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Abstract

Background: The analysis of ancient oral metagenomes from archaeological human and animal samples is
largely confounded by contaminant DNA sequences from modern and environmental sources. Existing methods
for Microbial Source Tracking (MST) estimate the proportions of environmental sources, but do not perform
well on ancient metagenomes. We developed a novel method called decOM for Microbial Source Tracking and
classification of ancient and modern metagenomic samples using k-mer matrices.

Results: We analysed a collection of 360 ancient oral, modern oral, sediment/soil and skin metagenomes,
using stratified five-fold cross-validation. decOM estimates the contributions of these source environments in
ancient oral metagenomic samples with high accuracy, outperforming two state-of-the-art methods for source

tracking, FEAST and mSourceTracker.

metagenomic studies.

Conclusions: decOM is a high-accuracy microbial source tracking method, suitable for ancient oral
metagenomic data sets. The decOM method is generic and could also be adapted for MST of other ancient
and modern types of metagenomes. We anticipate that decOM will be a valuable tool for MST of ancient
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Background

Ancient metagenomics is the study of multi-species ge-
nomic data from samples that have degraded over rela-
tively long time [1]. Analysing ancient DNA (aDNA) is
particularly challenging due to deterioration and con-
tamination with environmental and modern contam-
inant DNA sequences. Deterioration refers to DNA
damage, which in genetic material from fossil records
usually comes in the form of depurination, nick for-
mation and cytosine deamination [2]. Contamination
refers to genetic material (ancient or modern) that
does not derive from the sample of interest [3]. It can
come from the microbes that are present in decaying
tissue, from the soil or sediment where the samples
were taken, or be an unintended consequence of ma-
nipulation during and after excavation [4, 5]. Despite
following well-established standards and precautions
to prevent modern DNA contamination and reduce
the proportion of environmental microbial taxa [5, 6],
a certain level of unwanted genetic material in the
samples is unavoidable [4]. Under these circumstances,
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contamination assessment of aDNA samples is crucial
not only to avoid misleading results after downstream
analysis, but also to decide which samples are worth
to be further sequenced [7].

The task of Microbial Source Tracking (MST) is to
quantify the proportion of different microbial envi-
ronments (sources) in a target microbial community
(sink) [8]. MST allows to quantify contamination [9]
in metagenomics sequencing data and to predict the
metadata class of a given microbial sample.

Two of the most widely used methods today for MST
in metagenomic data are metagenomic-SourceTracker
(mSourceTracker)[10] and FEAST [8], which depend
on previously annotated data using taxonomic abun-
dance profiles. mSourceTracker is a metagenomic ex-
tension of the popular SourceTracker [9], a method
that estimates contamination proportions using a mix-
ture model of taxonomic profiles via Gibbs sampling.
It is known that the sensitivity of SourceTracker can
be improved through parameter adjustments [11], how-
ever more rigorous evaluations are still needed to fully
understand the effect of adjusting multiple param-
eters and hyperparameters on its performance [12].
FEAST, released 8 years after SourceTracker, uses an
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expectation-maximisation approach that reduced the
running time of SourceTracker by a factor of 30 or
more. It has been reported to require parameter tun-
ing to achieve optimal performance [13], which is a
resource intensive procedure when handling with large
data sets.

FEAST and mSourceTracker require a reference
database which is necessary to build the taxonomy-
based clustering tables that both methods use as in-
put. Indeed, in both cases, metagenomic data must be
grouped into bins or clusters of sequences sharing the
same taxonomic classification, an information that is
not only highly dependent of the database used, but
also highly biased by the limited proportion of the mi-
crobial diversity that has been already sequenced and
taxonomically annotated. [14].

Finally, these taxonomy-based clustering tables can
also lead to misleading results depending on the se-
quence similarity metric and the threshold used to
define them [15]. To our knowledge, there are no re-
ported reference-free methods for contamination as-
sessment that use MST for large-scale metagenomic
analyses [13]. In this work we seek to move away
from database-dependent methods and use unsuper-
vised approaches exploiting read-level sequence com-
position and the wealth of information contained in
metagenomes that were previously sequenced.

