\text{Na}_v1.6$ ($\text{Na}_v1.6^{\text{L1712A}}$), the resulting IC_{50} value of 4,9-ah-

257 TTX for $\text{Na}_v1.6^{\text{L1712A}}$ is 61.1 nM (n=4), which is close to that of the $\text{Na}_v1.6^{\text{EM}}$
258 (Supplementary Fig. 6d). This result suggests that L1712 is not relevant to the binding of
259 4,9-ah-TTX. To test whether the accessibility affects the binding of 4,9-ah-TTX, we
260 substituted the ECL_I of $\text{Na}_v1.6$ (F273-F356) with that of $\text{Na}_v1.7$ (F267-F347) or the ECL_{III}
261 (F1349-V1399) with that of $\text{Na}_v1.7$ (F1343-V1392), namely $\text{Na}_v1.6^{\text{ECL1}}$ and $\text{Na}_v1.6^{\text{ECL3}}$
262 respectively. Surprisingly, the substitution of the ECL_I dramatically drops the IC₅₀ values
263 of the 4,9-ah-TTX and TTX by 149-fold and 86-fold, respectively; in contrast, ECL_{III}
264 substitution only decreases the IC₅₀ values of the 4,9-ah-TTX and TTX by 2.6-fold and
265 1.1-fold respectively (Supplementary Fig. 6d and e). These results show that the ECL
266 substitutions especially ECL_I do affect the potency of TTX analogs, but do not
267 discriminate them.

268 To further dissect the preferential inhibition of $\text{Na}_v1.6$ by 4,9-ah-TTX, we carried out
269 MD simulations of TTX binding to $\text{Na}_v1.6$ or $\text{Na}_v1.7$, and 4,9-ah-TTX binding to $\text{Na}_v1.6$
270 or $\text{Na}_v1.7$. Six independent 100 ns MD simulations were performed for each complex
271 and the trajectories were used for binding affinity calculations using the method of
272 Molecular Mechanics with Generalized Born and Surface Area solvation (MM/GBSA)⁷⁷. The
273 simulation results show that the binding affinity of TTX to $\text{Na}_v1.6$ is significantly higher
274 than that of 4,9-ah-TTX to $\text{Na}_v1.6$, and the affinity of 4,9-ah-TTX to $\text{Na}_v1.6$ is greater
275 than 4,9-ah-TTX to $\text{Na}_v1.7$ (Supplementary Fig. 8a). These MD binding affinity results
276 fairly agree with our electrophysiological results (Fig. 4c, Supplementary Fig. 6c). The
277 simulations also show that there is only one predominant conformation for 4,9-ah-TTX
278 binding to $\text{Na}_v1.6$; while there are four major conformations for 4,9-ah-TTX binding to
279 $\text{Na}_v1.7$ (Fig. 5a, Supplementary Fig. 8b-f). More specifically, E373, E936, and E939
280 mainly contributed to the binding of 4,9-ah-TTX to $\text{Na}_v1.6$, consistent with our structural
281 observation (Fig. 4f, Supplementary Fig. 8f); however, E930 and E927 of $\text{Na}_v1.7$, the
282 counterparts of E939 and E936 in $\text{Na}_v1.6$, appeared to be very dynamic and contributed
283 less stably to the binding of 4,9-ah-TTX (Fig. 5b). A contact analysis (Supplementary Fig.

284 9) was conducted to provide more details to understand the dynamics of the ligands
285 (Supplementary Fig. 10). Specifically, E930 and E927 in Nav1.7 interact with 4,9-ah-TTX
286 with a frequency ranging from 21% to 87% for the most populated conformation cluster,
287 whereas the frequency is over 90% for the interactions between such ligand and E939
288 and E936 in Nav1.6. Superposition of the two representative conformations provides us
289 an assumption that R922 of P1_{II} helix is more flexible in Nav1.7 than the equivalent R931
290 in Nav1.6 because of the small side-chain T1409 on P2_{III} helix, which in turn increases
291 the flexibility of E930 and E927 and thereby negatively affects the binding of 4,9-ah-TTX to
292 Nav1.7 (Fig. 5c). To validate this assumption, we tested the potency of 4,9-ah-TTX on
293 Nav1.6 with double-mutations of M1416T/E1417I (Nav1.6^{M1416T/E1417I}) using whole-cell
294 voltage-clamp recordings. The resulting IC₅₀ value is 257 nM (n=5), which is 5-fold less
295 potent than that of Nav1.6^{EM}, in coincidence with the findings by MD simulations (Fig.
296 5d). Taken together, our results confirmed that TTX has the highest affinity to Nav1.6
297 among the TTX-sensitive Nav channels; the TTX analog 4,9-ah-TTX is less potent than
298 TTX in inhibiting Nav1.6, but does exhibit preferential inhibition of Nav1.6 over Nav1.7.

299 **Pathogenic mutation map of Nav1.6**

300 The Nav1.6 channels are abundantly distributed in neurons of both the CNS and the
301 PNS. Compared to other Nav channel subtypes, the Nav1.6 channel has unique
302 properties including activation at more hyperpolarized potential and generating a large
303 proportion of resurgent current and persistent current, which plays important roles in
304 regulating neuronal excitability and repetitive firing^{17,19}. To date, at least 16 gain-of-
305 function mutations in Nav1.6 causing hyperactivity are linked to Developmental and
306 Epileptic Encephalopathy (DEE)⁷⁸; meanwhile, 9 loss-of-function mutations in Nav1.6
307 causing reduced neuronal excitability are associated with intellectual disability and
308 movement disorders. We highlighted 14 gain-of-function and 7 loss-of-function mutations
309 in our Nav1.6^{EM} structure (Fig. 6). The 14 gain-of-function mutations are mainly
310 distributed in the VSDs, fast inactivation gate, and activation gate. In particular,

311 mutations G1475R, E1483K, M1492V, and A1650V/T target the fast inactivation gate,
312 presumably causing overactivity of the Nav1.6 variants by impairing the binding of the
313 IFM-motif to its receptor site. Mutation N1768D, located at the end of the DIV-S6 helix,
314 was reported to generate elevated persistent current and resurgent current^{24,79}, which
315 may cause improper gate closing to generate these aberrant currents. Meanwhile, two
316 loss-of-function variants, G964R and E1218K cause intellectual disability without
317 seizure³⁰. G964 is located in the middle of S6_{II}, which is believed to serve as a hinge in
318 the pore-lining S6 helix during gating⁸⁰. A G964R mutation can certainly impair the
319 flexibility of the S6_{II} helix; in addition, the additional long side-chain of the mutant can
320 cause clashes with neighboring residues. E1218 belongs to the extracellular negatively-
321 charged clusters (ENCs) of VSD_{III}, which play an important role in interacting with the
322 positively-charged gating-charges. The E1218K mutation provides an opposite charge
323 which can disrupt the voltage sensing. This mutant may also destabilize the variant,
324 reflected by its significantly reduced express level³⁰.

325 **Discussion**

326 In this study, we presented cryo-EM structures of human Nav1.6/β1/β2 apo-form
327 and complexed with the Nav1.6 preferred blocker 4,9-ah-TTX. To facilitate the structural
328 studies, we obtained the core construct of Nav1.6^{EM} which displayed improved sample
329 quality. This construct and the structures can be a useful tool for future Nav1.6-related
330 structural and biochemical studies. The apo-form Nav1.6 structure reveals three potential
331 Na⁺ sites, which are coordinated by the important residues in the SF, suggesting a
332 possible mechanism for Na⁺ recognition, selection, and conductance. By comparison
333 with the Ca²⁺ sites in bacterial and mammalian Cav channels⁶⁶⁻⁶⁹, the unique asymmetric
334 SF of mammalian Nav channels provides a precise tunnel to separate Na⁺ from other
335 cations. However, the exact hydration state of those potential Na⁺ sites cannot be
336 identified here due to the resolution limit. Future high-resolution structure of Nav1.6
337 would be required to investigate more detailed mechanisms of Na⁺ conductance. The

338 4,9-anhydro-TTX bound $\text{Na}_v1.6$ structure demonstrated that 4,9-anhydro-TTX and its
339 closely-related analog TTX share a similar binding pocket, which is composed of nearly
340 identical residues above the SFs. However, TTX has greater potency than 4,9-anhydro-
341 TTX in inhibiting $\text{Na}_v1.6$ very likely due to TTX can form two additional hydrogen bonds
342 with $\text{Na}_v1.6$. Our MD simulations show that 4,9-anhydro-TTX exhibits a more stable
343 binding mode and greater binding energy with $\text{Na}_v1.6$ than $\text{Na}_v1.7$. Specifically, the
344 increased flexibility of E930 and E927 may cause the loose binding of 4,9-anhydro-TTX
345 to $\text{Na}_v1.7$. Those results potentially explain the higher potency of TTX to $\text{Na}_v1.6$ than
346 other TTX-sensitive Na_v channels and the favorable inhibition of $\text{Na}_v1.6$ by 4,9-anhydro-
347 TTX. In addition, an interesting observation needed to be mentioned here is the
348 existence of some differences between the binding poses of 4,9-anhydro-TTX in the
349 $\text{Na}_v1.6^{4,9\text{-ah-TTX}}$ EM structure and our MD simulation models (Fig. 4f, Supplementary Fig.
350 8f). The MD study was conducted with the assumption that the NH group of guanidine in
351 4,9-anhydro-TTX is fully protonated into NH_2^+ . However, since such NH in the EM
352 structure is only ~ 3 Å from the amine group of Y371, it implies an uncertainty of the
353 protonation state of the guanidine of 4,9-anhydro-TTX. When we performed another MD
354 study using unprotonated 4,9-anhydro-TTX and found that the ligand adopts a similar
355 binding pose as observed in the EM structure. Our findings on the protonation state of
356 4,9-anhydro-TTX binding with $\text{Na}_v1.6$ requires further systemic investigation. Taken
357 together, our results provide important insights into Na_v channel structure, Na^+
358 selectivity, conductance, modulation by TTX, and its analog 4,9-anhydro-TTX.
359
360

