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growth factor receptor; IP3: inositol-1,4,5-trisphosphate; ER: endoplasmic reticulum; PtdIns: 25 
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Abstract 33 

Receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) stimulate 34 

phosphoinositide 3-kinases (PI3Ks) to convert phosphatidylinositol-4,5-bisphosophate 35 

[PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 36 

then remodels actin and gene expression, and boosts cell survival and proliferation. 37 

PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which 38 

phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of 39 

PtdIns(3,4,5)P3-Akt signalling promotes tumour progression. Interestingly, 50-70% of PtdIns and 40 

PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, 41 

forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases 42 

partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 43 

lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the 44 

role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. 45 

Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of 46 

PtdIns(3,4,5)P3 in response to EGF signalling. Importantly, LCLAT1-silenced cells were also 47 

impaired for EGF-driven and insulin-driven Akt activation and downstream signalling. Thus, our 48 

work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine 49 

kinase signalling.  50 

 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
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 61 
 62 
Introduction 63 

Phosphoinositide (PtdInsP) lipid signaling orchestrates a variety of cellular functions such as 64 

organelle identity and membrane trafficking, ion channel activity, cytoskeletal organization, 65 

regulation of gene expression, modulation of metabolic activity, and cell proliferation and 66 

survival (Balla, 2013; Choy et al., 2017; Dickson and Hille, 2019; Doumane et al., 2022; Idevall-67 

Hagren and De Camilli, 2015; Posor et al., 2022). PtdInsPs are generated by the reversible 68 

phosphorylation of the phosphatidylinositol (PtdIns) headgroup by several types of lipid kinases 69 

and phosphatases. Collectively, and based on the headgroup phosphorylation, these enzymes can 70 

generate up to seven species of PtdInsPs (Balla, 2013; Choy et al., 2017; Dickson and Hille, 71 

2019; Posor et al., 2022). Nonetheless, there is another facet of PtdInsP biology that is poorly 72 

defined at the regulatory and functional levels – the control and function of the acyl composition 73 

of PtdInsPs (Barneda et al., 2019; Bozelli and Epand, 2019; Choy et al., 2017; D’Souza and 74 

Epand, 2014; Traynor-Kaplan et al., 2017). 75 

 In many mammalian tissues and cells, 50-70% of PtdIns and PtdInsPs are enriched for 76 

stearate and arachidonate at the sn-1 and sn-2 positions, respectively – this acyl combination is 77 

referred to as 38:4-PtdIns or 38:4-PtdInsPs (Anderson et al., 2013; Anderson et al., 2016; 78 

Barneda et al., 2019; D’Souza and Epand, 2014; Haag et al., 2012; Imae et al., 2012; Lee et al., 79 

2012; Milne et al., 2005; Traynor-Kaplan et al., 2017). Additionally, this acyl composition is 80 

unique to PtdIns and PtdInsPs since other phospholipids have distinct acyl profiles (Barneda et 81 

al., 2019; Bozelli and Epand, 2019; Hicks et al., 2006; Traynor-Kaplan et al., 2017). This 82 

suggests that the acyl groups of PtdIns and PtdInsPs do more than simply embedding the lipids 83 

into the membrane bilayer (Barneda et al., 2019; Bozelli and Epand, 2019; Choy et al., 2017). 84 
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However, the exact acyl profile of PtdIns and PtdInsPs can vary between cell types, 85 

environmental conditions, and patho-physiological conditions such as cancer (Anderson et al., 86 

2016, 10; Barneda et al., 2019; Bozelli and Epand, 2019; Hicks et al., 2006; Imae et al., 2012; 87 

Mujalli et al., 2018; Traynor-Kaplan et al., 2017). For example, p53-/- cancer cells, prostate 88 

cancer cells and triple negative breast cancer cells all have distinct acyl profiles of PtdIns relative 89 

to normal tissue (Freyr Eiriksson et al., 2020; Koizumi et al., 2019; Naguib et al., 2015; Rueda-90 

Rincon et al., 2015). Yet, there is much to be understood about the regulatory mechanisms that 91 

establish and remodel the acyl profile of PtdIns and PtdInsPs, and their functional implications. 92 

 The LCLAT1 acyltransferase has been identified as one of the enzymes that remodels 93 

and enriches PtdIns and/or PtdInsPs in stearate at the sn-1 position (Bone et al., 2017; D’Souza 94 

and Epand, 2014; Imae et al., 2012; Zhang et al., 2023).  LCLAT1 is an ER-localized protein and 95 

is thought to act during the Lands’ Cycle or PtdIns Cycle to enrich PtdIns in stearate at sn-1 96 

(Barneda et al., 2019; Blunsom and Cockcroft, 2020; Bone et al., 2017; Imae et al., 2012). 97 

Murine tissues deleted for LCLAT1 had reduced levels of 38:4-PtdIns, mono-PtdInsP, and bis-98 

phosphorylated PtdInsPs (Imae et al., 2012). More recently, we observed that LCLAT1 silencing 99 

reduced the relative levels of endosomal phosphatidylinositol-3-phosphate [PtdIns(3)P] and 100 

phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] on the plasma membrane, while the levels 101 

of phosphatidylinositol-4-phosphate [PtdIns(4)P] remained unchanged (Bone et al., 2017). 102 

Importantly, PtdIns and bis-phosphorylated PtdInsPs (mostly PtdIns(4,5)P2), but not mono-103 

phosphorylated PtdInsPs (mostly PtdIns(4)P] were altered in their acyl profile upon LCLAT1 104 

silencing. This effect on specific pools of PtdInsPs has also been observed in cells disrupted for 105 

LPIAT1/MBOAT7, an acyltransferase thought to enrich PtdIns/PtdInsPs in arachidonic acid 106 

(Anderson et al., 2013). 107 
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 PtdIns(4,5)P2 regulates a number of functions including endocytosis, ion transport, and 108 

the cytoskeleton organization (Balla, 2013; Katan and Cockcroft, 2020; Sun et al., 2013). 109 

PtdIns(4,5)P2 is also a precursor for other signalling intermediates regulated by growth factor 110 

receptors like the Epidermal Growth Factor (EGF) and its receptor, the EGF receptor (EGFR), a 111 

major receptor tyrosine kinase (Katan and Cockcroft, 2020; Orofiamma et al., 2022). EGF binds 112 

and dimerizes EGFR, leading to receptor autophosphorylation on various tyrosine residues on 113 

the receptor’s C-terminal tail region (Böni-Schnetzler and Pilch, 1987; Gullick et al., 1985; 114 

Honegger et al., 1987; Koland and Cerione, 1988; Linggi and Carpenter, 2006; Yarden and 115 

Schlessinger, 1987). Motifs harbouring these phospho-tyrosines serve as docking sites for 116 

adaptor proteins like Grb2, which assemble a signaling complex composed of other protein 117 

kinases and phosphatases, and lipid-metabolizing enzymes (Holgado-Madruga et al., 1996, 2; 118 

Margolis et al., 1990a; Orofiamma et al., 2022; Rodrigues et al., 2000). For example, active 119 

EGFR recruits and activates Phospholipase Cγ (PLCγ), which hydrolyses PtdIns(4,5)P2 into 120 

diacylglycerol and inositol-1,4,5-trisphosphate (IP3), and which releases Ca2+ from endoplasmic 121 

reticulum stores (Delos Santos et al., 2017; Margolis et al., 1990a; Margolis et al., 1990b).  In 122 

addition, Gab1, recruited to the membrane via interactions with EGFR-bound Grb2, engages 123 

Class I PI3Ks to convert PtdIns(4,5)P2 to PtdIns(3,4,5)P3 (Kiyatkin et al., 2006; Rodrigues et al., 124 

2000). This burst of PtdIns(3,4,5)P3 then recruits and activates PDK1 and Akt protein kinases 125 

(Alessi et al., 1997; Bellacosa et al., 1998; Manning and Toker, 2017; Stokoe et al., 1997). Akt is 126 

a major driver of cell metabolism and growth by phosphorylating numerous targets like GSK3β 127 

and TSC2 (Cross et al., 1995; Inoki et al., 2002; Manning and Toker, 2017; Rodgers et al., 2017; 128 

Sugiyama et al., 2019). For example, Akt inactivates TSC2, a GTPase activating protein (GAP) 129 

for the Rheb GTPase, thus promoting the mTORC1 pathway (Inoki et al., 2002; Inoki et al., 130 
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2003). The PtdIns(3,4,5)P3-Akt-mTORC1 pathway is a major driver of cell growth, proliferation, 131 

survival, and differentation (Dey et al., 2017; Dibble and Manning, 2013; Manning and Toker, 132 