Over the past years and with the decrease of sequenc-
ing costs, large databases of metagenomic collections
from all sorts of environments have become available
(16, 17, 18]. These metagenomic raw reads collectively
require petabases of storage, which prohibits their re-
analysis by most labs. This prompted the develop-
ment of efficient methods for exploring the sequence
information contained in these collections, via search-
ing substrings of length k (k-mers) [19]. Such methods
build an index of all k-mers and their counts over a col-
lection of samples in the form of a k-mer matrix, where
each cell of the matrix represents the abundance (or
presence/absence) of a k-mer in a sample. Such matri-
ces are a concise representation of genomic data that
deals more efficiently with sequencing errors and ge-
netic variation [19]. Tools such as kmtricks [20] allow
the rapid construction of k-mer matrices from massive
collections of sequencing data sets.

In this study we developed a novel reference-free and
k-mer-based method called decOM to perform MST
and environmental type prediction of a given microbial
sample. decOM was evaluated in a collection of ancient
oral metagenomes with variable contamination levels.
Our results show that decOM outperforms two of the
most commonly used MST methods in the multi-class
classification task of finding the most abundant source
environment in a sink. We tested our methodology on a
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collection of 360 metagenomic data sets of ancient oral
samples and its possible contaminants, in an external
validation set of 254 ancient oral samples and on a
simulated ancient calculus metagenome.

Implementation

Evaluation setting

Dental calculus or tartar is mineralized dental plaque
that contains remnants of microorganisms located in
the oral cavity [3], and has been established over the
past few years as one of the richest sources of aDNA
in the archaeological record [21]. Ancient dental cal-
culus is a great source of biomolecules (including ge-
netic material) that originate from the host, microbes,
food and the environment [6]. Dental calculus is an im-
portant reservoir of ancient human oral microbiomes,
and it offers a unique possibility to examine the links
between human health, diet, lifestyle and the environ-
ment throughout the course of human evolution [22].
Due to the proven relevance of aOral samples isolated
from calculus in the field of ancient paleogenomics, we
decided to perform our evaluations on a collection of
aOral metagenomic samples and their possible sources
of contamination.

The microbial composition of a given aOral sample
isolated from dental calculus has been modelled in pre-
vious studies as a mixture of DNA originating from
dental plaque, skin bacteria, soil and other sources
[23, 24]. For this reason, we gathered 360 metagenomic
data sets of diverse environment types: ancient oral
(aOral), sediment/soil, skin, or modern oral (mOral)
(Figure 1). We used this collection of real metagenomic
data to model the contribution of possible contami-
nants coming from sediment /soil and skin sources in a
group of aOral samples. In addition, we included a set
of mOral samples to assess whether our method can
tell apart modern and ancient oral environments.

The run accession codes for every aOral sample
were retrieved from AncientMetagenomeDir [1], a
community-curated collection of annotated ancient
metagenomic sample lists and standardised metadata.
Samples other than aOral were selected either because
they had been used by competing MST methods or
because they were labelled as aforementioned classes
in well-known metagenomic databases such as curat-
edMetagenomicData [25], the HumanMetagenomeDB
[26] or MGnify [27].

We rely on the metadata of each metagenomic sam-
ple to assign a true label (i.e. environment type),
however, there is no ground truth as to what is the
true proportion of aOral, mOral, sediment/soil or skin
content in any of them. Several variables accessible
through the metadata of each run accession are plot-
ted in the Supplementary File (Figures 1, 2, 3 and 4).
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Figure 1: Geographical location of samples
coloured by environmental type. Labels for
each sample were retrieved from their metadata.
The final collection of metagenomic samples in-
cluded 116 (32.2%) aOral, 81 skin (22.5%), 79 sedi-
ment or soil (21.9%) and 84 mOral (23.3%) samples.

Input data

Both mSourceTracker and FEAST require taxonomy-
based clustering tables as input. We built these ta-
bles using Kaiju [28] and the reference database NCBI
BLAST nr+euk (2021-02-24 release), a non-redundant
protein database of bacteria, archaea, viruses, fungi,
and microbial eukaryotes (information to download it
in Supplementary File, Section 1)

On the other hand, decOM takes as input a binary
k-mer matrix of distinct k-mers across a collection of
metagenomic samples. We used kmtricks (v1.1.1) to
build a presence/absence k-mer matrix from the 360
metagenomic samples in the collection. In order to find
patterns that helped us distinguish between samples
from different source environments, we kept only k-
mers that were present in at least 3 samples in the
collection. The k-mer size in kmtricks was set to 31.
We removed all k-mers seen only once in a sample,
which were likely to be sequencing errors. The rest of
the parameters of kmtricks were set by default.

