

1 **The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-**
2 **3,4,5-trisphosphate generation and Akt signalling**

3
4 Victoria Chan^{1,2}, Cristina Camardi^{1,2}, Kai Zhang², Laura A. Orofiamma^{1,2}, Karen E. Anderson³,
5 Jafarul Hoque², Leslie N. Bone^{1,2}, Yasmin Awadeh^{1,2}, Daniel K. C. Lee⁴, Norman J. Fu⁴,
6 Jonathan T. S. Chow⁴, Leonardo Salmena⁴, Len R. Stephens³, Phillip T. Hawkins³, Costin N.
7 Antonescu^{1,2*}, and Roberto J. Botelho^{1,2*}

8
9 ¹Molecular Science Graduate Program and ²Department of Chemistry and Biology, Toronto
10 Metropolitan University, Toronto, Ontario, M5B2K3, Canada

11 ³Inositide Laboratory, Babraham Institute, Cambridge CB22 4AT, United Kingdom

12 ⁴Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario,
13 M5S1A8, Canada

14
15 ***Correspondence should be sent to:**
16 Costin N. Antonescu: cantonescu@torontomu.ca and Roberto J. Botelho:
17 rbotelho@torontomu.ca

18
19 **Running title:** LCLAT1 acyltransferase and PI3K-Akt

20
21 **Keywords:** cancer, cell signaling, lipids, kinase, phosphorylation, growth factor, cell
22 proliferation

23

24 **Abbreviations:** BSA: bovine serum albumin; EGF: epidermal growth factor; EGFR: epidermal
25 growth factor receptor; IP₃: inositol-1,4,5-trisphosphate; ER: endoplasmic reticulum; PtdIns:
26 phosphatidylinositol; PtdIns(3)P: phosphatidylinositol-3-phosphate; PtdIns(4,5)P₂:
27 phosphatidylinositol-4,5-bisphosphate; PtdIns(3,4,5)P₃: phosphatidylinositol-3,4,5-trisphosphate;
28 PtdInsP: phosphoinositide; TIRF: total internal reflection fluorescence; TNBC: triple negative
29 breast cancer

30

31

32

33 **Abstract**

34 Receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) stimulate
35 phosphoinositide 3-kinases (PI3Ks) to convert phosphatidylinositol-4,5-bisphosphate
36 [PtdIns(4,5)P₂] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P₃]. PtdIns(3,4,5)P₃
37 then remodels actin and gene expression, and boosts cell survival and proliferation.
38 PtdIns(3,4,5)P₃ partly achieves these functions by triggering activation of the kinase Akt, which
39 phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of
40 PtdIns(3,4,5)P₃-Akt signalling promotes tumour progression. Interestingly, 50-70% of PtdIns and
41 PtdInsPs have stearate and arachidonate at *sn*-1 and *sn*-2 positions of glycerol, respectively,
42 forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases
43 partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1
44 lowered PtdIns(4,5)P₂ levels and perturbed endocytosis and endocytic trafficking. However, the
45 role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P₃ signaling was not explored.
46 Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of
47 PtdIns(3,4,5)P₃ in response to EGF signalling. Importantly, LCLAT1-silenced cells were also
48 impaired for EGF-driven and insulin-driven Akt activation and downstream signalling. Thus, our
49 work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine
50 kinase signalling.

51
52
53
54
55
56
57
58
59
60

61

62

63 **Introduction**

64 Phosphoinositide (PtdInsP) lipid signaling orchestrates a variety of cellular functions such as
65 organelle identity and membrane trafficking, ion channel activity, cytoskeletal organization,
66 regulation of gene expression, modulation of metabolic activity, and cell proliferation and
67 survival (Balla, 2013; Choy et al., 2017; Dickson and Hille, 2019; Doumane et al., 2022; Idevall-
68 Hagren and De Camilli, 2015; Posor et al., 2022). PtdInsPs are generated by the reversible
69 phosphorylation of the phosphatidylinositol (PtdIns) headgroup by several types of lipid kinases
70 and phosphatases. Collectively, and based on the headgroup phosphorylation, these enzymes can
71 generate up to seven species of PtdInsPs (Balla, 2013; Choy et al., 2017; Dickson and Hille,
72 2019; Posor et al., 2022). Nonetheless, there is another facet of PtdInsP biology that is poorly
73 defined at the regulatory and functional levels – the control and function of the acyl composition
74 of PtdInsPs (Barneda et al., 2019; Bozelli and Epand, 2019; Choy et al., 2017; D’Souza and
75 Epand, 2014; Traynor-Kaplan et al., 2017).

76 In many mammalian tissues and cells, 50-70% of PtdIns and PtdInsPs are enriched for
77 stearate and arachidonate at the *sn*-1 and *sn*-2 positions, respectively – this acyl combination is
78 referred to as 38:4-PtdIns or 38:4-PtdInsPs (Anderson et al., 2013; Anderson et al., 2016;
79 Barneda et al., 2019; D’Souza and Epand, 2014; Haag et al., 2012; Imae et al., 2012; Lee et al.,
80 2012; Milne et al., 2005; Traynor-Kaplan et al., 2017). Additionally, this acyl composition is
81 unique to PtdIns and PtdInsPs since other phospholipids have distinct acyl profiles (Barneda et
82 al., 2019; Bozelli and Epand, 2019; Hicks et al., 2006; Traynor-Kaplan et al., 2017). This
83 suggests that the acyl groups of PtdIns and PtdInsPs do more than simply embedding the lipids
84 into the membrane bilayer (Barneda et al., 2019; Bozelli and Epand, 2019; Choy et al., 2017).

85 However, the exact acyl profile of PtdIns and PtdInsPs can vary between cell types,
86 environmental conditions, and patho-physiological conditions such as cancer (Anderson et al.,
87 2016, 10; Barneda et al., 2019; Bozelli and Epand, 2019; Hicks et al., 2006; Imae et al., 2012;
88 Mujalli et al., 2018; Traynor-Kaplan et al., 2017). For example, $p53^{-/-}$ cancer cells, prostate
89 cancer cells and triple negative breast cancer cells all have distinct acyl profiles of PtdIns relative
90 to normal tissue (Freyr Eiriksson et al., 2020; Koizumi et al., 2019; Naguib et al., 2015; Rueda-
91 Rincon et al., 2015). Yet, there is much to be understood about the regulatory mechanisms that
92 establish and remodel the acyl profile of PtdIns and PtdInsPs, and their functional implications.

93 The LCLAT1 acyltransferase has been identified as one of the enzymes that remodels
94 and enriches PtdIns and/or PtdInsPs in stearate at the *sn*-1 position (Bone et al., 2017; D'Souza
95 and Epand, 2014; Imae et al., 2012; Zhang et al., 2023). LCLAT1 is an ER-localized protein and
96 is thought to act during the Lands' Cycle or PtdIns Cycle to enrich PtdIns in stearate at *sn*-1
97 (Barneda et al., 2019; Blunsom and Cockcroft, 2020; Bone et al., 2017; Imae et al., 2012).
98 Murine tissues deleted for LCLAT1 had reduced levels of 38:4-PtdIns, mono-PtdInsP, and bis-
99 phosphorylated PtdInsPs (Imae et al., 2012). More recently, we observed that LCLAT1 silencing
100 reduced the relative levels of endosomal phosphatidylinositol-3-phosphate [PtdIns(3)P] and
101 phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P₂] on the plasma membrane, while the levels
102 of phosphatidylinositol-4-phosphate [PtdIns(4)P] remained unchanged (Bone et al., 2017).
103 Importantly, PtdIns and bis-phosphorylated PtdInsPs (mostly PtdIns(4,5)P₂), but not mono-
104 phosphorylated PtdInsPs (mostly PtdIns(4)P) were altered in their acyl profile upon LCLAT1
105 silencing. This effect on specific pools of PtdInsPs has also been observed in cells disrupted for
106 LPIAT1/MBOAT7, an acyltransferase thought to enrich PtdIns/PtdInsPs in arachidonic acid
107 (Anderson et al., 2013).

108 PtdIns(4,5)P₂ regulates a number of functions including endocytosis, ion transport, and
109 the cytoskeleton organization (Balla, 2013; Katan and Cockcroft, 2020; Sun et al., 2013).
110 PtdIns(4,5)P₂ is also a precursor for other signalling intermediates regulated by growth factor
111 receptors like the Epidermal Growth Factor (EGF) and its receptor, the EGF receptor (EGFR), a
112 major receptor tyrosine kinase (Katan and Cockcroft, 2020; Orofiamma et al., 2022). EGF binds
113 and dimerizes EGFR, leading to receptor autophosphorylation on various tyrosine residues on
114 the receptor's C-terminal tail region (Böni-Schnetzler and Pilch, 1987; Gullick et al., 1985;
115 Honegger et al., 1987; Koland and Cerione, 1988; Linggi and Carpenter, 2006; Yarden and
116 Schlessinger, 1987). Motifs harbouring these phospho-tyrosines serve as docking sites for
117 adaptor proteins like Grb2, which assemble a signaling complex composed of other protein
118 kinases and phosphatases, and lipid-metabolizing enzymes (Holgado-Madruga et al., 1996, 2;
119 Margolis et al., 1990a; Orofiamma et al., 2022; Rodrigues et al., 2000). For example, active
120 EGFR recruits and activates Phospholipase C γ (PLC γ), which hydrolyses PtdIns(4,5)P₂ into
121 diacylglycerol and inositol-1,4,5-trisphosphate (IP₃), and which releases Ca²⁺ from endoplasmic
122 reticulum stores (Delos Santos et al., 2017; Margolis et al., 1990a; Margolis et al., 1990b). In
123 addition, Gab1, recruited to the membrane via interactions with EGFR-bound Grb2, engages
124 Class I PI3Ks to convert PtdIns(4,5)P₂ to PtdIns(3,4,5)P₃ (Kiyatkin et al., 2006; Rodrigues et al.,
125 2000). This burst of PtdIns(3,4,5)P₃ then recruits and activates PDK1 and Akt protein kinases
126 (Alessi et al., 1997; Bellacosa et al., 1998; Manning and Toker, 2017; Stokoe et al., 1997). Akt is
127 a major driver of cell metabolism and growth by phosphorylating numerous targets like GSK3 β
128 and TSC2 (Cross et al., 1995; Inoki et al., 2002; Manning and Toker, 2017; Rodgers et al., 2017;
129 Sugiyama et al., 2019). For example, Akt inactivates TSC2, a GTPase activating protein (GAP)
130 for the Rheb GTPase, thus promoting the mTORC1 pathway (Inoki et al., 2002; Inoki et al.,

131 2003). The PtdIns(3,4,5)P₃-Akt-mTORC1 pathway is a major driver of cell growth, proliferation,
132 survival, and differentiation (Dey et al., 2017; Dibble and Manning, 2013; Manning and Toker,
133 2017; Sugiyama et al., 2019). As a result, mutations that hyperactivate this pathway are often
134 associated with human cancers like triple-negative breast cancer (TNBC) (Dey et al., 2017; Li et
135 al., 2017).

136 Overall, given that LCLAT1 is a PI acyltransferase and the connection between EGF and
137 PI3K-Akt pathway, we postulated that LCLAT1 disruption would impair EGF-mediated
138 PtdIns(3,4,5)P₃-Akt signalling, reflecting a role for PI acyl profile specificity for signaling by
139 this pathway. In fact, we found that LCLAT1 silencing in at least two cell lines impeded
140 generation of PtdIns(3,4,5)P₃ and Akt activation upon addition of EGF.

141

142 **Methods and Materials**

143 **Cell Culture**

144 The male human-derived ARPE-19 retinal pigment epithelial cell line was obtained from ATCC
145 (CRL-2302, Manassas, VA) and was cultured in DMEM/F12 medium (ThermoFisher Scientific,
146 Mississauga, ON) supplemented with 10% fetal bovine serum (Wisent, St. Bruno, QB), 100
147 U/mL penicillin and 100 µg/mL streptomycin (ThermoFisher Scientific). The female human-
148 derived MDA-MB-231 triple negative breast cancer cell line was obtained from ATCC (CRM-
149 HTB-26). Wild-type MDA-MB-231 cells and its derivatives (see below) were cultured in
150 DMEM medium (Wisent) supplemented with 10% fetal bovine serum, 100 U/mL penicillin and
151 100 µg/mL streptomycin. The female human-derived HEK293T cell line was cultured in DMEM
152 with 10% fetal calf serum and 1% penicillin/streptomycin. All cells were cultured at 37°C and
153 5% CO₂. *Mycoplasma* screening is performed at least annually.

154

155 **Transfection and siRNA-mediated gene silencing**

156 To silence gene expression of LCLAT1 in both ARPE-19 and MDA-MB-231 cells, custom-
157 synthesized siRNA oligonucleotides against LCLAT1 were designed using Horizon Discovery
158 siDESIGN Centre. We designed and tested siLCLAT1-1, siLCLAT1-2, and siLCLAT1-3 with
159 the respective sequences 5'-GGAAAUGGAAGGAUGACAAUU-3',
160 5'CAGCAAGUCUCGAAGUAUUU-3', and 5'-UCGAAGACAUUGAUUAUUU-3'.
161 Synthesis was by Sigma-Aldrich (Oakville, ON). In addition, we used siLCLAT1-5, a
162 siGenome-validated oligonucleotide from Horizon (cat. D-010307-01-0002). Moreover, a non-
163 targeting control siRNA (NT siRNA, or siCON) with the sequence 5'-
164 CGUACUGCUUGCGAUACGGUU-3' was used (Sigma-Aldrich). Cells were transfected with
165 22 pmol of siRNA oligonucleotides/well using Lipofectamine RNAiMAX (ThermoFisher
166 Scientific) in Opti-MEM reduced serum media (ThermoFisher Scientific) for 3 h at 37°C and 5%
167 CO₂ as per manufacturer's instructions. After transfection, cells were washed and incubated with
168 fresh growth medium. Two rounds of transfection were performed, 72 and 48 h before each
169 experiment.

170

171 **Plasmids and transfections**

172 Plasmid encoding Akt-PH-GFP was a kind gift from the Balla lab, NIH (Addgene: #51465) and
173 was previously described in (Várnai and Balla, 1998). Akt-PH-GFP plasmid was transfected into
174 ARPE-19 and MDA-MB-231 cells using Lipofectamine 3000 as instructed by the manufacturer.
175 The plasmid encoding eGFP-PLC δ -PH was previously described in (Stauffer et al., 1998) and
176 used to generate MDA-MB-231 cells stably expressing the PtdIns(4,5)P₂ biosensor.

177

178 **Generation of doxycycline-inducible expression of eGFP-PLC δ -PH in MDA-MB-231 cell**

179 A plasmid based on the Sleeping Beauty pSBtet-BP vector (GenScript, Piscataway, NJ; catalog
180 number: SC1692) for inducible expression of eGFP-PLC δ 1-PH was generated by gene synthesis
181 of the open reading frame of eGFP-PLC δ -PH and insertion into the NheI and Clal restriction
182 sites of the pSBtet-BP vector, as described previously (Zak and Antonescu, 2023). MDA-MB-
183 231 cells were transfected with the engineered pSBtet-BP::eGFP-PLC δ -PH and pCMV(CAT)T7-
184 SB100 plasmid (Addgene, Plasmid #34879) using FuGENE HD transfection reagent (Promega)
185 as instructed by manufacturer. After transfection, cells were washed and incubated with fresh
186 growth medium for another 24 h to let cells recover in a 6-well plate, and then transferred into a
187 T75 flask in the presence of 3 μ g/mL of puromycin. Growth medium with puromycin was
188 replaced every 2-3 days for 3 weeks. After selection, cells were treated with doxycycline (100-
189 200 nM) for 24 h to detect eGFP-PLC δ -PH expression by Western blotting and fluorescence
190 microscopy.