361 Methods

362 Whole-cell recordings

363 HEK293T cells were maintained in Dulbecco's Modified Eagle Medium (DMEM, Gibco,
364 USA) supplemented with 15% Fetal Bovine Serum (FBS, PAN-Biotech, Germany) at
365 37°C and 5% CO₂. The P2 viruses of Nav1.6^{EM} and Nav1.6 variants were obtained using
366 Sf9 insect cells and used to infect HEK293T cells for 9 h. The plasmids expressing
367 Nav1.2^{WT} or Nav1.7^{WT} were transfected into HEK293T cells using lipofectamine 2000
368 (Thermo Fisher Scientific, USA). 12-24 h after transfection or infection, whole-cell
369 recordings were obtained using a HEKA EPC-10 patch-clamp amplifier (HEKA
370 Electronic, Germany) and PatchMaster software (HEKA Electronic, Germany). The
371 extracellular recording solution contained (in mM): 140 NaCl, 3 KCl, 1 CaCl₂, 1 MgCl₂, 10
372 Glucose, and 10 HEPES (310 mOsm/L, pH 7.30 with NaOH). The recording pipette
373 intracellular solution contained (in mM): 140 CsF, 10 NaCl, 1 EGTA, and 10 HEPES (300
374 mOsm/L, pH 7.30 with CsOH). The pipettes were fabricated by a DMZ Universal
375 Electrode puller (Zeitz Instruments, Germany) using borosilicate glass, with a resistance
376 of 1.5-2.5 MΩ. The currents were acquired at a 50 kHz sample rate and series resistance
377 (R_s) compensation was set to 70%~90%. All experiments were performed at room
378 temperature.

379 Data analyses were performed using Origin 2020b (OriginLab, USA), Excel 2016
380 (Microsoft, USA), and GraphPad Prism 9.1.1 (GraphPad Software, USA). Steady-state
381 fast inactivation (I-V) and conductance-voltage (G-V) relationships were fitted to
382 Boltzmann equations:

383 $I/I_{max} = 1/(1+exp((V_m-V_{1/2})/k))$

384 $G/G_{max} = 1/(1+exp((V_m-V_{1/2})/k))$

385 $G = I/(V_m - E_{Na})$

386 where I is the peak current, G is conductance, V_m is the stimulus potential, $V_{1/2}$ is the
387 half-maximal activation potential, E_{Na} is the equilibrium potential, and k is the slope
388 factor.

389 To assess the potency of 4,9-anhydro-TTX and TTX on Na_v channels, HEK293T cells
390 were held at -120 mV and the inward sodium currents were elicited by a 50-ms step to -
391 10 mV with a low frequency of 1/15 Hz. The concentration-response curves were fitted to
392 a four-parameter Hill equation with constraints of Bottom=0 and Top=1:

393
$$Y = \text{Bottom} + (\text{Top} - \text{Bottom}) / (1 + 10^{(X - \lg IC_{50})})$$

394 where Y is the value of $I_{Drug}/I_{Control}$, Top is the maximum response, Bottom is the
395 minimum response, X is the lg of drug concentration, and IC_{50} is the drug concentration
396 producing the half-maximum response. The significance of fitted IC_{50} values compared
397 to the control was analyzed using the extra sum-of-squares F test.

398 **$Na_v1.6-\beta1-\beta2$ Cloning and Expression**

399 The DNA fragments encoding human $NaV1.6$ (UniProt ID: Q9UQD0), $\beta1$ (Uniprot ID:
400 Q07699), and $\beta2$ (Uniprot ID: O60939) were amplified from a HEK293 cDNA library. The
401 full-length or truncated $Na_v1.6$, $\beta1$, and $\beta2$ genes were cloned into the pEG BacMam
402 vector, respectively. For $Na_v1.6^{EM}$, residues of inter-domain linkers 478–692, 1115–
403 1180, and 1932 to the last residue were deleted by PCR to optimize the biochemical
404 properties of the purified protein sample. Specifically, $NaV1.6EM$ was fused before a
405 PreScission Protease recognition site, which is succeeded by a mCherry fluorescent
406 protein and a Twin-Strep II tag at the C terminus. A superfolder green fluorescent protein
407 (sfGFP) and His10 tag were introduced at the C terminus of $\beta1$. For protein expression,
408 recombinant baculoviruses were generated in Sf9 cells using the Bac-to-Bac baculovirus
409 expression system (Invitrogen, USA). HEK293F cells were cultured under 5% CO_2 at
410 37 °C and were used for transfection at a density of 2.5×10^6 cells/ml. The $NaV1.6EM$,
411 $\beta1$, and $\beta2$ viruses were co-transfected into HEK 293F cells at a ratio of 1% (v/v)

412 supplemented with 1% (v/v) FBS. After 8-12h, sodium butyrate was added into the
413 culture at a final concentration of 10 mM, and the cell was incubated for another 48 h
414 under 30°C. Cells were then harvested by centrifugation at 1,640 x g for 5 minutes, and
415 finally stored at -80°C after freezing in liquid nitrogen.

416 **Purification of human Nav1.6-β1-β2 complex**

417 The Nav1.6-β1-β2 complex was purified following a protocol as was applied in the
418 purification of the Nav1.3-β1-β2 complex⁴¹. Cells expressing Nav1.6^{EM} complex were
419 resuspended in buffer A (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM β-
420 mercaptoethanol (β-ME), aprotinin (2 µg/mL), leupeptin (1.4 µg/mL), pepstatin A (0.5
421 µg/mL)) using a Dounce homogenizer and centrifuged at 100,000 × g for 1 h. After
422 resuspension in buffer B (buffer A supplemented with 1% (w/v) n-Dodecyl-β-D-maltoside
423 (DDM, Anatrace), 0.15% (w/v) cholesteryl hemisuccinate (CHS, Anatrace), 5 mM MgCl₂
424 and 5 mM ATP), the suspension was agitated at 4°C for 2 h and the insoluble fraction
425 was removed by centrifugation again at 100,000 × g for 1 h. The supernatant containing
426 solubilized Nav1.6^{EM} was then passed through Streptactin Beads (Smart-Lifesciences,
427 China) via gravity flow at 4°C to enrich the protein complex. The resin was subsequently
428 washed with buffer C (buffer A supplemented with 0.03% (w/v) glycol-diosgenin (GDN,
429 Anatrace)) for 10 column volumes. The purified Nav1.6^{EM} complex was eluted with buffer
430 D (buffer C plus 5 mM desthiobiotin (Sigma, USA)) and was subsequently concentrated
431 to 1 mL using a 100 kDa cut-off Amicon ultra centrifugal filter (Merck Millipore,
432 Germany). The concentrated protein sample was further purified by size exclusion
433 chromatography (SEC) using a Superose 6 Increase 10/300 GL (GE Healthcare) column
434 pre-equilibrated with the buffer E (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM β-ME,
435 0.007% GDN). Finally, the fractions containing homogeneous-distributed protein
436 particles were collected and concentrated to ~4 mg/mL for cryo-EM sample preparation.

437 **Cryo-EM sample preparation and data acquisition**

438 For the preparation of cryo-EM grids, 300-mesh Cu R1.2/1.3 grids (Quantifoil Micro
439 Tools, Germany) were glow-discharged under H₂-O₂ condition for 60 s. A droplet of 2.5
440 µL of purified NaV1.6EM complex was applied to the grid followed by blotting for 4-5s at
441 4°C under 100% humidity using a Vitrobot Mark IV (Thermo Fisher Scientific, USA). In
442 the case of the preparation of NaV1.6^{EM} complex with 4,9-anhydro-TTX, 50 µM 4,9-
443 anhydro-TTX (Tocris, UK) was added to the sample before vitrification. Cryo-EM data
444 were collected on a 300-kV Titan Krios transmission electron microscope (Thermo
445 Fisher Scientific, USA) equipped with a Gatan K2 Summit Direct Electron Detector
446 (Gatan, USA) located behind the GIF quantum energy filter (20 eV). SerialEM⁸¹ was
447 used to collect movie stacks at a magnification of ×130,000 (1.04 Å pixel size) with a
448 nominal defocus range from -1.2 to -2.2 µm. A total dose of 50-60 e-/Å² was acquired
449 for each movie stack under a dose rate of ~9.2 e-/(Å²s) and dose-fractionated into 32
450 frames. A total of 3,985 and 2,929 movie stacks were collected for the apo- and 4,9-
451 anhydro-TTX-bound NaV1.6 complex, respectively.

452 **Data Processing**

453 For the data processing of apo and 4,9-anhydro-TTX-bound NaV1.6 complex, a similar
454 procedure was performed and a detailed diagram was presented in Supplementary Fig.
455 3 and 4. All the data were processed in RELION3.0⁸² or cryoSPARC⁸³. Movies were
456 motion-corrected and dose-weighted using MotionCor2. Contrast transfer function (CTF)
457 estimation was performed with GCTF⁸⁴. Particles were picked using the AutoPick tool in
458 RELION with templates and extracted into 256 × 256-pixel boxes. Several rounds of 2D
459 and 3D classifications were performed to remove junk particles, followed by 3D
460 autorefine, Bayesian polish, and CTF refinement to improve the map quality. The final
461 EM density maps were generated by the non-uniform (NU) refinement in cryoSPARC
462 and reported at 3.4 Å and 3.3 Å, respectively, according to the golden standard Fourier
463 shell correlation (GSFSC) criterion.