The complete k-mer matrix contains around 9 bil-
lion k-mers, represented by 700 disjoint sets of k-mers
called partitions. Omitting some technical aspects [29]
for clarity, partitions can be seen as a random sub-
set of the rows of the k-mer matrix, created to avoid
loading the entire matrix in memory [20]. In this work
we configure kmtricks to only construct a single par-
tition out of the 700, i.e. we consider only a subset of
around 14 million k-mers (0.1% of total) for subsequent
analysis. We also tested with 7 partitions (Figures 13
and 14 in Supplementary File), and while it improves
results marginally, the marked performance improve-
ment when using only 1 partition justifies keeping this
regime.
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Mathematical formulation
We consider a binary k-mer matrix M (as output
by kmtricks) that indicates the presence/absence of
each k-mer found across several metagenomic data
sets, with N number of unique samples (columns)
and K number of unique k-mers (rows). Each sam-
ple j is represented by a column vector m{) =
(m1j, maj, msj, ..., mk ;) where m; ; corresponds to the
presence/absence of k-mer ¢ in sample j. We will use
the terminology of sink and sources to respectively de-
note the sample we want to evaluate the composition
of, and the set of samples used as a database.
Consider that the matrix M contains jointly all
sources and potential sinks. Let a sample s (where
s € {1,2,...,N}) be a sink and m®®) be its column
vector. A source is a collection of L > 0 column vec-
tors used to build a matrix of sources M, of dimen-
sions K x (L — 1). Each column vector in the sources
matrix M, has an associated label that comes from
a finite ordered set of environments (classes) C =
{c1,c2,¢3, ...,y } determined by the user. In our case
|C| =4, as C = {aOral, mOral, skin, sediment /soil }.
The vector of labels for each sample in the sources of
length L — 1 is represented by ¢ = ({1, 02,05, ...,41,_1),
and each entry of the vector can only take one of the
values from C' as in a multi-class classification prob-
lem. The vector of categorical labels £ can be further
encoded as a highly sparse one-hot binary matrix H
of size (L — 1) x |C| where :

1if l; =¢;
Hz‘,j:{ h = (1)

0 otherwise

Making an analogy with bins (source environments)
and balls (k-mers present in a certain source environ-
ment), we are interested in counting the number of
balls that fall into each bin. The core idea of decOM
is that if a k-mer is present in the sink represented by
the vector m®®) and in the source vector m®) with en-
vironment label £;, then a ball is added to the bin with
label ;. We then compare the sink vector m(®) against
every source vector until all sources are exhausted. The
output of this comparison is the vector w of length |C/,
where every entry corresponds to the total number of
balls in a certain bin, that is, the contribution of each
source environment to the sink s.

Counting k-mers of sinks in sources amounts to per-
forming the following matrix vector operation:

w=m®". M, H (2)

In order to produce proportions instead of raw
counts, we estimate the percentage based on the total
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number of balls counted per bin (of all known sources)
. Such proportions correspond to every element in the
vector p = (w1, w2, ws...,wjc|) when multiplied by a
scalar, as seen in the following operation:

p/ _ P
[C]

Z Dbi
i=1

3)

To analyse a new metagenomic sample, it is only
needed to compute a presence/absence vector of k-
mers for this sample using kmtricks, then this new
sink is compared against the pre-computed collec-
tion of sources. decOM incorporates a kmtricks mod-
ule so that the user can give as input a simple
FASTQ/FASTA file of their sink of interest, rather
than a presence/absence vector. Figure 4 provides a
graphical representation of our pipeline.

Finally, we are working to include the contribution of
an unknown source by characterising it as the number
of k-mers that are present in the sink and absent in
all of the sources.

decOM was implemented in Python 3.6 as a conda
package and the installation instructions are available
in a GitHub repository[30].

Microbial Source Tracking evaluated in four different
experimental settings

We perform a metagenomic Microbial Source Tracking
to benchmark decOM, mSourceTracker, and FEAST,
which all rely on an input matrix. For mSource-
Tracker and FEAST the input matrix corresponds to
a taxonomy-based clustering table, whereas decOM
takes as input a binary k-mer matrix across metage-
nomic data sets.