191

192 **EGF signaling and Western blotting**

193 Before lysate preparation, cells were incubated with 2 mL of serum free growth medium for 1 h.
194 After serum starvation, cells were stimulated with 5 ng/mL EGF for 5 or 10 min or left
195 unstimulated (basal). Alternatively, cells were stimulated with 10 ng/mL insulin for 5 min.
196 Following serum starvation and subsequent EGF stimulation, whole cell lysates were prepared in
197 200 μ L 2x Laemmli Sample Buffer (0.5M Tris, pH 6.8, glycerol and 10% sodium dodecyl
198 sulfate (SDS)) supplemented with a protease and phosphatase inhibitor cocktail (Complete 1x
199 protease inhibitor (Sigma-Aldrich), 1 mM sodium orthovanadate, and 10 nM okadaic acid).

200 Lysates were heated at 65°C for 15 min and passed through a 27-gauge needle 10 times. Finally,
201 10% β -mercaptoethanol and 5% bromophenol blue were added to cell lysates.

202 Proteins were resolved by Tris-glycine SDS-PAGE and transferred on to a
203 polyvinylidene difluoride (PVDF) membrane. The PVDF membrane was blocked for 1 h at room
204 temperature in blocking buffer composed of 3% bovine serum albumin (BSA) in 1X final Tris-
205 buffered saline-Tween (TBS-T; 20 nM Tris, 150 mM NaCl and 0.1% Tween-20). After blocking,
206 membranes were washed 3 times with wash buffer and incubated with 1:1000 primary antibody
207 overnight at 4°C. The next day, membranes were washed 3 times, for 5 min each, and then
208 subjected to 1:1000 secondary antibody for 1 h at room temperature. After incubation with
209 secondary antibody, membranes were washed 3 times, 5 min each, and imaged using the
210 ChemiDoc Imaging System (BioRad). Membranes were exposed to Immobilon Crescendo
211 Western HRP substrate (Millipore Sigma) for 30-60 s and chemiluminescent images were
212 acquired by the ChemiDoc System. Western blot signals were analyzed and quantified using the
213 ImageLab 6.1 (BioRad). Band intensity was obtained by signal integration in an area
214 corresponding to the appropriate band. This value was then normalized to the loading control
215 signal. For quantifying phosphorylated protein levels, the phosphorylated protein signal and the
216 corresponding total protein signal were first normalized to their respective loading controls,
217 followed by the ratio of corrected phosphorylated protein signal to total protein signal.

218 Primary antibodies raised in rabbit were anti-LCLAT1 (cat. 106759, GeneTex), anti-
219 phospho-Akt (S473, cat. 9271), anti-phospho-Akt1 (S473, cat. 9018), anti-phospho-Akt2 (S474,
220 cat. 8599), anti-Akt1 (cat. 2938), anti-phospho-EGFR (Y1068. Cat. 2234), anti-phospho-
221 tuberin/TSC2 (T1462, cat. 3611), anti-tuberin/TSC2 (cat. 3612), anti-phospho-GSK3 β (S9, cat.
222 9323), anti-phospho-ERK1/2 (T202/Y204, monoclonal, cat. 9201), anti-ERK1/2 (monoclonal,

223 137F5, cat. 4695), anti-p53 (monoclonal, 7F5, cat. 2527), anti-p21 Waf1/Cip1 (monoclonal,
224 12D1, cat. 2947), anti-cofilin (monoclonal, D3F9), anti-vinculin (polyclonal, Cat. 4550) anti-
225 clathrin, (monoclonal DC36, cat. 4796), and anti-GAPDH (cat. 2118) were all from Cell
226 Signaling Technologies. Antibodies raised in mouse were anti-Akt (monoclonal, 40D4; cat.
227 2920), anti-Akt2 (cat. 5239), anti-GSK3 β (cat. 9832), and anti-puromycin (cat. MABE343) and
228 were all from Cell Signaling Technology. Goat anti-EGFR antibodies were from Santa Cruz
229 Biotechnology (sc-03-G). Horseradish peroxidase (HRP)-linked secondary anti-rabbit, anti-
230 mouse, and anti-goat IgG antibodies were from Cell Signaling Technology.

231

232 **Fluorescence and Immunofluorescence**

233 To detect surface levels of EGFR in MDA-MB-231 and ARPE-19 cells, cells were blocked
234 with 3% BSA in PBS supplemented with 1 mM CaCl₂ and MgCl₂ for 30 min on ice, followed by
235 1 h incubation with a 1:200 dilution of mouse anti-EGFR antibody collected in-house from the
236 mAb108 hybridoma obtained from ATCC (Cabral-Dias et al., 2022). After washing with PBS,
237 cells were fixed with 4% paraformaldehyde in PBS for 15 min and then quenched with 100 mM
238 glycine in PBS for 10 min, followed by washing with PBS, and then fluorescent secondary
239 mouse antibodies (Jackson ImmunoResearch Labs Inc., West Grove, PA) at a 1:500 dilution in
240 1% BSA in PBS for 1 h at room temperature. The coverslips were mounted using Dako
241 fluorescence mounting medium (Agilent Technologies, Inc. Mississauga, ON, Canada). For
242 labeling the plasma membrane, cells with stained with 7 μ g/mL FM4-64FX and imaged within
243 10 min to minimize internalization of FM4-64FX.

244

245 **Microscopy**

246 Confocal and TIRF micrographs were obtained using a Quorum Diskover spinning disc
247 confocal system coupled to a TIRF module (Quorum Technologies, Inc., Guelph, ON). The
248 microscope itself consisted of an inverted fluorescence microscope (DMi8; Leica) equipped with
249 an Andor Zyla 4.2 Megapixel sCMOS camera (Oxford Instruments, Belfast, UK), a 63x oil
250 immersion objective (1.4 NA), and standard excitation and emission filter sets and lasers were
251 used for all fluorophores. The TIRF module used a 63x/NA1.49 objective with a 1.8x camera
252 relay (total magnification 108x). The microscope system was controlled by the MetaMorph
253 acquisition software (Molecular Devices, LLC, San Jose, CA, USA).

254 For fixed cells, z-stacks of 10-30 images were acquired with an inter-planar distance of
255 0.6 μ m distance. For live-cell imaging of Akt-PH-GFP dynamics in ARPE-19 cells or of eGFP-
256 PLC δ -PH in MDA-MB-231 cells by TIRF microscopy or spinning disc confocal respectively,
257 cells were maintained in DMEM free of phenol red or serum in a Chamlide microscope-mounted
258 chamber at 37°C and 5% CO₂. For timelapse of Akt-PH-GFP in MDA-MB-231 cells, a baseline
259 was obtained by acquiring images for 1 min at 15 s, then EGF was added, and images acquired
260 every 15 s for 10 min.

261

262 **Image Analysis and Processing**

263 Image processing and quantitative analysis were performed using ImageJ or FIJI v. 2.3
264 (Schindelin et al., 2012) or Volocity v. 7 (Quorum Technologies), where image enhancements
265 were completed without altering the quantitative relationship between image elements. For
266 quantification of EGFR cell surface, regions of interest were generated by freehand to define the
267 cell outline, the mean fluorescence intensity over the whole cell area was calculated, and then
268 background corrected (Cabral-Dias et al., 2022). Mean fluorescence from at least 30 cells per

269 condition per experiment was then normalized against control condition. To obtain the relative
270 cell surface localization index for the Akt-PH-GFP probe in ARPE-19 cells, we used ImageJ to
271 determine the ratio of TIRF/epifluorescence fluorescence for >100 cells per condition per
272 experiment. To measure the plasma membrane to cytosolic ratio of eGFP-PLC δ -PH in MDA-MB-
273 231 cells (Cabral-Dias et al., 2021), we first defined the plasma membrane using the FM4-64FX
274 channel to randomly selected regions of the plasma membrane and cytosol for each cell and their
275 ratio was calculated. For Akt-PH-GFP timelapse movies were acquired and randomly selected
276 regions in the cell periphery and cytosol were selected in FIJI and then the plasma membrane to
277 cytosol fluorescence ratio over time. We examined at least 23 cells over three experiments.

278

279 **Lipid extraction**

280 Cells were grown to $\sim 0.5 \times 10^6$ per well in a 6-well plate. Cells were then placed on ice and the
281 media removed. Cells were scraped in 500 μ L of ice cold 1M HCl and transferred to a pre-cooled
282 safe lock 2 mL microcentrifuge tube. Cells were then collected by centrifugation at 13,000 xg for
283 10 min at 4°C. The supernatant was aspirated, and the pellet was then snap frozen in liquid
284 nitrogen.

285

286 **Mass Spectrometry Lipid Analysis**

287 Mass spectrometry was used to measure PtdInsPs from lipid extracts prepared from $0.5-1 \times 10^6$
288 MDA-MB-231 cells or 0.6×10^6 ARPE-19 cells as previously described (Clark et al., 2011).
289 Briefly, we used a QTRAP 4000 mass spectrometer (AB Sciex, Macclesfield, UK) and
290 employing the lipid extraction and derivatization method described for cultured cells (Clark et
291 al., 2011). The response ratios of a specific PtdInsP acyl species were calculated by normalizing
292 the targeted lipid integrated response area to that of a known amount of added relevant internal

293 standard. A ratio of ratios was then calculated by taking the response ratios of 38:4-PtdIns, 38-4-
294 mono-PtdInsP, 38-4-bis-PtdInsP, and 38:4-PtdIns(3,4,5)P₃ against the sum of response ratios for
295 36:1 and 36:2 (36:x) of PtdIns or the corresponding 36:x-mono-PtdInsP or 36:x-bis-PtdInsP.
296 Data are presented as mean \pm STD from four separate experiments.

297

298 **Statistical analysis**

299 Experiments were repeated a minimum of three independent times, with the exact number for
300 each experiment indicated in the respective figure legend and/or graph as individual data points.
301 Microscopy data were selected and quantified randomly, i.e. before inspection of cells. If regions
302 of a cell were selected, this was done with the independent channel prior to quantification of the
303 target channel. Data were collected as mean \pm standard deviation (STD) or \pm standard error of
304 the mean (SEM). Statistical comparisons of means were then performed with GraphPad Prism v.
305 10. Statistical tests were selected based on data conditions such as number of parameters, sample
306 size, assumption of normality, number of comparisons made, and correction for multiple
307 comparisons. Figure legends specify the tests employed for a given data set such as one-sample
308 t-test, one-way or repeated-measures two-way ANOVA tests, and recommended post-hoc tests. p
309 values are shown, where p< 0.05 was typically accepted as significantly different.

310

311 **Results**

312 **LCLAT1 acyltransferase regulation of EGFR trafficking**

313 In our previous work, LCLAT1 silencing altered the endocytosis and endosomal trafficking of
314 the transferrin receptor in ARPE-19 cells (Bone et al., 2017). We thus queried if LCLAT1
315 disruption would alter the total and surface levels of EGFR and/or affect EGFR signalling in at

316 least two human-derived cells lines: the non-cancerous, male-derived ARPE-19 and the female-
317 derived triple negative breast cancer cell line, MDA-MB-231. To do this, we used previously
318 designed and validated siRNA oligonucleotides against LCLAT1 (Bone et al., 2017) and a non-
319 targeting oligonucleotide (see Methods), transiently transfected cells twice, and after 48 h, we
320 lysed the cells and probed for LCLAT1 levels by Western blotting. As shown in Figure 1A and
321 Figure 2A respectively, control ARPE-19 and MDA-MB-231 cells displayed a major band at 35
322 kDa. After transfection with siLCLAT1-1, this band was reduced by ~70% intensity in both cell
323 types, manifesting efficient LCLAT1 silencing (Fig. 1A, B and Fig. 2A, B). We also observed
324 reduced LCLAT1 expression in ARPE-19 and MDA-MB-231 cells transfected with independent
325 siRNA oligonucleotides against LCLAT1 (Supplemental Figure S1A, 1B, S2A, 2B, and S4).

326 We next examined the effects of LCLAT1 silencing on total and surface levels of EGFR
327 in these cells. We observed that LCLAT1 silencing in ARPE-19 and MDA-MB-231 cells did not
328 alter total EGFR levels as measured by Western blotting (Fig. 1C, 1D and 2C, 2D) nor the EGFR
329 surface levels as measured by immunofluorescence of unpermeabilized cells under basal
330 conditions (Fig. 1E and 2E). Moreover, the surface levels of EGFR after 1 h of 100 ng/mL EGF
331 stimulation dropped by a similar extend in both control and LCLAT1-silenced ARPE-19 (Fig.
332 1E) and MDA-MB-231 (Fig. 2E). Importantly, LCLAT1-silencing did not impair EGF-mediated
333 phosphorylation of Y1068 of EGFR in ARPE-19 cells (Fig. 1C, F) and MDA-MB-231 cells (Fig.
334 2C, F); in fact, EGFR phosphorylation at Y1068 appears elevated in LCLAT1-silenced cells
335 (Fig. 2F). Overall, these data suggest that the steady-state levels and trafficking of EGFR, and
336 immediate response to EGF in ARPE-19 and MDA-MB-231 cells did not decline during
337 LCLAT1 silencing.

338

339 **LCLAT1 acyltransferase silencing reduces PtdIns(3,4,5)P₃ synthesis in response to EGF**

340 We previously observed that ARPE-19 cells silenced for LCLAT1 had ~30% reduction in
341 PtdIns(4,5)P₂ levels (Bone et al., 2017). To determine if this was recapitulated in MDA-MB-231
342 cells, we generated cells stably engineered for doxycycline-inducible eGFP-PLC δ -PH, a reporter
343 for PtdIns(4,5)P₂ (Stauffer et al., 1998). We then quantified the fluorescence ratio of eGFP-
344 PLC δ -PH on the plasma membrane over cytosolic signal by using FM4-64FX to define the
345 plasma membrane. Upon silencing of LCLAT1 in these cells, the eGFP-PLC δ -PH fluorescence
346 ratio of plasma membrane to cytosol declined significantly relative to non-silenced cells (Fig.
347 3A, B) suggesting that LCLAT1-silenced MDA-MB-231 cells also had less PtdIns(4,5)P₂.