464 **Model building**

465 The sequence of human $\text{Na}_v1.6$ and $\text{Na}_v1.7$ were aligned using Jalview⁸⁵, and a
466 homology model of $\text{Na}_v1.6$ was generated using the molecular replacement tool in
467 PHENIX⁸⁶. The atomic models of $\beta 1$ and $\beta 2$ subunits were extracted from the structure
468 of $\text{Na}_v1.7$ (PDB ID: 6J8I). All of the models were fitted into the cryo-EM map as rigid
469 bodies using the UCSF Chimera⁸⁷. Restraints for 4,9-anhydro-TTX were derived by
470 eLBOW in PHENIX and examined in Coot⁸⁸. All residues were manually checked and
471 adjusted to fit the map in Coot and were subsequently subjected to rounds of real-space
472 refinement in PHENIX. Model validation was performed using the comprehensive
473 validation (cryo-EM) in PHENIX. All figures were prepared with UCSF ChimeraX⁸⁹ or
474 PyMOL (Schrödinger, USA)⁹⁰.

475 **Molecular dynamics simulations**

476 The structures and force fields for protein, DMPC lipids, and ligands were prepared
477 using the CHARMM-GUI website. The Amber ff14SB force field was used for both
478 protein and lipids with the TIP3P model for water molecules⁹¹. The GAFF2 force field
479 parameters were used for the ligands⁹². The simulated systems were solvated in water
480 with 150 mM NaCl. The energy minimization was performed using the steepest descent
481 method, followed by six equilibrium steps. During the 2 ns equilibrium steps, the protein
482 backbone atoms were restrained to their initial positions using a harmonic potential with
483 a force constant of 1 kcal mol⁻¹ Å⁻² and the restraints were subsequently removed.
484 Berendsen's coupling scheme was used for both temperature and pressure⁹³. Water
485 molecules and all bond lengths to hydrogen atoms were constrained using LINCS⁹⁴.
486 Finally, six independent production runs were performed for 100 ns. The overall
487 temperature of the system was kept constant, coupling independently for protein, lipids,
488 and solvents at 303.15 K with a Nose-Hoover thermostat⁹⁵. A constant pressure of 1 bar
489 was maintained using a Parrinello–Rahman barostat in a semi-isotropic coupling type for
490 x/y, and z directions respectively⁹⁶. The temperature and pressure time constants of the

491 coupling were 1 and 5 ps, and the compressibility was 4.5×10^{-5} bar⁻¹ for pressure. The
492 integration of the equations of motion was performed by using a leapfrog algorithm with
493 a time step of 2 fs. Periodic boundary conditions were implemented in all systems. A
494 cutoff of 0.9 nm was implemented for the Lennard–Jones and the direct space part of
495 the Ewald sum for Coulombic interactions. The Fourier space part of the Ewald splitting
496 was computed by using the particle-mesh-Ewald method⁹⁷, with a grid length of 0.12 nm
497 on the side and a cubic spline interpolation.

498 The binding affinities were calculated by MM/GBSA method⁹⁸⁻¹⁰¹. The MM part consists
499 of the bonded (bond, angle, and dihedral), electrostatic, and van der Waals interactions.
500 The solvation free energies were obtained by using the generalized Born model (GB
501 part), and the non-polar term is obtained from a linear relation to the solvent-accessible
502 surface area (SA part). For each independent trajectory, the first 20 ns trajectory was
503 discarded and 800 frames from 20-100 ns were used for MM/GBSA calculations. The
504 final binding affinity for each ligand-protein complex was obtained by taking the average
505 of the six independent trajectories. Regarding the clustering analysis, structure alignment
506 was first performed for each two of the structures in the trajectory by using Least
507 Squares algorithm which aligns two sets of structure by rotating and translating one of
508 the structures so that the RMSD between matching atoms of the two structures is
509 minimal. Then the clustering analysis was performed by using GROMOS¹⁰² with a RMSD
510 cut-off of 1.5 Å to determine the structurally similar clusters. All the simulations were
511 performed using the GROMACS 2021 suite of programs¹⁰³.

512 Data Availability

513 The UniProt accession codes for the sequences of human Nav1.6, β 1 and β 2 are
514 Q9UQD0 [<https://www.uniprot.org/uniprot/Q9UQD0>], Q07699
515 [<https://www.uniprot.org/uniprot/Q07699>], and O60939
516 [<https://www.uniprot.org/uniprot/O60939>], respectively. The accession codes for the
517 coordinates of Nav1.7, CavAb, and Cav3.1 used in this study are 6J8J

518 [http://doi.org/10.2210/pdb6J8J/pdb], 4MS2 [http://doi.org/10.2210/pdb4MS2/pdb], and
519 6KZO [http://doi.org/10.2210/pdb6KZO/pdb], respectively. The three-dimensional cryo-
520 EM density maps of the human Nav1.6/β1/β2 and Nav1.6/β1/β2-4,9-anhydro-TTX have
521 been deposited in the EM Database under accession codes EMD-34387
522 [https://www.emdataresource.org/EMD-34387] and EMD-34388
523 [https://www.emdataresource.org/EMD-34388], respectively. The coordinates of the
524 Nav1.6/β1/β2 and Nav1.6/β1/β2-4,9-anhydro-TTX have been deposited in the Protein
525 Data Bank under accession codes 8GZ1 [http://doi.org/10.2210/pdb8GZ1/pdb] and
526 8GZ2 [http://doi.org/10.2210/pdb8GZ2/pdb], respectively.

527 Acknowledgments

528 We thank X. Huang, B. Zhu, X. Li, L. Chen, and other staff members at the Center for
529 Biological Imaging (CBI), Core Facilities for Protein Science at the Institute of
530 Biophysics, Chinese Academy of Science (IBP, CAS), and D. Sun at the SM10 Cryo-EM
531 Facility at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS) for the
532 support in cryo-EM data collection. We thank Prof. Xuejun Cai Zhang for his helpful
533 discussions, and Yan Wu and Wei Fan for their research assistance service. This work is
534 funded by the Institute of Physics, Chinese Academy of Sciences (E0VK101 and
535 E2V4101 to D.J.), the National Natural Science Foundation of China (T2221001 and
536 32271272 to D.J., 92157102 to Y.Z., 31871083 and 82271498 to Z.H.), Chinese
537 Academy of Sciences Strategic Priority Research Program (Grant XDB37030304 to
538 Y.Z.), the National Natural Science Foundation of China (Grant 92157102 to Y.Z.), the
539 Chinese National Programs for Brain Science and Brain-like intelligence technology
540 (2021ZD0202102 to Z.H.).

541 Author Contributions

542 D.J., Z.H., and Y.Z. conceived and designed the experiments. Y.L. and X.L. prepared
543 samples for the cryo-EM study and made all the constructs. Y.Q. and B.Y. prepared cells
544 for protein expression. Y.L. collected cryo-EM data. Y.L. and D.J. processed the data,

545 and built and refined the models. Y.L. and T.Y. prepared figures. T.Y. collected the
546 electrophysiology data. B.H., F.Z., and C.P. performed MD studies. Y.L., T.Y., B.H., Y.Z.,
547 Z.H., and D.J. analyzed and interpreted the results. L.Y. and D.J. wrote the paper, and
548 all authors reviewed and revised the paper.

549 Competing Interests

550 The Authors declare no competing interests.

551

552 REFERENCES

- 553 1 Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its
554 application to conduction and excitation in nerve. *J Physiol* **117**, 500-544 (1952).
<https://doi.org/10.1113/jphysiol.1952.sp004764>
- 555 2 Hille, B. Ionic channels in excitable membranes. 3rd Edn (OUP USA, 2001).
- 556 3 Yu, F. H. & Catterall, W. A. Overview of the voltage-gated sodium channel family. *Genome
558 Biol* **4**, 207 (2003). <https://doi.org/10.1186/gb-2003-4-3-207>
- 559 4 Goldin, A. L. *et al.* Nomenclature of voltage-gated sodium channels. *Neuron* **28**, 365-368
560 (2000). [https://doi.org/10.1016/s0896-6273\(00\)00116-1](https://doi.org/10.1016/s0896-6273(00)00116-1)
- 561 5 Lorincz, A. & Nusser, Z. Molecular identity of dendritic voltage-gated sodium channels.
562 *Science* **328**, 906-909 (2010). <https://doi.org/10.1126/science.1187958>
- 563 6 Li, T. *et al.* Action potential initiation in neocortical inhibitory interneurons. *PLoS Biol* **12**,
564 e1001944 (2014). <https://doi.org/10.1371/journal.pbio.1001944>
- 565 7 Hu, W. *et al.* Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and
566 backpropagation. *Nat Neurosci* **12**, 996-1002 (2009). <https://doi.org/10.1038/nn.2359>
- 567 8 Ye, M. *et al.* Differential roles of Na(V)1.2 and Na(V)1.6 in regulating neuronal excitability at
568 febrile temperature and distinct contributions to febrile seizures. *Sci Rep* **8**, 753 (2018).
<https://doi.org/10.1038/s41598-017-17344-8>
- 569 9 Boiko, T. *et al.* Compact myelin dictates the differential targeting of two sodium channel
570 isoforms in the same axon. *Neuron* **30**, 91-104 (2001). [https://doi.org/10.1016/s0896-6273\(01\)00265-3](https://doi.org/10.1016/s0896-6273(01)00265-3)
- 571 10 Boiko, T. *et al.* Functional specialization of the axon initial segment by isoform-specific
572 sodium channel targeting. *J Neurosci* **23**, 2306-2313 (2003).
<https://doi.org/10.1523/jneurosci.23-06-02306.2003>

576 11 Van Wart, A. & Matthews, G. Expression of sodium channels Nav1.2 and Nav1.6 during
577 postnatal development of the retina. *Neurosci Lett* **403**, 315-317 (2006).
578 <https://doi.org/10.1016/j.neulet.2006.05.019>

579 12 Ogiwara, I. *et al.* Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a
580 circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. *J Neurosci* **27**,
581 5903-5914 (2007). <https://doi.org/10.1523/jneurosci.5270-06.2007>

582 13 Lorincz, A. & Nusser, Z. Cell-type-dependent molecular composition of the axon initial
583 segment. *J Neurosci* **28**, 14329-14340 (2008). <https://doi.org/10.1523/jneurosci.4833-08.2008>

