

Polyprotein processing regulates FMDV replication

1 **Insights into polyprotein processing and RNA-protein interactions in foot-and- 2 mouth disease virus genome replication.**

3 Danielle M. Pierce, David J. Rowlands, Nicola J. Stonehouse* and Morgan R.
4 Herod*

5 School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury
6 Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom

7 * Corresponding author's: m.r.herod@leeds.ac.uk; n.j.stonehouse@leeds.ac.uk

8 **Running title:** Polyprotein processing regulates FMDV replication

9 **Keywords:** FMDV, picornavirus, cleavage, replication, replication complex

10 **Word count:** Abstract 229 words; Importance 150 words; Main text 5465; 7 figures

11

12 **Abstract**

13 Foot-and-mouth disease affects cloven hooved animals and is caused by foot-and-
14 mouth disease virus (FMDV), a picornavirus with a positive-sense RNA genome. The
15 FMDV genome contains a single open reading frame, which is translated to produce
16 a polyprotein that is cleaved by viral proteases to produce the viral structural and
17 non-structural proteins. Initial processing of the polyprotein occurs at three main
18 junctions to generate four primary products; L^{pro} and the P1, P2 and P3 precursors
19 (also termed 1ABCD, 2BC and 3AB_{1,2,3}CD). The 2BC and 3AB_{1,2,3}CD precursors
20 undergo subsequent proteolysis to generate non-structural proteins that are required
21 for viral replication, including the enzymes 2C, 3C^{pro} and 3D^{pol}. These precursors can
22 be processed through both *cis* and *trans* (i.e., intra- and inter-molecular proteolysis)
23 pathways, which are thought to be important for controlling virus replication. Our
24 previous studies suggested that a single residue in the 3B₃-3C junction had an
25 important role in controlling 3AB_{1,2,3}CD processing. Here, we use *in vitro* based

Polyprotein processing regulates FMDV replication

26 assays to show that a single point mutation at the 3B₃-3C boundary increases the
27 rate of proteolysis to generate a novel 2C-containing precursor. Complementation
28 assays showed that while this point mutation permitted production of some non-
29 enzymatic non-structural proteins, those with enzymatic functions were inhibited.
30 Interestingly, replication could only be supported by complementation with mutations
31 in *cis* acting RNA elements, providing genetic evidence for a functional interaction
32 between replication enzymes and RNA elements.

33

34 **Importance**

35 Foot-and-mouth disease virus (FMDV) is an economically important pathogen of
36 animals that is responsible for foot-and-mouth disease (FMD). FMD is endemic in
37 many parts of the world and can result in major economic losses. Replication of the
38 virus is a highly coordinated event that occurs within membrane-associated
39 compartments in infected cells and requires the viral non-structural proteins. These
40 are all initially produced as a polyprotein that undergoes proteolysis likely through
41 both *cis* and *trans* pathways (i.e., intra- and inter-molecular proteolysis). Alternative
42 processing pathways can provide a mechanism to help coordinate viral replication by
43 providing temporal control to protein production. Here, we analyse the consequences
44 of mutations that change temporal control of FMDV polyprotein processing. Our data
45 suggests that correct processing is required to produce key enzymes for replication
46 in an environment in which they can interact with essential viral RNA elements.
47 These data further the understanding of FMDV genome replication.

Polyprotein processing regulates FMDV replication

48 **Introduction**

49 Small RNA viruses have limited genome sequence space and therefore minimal
50 coding capacity. These viruses have evolved several strategies to overcome this
51 limitation, including the use of protein precursors that can perform different functions
52 to the mature proteins. Individual proteins and their precursors can also sometimes
53 perform more than one function (1). Examples are the 3CD and 2BC precursors from
54 poliovirus (PV) and foot-and-mouth disease virus (FMDV), respectively, both
55 members of the *Picornaviridae* family. The 3CD protein is involved in priming
56 genome replication, whilst also having protease activity and the 3C^{pro} and 3D^{pol}
57 cleavage products have protease and RNA-dependent RNA polymerase activities,
58 respectively (1). Likewise, the FMDV 2BC precursor inhibits the secretory pathway, a
59 function apparently independent of the roles of 2B as a viroporin and 2C as a viral
60 ATPase (2-4).

61 The *Picornaviridae* family includes several important human and animal pathogens,
62 including but not limited to PV and FMDV. PV is responsible for the incapacitating
63 (and potentially fatal) human disease poliomyelitis, while FMDV is the causative
64 agent of foot-and-mouth disease, an acute vesicular disease of cloven-hoofed
65 ruminants including livestock, which can be economically-damaging. The FMDV
66 genome contains a single open reading frame that produces a ~250 kDa polyprotein
67 (5). Initial processing of the FMDV polyprotein occurs at three positions to produce
68 four primary products: L^{pro}, the capsid precursor P1-2A and two non-structural
69 protein precursors 2BC (also termed P2) and 3AB_{1,2,3}CD (also termed P3) (6, 7). L^{pro}
70 is autocatalytically released from the N-terminal region of the polyprotein (6, 8). The
71 P1-2A precursor is released from the polyprotein via a co-translational 2A-driven
72 ribosome skipping mechanism (9) before the 2BC-3AB_{1,2,3}CD polyprotein is

Polyprotein processing regulates FMDV replication

73 processed by 3C^{pro}. For FMDV, initial processing is believed to be predominantly at
74 the 2C-3A junction, generating 2BC and 3AB_{1,2,3}CD precursors. Further 3C^{pro}-
75 mediated proteolysis releases the final proteins via a succession of intermediate
76 precursors (7, 10, 11). Processing of the 2BC precursor ultimately generates the 2B
77 and 2C proteins, both of which have multiple roles in replication. The 3AB_{1,2,3}CD
78 precursor is composed of the transmembrane protein 3A, three 3B peptides
79 (individually referred to as 3B₁, 3B₂ and 3B₃), the protease 3C^{pro}, and the
80 polymerase 3D^{pol} (12, 13).

81 Processing of the non-structural polyprotein by 3C^{pro} is thought to occur through at
82 least two separate pathways to generate mutually-exclusive sets of precursors (14).
83 For example, for FMDV, the 3AB_{1,2,3}CD precursor is processed to generate the
84 precursors 3AB_{1,2,3}C and 3CD, which must be derived from alternative processing
85 strategies. Likewise, for PV, the 3ABCD precursor (the equivalent of 3AB_{1,2,3}CD in
86 FMDV) can be processed to generate 3ABC and 3CD. Furthermore, it appears that
87 this alternative processing may be temporally controlled and used to regulate virus
88 replication. For example, previous studies with PV have demonstrated that later
89 production of 3AB and 3CD can delay the initiation of viral RNA replication (15). For
90 FMDV, reducing cleavage of 3CD inhibits replication by limiting the supply of 3D^{pol}
91 (16, 17). Processing through alternative pathways is likely to be driven (in part)
92 through a switch between intra-molecular vs inter-molecular proteolysis (i.e., *cis* vs
93 *trans* cleavage events). However, methods to differentiate between these *cis* vs
94 *trans* cleavages events are challenging and as a result the mechanism(s) that
95 controls this switch are not completely understood.

96 Like all positive-sense RNA viruses, picornavirus genome replication is associated
97 with virus-induced cytoplasmic membranous structures, sometimes referred to as

Polyprotein processing regulates FMDV replication

98 “replication complexes” or “replication organelles” (18). In these assemblies, multiple
99 new viral positive-strand RNAs are synthesised via a complementary negative-sense
100 template. For FMDV the full composition of these assemblies is unknown, but they
101 are likely composed of multiple viral and cellular factors, including the non-structural
102 proteins 3B, 3D^{pol} and 3CD. Some of the viral non-structural proteins and precursors
103 associate with RNA elements located in the 5' and 3' untranslated regions (UTRs)
104 that flank the open reading frame (5). The 5' UTR of FMDV is uncharacteristically
105 long for a picornavirus and contains several distinct structural elements, including an
106 internal ribosome entry site (IRES), a *cis*-acting replicative element (*cre*) and a large
107 stem loop (termed the S-fragment) (19-22). The IRES has been well studied and is
108 used to initiate protein translation in a cap-independent manner (20, 21). The *cre* is
109 essential for replication and acts as the template for uridylation of 3B (also known as
110 VPg) to generate the replicative primer, VPg-pUpU (23-28). The role of the S-
111 fragment in FMDV replication is less well understood but may be involved in both
112 replication and modulating the innate immune response (29). In other picornaviruses,
113 such as PV, an RNA structure termed the cloverleaf (or oriL) is located at the 5'
114 terminus of the genome at the site occupied by the S-fragment stem-loop in FMDV
115 (30). This interacts with the precursor protein 3CD as well as host proteins and is
116 involved in initiating negative-strand RNA synthesis (31-36). Furthermore, for PV,
117 other precursor proteins have also been implicated in 5' UTR interactions, including
118 3AB (the equivalent to 3AB_{1,2,3} in FMDV), 3BCD and 3ABCD, and have been
119 suggested to be important for controlling replication (15, 32, 37, 38). The role of
120 precursors in FMDV replication is less well established.
121 In a previous study, we used an FMDV replicon system, where replication is
122 monitored by fluorescent protein (e.g., GFP/RFP) expression over time, to