348 Next, a key outcome of EGFR stimulation is the activation of PI3Ks to convert
349 PtdIns(4,5)P₂ to PtdIns(3,4,5)P₃ (Hu et al., 1992; Orofiamma et al., 2022; Rodrigues et al., 2000).
350 To determine if PtdIns(3,4,5)P₃ synthesis was affected in LCLAT1-disturbed cells, we
351 transfected ARPE-19 and MDA-MB-231 cells with plasmids encoding Akt-PH-GFP, a biosensor
352 for 3-phosphorylated PtdInsPs (Várnai and Balla, 1998). The recruitment of Akt-PH-GFP to the
353 plasma membrane in response to EGF was then quantified using two different methods. Given
354 that ARPE-19 cells are exceptionally flat, we quantified the ratio of TIRF to epifluorescence
355 fields (TIRF/Epi fluorescence ratio) as an indicator for PtdIns(3,4,5)P₃ levels at the plasma
356 membrane. While control cells readily increased their Akt-PH-GFP on the plasma membrane
357 after EGF stimulation, cells perturbed for LCLAT1 expression displayed substantially lower
358 TIRF/Epifluorescence of their Akt-PH-GFP (Fig. 3C, D). We then assessed if MDA-MB-231
359 cells were also impaired for PI3K signalling. Since these cells are rounder, we measured Akt-
360 PH-GFP on the plasma membrane more readily in optical sections obtained from the middle of
361 the cell by spinning disc confocal microscopy by sampling Akt-PH-GFP at the cell periphery

362 against cytosolic signal. We tracked the Akt-PH-GFP recruitment over 10 min after adding EGF.
363 We observed an increase in Akt-PH-GFP to the cell periphery after EGF stimulation of non-
364 silenced MDA-MB-231 cells (Fig. 3E, F). Importantly, this increase in Akt-PH-GFP at the cell
365 periphery was suppressed in the LCLAT1-silenced cell group (Fig. 3E, F). Hence, despite near
366 normal levels of EGFR and p-EGFR, we reveal that LCLAT1 expression is required for EGF-
367 mediated increase in PI(3,4,5)P₃ levels in at least two cell types.

368

369 **The impact of LCLAT1 acyltransferase expression on the acyl profile of PtdInsPs**

370 We next examined the PtdInsP acyl profile and their relative levels by mass spectrometry in
371 control (cells maintained in medium supplemented with serum), serum-starved (medium with no
372 serum for 1 h and not further stimulated), and EGF-stimulated for 5 min. These conditions were
373 examined in both ARPE-19 and MDA-MB-231 cells that were subjected to non-targeting siRNA
374 or LCLAT1-silencing siRNA oligonucleotides. For this analysis, we normalized lipid spectral
375 counts against synthetic standards added to the samples to generate a response ratio (see
376 methods). In addition, to correct for variation in cell input between experiments, we further
377 normalized against an internal benchmark by comparing changes in 38:4 PtdIns, *mono*-PtdInsPs,
378 *bis*-PtdInsPs, and PtdIns(3,4,5)P₃ relative to standardized 36:x-PtdIns and the corresponding
379 36:x-mono-PtdInsP and 36:xbis-PtdInsP since these species have previously been shown to be
380 less affected by LCLAT1 expression relative to 38:4 species (Bone et al., 2017; Imae et al.,
381 2012). We note that our previous normalization benchmark used the 38:x PtdInsP (not just 38:4)
382 to its respective 36:x PtdInsP and an internal benchmark was not used (Bone et al., 2017).

383 For ARPE-19 cells, the major acyl species of PtdIns, *mono*-, *bis*-, and *tris*-PtdInsP was
384 38:4, as expected. In fact, we only detected 38:4 acyl species for PtdIns(3,4,5)P₃. We then

385 compared each group of 38:4 PtdInsPs to the 36:x-PtdIns and the corresponding 36:x-PtdInsP.
386 Relative to 36:x-PtdIns, we saw that the levels of 38:4-PtdIns were reduced in LCLAT1-silenced
387 cells (Fig. 4A). In comparison, there was no significant difference in 38:4-*mono*-PtdInsPs
388 relative to 36:x-PtdIns or 36:x-*mono*-PtdInsP in any treatment (Fig. 4B, Sup. Fig. S3A).
389 However, 38:4-*bis*-PtdInsPs declined in LCLAT1-silenced cells relative to 36:x-PtdIns (Fig. 4C)
390 and 36:x-*bis*-PtdInsPs (Sup. Fig. S3B). Lastly, EGF increased the levels of 38:4-PtdIns(3,4,5)P₃
391 relative to 36:x-PtdIns in both serum-starved non-silenced and LCLAT1-silenced cells (Fig. 4D).
392 However, LCLAT1-silenced cells had a significant reduction in 38:4-PtdIns(3,4,5)P₃ levels
393 relative to 36:x-PtdIns compared to non-targeted ARPE-19 cells (Fig. 4D). We could not
394 quantitatively compare 38:4-PtdIns(3,4,5)P₃ to 36:x-PtdIns(3,4,5)P₃ since we did not detect the
395 latter. Overall, this suggests that 38:4-PtdIns(3,4,5)P₃ is the predominant acyl species of this
396 phosphoinositide upon EGF stimulation and that LCLAT1 expression is required for its efficient
397 synthesis. Overall, we reveal that ARPE-19 cells shift their acyl profile of PtdIns, *bis*-PtdInsPs,
398 and PtdIns(3,4,5)P₃ upon LCLAT1-disruption, but not for *mono*-PtdInsPs.

399 We similarly investigated the lipidomic profile of MDA-MB-231 cells. The major acyl
400 species for all PtdInsPs and PtdIns was again 38:4 and we once again only detected 38:4-
401 PtdIns(3,4,5)P₃ acyl species in our samples. LCLAT1 suppression lowered 38:4-PtdInsP relative
402 to 36:x-PtdInsP in MDA-MB-231 cells, but unlike ARPE-19 cells, this change did not transfer to
403 the *bis*-species (Fig. 4G and Sup. Fig. S3D). Instead, resting cells had a significant difference in
404 38:4-*mono*-PtdInsPs relative to 36:x-*mono*-PtdInsPs (Sup. Fig. S3C), but not serum-starved or
405 EGF or relative to 36:x-PtdIns (Fig. 4F and Sup. Fig. S3C). Most striking, was the elevation in
406 the ratio of 38:4-PtdIns(3,4,5)P₃ to 36:x- PtdInsP in non-silenced MDA-MB-231 cells after EGF
407 stimulation and relative to serum-starved cells (Fig. 4H). Importantly, LCLAT1-perturbed MDA-

408 MB-231 cells failed to significantly increase 38:4-PtdIns(3,4,5)P₃ ratio compared to 36:x-PtdIns
409 after EGF stimulation (Fig. 4H), suggesting that MDA-MB-231 cells were more sensitive to this
410 than ARPE-19 cells. Overall, we propose that LCLAT1 expression is essential to support EGFR-
411 dependent activation of PI3K signalling in at least two distinct cell lines, but the impact on acyl
412 profile can vary between cell type, PtdInsP species, and treatments.

413

414 **Akt activation by EGF is defective in LCLAT1-silenced cells**

415 Since LCLAT1-silenced cells had lower EGF-induced PtdInsP(3,4,5)P₃ levels relative to non-
416 silenced counterparts, we next examined if Akt activation was also impaired in ARPE-19 and
417 MDA-MB-231 cells after EGF exposure. To do this, we probed for phosphorylation at S473
418 using an antibody that recognizes all isoforms of Akt when phosphorylated (pan-phospho-Akt
419 antibody). Relative to serum-starved ARPE-19 and MDA-MB-231 cells, EGF caused a large
420 increase in phospho-Akt in non-silenced control cells (Fig. 5A, B and Fig. 6A, B). Importantly,
421 both ARPE-19 and MDA-MB-231 cells silenced for LCLAT1 displayed substantially reduced
422 phospho-Akt levels after EGF stimulation (Fig. 5A, B and Fig. 6A, B). We also observed
423 impaired p-Akt levels in ARPE-19 cells (Supplemental Figure S1A, C and Fig. 5G) and MDA-
424 MB-231 cells (Supplemental Figure S2A, C) treated with independent oligonucleotides against
425 LCLAT1. Since Akt1 has been reported to respond to PtdIns(3,4,5)P₃ while Akt2 to
426 PtdIns(3,4)P₂ generated by SHIP2 from PtdIns(3,4,5)P₃ (Liu et al., 2018), we sought to
427 determine if silencing LCLAT1 exhibited any isoform specific effects on Akt phosphorylation
428 that may reveal additional insights into PtdInsP perturbation in LCLAT1-silenced cells. We thus
429 probed with anti-p-Akt1 (S473) and p-Akt2 (S474) antibodies to test this. We reveal that ARPE-

430 19 and MDA-MB-231 silenced for LCLAT1 after EGF stimulation have lower levels of both p-
431 Akt1 and p-Akt2 relative to their respective total Akt1 and Akt2 (Fig. 5C-F and Fig. 6C-F).

432 To evince if LCLAT1 was important for Akt signaling by other receptors, we assessed
433 insulin-mediated activation of Akt in MDA-MB-231 cells. As with EGF, LCLAT1 silencing
434 hindered phosphorylation of Akt after insulin activation (Fig. 6G, 6H). Thus, LCLAT1 silencing
435 negatively impacts Akt activation by both EGF and insulin signaling, implying that LCLAT1
436 may broadly support activation of PI3K-Akt signaling by receptor tyrosine kinases. Finally, we
437 tested if LCLAT1-silencing also perturbed the ERK pathway by EGFR. Here, we saw cell-type
438 specific effects. In ARPE-19 cells, EGF stimulation of phospho-ERK1/2 was predominantly
439 unperturbed by LCLAT1 suppression with two oligonucleotides (Fig. 5G, 5H). However, in
440 MDA-MB-231 cells inhibited for LCLAT1 displayed suppression of ERK phosphorylation in
441 response to EGF (Fig. 6E, 6F). Overall, LCLAT1 is required for Akt activation by receptor
442 tyrosine kinases and may play a role in ERK stimulation in a context-dependent manner.

443

444 **LCLAT1 acyltransferase silencing impairs Akt-mediated regulation of downstream targets**

445 Since Akt activation is defective in LCLAT1-silenced cells after addition of EGF, we next
446 examined if this effect percolated to several known Akt targets. To test for specific targets, we
447 measured the phosphorylation state of Tsc2 and GSK3 β by Western blotting. In ARPE-19 and
448 MDA-MB-231 cells transfected with a non-targeting oligonucleotide (control siRNA), EGF
449 promoted robust phosphorylation of these specific Akt substrates (Fig. 7). In contrast, LCLAT1
450 silencing led to a considerable decline in the EGF-induced phosphorylation of Tsc2 in ARPE-19
451 (Fig. 7A,B) and MDA-MB-231 (Fig. 7E, F) cells. For GSK3 β , the effects were less clear – for
452 ARPE-19 cells, there was a tendency for less phosphorylation of GSK3 β (Fig. 7C, D), but this

453 was not the case for MDA-MB-231 cells (Fig. 7G, H); neither cell line demonstrated a
454 significant decrease in EGF-stimulated GSK3 β phosphorylation upon LCLAT1 silencing.
455 Overall, loss of LCLAT1 appears to compromise TSC2 regulation by Akt.

456 We also probed for the expression levels of cell cycle checkpoint proteins like Mdm2,
457 p53, and p21 (Gordon et al., 2018). In doing so, we observed that LCLAT1-1 oligonucleotide,
458 but not LCLAT1-5, tended to deplete Mdm2 protein levels in both ARPE-19 (Sup. Fig. S4A,
459 S4B) and MDA-MB-231 cells (Supplemental Fig. S4E, S4F), despite similar levels of silencing
460 of LCLAT1 by each LCLAT1 oligonucleotide. These oligonucleotides were significantly
461 different from each other in their effect on p21 levels in ARPE-19 cells, with LCLAT1-1
462 trending upward (Supplemental Fig. S4A, S4C). There was no significant difference between
463 oligonucleotides and non-targeting in their effect on p21 levels in MDA-MB-231 cells and for
464 p53 protein levels in both cells (Supplemental Fig. S4). Thus, given these differences in outcome
465 of LCLAT1 oligonucleotides that may reflect kinetics of silencing or even some limited off-
466 target effects by the LCLAT1-1 siRNA sequence, we advise caution when considering the
467 LCLAT1-1 oligonucleotide in future experiments. Regardless, we emphasize that the effects on
468 Akt signaling were consistent across all oligonucleotides and in both cell types.

469

470 **Discussion**

471 Here, we reveal that the LCLAT1 acyltransferase is needed to promote EGFR-mediated
472 PtdIns(3,4,5)P₃-Akt signaling in at least two cell lines. While EGFR levels and its early
473 activation by EGF were unaffected, cells perturbed for LCLAT1 had reduced PtdIns(3,4,5)P₃
474 levels and diminished Akt activation. We thus identified an important role for the poorly studied

475 LCLAT1 acyltransferase and highlights this enzyme as part of a novel druggable lipid acyl
476 profile remodelling pathway to modulate PI3K signalling.

477

478 *The role of LCLAT1 in generating PtdIns(3,4,5)P₃*

479 We provide at least three pieces of evidence that LCLAT1 is important to generate
480 PtdIns(3,4,5)P₃ during EGF-mediated signalling. First, we revealed that LCLAT1-silenced
481 MDA-MB-231 and ARPE-19 cells were impaired for the recruitment of the Akt-PH-GFP, a
482 biosensor for PtdIns(3,4,5)P₃ levels (Haugh et al., 2000; Marshall et al., 2001), to the plasma
483 membrane after EGF stimulation. Second, we observed that LCLAT1-silenced cells possessed
484 lower relative levels of 38:4-PtdIns(3,4,5)P₃. Incidentally, 38:4-PtdIns(3,4,5)P₃ was the only
485 observable acyl-based species for PtdIns(3,4,5)P₃ in both cell types, likely because the other acyl
486 isoforms of PtdIns(3,4,5)P₃ were below the detection limit of our current analysis. Regardless,
487 this is consistent with other studies examining the acyl profile of PtdIns(3,4,5)P₃, identifying
488 38:4 as the major species, though this can vary with tissue, cell type, and genetics (Clark et al.,
489 2011; Koizumi et al., 2019; Morioka et al., 2022; Mujalli et al., 2018). Third, Akt activation was
490 impaired in LCLAT1-silenced cells after EGF stimulation. Hence, collectively these varied
491 approaches indicate that LCLAT1-silenced cells are defective in promoting PtdIns(3,4,5)P₃
492 levels, and possibly PtdIns(3,4)P₂.

493 A key question then is how does LCLAT1 contribute to PtdIns(3,4,5)P₃ synthesis. We
494 propose at least three possible, non-mutually exclusive mechanisms that will need to be defined
495 in future studies. First, enzymes involved in PtdIns(3,4,5)P₃ metabolism such as Class I PI3Ks,
496 the PTEN 3-phosphatase, and the SHIP1/2 5-phosphatase may display acyl sensitivity towards
497 their substrates as previously suggested (Anderson et al., 2016), thus affecting PtdIns(3,4,5)P₃

498 generation or its turnover. This was observed for Type I PIPKs, Vps34 Class III PI3Ks, and Type
499 II phosphatases (Ohashi et al., 2020; Schmid et al., 2004; Shulga et al., 2012). Second,
500 PtdIns(3,4,5)P₃ levels may be reduced in LCLAT1-disturbed cells due to lower PtdIns(4,5)P₂
501 substrate levels or availability, which we observed here for MDA-MB-231 cells and previously
502 in ARPE-19 (Bone et al., 2017). This would also be consistent with Willis *et al.* who found that
503 PtdIns(3,4,5)P₃ signaling scales linearly with PtdIns(4,5)P₂ levels during EGF stimulation (Wills
504 et al., 2023). Third, and perhaps linked to the second model above, PtdIns(3,4,5)P₃ synthesis may
505 depend on specific substrate pools. These pools may be highly localized or even channeled
506 through scaffolds (Choi et al., 2016) or transferred at membrane contact sites (Zaman et al.,
507 2020). For example, reduction in PtdIns(4,5)P₂ may lead to impaired clathrin-coated scaffold
508 formation, which promotes EGF-mediated PI3K signaling (Cabral-Dias et al., 2022; Delos
509 Santos et al., 2017). Indeed, we previously showed that LCLAT1 silencing altered clathrin-
510 coated pit dynamics (Bone et al., 2017). Alternatively, contact sites between the endoplasmic
511 reticulum and the plasma membrane are important to generate PtdIns(4,5)P₂ (Chang and Liou,
512 2015; Cockcroft et al., 2016; Kim et al., 2015; Lees et al., 2017; Saheki et al., 2016; Zaman et
513 al., 2020). These sites may provide precursor pools for PtdIns(4,5)P₂ and/or PtdIns(3,4,5)P₃;
514 consistent with this, depletion of bulk PtdIns(4)P from the plasma membrane did not reduce
515 PtdIns(4,5)P₂ levels (Hammond et al., 2012), intimating that PtdIns(4,5)P₂ depends on specific
516 pools of PtdIns(4)P. Consistent with this, we previously noted colocalization of a subset of
517 LCLAT1 with proteins known to be at endoplasmic reticulum-plasma membrane contact sites,
518 such as extended synaptotagmins (E-Syt2), (Bone et al., 2017). Thus, LCLAT1 may play a role
519 in generating specific substrate pools to support PtdIns(4,5)P₂ and PtdIns(3,4,5)P₃ at the plasma
520 membrane.