585 14 Makinson, C. D. *et al.* Regulation of Thalamic and Cortical Network Synchrony by Scn8a.
586 *Neuron* **93**, 1165-1179.e1166 (2017). <https://doi.org/10.1016/j.neuron.2017.01.031>

587 15 Spampinato, J., Escayg, A., Meisler, M. H. & Goldin, A. L. Functional effects of two voltage-
588 gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus
589 type 2. *J Neurosci* **21**, 7481-7490 (2001). <https://doi.org/10.1523/jneurosci.21-19-07481.2001>

591 16 Rush, A. M., Dib-Hajj, S. D. & Waxman, S. G. Electrophysiological properties of two axonal
592 sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. *J Physiol*
593 **564**, 803-815 (2005). <https://doi.org/10.1113/jphysiol.2005.083089>

594 17 Smith, M. R., Smith, R. D., Plummer, N. W., Meisler, M. H. & Goldin, A. L. Functional analysis
595 of the mouse Scn8a sodium channel. *J Neurosci* **18**, 6093-6102 (1998).
596 <https://doi.org/10.1523/jneurosci.18-16-06093.1998>

597 18 Maurice, N., Tkatch, T., Meisler, M., Sprunger, L. K. & Surmeier, D. J. D1/D5 dopamine
598 receptor activation differentially modulates rapidly inactivating and persistent sodium
599 currents in prefrontal cortex pyramidal neurons. *J Neurosci* **21**, 2268-2277 (2001).
600 <https://doi.org/10.1523/jneurosci.21-07-02268.2001>

601 19 Raman, I. M., Sprunger, L. K., Meisler, M. H. & Bean, B. P. Altered subthreshold sodium
602 currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. *Neuron* **19**,
603 881-891 (1997). [https://doi.org/10.1016/s0896-6273\(00\)80969-1](https://doi.org/10.1016/s0896-6273(00)80969-1)

604 20 Jarecki, B. W., Piekacz, A. D., Jackson, J. O., 2nd & Cummins, T. R. Human voltage-gated
605 sodium channel mutations that cause inherited neuronal and muscle channelopathies
606 increase resurgent sodium currents. *J Clin Invest* **120**, 369-378 (2010).
607 <https://doi.org/10.1172/jci40801>

608 21 Lewis, A. H. & Raman, I. M. Resurgent current of voltage-gated Na(+) channels. *J Physiol*
609 **592**, 4825-4838 (2014). <https://doi.org/10.1113/jphysiol.2014.277582>

610 22 Raman, I. M. & Bean, B. P. Inactivation and recovery of sodium currents in cerebellar Purkinje
611 neurons: evidence for two mechanisms. *Biophys J* **80**, 729-737 (2001).
612 [https://doi.org/10.1016/s0006-3495\(01\)76052-3](https://doi.org/10.1016/s0006-3495(01)76052-3)

613 23 Khaliq, Z. M., Gouwens, N. W. & Raman, I. M. The contribution of resurgent sodium current
614 to high-frequency firing in Purkinje neurons: an experimental and modeling study. *J
615 Neurosci* **23**, 4899-4912 (2003). <https://doi.org/10.1523/jneurosci.23-12-04899.2003>

616 24 Veeramah, K. R. *et al.* De novo pathogenic SCN8A mutation identified by whole-genome
617 sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.
618 *Am J Hum Genet* **90**, 502-510 (2012). <https://doi.org/10.1016/j.ajhg.2012.01.006>

619 25 de Kovel, C. G. *et al.* Characterization of a de novo SCN8A mutation in a patient with
620 epileptic encephalopathy. *Epilepsy Res* **108**, 1511-1518 (2014).
<https://doi.org/10.1016/j.eplepsyres.2014.08.020>

622 26 Johannesen, K. M. *et al.* Genotype-phenotype correlations in SCN8A-related disorders
623 reveal prognostic and therapeutic implications. *Brain* (2021).
<https://doi.org/10.1093/brain/awab321>

625 27 Pan, Y. & Cummins, T. R. Distinct functional alterations in SCN8A epilepsy mutant channels. *J
626 Physiol* **598**, 381-401 (2020). <https://doi.org/10.1113/jp278952>

627 28 Hargus, N. J., Nigam, A., Bertram, E. H., 3rd & Patel, M. K. Evidence for a role of Nav1.6 in
628 facilitating increases in neuronal hyperexcitability during epileptogenesis. *J Neurophysiol*
629 **110**, 1144-1157 (2013). <https://doi.org/10.1152/jn.00383.2013>

630 29 Blanchard, M. G. *et al.* De novo gain-of-function and loss-of-function mutations of SCN8A
631 in patients with intellectual disabilities and epilepsy. *J Med Genet* **52**, 330-337 (2015).
<https://doi.org/10.1136/jmedgenet-2014-102813>

633 30 Wagnon, J. L. *et al.* Loss-of-function variants of SCN8A in intellectual disability without
634 seizures. *Neurol Genet* **3**, e170 (2017). <https://doi.org/10.1212/nxg.0000000000000170>

635 31 Liu, Y. *et al.* Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual
636 disability. *Brain* **142**, 376-390 (2019). <https://doi.org/10.1093/brain/awy326>

637 32 Isom, L. L., De Jongh, K. S. & Catterall, W. A. Auxiliary subunits of voltage-gated ion
638 channels. *Neuron* **12**, 1183-1194 (1994). [https://doi.org/10.1016/0896-6273\(94\)90436-7](https://doi.org/10.1016/0896-6273(94)90436-7)

639 33 Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII.
640 Nomenclature and structure-function relationships of voltage-gated sodium channels.
Pharmacol Rev **57**, 397-409 (2005). <https://doi.org/10.1124/pr.57.4.4>

642 34 Isom, L. L. *et al.* Primary structure and functional expression of the beta 1 subunit of the rat
643 brain sodium channel. *Science* **256**, 839-842 (1992).
<https://doi.org/10.1126/science.1375395>

645 35 Isom, L. L. *et al.* Structure and function of the beta 2 subunit of brain sodium channels, a
646 transmembrane glycoprotein with a CAM motif. *Cell* **83**, 433-442 (1995).
[https://doi.org/10.1016/0092-8674\(95\)90121-3](https://doi.org/10.1016/0092-8674(95)90121-3)

648 36 Morgan, K. *et al.* beta 3: an additional auxiliary subunit of the voltage-sensitive sodium
649 channel that modulates channel gating with distinct kinetics. *Proc Natl Acad Sci U S A* **97**,
650 2308-2313 (2000). <https://doi.org/10.1073/pnas.030362197>

651 37 Yu, F. H. *et al.* Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity
652 to beta2. *J Neurosci* **23**, 7577-7585 (2003). <https://doi.org/10.1523/jneurosci.23-20-07577.2003>

654 38 O'Malley, H. A. & Isom, L. L. Sodium channel β subunits: emerging targets in
655 channelopathies. *Annu Rev Physiol* **77**, 481-504 (2015). [https://doi.org/10.1146/annurev-physiol-021014-071846](https://doi.org/10.1146/annurev-
656 physiol-021014-071846)

657 39 Pan, X. *et al.* Comparative structural analysis of human Na(v)1.1 and Na(v)1.5 reveals
658 mutational hotspots for sodium channelopathies. *Proc Natl Acad Sci U S A* **118** (2021).
659 <https://doi.org/10.1073/pnas.2100066118>

660 40 Pan, X. *et al.* Molecular basis for pore blockade of human Na(+) channel Na(v)1.2 by the μ -
661 conotoxin KIIIA. *Science* **363**, 1309-1313 (2019). <https://doi.org/10.1126/science.aaw2999>

662 41 Li, X. *et al.* Structural basis for modulation of human Na(V)1.3 by clinical drug and selective
663 antagonist. *Nat Commun* **13**, 1286 (2022). <https://doi.org/10.1038/s41467-022-28808-5>

664 42 Pan, X. *et al.* Structure of the human voltage-gated sodium channel Na(v)1.4 in complex
665 with β 1. *Science* **362** (2018). <https://doi.org/10.1126/science.aau2486>

666 43 Jiang, D. *et al.* Structure of the Cardiac Sodium Channel. *Cell* **180**, 122-134.e110 (2020).
667 <https://doi.org/10.1016/j.cell.2019.11.041>

668 44 Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Na(v)1.7 channel in complex
669 with auxiliary subunits and animal toxins. *Science* **363**, 1303-1308 (2019).
670 <https://doi.org/10.1126/science.aaw2493>

671 45 Huang, X. *et al.* Structural basis for high-voltage activation and subtype-specific inhibition of
672 human Na(v)1.8. *Proc Natl Acad Sci U S A* **119**, e2208211119 (2022).
673 <https://doi.org/10.1073/pnas.2208211119>

674 46 Wisedchaisri, G. *et al.* Resting-State Structure and Gating Mechanism of a Voltage-Gated
675 Sodium Channel. *Cell* **178**, 993-1003.e1012 (2019). <https://doi.org/10.1016/j.cell.2019.06.031>

676 47 Jiang, D. *et al.* Open-state structure and pore gating mechanism of the cardiac sodium
677 channel. *Cell* **184**, 5151-5162.e5111 (2021). <https://doi.org/10.1016/j.cell.2021.08.021>

678 48 Clairfeuille, T. *et al.* Structural basis of α -scorpion toxin action on Nav channels. *Science* **363**
679 (2019). <https://doi.org/10.1126/science.aav8573>

680 49 Ahuja, S. *et al.* Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule
681 antagonist. *Science* **350**, aac5464 (2015). <https://doi.org/10.1126/science.aac5464>

682 50 Jiang, D. *et al.* Structural basis for voltage-sensor trapping of the cardiac sodium channel by
683 a deathstalker scorpion toxin. *Nat Commun* **12**, 128 (2021). <https://doi.org/10.1038/s41467-020-20078-3>

