

---

1

## 2 Structural basis for triacylglyceride extraction from 3 mycobacterial inner membrane by MFS transporter Rv1410

4

---

5

6 Sille Remm<sup>1</sup>, Dario De Vecchis<sup>2</sup>, Jendrik Schöppe<sup>3,4</sup>, Cedric A.J. Hutter<sup>1,5</sup>, Imre Gonda<sup>1</sup>,  
7 Michael Hohl<sup>1,6</sup>, Simon Newstead<sup>7</sup>, Lars V. Schäfer<sup>2</sup>, Markus A. Seeger<sup>1,\*</sup>

8

9 <sup>1</sup>Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland

10 <sup>2</sup>Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany

11 <sup>3</sup>Institute of Biochemistry, University of Zurich, Zürich, Switzerland

12 <sup>4</sup>Present address: Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark

13 <sup>5</sup>Present address: Linkster Therapeutics, Zürich, Switzerland

14 <sup>6</sup>Present address: Department of Infectious Disease, Imperial College London, London, United  
15 Kingdom

16 <sup>7</sup>Department of Biochemistry, University of Oxford, Oxford, United Kingdom

17 \*corresponding author: [m.seeger@imm.uzh.ch](mailto:m.seeger@imm.uzh.ch)

18

19

## 20 Abstract

21 *Mycobacterium tuberculosis* is protected from antibiotic therapy by a multi-layered  
22 hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the  
23 periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal  
24 the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue,  
25 which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11  
26 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity  
27 suitable for lipid transport is constricted by a unique and functionally important ion-lock  
28 likely involved in proton coupling. Combining mutational analyses and MD simulations, we  
29 propose that TAGs are extracted from the core of the inner membrane into the central cavity  
30 via lateral clefts present in the inward-facing conformation. The periplasmic helix extensions  
31 are crucial for lifting TAGs away from the membrane plane and channeling them into the lipid  
32 binding pocket of LprG.

### 33 Introduction

34 *M. tuberculosis* (Mtb) is the notorious pathogen causing tuberculosis, a disease that claims ~1.3  
35 million lives annually world-wide<sup>1</sup>. The success of the pathogen depends on its hydrophobic  
36 multi-layered cell envelope which is both a formidable barrier offering protection from the  
37 host environment and an interface mediating host-pathogen interactions during infection. The  
38 mycobacterial cell wall is reminiscent of the cell envelope of Gram-negative bacteria in that  
39 Mtb has a periplasmic space that connects the inner membrane to an outer membrane<sup>2</sup>.  
40 However, the compositions of these compartments differ greatly<sup>3,4</sup>. In the ~20-30 nm wide  
41 periplasmic space<sup>2,5</sup>, an arabinogalactan layer serves as a connector between the  
42 peptidoglycan layer and the outer membrane as it is covalently attached to both. The outer  
43 membrane, also called mycomembrane, is composed of two asymmetrical leaflets. The inner  
44 leaflet mainly consists of mycolic acids<sup>6</sup>, which are linked to the arabinogalactan via ester  
45 bonds while the outer leaflet is formed from various non-covalently bound lipid species<sup>3,4</sup>. At  
46 present, the exact composition and amount of the latter, is a subject of debate<sup>3,4</sup>.

47 Rv1410 (P55) is a major facilitator superfamily (MFS) transporter from Mtb. It is encoded in  
48 an operon together with lipoprotein LprG (Rv1411), which is embedded in the outer leaflet of  
49 the inner membrane via its lipid anchor<sup>7</sup>. The operon is highly conserved among  
50 mycobacterial species and both proteins are functionally contributing to intrinsic drug  
51 tolerance in mycobacteria<sup>8</sup>. Rv1410 has been initially described as a drug efflux pump<sup>9-11</sup>.  
52 However, more recent work has shown that Rv1410 indirectly contributes to drug tolerance  
53 by sealing the mycomembrane<sup>8</sup> with triacylglycerides<sup>12</sup>.

54 Using lipidomics, the loss of the *lprG/rv1410c* operon or the *rv1410c* gene in Mtb was shown  
55 to result in intracellular accumulation of TAGs. Conversely, operon overexpression led to  
56 elevated secretion of TAGs into the culture medium, hence demonstrating that Rv1410 is a  
57 TAG transporter<sup>12</sup>. LprG has also been associated with the surface display of  
58 lipoarabinomannans, which can be tetraacylated or, akin to TAG, triacylated<sup>13-15</sup>. Crystal  
59 structures of LprG revealed a hydrophobic pocket that is able to accommodate lipids with two  
60 or three alkyl chains<sup>12,13</sup> and *in vitro* experiments with purified non-acylated LprG that lacks  
61 its lipid anchor show that it is capable of transferring TAGs between lipid vesicles<sup>12</sup>.

62 In mycobacteria, TAGs can be synthesized by several diacylglycerol acyltransferases<sup>16,17</sup> of  
63 which many have been shown to localize to the inner membrane<sup>18</sup>. There, TAGs form lipid  
64 bodies and/or are transported to the outer membrane<sup>19</sup>. It is a plausible speculation that  
65 Rv1410 couples proton-motive force to active extraction of TAGs from the inner membrane to

66 deliver them to the hydrophobic pocket of LprG. The molecular mechanism by which Rv1410  
67 and LprG synergize to transport TAGs across the inner membrane and finally towards the  
68 mycomembrane is unclear. An LprG cross-linking study in live *Mycobacterium smegmatis* cells  
69 did not demonstrate a reproducible interaction between LprG and Rv1410<sup>20</sup> and attempts to  
70 show complex formation *in vitro* with purified proteins were fruitless<sup>8</sup>. Nevertheless, it is  
71 evident from several studies that for optimal functionality, both proteins working in concert  
72 are needed<sup>8,21,22</sup>.

73 To address the questions of how Rv1410 transports TAGs and interacts with LprG, we  
74 determined the crystal structure of MHAS2168, an Rv1410 homologue from *Mycobacterium*  
75 *hassiacum*, in complex with an alpaca-raised nanobody. Based on the structure, we conducted  
76 molecular dynamics simulations and an extensive mutational analysis in both Rv1410 and  
77 MHAS2168. We found structural features essential for lipid transport, enabling us to propose  
78 a model describing the mechanism of TAG transport by Rv1410.

## 79 **Results**

### 80 **Determination of MHAS2168 structure**

81 To understand the lipid transport mechanism of Rv1410, we aimed to solve its structure.  
82 While we were unable to obtain crystals of Rv1410, we succeeded to crystallize its close  
83 homologue MHAS2168 (sequence identity of 62%) from the thermophilic mycobacterial  
84 species *M. hassiacum* in complex with an alpaca-derived nanobody Nb\_H2 using  
85 crystallization in lipidic cubic phase (LCP). Native datasets diffracting up to 2.7 Å were  
86 obtained (Table S1), but initial attempts to solve the structure by molecular replacement, using  
87 other MFS transporters as search models, failed. Therefore, we used the megobody (Mb)  
88 approach<sup>23</sup> to enlarge Nb\_H2 and determined a cryo-EM structure of the MHAS2168-Mb\_H2  
89 complex, resulting in a density map with an average resolution of 4 Å (Fig. 1a; Extended Data  
90 Fig. 1b; Table S2). In parallel, we analysed Rv1410 in complex with another megobody  
91 (Mb\_F7) by cryo-EM, yielding a map of 7.5 Å (Extended Data Fig. 1a; Table S2). The  
92 MHAS2168-Mb\_H2 map enabled us to build an initial model with assigned side chains for  
93 the bulk of the transporter. Intriguingly, we detected a non-proteinaceous density that could  
94 correspond to a triacylated lipid at the transporter's side wall (Fig. 1a). The initial transporter  
95 model was then used to phase the native 2.7 Å data obtained by LCP crystallization by  
96 molecular replacement. The asymmetric unit comprises two transporter/nanobody complexes  
97 (Extended Data Fig. 1d). Complete models for the transporter and the nanobody were built  
98 with good refinement statistics and geometry (Extended Data Fig. 1c; Table S1). In the

99 following analysis, chains A (MHAS2168) and B (Nb\_H2) are used due to better map quality.  
100 In fact, the electron densities for the backside of Nb\_H2 in chain D were blurry and explain  
101 the comparatively poor RSRZ scores of the model (Table S1).

102 **MHAS2168 architecture**

103 Both cryo-EM and crystal structures show MHAS2168 in its outward-facing (OF)  
104 conformation (Fig. 1). MHAS2168 adopts a canonical MFS transporter fold, featuring an N-  
105 and a C-domain each composed of six transmembrane helices (TMs). Since Rv1410 and  
106 MHAS2168 belong to the drug:H<sup>+</sup> antiporter-2 (DHA2) subclass of MFS transporters  
107 (<http://www.tcdb.org>), they possess additional transmembrane linker helices A and B (TMA  
108 and TMB) between TM6 and TM7. The linker helices form a hairpin (Fig. 1b,c), such as seen  
109 in the structure of NorC<sup>24</sup>, as opposed to most other 14-helix MFS transporters whose linker  
110 helices are commonly arranged in a broader A-shape<sup>25-28</sup>. A striking element of MHAS2168 is  
111 a ~20 Å long extension of TM11 and TM12 into the periplasm where we hypothesized the  
112 presence of a functionally important periplasmic loop in our previous work<sup>8</sup>. TM12 extends  
113 into the periplasm by 4  $\alpha$ -helical turns and is connected to the 2.5  $\alpha$ -helical turns-extended  
114 TM11 via a linker loop. Extended TM11 and TM12 seem to be a distinct feature of Rv1410 and  
115 its homologues, according to ColabFold<sup>29</sup> structure predictions (Extended Data Fig. 2) and the  
116 crude 7.5 Å cryo-EM map of Rv1410-Mb\_F7 complex (Extended Data Fig. 1a). As a last  
117 conspicuous structural element, MHAS2168 features a small extracellular  $\beta$ -hairpin between  
118 TM9 and TM10 (Fig. 1b,c), which extends along the membrane plane.

119 The ~2300 Å<sup>3</sup> outward-facing central cavity of MHAS2168 is well-equipped to accommodate  
120 lipids, in that the cavity walls of both domains are very hydrophobic, even compared to other  
121 MFS lipid transporters LtaA<sup>30,31</sup> and MFSD2A<sup>32-34</sup> (Extended Data Fig. 3). Curiously, the cavity  
122 does not extend as deeply into the transporter as in the case of other MFS lipid or drug  
123 transporters (Extended Data Fig. 3) due to a constricting salt bridge (comprised of E157 on  
124 TM5 and R426 on TM11) and its neighbouring residues in the cavity (Fig. 1c; Fig. 2a,b). There  
125 is a continuity between the central cavity and the membrane space, via narrow lateral  
126 openings between the N- and C-domains (Fig. 1b,c). The narrow lateral crevice between TM5  
127 and TM8 is throughout its entire length 5-6 Å wide, while the would-be lateral cleft between  
128 TM2 and TM11 widens from 4 Å at the bottom to 12 Å at the top. However, the TM2-TM11  
129 cleft is shielded from the membrane by TMA and TMB. Therefore, it seems to be effectively  
130 blocked (Fig. 1b,c).

131 **Experimental system to assess functionality of Rv1410 and MHAS2168**  
132 **mutants in *M. smegmatis***

133 Rv1410 and LprG transport TAGs which secure the impermeability of the mycomembrane to  
134 certain drugs. Thus, the functionality of Rv1410 and LprG can be probed indirectly in *M.*  
135 *smegmatis* cells, by exploiting the change in cell envelope permeability, resulting in increased  
136 vancomycin influx to the periplasm if the *lprG/rv1410c* homologous operon *MSM3070/69* is  
137 deleted.<sup>8</sup> This allows vancomycin to reach its periplasmic target, namely peptidoglycan  
138 precursors, and results in cell death. Complementation of the *M. smegmatis* deletion strain  
139 with *lprG/rv1410c* from *Mtb* or *MHAS2167/68* from *M. hassiacum* fully restores vancomycin  
140 resistance (Fig. 2c,d). Mutations in the transporter gene that cause loss of viability are therefore  
141 indicative of reduced transporter activity and TAG transport. Since complementation is  
142 carried out with the integrative pFLAG vector<sup>35</sup> where the transporter is fused to a FLAG tag,  
143 protein production was confirmed by Western blotting for every mutant assessed in this work  
144 (Extended Data Fig. 4). As negative control, empty vector or motif A aspartate mutants of the  
145 MFS transporters which destabilize the outward-facing (OF) conformation<sup>36,37</sup> (D70N<sub>Mtb</sub> and  
146 D83N<sub>MH</sub>) were used for complementation (Fig. 2c,d).

147 **Two candidate loci for proton translocation**

148 The only charged residues within the otherwise hydrophobic cavity of MHAS2168 are E157<sub>MH</sub>  
149 and R426<sub>MH</sub> which form a salt bridge (Fig. 2a,b) and constrict the bottom of the cavity.  
150 Curiously, this ion pair is conserved in 17 mycobacterial homologues of Rv1410 (Extended  
151 Data Fig. 5) but is absent from 46 previously characterized MFS transporters (Extended Data  
152 Fig. 6). The configuration of the glutamate as a possible proton acceptor/donor, the positively  
153 charged arginine to control pKa changes of the glutamate, and their location in the solvent-  
154 accessible cavity suggest a role of this ion pair in proton translocation<sup>38</sup>.