Polyprotein processing regulates FMDV replication

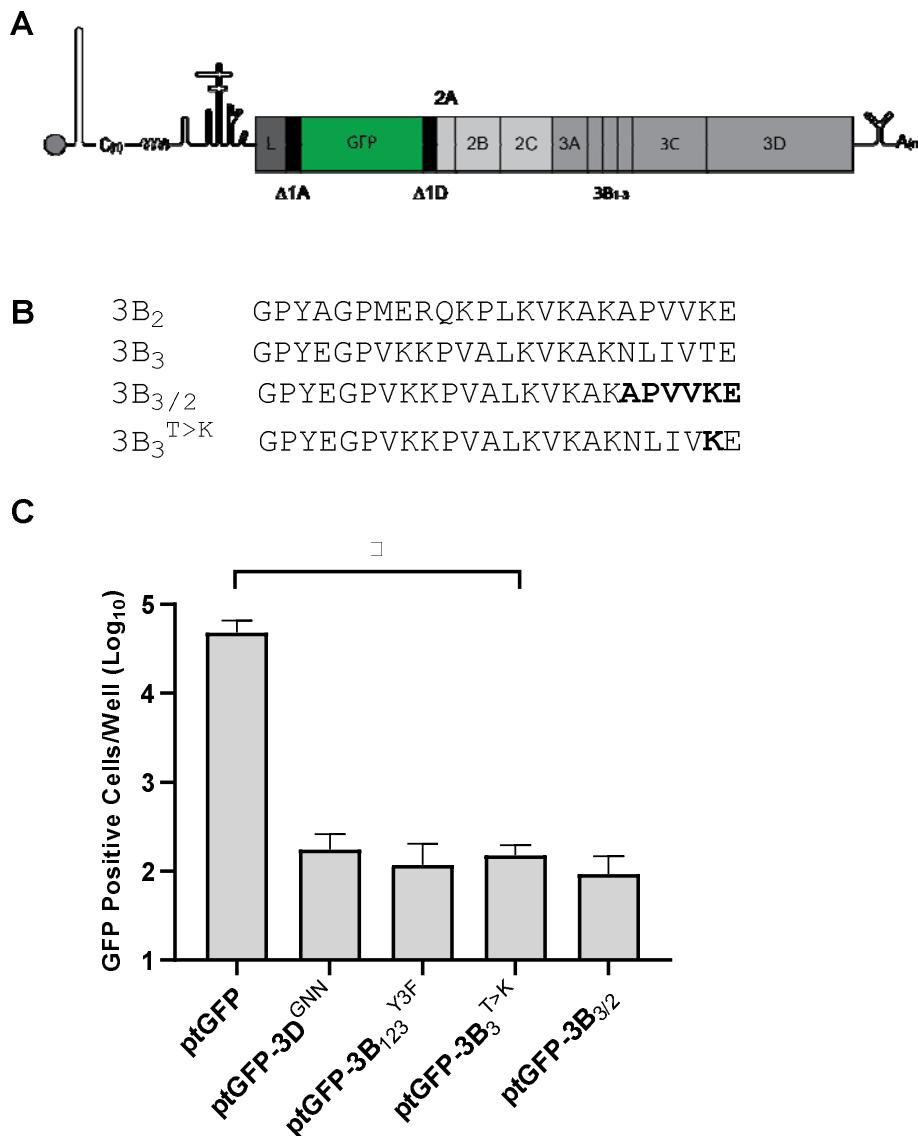
123 investigate FMDV replication by mutation of the 3B proteins (16). We reported a
124 series of amino acid substitutions that increased the efficiency of processing at the
125 3B₃-3C junction but inhibited replication by abrogating the release of free 3D^{pol}.
126 Simultaneously, we observed that these mutations caused an overall shift in
127 3AB_{1,2,3}CD processing and channelled precursor synthesis mainly down one
128 pathway generating 3AB_{1,2,3} and 3CD precursors. This series of mutations has
129 enabled us to separate alternative cleavage pathways and study the function of
130 different precursor sets. Here, we investigated the mechanism by which these
131 mutations result in increased processing between 3B₃ and 3C. Our data suggest that
132 a single amino acid substitution increases sensitivity to *trans*-mediated proteolysis at
133 this boundary. Furthermore, when placed into the context of a full-length polyprotein,
134 this single substitution resulted in accumulation of a novel precursor. Interestingly, it
135 also prevented reciprocal complementation of replicons *in trans*, which we
136 demonstrate is due to a deficiency in the functions of essential viral enzymes.

Polyprotein processing regulates FMDV replication

137 **Results**

138 **A single point mutation in 3B₃ prevents replicon replication.**

139 In a previous study, we reported that mutations within 3B₃, at the boundary with 3C^{pro},
140 dramatically changed processing of the FMDV 3AB_{1,2,3}CD polyprotein and prevented
141 release of active 3D^{pol}. However, through blind passage a compensatory mutation
142 was selected which restored replication and wild-type (WT) 3AB_{1,2,3}CD processing.
143 This was identified as a reversion of a lysine at the P2 residue of the 3B₃-3C junction
144 to the WT threonine (15). These data suggested that the amino acid in the P2
145 position of the 3B₃-3C junction alone can be a major determinant of altered
146 polyprotein processing.


147 Before investigating the mechanism by which mutations at this junction increased
148 processing, we first sought to establish that this residue alone was sufficient to
149 change FMDV polyprotein processing and prevent replicon replication. To this end,
150 we generated an FMDV replicon with a threonine to lysine mutation at the P2 residue
151 of the 3B₃-3C cleavage junction (Figure 1A and B). In this replicon (termed, ptGFP-
152 3B₃^{T>K}) the reporter protein ptGFP replaced the structural proteins, allowing ptGFP
153 expression to be used as an indicator of replicon replication (Figure 1A). This
154 replicon RNA was transfected into BHK-21 cells alongside the previously published
155 mutant replicons ptGFP-3B_{1,2,3}^{Y3F} (contains inactivating point mutations to the
156 triptych of 3B genes) and ptGFP-3B_{3/2} (the six C-terminal residues of 3B₃ replaced by
157 those of 3B₂) (Figure 1B). A WT ptGFP expressing replicon (ptGFP) and a replicon
158 containing an inactivating double point mutation in 3D^{pol} (ptGFP-3D^{GNN}) were
159 included as controls. The latter replicon serves as a negative control for ptGFP
160 production from translation of the input transfected RNA, as we have previous
161 described (39). RNAs from these replicons were transfected into BHK-21 cells and

Polyprotein processing regulates FMDV replication

162 replication monitored by ptGFP fluorescence using an Incucyte real-time imaging
163 system (Figure 1C).

164 As anticipated, the WT ptGFP replicon produced ptGFP >100-fold greater than the
165 ptGFP-3D^{GNN} control replicon, as previously reported. In comparison the ptGFP-
166 3B₃^{T>K} replicon showed GFP expression equivalent to the replication-defective
167 ptGFP-3D^{GNN} control. These data were in agreement with those obtained with the
168 ptGFP-3B_{3/2} and ptGFP-3B_{1,2,3}^{Y3F} replication-defective replicons we previously
169 reported (16). Thus, the 3B₃^{T>K} mutation alone is sufficient to prevent replicon
170 replication.

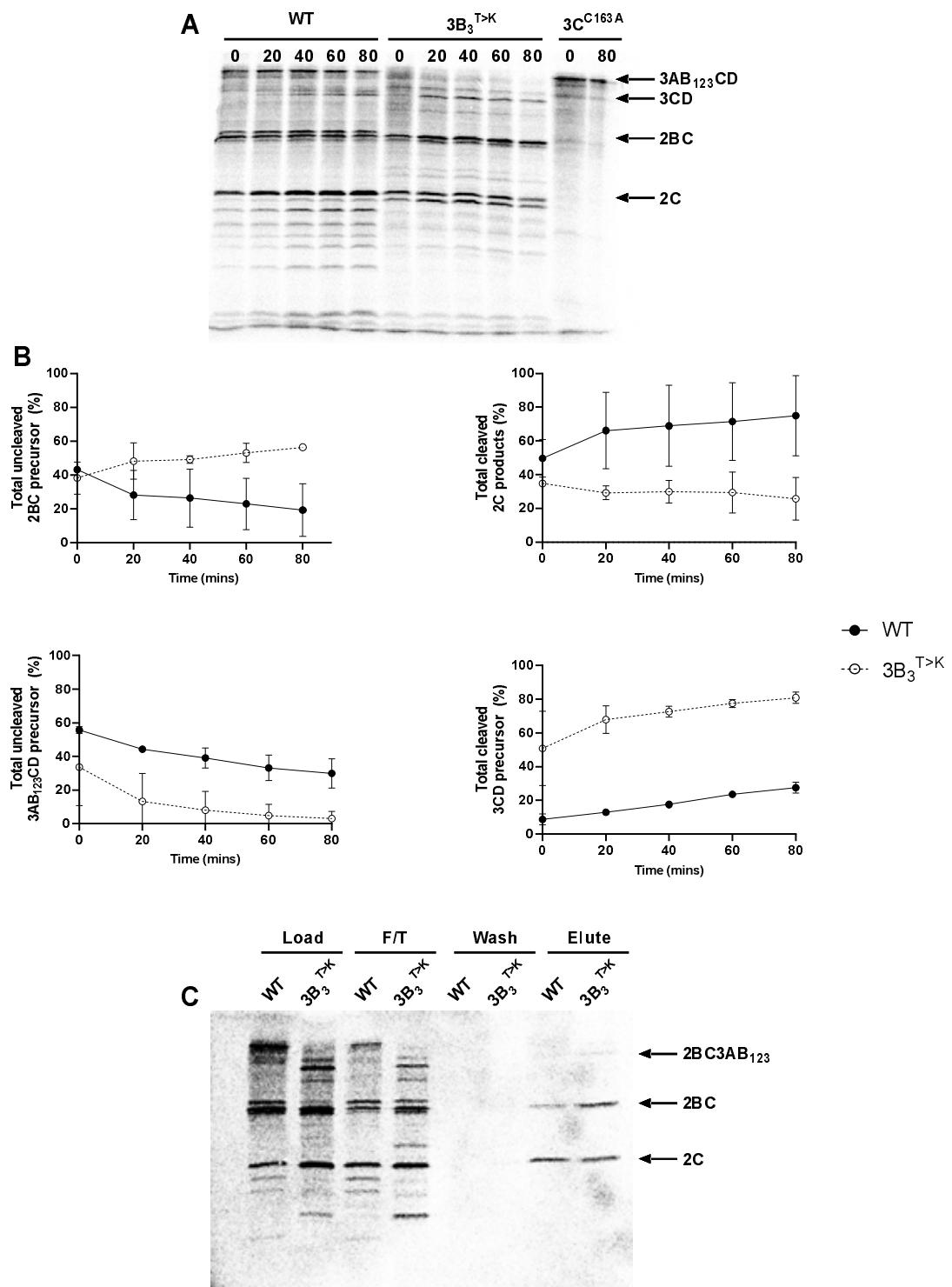
Polyprotein processing regulates FMDV replication

171

172 **Figure 1. A single mutation at the 3B₃-3C junction prevents FMDV replicon**
173 **replication. (A)** Schematic diagram of the FMDV replicon. **(B)** Sequence alignments
174 of the 3B cleavage junctions with the 3B_{3/2} and 3B₃^{T>K} mutants. **(C)** Replication of
175 replicons containing 3B₃ mutations as well as the WT ptGFP replicon (ptGFP) and
176 replication-defective controls containing inactivating mutations in 3D^{pol} (3D^{GNN}), or 3B
177 proteins (3B_{1,2,3}^{Y3F}). GFP expression was monitored hourly for 24 hours. The graph
178 shows GFP positive cells per well at 8 hours post-transfection when replication is
179 maximal. Significance compared to WT control (n = 3 ± SEM; * = p ≤ 0.05).

Polyprotein processing regulates FMDV replication

180 **A single mutation at the 3B₃-3C boundary increases the rate of proteolysis.**


181 We previously demonstrated that the ptGFP-3B_{3/2} mutation inhibited replication and
182 changed processing of the 3AB_{1,2,3}CD polyprotein. To confirm that the 3B₃^{T>K}
183 substitution was sufficient to induce the same changes, we employed the previously
184 described *in vitro* coupled transcription/translation assay (16). T7 expression
185 constructs were generated to express either the WT FMDV polyprotein or a
186 polyprotein containing the 3B₃^{T>K} point mutation. The polyprotein used in these
187 experiments included 2BC as well as the 3AB_{1,2,3}CD region to determine changes to
188 the entire NS polyprotein. These experiments also included a control polyprotein
189 containing an inactivating mutation in 3C^{pro} (3C^{C163A}) predicted to prevent its
190 proteolytic activity (40). Processing was investigated by [³⁵S] methionine/cysteine
191 pulse/chase labelling in *in vitro* coupled transcription/translation reactions, harvesting
192 samples at regular time points and analysing protein products by SDS-PAGE (Figure
193 2A and B).