684 51 Shen, H. *et al.* Structural basis for the modulation of voltage-gated sodium channels by
685 animal toxins. *Science* **362** (2018). <https://doi.org/10.1126/science.aau2596>

686 52 Pajouhesh, H. *et al.* Discovery of a selective, state-independent inhibitor of Na V 1.7 by
687 modification of guanidinium toxins. *Sci Rep* **10**, 14791 (2020).
688 <https://doi.org/10.1038/s41598-020-71135-2>

689 53 Beckley, J. T. *et al.* Antinociceptive properties of an isoform-selective inhibitor of Nav1.7
690 derived from saxitoxin in mouse models of pain. *Pain* **162**, 1250-1261 (2021).
691 <https://doi.org/10.1097/j.pain.0000000000002112>

692 54 Rosker, C. *et al.* The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the
693 Na(v1.6) voltage-dependent sodium channel. *Am J Physiol Cell Physiol* **293**, C783-789
694 (2007). <https://doi.org/10.1152/ajpcell.00070.2007>

695

696 55 Jiang, D., Gamal El-Din, T., Zheng, N. & Catterall, W. A. Expression and purification of the
697 cardiac sodium channel NaV1.5 for cryo-EM structure determination. *Methods Enzymol*
698 **653**, 89-101 (2021). <https://doi.org/10.1016/bs.mie.2021.01.030>

699 56 Shen, H., Yan, N. & Pan, X. Structural determination of human Na_{1.4} and Na_{1.7} using single
700 particle cryo-electron microscopy. *Methods Enzymol* **653**, 103-120 (2021).
701 <https://doi.org/10.1016/bs.mie.2021.03.010>

702 57 Burbidge, S. A. *et al.* Molecular cloning distribution and functional analysis of the Nav1.6
703 Voltage-gated sodium channel from human brain. *Brain Res Mol Brain Res* **103**, 80-90
704 (2002). [https://doi.org/10.1016/s0169-328x\(02\)00188-2](https://doi.org/10.1016/s0169-328x(02)00188-2)

705 58 Zhao, J., O'Leary, M. E. & Chahine, M. Regulation of Nav1.6 and Nav1.8 peripheral nerve
706 Na⁺ channels by auxiliary β-subunits. *J Neurophysiol* **106**, 608-619 (2011).
707 <https://doi.org/10.1152/jn.00107.2011>

708 59 Jones, J. M. *et al.* Single amino acid deletion in transmembrane segment D4S6 of sodium
709 channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. *Neurobiol
710 Dis* **89**, 36-45 (2016). <https://doi.org/10.1016/j.nbd.2016.01.018>

711 60 Solé, L. & Tamkun, M. M. Trafficking mechanisms underlying Nav channel subcellular
712 localization in neurons. *Channels (Austin)* **14**, 1-17 (2020).
713 <https://doi.org/10.1080/19336950.2019.1700082>

714 61 Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. *J Gen
715 Physiol* **59**, 637-658 (1972). <https://doi.org/10.1085/jgp.59.6.637>

716 62 Hille, B. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. *J
717 Gen Physiol* **66**, 535-560 (1975). <https://doi.org/10.1085/jgp.66.5.535>

718 63 Favre, I., Moczydłowski, E. & Schild, L. On the structural basis for ionic selectivity among Na⁺,
719 K⁺, and Ca²⁺ in the voltage-gated sodium channel. *Biophys J* **71**, 3110-3125 (1996).
720 [https://doi.org/10.1016/S0006-3495\(96\)79505-X](https://doi.org/10.1016/S0006-3495(96)79505-X)

721 64 Sun, Y. M., Favre, I., Schild, L. & Moczydłowski, E. On the structural basis for size-selective
722 permeation of organic cations through the voltage-gated sodium channel. Effect of alanine
723 mutations at the DEKA locus on selectivity, inhibition by Ca²⁺ and H⁺, and molecular
724 sieving. *J Gen Physiol* **110**, 693-715 (1997). <https://doi.org/10.1085/jgp.110.6.693>

725 65 Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-
726 gated sodium channel. *Nature* **475**, 353-358 (2011). <https://doi.org/10.1038/nature10238>

727 66 Tang, L. *et al.* Structural basis for Ca²⁺ selectivity of a voltage-gated calcium channel.
728 *Nature* **505**, 56-61 (2014). <https://doi.org/10.1038/nature12775>

729 67 Zhao, Y. *et al.* Cryo-EM structures of apo and antagonist-bound human Ca_v3.1. *Nature* **576**,
730 492-497 (2019). <https://doi.org/10.1038/s41586-019-1801-3>

731 68 Dong, Y. *et al.* Closed-state inactivation and pore-blocker modulation mechanisms of
732 human Ca_v2.2. *Cell Rep* **37**, 109931 (2021). <https://doi.org/10.1016/j.celrep.2021.109931>

733 69 He, L. *et al.* Structure, gating, and pharmacology of human Ca_v3.3 channel. *Nat Commun* **13**,
734 2084 (2022). <https://doi.org/10.1038/s41467-022-29728-0>

735 70 Carnevale, V., Treptow, W. & Klein, M. L. Sodium Ion Binding Sites and Hydration in the
736 Lumen of a Bacterial Ion Channel from Molecular Dynamics Simulations. *J Phys Chem Lett* **2**,
737 2504-2508 (2011). <https://doi.org/10.1021/jz2011379>

738 71 Guardiani, C., Rodger, P. M., Fedorenko, O. A., Roberts, S. K. & Khovanov, I. A. Sodium
739 Binding Sites and Permeation Mechanism in the NaChBac Channel: A Molecular Dynamics
740 Study. *J Chem Theory Comput* **13**, 1389-1400 (2017).
741 <https://doi.org/10.1021/acs.jctc.6b01035>

742 72 Xia, M., Liu, H., Li, Y., Yan, N. & Gong, H. The mechanism of Na(+)/K(+) selectivity in
743 mammalian voltage-gated sodium channels based on molecular dynamics simulation.
744 *Biophys J* **104**, 2401-2409 (2013). <https://doi.org/10.1016/j.bpj.2013.04.035>

745 73 Wu, J. *et al.* Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.
746 *Nature* **537**, 191-196 (2016). <https://doi.org/10.1038/nature19321>

747 74 Yue, L., Navarro, B., Ren, D., Ramos, A. & Clapham, D. E. The cation selectivity filter of the
748 bacterial sodium channel, NaChBac. *J Gen Physiol* **120**, 845-853 (2002).
749 <https://doi.org/10.1085/jgp.20028699>

750 75 Kao, C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation
751 phenomena. *Pharmacol Rev* **18**, 997-1049 (1966).

752 76 Tsukamoto, T. *et al.* Differential binding of tetrodotoxin and its derivatives to voltage-
753 sensitive sodium channel subtypes (Na_v1.1 to Na_v1.7). *Br J Pharmacol* **174**, 3881-3892
754 (2017). <https://doi.org/10.1111/bph.13985>

755 77 Wang, E. *et al.* End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA:
756 Strategies and Applications in Drug Design. *Chem Rev* **119**, 9478-9508 (2019).
757 <https://doi.org/10.1021/acs.chemrev.9b00055>

758 78 Gardella, E. *et al.* The phenotype of SCN8A developmental and epileptic encephalopathy.
759 *Neurology* **91**, e1112-e1124 (2018). <https://doi.org/10.1212/WNL.0000000000006199>

760 79 Patel, R. R., Barbosa, C., Brustovetsky, T., Brustovetsky, N. & Cummins, T. R. Aberrant
761 epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with
762 cannabidiol. *Brain* **139**, 2164-2181 (2016). <https://doi.org/10.1093/brain/aww129>

763 80 Lenaeus, M. J. *et al.* Structures of closed and open states of a voltage-gated sodium
764 channel. *Proc Natl Acad Sci U S A* **114**, E3051-E3060 (2017).
765 <https://doi.org/10.1073/pnas.1700761114>

766 81 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of
767 specimen movements. *J Struct Biol* **152**, 36-51 (2005).
768 <https://doi.org/10.1016/j.jsb.2005.07.007>

769 82 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination
770 in RELION-3. *eLife* **7** (2018). <https://doi.org/10.7554/eLife.42166>

771 83 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
772 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296 (2017).
773 <https://doi.org/10.1038/nmeth.4169>

774 84 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12 (2016).
775 <https://doi.org/10.1016/j.jsb.2015.11.003>

776 85 Procter, J. B. *et al.* Alignment of Biological Sequences with Jalview. *Methods Mol Biol* **2231**,
777 203-224 (2021). https://doi.org/10.1007/978-1-0716-1036-7_13

778 86 Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta
779 Crystallogr D Struct Biol* **74**, 531-544 (2018). <https://doi.org/10.1107/s2059798318006551>

780 87 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
781 analysis. *J Comput Chem* **25**, 1605-1612 (2004). <https://doi.org/10.1002/jcc.20084>

782 88 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta
783 Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).
<https://doi.org/10.1107/s0907444910007493>

785 89 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and
786 analysis. *Protein Sci* **27**, 14-25 (2018). <https://doi.org/10.1002/pro.3235>

787 90 DeLano, W. L. *The PyMOL Molecular Graphics System*, 2002).