2017; Sugiyama et al., 2019). As a result, mutations that hyperactivate this pathway are often 133 

associated with human cancers like triple-negative breast cancer (TNBC) (Dey et al., 2017; Li et 134 

al., 2017).  135 

 Overall, given that LCLAT1 is a PI acyltransferase and the connection between EGF and 136 

PI3K-Akt pathway, we postulated that LCLAT1 disruption would impair EGF-mediated 137 

PtdIns(3,4,5)P3-Akt signalling, reflecting a role for PI acyl profile specificity for signaling by 138 

this pathway. In fact, we found that LCLAT1 silencing in at least two cell lines impeded 139 

generation of PtdIns(3,4,5)P3 and Akt activation upon addition of EGF. 140 

 141 

Methods and Materials 142 

Cell Culture 143 

The male human-derived ARPE-19 retinal pigment epithelial cell line was obtained from ATCC 144 

(CRL-2302, Manassas, VA) and was cultured in DMEM/F12 medium (ThermoFisher Scientific, 145 

Mississauga, ON) supplemented with 10% fetal bovine serum (Wisent, St. Bruno, QB), 100 146 

U/mL penicillin and 100 µg/mL streptomycin (ThermoFisher Scientific). The female human-147 

derived MDA-MB-231 triple negative breast cancer cell line was obtained from ATCC (CRM-148 

HTB-26). Wild-type MDA-MB-231 cells and its derivatives (see below) were cultured in 149 

DMEM medium (Wisent) supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 150 

100 µg/mL streptomycin. The female human-derived HEK293T cell line was cultured in DMEM 151 

with 10% fetal calf serum and 1% penicillin/streptomycin. All cells were cultured at 37°C and 152 

5% CO2. Mycoplasma screening is performed at least annually.  153 
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 154 

Transfection and siRNA-mediated gene silencing 155 

To silence gene expression of LCLAT1 in both ARPE-19 and MDA-MB-231 cells, custom-156 

synthesized siRNA oligonucleotides against LCLAT1 were designed using Horizon Discovery 157 

siDESIGN Centre. We designed and tested siLCLAT1-1, siLCLAT1-2, and siLCLAT1-3 with 158 

the respective sequences 5’-GGAAAUGGAAGGAUGACAAUU-3’, 159 

5’CAGCAAGUCUCGAAGUAAUU-3’, and 5’-UCGAAGACAUGAUUGAUUAUU-3’. 160 

Synthesis was by Sigma-Aldrich (Oakville, ON). In addition, we used siLCLAT1-5, a 161 

siGenome-validated oligonucleotide from Horizon (cat. D-010307-01-0002). Moreover, a non-162 

targeting control siRNA (NT siRNA, or siCON) with the sequence 5’-163 

CGUACUGCUUGCGAUACGGUU-3’ was used (Sigma-Aldrich). Cells were transfected with 164 

22 pmol of siRNA oligonucleotides/well using Lipofectamine RNAiMAX (ThermoFisher 165 

Scientifc) in Opti-MEM reduced serum media (ThermoFisher Scientific) for 3 h at 37°C and 5% 166 

CO2 as per manufacturer’s instructions. After transfection, cells were washed and incubated with 167 

fresh growth medium. Two rounds of transfection were performed, 72 and 48 h before each 168 

experiment. 169 

 170 

Plasmids and transfections 171 

Plasmid encoding Akt-PH-GFP was a kind gift from the Balla lab, NIH (Addgene: #51465) and 172 

was previously described in (Várnai and Balla, 1998). Akt-PH-GFP plasmid was transfected into 173 

ARPE-19 and MDA-MB-231 cells using Lipofectamine 3000 as instructed by the manufacturer.  174 

The plasmid encoding eGFP-PLCδ-PH was previously described in (Stauffer et al., 1998) and 175 

used to generate MDA-MB-231 cells stably expressing the PtdIns(4,5)P2 biosensor. 176 
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 177 

Generation of doxycycline-inducible expression of eGFP-PLCδ-PH in MDA-MB-231 cell 178 

A plasmid based on the Sleeping Beauty pSBtet-BP vector (GenScript, Piscataway, NJ; catalog 179 

number: SC1692) for inducible expression of eGFP-PLCδ1-PH was generated by gene synthesis 180 

of the open reading frame of eGFP-PLCδ-PH and insertion into the NheI and ClaI restriction 181 

sites of the pSBtet-BP vector, as described previously (Zak and Antonescu, 2023). MDA-MB-182 

231 cells were transfected with the engineered pSBtet-BP::eGFP-PLCδ-PH and pCMV(CAT)T7-183 

SB100 plasmid (Addgene, Plasmid #34879) using FuGENE HD transfection reagent (Promega) 184 

as instructed by manufacturer. After transfection, cells were washed and incubated with fresh 185 

growth medium for another 24 h to let cells recover in a 6-well plate, and then transferred into a 186 

T75 flask in the presence of 3 μg/mL of puromycin. Growth medium with puromycin was 187 

replaced every 2-3 days for 3 weeks. After selection, cells were treated with doxycycline (100-188 

200 nM) for 24 h to detect eGFP-PLCδ-PH expression by Western blotting and fluorescence 189 

microscopy. 190 

 191 

EGF signaling and Western blotting 192 

Before lysate preparation, cells were incubated with 2 mL of serum free growth medium for 1 h. 193 

After serum starvation, cells were stimulated with 5 ng/mL EGF for 5 or 10 min or left 194 

unstimulated (basal). Alternatively, cells were stimulated with 10 ng/mL insulin for 5 min. 195 

Following serum starvation and subsequent EGF stimulation, whole cell lysates were prepared in 196 

200 µL 2x Laemmli Sample Buffer (0.5M Tris, pH 6.8, glycerol and 10% sodium dodecyl 197 

sulfate (SDS)) supplemented with a protease and phosphatase inhibitor cocktail (Complete 1x 198 

protease inhibitor (Sigma-Aldrich), 1 mM sodium orthovanadate, and 10 nM okadaic acid). 199 
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Lysates were heated at 65°C for 15 min and passed through a 27-gauge needle 10 times. Finally, 200 

10% ß-mercaptoethanol and 5% bromophenol blue were added to cell lysates.  201 

Proteins were resolved by Tris-glycine SDS-PAGE and transferred on to a 202 

polyvinylidene difluoride (PVDF) membrane. The PVDF membrane was blocked for 1 h at room 203 

temperature in blocking buffer composed of 3% bovine serum albumin (BSA) in 1X final Tris-204 

buffered saline-Tween (TBS-T; 20 nM Tris, 150 mM NaCl and 0.1% Tween-20). After blocking, 205 

membranes were washed 3 times with wash buffer and incubated with 1:1000 primary antibody 206 

overnight at 4°C. The next day, membranes were washed 3 times, for 5 min each, and then 207 

subjected to 1:1000 secondary antibody for 1 h at room temperature. After incubation with 208 

secondary antibody, membranes were washed 3 times, 5 min each, and imaged using the 209 

ChemiDoc Imaging System (BioRad). Membranes were exposed to Immobilon Crescendo 210 

Western HRP substrate (Millipore Sigma) for 30-60 s and chemiluminescent images were 211 

acquired by the ChemiDoc System. Western blot signals were analyzed and quantified using the 212 

ImageLab 6.1 (BioRad). Band intensity was obtained by signal integration in an area 213 

corresponding to the appropriate band. This value was then normalized to the loading control 214 

signal. For quantifying phosphorylated protein levels, the phosphorylated protein signal and the 215 

corresponding total protein signal were first normalized to their respective loading controls, 216 

followed by the ratio of corrected phosphorylated protein signal to total protein signal.  217 

Primary antibodies raised in rabbit were anti-LCLAT1 (cat. 106759, GeneTex), anti-218 

phospho-Akt (S473, cat. 9271), anti-phospho-Akt1 (S473, cat. 9018), anti-phospho-Akt2 (S474, 219 

cat. 8599), anti-Akt1 (cat. 2938), anti-phospho-EGFR (Y1068. Cat. 2234), anti-phospho-220 

tuberin/TSC2 (T1462, cat. 3611), anti-tuberin/TSC2 (cat. 3612), anti-phospho-GSK3ß (S9, cat. 221 

9323), anti-phospho-ERK1/2 (T202/Y204, monoclonal, cat. 9201), anti-ERK1/2 (monoclonal, 222 
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137F5, cat. 4695), anti-p53 (monoclonal, 7F5, cat. 2527), anti-p21 Waf1/Cip1 (monoclonal, 223 