155 To test whether the ion lock residues contribute to energy coupling, E157<sub>MH</sub> from MHAS2168  
156 and the corresponding E147<sub>Mtb</sub> from Rv1410 were mutated to glutamine. Similarly, R426<sub>MH</sub>  
157 and R417<sub>Mtb</sub> were mutated to alanine. When the Rv1410 salt bridge mutants were subjected to  
158 the vancomycin sensitivity assays at 0.1 µg/ml vancomycin, both E147Q<sub>Mtb</sub> and R417A<sub>Mtb</sub>  
159 mutations inactivated the transporter completely (Fig. 2c). Similarly, the R426A<sub>MH</sub> mutant was  
160 unable to grow, but the E157Q<sub>MH</sub> mutant showed completely abolished growth only under  
161 increased vancomycin stress (0.4 µg/ml) (Fig. 2d).

162 Another conserved carboxylate (Extended Data Fig. 5), D22 in Rv1410, has been shown to be  
163 required for transport before<sup>21</sup>. D22<sub>Mtb</sub> and corresponding D35<sub>MH</sub> are located in the middle of

164 TM1 where their side chains point towards the center of the N-domain. D35<sub>MH</sub> forms  
165 hydrogen bonds with Q121<sub>MH</sub> (TM4, 1.8 Å), N184<sub>MH</sub> (TM6, 2.4 Å), and R118<sub>MH</sub> (TM4, 3.4 Å) (Fig.  
166 2b). D35<sub>MH</sub> and the neighbouring R118<sub>MH</sub> are potentially implicated in proton translocation  
167 due to analogously located aspartate-arginine salt bridges which were identified as the  
168 protonation/deprotonation sites via which substrate transport is coupled to proton  
169 translocation in certain sugar/H<sup>+</sup> symporters<sup>39–42</sup>. In agreement with previously investigated  
170 mutants D22A<sub>Mtb</sub> and D22E<sub>Mtb</sub><sup>21</sup>, mutations D22N<sub>Mtb</sub> and D35N<sub>MH</sub> compromised the  
171 functionality of the transporter (Fig. 2c,d), suggesting that protonation/deprotonation of this  
172 carboxylate is necessary for transport function. While in the outward-open conformation of  
173 MHAS2168 the D35<sub>MH</sub>-R118<sub>MH</sub> pair is not solvent-accessible, tunnels providing access to the  
174 bulk solvent might be present in other conformations. In summary, our data suggest that in  
175 Rv1410, both D22 and E147 are implicated in proton translocation and thus appear to play a  
176 key role in coupling the energy stored in the proton gradient to the efflux of TAGs.

177 **Molecular dynamics simulations suggest a mechanism of TAG extraction  
178 from the hydrophobic core of the membrane**

179 To gain detailed molecular-level insights into how the transporter interacts with TAG  
180 substrate molecules, we performed coarse-grained molecular dynamics (MD) simulations of  
181 MHAS2168 in both outward-open (MHAS2168<sup>OUT</sup>; our crystal structure) and inward-open  
182 conformations (MHAS2168<sup>IN</sup>; homology model based on PepT<sub>so2</sub>) embedded in a  
183 phospholipid bilayer doped with TAGs, mimicking the mycobacterial plasma membrane (Fig.  
184 3a; Table S3). The MD simulations revealed that TAGs are not fully embedded in the  
185 individual leaflets of the lipid bilayer, but rather segregate to the hydrophobic core of the  
186 membrane (Fig. 3b), likely owing to the absence of a charged head group. This observation  
187 has implications for potential transport mechanism of Rv1410, because TAGs need to be  
188 extracted from the membrane core, instead of being flipped from one leaflet to the other like  
189 phospholipids.

190 In the MD simulations, MHAS2168 strongly interacts with cardiolipin and  
191 phosphatidylinositol, which form an annular lipid belt around the transporter that shields it  
192 from other membrane components (Extended Data Fig. 7). The TAGs probe a range of  
193 different positions along the transporter TM helices, with preference for TM8 and TM10  
194 (between the β-hairpin and TM5-TM8 lateral cleft) (Fig. 3c; Extended Data Fig. 7). Linker  
195 helices A and B and their surroundings form another hotspot for transporter-TAG  
196 interactions, especially in MHAS2168<sup>IN</sup>. To test the importance of these features to TAG  
197 transport, either TMA and TMB or the TM9-TM10 β-hairpin were truncated in Rv1410 and

198 MHAS2168. Surprisingly, the loss of the  $\beta$ -hairpin did not affect lipid transport in neither  
199 Rv1410 nor MHAS2168, suggesting that this structural element plays a bystander role in the  
200 transport mechanism. In contrast, the deletion of the linker helices resulted in inactivation of  
201 both transporters, indicating that they are key to TAG transport (Fig. 3d,e).

202 **Mutational analysis indicates TAG entry into inward-facing cavity**

203 Reflecting the hydrophobic nature of the TAG as substrate, the central cavity of outward-  
204 facing Rv1410 is particularly apolar (Extended Data Fig. 3). Its polarity was increased in a set  
205 of mutants by substituting a conserved leucine, which is situated in the middle of the  
206 hydrophobic C-domain cavity wall (Fig. 4c,d), with arginine or aspartate. Interestingly, only  
207 the L289R<sub>Mtb</sub> and L299R<sub>MH</sub> mutants were inactive; L289D<sub>Mtb</sub> and L299D<sub>MH</sub> mutants behaved  
208 like the wild type control strains at both lower (0.1  $\mu$ g/ml) and higher (0.4  $\mu$ g/ml) vancomycin  
209 concentrations (Fig. 4e,f). This discrepancy might be explained by the fact that arginines retain  
210 their charge in lipid and protein environments better than carboxylates<sup>43</sup>. The functional  
211 defect of arginine mutants suggests that TAGs enter the central cavities of Rv1410 and  
212 MHAS2168.

213 According to our MD simulations, TAGs accumulate in the membrane core and therefore  
214 must enter the transporter through lateral openings between N- and C-domains lined with  
215 TM5 and TM8, or TM2 and TM11, respectively (Fig. 4a,b). To test whether the lateral crevices  
216 could serve as TAG entry or exit sites, residues in the middle of each lateral cleft were mutated  
217 into glutamates or aspartates to introduce polarity and block the opening (Fig. 4a,b,c; see  
218 Supplementary Information).

219 Functional assays (Fig. 4e,f) suggest that TAGs enter the cavity through both TM5-TM8 and  
220 TM2-TM11 lateral openings in the inward-facing state, as the corresponding mutants  
221 G140D<sub>Mtb</sub>, G150D<sub>MH</sub>, A411D<sub>Mtb</sub>, and A420D<sub>MH</sub> were inactive. Another line of evidence that  
222 supports this notion is the observation of non-proteinaceous density in the cryo-EM map of  
223 the MHAS2168-Mb\_H2 complex that could correspond to a TAG molecule or another tri-  
224 acylated lipid (Fig. 1a). This density is positioned in close proximity to the TM5-TM8 lateral  
225 cleft, opening in the inward-facing conformation.

226 As expected due to the obstruction by linker helices, the TM2-TM11 lateral crevice in the OF  
227 conformation is not involved in lipid transport as the L422E<sub>Mtb</sub> and L431E<sub>MH</sub> mutants display  
228 comparable growth to the wild-type operons at both lower (0.1  $\mu$ g/ml) and higher (0.4  $\mu$ g/ml)  
229 vancomycin concentrations. Even though the narrow TM5-TM8 lateral cleft in the OF state is  
230 connecting the central cavity and membrane, it does not seem to play a role in TAG transport.

231 The corresponding mutants L155E<sub>Mtb</sub> and I165E<sub>MH</sub> grow similar to the wild type control at 0.1  
232 µg/ml vancomycin concentration (Fig. 4e,f).

### 233 **Periplasmic TM11 and TM12 extensions guide TAG loading into LprG**

234 It is clear from the MHAS2168 structure (Fig. 1c; Fig. 5a) and structure predictions of its  
235 homologues (Extended Data Fig. 2) that the “periplasmic loop” truncations we previously  
236 investigated in Rv1410<sup>8</sup> manifest in fact as helix truncations (Fig. 5a), resulting in a less  
237 extended TM12. The Rv1410 truncation mutants were reproduced in MHAS2168, utilizing  
238 structure predictions performed with ColabFold platform<sup>29</sup> for rational mutant design (see  
239 Supplementary Information). The two TM11 and TM12 truncation mutants in MHAS2168  
240 were predicted to have the same length as Truncation 1<sub>Mtb</sub> and Truncation 2<sub>Mtb</sub> mutants in  
241 Rv1410 and connected by loops of similar length (Fig. 5a). Both MHAS2168 truncation  
242 mutants failed to transport lipids, while the Truncation 1<sub>Mtb</sub> mutant retained some of its  
243 activity and the Truncation 2<sub>Mtb</sub> mutant did not (Fig. 5b,c). Thereby, the previously observed  
244 loss in function of the TAG transporter was reproduced.

245 An in-depth analysis of the MHAS2168 structure and the structure prediction models of its  
246 mycobacterial homologues revealed that although the primary structure of the TM11-TM12  
247 extensions varies in both length (31-38 residues) and sequence, they share common features  
248 (Extended Data Fig. 2; Extended Data Fig. 5). Firstly, the TM12 length is very conserved (extra  
249 4 α-helical turns) while there are small differences in the TM11 and TM11-TM12 loop lengths  
250 (Extended Data Fig. 2a). Secondly, hydrophobic patches are present on the side of the  
251 extensions facing the cavity (Extended Data Fig. 2b-d), and the residues on the tip of the TM12  
252 extension (1<sup>st</sup> α-turn) are commonly hydrophobic. Thirdly, aromatic residues are prevalent on  
253 TM12 above the cavity.

254 To study the functional role of these molecular features on the TM12 extension, single point  
255 mutations were generated with the aim to alter the biophysical properties of this region (Fig.  
256 5a). Therefore, the aromatic or electroneutral residues of TM12 above the cavity were mutated  
257 either to alanines to remove phenol groups that might be involved in stacking interactions  
258 (Y464A<sub>Mtb</sub>, F468A<sub>Mtb</sub>, T479A<sub>MH</sub>, Y483A<sub>MH</sub>) or to glutamates to introduce charge and bulkiness  
259 to the side chains and thus likely disrupt lipid movement (Y464E<sub>Mtb</sub>, F468E<sub>Mtb</sub>, T479E<sub>MH</sub>,  
260 Y483E<sub>MH</sub>). Similarly, the hydrophobic residues at the tip of TM12 extension were mutated into  
261 lysines (L453K<sub>Mtb</sub>, M468K<sub>MH</sub>) or aspartates (L453D<sub>Mtb</sub>, M468D<sub>MH</sub>). While all of these mutants  
262 retained wild type activity in the vancomycin sensitivity assays under milder condition (0.1  
263 µg/ml vancomycin; Fig. 5b,c), growth defects manifested in many of these mutant strains at

264 higher vancomycin concentration (0.4 µg/ml; Extended Data Fig. 8c,d). In conclusion, the  
265 helical extensions cannot be removed without affecting the transporter's function. Further,  
266 disruption of conserved molecular features on TM12 results in partially defective transport  
267 activity.

268 We hypothesized that the TM11 and TM12 periplasmic extensions might play a role in TAG  
269 exit from the central cavity by serving as an anchor point to place LprG into a favourable  
270 position for TAG loading. Although previous experiments failed to demonstrate physical  
271 interactions between purified Rv1410 and LprG<sup>8</sup>, transient low affinity interactions  
272 nevertheless may occur in the cellular context. We reasoned that if there was a specific  
273 physical interaction between the extended helices of Rv1410 and LprG, the operon partners  
274 might have co-adapted during evolution. Then, MFS transporters and lipoproteins from  
275 different mycobacterial species would not be able to act in concert. To examine this  
276 hypothesis, Rv1410 and LprG from *M. tuberculosis* were shuffled with their counterpart  
277 homologues from three mycobacterial species (namely *M. smegmatis*, *M. hassiacum*, and *M.*  
278 *abscessus*) without affecting the overall operon structure. *M. smegmatis* dKO complemented  
279 with any tested combination of transporter and lipoprotein was able to grow as fast as with  
280 the natively paired operons while complementation with the transporters (with the exception  
281 of MAB2807 from *M. abscessus*) or lipoproteins alone resulted in substantial growth defects  
282 (Fig. 5d-h). Considering the fact that protein-protein interactions are highly sensitive to small  
283 perturbations at the binding interface and the overall low degree of sequence conservation in  
284 the helical extensions, our data do not support specific transporter-lipoprotein interactions.  
285 Rather, our experiments suggest that transporter and lipoprotein functionally synergize to  
286 accomplish efficient TAG transport without the necessity to specifically interact at the protein  
287 level.