788 91 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for
789 CHARMM. *J Comput Chem* **29**, 1859-1865 (2008). <https://doi.org/10.1002/jcc.20945>

790 92 Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type
791 perception in molecular mechanical calculations. *J Mol Graph Model* **25**, 247-260 (2006).
<https://doi.org/10.1016/j.jmgm.2005.12.005>

793 93 Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-
794 Dynamics with Coupling to an External Bath. *J Chem Phys* **81**, 3684-3690 (1984).
<https://doi.org/Doi 10.1063/1.448118>

796 94 Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver
797 for molecular simulations. *Journal of Computational Chemistry* **18**, 1463-1472 (1997).
[https://doi.org/Doi 10.1002/\(Sici\)1096-987x\(199709\)18:12<1463::Aid-Jcc4>3.3.Co;2-L](https://doi.org/Doi 10.1002/(Sici)1096-987x(199709)18:12<1463::Aid-Jcc4>3.3.Co;2-L)

799 95 Evans, D. J. & Holian, B. L. The Nose-Hoover Thermostat. *J Chem Phys* **83**, 4069-4074
800 (1985). <https://doi.org/Doi 10.1063/1.449071>

801 96 Parrinello, M. & Rahman, A. Polymorphic Transitions in Single-Crystals - a New Molecular-
802 Dynamics Method. *J Appl Phys* **52**, 7182-7190 (1981). <https://doi.org/Doi 10.1063/1.328693>

803 97 Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method for Ewald
804 Sums in Large Systems. *J Chem Phys* **98**, 10089-10092 (1993). <https://doi.org/Doi 10.1063/1.464397>

806 98 Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A. & Case, D. A. Continuum solvent
807 studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. *J Am Chem Soc*
808 **120**, 9401-9409 (1998). <https://doi.org/DOI 10.1021/ja981844+>

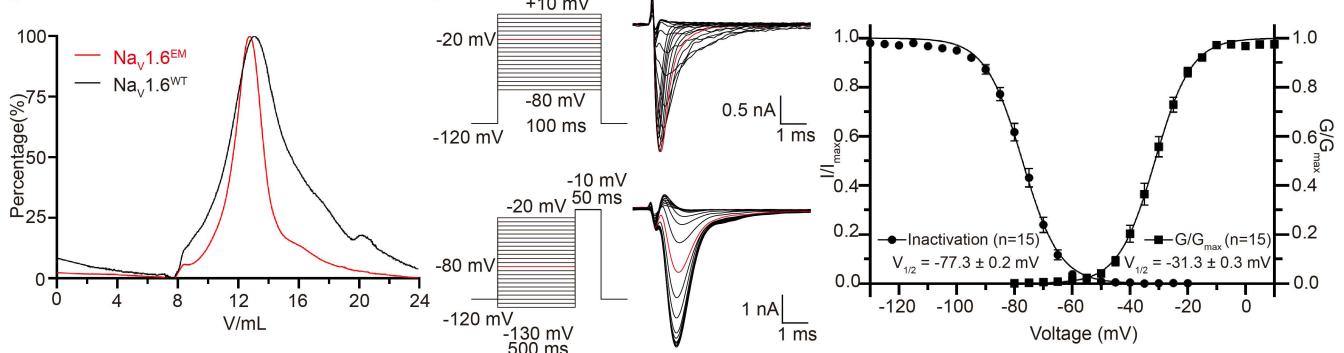
809 99 Kollman, P. A. *et al.* Calculating structures and free energies of complex molecules:
810 Combining molecular mechanics and continuum models. *Accounts Chem Res* **33**, 889-897
811 (2000). <https://doi.org/10.1021/ar000033j>

812 100 Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding
813 affinities. *Expert Opin Drug Dis* **10**, 449-461 (2015).
<https://doi.org/10.1517/17460441.2015.1032936>

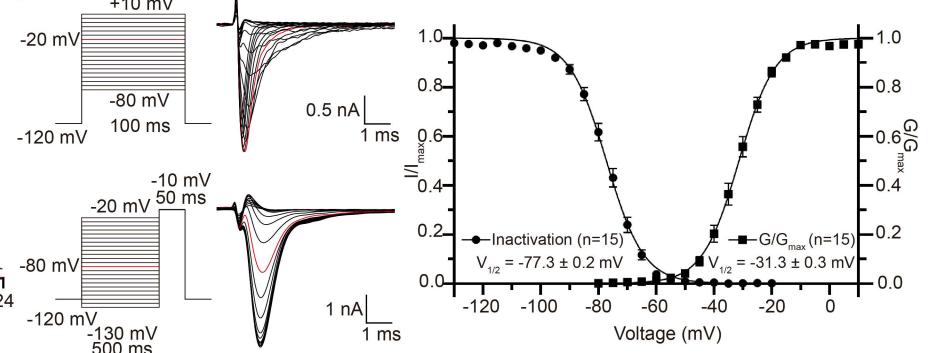
814 101 Miller, B. R. *et al.* MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. *J
815 Chem Theory Comput* **8**, 3314-3321 (2012). <https://doi.org/10.1021/ct300418h>

816

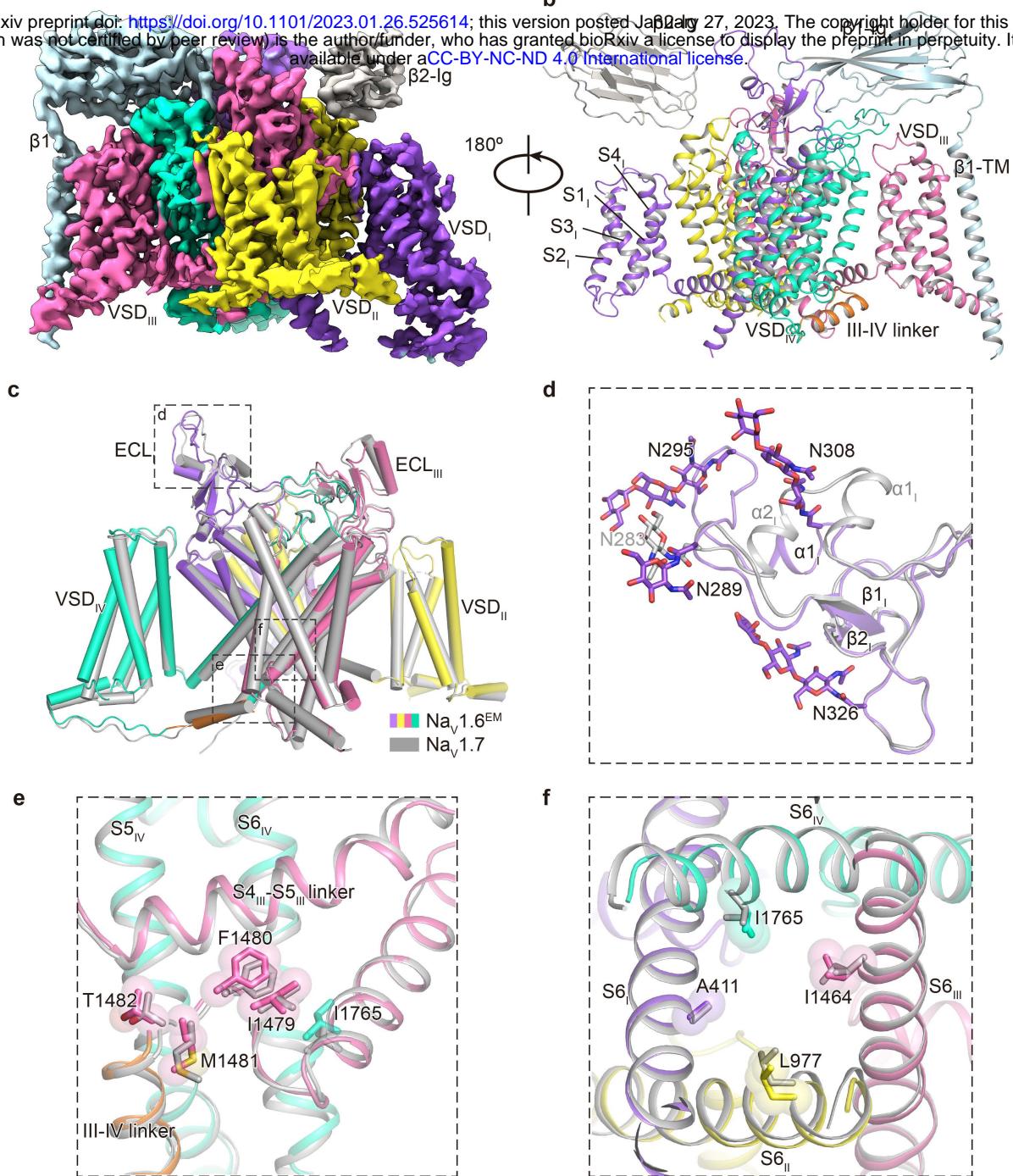
817 102 Daura, X. *et al.* Peptide folding: When simulation meets experiment. *Angew Chem Int Edit*
818 **38**, 236-240 (1999). [https://doi.org/10.1002/\(SICI\)1521-3773\(19990115\)38:1/2<236::Aid-Anie236>3.3.Co;2-D](https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::Aid-Anie236>3.3.Co;2-D)


819
820 103 Van der Spoel, D. *et al.* GROMACS: Fast, flexible, and free. *Journal of Computational*
821 *Chemistry* **26**, 1701-1718 (2005). <https://doi.org/10.1002/jcc.20291>