12D1, cat. 2947), anti-cofilin (monoclonal, D3F9), anti-vinculin (polyclonal, Cat. 4550) anti-224 

clathrin, (monoclonal DC36, cat. 4796), and anti-GAPDH (cat. 2118) were all from Cell 225 

Signaling Technologies. Antibodies raised in mouse were anti-Akt (monoclonal, 40D4; cat. 226 

2920), anti-Akt2 (cat. 5239), anti-GSK3ß (cat. 9832), and anti-puromycin (cat. MABE343) and 227 

were all from Cell Signaling Technology. Goat anti-EGFR antibodies were from Santa Cruz 228 

Biotechnology (sc-03-G). Horseradish peroxidase (HRP)-linked secondary anti-rabbit, anti-229 

mouse, and anti-goat IgG antibodies were from Cell Signaling Technology.  230 

 231 

Fluorescence and Immunofluorescence 232 

To detect surface levels of EGFR in MDA-MB-231 and ARPE-19 cells, cells were blocked 233 

with 3% BSA in PBS supplemented with 1 mM CaCl2 and MgCl2 for 30 min on ice, followed by 234 

1 h incubation with a 1:200 dilution of mouse anti-EGFR antibody collected in-house from the 235 

mAb108 hybridoma obtained from ATCC (Cabral-Dias et al., 2022). After washing with PBS, 236 

cells were fixed with 4% paraformaldehyde in PBS for 15 min and then quenched with 100 mM 237 

glycine in PBS for 10 min, followed by washing with PBS, and then fluorescent secondary 238 

mouse antibodies (Jackson ImmunoResearch Labs Inc., West Grove, PA) at a 1:500 dilution in 239 

1% BSA in PBS for 1 h at room temperature. The coverslips were mounted using Dako 240 

fluorescence mounting medium (Agilent Technologies, Inc. Mississauga, ON, Canada). For 241 

labeling the plasma membrane, cells with stained with 7 µg/mL FM4-64FX and imaged within 242 

10 min to minimize internalization of FM4-64FX. 243 

 244 

Microscopy 245 
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Confocal and TIRF micrographs were obtained using a Quorum Diskovery spinning disc 246 

confocal system coupled to a TIRF module (Quorum Technologies, Inc., Guelph, ON). The 247 

microscope itself consisted of an inverted fluorescence microscope (DMi8; Leica) equipped with 248 

an Andor Zyla 4.2 Megapixel sCMOS camera (Oxford Instruments, Belfast, UK), a 63x oil 249 

immersion objective (1.4 NA), and standard excitation and emission filter sets and lasers were 250 

used for all fluorophores. The TIRF module used a 63x/NA1.49 objective with a 1.8x camera 251 

relay (total magnification 108x). The microscope system was controlled by the MetaMorph 252 

acquisition software (Molecular Devices, LLC, San Jose, CA, USA). 253 

For fixed cells, z-stacks of 10-30 images were acquired with an inter-planal distance of 254 

0.6 µm distance. For live-cell imaging of Akt-PH-GFP dynamics in ARPE-19 cells or of eGFP-255 

PLCδ-PH in MDA-MB-231 cells by TIRF microscopy or spinning disc confocal respectively, 256 

cells were maintained in DMEM free of phenol red or serum in a Chamlide microscope-mounted 257 

chamber at 37°C and 5% CO2. For timelapse of Akt-PH-GFP in MDA-MB-231 cells, a baseline 258 

was obtained by acquiring images for 1 min at 15 s, then EGF was added, and images acquired 259 

every 15 s for 10 min.  260 

 261 

Image Analysis and Processing 262 

Image processing and quantitative analysis were performed using ImageJ or FIJI v. 2.3 263 

(Schindelin et al., 2012) or Volocity v. 7 (Quorum Technologies), where image enhancements 264 

were completed without altering the quantitative relationship between image elements.  For 265 

quantification of EGFR cell surface, regions of interest were generated by freehand to define the 266 

cell outline, the mean fluorescence intensity over the whole cell area was calculated, and then 267 

background corrected (Cabral-Dias et al., 2022). Mean fluorescence from at least 30 cells per 268 
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condition per experiment was then normalized against control condition. To obtain the relative 269 

cell surface localization index for the Akt-PH-GFP probe in ARPE-19 cells, we used ImageJ to 270 

determine the ratio of TIRF/epifluorescence fluorescence for >100 cells per condition per 271 

experiment.  To measure the plasma membrane to cytosolic ratio of eGFP-PLCδ-PH in MDA-MB-272 

231 cells (Cabral-Dias et al., 2021), we first defined the plasma membrane using the FM4-64FX 273 

channel to randomly selected regions of the plasma membrane and cytosol for each cell and their 274 

ratio was calculated. For Akt-PH-GFP timelapse movies were acquired and randomly selected 275 

regions in the cell periphery and cytosol were selected in FIJI and then the plasma membrane to 276 

cytosol fluorescence ratio over time. We examined at least 23 cells over three experiments. 277 

 278 

Lipid extraction 279 

Cells were grown to ~0.5x106 per well in a 6-well plate. Cells were then placed on ice and the 280 

media removed. Cells were scraped in 500 μL of ice cold 1M HCl and transferred to a pre-cooled 281 

safe lock 2 mL microcentrifuge tube. Cells were then collected by centrifugation at 13,000 xg for 282 

10 min at 4°C. The supernatant was aspirated, and the pellet was then snap frozen in liquid 283 

nitrogen.  284 

  285 

Mass Spectrometry Lipid Analysis 286 

Mass spectrometry was used to measure PtdInsPs from lipid extracts prepared from 0.5-1x106 287 

MDA-MB-231 cells or 0.6x106 ARPE-19 cells as previously described (Clark et al., 2011). 288 

Briefly, we used a QTRAP 4000 mass spectrometer (AB Sciex, Macclesfield, UK) and 289 

employing the lipid extraction and derivatization method described for cultured cells (Clark et 290 

al., 2011). The response ratios of a specific PtdInsP acyl species were calculated by normalizing 291 

the targeted lipid integrated response area to that of a known amount of added relevant internal 292 
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standard. A ratio of ratios was then calculated by taking the response ratios of 38:4-PtdIns, 38-4-293 

mono-PtdInsP, 38-4-bis-PtdInsP, and 38:4-PtdIns(3,4,5)P3 against the sum of response ratios for 294 

36:1 and 36:2 (36:x) of PtdIns or the corresponding 36:x-mono-PtdInsP or 36:x-bis-PtdInsP. 295 

Data are presented as mean ± STD from four separate experiments. 296 

 297 

Statistical analysis 298 

Experiments were repeated a minimum of three independent times, with the exact number for 299 

each experiment indicated in the respective figure legend and/or graph as individual data points. 300 

Microscopy data were selected and quantified randomly, i.e. before inspection of cells. If regions 301 

of a cell were selected, this was done with the independent channel prior to quantification of the 302 

target channel. Data were collected as mean ± standard deviation (STD) or ± standard error of 303 

the mean (SEM). Statistical comparisons of means were then performed with GraphPad Prism v. 304 

10. Statistical tests were selected based on data conditions such as number of parameters, sample 305 

size, assumption of normality, number of comparisons made, and correction for multiple 306 

comparisons. Figure legends specify the tests employed for a given data set such as one-sample 307 

t-test, one-way or repeated-measures two-way ANOVA tests, and recommended post-hoc tests. p 308 

values are shown, where p< 0.05 was typically accepted as significantly different.  309 

 310 

Results 311 

LCLAT1 acyltransferase regulation of EGFR trafficking 312 

In our previous work, LCLAT1 silencing altered the endocytosis and endosomal trafficking of 313 

the transferrin receptor in ARPE-19 cells (Bone et al., 2017). We thus queried if LCLAT1 314 

disruption would alter the total and surface levels of EGFR and/or affect EGFR signalling in at 315 
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least two human-derived cells lines: the non-cancerous, male-derived ARPE-19 and the female-316 

derived triple negative breast cancer cell line, MDA-MB-231. To do this, we used previously 317 

designed and validated siRNA oligonucleotides against LCLAT1 (Bone et al., 2017) and a non-318 

targeting oligonucleotide (see Methods), transiently transfected cells twice, and after 48 h, we 319 

lysed the cells and probed for LCLAT1 levels by Western blotting. As shown in Figure 1A and 320 

Figure 2A respectively, control ARPE-19 and MDA-MB-231 cells displayed a major band at 35 321 

kDa. After transfection with siLCLAT1-1, this band was reduced by ~70% intensity in both cell 322 

types, manifesting efficient LCLAT1 silencing (Fig. 1A, B and Fig. 2A, B). We also observed 323 

reduced LCLAT1 expression in ARPE-19 and MDA-MB-231 cells transfected with independent 324 

siRNA oligonucleotides against LCLAT1 (Supplemental Figure S1A, 1B, S2A, 2B, and S4). 325 