Consider the set X = {m®, m® m® m®™M},
where X contains all the column vectors of the afore-
mentioned k-mer matrix. Let A = {m(®)} be a set of
sink vectors, and B = {X\m(*)} a set of sources. In or-
der to estimate the proportion of source environments
in each data set in our collection we run our method in
a leave-one-out fashion, i.e., every run of our method
uses one different sample as sink and leaves the rest of
the samples as sources. One run of this experimental
setup is described by Algorithm 1.

Additionally, we performed a 5-fold cross-validation
experiment by splitting the collection of metagenomic
samples into 5 stratified folds with non-overlapping
groups. The groups were defined by the BioProject
from which each data set originated. A BioProject is
a collection of biological data related to a single ini-
tiative originating from a single organisation or from
a consortium [31]. The folds were made trying to pre-
serve the percentage of samples for each class, given
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Algorithm 1 Pseudocode of our method used to es-
timate proportions of sources in sink s

1: for m; € B do

Store proportion of sources in sink s
: Store predicted label for sink s as the source environment with
highest value

2: for k=1,2,...,K do

3: if mps =1 and my; =1 then

4: Add one ball to the bin for class [;
5: end if

6: end for

7: end for

8:

9

the constraint that the same group (BioProject) will
not appear in two different folds. The idea behind this
additional group stratification is to account for the
possible bias that might appear when classifying a sink
that is very similar to a set of sources simply because
they come from the same BioProject and not because
there is an underlying sequence similarity between the
samples.

For the leave-one-out and cross-validation experi-
ments we evaluated all methods using the Reciever
Operating Characteristic (ROC) and Precision-Recall
curves, and a hard label was set using as threshold the
environment class with the highest contribution to the
sink. Performance metrics used were Accuracy, Preci-
sion, Recall and F1-score as they are implemented in
scikit-learn [32]. Because the framework of evaluation
was a multi-class classification task, the performance
metrics reported here were estimated for each label
and then averaged across classes. Definitions for each
performance metric used are specified in Section 5 of
the Supplementary File.

We also tested decOM on a validation set of 254 aO-
ral samples, none of which belonged to the collection
of 360 samples we used to construct the k-mer ma-
trix. For this experiment, the aforementioned matrix
is used as sources, whereas the 254 external aOral sam-
ples are used as sinks. Because all samples belong to
the same class, Precision and Fl-score are not well-
defined, whereas Recall and Accuracy are equivalent
(See Section 5 in Supplementary File), which is why
performance is measured using Recall only. Finally we
tested decOM and its competitors on an uncontami-
nated simulated ancient oral data set and presented
the estimated proportions.

Results

We created decOM as reference-free and open-source
Microbial Source Tracking method that is adapted to
ancient metagenomic experiments. Our method takes
as input a set of source vectors in the form of a pres-
ence/absence k-mer matrix (built from a collection of
metagenomic data sets ready for the user to down-
load), and one or more FASTA /FASTQ files to be used
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Table 1: Environment type prediction perfor-
mance of decOM, FEAST and mSourceTracker.
Accuracy, precision, recall and F1-score for were esti-
mated as an average across all classes in a leave-one-
out fashion.

Method Accuracy Precision Recall F1-score
decOM 0.8703 0.9184 0.8703 0.8753
FEAST 0.6816 0.5516  0.7452 0.5479
mSourceTracker 0.8388 0.8388  0.8388 0.8289

as sinks. It outputs a set of proportions (percentages)
and a predicted metadata class per sink.

decOM robustly predicts metagenome sample labels
Leave-one-out experiment

We compared the performance of decOM with FEAST
[8] and mSourceTracker [9] based on their ability to
correctly predict the environmental type of a sample,
defined as the highest proportion among the four possi-
ble sample types (ancient oral, model oral, skin, soil).
For all methods, we used the same collection of 360
metagenomic experiments as sources.

All methods output a set of proportions for each
sample. We ran them in a leave-one-out fashion (one
sample was used as sink, and the rest were left out
as sources). In order to perform a multi-class classifi-
cation task, we mapped the set of continuous propor-
tions into a hard label, by simply assigning a label to
the sample corresponding to the environmental type
with the largest proportion among all the predicted
sources. The performance metrics presented were cal-
culated using the hard labels.