521 The notion that LCLAT1 may act on specific pools of PtdInsPs is consistent with
522 observations that LCLAT1 and LPIAT/MBOAT7 do not affect the levels of and the acyl profile
523 of all PtdInsPs. For example, their disruption preferentially affects the acyl profile of PtdIns
524 and/or *bis*-phosphorylated PtdInsPs, but not of mono-PtdInsPs in ARPE-19 cells (Anderson et
525 al., 2013; Bone et al., 2017) (Fig. 4, Sup. Fig. S3). By comparison, LCLAT1 disruption altered
526 38:4-PtdIns and 38:4-PtdIns(3,4,5)P₃ in MDA-MB-231 cells, but had little effect on other
527 PtdInsPs in most conditions tested. Thus, LCLAT1 may act on specialized pools of lipids, but
528 this is likely cell-type specific, while enzymes like CDS2 and DGK ϵ may also play a role in
529 establishing PtdInsP acyl profiles (Bozelli and Epand, 2019; D’Souza et al., 2014; Shulga et al.,
530 2011). Overall, while we know that LCLAT1 is needed to boost PtdIns(3,4,5)P₃ levels in
531 response to EGF, the exact mechanism of action remains to be defined.

532

533 *LCLAT1 and PtdIns(3,4,5)P₃ functions*

534 We witnessed that LCLAT1 supports PtdIns(3,4,5)P₃-mediated activation of Akt isoforms after
535 EGF signalling. Consequently, TSC2 a key target of Akt was less phosphorylated in LCLAT1-
536 silenced cells. Hence, we anticipate that LCLAT1 affects other effector functions of
537 PtdIns(3,4,5)P₃ including activation of other kinases such as Btk and GEFs for the Rho-family
538 of GTPases such as Vav1 and Tiam1 (Salamon and Backer, 2013; Wang et al., 2006, 2; Zhu et
539 al., 2015, 1). Additionally, while our work focused on EGFR-mediated signalling, we observed
540 reduced insulin-driven activation of Akt as well (Sup. Fig. S2D, E). Thus, we postulate that
541 LCLAT1 broadly supports PtdInsP-dependent signalling by other receptor tyrosine kinases, and
542 may also support such signalling by GPCRs and peripherally-associated kinase receptors such as
543 immune receptors (Bresnick and Backer, 2019; Dowling and Mansell, 2016; Getahun and

544 Cambier, 2015; Takeuchi and Ito, 2011). Conceivably, the putative role of LCLAT1 in
545 promoting PI3K signalling among these receptor classes may depend on which isoforms of Class
546 I and/or Class II PI3K are engaged (Bilanges et al., 2019; Duncan et al., 2020). Overall, our
547 observations establish a key relationship between LCLAT1 and EGFR-PtdIns(3,4,5)P₃-Akt axis
548 and sets a course to determine the universality of LCLAT1 acyltransferase in PtdIns(3,4,5)P₃
549 signalling.

550

551 *LCLAT1 in cellular function and therapeutic potential*

552 While the LCLAT1 acyltransferase remains relatively under-investigated, LCLAT1 is associated
553 with a variety of functions (Zhang et al., 2023). These include hematopoiesis and cell
554 differentiation (Huang et al., 2014; Huang et al., 2017; Wang et al., 2007; Xiong et al., 2008),
555 metabolic regulation (Cao et al., 2009, 1; Liu et al., 2012), mitochondrial stability, dynamics and
556 function (Huang et al., 2020; Li et al., 2010, 1; Li et al., 2012), sensitivity to oxidative stress (Li
557 et al., 2010; Liu et al., 2012), endocytosis and endosomal trafficking (Bone et al., 2017), and now
558 receptor tyrosine kinase signalling. LCLAT1 is also proposed to remodel the acyl profile of both
559 cardiolipin and PtdIns/PtdInsPs (Bone et al., 2017; Cao et al., 2004, 1; Imae et al., 2012; Li et al.,
560 2010). It is generally thought that mitochondrial and oxidative stress occurs through cardiolipin
561 remodelling, while endocytosis and receptor signalling is connected to PtdIns acyl function, as
562 proposed here. However, the specific roles of LCLAT1 in cardiolipin and PtdInsP acyl
563 remodelling have not been reconciled. It may be that LCLAT1 has independent roles in acylating
564 these two distinct lipids, or alternatively, one may depend on the other. For example,
565 mitochondria contain PtdIns on their outer membrane, which is important for mitochondria
566 dynamics and function (Pemberton et al., 2020; Zewe et al., 2020). Conceivably, then LCLAT1

567 acylation of PtdIns may impact lipidomic properties of cardiolipin in mitochondria. In addition,
568 while we did not observe significant changes in Mdm2, p53 and p21 levels that we could
569 specifically attribute to LCLAT1 disturbance, it will be important to examine the effect of
570 LCLAT1 suppression in cell cycle and apoptosis. Unfortunately, we eventually discovered that
571 LCLAT1-1 oligonucleotide appears to have either distinct kinetics of knockdown or a limited set
572 of non-specific effects on Mdm2 protein levels. Regardless, we have performed extensive
573 experiments that allowed us to ascertain that the effects on PI3K-Akt signaling were observed
574 with multiple LCLAT1 silencing oligonucleotides. Overall, LCLAT1 and its putative partner,
575 MBOAT7/LPIAT1, remain relatively understudied and without well-established inhibitors.
576 Given the role of LCLAT1 in PtdInsP biology and receptor signalling, we propose that these
577 acyltransferases represent new targets for therapeutic development.

578

579

580 **Figure legends**

581 **Figure 1: LCLAT1 silencing has no negative impact on EGFR activation, EGFR total**
582 **levels, and EGFR surface levels in ARPE-19 cells.** **A.** Western blots showing repressed
583 LCLAT1 expression in ARPE-19 cells transfected with siLCLAT1-1 oligonucleotides relative to
584 non-targeting control siRNA (NT siRNA). Two replicate lanes per condition are shown. Clathrin
585 heavy chain (CHC), cofilin, and vinculin were used as loading controls. **B.** Normalized ratio of
586 LCLAT1 expression to CHC in ARPE-19 cells. **C.** ARPE-19 cells silenced for LCLAT1 or
587 treated with non-targeting oligonucleotide were serum-starved and then stimulated with 5 ng/mL
588 EGF for 5 min. Lysates were then probed for total EGFR or phospho-EGFR. GAPDH was
589 employed as the loading control. **D.** Quantification of total EGFR relative to the respective

590 GAPDH signal. **E.** Normalized cell surface EGFR detected by immunofluorescence before and
591 after 1 h stimulation with 100 ng/mL EGF in non-targeted and LCLAT1-silenced ARPE-19 cells.
592 **F.** Quantification of phospho-EGFR (p-Y1068) relative to the respective total EGFR signal. All
593 experiments were repeated a minimum of three times except in E (EGF stimulation, n =2). Data
594 points from matching independent experiments are colour coded. For B, D, and F shown is mean
595 \pm STD. Data in E is shown as mean \pm SEM where at least 40-80 cells were scored per condition
596 per experiment. Data in B and D were analysed by a one-sample t-test using hypothetical value
597 of 1. For data in E and F, a repeated measures two-way ANOVA followed by Sidak's (E) or
598 Tukey's (F) post-hoc test was used. *p* values are indicated.

599
600 **Figure 2: LCLAT1 silencing has no negative impact on EGFR activation, total EGFR**
601 **levels, and surface EGFR levels in MDA-MB-231 cells. A.** Western blot showing LCLAT1
602 silencing in MDA-MB-231 cells transfected with siLCLAT1-1 (siLC-1) relative to non-targeting
603 control siRNA (NT siRNA). Each conditions shows two replicates. Clathrin heavy chain (CHC),
604 vinculin, and cofilin were used as a loading control. **B.** Normalized ratio of LCLAT1 expression
605 to CHC signal in MDA-MB-231 cells. **C.** MDA-MB-231 cells silenced for LCLAT1 or treated
606 with non-targeting oligonucleotides were serum-starved and then stimulated with 5 ng/mL EGF
607 for 5 min. Lysates were then probed for total EGFR or phospho-EGFR (pY-1068). GAPDH was
608 employed as the loading control. **D.** Quantification of total EGFR relative to respective GAPDH.
609 **E.** Normalized cell surface EGFR detected by immunofluorescence before and after 1 h
610 stimulation with 100 ng/mL EGF in non-targeted and LCLAT1-silenced MDA-MB-231 cells. **F.**
611 Quantification of phospho-Y1068-EGFR relative to EGFR. All experiments were repeated at
612 least three independent times. Data points from matching independent experiments are colour

613 coded. For B, D, and F, shown are the mean \pm STD. For E, the mean \pm SEM is shown where 50-
614 100 cells were scored per condition per experiment. Data in B and D were analysed by a one-
615 sample t-test using hypothetical value of 1. For data in E and F, a repeated measures two-way
616 ANOVA followed by Tukey's post-hoc test was used. p values are shown.

617

618 **Figure 3. Defective PI(4,5)P₂ and EGF-stimulated PtdIns(3,4,5)P₃ synthesis in LCLAT1-
619 silenced cells.** MDA-MB-231 cells (A, E), and ARPE-19 (C) were mock-silenced or LCLAT1-
620 silenced. **A.** Confocal images of MDA-MB-231 cells stably expressing eGFP-PLC δ -PH (green)
621 and labelled with FM4-46FX (magenta). **B.** Quantification of eGFP-PLC δ -PH fluorescence on
622 FM4-64X labelled cell periphery relative to its cytosolic signal. **C.** TIRF and epifluorescence
623 microscopy of ARPE-19 cells mock-silenced or silenced for LCLAT1 and expressing Akt-PH-
624 GFP. Cells were maintained serum starved or exposed to 20 ng/mL EGF for 5 min. The TIRF
625 field is shown both in grayscale and as false-colour (fire LUT), where black-indigo is weakest
626 and yellow-white is strongest. For representation, cells selected expressed similar levels of Akt-
627 PH-GFP. **D.** Quantification of TIRF/epifluorescence ratio of Akt-PH-GFP. Total Akt-PH-GFP
628 fluorescence in TIRF field is expressed as a ratio against the corresponding total fluorescence in
629 the epifluorescence field. Shown is the ratio for serum-starved and EGF-stimulated control and
630 LCLAT1-silenced cells. **E.** Spinning disc confocal images of MDA-MB-231 cells mock-silenced
631 or LCLAT1-silenced before and during 20 ng/mL EGF stimulation. **F.** Quantification of Akt-PH-
632 GFP fluorescence at the plasma membrane relative to its cytosolic signal from time-lapse
633 imaging over 10 min of stimulation with 20 ng/mL EGF. Scale bar = 20 μ m. All experiments
634 were repeated three independent times. For B and D, data points from matching independent
635 experiments are colour coded. Shown is the mean \pm SEM, where data in D were binned every 45

636 sec (three images). For B and D, data are based on 30-50 transfected cells per condition per
637 experiment. For F, a total of 23 transfected cells were traced over time over three independent
638 experiments. Data in B was analysed by paired Student's t-test. For D and F, repeated measures
639 two-way ANOVA and Sidak's post-hoc test was used to test data in D. p-values are shown.

640

641 **Figure 4. Relative levels of 38:4 PtdIns and PtdInsPs in ARPE-19 and MDA-MB-231 cells**
642 **silenced for LCLAT1.** ARPE-19 cells (A-D) and MBA-MB-231 cells (E-I) were mock silenced
643 (siNT) or LCLAT1-silenced. Cells were then grown in regular medium (control), serum-starved
644 (ss), and stimulated with 5 ng/mL EGF for 5 min (EGF). Reactions were quenched and lipid
645 extracted after addition of internal standards to primary cell extracts. PtdInsPs were measured by
646 mass spectrometry (HPLC-MS). Shown is the ratio of standardized 38:4-PtdIns (A, E), 38:4-
647 mono-PtdInsP (B, G), 38:4-bis-PtdInsP (C, H), and 38:4-PtdIns(3,4,5)P₃ (D, I) to the
648 standardized sum of 36:1 and 36:2-PtdIns (referred to as 36:x-PtdIns). Lipid analysis was
649 repeated four independent times. Data points from matching independent experiments are colour
650 coded. Shown are the mean \pm STD. A repeated-measures, two-way ANOVA and Sidak's post-
651 hoc (A-C, and E-G) and Tukey's post-hoc (D, H) tests were used to assess the data. p values are
652 disclosed.

653

654 **Figure 5: LCLAT1 is required for EGF-stimulated Akt activation in ARPE-19 cells. A, C,**
655 **E:** Mock-silenced (siNT) and LCLAT1-silenced ARPE-19 cells were serum-starved (0 min) or
656 stimulated with 5 ng/mL EGF for 5 min. Lysates were then prepared, separated by SDS-PAGE
657 and probed by Western blotting for pan-phospho-Akt and total pan-Akt (A), phospho-Akt1 and
658 total Akt1 (C), and phospho-Akt2 and total Akt2 (E). Clathrin heavy chain (CHC) or GAPDH

659 were used as loading controls. # indicates that the GAPDH blot was also used as loading control
660 for p-TSC2 in Fig. 7G since they originated from the same membrane cut across to probe for
661 different sized proteins. **B, D, F:** Quantification of pan-pAkt (B), pAkt1 (D), and pAkt2 (F)
662 normalized to respective total pan-Akt, Akt1, and Akt2. **G.** ARPE-19 cells transfected with non-
663 targeting, LCLAT1-1, or LCLAT1-5 oligonucleotides and stimulated as above. Lysates were
664 probed with LCLAT1, phospho-ERK1/2, ERK1/2, phospho-Akt, Akt, and CHC as loading
665 control for each blot. **E.** Quantification of phospho-ERK1/2 relative to total ERK1/2. Mean \pm STD
666 are shown from n=4 (A, C, and E) and n=3 (G) independent experiments are shown. Data points
667 from matching independent experiments are colour coded. Repeated measures two-way ANOVA
668 and Sidak's (B, D, F) or Tukey's (H) post-hoc tests were used to statistically test the data. p
669 values are indicated.