 We next examined the effects of LCLAT1 silencing on total and surface levels of EGFR 326 

in these cells. We observed that LCLAT1 silencing in ARPE-19 and MDA-MB-231 cells did not 327 

alter total EGFR levels as measured by Western blotting (Fig. 1C, 1D and 2C, 2D) nor the EGFR 328 

surface levels as measured by immunofluorescence of unpermeabilized cells under basal 329 

conditions (Fig. 1E and 2E). Moreover, the surface levels of EGFR after 1 h of 100 ng/mL EGF 330 

stimulation dropped by a similar extend in both control and LCLAT1-silenced ARPE-19 (Fig. 331 

1E) and MDA-MB-231 (Fig. 2E). Importantly, LCLAT1-silencing did not impair EGF-mediated 332 

phosphorylation of Y1068 of EGFR in ARPE-19 cells (Fig. 1C, F) and MDA-MB-231 cells (Fig. 333 

2C, F); in fact, EGFR phosphorylation at Y1068 appears elevated in LCLAT1-silenced cells 334 

(Fig. 2F). Overall, these data suggest that the steady-state levels and trafficking of EGFR, and 335 

immediate response to EGF in ARPE-19 and MDA-MB-231 cells did not decline during 336 

LCLAT1 silencing. 337 

 338 
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LCLAT1 acyltransferase silencing reduces PtdIns(3,4,5)P3 synthesis in response to EGF 339 

We previously observed that ARPE-19 cells silenced for LCLAT1 had ~30% reduction in 340 

PtdIns(4,5)P2 levels (Bone et al., 2017). To determine if this was recapitulated in MDA-MB-231 341 

cells, we generated cells stably engineered for doxycycline-inducible eGFP-PLCδ-PH, a reporter 342 

for PtdIns(4,5)P2 (Stauffer et al., 1998). We then quantified the fluorescence ratio of eGFP-343 

PLCδ-PH on the plasma membrane over cytosolic signal by using FM4-64FX to define the 344 

plasma membrane. Upon silencing of LCLAT1 in these cells, the eGFP-PLCδ-PH fluorescence 345 

ratio of plasma membrane to cytosol declined significantly relative to non-silenced cells (Fig. 346 

3A, B) suggesting that LCLAT1-silenced MDA-MB-231 cells also had less PtdIns(4,5)P2.  347 

Next, a key outcome of EGFR stimulation is the activation of PI3Ks to convert 348 

PtdIns(4,5)P2 to PtdIns(3,4,5)P3 (Hu et al., 1992; Orofiamma et al., 2022; Rodrigues et al., 2000). 349 

To determine if PtdIns(3,4,5)P3 synthesis was affected in LCLAT1-disturbed cells, we 350 

transfected ARPE-19 and MDA-MB-231 cells with plasmids encoding Akt-PH-GFP, a biosensor 351 

for 3-phosphorylated PtdInsPs (Várnai and Balla, 1998). The recruitment of Akt-PH-GFP to the 352 

plasma membrane in response to EGF was then quantified using two different methods. Given 353 

that ARPE-19 cells are exceptionally flat, we quantified the ratio of TIRF to epifluorescence 354 

fields (TIRF/Epi fluorescence ratio) as an indicator for PtdIns(3,4,5)P3 levels at the plasma 355 

membrane. While control cells readily increased their Akt-PH-GFP on the plasma membrane 356 

after EGF stimulation, cells perturbed for LCLAT1 expression displayed substantially lower 357 

TIRF/Epifluorescence of their Akt-PH-GFP (Fig. 3C, D). We then assessed if MDA-MB-231 358 

cells were also impaired for PI3K signalling. Since these cells are rounder, we measured Akt-359 

PH-GFP on the plasma membrane more readily in optical sections obtained from the middle of 360 

the cell by spinning disc confocal microscopy by sampling Akt-PH-GFP at the cell periphery 361 
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against cytosolic signal. We tracked the Akt-PH-GFP recruitment over 10 min after adding EGF. 362 

We observed an increase in Akt-PH-GFP to the cell periphery after EGF stimulation of non-363 

silenced MDA-MB-231 cells (Fig. 3E, F). Importantly, this increase in Akt-PH-GFP at the cell 364 

periphery was suppressed in the LCLAT1-silenced cell group (Fig. 3E, F). Hence, despite near 365 

normal levels of EGFR and p-EGFR, we reveal that LCLAT1 expression is required for EGF-366 

mediated increase in PI(3,4,5)P3 levels in at least two cell types. 367 

 368 

The impact of LCLAT1 acyltransferase expression on the acyl profile of PtdInsPs 369 

We next examined the PtdInsP acyl profile and their relative levels by mass spectrometry in 370 

control (cells maintained in medium supplemented with serum), serum-starved (medium with no 371 

serum for 1 h and not further stimulated), and EGF-stimulated for 5 min. These conditions were 372 

examined in both ARPE-19 and MDA-MB-231 cells that were subjected to non-targeting siRNA 373 

or LCLAT1-silencing siRNA oligonucleotides. For this analysis, we normalized lipid spectral 374 

counts against synthetic standards added to the samples to generate a response ratio (see 375 

methods). In addition, to correct for variation in cell input between experiments, we further 376 

normalized against an internal benchmark by comparing changes in 38:4 PtdIns, mono-PtdInsPs, 377 

bis-PtdInsPs, and PtdIns(3,4,5)P3 relative to standardized 36:x-PtdIns and the corresponding 378 

36:x-mono-PtdInsP and 36:xbis-PtdInsP since these species have previously been shown to be 379 

less affected by LCLAT1 expression relative to 38:4 species (Bone et al., 2017; Imae et al., 380 

2012). We note that our previous normalization benchmark used the 38:x PtdInsP (not just 38:4) 381 

to its respective 36:x PtdInsP and an internal benchmark was not used (Bone et al., 2017). 382 

For ARPE-19 cells, the major acyl species of PtdIns, mono-, bis-, and tris-PtdInsP was 383 

38:4, as expected. In fact, we only detected 38:4 acyl species for PtdIns(3,4,5)P3. We then 384 
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compared each group of 38:4 PtdInsPs to the 36:x-PtdIns and the corresponding 36:x-PtdInsP.  385 

Relative to 36:x-PtdIns, we saw that the levels of 38:4-PtdIns were reduced in LCLAT1-silenced 386 

cells (Fig. 4A). In comparison, there was no significant difference in 38:4-mono-PtdInsPs 387 

relative to 36:x-PtdIns or 36:x-mono-PtdInsP in any treatment (Fig. 4B, Sup. Fig. S3A). 388 

However, 38:4-bis-PtdInsPs declined in LCLAT1-silenced cells relative to 36:x-PtdIns (Fig. 4C) 389 

and 36:x-bis-PtdInsPs (Sup. Fig. S3B). Lastly, EGF increased the levels of 38:4-PtdIns(3,4,5)P3 390 

relative to 36:x-PtdIns in both serum-starved non-silenced and LCLAT1-silenced cells (Fig. 4D). 391 

However, LCLAT1-silenced cells had a significant reduction in 38:4-PtdIns(3,4,5)P3 levels 392 

relative to 36:x-PtdIns compared to non-targeted ARPE-19 cells (Fig. 4D). We could not 393 

quantitatively compare 38:4-PtdIns(3,4,5)P3 to 36:x-PtdIns(3,4,5)P3 since we did not detect the 394 

latter. Overall, this suggests that 38:4-PtdIns(3,4,5)P3 is the predominant acyl species of this 395 

phosphoinositide upon EGF stimulation and that LCLAT1 expression is required for its efficient 396 

synthesis.  Overall, we reveal that ARPE-19 cells shift their acyl profile of PtdIns, bis-PtdInsPs, 397 

and PtdIns(3,4,5)P3 upon LCLAT1-disruption, but not for mono-PtdInsPs. 398 

 We similarly investigated the lipidomic profile of MDA-MB-231 cells. The major acyl 399 

species for all PtdInsPs and PtdIns was again 38:4 and we once again only detected 38:4-400 

PtdIns(3,4,5)P3 acyl species in our samples. LCLAT1 suppression lowered 38:4-PtdInsP relative 401 

to 36:x-PtdInsP in MDA-MB-231 cells, but unlike ARPE-19 cells, this change did not transfer to 402 

the bis-species (Fig. 4G and Sup. Fig. S3D). Instead, resting cells had a significant difference in 403 

38:4-mono-PtdInsPs relative to 36:x-mono-PtdInsPs (Sup. Fig. S3C), but not serum-starved or 404 