288 Alternatively, the importance of periplasmic helix extensions in TAG transport might lie in  
289 their interactions with the TAG during its transit from Rv1410 to LprG. Hence, we decided to  
290 study the dynamic process of TAG loading from the transporter into LprG directly. The  
291 ColabFold platform<sup>29</sup> was used in multimer mode to build a complex of MHAS2168<sup>OUT</sup> and  
292 LprG. All five obtained models consistently positioned LprG on the periplasmic side, with its  
293 hydrophobic cavity oriented towards TM11 and TM12 (Fig. 6; Extended Data Fig. 9a). A TAG  
294 molecule was inserted into the main cavity of the transporter and extended unbiased coarse-  
295 grained MD simulations of the MHAS2168<sup>OUT</sup>-LprG complex were carried out. Several events  
296 of TAG-loading into LprG were observed, at a rate of about one event per 100 µs of simulation  
297 time (Fig. 6). In addition to the loading of TAG into LprG, also the reverse unloading process

298 was observed (Fig. 6a). TAG slides back from LprG into the transporter along the extended  
299 hydrophobic tunnel that is established upon the formation of the MHAS2168-LprG complex  
300 (Extended Data Video 1), suggesting a rather shallow energy landscape. Interestingly, in our  
301 simulations, the TAG molecule migrated to LprG only when two of its acyl tails were pointing  
302 up towards LprG, instead of only one (see Supplementary Information). The key residues of  
303 the transporter that line the hydrophobic tunnel and mediate the transitioning of TAG  
304 between the transporter and LprG are found in the loop connecting the linker helices A and  
305 B, TM 7 C-terminus, and particularly TM11 and TM12 (Fig. 6b,c; Extended Data Fig. 9; Table  
306 S4). For LprG, the residues that guide TAG loading cover its entrance mouth and form a broad  
307 hydrophobic surface that extends further into the hydrophobic cavity of LprG (Extended Data  
308 Fig. 9; Table S4). The simulation results are in line with a site-directed mutagenesis study  
309 showing that V91 in *M. tuberculosis* LprG, corresponding to T87 in *M. hassiacum* (Table S4),  
310 plays a key role<sup>12</sup>.

## 311 **Discussion**

312 In this work, we present the first high resolution structure of a mycobacterial MFS transporter,  
313 enabling the distinction of unusual features relevant to its function. Rv1410 acts in concert  
314 with periplasmic lipoprotein LprG to export TAGs from the inner membrane towards the  
315 mycomembrane. In our MD simulations, TAGs, lacking a polar head group, did not form an  
316 orderly part of the two leaflets of the cytoplasmic membrane, but instead accumulated in the  
317 hydrophobic core of the lipid bilayer. From a biophysical point of view, the main energy  
318 barriers TAG faces during its journey from the core of the inner membrane to the  
319 mycomembrane are the crossing of the charged outer leaflet of the inner membrane and the  
320 polar environment of the periplasm.

321 Our proposed model of transport (Fig. 7) accounts for this in that Rv1410 and LprG provide a  
322 continuous series of hydrophobic cavities and surfaces to shield TAG from the bulk water and  
323 thus allow for facilitated passage from the inner membrane core to the lipid binding cavity of  
324 LprG. Our functional data suggest that the TAG molecule enters Rv1410 in its IF conformation  
325 from the cytoplasmic membrane either via the TM5-TM8 or the TM2-TM11 lateral opening  
326 (step 1 in Fig. 7). According to our inward-facing homology model, the cavity of Rv1410 is  
327 hydrophobic enough to accommodate TAG and other lipids. Once TAG enters the cavity,  
328 Rv1410 transits from IF to OF conformation (step 2 in Fig. 7). Whether this transition is driven  
329 by TAG binding or protonation/deprotonation events, is not deducible from our data. As an  
330 effect, the TAG binding cavity is remodelled such that it opens to the periplasm and the E147-

331 R417 ion lock is formed, which is a unique hallmark and essential functional element of  
332 Rv1410 and its mycobacterial homologues. The constriction pushes the TAG away from the  
333 membrane core to the level of the outer leaflet, while the hydrophobic cavity shields it from  
334 the charged environment of the lipid head groups. Thus, the TAG is enclosed in the  
335 transporter and retained in the cavity in the OF conformation because the lateral cleft between  
336 TM5-TM8 is narrow (Extended Data Fig. 2b) and the TM2-TM11 crevice is blocked by linker  
337 helices A and B. In fact, the discovery that linker helices of Rv1410 are crucial for its function  
338 is the first of its kind among 14-helix MFS transporters.

339 As the last step of the transport pathway (step 3 in Fig. 7), TAG leaves the central cavity via  
340 the opening to the periplasm. The TAG remains concealed from the hydrophilic environment  
341 from one side by the TM11 and TM12 periplasmic extensions and from the other side by LprG  
342 which captures the lipid into its hydrophobic pocket. This final TAG extraction step is  
343 experimentally supported by the fact that TM12 truncations result in complete loss of  
344 transport activity, without disturbing transporter folding and production. Once TAG has left  
345 Rv1410, the proton gradient could be exploited to revert to the IF conformation and a new  
346 transport cycle can begin.

347 We discovered two functionally important carboxylate-arginine pairs in Rv1410, namely D22-  
348 R108 placed within the N-domain and E147-R417 placed across the N- and C-domain in the  
349 central cavity, whose most likely function is to couple proton influx to the export of TAG. It  
350 should be noted that the substitutions of the key carboxylates by the respective carboxamides  
351 did not fully abrogate transport function in MHAS2168 as it did in Rv1410 (Fig. 2c,d). This  
352 might be explained by the fact that TAGs are transported along their concentration gradient,  
353 as they are produced within the cell and finally dilute out to the mycomembrane and, to some  
354 extent, the growth medium. Hence, the transporter might well be able to facilitate TAG export  
355 without proton coupling, as has been shown in the case of several MFS transporters and their  
356 substrates<sup>39,44</sup>. However, the transport rate likely increases when lipid export is coupled to the  
357 proton gradient. The fact that the R426<sub>AMH</sub> mutation is more deleterious than E157<sub>QMH</sub>, might  
358 be due to an absolute requirement for the structural interaction at the base of the OF cavity  
359 between the two residues. Q157<sub>MH</sub> is still able to form hydrogen bonds with R426<sub>MH</sub>, which is  
360 not possible for A426<sub>MH</sub> with E157<sub>MH</sub>.

361 Extraction of lipopolysaccharides or lipoproteins from the outer leaflet of the inner membrane  
362 of gram-negative bacteria requires an active transport step mediated by the essential ABC  
363 transporters LptB<sub>2</sub>FG and LolCDE, respectively<sup>45-47</sup>. These lipid extractors belong to the type  
364 VI ABC transporters<sup>48</sup>, and utilize the energy of ATP binding and hydrolysis to pass their

365 hydrophobic cargo to the dedicated periplasmic carrier protein. In this work, we describe the  
366 first structure of an MFS transporter capable of lipid extraction, which uses the proton-motive  
367 force instead of ATP to energize transport.

368 In contrast to LptB<sub>2</sub>FG and LolCDE which both directly interact with their cognate periplasmic  
369 proteins LptC<sup>45</sup> and LolA<sup>49</sup>, respectively, LprG and Rv1410 do not appear to engage in strong  
370 and specific protein-protein interactions, as shown by the functional operon shuffling  
371 experiments (Fig. 5d-h) and previously described biochemical studies<sup>8</sup>. We therefore surmise  
372 an interplay in which LprG scans the periplasmic surface of the inner membrane while being  
373 attached via its lipid anchor until it encounters Rv1410 presenting a TAG molecule, ready to  
374 be captured into the lipid binding cavity of LprG. Whether LprG passes TAG onto further  
375 periplasmic proteins or whether it can be extracted itself from the inner membrane to channel  
376 TAG to the mycomembrane is currently unclear and requires further investigation.

377 **Methods**

378 **Bacterial strains, media and plasmids**

379 In this study, *Escherichia coli* strains DB3.1 and MC1061 were used for cloning and Rv1410,  
380 nanobody, and megobody expression, *M. smegmatis* MC<sup>2</sup> 155 harboring  
381 pACE\_C3GH\_MHAS2168 was used for MHAS2168 protein expression and *M. smegmatis* MC<sup>2</sup>  
382 155 ΔMSMEG3069/70 (dKO) was used for complementation studies. Mycobacteria were  
383 grown at 37°C in liquid Middlebrook 7H9 medium containing 0.05% Tween 80 supplemented  
384 with OADC or on solid Middlebrook 7H10 medium supplemented with OADC containing  
385 4.5 ml/l glycerin. For MHAS2168 expression, 7H9 medium supplemented with 0.05% Tween  
386 80 and 0.2% glycerol was used. *E. coli* was grown in lysogeny broth medium (LB) or Terrific  
387 broth medium (TB) at 37°C or 25°C respectively. Where required, the liquid medium was  
388 supplemented with the following amounts of antibiotics: 100 µg/ml of ampicillin (Amp<sup>100</sup>) and  
389 25 µg/ml of chloramphenicol (Cm<sup>25</sup>) for *E. coli*, 50 µg/ml apramycin (Apr<sup>50</sup>) for *E. coli* and *M.*  
390 *smegmatis*, 50 µg/ml hygromycin B (Hyg<sup>50</sup>) for *E. coli* and *M. smegmatis*. Solid LB medium was  
391 supplemented with 120 µg/ml of ampicillin (Amp<sup>120</sup>), 20 µg/ml of chloramphenicol (Cm<sup>20</sup>), 50  
392 µg/ml apramycin (Apr<sup>50</sup>) or 100 µg/ml hygromycin B (Hyg<sup>100</sup>). 7H10 medium was  
393 supplemented with 50 µg/ml apramycin (Apr<sup>50</sup>) or 50 µg/ml hygromycin B (Hyg<sup>50</sup>).

394 **Construction of plasmids**

395 **Shuffled *lprG-mfs* plasmids**

396 The pFLAG plasmids harboring wild-type *lprG-mfs* operons and its single genes from *M.*  
397 *tuberculosis*, *M. smegmatis*, and *M. abscessus* originated from our previous study<sup>8</sup>. The same FX  
398 cloning strategy<sup>35</sup> was at first used for *M. hassiacum* *lprG-mfs* operon *MHAS2167/68* and its  
399 single genes, using primers from Table S5 and *M. hassiacum* strain DSM 44199 as a template  
400 for colony-PCR with Q5 High-Fidelity DNA polymerase (NEB) to generate a fragment cloned  
401 into initial vector pINIT (Cm<sup>25</sup>). However, since the *MHAS2167* gene contains a SapI cleavage  
402 site with identical overhang (AGT), it was inefficient to use FX cloning to transfer the gene  
403 products to pFLAG vector. Thus, pFLAG plasmids containing *MHAS2167* and *MHAS2167-*  
404 *rv1410c* operon were generated using CPEC<sup>50</sup> (primers in Table S5).

405 Using the pINIT plasmids with wild-type *lprG-mfs* operons as templates, shuffled operons  
406 were assembled (with primers in Table S5) using CPEC protocol<sup>50</sup>. The new operon sequences  
407 were confirmed by Sanger sequencing and then the shuffled operons were transferred to  
408 pFLAG vector, using FX cloning<sup>35</sup>.

409 **Rv1410 and MHAS2168 mutants in pFLAG vector**

410 First, QuikChange site-directed mutagenesis protocol was used to introduce mutations into  
411 Rv1410 in pFLAG\_Rv1410/11 or in MHAS2168 in pFLAG\_MHAS2167/68, using primers  
412 (named mutation\_FOR and mutation\_REV) in Table S6. However, in many cases, it was  
413 difficult to obtain the necessary PCR products, presumably due to the length of the vector  
414 (~6100-6300 bp) and GC content of the operons (64-65%). Therefore, CPEC protocol<sup>50</sup> was used  
415 to assemble the constructs from two fragments. In each case, a larger “backbone” fragment  
416 was amplified using Q5 High-Fidelity DNA polymerase (NEB) with primers pFLAG\_REV2  
417 and mutation\_FOR and a smaller “insert” fragment was amplified with primers  
418 pFLAG\_FOR2 and mutation\_REV (Table S6). Both QuikChange products and CPEC reaction  
419 products were transformed into *E. coli* MC1061, plasmids were extracted using a QIAprep  
420 Spin Miniprep Kit (QIAGEN) and the correct sequences were confirmed by Sanger  
421 sequencing.

422 **Expression plasmids**

423 The *MHAS2168* gene was transferred from pINIT\_MHAS2168 to the pACE\_C3GH<sup>35</sup> and  
424 *rv1410c* gene from pINIT\_rv1410c to the pBXC3GH<sup>51</sup> using FX cloning, resulting in  
425 pACE\_C3GH\_MHAS2168 and pBXC3GH\_rv1410c in which the *mfs* transporters are C-  
426 terminally fused to a 3C protease cleavage site, GFP and a His<sub>10</sub>-tag. The gene encoding  
427 nanobody H2 (Nb\_H2) was transferred from pSb\_init\_Nb\_H2 to pBXNPHM3<sup>52</sup>, resulting in

428 pBXNPHM3\_Nb\_H2 in which the nanobody's N-terminus is fused to the PelB signal peptide,  
429 His<sub>10</sub>-tag, maltose binding protein and a 3C protease cleavage site. To turn nanobody Nb\_H2  
430 into a megabody MB\_H2 and Nb\_F7 into Mb\_F7, the genes encoding Nb\_H2 and Nb\_F7 and  
431 lacking the first thirteen N-terminal residues were transferred to pBXMBQ vector (a kind gift  
432 from Eric Geertsma and Benedikt Kuhn), using FX cloning. The resulting constructs  
433 pBXMBQ\_MB\_H2 and pBXMBQ\_MB\_F7 encode a fusion protein that consists of an N-  
434 terminal DsbA signal peptide, the first thirteen N-terminal residues that form the  $\beta$ -strand A  
435 of a nanobody, a scaffold protein (HopQ adhesin domain)<sup>23</sup> and the rest of the nanobody  
436 residues (containing all three CDRs), fused C-terminally to a 3C protease cleavage site, His<sub>10</sub>-  
437 tag, and Myc-tag.