670

671 **Figure 6: LCLAT1 is required for EGF-stimulated Akt activation in MDA-MB-231 cells.**

672 **A, C, E:** Mock-silenced and LCLAT1-silenced MDA-MB-231 cells were serum-starved (0 min)
673 or stimulated with 5 ng/mL EGF for 5 min or 10 min. Lysates were then prepared, separated by
674 SDS-PAGE and probed by Western blotting for pan-phospho-Akt and total pan-Akt (A),
675 phospho-Akt1 and total Akt1 (C), and phospho-Akt2 and total Akt2 (E). Clathrin heavy chain
676 (CHC) or GAPDH were used as loading controls. **B, D, F:** Quantification of pan-pAkt (B),
677 pAkt1 (D), and pAkt2 (F) normalized to respective total pan-Akt, Akt1, and Akt2. **G.** Western
678 blotting of non-silenced and LCLAT1-silenced cells after serum-starvation (SS), 5 ng/mL EGF,
679 or 10 ng/mL insulin (Ins) stimulation for 5 min. Lysates were probed for pAkt, total Akt, and
680 clathrin heavy chain. **E.** Quantification of pAkt relative to total Akt in treatments described in G.
681 **I.** Western blot of MDA-MB-231 cells silenced for LCLAT1 with either LCLAT1-1 or

682 LCLAT1-5 oligonucleotides. Cells were serum-starved or stimulated with 5 ng/mL EGF for 5
683 min. Lysates were probed with LCLAT1, phospho-ERK1/2, ERK1/2, phosphor-Akt, Akt, and
684 corresponding CHC as loading control for each blot. **J.** Quantification of phospho-ERK to total
685 ERK. Shown are the mean \pm STD from n=3-4 independent experiments. Data points from
686 matching independent experiments are colour coded. Repeated measures two-way ANOVA and
687 Sidak's (B, D, F) or Tukey's (H, J) post-hoc tests were used to statistically test the data. p values
688 are displayed.

689

690 **Figure 7: LCLAT1 is required for activation of Akt substrates after EGF stimulation. A, C:**
691 Mock-silenced and LCLAT1-silenced ARPE-19 cells were serum-starved (0 min) or stimulated
692 with 5 ng/mL EGF for 5 min. Lysates were then separated by SDS-PAGE and probed by
693 Western blotting for phospho-Tsc2 and total Tsc2 (A) and phospho-GSK3 β and total GSK3 β
694 (C). Clathrin heavy chain (CHC) or GAPDH were used as loading controls. # indicates that the
695 GAPDH blot was also used as loading control for total pan-Akt in Fig. 5A since they originated
696 from the same membrane cut across to probe for different sized proteins. **B, D:** Quantification of
697 pTsc2 (B) and pGSK3 β (D) normalized to respective total Tsc2 and GSK3 β . **E, G:** Mock-
698 silenced and LCLAT1-silenced MDA-MB-231 cells were serum-starved (0 min) or stimulated
699 with 5 ng/mL EGF for 5 min. Lysates were then separated by SDS-PAGE and probed by
700 Western blotting for phospho-Tsc2 and total Tsc2 (F), and phospho-GSK3 β and total GSK3 β
701 (G). Clathrin heavy chain (CHC) or GAPDH were used as loading controls. ## indicates that the
702 GAPDH blot was used as loading control for both total TSC2 (G) and total GSK3 β (I) since they
703 originated from the same membrane cut across to probe for different sized proteins. **H, J:**
704 Quantification of pTsc2 (H) and pGSK3 β (I) normalized to respective total Tsc2 and GSK3 β .

705 For B, D, F, and H mean \pm STD are shown from n=3 independent experiments. Data points from
706 matching independent experiments are colour coded. A two-way ANOVA and Sidak's post-hoc
707 test was used to statistically test the data, with p values shown.

708

709 **Supplemental Information**

710

711 **Supplemental Figure S1: LCLAT1 silencing in ARPE-19 cells with an independent siRNA**
712 **oligonucleotide disrupts Akt signalling.** ARPE-19 cells were transfected with oligonucleotide
713 siLCLAT1-5 or non-targeting control. Cells were then serum-starved (SS), followed by 5 ng/mL
714 EGF stimulation for 5 min. **A.** Lysates were probed for LCLAT1 expression, p-Akt, Akt, and
715 clathrin heavy chain (CHC), which was used as a loading control. **B.** Quantification of LCLAT1
716 silencing by normalizing LCLAT1 to CHC signal in ARPE-19 cells. **C.** Quantification of p-Akt
717 levels relative to total Akt. Data are shown as mean \pm STD are shown from n=3 independent
718 experiments. Data points from matching independent experiments are colour coded. Data was
719 analysed by a repeated measures two-way ANOVA and Sidak's post-hoc test. p values are
720 disclosed.

721

722 **Supplemental Figure S2: LCLAT1 silencing in MDA-MB-231 cells with independent**
723 **siRNA oligonucleotides disrupts Akt signalling.** **A.** Western blotting showing LCLAT1
724 silencing in MDA-MB-231 cells transfected with non-targeting siRNA, siLCLAT1-1,
725 siLCLAT1-2, or siLCLAT1-3 oligonucleotides. Cells were then serum-starved (SS) or
726 stimulated with 5 ng/mL EGF for 5 min. Lysates were probed for LCLAT1 expression, p-Akt,
727 and clathrin heavy chain (CHC), which was used as a loading control. **B.** Quantification of

728 LCLAT1 silencing by normalizing LCLAT1 to CHC signal in MDA-MB-231 cells transfected as
729 in D. C. Quantification of p-Akt levels relative to clathrin in MDA-MB-231 cells mock-silenced
730 or LCLAT1-silenced with one of three siRNA oligonucleotides and either serum-starved or
731 stimulated with 5 ng/mL EGF for 5 min. Data points from matching independent experiments are
732 colour coded. Data in B were analysed with a repeated measures one-way ANOVA and
733 Dunnett's post-hoc test. Data in C were analysed with a repeated measures two-way ANOVA
734 and Tukey's post-hoc test. p values are indicated.

735

736 **Supplemental Figure S3. Relative levels of 38:4-PtdInsPs to 36:x-PtdInsPs in ARPE-19 and**
737 **MDA-MB-231 cells silenced for LCLAT1.** ARPE-19 cells (A-B) and MDA-MB-231 cells (C-
738 D) were mock silenced (siCon) or LCLAT1-silenced. Cells were then grown in regular medium
739 (control), serum-starved (ss), and stimulated with 5 ng/mL EGF for 5 min (EGF). Reactions were
740 quenched and lipid extracted after addition of internal standards to primary cell extracts.
741 PtdInsPs were measured by mass spectrometry (HPLC-MS). Shown is the ratio of standardized
742 38:4-mono-PtdIns (A, C) and 38:4-bis-PtdInsP2 (B, D) to the respective standardized sum of
743 36:1 and 36:2- (referred to as 36:x-PtdIns) mono-PtdInsP and bis-PtdInsP2. Lipid analysis was
744 repeated four independent times. Data points from matching independent experiments are colour
745 coded. Shown are the mean \pm STD. A repeated measures two-way ANOVA and Sidak's post-hoc
746 test was used to test data. p values are indicated.

747

748 **Supplemental Figure S4: LCLAT1 silencing effect on cell cycle checkpoint proteins, Mdm2,**
749 **p21, and p53. A, B.** Western blotting showing LCLAT1 silencing in ARPE-19 (A) and MDA-
750 MB-231 (B) cells transfected with non-targeting siRNA, siLCLAT1-1, or siLCLAT1-5

751 oligonucleotides. Cells were serum-starved or stimulated with 5 ng/mL EGF for 5 min. Lysates
752 were probed for LCLAT1, Mdm2, p53, and p21 expression. Clathrin heavy chain (CHC) was
753 probed as a loading control. **B, C, D, F, G, H.** Quantification of Mdm2, p21, and p53 expression
754 relative to CHC expression in ARPE-19 (B-D) and MDA-MB-231 (F-H) cells. Data are the
755 mean \pm STD from n=4 independent experiments. Data points from matching independent
756 experiments are colour coded. Data was analysed with a repeated measures two-way ANOVA
757 and Tukey's post-hoc test with p values indicated.

758

759

760

761 **References**

762 Alessi, D. R., Deak, M., Casamayor, A., Caudwell, F. B., Morrice, N., Norman, D. G., Gaffney,
763 P., Reese, C. B., MacDougall, C. N., Harbison, D., et al. (1997). 3-Phosphoinositide-
764 dependent protein kinase-1 (PDK1): Structural and functional homology with the
765 Drosophila DSTPK61 kinase. *Current Biology* 7, 776–789.

766 Anderson, K. E., Kielkowska, A., Durrant, T. N., Juvín, V., Clark, J., Stephens, L. R. and
767 Hawkins, P. T. (2013). Lysophosphatidylinositol-Acyltransferase-1 (LPIAT1) Is Required
768 to Maintain Physiological Levels of PtdIns and PtdInsP2 in the Mouse. *PLoS ONE* 8,
769 e58425.

770 Anderson, K. E., Juvín, V., Clark, J., Stephens, L. R. and Hawkins, P. T. (2016). Investigating
771 the effect of arachidonate supplementation on the phosphoinositide content of MCF10a
772 breast epithelial cells. *Advances in biological regulation* 62, 18–24.

773 Balla, T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. *Physiological*
774 *reviews* 93, 1019–137.

775 Barneda, D., Cosulich, S., Stephens, L. and Hawkins, P. (2019). How is the acyl chain
776 composition of phosphoinositides created and does it matter? *Biochemical Society*
777 *Transactions* 47, 1291–1305.

778 Bellacosa, A., Chan, T. O., Ahmed, N. N., Datta, K., Malstrom, S., Stokoe, D., McCormick, F.,
779 Feng, J. and Tsichlis, P. (1998). Akt activation by growth factors is a multiple-step
780 process: the role of the PH domain. *Oncogene* 17, 313–325.

781 Bilanges, B., Posor, Y. and Vanhaesebroeck, B. (2019). PI3K isoforms in cell signalling
782 and vesicle trafficking. *Nat Rev Mol Cell Biol* 20, 515–534.

783 Blunsom, N. J. and Cockcroft, S. (2020). Phosphatidylinositol synthesis at the endoplasmic
784 reticulum. *Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids* 1865,.

785 Bone, L. N., Dayam, R. M., Lee, M., Kono, N., Fairn, G. D., Arai, H., Botelho, R. J. and
786 Antonescu, C. N. (2017). The acyltransferase LYCAT controls specific phosphoinositides
787 and related membrane traffic. *Molecular Biology of the Cell* 28, 161–172.

788 Böni-Schnetzler, M. and Pilch, P. F. (1987). Mechanism of epidermal growth factor receptor
789 autophosphorylation and high-affinity binding. *Proc Natl Acad Sci U S A* 84, 7832–7836.

790 Bozelli, J. C. and Epand, R. M. (2019). Specificity of Acyl Chain Composition of
791 Phosphatidylinositols. *Proteomics* 19,.

792 Bresnick, A. R. and Backer, J. M. (2019). PI3K β -A Versatile Transducer for GPCR, RTK, and
793 Small GTPase Signaling. *Endocrinology* 160, 536–555.

794 Cabral-Dias, R., Awadeh, Y., Botelho, R. J. and Antonescu, C. N. (2021). Detection of Plasma
795 Membrane Phosphoinositide Dynamics Using Genetically Encoded Fluorescent Protein
796 Probes. In *Methods in Molecular Biology*, pp. 73–89. Humana Press Inc.

797 Cabral-Dias, R., Lucarelli, S., Zak, K., Rahmani, S., Judge, G., Abousawan, J., DiGiovanni, L.
798 F., Vural, D., Anderson, K. E., Sugiyama, M. G., et al. (2022). Fyn and TOM1L1 are
799 recruited to clathrin-coated pits and regulate Akt signaling. *Journal of Cell Biology* 221,.

800 Cao, J., Liu, Y., Lockwood, J., Burn, P. and Shi, Y. (2004). A novel cardiolipin-remodeling
801 pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-
802 CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. *Journal of Biological Chemistry*
803 279, 31727–31734.

804 Cao, J., Shen, W., Chang, Z. and Shi, Y. (2009). ALCAT1 is a polyglycerophospholipid
805 acyltransferase potently regulated by adenine nucleotide and thyroid status. *American
806 Journal of Physiology-Endocrinology and Metabolism* 296, E647–E653.

807 Chang, C. L. and Liou, J. (2015). Phosphatidylinositol 4, 5-bisphosphate homeostasis regulated
808 by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. *Journal
809 of Biological Chemistry* 290, 14289–14301.

810 Choi, S., Hedman, A. C., Sayedyahossein, S., Thapa, N., Sacks, D. B. and Anderson, R. A.
811 (2016). Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by
812 scaffolded phosphoinositide kinases. *Nat Cell Biol* 18, 1324–1335.

813 Choy, C. H., Han, B. K. and Botelho, R. J. (2017). Phosphoinositide Diversity, Distribution, and
814 Effector Function: Stepping Out of the Box. *BioEssays* 39, 1700121.

815 Clark, J., Anderson, K. E., Juvin, V., Smith, T. S., Karpe, F., Wakelam, M. J. O., Stephens, L. R.
816 and Hawkins, P. T. (2011). Quantification of PtdInsP3 molecular species in cells and
817 tissues by mass spectrometry. *Nature Methods* 8, 267–272.

818 Cockcroft, S., Garner, K., Yadav, S., Gomez-Espinoza, E. and Raghu, P. (2016). RdgB
819 reciprocally transfers PA and PI at ER-PM contact sites to maintain PI(4,5)P2

820 homoeostasis during phospholipase C signalling in *Drosophila* photoreceptors.
821 *Biochemical Society Transactions* 44, 286–292.

822 Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995).
823 Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. *Nature*
824 378, 785–789.

825 Delos Santos, R. C., Bautista, S., Lucarelli, S., Bone, L. N., Dayam, R. M., Abousawan, J.,
826 Botelho, R. J. and Antonescu, C. N. (2017). Selective regulation of clathrin-mediated
827 epidermal growth factor receptor signaling and endocytosis by phospholipase C and
828 calcium. *Mol Biol Cell* 28, 2802–2818.

829 Dey, N., De, P. and Leyland-Jones, B. (2017). PI3K-AKT-mTOR inhibitors in breast cancers:
830 From tumor cell signaling to clinical trials. *Pharmacology and Therapeutics* 175, 91–106.

831 Dibble, C. C. and Manning, B. D. (2013). Signal integration by mTORC1 coordinates nutrient
832 input with biosynthetic output. *Nature cell biology* 15, 555–64.

833 Dickson, E. J. and Hille, B. (2019). Understanding phosphoinositides: rare, dynamic, and
834 essential membrane phospholipids. *Biochem J* 476, 1–23.

835 Doumane, M., Caillaud, M. C. and Jaillais, Y. (2022). Experimental manipulation of
836 phosphoinositide lipids: from cells to organisms. *Trends in Cell Biology* 32, 445–461.

837 Dowling, J. K. and Mansell, A. (2016). Toll-like receptors: the swiss army knife of immunity and
838 vaccine development. *Clinical & Translational Immunology* 5, e85.