EGF or relative to 36:x-PtdIns (Fig. 4F and Sup. Fig. S3C). Most striking, was the elevation in 405 

the ratio of 38:4-PtdIns(3,4,5)P3 to 36:x- PtdInsP in non-silenced MDA-MB-231 cells after EGF 406 

stimulation and relative to serum-starved cells (Fig. 4H). Importantly, LCLAT1-perturbed MDA-407 
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MB-231 cells failed to significantly increase 38:4-PtdIns(3,4,5)P3 ratio compared to 36:x-PtdIns 408 

after EGF stimulation (Fig. 4H), suggesting that MDA-MB-231 cells were more sensitive to this 409 

than ARPE-19 cells. Overall, we propose that LCLAT1 expression is essential to support EGFR-410 

dependent activation of PI3K signalling in at least two distinct cell lines, but the impact on acyl 411 

profile can vary between cell type, PtdInsP species, and treatments. 412 

 413 

Akt activation by EGF is defective in LCLAT1-silenced cells 414 

Since LCLAT1-silenced cells had lower EGF-induced PtdInsP(3,4,5)P3 levels relative to non-415 

silenced counterparts, we next examined if Akt activation was also impaired in ARPE-19 and 416 

MDA-MB-231 cells after EGF exposure.  To do this, we probed for phosphorylation at S473 417 

using an antibody that recognizes all isoforms of Akt when phosphorylated (pan-phospho-Akt 418 

antibody).  Relative to serum-starved ARPE-19 and MDA-MB-231 cells, EGF caused a large 419 

increase in phospho-Akt in non-silenced control cells (Fig. 5A, B and Fig. 6A, B). Importantly, 420 

both ARPE-19 and MDA-MB-231 cells silenced for LCLAT1 displayed substantially reduced 421 

phospho-Akt levels after EGF stimulation (Fig. 5A, B and Fig. 6A, B).  We also observed 422 

impaired p-Akt levels in ARPE-19 cells (Supplemental Figure S1A, C and Fig. 5G) and MDA-423 

MB-231 cells (Supplemental Figure S2A, C) treated with independent oligonucleotides against 424 

LCLAT1. Since Akt1 has been reported to respond to PtdIns(3,4,5)P3 while Akt2 to 425 

PtdIns(3,4)P2 generated by SHIP2 from PtdIns(3,4,5)P3 (Liu et al., 2018), we sought to 426 

determine if silencing LCLAT1 exhibited any isoform specific effects on Akt phosphorylation 427 

that may reveal additional insights into PtdInsP perturbation in LCLAT1-silenced cells. We thus 428 

probed with anti-p-Akt1 (S473) and p-Akt2 (S474) antibodies to test this. We reveal that ARPE-429 
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19 and MDA-MB-231 silenced for LCLAT1 after EGF stimulation have lower levels of both p-430 

Akt1 and p-Akt2 relative to their respective total Akt1 and Akt2 (Fig. 5C-F and Fig. 6C-F).  431 

To evince if LCLAT1 was important for Akt signaling by other receptors, we assessed 432 

insulin-mediated activation of Akt in MDA-MB-231 cells. As with EGF, LCLAT1 silencing 433 

hindered phosphorylation of Akt after insulin activation (Fig. 6G, 6H). Thus, LCLAT1 silencing 434 

negatively impacts Akt activation by both EGF and insulin signaling, implying that LCLAT1 435 

may broadly support activation of PI3K-Akt signaling by receptor tyrosine kinases. Finally, we 436 

tested if LCLAT1-silencing also perturbed the ERK pathway by EGFR. Here, we saw cell-type 437 

specific effects. In ARPE-19 cells, EGF stimulation of phospho-ERK1/2 was predominantly 438 

unperturbed by LCLAT1 suppression with two oligonucleotides (Fig. 5G, 5H). However, in 439 

MDA-MB-231 cells inhibited for LCLAT1 displayed suppression of ERK phosphorylation in 440 

response to EGF (Fig. 6E, 6F). Overall, LCLAT1 is required for Akt activation by receptor 441 

tyrosine kinases and may play a role in ERK stimulation in a context-dependent manner. 442 

 443 

LCLAT1 acyltransferase silencing impairs Akt-mediated regulation of downstream targets 444 

Since Akt activation is defective in LCLAT1-silenced cells after addition of EGF, we next 445 

examined if this effect percolated to several known Akt targets. To test for specific targets, we 446 

measured the phosphorylation state of Tsc2 and GSK3β by Western blotting. In ARPE-19 and 447 

MDA-MB-231 cells transfected with a non-targeting oligonucleotide (control siRNA), EGF 448 

promoted robust phosphorylation of these specific Akt substrates (Fig. 7).  In contrast, LCLAT1 449 

silencing led to a considerable decline in the EGF-induced phosphorylation of Tsc2 in ARPE-19 450 

(Fig. 7A,B) and MDA-MB-231 (Fig. 7E, F) cells. For GSK3β, the effects were less clear – for 451 

ARPE-19 cells, there was a tendency for less phosphorylation of GSK3β (Fig. 7C, D), but this 452 
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was not the case for MDA-MB-231 cells (Fig. 7G, H); neither cell line demonstrated a 453 

significant decrease in EGF-stimulated GSK3β phosphorylation upon LCLAT1 silencing. 454 

Overall, loss of LCLAT1 appears to compromise TSC2 regulation by Akt.  455 

We also probed for the expression levels of cell cycle checkpoint proteins like Mdm2, 456 

p53, and p21 (Gordon et al., 2018). In doing so, we observed that LCLAT1-1 oligonucleotide, 457 

but not LCLAT1-5, tended to deplete Mdm2 protein levels in both ARPE-19 (Sup. Fig. S4A, 458 

S4B) and MDA-MB-231 cells (Supplemental Fig. S4E, S4F), despite similar levels of silencing 459 

of LCLAT1 by each LCLAT1 oligonucleotide. These oligonucleotides were significantly 460 

different from each other in their effect on p21 levels in ARPE-19 cells, with LCLAT1-1 461 

trending upward (Supplemental Fig. S4A, S4C). There was no significant difference between 462 

oligonucleotides and non-targeting in their effect on p21 levels in MDA-MB-231 cells and for 463 

p53 protein levels in both cells (Supplemental Fig. S4). Thus, given these differences in outcome 464 

of LCLAT1 oligonucleotides that may reflect kinetics of silencing or even some limited off-465 

target effects by the LCLAT1-1 siRNA sequence, we advise caution when considering the 466 

LCLAT1-1 oligonucleotide in future experiments. Regardless, we emphasize that the effects on 467 

Akt signaling were consistent across all oligonucleotides and in both cell types.  468 

 469 

Discussion 470 

Here, we reveal that the LCLAT1 acyltransferase is needed to promote EGFR-mediated 471 

PtdIns(3,4,5)P3-Akt signaling in at least two cell lines. While EGFR levels and its early 472 

activation by EGF were unaffected, cells perturbed for LCLAT1 had reduced PtdIns(3,4,5)P3 473 

levels and diminished Akt activation. We thus identified an important role for the poorly studied 474 
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LCLAT1 acyltransferase and highlights this enzyme as part of a novel druggable lipid acyl 475 

profile remodelling pathway to modulate PI3K signalling.  476 

 477 

The role of LCLAT1 in generating PtdIns(3,4,5)P3 478 

We provide at least three pieces of evidence that LCLAT1 is important to generate 479 

PtdIns(3,4,5)P3 during EGF-mediated signalling. First, we revealed that LCLAT1-silenced 480 

MDA-MB-231 and ARPE-19 cells were impaired for the recruitment of the Akt-PH-GFP, a 481 

biosensor for PtdIns(3,4,5)P3 levels (Haugh et al., 2000; Marshall et al., 2001), to the plasma 482 

membrane after EGF stimulation. Second, we observed that LCLAT1-silenced cells possessed 483 

lower relative levels of 38:4-PtdIns(3,4,5)P3. Incidentally, 38:4-PtdIns(3,4,5)P3 was the only 484 

observable acyl-based species for PtdIns(3,4,5)P3 in both cell types, likely because the other acyl 485 

isoforms of PtdIns(3,4,5)P3 were below the detection limit of our current analysis. Regardless, 486 

this is consistent with other studies examining the acyl profile of PtdIns(3,4,5)P3, identifying 487 

38:4 as the major species, though this can vary with tissue, cell type, and genetics (Clark et al., 488 