### 438 **Vancomycin sensitivity assays in complemented *M. smegmatis* dKO cells**

439 High-throughput cellular growth assays to assess the functionality of the transporter and  
440 LprG were conducted in principle as described in our previous publication.<sup>8</sup> In short, each  
441 tested strain was grown into stationary phase and diluted to OD<sub>600</sub>=0.4 in 7H9 medium. 10  $\mu$ l  
442 of these diluted cultures were transferred to wells containing 1 ml 7H9 medium  
443 complemented with vancomycin (concentrations as described in main text and figures) in 4  
444 technical replicates and the cultures were incubated at 37°C, 300 rpm in a 96-well plate. At  
445 indicated time-points, 50  $\mu$ l of culture were removed from the growth plate, transferred to a  
446 microtiter plate and OD<sub>600</sub> was measured in a PowerWave XS Microplate Reader (BioTek). The  
447 growth curves in the figures are representative of at least three biological replicates and error  
448 bars denote the standard deviation of four technical replicates. All biological replicates of  
449 Rv1410 and MHAS2168 mutants' growth curves are shown on Extended Data Fig. 8.

450 The vancomycin concentrations used in different assays were calibrated according to the  
451 experimental aims. 0.08  $\mu$ g/ml vancomycin enables the growth of empty vector control and  
452 single protein (transporter or lipoprotein) complementation strains within the experimental  
453 time frame (~50 h). 0.1  $\mu$ g/ml vancomycin concentration prevents the growth of the empty  
454 vector control and inactivated mutant, but allows separation of partially active mutants, such  
455 as previously characterized LprG V91W<sup>12,13</sup> and Rv1410 Truncation 1(= Long loop)<sup>8</sup>. 0.4  $\mu$ g/ml  
456 vancomycin was used in cases where we aimed at distinguishing Rv1410 mutants that display  
457 such small growth disadvantages compared to the wild type strain that no growth differences  
458 can be observed at milder 0.1  $\mu$ g/ml vancomycin condition.

### 459 **Western blotting**

460 Western blotting for FLAG-tag detection was carried out exactly as described previously.<sup>8</sup>

## 461 **Multiple sequence alignments**

462 CLC Main Workbench was used to produce a multiple sequence alignment of Rv1410  
463 homologues from 17 *Mycobacterium* species belonging to three phylogenetically separate  
464 clades: *M. abscessus*, *M. aurum*, *M. avium*, *M. chelonae*, *M. fortuitum*, *M. haemophilum*, *M.*  
465 *hassiacum*, *M. intracellulare*, *M. kansasii*, *M. leprae*, *M. marinum*, *M. phlei*, *M. saopaulense*, *M.*  
466 *smegmatis*, *M. tuberculosis*, *M. thermoresistibile*, *M. vaccae*. The alignment was visualized using  
467 JalView<sup>53</sup>. To prepare a multiple sequence alignment of different MFS transporters to test  
468 uniqueness of Rv1410/MHAS2168 features, MUSCLE algorithm<sup>54</sup> was used for alignment of  
469 protein sequences acquired from PDB database and JalView was used for visualization of the  
470 multiple sequence alignment. The alignment was validated using a subset of the MFS  
471 transporters and their structure models by superimposition in Chimera.

## 472 **Structure predictions of Rv1410c and its homologues**

473 ColabFold software<sup>29</sup> employing AlphaFold2<sup>55</sup> and MMseqs2<sup>56</sup> was used in batch mode with  
474 default settings to predict the structures of Rv1410 homologues from the following  
475 mycobacterial species: *M. abscessus*, *M. aurum*, *M. avium*, *M. fortuitum*, *M. hassiacum*, *M.*  
476 *marinum*, *M. phlei*, *M. smegmatis*, *M. tuberculosis*, *M. thermoresistibile*. ColabFold was similarly  
477 used to predict the structures of Rv1410 and MHAS2168 helix truncation mutants. Best models  
478 in outward-open conformation were chosen, superimposed on each other, and  
479 hydrophobicity analysis was performed in UCSF Chimera<sup>57</sup> and UCSF ChimeraX<sup>58</sup>.

## 480 **Nanobody selections**

481 For the selection of Rv1410 or MHAS2168 specific nanobodies, an alpaca was immunized with  
482 subcutaneous injections four times in two-week intervals, each time with 200 µg purified  
483 Rv1410 or MHAS2168 in 20 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.03% (w/v) *n*-dodecyl-  
484 β-D-maltopyranoside (β-DDM). Immunizations of alpacas were approved by the Cantonal  
485 Veterinary Office in Zurich, Switzerland (animal experiment licence nr. 172/2014). Blood was  
486 collected two weeks after the last injection for the preparation of the lymphocyte RNA, which  
487 was then used to generate cDNA by RT-PCR to amplify the VHH/nanobody repertoire. Phage  
488 libraries were generated and two rounds of phage display were performed against  
489 transporters solubilized in β-DDM. After the final phage display selection round, 1023-fold  
490 enrichment was determined by qPCR using AcrB as background for MHAS2168 and 652-fold  
491 enrichment for Rv1410. The enriched nanobody libraries were subcloned into pSb\_init<sup>52</sup> by FX  
492 cloning and 95 single clones were analyzed per transporter by ELISA. In case of MHAS2168,  
493 out of 88 positive ELISA hits, 22 were Sanger sequenced and 14 unique nanobodies were

494 chosen for purification and further analysis. In case of Rv1410, out of 44 positive ELISA hits,  
495 24 were Sanger sequenced and 7 unique nanobodies were discovered.

#### 496 **Expression and purification of *M. tuberculosis* Rv1410**

497 Rv1410 was produced in and purified from *E. coli* MC1061 following the same protocol as  
498 described previously.<sup>8</sup>

#### 499 **Expression and purification of *M. hassiacum* MHAS2168**

500 *M. smegmatis* MC<sup>2</sup> 155 preculture harboring pACE\_C3GH\_MHAS2168 was inoculated from  
501 glycerol stocks into 7H9, HygB<sup>50</sup> and grown at 37°C for 4 nights. The preculture was diluted  
502 1:25 (v/v) into fresh expression medium (7H9, 0.2% Glc, HygB<sup>15</sup>) and grown at 37°C until the  
503 culture OD<sub>600</sub> reached 0.8-1.0 before induction of protein expression with 0.016% acetamide  
504 overnight. Cells were harvested for 20 min at 6,000 rpm in a F9-6x1000 LEX centrifuge rotor  
505 (ThermoScientific) at 4°C and resuspended in Resuspension Buffer (20 mM Tris/HCl pH 8.0,  
506 200 mM NaCl) containing 3 mM MgSO<sub>4</sub> and traces of DNaseI. Cells were snap-frozen in liquid  
507 N<sub>2</sub> and stored at -80°C until membrane preparation. Membranes were prepared by  
508 homogenizing the cell suspensions with a pestle in a Dounce homogenizer to remove larger  
509 cell clumps and subsequently disrupting the cells with a Microfluidizer (Microfluidics) at 30  
510 kpsi on ice. Unbroken cells and cell debris were removed by centrifugation for 30 min at 8,000  
511 rpm in a Sorvall SLA-1500 rotor at 4°C. Membranes were collected in a Beckman Coulter  
512 ultracentrifuge using a Beckman Ti45 rotor at 38,000 rpm for 1 h at 4°C and resuspended in  
513 TBS (pH 7.5) containing 10% glycerol. Membranes were snap-frozen in liquid N<sub>2</sub> and stored  
514 at -80°C until protein purification. Then, membranes were solubilized for 2 h using 1% β-DDM  
515 (w/v) and insolubilized material was removed by ultracentrifugation. The supernatant was  
516 loaded on Ni<sup>2+</sup>-NTA columns after addition of 15 mM imidazole, washed with Wash Buffer I  
517 (50 mM imidazole (pH 7.5), 200 mM NaCl, 10% glycerol, 0.03% (w/v) β-DDM) and eluted with  
518 Elution Buffer II (200 mM imidazole (pH 7.5), 200 mM NaCl, 10% glycerol, 0.03% (w/v) β-  
519 DDM). In order to remove the C-terminally attached GFP/His<sub>10</sub>-tag, the buffer of the protein  
520 preparation was first exchanged to SEC Buffer (20 mM Tris/HCl pH 7.4, 150 mM NaCl, 0.03%  
521 (w/v) β-DDM) via a PD-10 desalting column. In a second step, 3C protease cleavage was  
522 performed overnight. Finally, cleaved MHAS2168 was again loaded on a Ni<sup>2+</sup>-NTA column  
523 and washed out with SEC buffer to remove GFP/His<sub>10</sub>-tag and the His-tagged 3C protease.  
524 Then, it was either separated by size exclusion chromatography (SEC) on a Superose 6  
525 Increase 10/300 GL column in SEC Buffer before Mb\_H2 complex formation or added to  
526 nanobody H2 to form a complex.

527 **Expression and purification of Nb\_H2**

528 *E. coli* MC1061 preculture harboring nanobody H2 expression vector pBXNPHM3\_MHAS\_H2  
529 was directly inoculated from glycerol stock into LB, Amp<sup>100</sup> and grown at 37°C overnight. The  
530 preculture was diluted 1:40 (v/v) into fresh expression medium (TB, Amp<sup>100</sup>) and grown for 2  
531 h at 37°C and an additional hour at 25°C before induction of protein expression with 0.02% L-  
532 arabinose overnight. Cells were harvested for 20 min at 6,000 rpm in a F9-6x1000 LEX  
533 centrifuge rotor (ThermoScientific) at 4°C and resuspended in Resuspension Buffer containing  
534 3 mM MgSO<sub>4</sub> and traces of DNaseI. Cells were disrupted with a Microfluidizer (Microfluidics)  
535 at 30 kpsi on ice and unbroken cells and cell debris were removed as described above.  
536 Imidazole, to a final concentration of 20 mM, was added to the supernatant which was loaded  
537 on Ni<sup>2+</sup>-NTA columns. The columns were washed with Wash Buffer II (1x TBS buffer (pH 7.5),  
538 50 mM imidazole) and the bound nanobody was eluted with Elution Buffer II (1x TBS (pH  
539 7.5), 300 mM imidazole). The eluted protein was dialyzed against SEC buffer overnight at 4°C  
540 to remove excess imidazole and simultaneously cleaved with 3C protease to remove the N-  
541 terminally fused maltose binding protein and His-tag. Finally, nanobody H2 was again loaded  
542 on a Ni<sup>2+</sup>-NTA column and washed out with 1x TBS (pH 7.5) containing 40 mM imidazole to  
543 remove MBP and His10-tag and the His-tagged 3C protease. The protein was then snap-frozen  
544 in liquid N<sub>2</sub> and stored at -80°C until it was separated by SEC (Sepax SRT-10C-300) in SEC  
545 buffer.

546 **Expression and purification of MB\_H2 and MB\_F7**

547 *E. coli* MC1061 preculture harboring megabody expression vector pBXMBQ\_MHAS\_H2 or  
548 pBXMBQ\_Rv\_F7 was directly inoculated from glycerol stock into LB, Amp<sup>100</sup> and grown at  
549 37°C overnight. Megabody F7 expression and purification were conducted as described for  
550 nanobody H2 with the exception of the last SEC step when it was separated on a Superdex  
551 200 10/300 GL column. Megabody H2 expression, cell harvest, cell disruption and first  
552 purification steps were carried out as described for nanobody H2. After first elution in Elution  
553 Buffer II, the megabody sample was contaminated with DNA, therefore the sample was  
554 dialyzed against 1x TBS (pH 7.5) overnight, then 3 mM MgSO<sub>4</sub> was added and DNase  
555 treatment was performed for 2 h at 4°C. Again, the sample was loaded on Ni<sup>2+</sup>-NTA columns  
556 which were washed with Wash Buffer II and the bound megabody was eluted with Elution  
557 Buffer II. To remove the C-terminally attached His<sub>10</sub>-tag, the buffer was exchanged to 1x TBS  
558 (pH 7.5) via a PD-10 desalting column and then 3C protease cleavage was performed  
559 overnight. Then, megabody H2 was again loaded on a Ni<sup>2+</sup>-NTA column and washed with 1x  
560 TBS (pH 7.5) containing 30 mM imidazole to remove the His<sub>10</sub>-tag and the His-tagged 3C

561 protease. Finally, it was separated by SEC on a Superose 6 Increase 10/300 GL column in SEC  
562 Buffer.

563 **Crystallization of MHAS2168 & Nb\_H2 complex**

564 Rv1410 did not yield any crystals after extensive vapour diffusion crystallization screening.  
565 Therefore, we purified its homologues from thermophilic mycobacterial species *M.*  
566 *thermoresistibile* and *M. hassiacum* and attempted to crystallize them. MHAS2168, the *M.*  
567 *hassiacum* Rv1410 homologue, produced crystals diffracting up to 7 Å. Subsequently, we  
568 generated 14 nanobodies against MHAS2168 and with three of these nanobodies, we obtained  
569 crystals diffracting up to 4 Å. Finally, systematic crystallization screening of the three  
570 MHAS2168-nanobody complexes in lipidic cubic phase (LCP) produced several crystals of the  
571 MHAS2168-Nb\_H2 complex diffracting up to 2.7 Å, resulting in two native datasets (Table  
572 S1). To obtain the MHAS2168-Nb\_H2 complex in LCP, Nb\_H2 was separated on a Sepax SRT-  
573 10C-300 column and mixed with MHAS2168 in a molar ratio of 1:1.5 (transporter:nanobody).  
574 After incubation on ice (10 min), the complex was separated by SEC on a Superdex 200 10/300  
575 GL column. The monodisperse peak of the complex was collected and concentrated with a 50  
576 kDa cut-off concentrator (Vivaspin 2, Sartorius) and subsequently used for crystallization in  
577 LCP.