839 D’Souza, K. and Epand, R. M. (2014). Enrichment of phosphatidylinositols with specific acyl
840 chains. *Biochim. Biophys. Acta - Biomembr.* 1838, 1501–1508.

841 D’Souza, K., Kim, Y. J., Balla, T. and Epand, R. M. (2014). Distinct properties of the two
842 isoforms of CDP-diacylglycerol synthase. *Biochemistry* 53, 7358–7367.

843 Duncan, L., Shay, C. and Teng, Y. (2020). PI3K Isoform-Selective Inhibitors in Cancer. *Adv Exp
844 Med Biol* 1255, 165–173.

845 Freyr Eiriksson, F., Kampp Nøhr, M., Costa, M., Klara Bö dvarsdottir, S., Margret, H. O. and
846 Thorsteinsdottir, M. (2020). Lipidomic study of cell lines reveals differences between
847 breast cancer subtypes.

848 Getahun, A. and Cambier, J. C. (2015). Of ITIMs, ITAMs, and ITAMis: Revisiting
849 immunoglobulin Fc receptor signaling. *Immunological Reviews* 268, 66–73.

850 Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P. and Hall, F. L. (2018). Cell cycle checkpoint
851 control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad-spectrum
852 cancer gene therapy - A review of molecular mechanisms for oncologists. *Mol Clin Oncol*
853 9, 115–134.

854 Gullick, W. J., Downward, J. and Waterfield, M. D. (1985). Antibodies to the
855 autophosphorylation sites of the epidermal growth factor receptor protein-tyrosine kinase
856 as probes of structure and function. *EMBO J* 4, 2869–2877.

857 Haag, M., Schmidt, A., Sachsenheimer, T. and Brügger, B. (2012). Quantification of Signaling
858 Lipids by Nano-Electrospray Ionization Tandem Mass Spectrometry (Nano-ESI MS/MS).
859 *Metabolites* 2, 57–76.

860 Hammond, G. R. V., Fischer, M. J., Anderson, K. E., Holdich, J., Koteci, A., Balla, T. and Irvine,
861 R. F. (2012). PI4P and PI(4,5)P₂ are essential but independent lipid determinants of
862 membrane identity. *Science (New York, N.Y.)* 337, 727–30.

863 Haugh, J. M., Codazzi, F., Teruel, M. and Meyer, T. (2000). Spatial Sensing in Fibroblasts
864 Mediated by 3' Phosphoinositides. *Journal of Cell Biology* 151, 1269–1280.

865 Hicks, A. M., DeLong, C. J., Thomas, M. J., Samuel, M. and Cui, Z. (2006). Unique molecular
866 signatures of glycerophospholipid species in different rat tissues analyzed by tandem
867 mass spectrometry. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of*
868 *Lipids* 1761, 1022–1029.

869 Holgado-Madruga, M., Emlet, D. R., Moscatello, D. K., Godwin, A. K. and Wong, A. J. (1996). A
870 Grb2-associated docking protein in EGF- and insulin-receptor signalling. *Nature* 379,
871 560–564.

872 Honegger, A. M., Szapary, D., Schmidt, A., Lyall, R., Van Obberghen, E., Dull, T. J., Ullrich, A.
873 and Schlessinger, J. (1987). A mutant epidermal growth factor receptor with defective
874 protein tyrosine kinase is unable to stimulate proto-oncogene expression and DNA
875 synthesis. *Mol Cell Biol* 7, 4568–4571.

876 Hu, P., Margolis, B., Skolnik, E. Y., Lammers, R., Ullrich, A. and Schlessinger, J. (1992).
877 Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor
878 and platelet-derived growth factor receptors. *Mol Cell Biol* 12, 981–990.

879 Huang, L. S., Mathew, B., Li, H., Zhao, Y., Ma, S. F., Noth, I., Reddy, S. P., Harijith, A., Usatyuk,
880 P. V., Berdyshev, E. V., et al. (2014). The mitochondrial cardiolipin remodeling enzyme
881 lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. *American Journal*
882 *of Respiratory and Critical Care Medicine* 189, 1402–1415.

883 Huang, L. S., Jiang, P., Feghali-Bostwick, C., Reddy, S. P., Garcia, J. G. N. and Natarajan, V.
884 (2017). Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast
885 differentiation. *Free Radical Biology and Medicine* 112, 162–173.

886 Huang, L. S., Kotha, S. R., Avasarala, S., VanScoky, M., Winn, R. A., Pennathur, A.,
887 Yashaswini, P. S., Bandela, M., Salgia, R., Tyurina, Y. Y., et al. (2020). Lysocardiolipin
888 acyltransferase regulates NSCLC cell proliferation and migration by modulating
889 mitochondrial dynamics. *Journal of Biological Chemistry* 295, 13393–13406.

890 Idevall-Hagren, O. and De Camilli, P. (2015). Detection and manipulation of phosphoinositides.
891 *Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids* 1851, 736–745.

892 Imae, R., Inoue, T., Nakasaki, Y., Uchida, Y., Ohba, Y., Kono, N., Nakanishi, H., Sasaki, T.,
893 Mitani, S. and Arai, H. (2012). LYCAT, a homologue of *C. elegans* *acl-8*, *acl-9*, and *acl-10*,
894 determines the fatty acid composition of phosphatidylinositol in mice. *Journal of Lipid Research* 53, 335–347.

896 Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K.-L. (2002). TSC2 is phosphorylated and inhibited
897 by Akt and suppresses mTOR signalling. *Nature Cell Biology* 4, 648–657.

898 Inoki, K., Li, Y., Xu, T. and Guan, K. L. (2003). Rheb GTPase is a direct target of TSC2 GAP
899 activity and regulates mTOR signaling. *Genes and Development* 17, 1829–1834.

900 Katan, M. and Cockcroft, S. (2020). Phosphatidylinositol(4,5)bisphosphate: diverse functions at
901 the plasma membrane. *Essays in Biochemistry* 20200041.

902 Kim, Y. J., Guzman-Hernandez, M.-L., Wisniewski, E. and Balla, T. (2015). Phosphatidylinositol-
903 Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains
904 Phosphoinositide Signaling Competence. *Developmental Cell* 33, 549–561.

905 Kiyatkin, A., Aksamitiene, E., Markevich, N. I., Borisov, N. M., Hoek, J. B. and Kholodenko, B.
906 N. (2006). Scaffolding protein Grb2-associated binder 1 sustains epidermal growth
907 factor-induced mitogenic and survival signaling by multiple positive feedback loops.
908 *Journal of Biological Chemistry* 281, 19925–19938.

909 Koizumi, A., Narita, S., Nakanishi, H., Ishikawa, M., Eguchi, S., Kimura, H., Takasuga, S.,
910 Huang, M., Inoue, T., Sasaki, J., et al. (2019). Increased fatty acyl saturation of
911 phosphatidylinositol phosphates in prostate cancer progression. *Scientific Reports* 9, 1–
912 8.

913 Koland, J. G. and Cerione, R. A. (1988). Growth factor control of epidermal growth factor
914 receptor kinase activity via an intramolecular mechanism. *J Biol Chem* 263, 2230–2237.

915 Lee, H.-C., Inoue, T., Sasaki, J., Kubo, T., Matsuda, S., Nakasaki, Y., Hattori, M., Tanaka, F.,
916 Udagawa, O., Kono, N., et al. (2012). LPIAT1 regulates arachidonic acid content in
917 phosphatidylinositol and is required for cortical lamination in mice. *Molecular biology of
918 the cell* 23, 4689–700.

919 Lees, J. A., Messa, M., Sun, E. W., Wheeler, H., Torta, F., Wenk, M. R., De Camilli, P. and
920 Reinisch, K. M. (2017). Lipid transport by TMEM24 at ER-plasma membrane contacts
921 regulates pulsatile insulin secretion. *Science* 355, eaah6171.

922 Li, J., Romestaing, C., Han, X., Li, Y., Hao, X., Wu, Y., Sun, C., Liu, X., Jefferson, L. S., Xiong,
923 J., et al. (2010). Cardiolipin remodeling by ALCAT1 links oxidative stress and
924 mitochondrial dysfunction to obesity. *Cell Metabolism* 12, 154–165.

925 Li, J., Liu, X., Wang, H., Zhang, W., Chan, D. C. and Shi, Y. (2012). Lysocardiolipin
926 acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through
927 modulation of MFN2 expression. *Proceedings of the National Academy of Sciences of
928 the United States of America* 109, 6975–6980.

929 Li, S., Shen, Y., Wang, M., Yang, J., Lv, M., Li, P., Chen, Z. and Yang, J. (2017). Loss of PTEN
930 expression in breast cancer: association with clinicopathological characteristics and
931 prognosis. *Oncotarget* 8, 32043–32054.

932 Linggi, B. and Carpenter, G. (2006). ErbB receptors: new insights on mechanisms and biology.
933 *Trends in Cell Biology* 16, 649–656.

934 Liu, X., Ye, B., Miller, S., Yuan, H., Zhang, H., Tian, L., Nie, J., Imae, R., Arai, H., Li, Y., et al.
935 (2012). Ablation of ALCAT1 Mitigates Hypertrophic Cardiomyopathy through Effects on
936 Oxidative Stress and Mitophagy. *Molecular and Cellular Biology* 32, 4493–4504.

937 Liu, S. L., Wang, Z. G., Hu, Y., Xin, Y., Singaram, I., Gorai, S., Zhou, X., Shim, Y., Min, J. H.,
938 Gong, L. W., et al. (2018). Quantitative Lipid Imaging Reveals a New Signaling Function
939 of Phosphatidylinositol-3,4-Bisphosphate: Isoform- and Site-Specific Activation of Akt.
940 *Molecular Cell* 71, 1092-1104.e5.

941 Manning, B. D. and Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. *Cell* 169,
942 381–405.

943 Margolis, B., Bellot, F., Honegger, A. M., Ullrich, A., Schlessinger, J. and Zilberstein, A. (1990a).
944 Tyrosine kinase activity is essential for the association of phospholipase C-gamma with
945 the epidermal growth factor receptor. *Mol Cell Biol* 10, 435–441.

946 Margolis, B., Li, N., Koch, A., Mohammadi, M., Hurwitz, D. R., Zilberstein, A., Ullrich, A.,
947 Pawson, T. and Schlessinger, J. (1990b). The tyrosine phosphorylated carboxyterminus
948 of the EGF receptor is a binding site for GAP and PLC-gamma. *EMBO J* 9, 4375–4380.

949 Marshall, J. G., Booth, J. W., Stambolic, V., Mak, T., Balla, T., Schreiber, A. D., Meyer, T. and
950 Grinstein, S. (2001). Restricted accumulation of phosphatidylinositol 3-kinase products in
951 a plasmalemmal subdomain during Fc?? receptor-mediated phagocytosis. *Journal of*
952 *Cell Biology* 153, 1369–1380.

953 Milne, S. B., Ivanova, P. T., DeCamp, D., Hsueh, R. C. and Brown, H. A. (2005). A targeted
954 mass spectrometric analysis of phosphatidylinositol phosphate species. *J Lipid Res* 46,
955 1796–1802.

956 Morioka, S., Nakanishi, H., Yamamoto, T., Hasegawa, J., Tokuda, E., Hikita, T., Sakihara, T.,
957 Kugii, Y., Oneyama, C., Yamazaki, M., et al. (2022). A mass spectrometric method for
958 in-depth profiling of phosphoinositide regioisomers and their disease-associated
959 regulation. *Nat Commun* 13, 83.

960 Mujalli, A., Chicanne, G., Bertrand-Michel, J., Viars, F., Stephens, L., Hawkins, P., Viaud, J.,
961 Gaits-lacovoni, F., Severin, S., Gratacap, M. P., et al. (2018). Profiling of
962 phosphoinositide molecular species in human and mouse platelets identifies new
963 species increasing following stimulation. *Biochimica et Biophysica Acta - Molecular and*
964 *Cell Biology of Lipids* 1863, 1121–1131.

965 Naguib, A., Bencze, G., Engle, D. D., Chio, I. I. C., Herzka, T., Watrud, K., Bencze, S., Tuveson,
966 D. A., Pappin, D. J. and Trotman, L. C. (2015). P53 mutations change
967 phosphatidylinositol acyl chain composition. *Cell Reports* 10, 8–19.

968 Ohashi, Y., Tremel, S., Masson, G. R., McGinney, L., Boulanger, J., Rostislavleva, K., Johnson,
969 C. M., Niewczas, I., Clark, J. and Williams, R. L. (2020). Membrane characteristics tune
970 activities of endosomal and autophagic human VPS34 complexes. *eLife* 9, e58281.

971 Orofiamma, L. A., Vural, D. and Antonescu, C. N. (2022). Control of cell metabolism by the
972 epidermal growth factor receptor. *Biochim Biophys Acta Mol Cell Res* 119359.

973 Pemberton, J. G., Kim, Y. J., Humpolickova, J., Eisenreichova, A., Sengupta, N., Toth, D. J.,
974 Boura, E. and Balla, T. (2020). Defining the subcellular distribution and metabolic
975 channeling of phosphatidylinositol. *Journal of Cell Biology* 219,.

976 Posor, Y., Jang, W. and Haucke, V. (2022). Phosphoinositides as membrane organizers. *Nat
977 Rev Mol Cell Biol.*

978 Rodgers, S. J., Ferguson, D. T., Mitchell, C. A. and Ooms, L. M. (2017). Regulation of PI3K
979 effector signalling in cancer by the phosphoinositide phosphatases. *Bioscience Reports*
980 37, BSR20160432.

981 Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H. and Schlessinger, J. (2000). A novel
982 positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-
983 kinase in epidermal growth factor receptor signaling. *Mol Cell Biol* 20, 1448–1459.

984 Rueda-Rincon, N., Bloch, K., Derua, R., Vyas, R., Harms, A., Hankemeier, T., Ali Khan, N.,
985 Dehairs, J., Bagadi, M., Mercedes Binda, M., et al. (2015). p53 attenuates AKT signaling
986 by modulating membrane phospholipid composition. *Oncotarget* 6, 21240–21254.

987 Saheki, Y., Bian, X., Schauder, C. M., Sawaki, Y., Surma, M. A., Klose, C., Pincet, F., Reinisch,
988 K. M. and De Camilli, P. (2016). Control of plasma membrane lipid homeostasis by the
989 extended synaptotagmins. *Nature Cell Biology* 18, 504–515.

990 Salamon, R. S. and Backer, J. M. (2013). Phosphatidylinositol-3,4,5-trisphosphate: Tool of
991 choice for class I PI 3-kinases. *BioEssays* □: news and reviews in molecular, cellular and
992 developmental biology 35, 602–11.

993 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
994 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for
995 biological-image analysis. *Nature Methods* 9, 676–682.

996 Schmid, A. C., Wise, H. M., Mitchell, C. A., Nussbaum, R. and Woscholski, R. (2004). Type II
997 phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid
998 composition and head group phosphorylation. *FEBS Letters* 576, 9–13.

999 Shulga, Y. V., Topham, M. K. and Epand, R. M. (2011). Substrate specificity of diacylglycerol
1000 kinase-epsilon and the phosphatidylinositol cycle. *FEBS Lett* 585, 4025–4028.