2011; Koizumi et al., 2019; Morioka et al., 2022; Mujalli et al., 2018). Third, Akt activation was 489 

impaired in LCLAT1-silenced cells after EGF stimulation. Hence, collectively these varied 490 

approaches indicate that LCLAT1-silenced cells are defective in promoting PtdIns(3,4,5)P3 491 

levels, and possibly PtdIns(3,4)P2.   492 

A key question then is how does LCLAT1 contribute to PtdIns(3,4,5)P3 synthesis. We 493 

propose at least three possible, non-mutually exclusive mechanisms that will need to be defined 494 

in future studies. First, enzymes involved in PtdIns(3,4,5)P3 metabolism such as Class I PI3Ks, 495 

the PTEN 3-phosphatase, and the SHIP1/2 5-phosphatase may display acyl sensitivity towards 496 

their substrates as previously suggested (Anderson et al., 2016), thus affecting PtdIns(3,4,5)P3 497 
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generation or its turnover. This was observed for Type I PIPKs, Vps34 Class III PI3Ks, and Type 498 

II phosphatases (Ohashi et al., 2020; Schmid et al., 2004; Shulga et al., 2012). Second, 499 

PtdIns(3,4,5)P3 levels may be reduced in LCLAT1-disturbed cells due to lower PtdIns(4,5)P2 500 

substrate levels or availability, which we observed here for MDA-MB-231 cells and previously 501 

in ARPE-19 (Bone et al., 2017). This would also be consistent with Willis et al. who found that 502 

PtdIns(3,4,5)P3 signaling scales linearly with PtdIns(4,5)P2 levels during EGF stimulation (Wills 503 

et al., 2023). Third, and perhaps linked to the second model above, PtdIns(3,4,5)P3 synthesis may 504 

depend on specific substrate pools. These pools may be highly localized or even channeled 505 

through scaffolds (Choi et al., 2016) or transferred at membrane contact sites (Zaman et al., 506 

2020). For example, reduction in PtdIns(4,5)P2 may lead to impaired clathrin-coated scaffold 507 

formation, which promotes EGF-mediated PI3K signaling (Cabral-Dias et al., 2022; Delos 508 

Santos et al., 2017). Indeed, we previously showed that LCLAT1 silencing altered clathrin-509 

coated pit dynamics (Bone et al., 2017). Alternatively, contact sites between the endoplasmic 510 

reticulum and the plasma membrane are important to generate PtdIns(4,5)P2 (Chang and Liou, 511 

2015; Cockcroft et al., 2016; Kim et al., 2015; Lees et al., 2017; Saheki et al., 2016; Zaman et 512 

al., 2020). These sites may provide precursor pools for PtdIns(4,5)P2 and/or PtdIns(3,4,5)P3; 513 

consistent with this, depletion of bulk PtdIns(4)P from the plasma membrane did not reduce 514 

PtdIns(4,5)P2 levels (Hammond et al., 2012), intimating that PtdIns(4,5)P2 depends on specific 515 

pools of PtdIns(4)P. Consistent with this, we previously noted colocalization of a subset of 516 

LCLAT1 with proteins known to be at endoplasmic reticulum-plasma membrane contact sites, 517 

such as extended synaptotagmins (E-Syt2), (Bone et al., 2017). Thus, LCLAT1 may play a role 518 

in generating specific substrate pools to support PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the plasma 519 

membrane. 520 
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The notion that LCLAT1 may act on specific pools of PtdInsPs is consistent with 521 

observations that LCLAT1 and LPIAT/MBOAT7 do not affect the levels of and the acyl profile 522 

of all PtdInsPs. For example, their disruption preferentially affects the acyl profile of PtdIns 523 

and/or bis-phosphorylated PtdInsPs, but not of mono-PtdInsPs in ARPE-19 cells (Anderson et 524 

al., 2013; Bone et al., 2017) (Fig. 4, Sup. Fig. S3). By comparison, LCLAT1 disruption altered 525 

38:4-PtdIns and 38:4-PtdIns(3,4,5)P3 in MDA-MB-231 cells, but had little effect on other 526 

PtdInsPs in most conditions tested. Thus, LCLAT1 may act on specialized pools of lipids, but 527 

this is likely cell-type specific, while enzymes like CDS2 and DGKε may also play a role in 528 

establishing PtdInsP acyl profiles (Bozelli and Epand, 2019; D’Souza et al., 2014; Shulga et al., 529 

2011). Overall, while we know that LCLAT1 is needed to boost PtdIns(3,4,5)P3 levels in 530 

response to EGF, the exact mechanism of action remains to be defined.  531 

 532 

LCLAT1 and PtdIns(3,4,5)P3 functions 533 

We witnessed that LCLAT1 supports PtdIns(3,4,5)P3-mediated activation of Akt isoforms after 534 

EGF signalling. Consequently, TSC2 a key target of Akt was less phosphorylated in LCLAT1-535 

silenced cells. Hence, we anticipate that LCLAT1 affects other effector functions of 536 

PtdIns(3,4,5)P3 including activation of other kinases such as Btk  and GEFs for the Rho-family 537 

of GTPases such as Vav1 and Tiam1 (Salamon and Backer, 2013; Wang et al., 2006, 2; Zhu et 538 

al., 2015, 1).  Additionally, while our work focused on EGFR-mediated signalling, we observed 539 

reduced insulin-driven activation of Akt as well (Sup. Fig. S2D, E). Thus, we postulate that 540 

LCLAT1 broadly supports PtdInsP-dependent signalling by other receptor tyrosine kinases, and 541 

may also support such signalling by GPCRs and peripherally-associated kinase receptors such as 542 

immune receptors (Bresnick and Backer, 2019; Dowling and Mansell, 2016; Getahun and 543 
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Cambier, 2015; Takeuchi and Ito, 2011). Conceivably, the putative role of LCLAT1 in 544 

promoting PI3K signalling among these receptor classes may depend on which isoforms of Class 545 

I and/or Class II PI3K are engaged (Bilanges et al., 2019; Duncan et al., 2020). Overall, our 546 

observations establish a key relationship between LCLAT1 and EGFR-PtdIns(3,4,5)P3-Akt axis 547 

and sets a course to determine the universality of LCLAT1 acyltransferase in PtdIns(3,4,5)P3 548 

signalling.  549 

 550 

LCLAT1 in cellular function and therapeutic potential 551 

While the LCLAT1 acyltransferase remains relatively under-investigated, LCLAT1 is associated 552 

with a variety of functions (Zhang et al., 2023). These include hematopoiesis and cell 553 

differentiation (Huang et al., 2014; Huang et al., 2017; Wang et al., 2007; Xiong et al., 2008), 554 

metabolic regulation (Cao et al., 2009, 1; Liu et al., 2012), mitochondrial stability, dynamics and 555 

function (Huang et al., 2020; Li et al., 2010, 1; Li et al., 2012), sensitivity to oxidative stress (Li 556 

et al., 2010; Liu et al., 2012), endocytosis and endosomal trafficking (Bone et al., 2017), and now 557 

receptor tyrosine kinase signalling.  LCLAT1 is also proposed to remodel the acyl profile of both 558 

cardiolipin and PtdIns/PtdInsPs (Bone et al., 2017; Cao et al., 2004, 1; Imae et al., 2012; Li et al., 559 

2010). It is generally thought that mitochondrial and oxidative stress occurs through cardiolipin 560 

remodelling, while endocytosis and receptor signalling is connected to PtdIns acyl function, as 561 

proposed here. However, the specific roles of LCLAT1 in cardiolipin and PtdInsP acyl 562 

remodelling have not been reconciled. It may be that LCLAT1 has independent roles in acylating 563 

these two distinct lipids, or alternatively, one may depend on the other. For example, 564 

mitochondria contain PtdIns on their outer membrane, which is important for mitochondria 565 

dynamics and function (Pemberton et al., 2020; Zewe et al., 2020). Conceivably, then LCLAT1 566 
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acylation of PtdIns may impact lipidomic properties of cardiolipin in mitochondria. In addition, 567 

while we did not observe significant changes in Mdm2, p53 and p21 levels that we could 568 

specifically attribute to LCLAT1 disturbance, it will be important to examine the effect of 569 

LCLAT1 suppression in cell cycle and apoptosis. Unfortunately, we eventually discovered that 570 

LCLAT1-1 oligonucleotide appears to have either distinct kinetics of knockdown or a limited set 571 

of non-specific effects on Mdm2 protein levels. Regardless, we have performed extensive 572 

experiments that allowed us to ascertain that the effects on PI3K-Akt signaling were observed 573 

with multiple LCLAT1 silencing oligonucleotides. Overall, LCLAT1 and its putative partner, 574 

MBOAT7/LPIAT1, remain relatively understudied and without well-established inhibitors. 575 