822


a

b


c

1

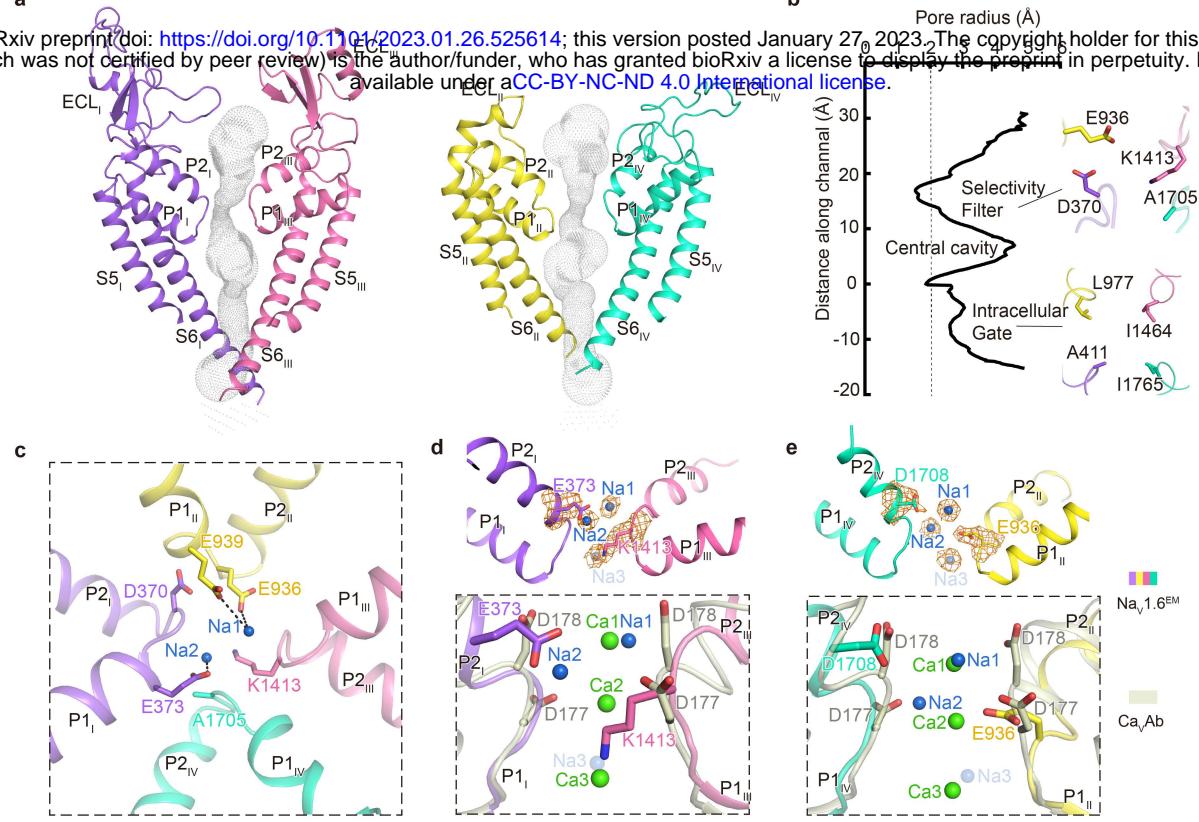
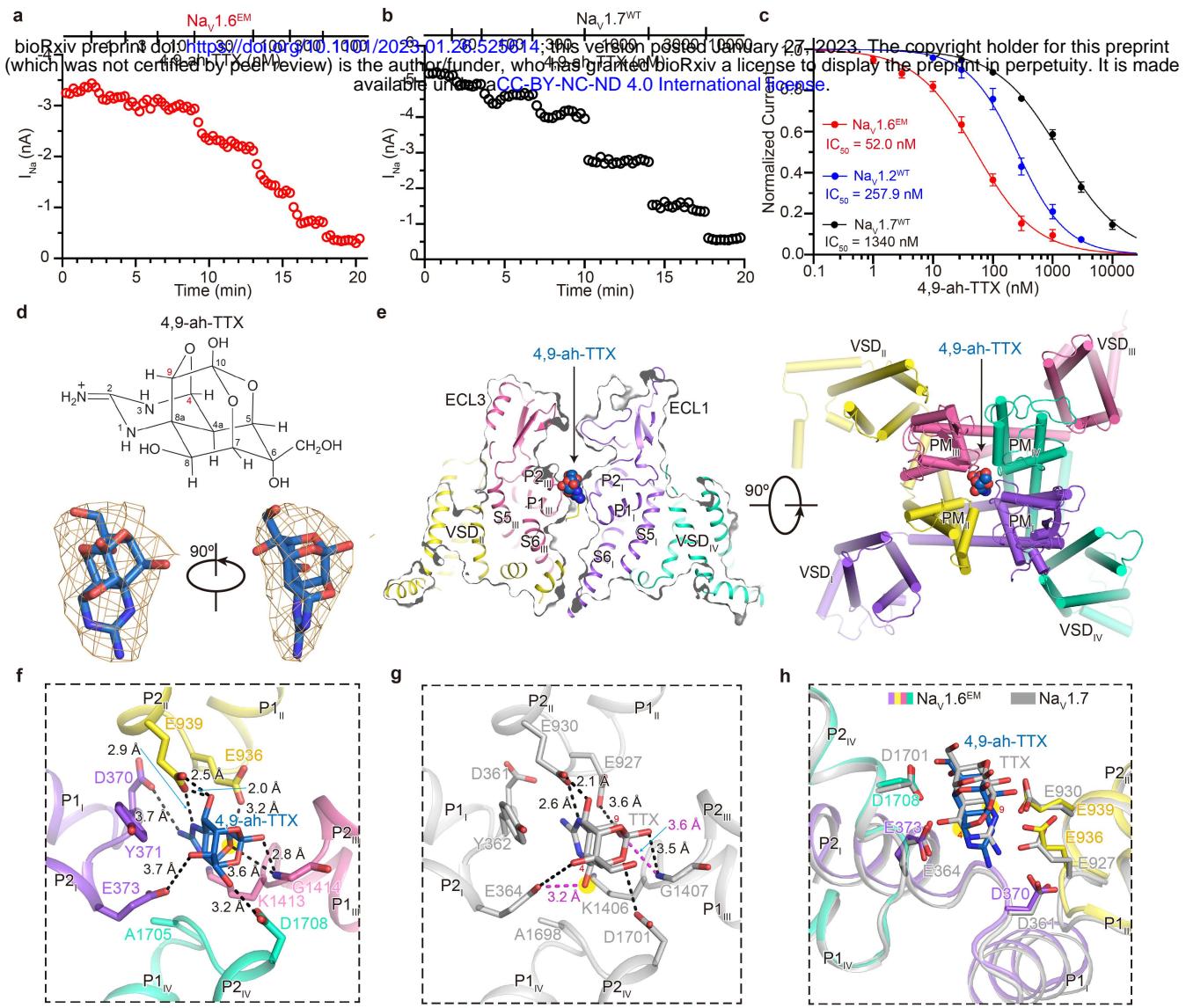
Figure 1. Topology and functional characterization of the $\text{Na}_v1.6^{\text{EM}}/\beta 1/\beta 2$ complex.

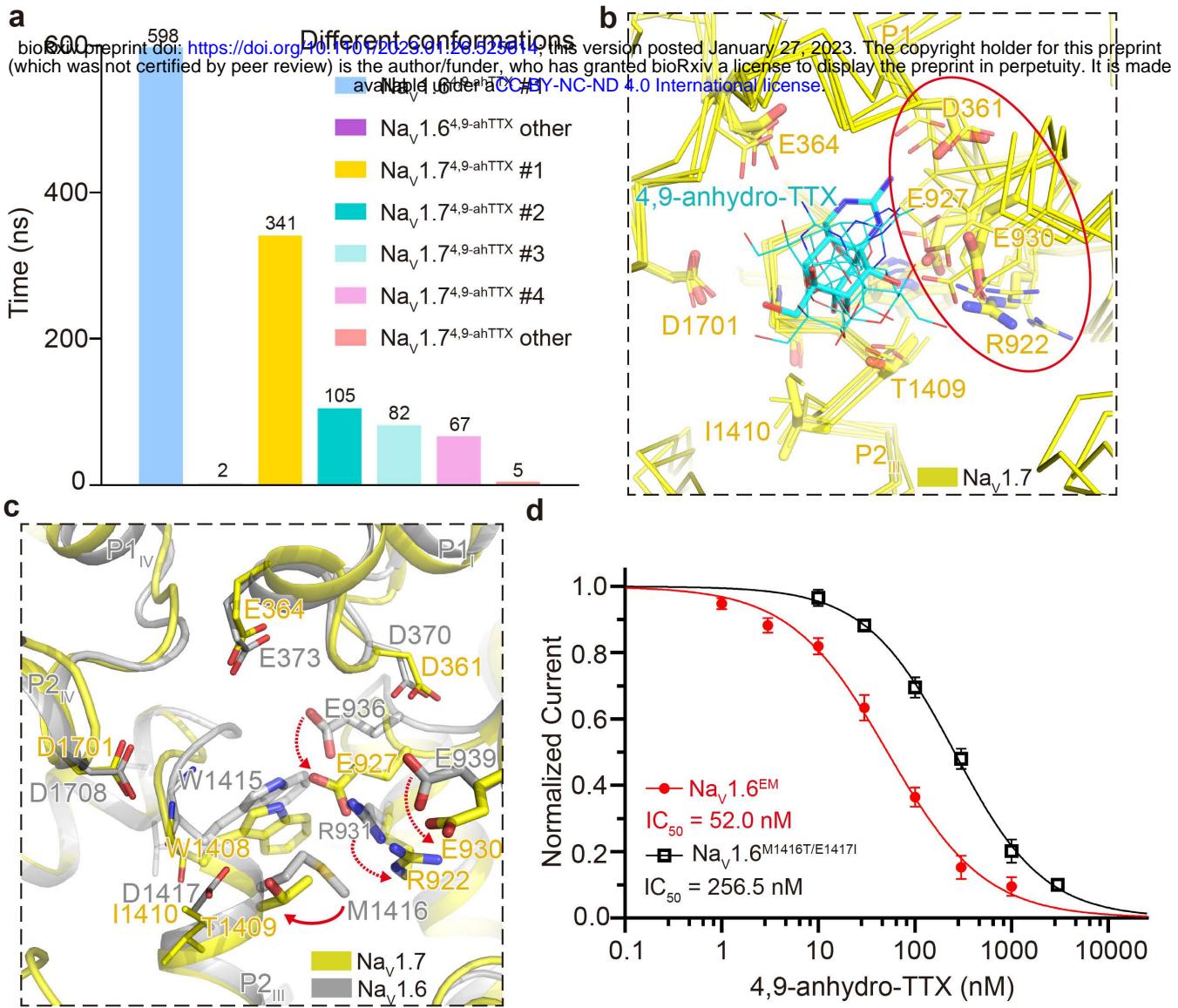
a. Topology of the $\text{Na}_v1.6/\beta 1/\beta 2$ complex. The α subunit consists of DI (purple), DII (yellow), DIII (pink) and DIV (cyan) connected by intracellular linkers, a mCherry fluorescent protein tag fused at the C-terminus. Scissors indicate the truncated sites. The $\beta 1$ fused with a GFP tag at the C-terminus and the $\beta 2$ subunit are highlighted in light blue and gray respectively. The same color codes for $\text{Na}_v1.6/\beta 1/\beta 2$ are applied throughout the manuscript unless specified. b. Size exclusion chromatogram profiles of the purified $\text{Nav1.6}^{\text{WT}}$ (black) and the $\text{Nav1.6}^{\text{EM}}$ (red). c. Electrophysiological characterization of the $\text{Nav1.6}^{\text{EM}}$ construct. The voltage protocols and representative current traces are shown on the left panels. To characterize the voltage-dependence of activation, $\text{Na}_v1.6^{\text{EM}}$ expressing HEK293T cells were stimulated by a 100 ms test pulse varying from -80 mV to 10 mV in 5 mV increments from a holding potential of -120 mV, with a stimulus frequency of 0.2 Hz. To measure the steady-state fast inactivation, HEK293T cells were stimulated by a test step to -10 mV after a 500 ms prepulse varying from -130 mV to -20 mV in 5 mV increments, from a holding potential of -120 mV and a stimulus frequency of 0.2 Hz. The resulting normalized conductance-voltage (G/V) relationship (squares) and steady-state fast inactivation (circles) curves are shown on the right panel.