1001 Shulga, Y. V., Anderson, R. A., Topham, M. K. and Epand, R. M. (2012). Phosphatidylinositol-4-
1002 phosphate 5-kinase isoforms exhibit acyl chain selectivity for both substrate and lipid
1003 activator. *J. Biol. Chem.* 287, 35953–35963.

1004 Stauffer, T. P., Ahn, S. and Meyer, T. (1998). Receptor-induced transient reduction in plasma
1005 membrane PtdIns(4,5)P2 concentration monitored in living cells. *Curr. Biol.* 8, 343–346.

1006 Stokoe, D., Stephens, L. R., Copeland, T., Gaffney, P. R. J., Reese, C. B., Painter, G. F.,
1007 Holmes, A. B., McCormick, F. and Hawkins, P. T. (1997). Dual role of
1008 phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. *Science*
1009 277, 567–570.

1010 Sugiyama, M. G., Fairn, G. D. and Antonescu, C. N. (2019). Akt-ing Up Just About Everywhere:
1011 Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase
1012 Signaling. *Front Cell Dev Biol* 7, 70.

1013 Sun, Y., Thapa, N., Hedman, A. C. and Anderson, R. a (2013). Phosphatidylinositol 4,5-
1014 bisphosphate: targeted production and signaling. *BioEssays: news and reviews in*
1015 *molecular, cellular and developmental biology* 35, 513–22.

1016 Takeuchi, K. and Ito, F. (2011). Receptor tyrosine kinases and targeted cancer therapeutics.
1017 *Biol Pharm Bull* 34, 1774–1780.

1018 Traynor-Kaplan, A., Kruse, M., Dickson, E. J., Dai, G., Vivas, O., Yu, H., Whittington, D. and
1019 Hille, B. (2017). Fatty-acyl chain profiles of cellular phosphoinositides. *Biochimica et*
1020 *Biophysica Acta - Molecular and Cell Biology of Lipids* 1862, 513–522.

1021 Várnai, P. and Balla, T. (1998). Visualization of phosphoinositides that bind pleckstrin homology
1022 domains: Calcium- and agonist-induced dynamic changes and relationship to myo-
1023 [3H]inositol-labeled phosphoinositide pools. *Journal of Cell Biology* 143, 501–510.

1024 Wang, S. E., Shin, I., Wu, F. Y., Friedman, D. B. and Arteaga, C. L. (2006). HER2/Neu (ErbB2)
1025 signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth
1026 factor beta. *Cancer Res* 66, 9591–9600.

1027 Wang, C., Faloon, P. W., Tan, Z., Lv, Y., Zhang, P., Ge, Y., Deng, H. and Xiong, J. W. (2007).
1028 Mouse lysocardiolipin acyltransferase controls the development of hematopoietic and
1029 endothelial lineages during in vitro embryonic stem-cell differentiation. *Blood* 110, 3601–
1030 3609.

1031 Wills, R. C., Doyle, C. P., Zewe, J. P., Pacheco, J., Hansen, S. D. and Hammond, G. R. V.
1032 (2023). A novel homeostatic mechanism tunes PI(4,5)P2-dependent signaling at the
1033 plasma membrane. *J Cell Sci* 136, jcs261494.

1034 Xiong, J. W., Yu, Q., Zhang, J. and Mably, J. D. (2008). An acyltransferase controls the
1035 generation of hematopoietic and endothelial lineages in zebrafish. *Circulation Research*
1036 102, 1057–1064.

1037 Yarden, Y. and Schlessinger, J. (1987). Epidermal growth factor induces rapid, reversible
1038 aggregation of the purified epidermal growth factor receptor. *Biochemistry* 26, 1443–
1039 1451.

1040 Zak, K. and Antonescu, C. N. (2023). Doxycycline-inducible Expression of Proteins at Near-
1041 endogenous Levels in Mammalian Cells Using the Sleeping Beauty Transposon System.
1042 *Bio Protoc* 13, e4846.

1043 Zaman, M. F., Nenadic, A., Radojičić, A., Rosado, A. and Beh, C. T. (2020). Sticking With It:
1044 ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and
1045 Proteins at the Cell Cortex. *Frontiers in Cell and Developmental Biology* 8,.

1046 Zewe, J. P., Miller, A. M., Sangappa, S., Wills, R. C., Goulden, B. D. and Hammond, G. R. V.
1047 (2020). Probing the subcellular distribution of phosphatidylinositol reveals a surprising
1048 lack at the plasma membrane. *Journal of Cell Biology* 219,.

1049 Zhang, K., Chan, V., Botelho, R. J. and Antonescu, C. N. (2023). A tail of their own: regulation
1050 of cardiolipin and phosphatidylinositol fatty acyl profile by the acyltransferase LCLAT1.
1051 *Biochem Soc Trans* BST20220603.

1052 Zhu, G., Fan, Z., Ding, M., Zhang, H., Mu, L., Ding, Y., Zhang, Y., Jia, B., Chen, L., Chang, Z.,
1053 et al. (2015). An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1
1054 that is critical in EGFR-driven tumorigenesis. *Oncogene* 34, 5971–5982.