Given the role of LCLAT1 in PtdInsP biology and receptor signalling, we propose that these 576 

acyltransferases represent new targets for therapeutic development. 577 

 578 

 579 

Figure legends 580 

Figure 1: LCLAT1 silencing has no negative impact on EGFR activation, EGFR total 581 

levels, and EGFR surface levels in ARPE-19 cells. A. Western blots showing repressed 582 

LCLAT1 expression in ARPE-19 cells transfected with siLCLAT1-1 oligonucleotides relative to 583 

non-targeting control siRNA (NT siRNA). Two replicate lanes per condition are shown. Clathrin 584 

heavy chain (CHC), cofilin, and vinculin were used as loading controls. B. Normalized ratio of 585 

LCLAT1 expression to CHC in ARPE-19 cells. C. ARPE-19 cells silenced for LCLAT1 or 586 

treated with non-targeting oligonucleotide were serum-starved and then stimulated with 5 ng/mL 587 

EGF for 5 min. Lysates were then probed for total EGFR or phospho-EGFR. GAPDH was 588 

employed as the loading control. D. Quantification of total EGFR relative to the respective 589 
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GAPDH signal. E. Normalized cell surface EGFR detected by immunofluorescence before and 590 

after 1 h stimulation with 100 ng/mL EGF in non-targeted and LCLAT1-silenced ARPE-19 cells. 591 

F. Quantification of phospho-EGFR (p-Y1068) relative to the respective total EGFR signal. All 592 

experiments were repeated a minimum of three times except in E (EGF stimulation, n =2). Data 593 

points from matching independent experiments are colour coded. For B, D, and F shown is mean 594 

±STD. Data in E is shown as mean ± SEM where at least 40-80 cells were scored per condition 595 

per experiment. Data in B and D were analysed by a one-sample t-test using hypothetical value 596 

of 1.  For data in E and F, a repeated measures two-way ANOVA followed by Sidak’s (E) or 597 

Tukey’s (F) post-hoc test was used. p values are indicated. 598 

 599 

Figure 2: LCLAT1 silencing has no negative impact on EGFR activation, total EGFR 600 

levels, and surface EGFR levels in MDA-MB-231 cells. A. Western blot showing LCLAT1 601 

silencing in MDA-MB-231 cells transfected with siLCLAT1-1 (siLC-1) relative to non-targeting 602 

control siRNA (NT siRNA). Each conditions shows two replicates. Clathrin heavy chain (CHC), 603 

vinculin, and cofilin were used as a loading control. B. Normalized ratio of LCLAT1 expression 604 

to CHC signal in MDA-MB-231 cells. C. MDA-MB-231 cells silenced for LCLAT1 or treated 605 

with non-targeting oligonucleotides were serum-starved and then stimulated with 5 ng/mL EGF 606 

for 5 min. Lysates were then probed for total EGFR or phospho-EGFR (pY-1068). GAPDH was 607 

employed as the loading control. D. Quantification of total EGFR relative to respective GAPDH. 608 

E. Normalized cell surface EGFR detected by immunofluorescence before and after 1 h 609 

stimulation with 100 ng/mL EGF in non-targeted and LCLAT1-silenced MDA-MB-231 cells. F. 610 

Quantification of phospho-Y1068-EGFR relative to EGFR.  All experiments were repeated at 611 

least three independent times. Data points from matching independent experiments are colour 612 
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coded. For B, D, and F, shown are the mean ± STD. For E, the mean ± SEM is shown where 50-613 

100 cells were scored per condition per experiment. Data in B and D were analysed by a one-614 

sample t-test using hypothetical value of 1.  For data in E and F, a repeated measures two-way 615 

ANOVA followed by Tukey’s post-hoc test was used. p values are shown. 616 

 617 

Figure 3. Defective PI(4,5)P2 and EGF-stimulated PtdIns(3,4,5)P3 synthesis in LCLAT1-618 

silenced cells. MDA-MB-231 cells (A, E), and ARPE-19 (C) were mock-silenced or LCLAT1-619 

silenced. A. Confocal images of MDA-MB-231 cells stably expressing eGFP-PLCδ-PH (green) 620 

and labelled with FM4-46FX (magenta). B. Quantification of eGFP-PLCδ-PH fluorescence on 621 

FM4-64X labelled cell periphery relative to its cytosolic signal. C. TIRF and epifluorescence 622 

microscopy of ARPE-19 cells mock-silenced or silenced for LCLAT1 and expressing Akt-PH-623 

GFP. Cells were maintained serum starved or exposed to 20 ng/mL EGF for 5 min. The TIRF 624 

field is shown both in grayscale and as false-colour (fire LUT), where black-indigo is weakest 625 

and yellow-white is strongest. For representation, cells selected expressed similar levels of Akt-626 

PH-GFP. D. Quantification of TIRF/epifluorescence ratio of Akt-PH-GFP. Total Akt-PH-GFP 627 

fluorescence in TIRF field is expressed as a ratio against the corresponding total fluorescence in 628 

the epifluorescence field. Shown is the ratio for serum-starved and EGF-stimulated control and 629 

LCLAT1-silenced cells. E. Spinning disc confocal images of MDA-MB-231 cells mock-silenced 630 

or LCLAT1-silenced before and during 20 ng/mL EGF stimulation. F. Quantification of Akt-PH-631 

GFP fluorescence at the plasma membrane relative to its cytosolic signal from time-lapse 632 

imaging over 10 min of stimulation with 20 ng/mL EGF. Scale bar = 20 µm. All experiments 633 

were repeated three independent times. For B and D, data points from matching independent 634 

experiments are colour coded. Shown is the mean ± SEM, where data in D were binned every 45 635 
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sec (three images). For B and D, data are based on 30-50 transfected cells per condition per 636 

experiment. For F, a total of 23 transfected cells were traced over time over three independent 637 

experiments. Data in B was analysed by paired Student’s t-test. For D and F, repeated measures 638 

two-way ANOVA and Sidak’s post-hoc test was used to test data in D. p-values are shown.  639 

 640 

Figure 4. Relative levels of 38:4 PtdIns and PtdInPs in ARPE-19 and MDA-MB-231 cells 641 

silenced for LCLAT1. ARPE-19 cells (A-D) and MBA-MB-231 cells (E-I) were mock silenced 642 

(siNT) or LCLAT1-silenced. Cells were then grown in regular medium (control), serum-starved 643 

(ss), and stimulated with 5 ng/mL EGF for 5 min (EGF). Reactions were quenched and lipid 644 

extracted after addition of internal standards to primary cell extracts. PtdInsPs were measured by 645 

mass spectrometry (HPLC-MS). Shown is the ratio of standardized 38:4-PtdIns (A, E), 38:4-646 

mono-PtdInsP (B, G), 38:4-bis-PtdInsP (C, H), and 38:4-PtdIns(3,4,5)P3 (D, I) to the 647 

standardized sum of 36:1 and 36:2-PtdIns (referred to as 36:x-PtdIns). Lipid analysis was 648 

repeated four independent times. Data points from matching independent experiments are colour 649 

coded.  Shown are the mean ±STD. A repeated-measures, two-way ANOVA and Sidak’s post-650 

hoc (A-C, and E-G) and Tukey’s post-hoc (D, H) tests were used to assess the data. p values are 651 

disclosed. 652 

 653 

Figure 5: LCLAT1 is required for EGF-stimulated Akt activation in ARPE-19 cells. A, C, 654 

E: Mock-silenced (siNT) and LCLAT1-silenced ARPE-19 cells were serum-starved (0 min) or 655 

stimulated with 5 ng/mL EGF for 5 min. Lysates were then prepared, separated by SDS-PAGE 656 

and probed by Western blotting for pan-phospho-Akt and total pan-Akt (A), phospho-Akt1 and 657 

total Akt1 (C), and phospho-Akt2 and total Akt2 (E). Clathrin heavy chain (CHC) or GAPDH 658 
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were used as loading controls. # indicates that the GAPDH blot was also used as loading control 659 

for p-TSC2 in Fig. 7G since they originated from the same membrane cut across to probe for 660 

different sized proteins. B, D, F: Quantification of pan-pAkt (B), pAkt1 (D), and pAkt2 (F) 661 

normalized to respective total pan-Akt, Akt1, and Akt2. G. ARPE-19 cells transfected with non-662 

targeting, LCLAT1-1, or LCLAT1-5 oligonucleotides and stimulated as above. Lysates were 663 

probed with LCLAT1, phospho-ERK1/2, ERK1/2, phospho-Akt, Akt, and CHC as loading 664 

control for each blot. E. Quantification of phospho-ERK1/2 relative to total ERK1/2. Mean±STD 665 

are shown from n=4 (A, C, and E) and n=3 (G) independent experiments are shown. Data points 666 

from matching independent experiments are colour coded. Repeated measures two-way ANOVA 667 

and Sidak’s (B, D, F) or Tukey’s (H) post-hoc tests were used to statistically test the data. p 668 

values are indicated.  669 

 670 

Figure 6: LCLAT1 is required for EGF-stimulated Akt activation in MDA-MB-231 cells. 671 