Table 1 shows that decOM outperforms both mSource-

Tracker (+3% Accuracy, +8% Precision, +3% Recall,
+5% F1 score) and FEAST (4+19% Accuracy, +37%
Precision, +12% Recall, +33% F1 score) in the multi-
class classification task of predicting source environ-
ment with the largest contribution in a sink, when
such contribution is estimated using a MST frame-
work. Precision-Recall and ROC curves are shown in
the Supplementary File (See Figure 10 and 11).

Cross-validation

To further validate that decOM does not solely rely
on closely related samples for its predictions, we per-
formed a 5-fold cross-validation experiment by divid-
ing the collection into 5 stratified folds with non-
overlapping BioProjects. This constraint means that
a sink is classified without any other samples from the
same BioProject in the sources. This data stratifica-
tion is relevant because it controls for the possible bias
that might come from classifying a sink that is similar
to the sources simply because they come from the same
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sequencing initiative and not because there is some un-
derlying biological similarity between the samples (see
Figure 12 in Supplementary File for visualisation of
the data splitting).

decOM outperforms mSourceTracker and FEAST in
each of the five sink /sources folds for performance met-
rics such as Accuracy, Precision, Recall and F1 Score
(see Figure 2) and when metrics are averaged across
groups (see Table 2 in Supplementary File). The per-
formance estimates dropped with respect to the leave-
one-out MST, which is expected since cross-validation
results give a less biased estimate of the model (see
also Table 1 and 2 in Supplementary File).

R, T, 5 f T Method
0.9 - ,é: o decOM
0.8 e . ] * o ST

. | ) P . o FEAST
0.5 H —— .
0.4 < 2

Accuracy

Value

Fl-score
Peformance metric

Precision Recall

Figure 2: Bioproject stratified 5-fold cross-
validation performance of every method. The
performance from every fold was evaluated using
accuracy, precision, recall and F1-score

Validation set

We evaluated decOM in an external validation set with
254 aOral samples that were present in the Ancient-
MetagenomeDir [1] but were not part of the matrix
of sources previously described. Samples in the valida-
tion set belonged to 6 different BioProjects and ranged
from 100 to 14800 years old. Furthermore they were
isolated from 12 different countries in mostly 2 conti-
nents. For more information regarding the metadata
of the samples in the validation data set see Supple-
mentary Figures 5 and 6.

Here also decOM outperforms mSourceTracker and
FEAST by classifying most of the samples as aOral.
See Table 2 for results in the validations set of only
aOral samples.

Simulated data set

As a final experiment we tested each of the methods on
a simulated ancient dental calculus metagenome gen-
erated by other authors [33]. A mock oral microbial
community is created using representative genomes of
microbes found in the human oral microbiome, further
processed to appear similar to an ancient metagenomic
sample. As in the validation set, we estimated the
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Table 2: Performance of decOM in the aOral val-
idation set. As only one class is present in the valida-
tion data set (aOral), performance is measured using
precision for this highly imbalanced setting.

Method Recall
decOM 0.8654
FEAST 0.6692
metaSourceTracker  0.6346

source environment contribution of the aOral, mOral,
skin and sediment/soil microbial communities by us-
ing the samples from the 360 collection as sources. Re-
sults for all methods are in Figure 3. Given that the
synthetic metagenome comes from an uncontaminated
mock oral microbial community that has been adapted
to appear similar to an ancient calculus sample the
expected content is to be 100% oral, decOM provides
the highest estimation of oral contribution (ancient or
modern), followed by mSourceTracker and lastly by
FEAST. We encountered reproducibility problems for
FEAST that are further explained in the Supplemen-
tary Figure 7.

Source environment

® z0ral

W moral

W Skin
Sediment/Soil

W Unknown

Percentage (%)

mSourceTracker

Method

FEAST

Figure 3: MST on a simulated ancient dental
calculus metagenome. Bar plots for the source
environment proportion estimation obtained after
evaluating each method using as sources all the
samples from the 360 metagenomic collection, and
using as sink a synthetic ancient oral data set. The
expected content of this synthetic sample is 100%
oral

Running times

We measured the running time for decOM and mSource-
Tracker using 250 GB of memory and 10 cores. FEAST
did not allow for multithreading. We estimated the
time it takes to produce an input matrix for each of
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Table 3: Running times of MST. Wall-clock time
was measured in different parts of the pipeline: Time
to build the input matrix, time to produce a new vec-
tor from an input FASTQ file and time to perform
the MST of one sample. Except for the process named
“Build source matrix”, the average time was estimated
on the results from the validation set. MST done by
FEAST does not allow for multithreading and was run
using 2GB of memory and 1 core, whereas mSource-
Tracker can not split one sink into multiple jobs, so 1
core and 250GB of memory were allocated for each
sink. Every other process was run using 250GB of
memory and 10 cores. Results for decOM are presented
in bold.