578 The concentrated transporter-nanobody complex (35 mg/ml) was mixed with molten 1-  
579 Oleoyl-rac-glycerol (monoolein, Sigma-Aldrich) at a protein:lipid ratio of 2:3 (v/v) using  
580 coupled syringe devices. 37 nl LCP boli were dispensed with a Crystal Gryphon LCP (Art  
581 Robbins Instruments) onto 96-well glass bases with a 120 µm spacer (SWISSCI), overlaid with  
582 800 nl precipitant solution and sealed with a cover glass. The crystals were grown at 20°C and  
583 reached full size by day 12. Two native datasets were obtained from 3 crystals (I, II, III) grown  
584 in different reservoir solutions: I – 360 mM (NH<sub>4</sub>)H<sub>2</sub>PO<sub>4</sub>, 0.1 M sodium citrate (pH 6.3), 31%  
585 (v/v) PEG400; II – 380 mM NaH<sub>2</sub>PO<sub>4</sub>, 0.1 M sodium citrate (pH 5.7), 28% (v/v) PEG400, 2.4%  
586 (v/v) 1,4-butanediol; III – 420 mM NaH<sub>2</sub>PO<sub>4</sub>, 0.1 M sodium citrate (pH 5.8), 28% (v/v) PEG400,  
587 2.4% (v/v) 1,4-butanediol. X-ray diffraction data were collected at the X06SA beamline (Swiss  
588 Light Source, Paul Scherrer Institute, Switzerland) on an EIGER 16M detector (Dectris) with  
589 an exposure setting of 0.05 s and 0.1° of oscillation over 120°. Diffraction data was processed  
590 with the XDS program package<sup>59</sup> and datasets from crystals II and III were merged with xscale  
591 from the XDS program package<sup>59</sup>. Crystal I produced a complete dataset with no need for  
592 merging. The data-processing statistics are summarized in Table S1. Both native datasets  
593 showed diffraction to 2.7 Å.

594 **Cryo-EM analysis of MHAS2168 & Mb\_H2 complex**

595 After separation of both the transporter and megobody alone on a Superose 6 Increase 10/300  
596 GL column in SEC Buffer, monodisperse peaks of both proteins were gathered and mixed in  
597 molar ratio of 1:1.2 and incubated on ice for 10 minutes. After concentration with a 100 kDa  
598 cut-off concentrator (Amicon Ultra-0.5 Centrifugal Filter Unit) to remove empty  $\beta$ -DDM  
599 micelles, the MHAS2168-Mb\_H2 complex was separated again on a Superose 6 Increase  
600 10/300 GL column in SEC Buffer and a monodisperse peak was collected and concentrated for  
601 cryo-EM analysis.

602 4  $\mu$ l of MHAS2168-Mb\_H2 complex (9.4 mg/ml and 6 mg/ml) were applied to glow-  
603 discharged (45 s) holey carbon grids (Quantifoil R1.2/1.3 Au 200 mesh) and a Grid Plunger  
604 GP2 (Leica) was used to remove excess sample by blotting to filter paper (2.5-3.5 s, 90-95%  
605 humidity, 10°C) and to plunge-freeze the grid rapidly in liquid ethane. The grids were stored  
606 in liquid N<sub>2</sub> for data collection. The samples were imaged on a Titan Krios G3i (300 kV, 100  
607 mm objective aperture), using a Gatan BioQuantum Energy Filter with a K3 direct electron  
608 detection camera (6k x 4k pixels) in super-resolution mode. 11,713 micrographs were recorded  
609 with a defocus range of -1 to -2.5  $\mu$ m in an automated mode using EPU 2.7. The dataset was  
610 acquired at a nominal magnification of 130,000x, corresponding to a pixel size of 0.325  $\text{\AA}$  per  
611 pixel in super-resolution mode, with the total accumulated exposure of 66.54 e/ $\text{\AA}^2$   
612 fractionated into 37 frames.

613 The data was processed in cryoSPARC v3.2<sup>60</sup>. First, the micrographs were subjected to patch  
614 motion correction and Fourier cropping, resulting in a pixel size of 0.65  $\text{\AA}$  per pixel. After  
615 subsequent patch CTF estimation, 11,542 good quality micrographs were selected, based on  
616 estimated resolution of CTF fits, relative ice thickness, and total full-frame motion. Template  
617 picking was used to pick particles from the micrographs; the templates were produced from  
618 an earlier lower-resolution map of MHAS2168-Mb\_H2 complex. Particles were extracted with  
619 a box size of 600 pixels and Fourier-cropped to 300 pixels. After 6 rounds of 2D classification,  
620 733,891 particles were subjected to 3-class *ab initio* reconstruction (default parameters) and  
621 546,068 particles from the best two classes, showing megobody binding to the transporter,  
622 were used as input for heterogeneous refinement with the best-resolved and worse-resolved  
623 classes used as references and other parameters set to default. 402,229 particles from the best-  
624 resolved class (FSC resolution 7.19  $\text{\AA}$ ) were directed into non-uniform refinement<sup>61</sup> which  
625 produced a map of the complex resolved to 4.2  $\text{\AA}$ , according to the 0.143 cut-off criterion<sup>62</sup>. To  
626 further improve the resolution, the particle set was extracted again from the micrographs with

627 a 450-pixel box size without Fourier cropping and subjected to non-uniform refinement  
628 (default parameters). This resulted in a 4.0 Å cryo-EM map.

## 629 **Cryo-EM analysis of Rv1410 & Mb\_F7 complex**

630 Rv1410-Mb\_F7 complex was prepared similarly to MHAS2168-Mb\_H2 complex, but the  
631 sample concentration was 4.4 mg/ml and it was applied to holey carbon grids with copper  
632 mesh (Quantifoil R1.2/1.3 Cu 200 mesh).

633 The data was acquired and processed similarly to MHAS2168-Mb\_H2 complex, with the  
634 exception of recording 7,984 micrographs with electron dose of 65.0 e<sup>-</sup>/Å<sup>2</sup> fractionated into 48  
635 frames or 55.0 e<sup>-</sup>/Å<sup>2</sup> into 38 or 41 frames. After template picking of particles from 7,631 good  
636 quality micrographs and 5 rounds of 2D classification, 427,971 particles were subjected to 3-  
637 class *ab initio* reconstruction (default parameters) and 300,246 particles from the best two  
638 classes, showing megobody binding to the transporter, were used as input for heterogeneous  
639 refinement with the best-resolved and worse-resolved classes used as references and other  
640 parameters set to default. 127,196 particles from the best-resolved class (FSC resolution 8.64  
641 Å) were directed into non-uniform refinement<sup>61</sup> which produced a map of the Rv1410-Mb\_F7  
642 complex resolved to 7.51 Å, according to the 0.143 cut-off criterion<sup>62</sup>.

## 643 **Structure determination**

644 SWISS-MODEL<sup>63</sup> was used to generate homology models of MHAS2168 (based on PDB  
645 structure 6GS4) and Nb\_H2 (based on PDB structure 5F7L) which were trimmed into  
646 polyalanine models with the CHAINSAW<sup>64</sup> program from CCP4 suite<sup>65</sup> and fitted into the 4.0  
647 Å cryo-EM map in Coot<sup>66</sup>. ColabFold<sup>29</sup> software, combining MMseqs2 with AlphaFold2<sup>55</sup>, was  
648 used to predict the structure of Rv1410 and several of its mycobacterial homologues. In Coot<sup>66</sup>,  
649 registry was established and side-chains built manually into well-resolved helices 1-12 in the  
650 model fitted into the 4.0 Å cryo-EM map, while comparing the map to ColabFold structure  
651 predictions. The model was subjected to one cycle of real-space refinement in Phenix<sup>67</sup> before  
652 using it as a search model in molecular replacement with Phaser<sup>68</sup> to phase the native 2.7 Å  
653 single-crystal dataset. After iterative cycles of refinement and modelling with phenix.refine<sup>69</sup>  
654 and ISOLDE<sup>70</sup>, a model was produced whose R-factors (R<sub>work</sub>=0.2708 and R<sub>free</sub>=0.3277) could  
655 not be improved with further refinement. The better-resolved chains A (MHAS2168) and B  
656 (Nb\_H2) from this model were used as search model for molecular replacement with Phaser  
657 MR to phase the native 2.7 Å merged dataset. Again, refinement and modelling was  
658 performed with phenix.refine<sup>69</sup> and ISOLDE<sup>70</sup> to reach the final R-factors (R<sub>work</sub>=0.2450 and  
659 R<sub>free</sub>=0.2915) as indicated in Table S1. The structure was validated with Molprobity<sup>71</sup>.

660 **Fitting a TAG molecule into the 4.0 Å cryo-EM map**

661 A TAG molecule, tripalmitoylglycerol (4RF) was fitted to the non-proteinaceous density in  
662 the 4.0 Å cryo-EM map by visual evaluation, using Coot and ISOLDE. First, chains A  
663 (MHAS2168) and B (Nb\_H2) of the crystal structure were fitted into the 4.0 Å cryo-EM map  
664 in Chimera, then the TAG molecule was imported and fitted manually in Coot. Finally,  
665 polishing of the structure was performed in ISOLDE and final refinement in Phenix.

666 **Molecular dynamics simulations**

667 Coarse-grained MD simulations of the MHAS2168 transporter from *Mycobacteria hassiacum* in  
668 outward-open conformation were carried out with GROMACS version 2021.1<sup>72</sup> with the  
669 Martini 2.2 force field<sup>73</sup>. The sizes and compositions of all the simulated systems are listed in  
670 Table S3. From the X-ray crystal structure, missing residues 55-57, 203-208 and 234-236 were  
671 added to the chain A using MODELLER<sup>74</sup>, the best model was selected out of 100 structures.  
672 The model was briefly refined using ISOLDE<sup>70</sup> and further oriented along the z-axis using the  
673 PPM web server<sup>75</sup>. The obtained MHAS2168 atomistic model described above was converted  
674 to the coarse-grained resolution using the martinize.py script. To maintain the structural  
675 integrity of the protein, an elastic network with a cutoff distance of 7 Å for the MHAS2168<sup>OUT</sup>,  
676 9 Å for the MHAS2168<sup>IN</sup>, 9 Å for the MHAS2168<sup>IN-TAG</sup> and 9 Å for the MHAS2168<sup>OUT</sup>-LprG (see  
677 below) was used with force constants of 1000 kJ × mol<sup>-1</sup> × nm<sup>-2</sup>. For the MHAS2168<sup>OUT</sup>-LprG  
678 complex, 134 (out of a total of 3698) intra- and inter-molecular elastic network bonds were  
679 removed to avoid a too rigid protein-protein interface in the MHAS2168-LprG complex. The  
680 Martini Maker tool available in the CHARMM-GUI web server<sup>76</sup> was used to insert the protein  
681 into a symmetric bilayer resembling the mycobacterial plasma membrane composition<sup>3,4,77</sup> (see  
682 Table S3): 35% 1-palmitoyl-2-oleyl-phosphatidylethanolamine (POPE), 30% 1-palmitoyl-2-  
683 oleyl-phosphatidylglycerol (POPG), 15% cardiolipin (CDL), 10% 1-palmitoyl-2-oleyl-  
684 phosphatidylinositol (POPI) and 1% triacylglycerol (TAG)<sup>78</sup>. The MHAS2168<sup>OUT</sup>-LprG complex  
685 was embedded in a bilayer of equal composition but using the insane tool<sup>79</sup>, which was also  
686 used to build the Myco<sup>mem</sup> system (see Table S3). For the MHAS2168<sup>IN-TAG</sup> system, 1 TAG  
687 molecule was initially positioned within the main cavity of the transporter. The TAG molecule  
688 within the MHAS2168<sup>OUT</sup>-LprG complex was modeled with 2 hydrophobic tails pointing  
689 upwards (towards LprG) and, as a control simulation, only 1 tail pointing upwards and 2 tails  
690 downwards (towards MHAS2168). Prior to the MD simulations, to avoid a possible bias, one  
691 POPE and one POPG molecule were removed from the lower leaflet of the MHAS2168<sup>IN</sup>  
692 system because they entered the main transmembrane cavity during the equilibration phase.  
693 All the systems were neutralized with a 150 mM concentration of NaCl and subsequently