1055

1056

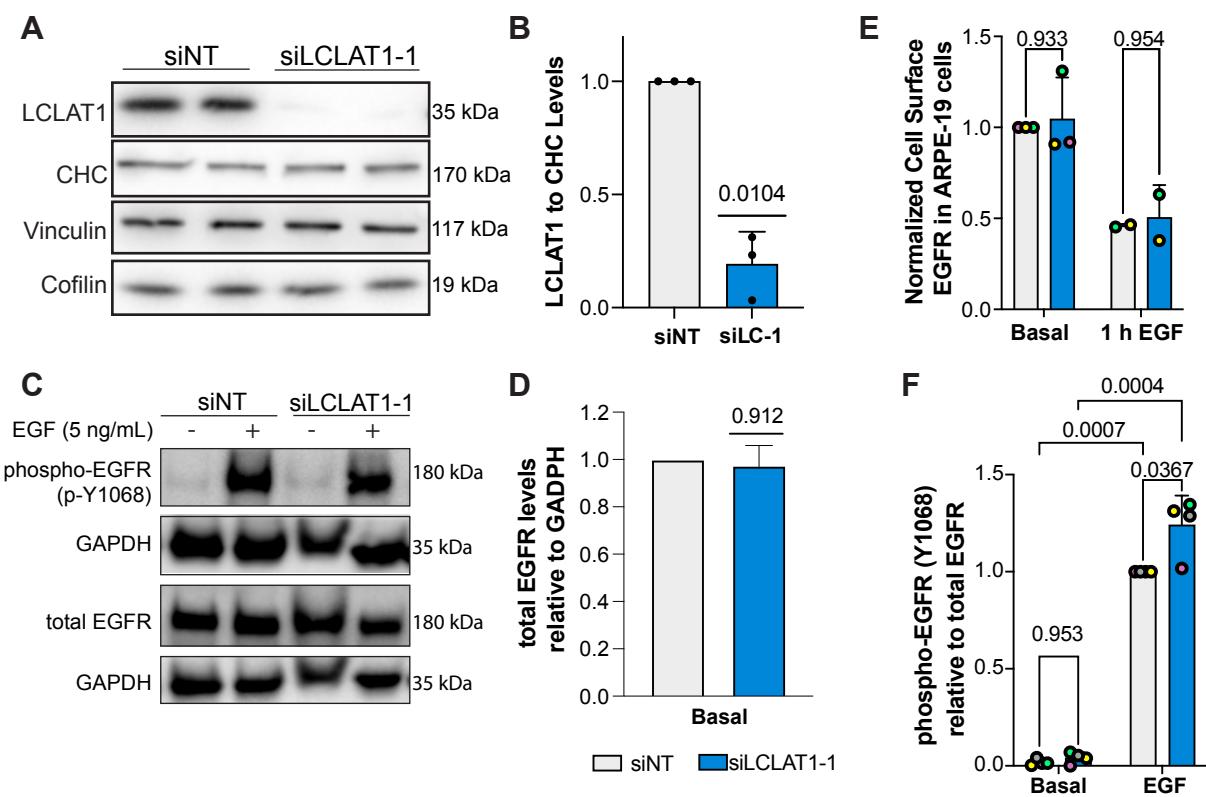


Figure 1

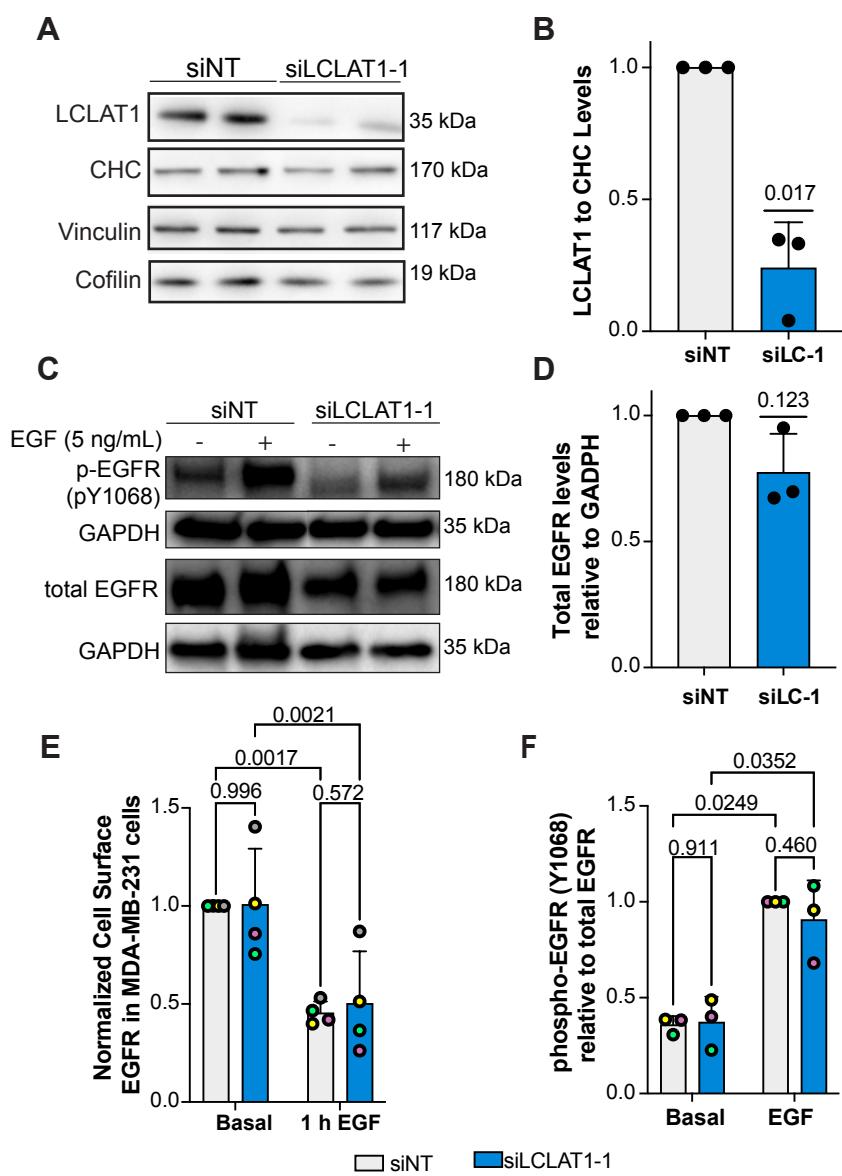


Figure 2

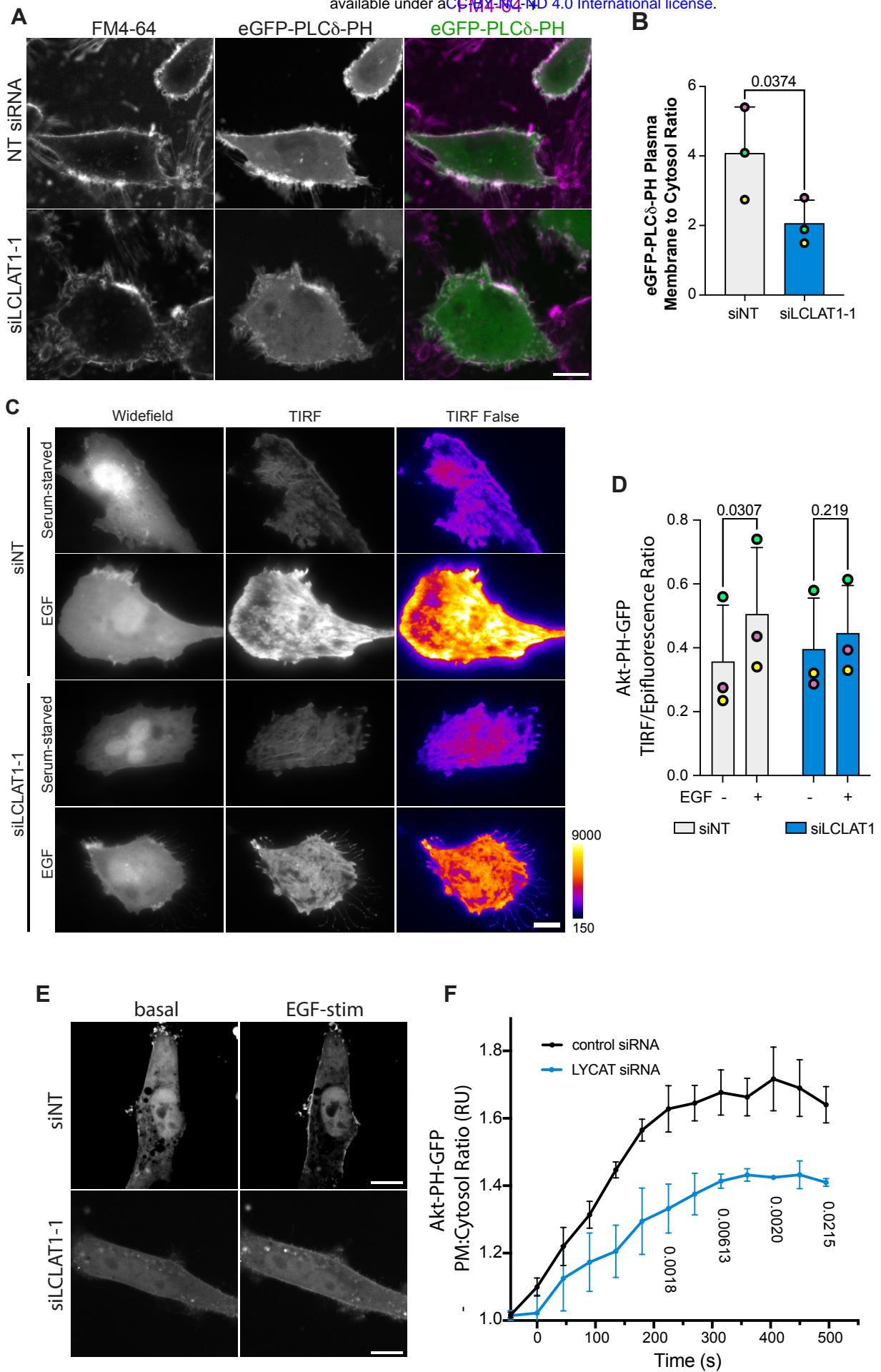


Figure 3

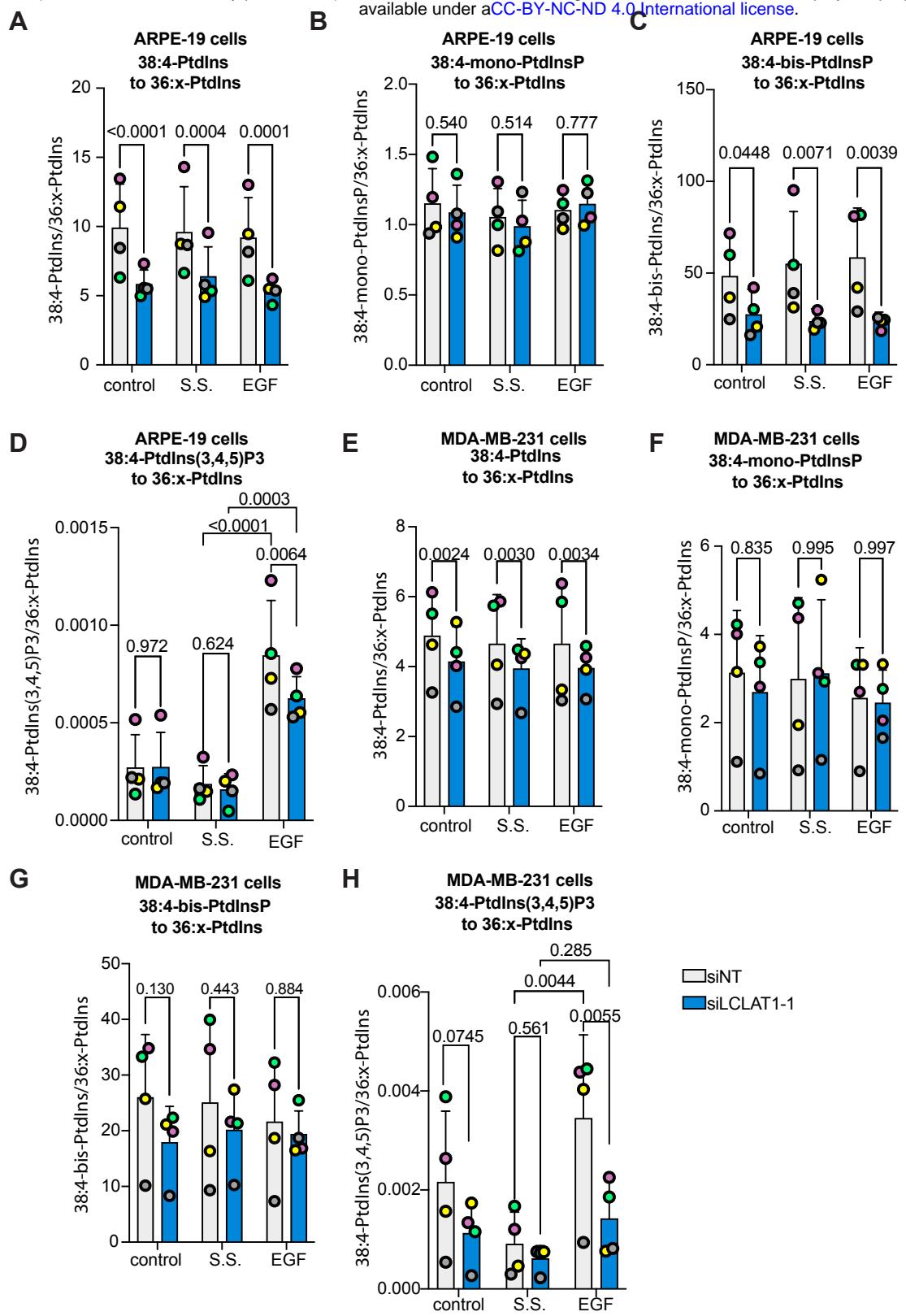
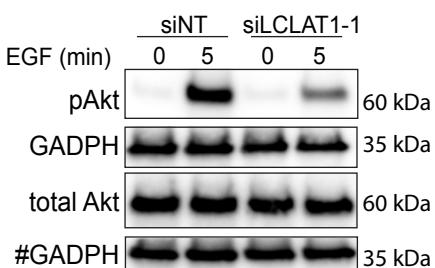
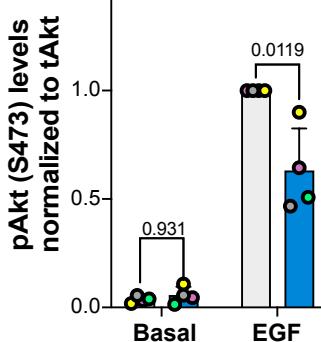
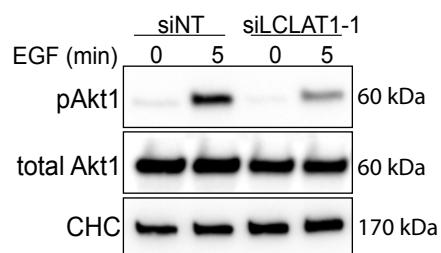
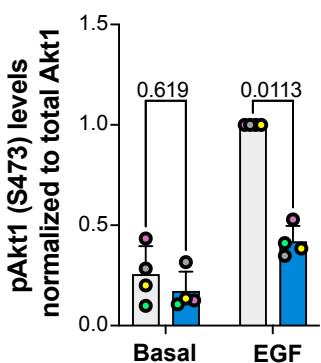
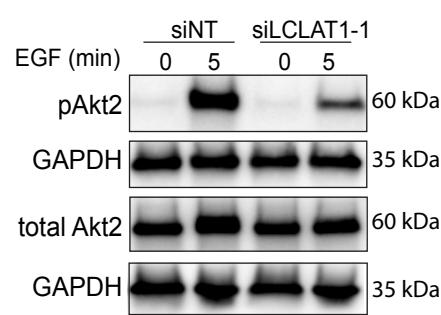
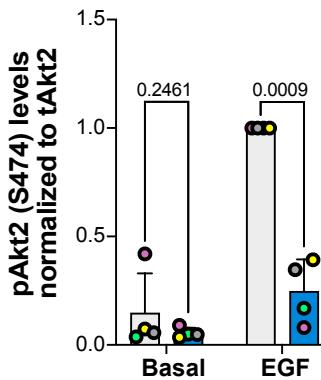




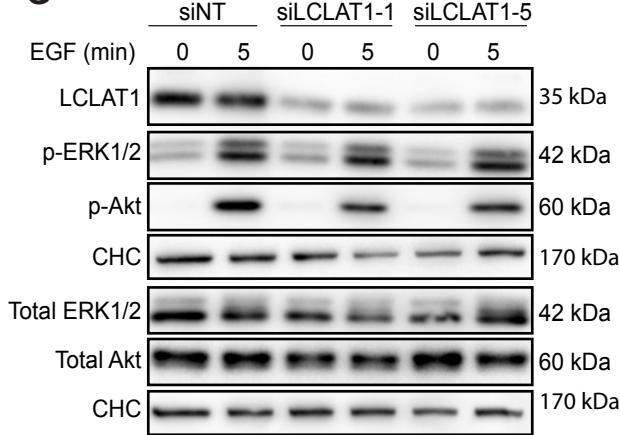
Figure 4

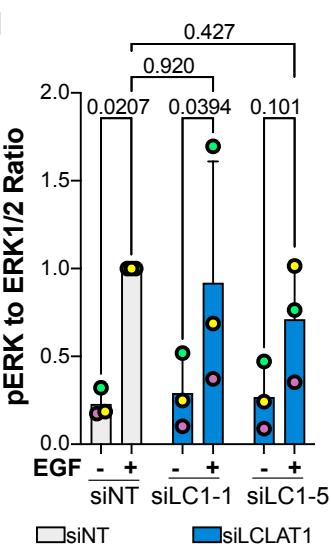

A


B


C


D


E


F

G

H

Figure 5

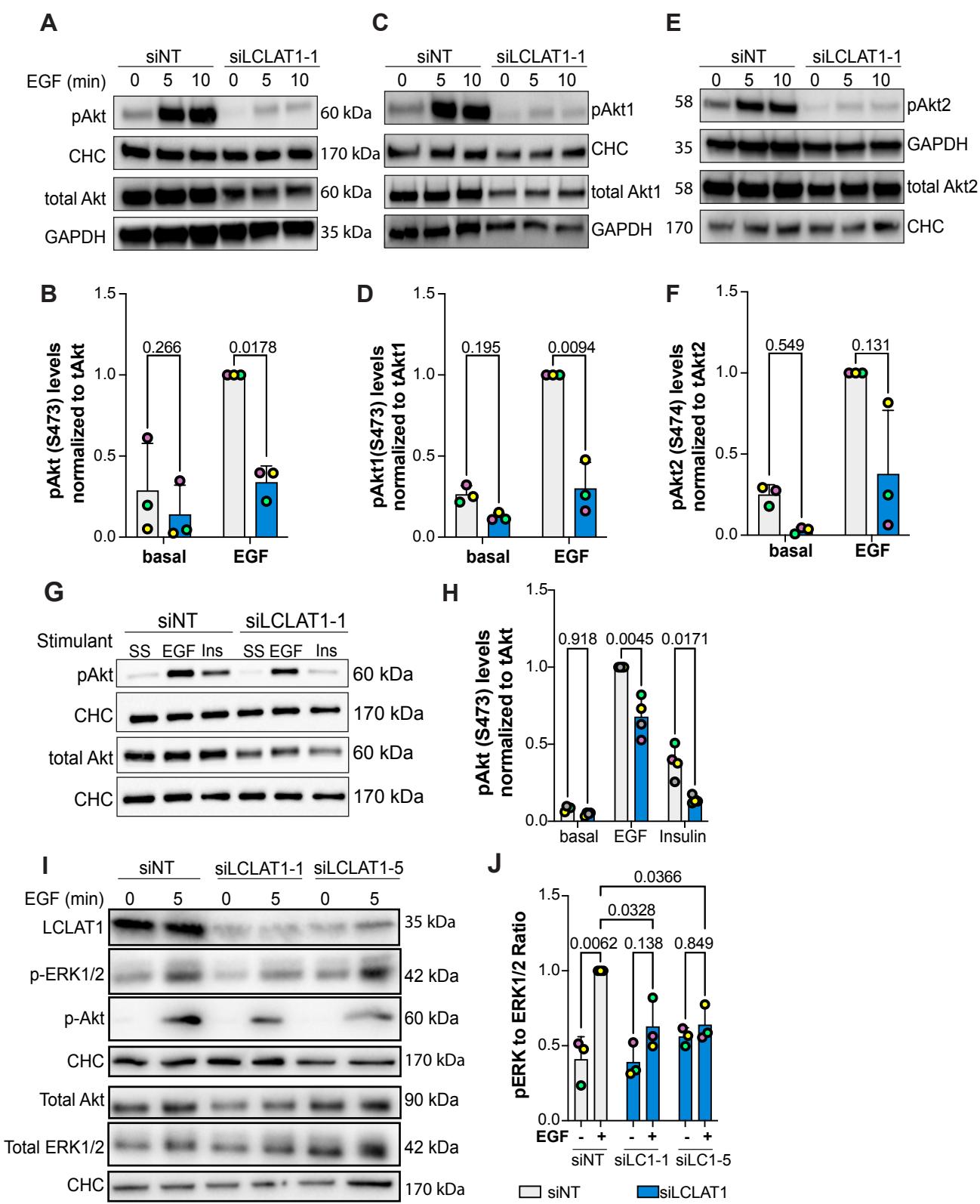
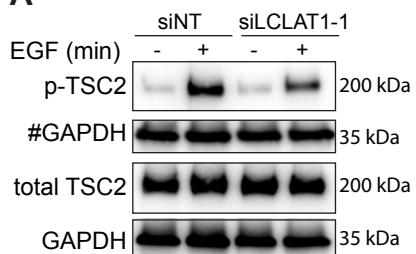
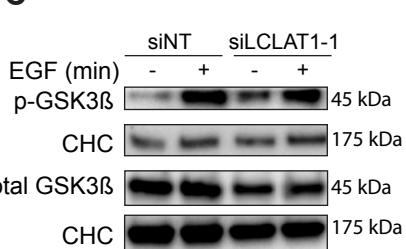
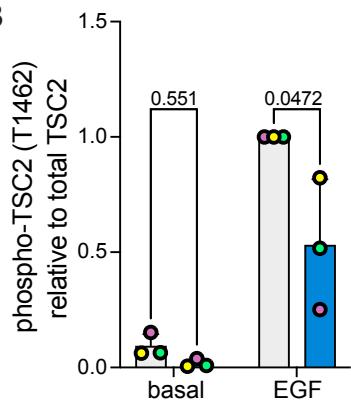
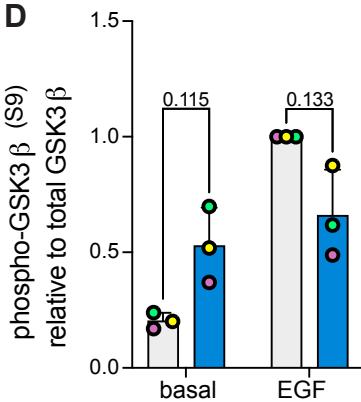
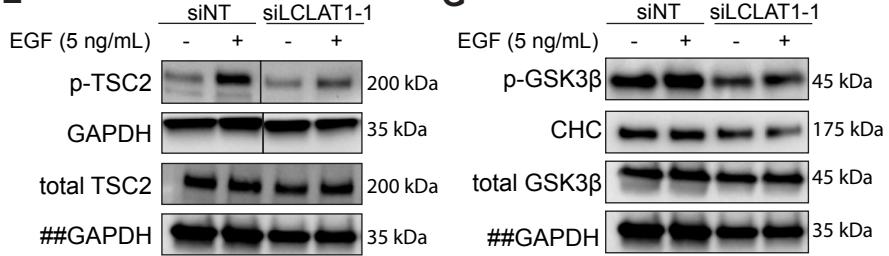
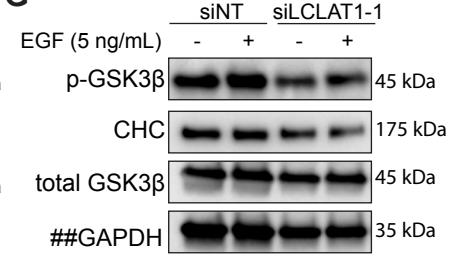




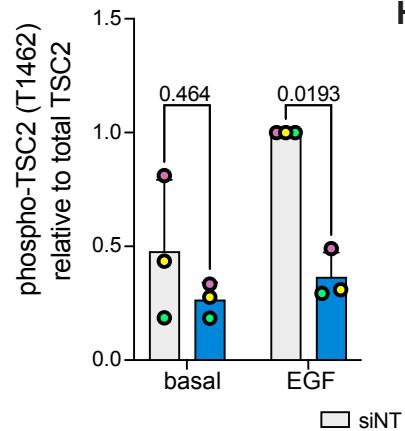
Figure 6

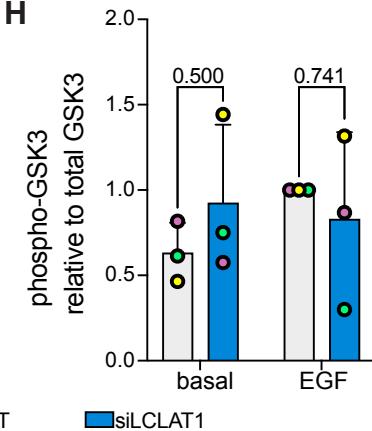

A


C


B


D


E


G

F

H