194 For the WT construct, the full-length 3AB_{1,2,3}CD precursor was detected at early time
195 points, and was steadily processed over time primarily into 3AB_{1,2,3}C and 3D^{pol}, with
196 a small amount of 3CD derived from an alternative processing pathway. At the later
197 time points (40 and 60 minutes), 3AB_{1,2,3} was also detected. Both 2B and 2C were
198 present, in addition to a limited amount of the precursor 2BC at earlier time points.
199 When compared to WT, the construct containing the 3B₃^{T>K} mutation resulted in
200 greater amounts of the 3CD and 3AB_{1,2,3} precursors and less of the 3AB_{1,2,3}CD
201 precursor and 3D^{pol}. There were also increased levels of the 2BC precursor in
202 addition to a high molecular weight precursor, possibly 2BC3AB_{1,2,3}, which was
203 detected at early time points and gradually decreased over time. These data
204 extended our previous observations demonstrating that the 3B₃^{T>K} substitution alone

Polyprotein processing regulates FMDV replication

205 is sufficient to accelerate proteolysis at the 3B₃-3C junction and so increases the
206 relative amounts of 2BC, 3CD and 3AB_{1,2,3}.

Polyprotein processing regulates FMDV replication

207

208 **Figure 2. A single mutation at the 3B₃-3C boundary increases the rate of**
209 **proteolysis and drives the production of novel precursors. (A)** Plasmids
210 expressing the WT or mutant 3B₃^{T>K} FMDV polyprotein precursors were used to

Polyprotein processing regulates FMDV replication

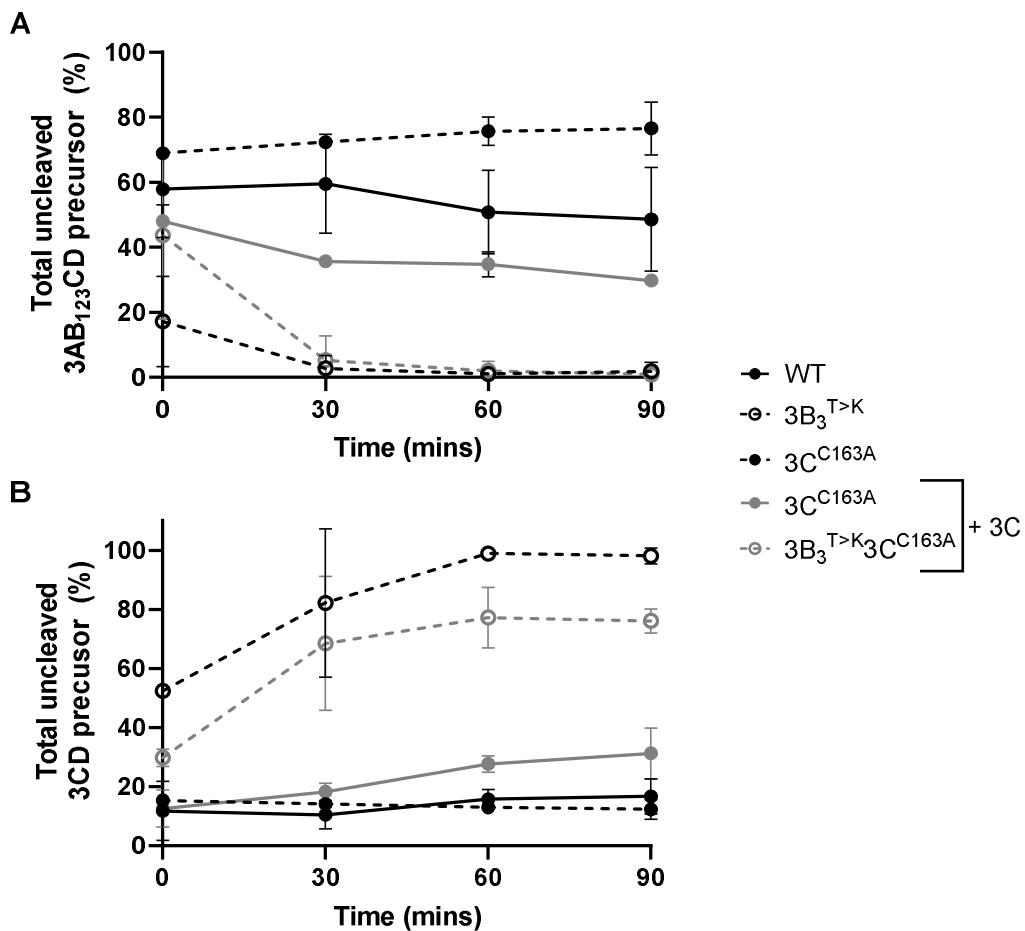
211 prime [³⁵S] labelled pulse-chase *in vitro* coupled transcription/translation reactions. At
212 regular intervals samples were taken and stopped by the addition of 2 x Laemmli
213 buffer. Proteins were separated by SDS-PAGE and visualised by autoradiography.
214 The identity of some FMDV proteins is shown. **(B)** The percentage of protein or
215 protein precursor was quantified as a total percentage of 2C or 3D^{pol} containing
216 products, as appropriate (n = 2 ± SD). **(C)** Duplicate reactions were incubated for 90
217 minutes before immunoprecipitation of 2C containing precursors with anti-2C
218 antibodies. The pre- and post-precipitation samples were separated by SDS-PAGE
219 and visualised by autoradiography. Arrows show the identity of 2C containing
220 proteins, based on predicted molecular weights.

Polyprotein processing regulates FMDV replication

221 **Increasing polyprotein proteolysis generates a novel 2BC containing**
222 **precursor.**

223 The previous *in vitro* translation experiments suggested that the 3B₃^{T>K} mutation
224 increased the production of the 2BC precursor in addition to a larger molecular
225 weight precursor not observed in the WT control. To confirm the identity of the 2C-
226 containing precursors the *in vitro* translation samples were immunoprecipitated using
227 an anti-2C antibody. T7 constructs expressing the WT polyprotein or polyprotein
228 containing the 3B₃^{T>K} substitution were used in *in vitro* coupled
229 transcription/translation reactions with [³⁵S] methionine/cysteine pulse/chase
230 labelling. Samples were taken after 90 minutes and immunoprecipitation performed
231 on half of the sample. Both pre- and post-immunoprecipitation protein samples were
232 analysed by SDS-PAGE (Figure 2C).

233 In comparison to WT, a smaller proportion of mature 2C (but more unprocessed 2BC
234 precursor) were immunoprecipitated with an anti-2C antibody following expression
235 from the polyprotein containing the 3B₃^{T>K} mutation. Furthermore, the additional
236 higher molecular weight band which was only present following expression of the
237 3B₃^{T>K} precursor was also immunoprecipitated with the anti-2C antibody. Based on
238 these observations and the estimated molecular weight, this product is mostly likely
239 a 2BC3AB_{1,2,3} precursor. These results agree with previous data and suggest that
240 the 3B₃^{T>K} mutation preferentially increases the rate of proteolysis at the 3B₃-3C
241 junction, compared to the 2C-3A junction, resulting in the accumulation of
242 2BC3AB_{1,2,3}, which is not normally detected.


243 **The 3B₃^{T>K} substitution stimulates *trans*-mediated processing.**

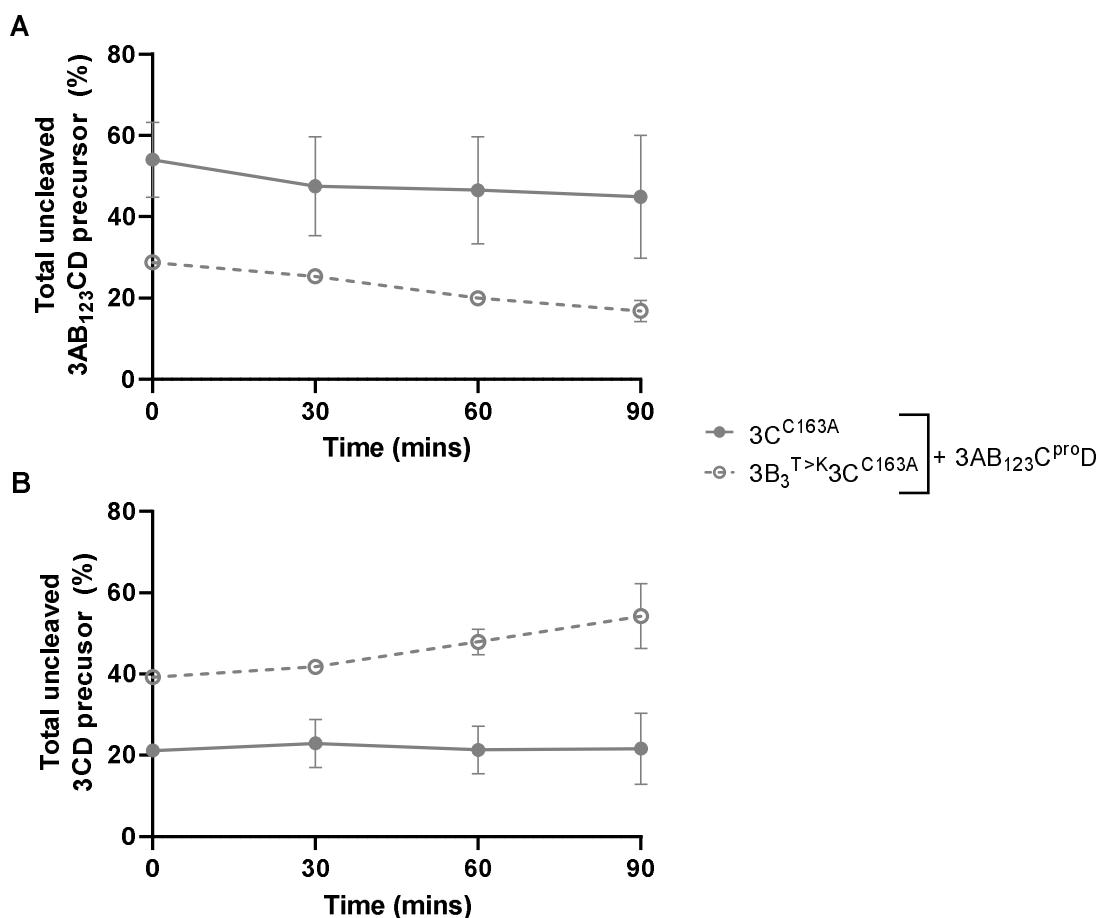
244 We speculated that there were two likely mechanisms by which the order of
245 polyprotein processing was altered. It is possible that the point mutation affected