694 energy-minimized with steepest descent until machine precision. The minimized systems  
695 were equilibrated in two consecutive steps of 50 ns and 200 ns of MD simulation, first with all  
696 protein beads and second with the protein backbone beads restrained by harmonic potentials  
697 (force constants of  $1000 \text{ kJ} \times \text{mol}^{-1} \times \text{nm}^{-2}$ ). The time step for integrating the equations of motion  
698 in the coarse-grained simulations was 20 fs. The “new-RF” simulation parameters were used,  
699 as suggested by de Jong et al.<sup>80</sup>. Since the *M. hassiacum* is a thermophile<sup>81</sup>, the equilibrations  
700 and production simulations were performed at 330 K with protein, each lipid species and  
701 solvent separately coupled to an external bath using the v-rescale thermostat<sup>82</sup> with coupling  
702 time constant  $\tau_T = 1.0 \text{ ps}$ . Pressure was maintained at 1 bar using the stochastic cell rescaling  
703 (c-rescale) barostat<sup>83</sup> with semi-isotropic conditions (coupling time constant  $\tau_p = 12.0 \text{ ps}$  and  
704 compressibility  $3.0 \times 10^{-4} \text{ bar}^{-1}$ ). For each system, five independent production simulations  
705 (each of length 100 microseconds) were generated using different random seeds for the initial  
706 velocities. For the Myco<sup>mem</sup> system, the production run was 20 microseconds long. For the  
707 control simulations of the MHAS2168<sup>OUT</sup>-LprG complex, after the initial 100 microseconds of  
708 production run, the simulation was further extended by 180 microseconds, and 5 additional  
709 simulations of 50 microseconds were carried out with different random seeds for the initial  
710 velocities. Coordinates were saved to the disk every 400 ps. All analyses were carried out on  
711 the trajectories from the production runs. The GROMACS analysis tool gmx select in  
712 combination with an in-house script was used to calculate the protein-lipid contacts. A contact  
713 between a CG lipid headgroup bead and a protein bead was defined within a distance of 0.6  
714 nm between the two. The tool gmx trajectory was used to extract the z-coordinate of the TAG  
715 center of mass and gmx density was used to calculate the density profile of the membrane  
716 components. The volume of the main transmembrane cavity was calculated using trj\_cavity  
717 (<https://sourceforge.net/projects/trjcavity/>)<sup>84</sup>. For these calculations, we have used index files  
718 consisting of selections of protein residues encompassing the cavity: Residues 32-44, 60-75,  
719 114-129, 153-164, 223-234, 288-303, 318-332, 388-403 and 420-438 were selected for the  
720 MHAS2016<sup>OUT</sup> conformation. Residues 64-81, 122-137, 144-160, 288-300, 325-336, 395-408 and  
721 414-431 were selected for the MHAS2016<sup>IN</sup> conformation. Before the calculations, the five  
722 trajectories were concatenated and the proteins were superimposed over the backbone atoms  
723 of the residues listed above. Molecular graphics were generated with VMD 1.9.4  
724 (<http://www.ks.uiuc.edu/Research/vmd/>)<sup>85</sup>. Data were plotted using Grace (<http://plasma-gate.weiz-mann.ac.il/Grace/>).

## 726 **Modelling the MHAS2168 in inward-open conformation**

727 To build an inward open conformation of MHAS21668, MODELLER<sup>74</sup> was used. Initially, a  
728 web frontend (<http://www.ebi.ac.uk/Tools/msa/clustalo>) to CLUSTAL Omega<sup>86</sup> was used to  
729 align the target protein sequence of MHAS2168 to the proton-dependent oligopeptide  
730 transporter PepTSo2 from *Shewanella oneidensis*<sup>87</sup> (sequence identity is 23%). The obtained  
731 alignment was manually curated to avoid fragmentation mostly in the region of the linker  
732 helices. The PepTSo2 X-ray structure PDB 4LEP (resolution 3.20 Å) was used as template in  
733 combination with an initial mock-model of MHAS2168 in inward-open conformation. To  
734 obtain this mock-model, the N- (residues 1-183) and C-terminal regions (residues 263-495) of  
735 MHAS2168 were independently superposed to the homologous parts of PepTSo2. During the  
736 modeling procedure the linker helices were restrained to assume a canonical  $\alpha$ -helix  
737 conformation, however, their overall position differed from the template 4LEP. Therefore, to  
738 correctly position the target linker-helices, the best structural model out of 100 generated ones  
739 was further used for a second round of MODELLER together with both linker-helices  
740 modeled in the initial step and in turn superposed to the 4LEP linker-helices.

## 741 **Modelling the MHAS2168<sup>OUT</sup>-LprG complex**

742 The LprG protein sequence from *M. hassiacum* was downloaded from Uniprot (id: K5BJY3)  
743 and the platform ColabFold<sup>29</sup> was used to build the MHAS2168<sup>OUT</sup>-LprG heterodimeric  
744 complex. At variance of all the models obtained, the first best model features LprG quite far  
745 away from the extended helices TM11 and TM12, and consequently, the second best model  
746 was selected. Further, the refined atomistic MHAS2168 model described above was  
747 superposed over the TM11 and TM12 of the ColabFold MHAS2168 selected model and the  
748 first 30 N-terminal unstructured residues of LprG were removed.

## 749 **Acknowledgements**

750 Dr. Simona Sorrentino of the Center for Microscopy and Image Analysis, University of Zurich,  
751 is acknowledged for help with cryo-EM grid preparation and cryo-EM data collection. Beat  
752 Blattmann and Caroline Müller of the Protein Crystallization Center, University of Zurich, are  
753 acknowledged for their help with setting up the crystallization screens. We thank Saša  
754 Štefanić for conducting alpaca immunizations and the staff of the SLS beamlines X06SA and  
755 X06DA for their support during data collection. We thank Jennifer C. Earp for help with cryo-  
756 EM grid preparation and Dr. Alisa Garaeva for her advice on cryo-EM data processing. We  
757 are very grateful to Dr. Eric Geertsma and Dr. Benedikt Kuhn for sharing the pBXMBQ vector  
758 with us. All members of the Seeger lab are acknowledged for project discussion. Work in the

759 lab of MAS was supported by a SNSF Professorship of the Swiss National Science Foundation  
760 (PP00P3\_144823), the European Research Council (ERC) (consolidator grant n° 772190) and a  
761 grant of the Novartis Foundation for Medical-Biological Research (to MAS). SR was supported  
762 by a Candoc fellowship of the University of Zurich (grant nr. FK-17-035). Work in the lab of  
763 LVS was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany's  
764 Excellence Strategy – EXC 2033 – 390677874 – RESOLV and through grant SCHA1574/6-1.

765

## 766 **Author contributions**

767 SR and MAS conceived the project. MH and SR cloned all genes into the respective  
768 complementation and expression vectors for *E. coli* and mycobacteria. MH screened Rv1410  
769 in vapour diffusion experiments and initiated MHAS2168 screening. MH and SR purified  
770 protein for alpaca immunization. SR conducted alpaca nanobody selections. SR purified all  
771 proteins and protein complexes thereafter. SR and JS crystallized MHAS2168-Nb\_H2 complex  
772 in LCP. SR, CAJH, IG, JS, and MAS collected crystal diffraction data. SR and CAJH processed  
773 the data and built and refined the model of MHAS2168-Nb\_H2 complex. SR and IG prepared  
774 cryo-EM grids and performed cryo-EM data analysis. SR built and refined the MHAS2168  
775 model into MHAS2168-Mb\_H2 complex cryo-EM map. SR and MAS analyzed the structures  
776 and SR produced the multiple sequence alignments and structure predictions. SR designed  
777 and carried out the mutagenesis of Rv1410 and MHAS2168 and performed Western blotting.  
778 SR conducted vancomycin sensitivity assays. DD and LVS designed and performed the  
779 molecular dynamics simulations. DD generated the MHAS2168 inward-facing homology  
780 model and the MHAS2168-LprG complex. SN instructed SR in LCP methodology and  
781 contributed to crystallization strategy development. SR and DD prepared the figures and the  
782 tables. SR and MAS wrote the first draft of the manuscript. DD and LVS wrote the MD  
783 simulation sections. All authors edited the manuscript.

784

## 785 **References**

- 786 1. World Health Organization. *Global Tuberculosis Report 2021*. Geneva: World Health  
787 Organization (2021).
- 788 2. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of  
789 the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections  
790 reveal the lipid bilayer structure. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 3963–3967 (2008).
- 791 3. Bansal-Mutalik, R. & Nikaido, H. Mycobacterial outer membrane is a lipid bilayer and

792 the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides.  
793 *Proc. Natl. Acad. Sci.* **111**, 4958–4963 (2014).

794 4. Chiaradia, L. *et al.* Dissecting the mycobacterial cell envelope and defining the  
795 composition of the native mycomembrane. *Sci. Rep.* **7**, 12807 (2017).

796 5. Zuber, B. *et al.* Direct visualization of the outer membrane of mycobacteria and  
797 corynebacteria in their native state. *J. Bacteriol.* **190**, 5672–5680 (2008).

798 6. Marrakchi, H., Lanéelle, M. A. & Daffé, M. Mycolic acids: Structures, biosynthesis, and  
799 beyond. *Chem. Biol.* **21**, 67–85 (2014).

800 7. Bigi, F. *et al.* A novel 27 kDa lipoprotein antigen from *Mycobacterium bovis*.  
801 *Microbiology* **143**, 3599–3605 (1997).

802 8. Hohl, M. *et al.* Increased drug permeability of a stiffened mycobacterial outer  
803 membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. *Mol.*  
804 *Microbiol.* **111**, 1263–1282 (2019).

805 9. Silva, P. E. A. *et al.* Characterization of P55, a Multidrug Efflux Pump in *Mycobacterium*  
806 *bovis* and *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* **45**, 800–804  
807 (2001).

808 10. Ramón-García, S., Martín, C., Thompson, C. J. & Aínsa, J. A. Role of the *Mycobacterium*  
809 *tuberculosis* P55 efflux pump in intrinsic drug resistance, oxidative stress responses,  
810 and growth. *Antimicrob. Agents Chemother.* **53**, 3675–3682 (2009).

811 11. Remm, S., Earp, J. C., Dick, T., Dartois, V. & Seeger, M. A. Critical discussion on drug  
812 efflux in *Mycobacterium tuberculosis*. *FEMS Microbiol. Rev.* **46**, fuab050 (2022).

813 12. Martinot, A. J. *et al.* Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate  
814 Triacylglyceride Levels, Growth Rate and Virulence in *Mycobacterium tuberculosis*.  
815 *PLoS Pathog.* **12**, e1005351 (2016).

816 13. Drage, M. G. *et al.* *Mycobacterium tuberculosis* lipoprotein LprG (Rv1411c) binds  
817 triacylated glycolipid agonists of Toll-like receptor 2. *Nat. Struct. Mol. Biol.* **17**, 1088–95  
818 (2010).

819 14. Shukla, S. *et al.* *Mycobacterium tuberculosis* Lipoprotein LprG Binds  
820 Lipoarabinomannan and Determines Its Cell Envelope Localization to Control  
821 Phagolysosomal Fusion. *PLoS Pathog.* **10**, e1004471 (2014).

822 15. Gaur, R. L. *et al.* LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential  
823 for Virulence of *Mycobacterium tuberculosis*. *PLoS Pathog.* **10**, e1004376 (2014).

824 16. Daniel, J. *et al.* Induction of a novel class of diacylglycerol acyltransferases and  
825 triacylglycerol accumulation in *Mycobacterium tuberculosis* as it goes into a dormancy-  
826 like state in culture. *J. Bacteriol.* **186**, 5017–5030 (2004).

827 17. Elamin, A. A., Stehr, M., Spallek, R., Rohde, M. & Singh, M. The *Mycobacterium*  
828 *tuberculosis* Ag85A is a novel diacylglycerol acyltransferase involved in lipid body  
829 formation. *Mol. Microbiol.* **81**, 1577–1592 (2011).

830 18. Mawuenyega, K. G. *et al.* *Mycobacterium tuberculosis* Functional Network Analysis by  
831 Global Subcellular Protein Profiling. *Mol. Biol. Cell* **16**, 396–404 (2005).

832 19. Maurya, R. K., Bharti, S. & Krishnan, M. Y. Triacylglycerols: Fuelling the hibernating  
833 mycobacterium tuberculosis. *Front. Cell. Infect. Microbiol.* **9**, 450 (2019).

834 20. Touchette, M. H. *et al.* Supporting information: A Screen for Protein-Protein  
835 Interactions in Live Mycobacteria Reveals a Functional Link between the Virulence-  
836 Associated Lipid Transporter LprG and the Mycolyltransferase Antigen 85A. *ACS*  
837 *Infect. Dis.* **3**, 336–348 (2017).

838 21. Farrow, M. F. & Rubin, E. J. Function of a mycobacterial major facilitator superfamily  
839 pump requires a membrane-associated lipoprotein. *J. Bacteriol.* **190**, 1783–1791 (2008).

840 22. Bianco, M. V *et al.* Role of P27 -P55 operon from *Mycobacterium tuberculosis* in the  
841 resistance to toxic compounds. *BMC Infect. Dis.* **11**, 195 (2011).

842 23. Uchański, T. *et al.* Megabodies expand the nanobody toolkit for protein structure  
843 determination by single-particle cryo-EM. *Nat. Methods* **18**, 60–68 (2021).

844 24. Kumar, S. *et al.* Structural basis of inhibition of a transporter from *Staphylococcus*  
845 *aureus*, NorC, through a single-domain camelid antibody. *Commun. Biol.* **4**,  
846 10.1038/s42003-021-02357-x (2021).

847 25. Minhas, G. S. *et al.* Structural basis of malodour precursor transport in the human axilla.  
848 *Elife* **7**, 1–26 (2018).

849 26. Ural-Blimke, Y. *et al.* Structure of Prototypic Peptide Transporter DtpA from *E. coli* in  
850 Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. *J.*  
851 *Am. Chem. Soc.* **141**, 2404–2412 (2019).

852 27. Zhao, Y. *et al.* Crystal structure of the *E. coli* peptide transporter YbgH. *Structure* **22**,  
853 1152–1160 (2014).

854 28. Doki, S. *et al.* Structural basis for dynamic mechanism of proton-coupled symport by  
855 the peptide transporter POT. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 11343–11348 (2013).

856 29. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat. Methods* **19**,  
857 679–682 (2022).