6

7 **Figure 2. Cryo-EM structure of the Nav1.6^{EM}/β1/β2 complex**

8 **a-b.** The cryo-EM density map (**a**) and cartoon representation (**b**) of the Nav1.6^{EM}/β1/β2 complex. **c.**
 9 Structural comparison of Nav1.6^{EM} and Nav1.7 (PDB code: 7W9K, colored in gray). The black dashed-line
 10 squares indicate the areas shown in panels d, e, and f. **d.** Superimposition of the ECL_I between Nav1.6^{EM}
 11 and Nav1.7. N-linked glycosylation moieties are shown in sticks. **e.** Comparison of the IFM motif. The IFM
 12 motif were depicted side-chains in sticks and spheres with half transparency. **f.** Comparison of the
 13 intracellular activation gate of Nav1.6^{EM} and Nav1.7 viewed from intracellular side. Key residues from four S6
 14 helices were shown side-chains sticks and spheres with half transparency.


Figure 3. Potential Na^+ binding sites in the SF of $\text{NaV1.6}^{\text{EM}}$

a. The ion conductance path of $\text{NaV1.6}^{\text{EM}}$ calculated by HOLE. The diagonal repeats of pore domain only including the S5–S6 and pore-helices were shown for clarity. b. Plot of the pore radii of $\text{NaV1.6}^{\text{EM}}$. The dashed line indicates pore radius at 2 Å. The key residues constituting the selectivity filter (SF) and the intracellular activation gate (AG) were shown as sticks. c. The SF of $\text{NaV1.6}^{\text{EM}}$ viewed from the extracellular side. Potential Na^+ ions were shown as blue balls. Black dashed lines represent polar interactions. d–e. Comparison of the Na^+ binding sites of $\text{NaV1.6}^{\text{EM}}$ and the Ca^+ binding sites of Ca_vAb (PDB code: 4MS2, colored in gray). The diagonal repeats of DI and DIII (d), DII and DIV (e) are shown separately for clarity. The EM densities for putative Na^+ and key residues are shown in orange meshes contoured at 4 σ and 5 σ , respectively. A third possible Na^+ ion with weaker density contoured at 3 σ was shown as a light blue ball with half transparency. Ca^+ ions are shown as green balls.

Figure 4. Blockade of the $\text{Na}_v1.6^{\text{EM}}$ by 4,9-ah-TTX.

a-b. The peak currents of $\text{Na}_v1.6^{\text{EM}}$ (a) and $\text{Na}_v1.7^{\text{WT}}$ (b) in response to increasing concentrations of 4,9-ah-TTX. HEK293T cells were held at -120 mV and the inward sodium currents (I_{Na}) were elicited by a 50-ms step to -10 mV with a low frequency of 1/15 Hz. **c.** The concentration-response curves for the blockade of $\text{Na}_v1.6^{\text{EM}}$ (red), $\text{Na}_v1.2^{\text{WT}}$ (blue), and $\text{Na}_v1.7^{\text{WT}}$ (black) by 4,9-ah-TTX. **d.** The chemical structure of 4,9-ah-TTX (upper panel). The EM density for 4,9-ah-TTX shown in orange meshes contoured at 5σ (lower panel). **e.** The 4,9-ah-TTX binding site in $\text{Na}_v1.6^{\text{EM}}$. Side (left panel) and top (right panel) view of $\text{Na}_v1.6^{\text{EM}}$ with 4,9-ah-TTX shown in spheres. **f.** Detailed interactions between 4,9-ah-TTX and $\text{Na}_v1.6^{\text{EM}}$. Key interacting residues of $\text{Na}_v1.6^{\text{EM}}$ were shown in sticks. Black dashed lines indicate electrostatic interactions between 4,9-ah-TTX and $\text{Na}_v1.6^{\text{EM}}$. **g.** Specific interactions between TTX and $\text{Na}_v1.7$ (PDB code: 6J8I, colored in gray). The additional hydrogen bonds between $\text{Na}_v1.7$ and the 4', 9' positions of TTX are highlighted in red. **h.** Structural comparison of $\text{Na}_v1.6^{4,9\text{-ahTTX}}$ and $\text{Na}_v1.7^{\text{TTX}}$. The side-chains of key residues in the $\text{Na}_v1.6^{\text{EM}}$ and $\text{Na}_v1.7$ depicted in sticks.

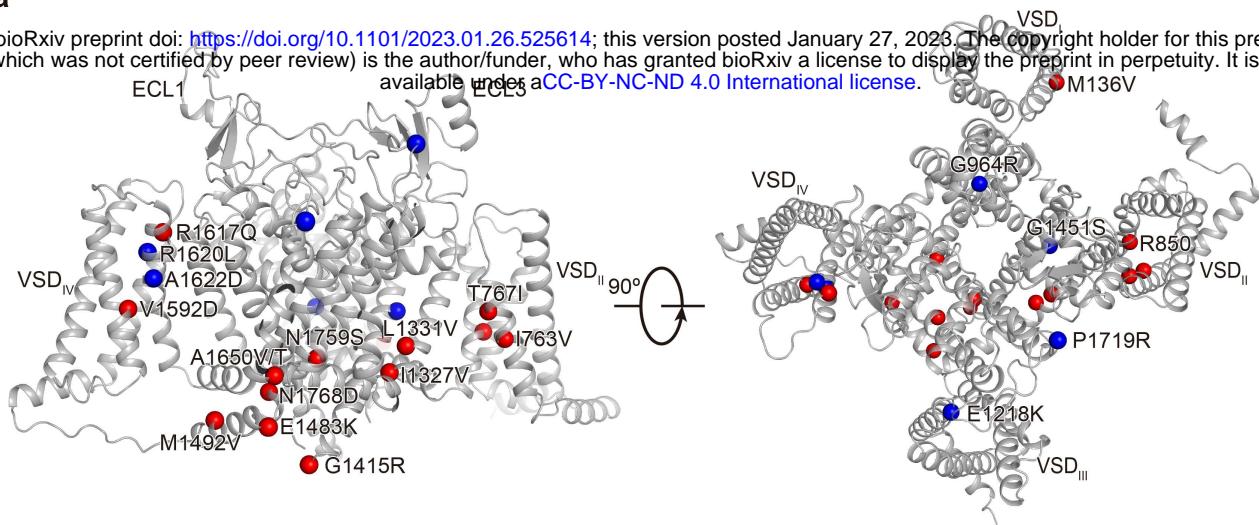


Figure 5. MD simulations of 4,9-ah-TTX binding to Na_v1.6 and Na_v1.7.

a. Cluster analysis of 600 ns molecular simulation trajectories for 4,9-ah-TTX binding with Na_v1.6 and Na_v1.7 respectively. The clustering was conducted by considering the ligand and protein residues within 5 Å of the ligand and using 1.5 Å as RMSD cutoff. **b.** Dynamic behaviors of 4,9-ah-TTX binding in Na_v1.7 pocket. Four major conformations of 4,9-ah-TTX bound Na_v1.7 were superimposed together, with the most dominant conformation displayed in yellow sticks and other three conformations in yellow lines. The highly flexible region including R922, E927, D361, E930 was indicated by a red circle. The 4,9-ah-TTX was colored in cyan, adopting different poses in the four major conformations. **c.** Illustration of the impact of the small side chain of T1409 to the flexibility of R922, E930, and E927. The red solid-line arrow indicates the size differences between T1409 of Na_v1.7 and M1416 of Na_v1.6. The gain of the extra flexibility for the side chains of R922, E930, and E927 was indicated by red dashed arrows. Conformation #1 of 4,9-ah-TTX bound Na_v1.6 was colored in gray and superimposed with conformation #2 of 4,9-ah-TTX bound Na_v1.7 which was colored in yellow. **d.** The concentration-response curves for the blockade of Na_v1.6^{EM} and Na_v1.6^{M1416T/E1417I} by 4,9-ah-TTX.

a

bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.525614>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

i7

i8 **Figure 6. Mapping the pathogenic mutations on the $\text{Na}_1.6^{\text{EM}}$.**

i9 a. Representative pathogenic mutations were mapped on the $\text{Na}_1.6$ structure. Red and blue spheres
i0 represent the gain of function mutations (related to epilepsy) and loss of function mutations (related to
i1 intellectual disability), respectively.