Polyprotein processing regulates FMDV replication

246 protein folding conformations to change the order of *cis*-mediated proteolysis such
247 that the mutant $3B_3^{T>K}$ boundary was processed first. However, we believe the more
248 likely possibility is that the point mutation generated a boundary sequence that was
249 preferentially recognised *in trans* by $3C^{pro}$ and/or a $3C^{pro}$ -containing precursor. To
250 explore the latter possibility, we adapted our *in vitro* assay to investigate *trans*-
251 mediated cleavage. For simplicity, we adapted both the WT $3AB_{1,2,3}CD$ precursor or
252 precursor containing the $3B_3^{T>K}$ substitution to also contain the inactivating mutation
253 in $3C^{pro}$ ($3C^{C163A}$) to prevent self-proteolysis (40). These precursor substrates
254 (termed $3C^{C163A}$ and $3B_3^{T>K}-3C^{C163A}$, respectively) were translated *in vitro* with [^{35}S]
255 methionine/cysteine before adding excess unlabelled methionine/cysteine and
256 purified active $3C^{pro}$ to a duplicate set of reactions (plus $3C^{pro}$). Samples were
257 harvested at regular time points and processing of the [^{35}S] labelled precursor was
258 analysed by SDS-PAGE (Figure S1). As controls, the experiment was conducted
259 with the WT and $3B_3^{T>K}$ constructs that did not contain the $3C^{C163A}$ point mutation
260 (Figure S1). To aid interpretation the relative amount of $3AB_{1,2,3}CD$ and $3CD$
261 products was quantified by phosphorimaging (Figure 3).
262 Both WT and $3B_3^{T>K}$ precursors carrying the $3C^{C163A}$ mutation produced only
263 uncleaved full-length $3AB_{1,2,3}CD$ in the absence of $3C^{pro}$ provided *in trans*, as
264 anticipated. The addition of $3C^{pro}$ resulted in the production of smaller proteins due to
265 *trans*-mediated proteolysis of $3AB_{1,2,3}CD$. For the WT precursor, these were
266 predominantly $3AB_{1,2,3}$, $3CD$ and $3D^{pol}$, in addition to a cluster of $3B_{1,2,3}CD$
267 precursors, indicative of alternative cleavage pathways. In comparison, the precursor
268 containing the $3B_3^{T>K}$ mutation was processed to $3AB_{1,2,3}$ and $3CD$ over the duration
269 of the experiment, as observed previously with the active precursor molecule (Figure
270 2A).

Polyprotein processing regulates FMDV replication

271


272 **Figure 3. The 3B₃^{T>K} point mutation drives trans-mediated precursor**
273 **proteolysis.** Plasmids expressing proteolytically inactive polyproteins with or without
274 the 3B₃^{T>K} mutation (termed 3B₃^{T>K}3C^{C163A} and 3C^{C163A}, respectively) were used to
275 prime coupled [³⁵S] labelled transcription/translation assays, followed by unlabelled
276 amino acid chase. To a duplicate set of reactions 10 μM purified 3C^{pro} was added
277 (+3C) immediately after chase. As controls, reactions were setup alongside with the
278 WT or 3B₃^{T>K} polyproteins without an inactivated 3C^{pro}. At regular intervals, samples
279 were taken and reactions stopped by the addition of 2 x Laemmli buffer. Proteins
280 were separated by SDS-PAGE and visualised by autoradiography. The relative
281 proportion of uncleaved 3AB_{1,2,3}CD (**A**) or 3CD (**B**) was quantified as a percentage of
282 3D^{pol} containing products (n = 2 ± SD).

Polyprotein processing regulates FMDV replication

283 To investigate whether the $3B_3^{T>K}$ precursor was also sensitive to cleavage by $3C^{pro}$
284 when this is present as part of a larger precursor molecule, we generated a
285 $3AB_{1,2,3}CD$ expression construct in which all the cleavage boundaries had been
286 mutated. Thus, the protease activity of this precursor was retained but only in the
287 context of a full-length $3AB_{1,2,3}CD$ polyprotein. Our *trans*-cleavage assay was
288 repeated using this new construct, termed $3AB_{1,2,3}C^{pro}D$, in place of the purified $3C^{pro}$
289 enzyme used above (Figure 4 and Figure S2).

290 As before, the $3C^{C163A}$ mutation prevented self-proteolysis when present within the
291 WT precursor or the precursor containing the $3B_3^{T>K}$ substitution, as expected.
292 Addition of the proteolytically active $3AB_{1,2,3}C^{pro}D$ construct resulted in processing of
293 the proteolytically inactive $3AB_{1,2,3}CD$ precursor bearing the $3B_3^{T>K}$ mutation to
294 generate $3AB_{1,2,3}$ and $3CD$. This pattern of processing was similar to that observed
295 following addition of active $3C^{pro}$, as observed above (Figure 3). This contrasts with
296 the WT proteolytically inactive $3AB_{1,2,3}CD$ precursor, which was not significantly
297 processed *in trans* by $3AB_{1,2,3}C^{pro}D$. Taken together, these data suggest that the
298 $3B_3^{T>K}$ mutation at the $3B_3$ - $3C$ junction generates a cleavage boundary that is
299 preferentially recognised by $3C^{pro}$ (even when delivered as part of a larger precursor).
300 Thus, driving rapid *trans*-mediated proteolysis at this junction results in over-
301 production of a specific set of viral precursor proteins.

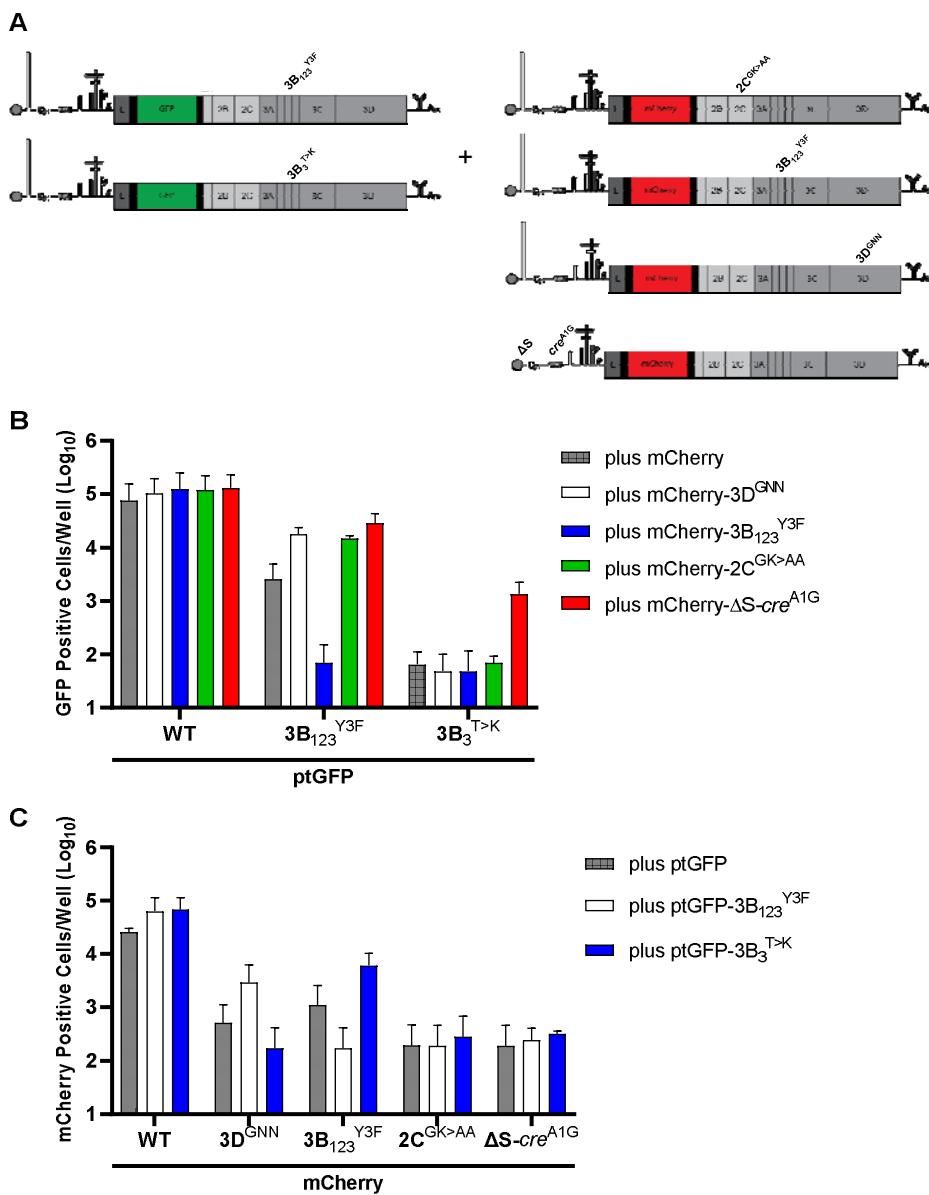
Polyprotein processing regulates FMDV replication

302

303 **Figure 4. The 3B₃^{T>K} point mutation drives trans-mediated precursor**
304 **proteolysis.** Plasmids expressing proteolytically inactive versions of WT or 3B₃^{T>K}
305 polyproteins (3C^{C163A} and 3B₃^{T>K}3C^{C163A}, respectively) were used to prime coupled
306 [³⁵S] labelled transcription/translation assays in the presence of 3AB_{1,2,3}C^{pro}D, a
307 proteolytically active precursor with all cleavage boundaries mutated to prevent self-
308 proteolysis (+3AB_{1,2,3}C^{pro}D). At regular intervals, samples were taken and reactions
309 stopped by the addition of 2 x Laemmli buffer. Proteins were separated by SDS-
310 PAGE and visualised by autoradiography. The relative proportion of uncleaved
311 3AB_{1,2,3}CD (**A**) or 3CD (**B**) was quantified as a percentage of 3D^{pol} containing
312 products (n = 2 ± SD).

Polyprotein processing regulates FMDV replication

313 **Increasing the rate of 3B₃-3C cleavage prevents production of *trans*-functional**
314 **2C and 3D^{pol} but not 3B.**


315 The *in vitro* polyprotein processing data above implies that the 3B₃^{T>K} mutation
316 increases the rate of proteolysis at the 3B₃-3C junction by stimulating *trans*-mediated
317 proteolysis. In doing so, it drives the formation of 2BC, 3AB_{1,2,3} and 3CD precursors
318 to the detriment of other products such as the enzymes 2C and 3D^{pol}. In our previous
319 studies we used *trans*-complementation assays to investigate protein function.
320 These assays involve the co-transfection of two replication defective replicon
321 constructs that express different fluorescent reporter genes, allowing their replication
322 to be differentially monitored. Co-transfection of the two replicons allows exchange of
323 viral non-structural proteins within replication complexes to permit replication of one
324 (or both) of the input genomes (41) (Figure 5A). Here, we used this approach to
325 investigate whether stimulating *trans*-mediated proteolysis at the 3B₃-3C junction
326 prevented the production of functional 2C. To do this, mutants introduced into 2C
327 were investigated to determine if these could be compensated by a replicon
328 harbouring a 3B₃^{T>K} mutation. If this is possible, it would indicate that changing the
329 temporal order of polyprotein processing does not prevent 2C function.