Method Process Time (h)
decOM Build source matrix 6.60
decOM Produce new vector 0.04
decOM MST 0.02
FEAST Build source matrix 99
FEAST Produce new vector 0.28
FEAST MST 0.07
mSourceTracker  Build source matrix 99
mSourceTracker  Produce new vector 0.28
mSourceTracker MST 0.01

the methods (whether it is a taxonomy-based cluster-
ing table or k-mer matrix of sources). We also esti-
mated the time it takes to analyse a new sample by
splitting the process in two steps: the time it takes
to produce a new vector to represent the sample, and
the time it takes to perform MST. For the two previ-
ously mentioned steps, the average running time was
estimated on the 254 samples from the validation set.
The consolidated running times can be seen in Table
3. decOM is an order of magnitude faster than the two
other methods for creating a source matrix and pro-
ducing a new vector. All methods show comparable
running times when performing the MST step.

Ancient oral metagenomic samples come from various
environments (multi-source)

After predicting the metadata class of each of the 360
samples in the collection, we also plotted the source
proportions according to the estimation done by de-
cOM, mSourceTracker and FEAST (Figure 5). The
proportion bar plots for mSourceTracker and decOM
are visibly more similar to each other than to FEAST,
which seems to output more variable results.

According to the estimation done by decOM, there
are 4 main predicted groups in the collection with dis-
tinct source composition as seen in Figure 5a: there is
a group of samples that have a higher sediment/soil
content, another class of samples with a higher skin
content and with a considerable presence of mOral k-
mers, a third group that corresponds to the aOral sam-
ples and that also share a part of the mOral content.
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Figure 4: Graphical representation of decOM. Our

that if a k-mer is present in the sink s represented by

added to the bin of skin, aOral and mOral respectively)

and the hard label assigned to the sink s is that of the
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method preprocesses an input k-mer matrix of aOral

metagenomic samples and its possible contaminants, divides it into sinks and sources and then estimates and
outputs the proportions of each source environment in the sink. The core idea in the classification step is

the vector m®), and in the source vector m) with

environment label [;, then a ball is added to the bin with label [; (Ex: K-mer AAACG is present in the input
sink S and in source S1 labelled as skin, S5 labelled as aOral and S7 labelled as mOral, hence one ball is
. After every entry in the the sink vector is compared
against every entry of every vector in the sources, decOM outputs the estimated environment proportions

environment with the highest contribution.

Finally, there is a fourth group of samples in which
the contribution of the mOral sequences is consider-
ably higher, however these samples also have some k-
mers in common with the skin and aOral metagenomic
samples.

In additional analyses (see Figure in Supplementary
File 15), we divided the samples after decOM’s MST
estimation into two categories: samples that come
mostly from one source environment (mono-source) or
samples that come from several environments (multi-
source). In addition to the hard label assigned by de-
cOM, we further categorised the classification of each
sample, qualifying the upper quartile (> 75%) of each
class as mostly mono-source samples, and the first and
second quartile (< 75%) as samples of diverse ori-

gins (more contaminated). According to this thresh-
old, there are 78 mono-source samples (22% of the to-
tal collection). These are samples whose recovered la-
bel corresponds to the label predicted by decOM, and
which are not as contaminated by other sources. A
collection of low-contaminated and mono-source sam-
ples as this could be used as a high-quality multi-class
data set of aOral (36%), mOral (27%), sediment /soil
(24%) and skin (13%) for benchmarking with a rela-
tively low imbalance (see Figure 16 in Supplementary
File). Interestingly, 91% of the samples we call mono-
source are also correctly predicted by mSourceTracker
and 78% are correctly predicted by FEAST (Figure 17
in Supplementary File). Nearly a quarter of the aO-
ral samples in the collection have contamination lev-
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Figure 5: Bar plots of the source environment contribution on each sink after the leave-one-out
experiment as estimated by decOM, mSourceTracker and FEAST. Samples in Figure 5a are first
sorted by true label, and then sorted by ascending order of the proportion value for such label. Sample order
in the x axis for Figures 5b and 5c is sorted according to the order from ba

els that are low enough to have them categorised as
mono-source, while the remainder of the ancient oral
samples, as expected, have varying levels of contami-
nation.