A, C, E: Mock-silenced and LCLAT1-silenced MDA-MB-231 cells were serum-starved (0 min) 672 

or stimulated with 5 ng/mL EGF for 5 min or 10 min. Lysates were then prepared, separated by 673 

SDS-PAGE and probed by Western blotting for pan-phospho-Akt and total pan-Akt (A), 674 

phospho-Akt1 and total Akt1 (C), and phospho-Akt2 and total Akt2 (E). Clathrin heavy chain 675 

(CHC) or GAPDH were used as loading controls. B, D, F: Quantification of pan-pAkt (B), 676 

pAkt1 (D), and pAkt2 (F) normalized to respective total pan-Akt, Akt1, and Akt2. G. Western 677 

blotting of non-silenced and LCLAT1-silenced cells after serum-starvation (SS), 5 ng/mL EGF, 678 

or 10 ng/mL insulin (Ins) stimulation for 5 min. Lysates were probed for pAkt, total Akt, and 679 

clathrin heavy chain. E. Quantification of pAkt relative to total Akt in treatments described in G. 680 

I. Western blot of MDA-MB-231 cells silenced for LCLAT1 with either LCLAT1-1 or 681 
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LCLAT1-5 oligonucleotides. Cells were serum-starved or stimulated with 5 ng/mL EGF for 5 682 

min. Lysates were probed with LCLAT1, phospho-ERK1/2, ERK1/2, phosphor-Akt, Akt, and 683 

corresponding CHC as loading control for each blot. J. Quantification of phospho-ERK to total 684 

ERK. Shown are the mean ±STD from n=3-4 independent experiments. Data points from 685 

matching independent experiments are colour coded. Repeated measures two-way ANOVA and 686 

Sidak’s (B, D, F) or Tukey’s (H, J) post-hoc tests were used to statistically test the data. p values 687 

are displayed. 688 

 689 

Figure 7: LCLAT1 is required for activation of Akt substrates after EGF stimulation. A, C: 690 

Mock-silenced and LCLAT1-silenced ARPE-19 cells were serum-starved (0 min) or stimulated 691 

with 5 ng/mL EGF for 5 min. Lysates were then separated by SDS-PAGE and probed by 692 

Western blotting for phospho-Tsc2 and total Tsc2 (A) and phospho-GSK3β and total GSK3β 693 

(C). Clathrin heavy chain (CHC) or GAPDH were used as loading controls. # indicates that the 694 

GAPDH blot was also used as loading control for total pan-Akt in Fig. 5A since they originated 695 

from the same membrane cut across to probe for different sized proteins. B, D: Quantification of 696 

pTsc2 (B) and pGSK3β (D) normalized to respective total Tsc2 and GSK3β. E, G: Mock-697 

silenced and LCLAT1-silenced MDA-MB-231 cells were serum-starved (0 min) or stimulated 698 

with 5 ng/mL EGF for 5 min. Lysates were then separated by SDS-PAGE and probed by 699 

Western blotting for phospho-Tsc2 and total Tsc2 (F), and phospho-GSK3β and total GSK3β 700 

(G). Clathrin heavy chain (CHC) or GAPDH were used as loading controls. ## indicates that the 701 

GAPDH blot was used as loading control for both total TSC2 (G) and total GSK3β (I) since they 702 

originated from the same membrane cut across to probe for different sized proteins. H, J: 703 

Quantification of pTsc2 (H) and pGSK3β (I) normalized to respective total Tsc2 and GSK3β. 704 
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For B, D, F, and H mean ± STD are shown from n=3 independent experiments. Data points from 705 

matching independent experiments are colour coded. A two-way ANOVA and Sidak’s post-hoc 706 

test was used to statistically test the data, with p values shown.  707 

 708 

Supplemental Information 709 

 710 

Supplemental Figure S1: LCLAT1 silencing in ARPE-19 cells with an independent siRNA 711 

oligonucleotide disrupts Akt signalling. ARPE-19 cells were transfected with oligonucleotide 712 

siLCLAT1-5 or non-targeting control.  Cells were then serum-starved (SS), followed by 5 ng/mL 713 

EGF stimulation for 5 min. A. Lysates were probed for LCLAT1 expression, p-Akt, Akt, and 714 

clathrin heavy chain (CHC), which was used as a loading control. B. Quantification of LCLAT1 715 

silencing by normalizing LCLAT1 to CHC signal in ARPE-19 cells. C. Quantification of p-Akt 716 

levels relative to total Akt. Data are shown as mean ±STD are shown from n=3 independent 717 

experiments. Data points from matching independent experiments are colour coded. Data was 718 

analysed by a repeated measures two-way ANOVA and Sidak’s post-hoc test. p values are 719 

disclosed.  720 

 721 

Supplemental Figure S2: LCLAT1 silencing in MDA-MB-231 cells with independent 722 

siRNA oligonucleotides disrupts Akt signalling.  A. Western blotting showing LCLAT1 723 

silencing in MDA-MB-231 cells transfected with non-targeting siRNA, siLCLAT1-1, 724 

siLCLAT1-2, or siLCLAT1-3 oligonucleotides. Cells were then serum-starved (SS) or 725 

stimulated with 5 ng/mL EGF for 5 min. Lysates were probed for LCLAT1 expression, p-Akt, 726 

and clathrin heavy chain (CHC), which was used as a loading control. B. Quantification of 727 
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LCLAT1 silencing by normalizing LCLAT1 to CHC signal in MDA-MB-231 cells transfected as 728 

in D. C. Quantification of p-Akt levels relative to clathrin in MDA-MB-231 cells mock-silenced 729 

or LCLAT1-silenced with one of three siRNA oligonucleotides and either serum-starved or 730 

stimulated with 5 ng/mL EGF for 5 min. Data points from matching independent experiments are 731 

colour coded. Data in B were analysed with a repeated measures one-way ANOVA and 732 

Dunnett’s post-hoc test. Data in C were analysed with a repeated measures two-way ANOVA 733 

and Tukey’s post-hoc test. p values are indicated. 734 

 735 

Supplemental Figure S3. Relative levels of 38:4-PtdInsPs to 36:x-PtdInsPs in ARPE-19 and 736 

MDA-MB-231 cells silenced for LCLAT1. ARPE-19 cells (A-B) and MBA-MB-231 cells (C-737 

D) were mock silenced (siCon) or LCLAT1-silenced. Cells were then grown in regular medium 738 

(control), serum-starved (ss), and stimulated with 5 ng/mL EGF for 5 min (EGF). Reactions were 739 

quenched and lipid extracted after addition of internal standards to primary cell extracts. 740 

PtdInsPs were measured by mass spectrometry (HPLC-MS). Shown is the ratio of standardized 741 

38:4-mono-PtdIns (A, C) and 38:4-bis-PtdInsP2 (B, D) to the respective standardized sum of 742 

36:1 and 36:2- (referred to as 36:x-PtdIns) mono-PtdInsP and bis-PtdInsP2. Lipid analysis was 743 

repeated four independent times. Data points from matching independent experiments are colour 744 

coded. Shown are the mean ±STD. A repeated measures two-way ANOVA and Sidak’s post-hoc 745 

test was used to test data. p values are indicated.  746 

 747 

Supplemental Figure S4: LCLAT1 silencing effect on cell cycle checkpoint proteins, Mdm2, 748 

p21, and p53.  A, B. Western blotting showing LCLAT1 silencing in ARPE-19 (A) and MDA-749 

MB-231 (B) cells transfected with non-targeting siRNA, siLCLAT1-1, or siLCLAT1-5 750 
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oligonucleotides. Cells were serum-starved or stimulated with 5 ng/mL EGF for 5 min. Lysates 751 

were probed for LCLAT1, Mdm2, p53, and p21 expression. Clathrin heavy chain (CHC) was 752 

probed as a loading control. B, C, D, F, G, H. Quantification of Mdm2, p21, and p53 expression 753 

relative to CHC expression in ARPE-19 (B-D) and MDA-MB-231 (F-H) cells.  Data are the 754 

mean ± STD from n=4 independent experiments. Data points from matching independent 755 

experiments are colour coded. Data was analysed with a repeated measures two-way ANOVA 756 

and Tukey’s post-hoc test with p values indicated. 757 

 758 

 759 

 760 
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