330 To this end, replication-defective mCherry constructs were generated which
331 contained inactivating mutations at catalytic 2C residues (termed, mCherry-2C^{GK>AA})
332 (42). This construct was co-transfected with the ptGFP-3B₃^{T>K} replicon (as used in
333 Figure 1C), or a WT ptGFP replicon control. As a positive control, co-transfections
334 were also performed with an mCherry-3B_{1,2,3}^{Y3F} replicon (which contains inactivating
335 point mutations to the triptych of 3B genes), which we have shown can be
336 complemented *in trans* (16). Co-transfections were also performed with WT mCherry
337 or ptGFP replicons to eliminate the possibility of any dominant-negative effects and

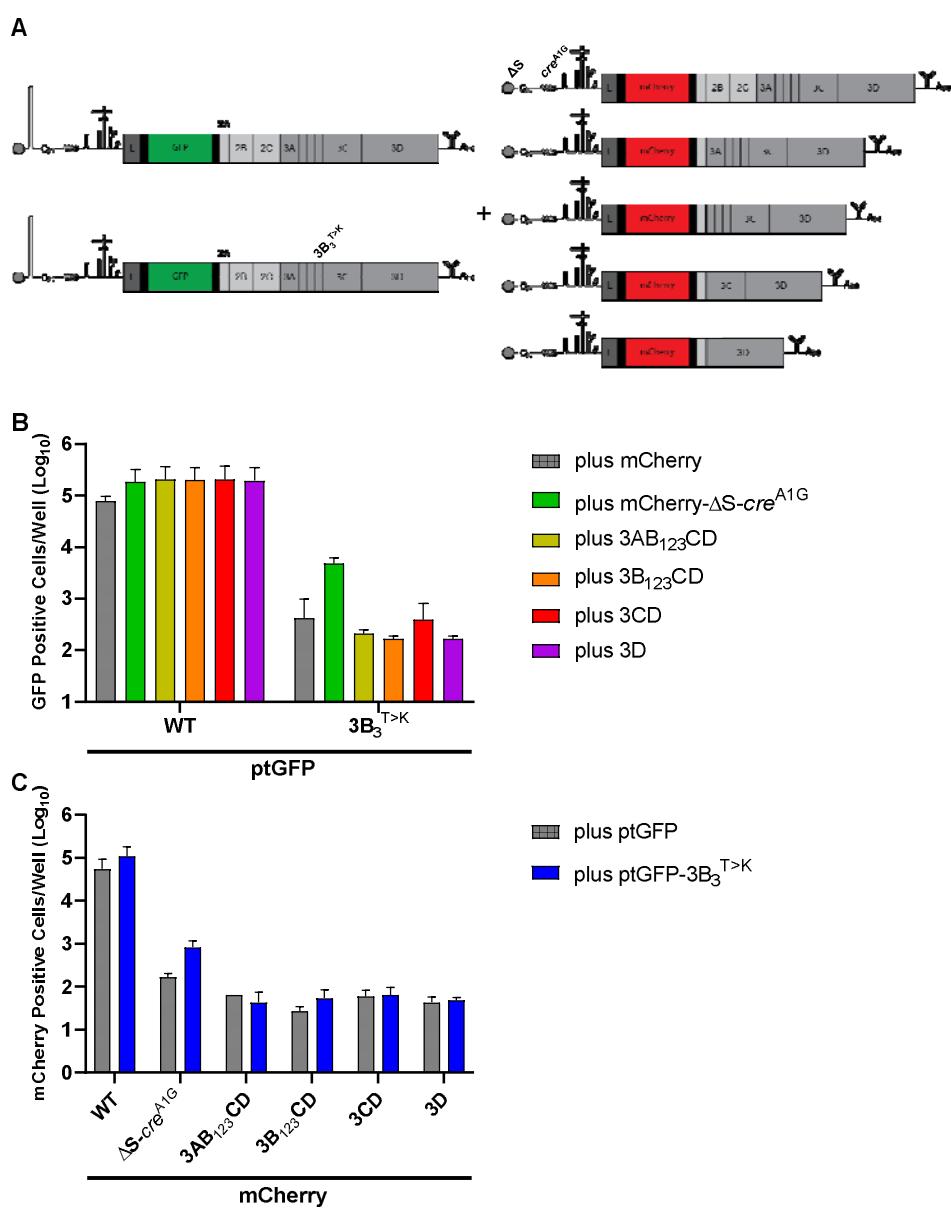
Polyprotein processing regulates FMDV replication

338 yeast tRNA to act as a negative control for no complementation (Figure 5A).
339 Replication was monitored by both ptGFP and mCherry expression and the number
340 of fluorescent positive cells quantified at 8 hours post-transfection, as documented
341 previously (41). For brevity the key data sets and controls are shown (Figure 5B and
342 5C) with the complete data set shown in supplementary material (Figure S3).
343 Replication of the WT mCherry or ptGFP replicon did not significantly change upon
344 co-transfection with any of the RNAs tested, suggestive of no dominant negative
345 effects. Replication of the mCherry-3B_{1,2,3}^{Y3F} replicon was significantly enhanced by
346 the ptGFP-3B₃^{T>K} construct, as anticipated. The mCherry-2C^{GK>AA} replicon was not
347 recovered by any of the helper replicons, suggesting the functions of 2C cannot be
348 provided *in trans* (Figure 5C). We also noticed that no functional complementation
349 was provided to the ptGFP-3B3^{T>K} mutant replicon by co-transfection with mCherry-
350 3B_{1,2,3}^{Y3F}. To investigate this further we extended our complementation experiments
351 to include mCherry replicons containing mutations to *cis*-acting RNA replication
352 elements such as the S-fragment or *cre*. The rationale here was that previous
353 studies have demonstrated that deleting *cis*-acting replication elements can improve
354 or allow recovery of replicons *in trans* (41), presumably by increasing the free pool of
355 proteins which would otherwise be sequestered by *cis* interactions. When the ptGFP-
356 3B₃^{T>K} replicon was co-transfected with a mCherry-ΔS or mCherry-*cre*^{A1G} replicon
357 we observed a significance increase in ptGFP expression, indicating that inactivation
358 of these *cis*-acting replication elements permitted complementation of the ptGFP-
359 3B₃^{T>K} replicon *in trans* (Figure 5B). Together this data suggests that the ptGFP-
360 3B₃^{T>K} replicon can supply material *in trans* to recover replicons defective in 3B but
361 not 2C or 3D^{pol} and can only receive complementation *in trans* from replicons with
362 inactivating mutations or deletions to *cis*-acting RNA elements.

Polyprotein processing regulates FMDV replication

363

364 **Figure 5. The 3B₃^{T>K} substitution prevents complementation of 2C mutants in**
 365 ***trans*.** (A) Schematic of the *trans*-complementation experiment which involved co-
 366 transfecting BHK-21 cells with mCherry replicons containing replication-defective 2C
 367 or 3B mutations together with a WT ptGFP, ptGFP-3B₃^{T>K} or ptGFP-3D^{GNN} replicon.
 368 Fluorescent protein expression was monitored hourly for 24 hours. The data show
 369 (B) ptGFP positive cells per well or (C) mCherry positive cells per well at 8 hours
 370 post-transfection (n = 2 ± SD).


Polyprotein processing regulates FMDV replication

371 **Complementation of replicons with the $3B_3^{T>K}$ substitution reveals a**
372 **requirement for the full-length polyprotein.**

373 Having shown that deletion of *cis*-acting RNA elements allowed complementation of
374 the ptGFP- $3B_3^{T>K}$ replicon, we took advantage of this system to identify which protein
375 component was required for complementation. To this end, we generated a new
376 panel of mCherry replicons in which both the S-fragment and *cre* were inactivated
377 but which expressed just a subset of the polyprotein, namely $3AB_{1,2,3}CD$, $3B_{1,2,3}CD$,
378 $3CD$ or $3D^{pol}$ (Figure 6A). With these constructs, we were able to probe whether the
379 ptGFP- $3B_3^{T>K}$ replicon is missing one of these protein components to initiate
380 replication. This new panel of replicons was used in complementation assays with
381 the same controls as described above, with replication monitored by both ptGFP and
382 mCherry expression, and the number of fluorescent positive cells quantified at 8
383 hours post-transfection. Again, for clarity the key data sets and controls are shown
384 (Figure 6B and 6C) with the complete data set shown in supplementary material
385 (Figure S4).

386 As described above we found that replicons lacking a functional S-fragment and/or
387 *cre*, were able to significantly increase the replication of the ptGFP- $3B_3^{T>K}$ replicon,
388 with ptGFP expression increasing >10-fold compared to the controls. In contrast, no
389 complementation of the ptGFP- $3B_3^{T>K}$ replicon was observed when co-transfected
390 with RNAs expressing just $3AB_{1,2,3}CD$, $3B_{1,2,3}CD$, $3CD$ or $3D^{pol}$. Hence it would
391 appear that $3AB_{1,2,3}CD$ is not sufficient to support replication of a $3B_3^{T>K}$ replicon and
392 provision of 2BC containing proteins is also required.

Polyprotein processing regulates FMDV replication

393

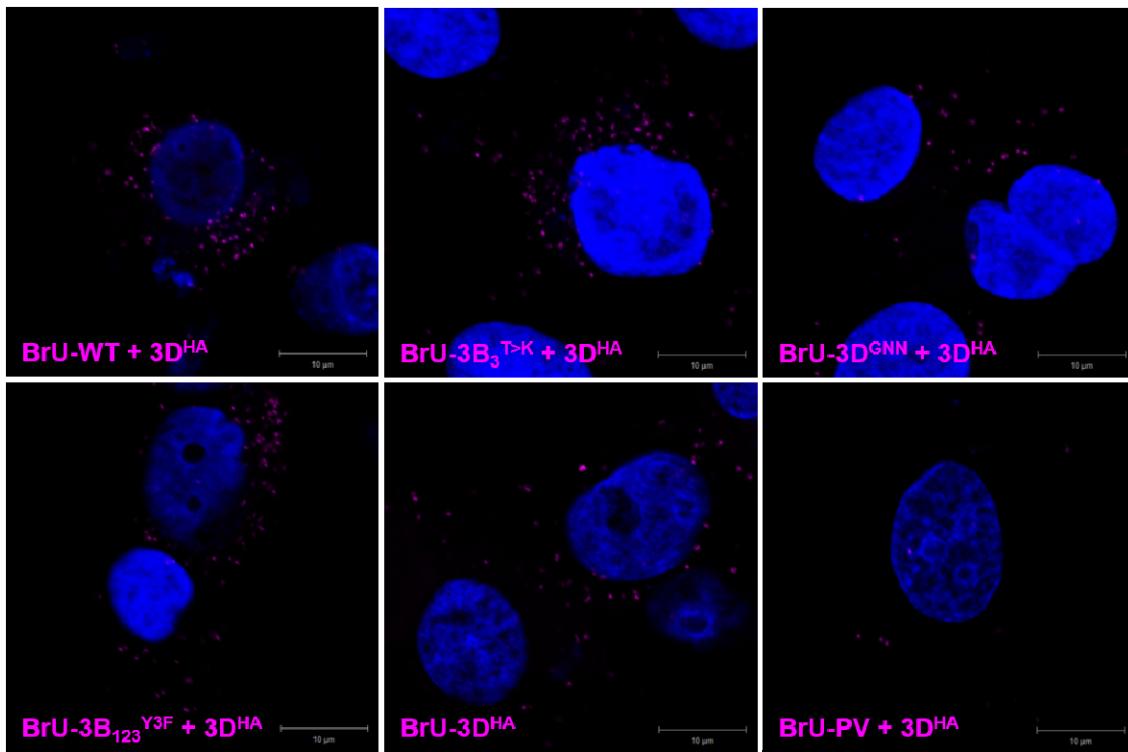
394 **Figure 6. S-fragment deletions allow *trans*-complementation of *cis*-acting**
395 **replication components. (A)** Schematic of the trans-complementation experiment
396 which involved co-transfecting BHK-21 cells with mCherry replicons containing S-
397 fragment deletions together with a WT ptGFP, ptGFP-3B₃^{T>K} or ptGFP-3D^{GNN}
398 replicon. Fluorescent protein expression was monitored hourly for 24 hours. The
399 data show **(B)** ptGFP positive cells per well or **(C)** mCherry positive cells per well at
400 8 hours post-transfection ($n = 2 \pm \text{SD}$).