858 30. Zhang, B. *et al.* Structure of a proton-dependent lipid transporter involved in  
859 lipoteichoic acids biosynthesis. *Nat. Struct. Mol. Biol.* **27**, 561–569 (2020).

860 31. Lambert, E., Mehdipour, A. R., Schmidt, A., Hummer, G. & Perez, C. Evidence for a  
861 trap-and-flip mechanism in a proton- dependent lipid transporter. *Nat. Commun.* **13**,  
862 10.1038/s41467-022-28361-1 (2022).

863 32. Cater, R. J. *et al.* Structural basis of omega-3 fatty acid transport across the blood–brain  
864 barrier. *Nature* **595**, 315–319 (2021).

865 33. Wood, C. A. P. *et al.* Structure and mechanism of blood–brain-barrier lipid transporter  
866 MFSD2A. *Nature* **596**, 444–448 (2021).

867 34. Martinez-Molledo, M., Nji, E. & Reyes, N. Structural insights into the lysophospholipid  
868 brain uptake mechanism and its inhibition by syncytin-2. *Nat. Struct. Mol. Biol.* **29**, 604–  
869 612 (2022).

870 35. Arnold, F. M. *et al.* A uniform cloning platform for mycobacterial genetics and protein  
871 production. *Sci. Rep.* 1–16 (2018) doi:10.1038/s41598-018-27687-5.

872 36. Jiang, D. *et al.* Structure of the YajR transporter suggests a transport mechanism based  
873 on the conserved motif A. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 14664–14669 (2013).

874 37. Quistgaard, E. M., Löw, C., Guettou, F. & Nordlund, P. Understanding transport by the  
875 major facilitator superfamily (MFS): structures pave the way. *Nat. Rev. Mol. Cell Biol.*  
876 **17**, 123–132 (2016).

877 38. Buch-Pedersen, M. J., Pedersen, B. P., Veierskov, B., Nissen, P. & Palmgren, M. G.  
878 Protons and how they are transported by proton pumps. *Pflugers Arch. Eur. J. Physiol.*  
879 **457**, 573–579 (2009).

880 39. Iancu, C. V., Zamoon, J., Sang, B. W., Aleshin, A. & Choe, J. Y. Crystal structure of a  
881 glucose/H<sup>+</sup> symporter and its mechanism of action. *Proc. Natl. Acad. Sci. U. S. A.* **110**,  
882 17862–17867 (2013).

883 40. Wisedchaisri, G., Park, M. S., Iadanza, M. G., Zheng, H. & Gonen, T. Proton-coupled  
884 sugar transport in the prototypical major facilitator superfamily protein Xyle. *Nat. Commun.* **5**, 10.1038/ncomms5521 (2014).

885 41. Leano, J. B. *et al.* Structures suggest a mechanism for energy coupling by a family of  
886 organic anion transporters. *PLoS Biol.* **17**, 1–25 (2019).

887 42. Paulsen, P. A., Custódio, T. F. & Pedersen, B. P. Crystal structure of the plant symporter  
888 STP10 illuminates sugar uptake mechanism in monosaccharide transporter  
889 superfamily. *Nat. Commun.* **10**, 407 (2019).

890 43. Harms, M. J., Schlessman, J. L., Sue, G. R. & Bertrand García-Moreno, E. Arginine  
891 residues at internal positions in a protein are always charged. *Proc. Natl. Acad. Sci. U. S.*  
892 **A** **108**, 18954–18959 (2011).

893 44. Solcan, N. *et al.* Alternating access mechanism in the POT family of oligopeptide  
894 transporters. *EMBO J.* **31**, 3411–3421 (2012).

895 45. Tang, X. *et al.* Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in  
896 lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. *Nat. Commun.* **10**, 4175 (2019).

897 46. Luo, Q. *et al.* Structural basis for lipopolysaccharide extraction by ABC transporter  
898 LptB2FG. *Nat. Struct. Mol. Biol.* **24**, 469–474 (2017).

899 47. Tang, X. *et al.* Structural basis for bacterial lipoprotein relocation by the transporter  
900 LolCDE. *Nat. Struct. Mol. Biol.* **28**, 347–355 (2021).

901 48. Thomas, C. *et al.* Structural and functional diversity calls for a new classification of ABC  
902 transporters. *FEBS Lett.* **594**, 3767–3775 (2020).

903 49. Kaplan, E., Greene, N. P., Crow, A. & Koronakis, V. Insights into bacterial lipoprotein  
904 trafficking from a structure of LolA bound to the LolC periplasmic domain. *Proc. Natl.*  
905 *Acad. Sci. U. S. A.* **115**, E7389–E7397 (2018).

906 50. Quan, J. & Tian, J. Circular polymerase extension cloning for high-throughput cloning  
907 of complex and combinatorial DNA libraries. *Nat. Protoc.* **6**, 242–251 (2011).

908 51. Geertsma, E. R. & Dutzler, R. A versatile and efficient high-throughput cloning tool for  
909 structural biology. *Biochemistry* **50**, 3272–3278 (2011).

912 52. Zimmermann, I. *et al.* Synthetic single domain antibodies for the conformational  
913 trapping of membrane proteins. *Elife* **7**, 1–32 (2018).

914 53. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview  
915 Version 2-A multiple sequence alignment editor and analysis workbench. *Bioinformatics*  
916 **25**, 1189–1191 (2009).

917 54. Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high  
918 throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

919 55. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*  
920 **596**, 583–589 (2021).

921 56. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for  
922 the analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

923 57. Pettersen, E. F. *et al.* UCSF Chimera - A visualization system for exploratory research  
924 and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

925 58. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,  
926 and developers. *Protein Sci.* **30**, 70–82 (2021).

927 59. Kabsch, W. XDS. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **D66**, 125–132 (2010).

928 60. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for  
929 rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296 (2017).

930 61. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization  
931 improves single-particle cryo-EM reconstruction. *Nat. Methods* **17**, 1214–1221 (2020).

932 62. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation,  
933 absolute hand, and contrast loss in single-particle electron cryomicroscopy. *J. Mol. Biol.*  
934 **333**, 721–745 (2003).

935 63. Waterhouse, A. *et al.* SWISS-MODEL: Homology modelling of protein structures and  
936 complexes. *Nucleic Acids Res.* **46**, W296–W303 (2018).

937 64. Stein, N. CHAINSAW: A program for mutating pdb files used as templates in  
938 molecular replacement. *J. Appl. Crystallogr.* **41**, 641–643 (2008).

939 65. Winn, M. D. *et al.* Overview of the CCP4 suite and current developments. *Acta  
940 Crystallogr. Sect. D Biol. Crystallogr.* **67**, 235–242 (2011).

941 66. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.  
942 *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**, 486–501 (2010).

943 67. Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and crystallography.  
944 *Acta Crystallogr. Sect. D Struct. Biol.* **74**, 531–544 (2018).

945 68. McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674  
946 (2007).

947 69. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with  
948 phenix.refine. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **68**, 352–367 (2012).

949 70. Croll, T. I. ISOLDE: A physically realistic environment for model building into low-  
950 resolution electron-density maps. *Acta Crystallogr. Sect. D Struct. Biol.* **74**, 519–530

951 (2018).

952 71. Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-atom  
953 structure validation. *Protein Sci.* **27**, 293–315 (2018).

954 72. Abraham, M. J. *et al.* Gromacs: High performance molecular simulations through multi-  
955 level parallelism from laptops to supercomputers. *SoftwareX* **1–2**, 19–25 (2015).

956 73. De Jong, D. H. *et al.* Improved parameters for the martini coarse-grained protein force  
957 field. *J. Chem. Theory Comput.* **9**, 687–697 (2013).

958 74. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. *Curr.*  
959 *Protoc. Protein Sci.* **2016**, 2.9.1-2.9.37 (2016).

960 75. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database  
961 and PPM web server: Resources for positioning of proteins in membranes. *Nucleic Acids*  
962 *Res.* **40**, 370–376 (2012).

963 76. Hsu, P. C. *et al.* Charmm-gui martini maker for modeling and simulation of complex  
964 bacterial membranes with lipopolysaccharides. *J. Comput. Chem.* **38**, 2354–2363 (2017).

965 77. Hayashi, J. M. *et al.* Spatially distinct and metabolically active membrane domain in  
966 mycobacteria. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 5400–5405 (2016).

967 78. Vuorela, T. *et al.* Role of Lipids in Spheroidal High Density Lipoproteins. *PLoS Comput.*  
968 *Biol.* **6**, (2010).

969 79. Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tielemans, D. P. & Marrink, S. J.  
970 Computational lipidomics with insane: A versatile tool for generating custom  
971 membranes for molecular simulations. *J. Chem. Theory Comput.* **11**, 2144–2155 (2015).

972 80. De Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: Boosting  
973 performance using a shorter cutoff and GPUs. *Comput. Phys. Commun.* **199**, 1–7 (2016).

974 81. Alarico, S. *et al.* A genuine mycobacterial thermophile: *Mycobacterium hassiacum*  
975 growth, survival and GpgS stability at near-pasteurization temperatures. *Microbiology*  
976 **166**, 474–483 (2020).

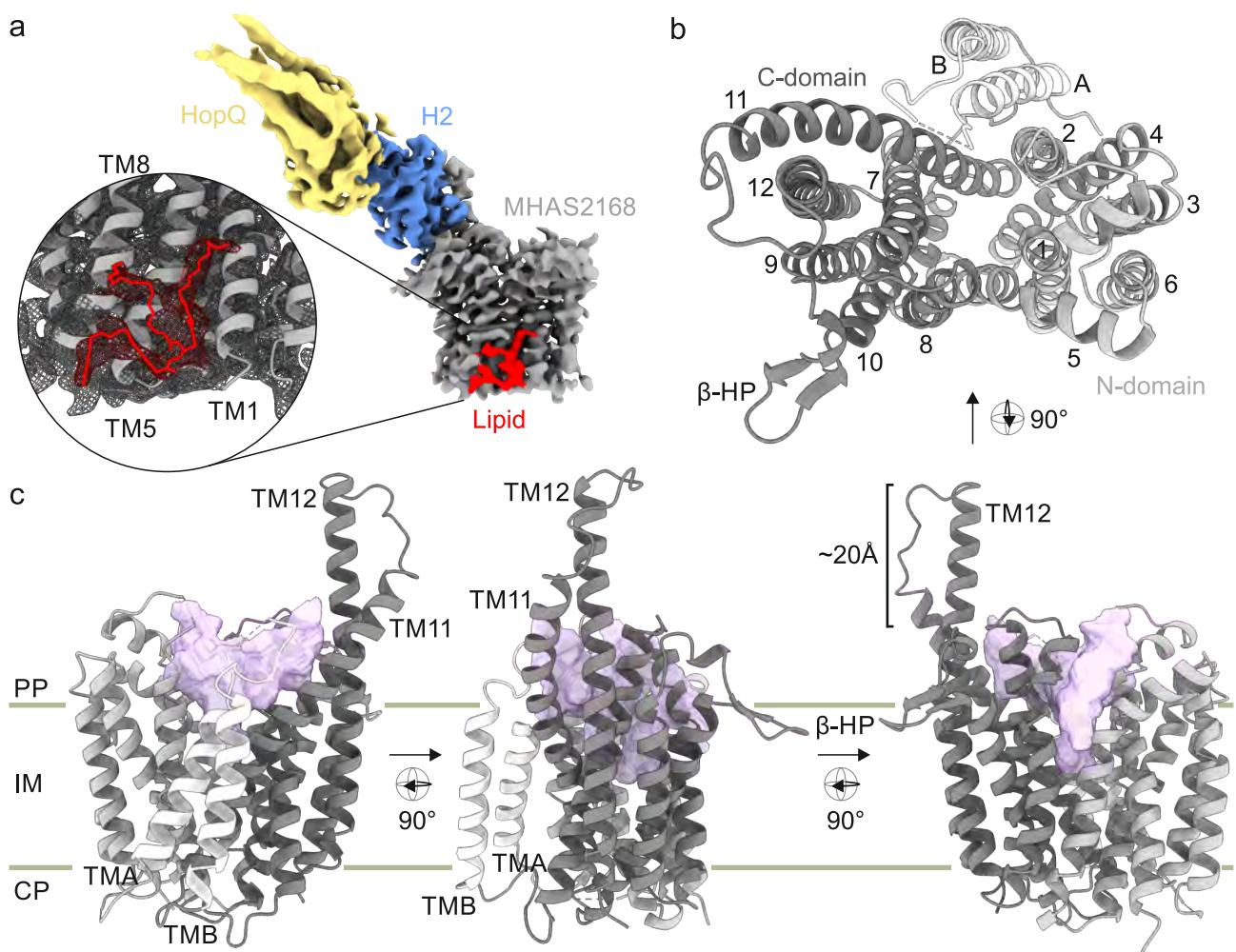
977 82. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling.  
978 *J. Chem. Phys.* **126**, (2007).

979 83. Bernetti, M. & Bussi, G. Pressure control using stochastic cell rescaling. *J. Chem. Phys.*  
980 **153**, (2020).

981 84. Paramo, T., East, A., Garzón, D., Ulmschneider, M. B. & Bond, P. J. Efficient  
982 characterization of protein cavities within molecular simulation trajectories: Trj-cavity.  
983 *J. Chem. Theory Comput.* **10**, 2151–2164 (2014).