Discussion

We have proposed and evaluated decOM as a tool pre-
dict the metadata class of a given metagenomic sample
by using a Microbial Source Tracking framework, in
order to help paleogeneticists better assess the source
content of their ancient samples. Because it was built
using a Microbial Source Tracking framework, it can
also help determine the composition of any other mi-
crobial community (not necessarily ancient or of oral
origin), which is a common question in microbiome

studies. Let us clarify that our goal is not to define an
ancient oral microbial community per se, but to give
the user an indication on the quality of their sample
in terms of ancient genetic material. We leave for im-
mediate future work the extensions of decOM to other
MST tasks, which could be readily done by creating a
k-mer matrix of metagenomic samples of interest with
their associated labels and estimating the source pro-
portions using decOM.

The utility of decOM was established on a collec-
tion of aOral metagenomic samples and their pos-
sible contamination sources, in a leave-one-out set
up experiment where every sample was compared
against all others. To control for an overly optimistic
performance, we performed a stratified 5-fold cross-
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validation experiment making sure all the samples
from the same BioProject belonged to the same fold.
Finally, decOM was tested on an external validation
data set of 254 aOral samples that were not part of
initial collection of metagenomic aOral samples and
metagenomes of other contaminants and in a simu-
lated ancient calculus metagenome. We acknowledge
that our method would classify the synthetic sample
tested on this paper as an mOral sample instead of aO-
ral despite having predicted the largest proportion of
aOral source contribution when compared to mSource-
Tracker or FEAST. However, considering decOM has
already proven to be useful on real data, we leave fur-
ther tuning of the method on synthetic data to be part
of the upcoming work. In almost every setting, decOM
outperformed two of the most widely-used techniques
in the field of MST in the multi-class classification task
of predicting the label of a metagenomic samples as the
source environment with the highest proportion.

Ideally we would test decOM on a collection of an-
cient oral samples with known proportions for each
source environment, unfortunately, to our knowledge,
such a data set does not exist. The task of creating a
synthetic data set with such characteristics poses ad-
ditional challenges regarding how to avoid overlapping
species (originating genomes) between each source en-
vironment, and would ultimately not be a good repre-
sentation of a real sample. For this reason we focused
on the evaluation of each method by using the meta-
data class prediction of a hard label rather than by
confirming the proportion predictions were the most
accurate.

It could be argued that the lower performance of
mSourceTracker and FEAST compared to decOM in
the multi-class classification task described in this
study was due to limitations of the input taxonomy-
based clustering table given to the methods. Better
results might be achieved by using a larger database
or a tool other than Kaiju to estimate taxonomic
abundances. To evaluate this, we conducted an ad-
ditional experiment in which we constructed another
taxonomy-based clustering table with KrakenUniq [34]
(see Supplementary File, Section 2). Results in this
paper are shown only for the taxonomic abundance
profile based on Kaiju, which can also be replicated
using public data sets and which, in any case, yielded
the best results for the competing methods. The re-
sults for the taxonomic abundance profile constructed
with KrakenUniq are shown in the Supplementary File
information (see Figure 10 and 11).

An important hyperparameter of our model is the
size of the input k-mer matrix M. We explored the
effect of using multiple partitions on the performance
metrics for the single- and 5-fold cross-validation ex-
periment, but to speed up computations and reduce
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the memory required, we decided to use only one par-
tition (0.1% of the total k-mer found by kmtricks).
Remarkably, the performance of decOM is still better
than that of competing methods (see Figures 13 and
14, Table 1 and 2 in the Supplementary File). In the
future it would be interesting to study the impact on
the classification performance of varying the hyperpa-
rameters for the construction of the k-mers matrix,
such as the size of the k-mers, minimum recurrence or
minimum abundance.

Conclusions

We propose a novel and reference-free method to per-
form Microbial Source Tracking and predict the meta-
data class of a given (meta)genomic sample. We tested
our method on a collection of real metagenomic data
sets of aOral origin and its possible contaminants and
provided an estimation of the contribution of each
source environment on each sample. We anticipate that
the incorporation of decOM into paleogenomic anal-
yses will prevent erroneous results and help identify
contaminated metagenomic samples and ensure their
validity.
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