Polyprotein processing regulates FMDV replication

401 **The 3B₃^{T>K} mutation does not prevent RNA-protein interactions.**

402 A key observation from our *trans*-complementation work is that the 3B₃^{T>K} mutation
403 prevents complementation of this non-functional replicon unless the *cis*-acting S-
404 fragment or *cre* elements are deleted from the helper RNA. A possible explanation is
405 that the altered cleavage pattern induced by the 3B₃^{T>K} mutation prevents replication
406 components (e.g., the 2C helicase or 3D^{pol}) from interacting with the template RNA,
407 thus preventing its replication.

408 To investigate this possibility, we adapted a proximity ligation assay (PLA) to study
409 interactions between replicon RNA and components of the replication complex.


410 Firstly, we *in vitro* transcribed ptGFP-3B₃^{T>K} replicon RNA (or ptGFP-3D^{GNN} and
411 ptGFP-3B_{1,2,3}^{Y3F} controls) in the presence of BrUTP to generate BrU labelled
412 replicon RNA. Alongside, a WT ptGFP was transcribed with BrUTP and used to
413 confirm that BrU labelling had no significant inhibitory effect on replicon replication
414 (data unincluded). The ptGFP-3B₃^{T>K} BrU replicon was co-transfected into BHK-21
415 cells seeded on coverslips together with a WT replicon in which 3D^{pol} had been
416 labelled with a HA epitope (termed 3D^{HA}). We have previously demonstrated that
417 tagging 3D^{pol} with HA in this manner does not affect replication (41). The coverslips
418 were fixed and the interaction between the BrU-3B₃^{T>K} RNA and 3D^{HA} probed by
419 PLA using anti-BrU and anti-HA antibodies. This allows RNA-protein interactions
420 between the ptGFP-BrU-3B₃^{T>K} RNA and 3D^{HA} protein to be measured *in situ*. A
421 positive PLA signal indicates that the mutant replicon RNA can associate with
422 enzymes of the replication complex provided *in trans*. No signal indicates a lack of
423 association (Figure 7).

424 Co-transfection of the WT ptGFP BrU labelled replicon with the WT 3D^{HA} replicon
425 generated PLA signals that were easily detectable, indicative of interactions between

Polyprotein processing regulates FMDV replication

426 the ptGFP RNA and 3D^{HA} protein as predicted from mixing of replication complex
427 components. In contrast, little or no PLA signal was detected when a WT BrU
428 labelled poliovirus replicon (BrU-PV) was co-transfected with the 3D^{HA} helper
429 replicon, suggesting the PLA signal is generated through specific mixing of
430 replication complexes. Co-transfection of the ptGFP-3B₃^{T>K}, ptGFP-3B_{1,2,3}^{Y3F} or
431 ptGFP-3D^{GNN} BrU labelled replicon RNAs with the WT 3D^{HA} replicon also generated
432 PLA signals that were easily detectable, albeit at a lower level than in the control
433 sample. This would suggest the 3B₃^{T>K} mutation does not prevent recruitment of its
434 cognate RNA with a functional RNA polymerase.

Polyprotein processing regulates FMDV replication

435

436 **Figure 7. Detection of FMDV RNA-protein complexes by PLA.** BHK-21 cells were
437 co-transfected with BrU-labelled ptGFP replicon RNA together with 3D^{HA}-labelled
438 replicon RNA. At 4 hours post-transfection cells were fixed and 3D^{HA}-BrU RNA
439 complexes detected by proximity ligation assay (PLA) using anti-HA and anti-BrU
440 primary antibodies together with PLA-labelled secondary antibodies. The *in-situ* PLA
441 signal is detected as foci in the cell cytoplasm (pseudo-coloured magenta). Cell
442 nuclei were stained with DAPI (pseudo-coloured blue). Images were captured on a
443 Zeiss LSM-880 confocal microscope (bar 10 μ m).

Polyprotein processing regulates FMDV replication

444 Discussion

445 All well-studied positive-sense RNA viruses produce polyproteins that help
446 compensate for a relatively limited coding capacity. These polyproteins are
447 processed by viral protease(s) to generate mature proteins via functional
448 intermediates in a highly regulated manner that modulates viral replication. However,
449 establishing how polyprotein processing regulates viral replication can be
450 challenging due to the intricate nature of these interactions. In a previous study of
451 the FMDV polyprotein we showed that changing six amino acids at the 3B₃-3C
452 cleavage junction prevents viral replication by disrupting polyprotein processing (16).
453 We postulated that this observation provided an opportunity to investigate the role of
454 FMDV polyproteins in viral genome replication. First we investigated whether
455 consequences of substituting the six amino acids could be replicated by a single
456 change. To do this we targeted the P2 residue at the 3B₃-3C cleavage junction,
457 which from our previous mutational investigation appeared to be the most important
458 for dictating cleavage efficiency. A single lysine substitution was introduced in this
459 position, which we predicted would increase processing and prevent replication.
460 Using a GFP encoding replicon, we showed this single substitution (3B₃^{T>K})
461 prevented viral replication and in *in vitro* translation assays changed polyprotein
462 processing, as predicted.
463 To build a more complete picture of how the 3B₃^{T>K} construct changed polyprotein
464 processing and understand the mechanism that underpinned this change, we
465 employed a combination of *in vitro* translation assays, immunoprecipitation and
466 *trans*-cleavage assays in the context of the FMDV non-structural polyprotein. We
467 found that a 3B₃-3C cleavage junction bearing this mutation was more efficiently
468 cleaved by 3C^{pro} *in trans* compared to WT. Furthermore, the 3B₃^{T>K} substitution also

Polyprotein processing regulates FMDV replication

469 rendered this cleavage junction sensitive to proteolysis by 3C^{pro} when the protease
470 was present as part of a larger precursor (i.e., as part of another molecule of
471 3AB_{1,2,3}CD). Thus, the consequence of introducing the 3B₃^{T>K} substitution was to
472 generate a substrate that was more efficiently cleaved (potentially equal to or greater
473 than either 2B-2C or 2C-3A cleavage sites). This changes the subset of proteins
474 produced; generating 2BC3AB_{1,2,3} (that is not typically observed during infection (7,
475 43)) significantly increasing levels of 3CD and 2BC and reducing levels of the
476 3AB_{1,2,3}CD. The identity of these products was based on both molecular weight and
477 immunoprecipitation experiments. The 3B₃^{T>K} mutant construct did generate fully-
478 cleaved 2B and 2C at a reduced rate demonstrating that 3C^{pro} as part of 3CD is
479 proteolytically active, but processing of 3AB_{1,2,3} and 3CD was severely impaired as
480 observed previously (16).

481 Our data are consistent with biochemical investigations using purified 3C^{pro} which
482 showed that charged residues in the P2 position of the cleavage junction are more
483 efficiently recognised (40, 44-46). It is also consistent with the suggestion that 3C^{pro}
484 retains activity as part of a larger precursor but potentially at lower efficiencies (47-
485 50). Our data therefore agrees with a mechanism of polyprotein processing
486 (suggested from studies with other picornaviruses) in which 3C^{pro} as part of a larger
487 precursor can process the WT 2B-2C and/or 2C-3A junctions most efficiently *in trans*,
488 hence providing a level of regulation to the processing cascade. After these initial
489 cleavage events, 3AB_{1,2,3}CD is processed more slowly to allow intermediate and
490 mature cleavage products to fulfil their roles in viral replication (37). Processing of
491 the 3AB_{1,2,3}CD precursor can thus proceed potentially through both *cis* and *trans*
492 mechanisms (i.e., intra- and inter-molecular cleavage) and can give rise to
493 alternative precursors, for example, 3AB_{1,2,3}C and 3CD. It is clearly suggested from

Polyprotein processing regulates FMDV replication

494 our data that *trans* cleavage of one 3AB_{1,2,3}CD molecule by another polyprotein is
495 possible. However, the WT precursor was not processed efficiently by 3AB_{1,2,3}CD *in*
496 *trans*, and the observation that 3C^{pro} in the context of 3CD is proteolytically active,
497 but only able to cleave efficiently at 2B-2C and 2C-3A junctions could suggest that
498 other factors (e.g., a *cis* mediated mechanism), are also involved. Picornavirus 3C^{pro}
499 proteins are also implicated in RNA binding and lipid biogenesis (potentially as part
500 of a precursor), and therefore may act as co-factors to dictate processing pathways
501 (30, 51, 52).

502 Using *trans*-complementation assays we investigated the function of these different
503 sets of precursors in FMDV replication. A replicon containing the 3B₃^{T>K} substitution
504 (i.e., producing increased level of 2BC, 3AB_{1,2,3} and 3CD), was able to complement
505 defective mutations in the 3B proteins but not 2C or 3D^{pol}, suggesting that this
506 replicon can produce active primers for replication, 3B₁, 3B₂, and/or 3B₃ but inactive
507 replication enzymes, 2C^{pro} and 3D^{pol}. Interestingly the 3B₃^{T>K} replicon was only
508 complemented by a replicon lacking *cis*-acting RNA replication elements (cre, S-
509 fragment or both) and when the protein components were provided as part of an
510 entire polyprotein. One interpretation of these pieces of data is that a functional
511 interaction between the non-structural polyprotein and viral RNA elements is
512 required to generate functional enzymes for replication (e.g., 2C^{pro} and 3D^{pol} but not
513 3B). Hence, if processing of the precursor occurs too rapidly it cannot associate with
514 these RNA elements required for replication and could provide a level of temporal
515 control. A similar mechanism has been suggested for PV where two molecules of
516 3ABCD are required for replication, one which produces 3CD that interacts with viral
517 RNA structures while one produces enzymatically active 3D^{pol} (33, 37, 53, 54). This
518 two molecule model of processing of 3ABCD required for replication would also be

Polyprotein processing regulates FMDV replication

519 compatible with data that suggests that a larger precursor (such as 3BC) is required
520 to deliver 3B for RNA replication (15, 55, 56). This work extends the growing body of
521 evidence suggesting that processing intermediates are essential for controlling
522 temporally and structurally the organisation of the picornavirus replication organelle.

Polyprotein processing regulates FMDV replication

523 **Materials and Methods**

524 **Cell lines and plasmids**

525 BHK-21 cells obtained from the ATCC (LGC Standard) were maintained in
526 Dulbecco's modified Eagle's medium with glutamine (Sigma-Aldrich) supplemented
527 with 10 % FCS, 50 U / mL penicillin and 50 µg / mL streptomycin.

528 Plasmids carrying wild-type FMDV replicons, pRep-mCherry and pRep-ptGFP, have
529 already been described (39, 57), along with equivalent plasmids containing 3D^{GNN},
530 3B_{3/2} and ΔS-fragment mutations (16, 39, 41). Mutations within these plasmids were
531 performed by standard two-step overlapping PCR mutagenesis. For coupled *in vitro*
532 transcription and translation experiments pcDNA3.1(+) based expression plasmids
533 were generated by PCR. Briefly, the relevant FMDV sequence was amplified to
534 including flanking *NotI* restriction enzymes and upstream Kozak modified
535 translational start site. The *NotI* digested PCR products were cloned into *NotI*
536 digested pcDNA3.1(+) (Thermo Fisher Scientific). The sequence of all plasmids used
537 in this study was confirmed by Sanger sequencing. The sequences of all primers and
538 plasmids are available on request.

539 **Coupled transcription and translation reactions**

540 Coupled *in vitro* transcription and translation assays were performed using the TNT
541 Quick Coupled Transcription/Translation system (Promega) as described previously
542 (16). Reactions contained 10 µL lysate with 250 ng of pcDNA T7 expression plasmid
543 and 0.5 µL [³⁵S] methionine/cysteine (PerkinElmer). Reactions were incubated at
544 30°C for 40 minutes chasing with 2 µL of 50 mg / mL unlabelled methionine/cysteine.
545 Reactions were stopped at 20 minute or hourly intervals by the addition of 2 x
546 Laemmli buffer. Samples were separated by SDS-PAGE before visualisation of
547 radiolabelled products by autoradiography.

Polyprotein processing regulates FMDV replication

548 For the *trans*-cleavage assays, the TNT reactions were supplemented with purified
549 FMDV 3C^{pro} (a kind gift from Dr Tobias Tuthill (58)) to the indicated final
550 concentration from dilution of a 1 mM stock, simultaneous to the addition of
551 unlabelled methionine/cysteine. Reactions were stopped at 20 minute or hourly
552 intervals by the addition of 2 x Laemmli buffer and the 3C^{pro}-mediated proteolysis of
553 radiolabelled precursor monitored by SDS-PAGE.

554 ***In vitro* transcription**

555 Plasmids containing cDNA copies of FMDV replicons were linearised with Ascl
556 before being used to generate T7 *in vitro* transcribed RNA as previously described
557 (39, 41). The reaction was incubated at 32°C for 4 hours before being treated with
558 DNase for 20 minutes at 37°C then purified using an RNA clean and concentrate kit
559 (Zymo Research). The RNA quality was checked using a MOPS/formaldehyde
560 agarose gel electrophoresis.

561 **Replication and complementation assays**

562 BHK-21 cells were seeded into 24-well tissue cultures vessels, allowed to adhere
563 overnight for 16 hours, before duplicate wells were transfected with 1 µg of each *in*
564 *vitro* transcribed RNA using Lipofectin (Thermo Fisher Scientific) as previously
565 described (39). For co-transfection complementation assays 500 ng of each RNA
566 molecules were mixed prior to the addition of Lipofectin reagent as previously
567 described (41). Fluorescent reporter expression was monitored using an IncuCyte
568 Zoom Dual Colour FLR (Essen BioSciences) live-cell imaging system housed within
569 a humidified incubator scanning hourly up to 24 hours post-transfection. Images
570 were captured and analysed using the associated software for fluorescent protein
571 expression, as previously described (41). Control transfections (untransfected and
572 the 3D^{GNN} transfection for input translation) were used to determine fluorescent

Polyprotein processing regulates FMDV replication

573 thresholds and identify positive objects from background fluorescence. A positive
574 object was determined as having an average fluorescent intensity of >8 green
575 calibration units (GCU; an arbitrary fluorescent unit) and >2 RCU (red calibration
576 units), which were kept constant throughout the experiments. The number of positive
577 cells per well was determined from the average of up to nine non-overlapping
578 images per well. Unless stated otherwise, data are presented as mean fluorescent
579 positive cells per well at 8 hours post-transfection when replication was
580 approximately maximal. For each experiment, the data were analysed as both
581 fluorescent cell counts per well and total fluorescent intensity per well. There was no
582 difference observed when the data were analysed in either way. Unless otherwise
583 stated, statistical analysis was performed using a two-tailed unpaired t-test.

584 **Immunofluorescence and proximity ligation assays (PLA)**

585 BHK-21 cells seeded onto coverslips were co-transfected with replicon RNA before
586 fixing in 4 % paraformaldehyde and washing with PBS. Immunofluorescence was
587 conducted as previously described (41). Primary antibodies used were sheep anti-
588 BrdU (Sigma-Aldrich), rabbit anti-FMDV 3D (a kind gift from Francisco Sobrino) and
589 mouse anti-HA (Sigma-Aldrich). Proximity ligation assays (PLA) were conducted
590 using the Duolink® In Situ Red Kit (Sigma-Aldrich), following manufacturer's
591 instructions.

592 **Immunoprecipitation**

593 Immunoprecipitation reactions were performed using Dynabeads Protein G
594 (Invitrogen). To bind the antibody to magnetic beads, 5 µL of the FMDV 2C antibody
595 (a kind gift from Francisco Sobrino) was mixed with 195 µL PBS and incubated at
596 room temperature with 50 µL magnetic beads, shaking for 1 hour, after which the
597 supernatant was removed from the beads. Transcription and translation reaction

Polyprotein processing regulates FMDV replication

598 samples were mixed with 200 μ L PBS and incubated shaking at room temperature
599 with 25 μ L of Dynabeads as a pre-clear step. The tube was placed on the magnet
600 and the supernatant removed. This was added to the 50 μ L of Dynabeads with the
601 2C antibody bound and incubated at room temperature shaking for 1 hour. The flow
602 through was removed and added to 2x Laemmli buffer. The beads were washed
603 three times with PBS pH 7.4 with 0.02 % Tween 20 and each wash supernatant
604 retained. Proteins were eluted from the beads by adding 50 μ L of 2x Laemmli buffer
605 and heating to 100°C.

Polyprotein processing regulates FMDV replication

606 **Funding**

607 This work was supported by BBSRC grant (BB/T015748/1) awarded to MRH, DJR
608 and NJS. DMP was funded by a BBSRC DTP studentship (BB/M011151/1). MRH
609 was also supported by the MRC (MR/S007229/1). The funders had no role in the
610 study design, data collection and analysis, decision to publish or preparation of the
611 manuscript.

612 **Acknowledgements**

613 We thank Francisco Sobrino (Centro De Biología Molecular Severo Ochoa, Madrid)
614 for the gift of FMDV primary antibodies and Toby Tuthill (The Pirbright Institute,
615 Pirbright) for the gift of purified 3C.

616 **Author contributions**

617 MRH, NJS and DJR designed the study and wrote the manuscript. DMP conducted
618 the *in vitro* translation experiments. DMP and MRH conducted the replication assays.
619 MRH conducted the immunofluorescence assays. DMP and MRH analysed the data.
620 MRH, NJS and DJR provided supervision.

621 **Materials & correspondence**

622 Correspondence and materials requests should be directed to MRH.

Polyprotein processing regulates FMDV replication

623 **References**

- 624 1. Yost SA, Marcotrigiano J. 2013. Viral precursor polyproteins: keys of
625 regulation from replication to maturation. *Curr Opin Virol* 3:137-42.
- 626 2. Moffat K, Knox C, Howell G, Clark SJ, Yang H, Belsham GJ, Ryan M,
627 Wileman T. 2007. Inhibition of the secretory pathway by foot-and-mouth
628 disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and
629 the site of inhibition is determined by the subcellular location of 2C. *J Virol*
630 81:1129-39.
- 631 3. Zhu Z, Wang G, Yang F, Cao W, Mao R, Du X, Zhang X, Li C, Li D, Zhang K,
632 Shu H, Liu X, Zheng H. 2016. Foot-and-Mouth Disease Virus Viroporin 2B
633 Antagonizes RIG-I-Mediated Antiviral Effects by Inhibition of Its Protein
634 Expression. *J Virol* 90:11106-11121.
- 635 4. Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, Belsham GJ,
636 Curry S. 2010. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein
637 with a coordinated ATP hydrolysis mechanism. *J Biol Chem* 285:24347-59.
- 638 5. Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagozzi A, Kutish GF,
639 Rock DL. 2005. Comparative genomics of foot-and-mouth disease virus. *J*
640 *Virol* 79:6487-504.
- 641 6. Roberts PJ, Belsham GJ. 1995. Identification of critical amino acids within the
642 foot-and-mouth disease virus leader protein, a cysteine protease. *Virology*
643 213:140-6.
- 644 7. Vakharia VN, Devaney MA, Moore DM, Dunn JJ, Grubman MJ. 1987.
645 Proteolytic processing of foot-and-mouth disease virus polyproteins
646 expressed in a cell-free system from clone-derived transcripts. *J Virol*
647 61:3199-207.

Polyprotein processing regulates FMDV replication

- 648 8. Strelbel K, Beck E. 1986. A second protease of foot-and-mouth disease virus.
649 J Virol 58:893-9.
- 650 9. Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. 2001.
651 Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates
652 not a proteolytic reaction, but a novel translational effect: a putative ribosomal
653 'skip'. J Gen Virol 82:1013-1025.
- 654 10. Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini
655 EA, Hanecak R, Lee JJ, van der Werf S, Anderson CW, Wimmer E. 1981.
656 Primary structure, gene organization and polypeptide expression of poliovirus
657 RNA. Nature 291:547-53.
- 658 11. Pallansch MA, Kew OM, Semler BL, Omilianowski DR, Anderson CW,
659 Wimmer E, Rueckert RR. 1984. Protein processing map of poliovirus. J Virol
660 49:873-80.
- 661 12. Gao Y, Sun SQ, Guo HC. 2016. Biological function of Foot-and-mouth
662 disease virus non-structural proteins and non-coding elements. Virol J 13:107.
- 663 13. Grubman MJ, Baxt B. 2004. Foot-and-mouth disease. Clin Microbiol Rev
664 17:465-93.
- 665 14. Bedard KM, Semler BL. 2004. Regulation of picornavirus gene expression.
666 Microbes Infect 6:702-13.
- 667 15. Oh HS, Pathak HB, Goodfellow IG, Arnold JJ, Cameron CE. 2009. Insight into
668 poliovirus genome replication and encapsidation obtained from studies of 3B-
669 3C cleavage site mutants. J Virol 83:9370-87.
- 670 16. Herod MR, Gold S, Lasecka-Dykes L, Wright C, Ward JC, McLean TC,
671 Forrest S, Jackson T, Tuthill TJ, Rowlands DJ, Stonehouse NJ. 2017. Genetic

Polyprotein processing regulates FMDV replication

- 672 economy in picornaviruses: Foot-and-mouth disease virus replication exploits
673 alternative precursor cleavage pathways. PLoS Pathog 13:e1006666.
- 674 17. Oh HS, Banerjee S, Aponte-Diaz D, Sharma SD, Aligo J, Lodeiro MF, Ning G,
675 Sharma R, Arnold JJ, Cameron CE. 2018. Multiple poliovirus-induced
676 organelles suggested by comparison of spatiotemporal dynamics of
677 membranous structures and phosphoinositides. PLoS Pathog 14:e1007036.
- 678 18. den Boon JA, Ahlquist P. 2010. Organelle-like membrane
679 compartmentalization of positive-strand RNA virus replication factories. Annu
680 Rev Microbiol 64:241-56.
- 681 19. Belsham GJ, Brangwyn JK. 1990. A region of the 5' noncoding region of foot-
682 and-mouth disease virus RNA directs efficient internal initiation of protein
683 synthesis within cells: involvement with the role of L protease in translational
684 control. J Virol 64:5389-95.
- 685 20. Lopez de Quinto S, Martinez-Salas E. 1997. Conserved structural motifs
686 located in distal loops of aphthovirus internal ribosome entry site domain 3 are
687 required for internal initiation of translation. J Virol 71:4171-5.
- 688 21. Lopez de Quinto S, Saiz M, de la Morena D, Sobrino F, Martinez-Salas E.
689 2002. IRES-driven translation is stimulated separately by the FMDV 3'-NCR
690 and poly(A) sequences. Nucleic Acids Res 30:4398-405.
- 691 22. Mason PW, Bezborodova SV, Henry TM. 2002. Identification and
692 characterization of a cis-acting replication element (cre) adjacent to the
693 internal ribosome entry site of foot-and-mouth disease virus. J Virol 76:9686-
694 94.
- 695 23. Forss S, Schaller H. 1982. A tandem repeat gene in a picornavirus. Nucleic
696 Acids Res 10:6441-50.

Polyprotein processing regulates FMDV replication

- 697 24. Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, Wimmer E. 2003.
698 Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by
699 the RNA polymerase of poliovirus. *J Virol* 77:891-904.
- 700 25. Paul AV, van Boom JH, Filippov D, Wimmer E. 1998. Protein-primed RNA
701 synthesis by purified poliovirus RNA polymerase. *Nature* 393:280-4.
- 702 26. Falk MM, Sobrino F, Beck E. 1992. VPg gene amplification correlates with
703 infective particle formation in foot-and-mouth disease virus. *J Virol* 66:2251-60.
- 704 27. Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. 2000. Identification of
705 an RNA hairpin in poliovirus RNA that serves as the primary template in the in
706 vitro uridylylation of VPg. *J Virol* 74:10359-70.
- 707 28. Nayak A, Goodfellow IG, Belsham GJ. 2005. Factors required for the
708 Uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides
709 by the RNA-dependent RNA polymerase (3Dpol) in vitro. *J Virol* 79:7698-706.
- 710 29. Kloc A, Diaz-San Segundo F, Schafer EA, Rai DK, Kenney M, de Los Santos
711 T, Rieder E. 2017. Foot-and-mouth disease virus 5'-terminal S fragment is
712 required for replication and modulation of the innate immune response in host
713 cells. *Virology* 512:132-143.
- 714 30. Amero CD, Arnold JJ, Moustafa IM, Cameron CE, Foster MP. 2008.
715 Identification of the oril-binding site of poliovirus 3C protein by nuclear
716 magnetic resonance spectroscopy. *J Virol* 82:4363-70.
- 717 31. Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, Filman DJ,
718 Cameron CE, Hogle JM. 2007. Crystal structure of poliovirus 3CD protein:
719 virally encoded protease and precursor to the RNA-dependent RNA
720 polymerase. *J Virol* 81:3583-96.

Polyprotein processing regulates FMDV replication

- 721 32. Xiang W, Harris KS, Alexander L, Wimmer E. 1995. Interaction between the
722 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA
723 replication. *J Virol* 69:3658-67.
- 724 33. Gamarnik AV, Andino R. 2000. Interactions of viral protein 3CD and poly(rC)
725 binding protein with the 5' untranslated region of the poliovirus genome. *J*
726 *Virol* 74:2219-26.
- 727 34. Harris KS, Xiang W, Alexander L, Lane WS, Paul AV, Wimmer E. 1994.
728 Interaction of poliovirus polypeptide 3CDpro with the 5' and 3' termini of the
729 poliovirus genome. Identification of viral and cellular cofactors needed for
730 efficient binding. *J Biol Chem* 269:27004-14.
- 731 35. Parsley TB, Towner JS, Blyn LB, Ehrenfeld E, Semler BL. 1997. Poly (rC)
732 binding protein 2 forms a ternary complex with the 5'-terminal sequences of
733 poliovirus RNA and the viral 3CD proteinase. *RNA* 3:1124-34.
- 734 36. Yang Y, Rijnbrand R, Watowich S, Lemon SM. 2004. Genetic evidence for an
735 interaction between a picornaviral cis-acting RNA replication element and
736 3CD protein. *J Biol Chem* 279:12659-67.
- 737 37. Spear A, Ogram SA, Morasco BJ, Smerage LE, Flanegan JB. 2015. Viral
738 precursor protein P3 and its processed products perform discrete and
739 essential functions in the poliovirus RNA replication complex. *Virology*
740 485:492-501.
- 741 38. Towner JS, Mazanet MM, Semler BL. 1998. Rescue of defective poliovirus
742 RNA replication by 3AB-containing precursor polyproteins. *J Virol* 72:7191-
743 200.

Polyprotein processing regulates FMDV replication

- 744 39. Herod MR, Loundras EA, Ward JC, Tulloch F, Rowlands DJ, Stonehouse NJ.
745 2015. Employing transposon mutagenesis to investigate foot-and-mouth
746 disease virus replication. *J Gen Virol* 96:3507-3518.
- 747 40. Sweeney TR, Roque-Rosell N, Birtley JR, Leatherbarrow RJ, Curry S. 2007.
748 Structural and mutagenic analysis of foot-and-mouth disease virus 3C
749 protease reveals the role of the beta-ribbon in proteolysis. *J Virol* 81:115-24.
- 750 41. Herod MR, Ferrer-Orta C, Loundras EA, Ward JC, Verdaguer N, Rowlands DJ,
751 Stonehouse NJ. 2016. Both cis and trans Activities of Foot-and-Mouth
752 Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. *J Virol*
753 90:6864-6883.
- 754 42. Gladue DP, O'Donnell V, Baker-Branstetter R, Holinka LG, Pacheco JM,
755 Fernandez-Sainz I, Lu Z, Brocchi E, Baxt B, Piccone ME, Rodriguez L, Borca
756 MV. 2012. Foot-and-mouth disease virus nonstructural protein 2C interacts
757 with Beclin1, modulating virus replication. *J Virol* 86:12080-90.
- 758 43. Clarke BE, Sangar DV. 1988. Processing and assembly of foot-and-mouth
759 disease virus proteins using subgenomic RNA. *J Gen Virol* 69 (Pt 9):2313-25.
- 760 44. Birtley JR, Curry S. 2005. Crystallization of foot-and-mouth disease virus 3C
761 protease: surface mutagenesis and a novel crystal-optimization strategy. *Acta
762 Crystallogr D Biol Crystallogr* 61:646-50.
- 763 45. Birtley JR, Knox SR, Jaulent AM, Brick P, Leatherbarrow RJ, Curry S. 2005.
764 Crystal structure of foot-and-mouth disease virus 3C protease. New insights
765 into catalytic mechanism and cleavage specificity. *J Biol Chem* 280:11520-7.
- 766 46. Zunszain PA, Knox SR, Sweeney TR, Yang J, Roque-Rosell N, Belsham GJ,
767 Leatherbarrow RJ, Curry S. 2010. Insights into cleavage specificity from the

Polyprotein processing regulates FMDV replication

- 768 crystal structure of foot-and-mouth disease virus 3C protease complexed with
769 a peptide substrate. *J Mol Biol* 395:375-89.

770 47. Davis GJ, Wang QM, Cox GA, Johnson RB, Wakulchik M, Dotson CA,
771 Villarreal EC. 1997. Expression and purification of recombinant rhinovirus 14
772 3CD proteinase and its comparison to the 3C proteinase. *Arch Biochem
773 Biophys* 346:125-30.

774 48. Jurgensen D, Kusov YY, Facke M, Krausslich HG, Gauss-Muller V. 1993.
775 Cell-free translation and proteolytic processing of the hepatitis A virus
776 polyprotein. *J Gen Virol* 74 (Pt 4):677-83.

777 49. Probst C, Jecht M, Gauss-Muller V. 1998. Processing of proteinase
778 precursors and their effect on hepatitis A virus particle formation. *J Virol*
779 72:8013-20.

780 50. Ypma-Wong MF, Dewalt PG, Johnson VH, Lamb JG, Semler BL. 1988.
781 Protein 3CD is the major poliovirus proteinase responsible for cleavage of the
782 P1 capsid precursor. *Virology* 166:265-70.

783 51. Banerjee S, Aponte-Diaz D, Yeager C, Sharma SD, Ning G, Oh HS, Han Q,
784 Umeda M, Hara Y, Wang RYL, Cameron CE. 2018. Hijacking of multiple
785 phospholipid biosynthetic pathways and induction of membrane biogenesis by
786 a picornaviral 3CD protein. *PLoS Pathog* 14:e1007086.

787 52. Shengjuler D, Chan YM, Sun S, Moustafa IM, Li ZL, Gohara DW, Buck M,
788 Cremer PS, Boehr DD, Cameron CE. 2017. The RNA-Binding Site of
789 Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.
790 *Structure* 25:1875-1886 e7.

791 53. Toyoda H, Franco D, Fujita K, Paul AV, Wimmer E. 2007. Replication of
792 poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as

Polyprotein processing regulates FMDV replication

- 793 well as to the adjacent C-rich spacer sequence between the cloverleaf and
794 the internal ribosomal entry site. *J Virol* 81:10017-28.
- 795 54. Shen M, Reitman ZJ, Zhao Y, Moustafa I, Wang Q, Arnold JJ, Pathak HB,
796 Cameron CE. 2008. Picornavirus genome replication. Identification of the
797 surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during
798 VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol
799 complex. *J Biol Chem* 283:875-88.
- 800 55. Pathak HB, Oh HS, Goodfellow IG, Arnold JJ, Cameron CE. 2008.
801 Picornavirus genome replication: roles of precursor proteins and rate-limiting
802 steps in oril-dependent VPg uridylylation. *J Biol Chem* 283:30677-88.
- 803 56. Nayak A, Goodfellow IG, Woolaway KE, Birtley J, Curry S, Belsham GJ. 2006.
804 Role of RNA structure and RNA binding activity of foot-and-mouth disease
805 virus 3C protein in VPg uridylylation and virus replication. *J Virol* 80:9865-75.
- 806 57. Tulloch F, Pathania U, Luke GA, Nicholson J, Stonehouse NJ, Rowlands DJ,
807 Jackson T, Tuthill T, Haas J, Lamond AI, Ryan MD. 2014. FMDV replicons
808 encoding green fluorescent protein are replication competent. *J Virol Methods*
809 209:35-40.
- 810 58. Newman J, Asfor AS, Berryman S, Jackson T, Curry S, Tuthill TJ. 2018. The
811 Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth
812 Disease Virus Capsid Precursor Processing and Assembly of Capsid
813 Pentamers. *J Virol* 92.
- 814