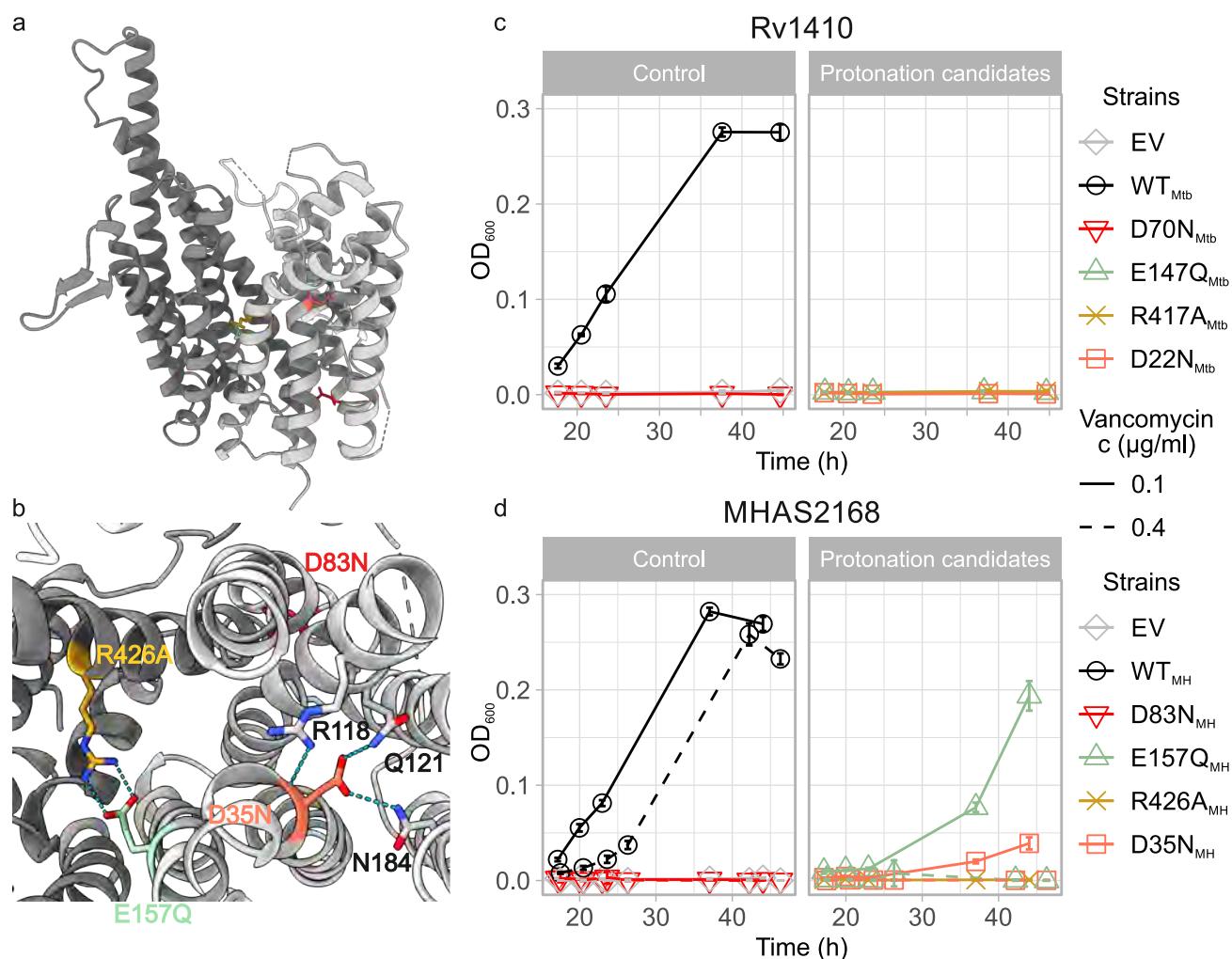
984 85. Humphrey, W., Dalke, A. & Schulter, K. VMD: Visual Molecular Dynamics. *J. Mol.*  
985 *Graph.* **14**, 33–38 (1996).

986 86. Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many  
987 protein sequences. *Protein Sci.* **27**, 135–145 (2018).


988 87. Guettou, F. *et al.* Structural insights into substrate recognition in proton-dependent  
989 oligopeptide transporters. *EMBO Rep.* **14**, 804–810 (2013).

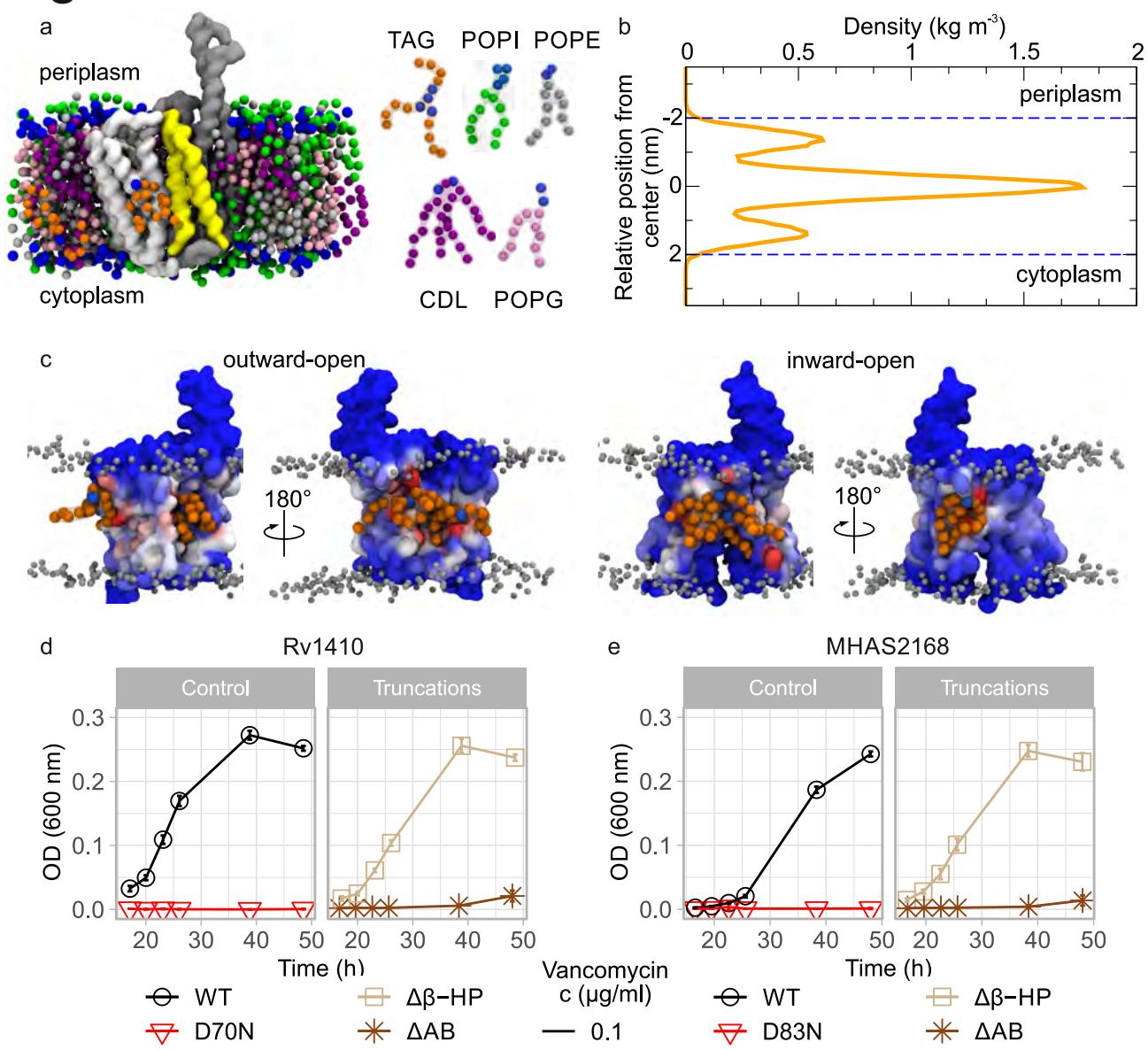
990

991


992

# Figure 1




**Figure 1. Architecture of MHAS2168.** (a) 4 Å cryo-EM map of MHAS2168-Mb\_H2 complex. MHAS2168 (gray), nanobody H2 (blue), megabody HopQ domain (yellow), non-proteinaceous density that likely corresponds to a triacylated lipid (red). Inset: The TAG species tripalmitoylglycerol fitted into the non-proteinaceous density. (b) Periplasmic top view of MHAS2168 2.7 Å crystal structure (nanobody not depicted). N-domain, transmembrane helices 1-6 - light gray. Linker helices A and B - white. C-domain, transmembrane helices 7-12 - dark gray. (c) Side views of MHAS2168 2.7 Å crystal structure. Color scheme same as in (b). Central cavity volume - light purple. β-HP – β-hairpin; IM – inner membrane; PP – periplasm; CP – cytoplasm; TM – transmembrane helix.

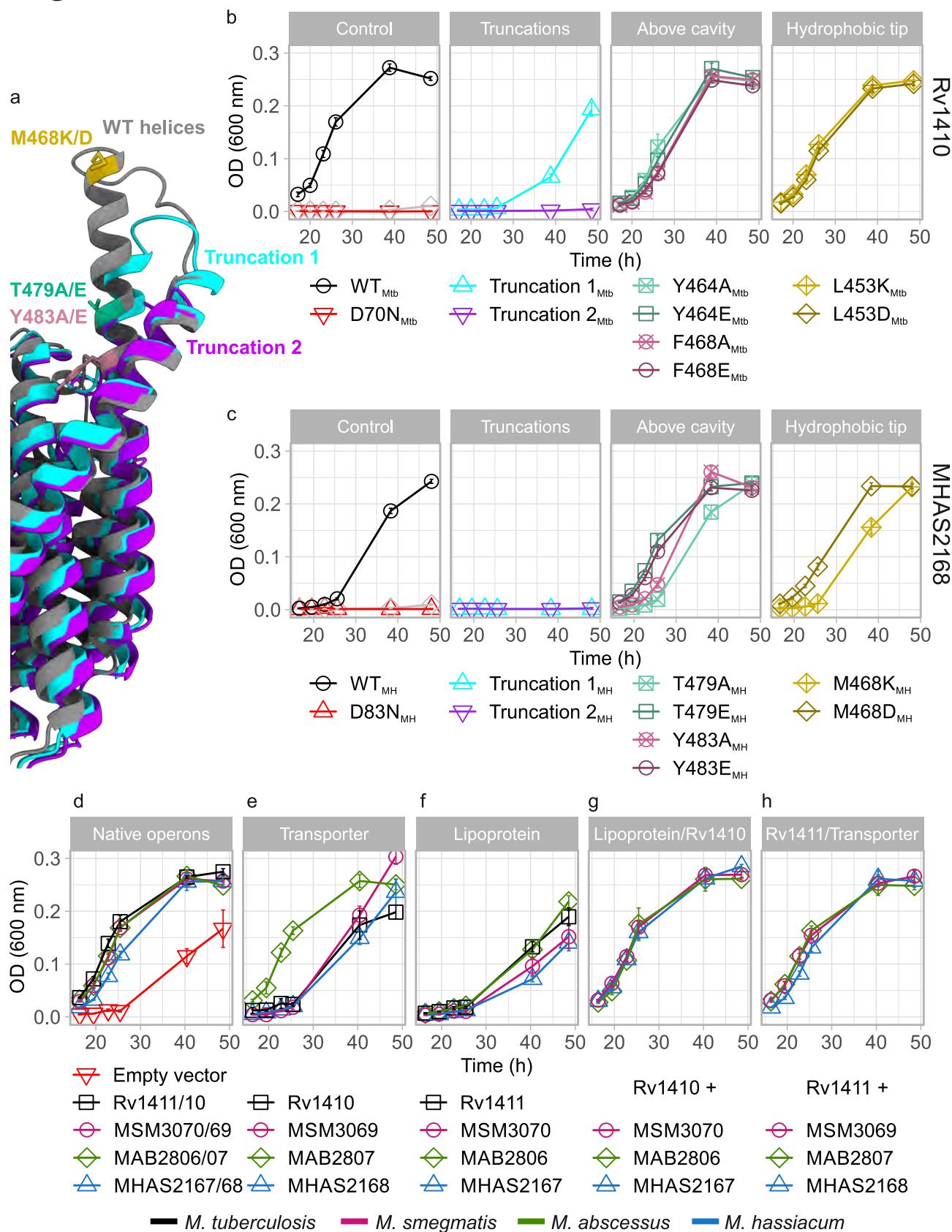
## Figure 2




**Figure 2. Two candidate loci for proton translocation.** (a) Side view of MHAS2168. MHAS2168 color scheme same as in Fig 1b. Point mutation sites are shown as colored sticks. (b) Enlarged periplasmic top view of MHAS2168 with mutated residues shown as colored sticks and interacting residues mentioned in the text as grey sticks, both with heteroatom depiction. Hydrogen bonds are shown as light blue dashed lines. (c) Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with empty vector control (EV), wild type LprG/Rv1410 operon (WT<sub>Mtb</sub>), or mutant operons containing unaltered LprG (Rv1411) and mutated transporter Rv1410 as indicated. (d) Analogous analysis as in (c), with *M. smegmatis* dKO cells expressing instead wild type MHAS2167/68 operon (WT<sub>MH</sub>) or mutant operons containing unaltered LprG (MHAS2167) and mutated transporter MHAS2168 as indicated. The growth curves in (c) and (d) are representative of three biological replicates and error bars correspond to the standard deviation of four technical replicates.

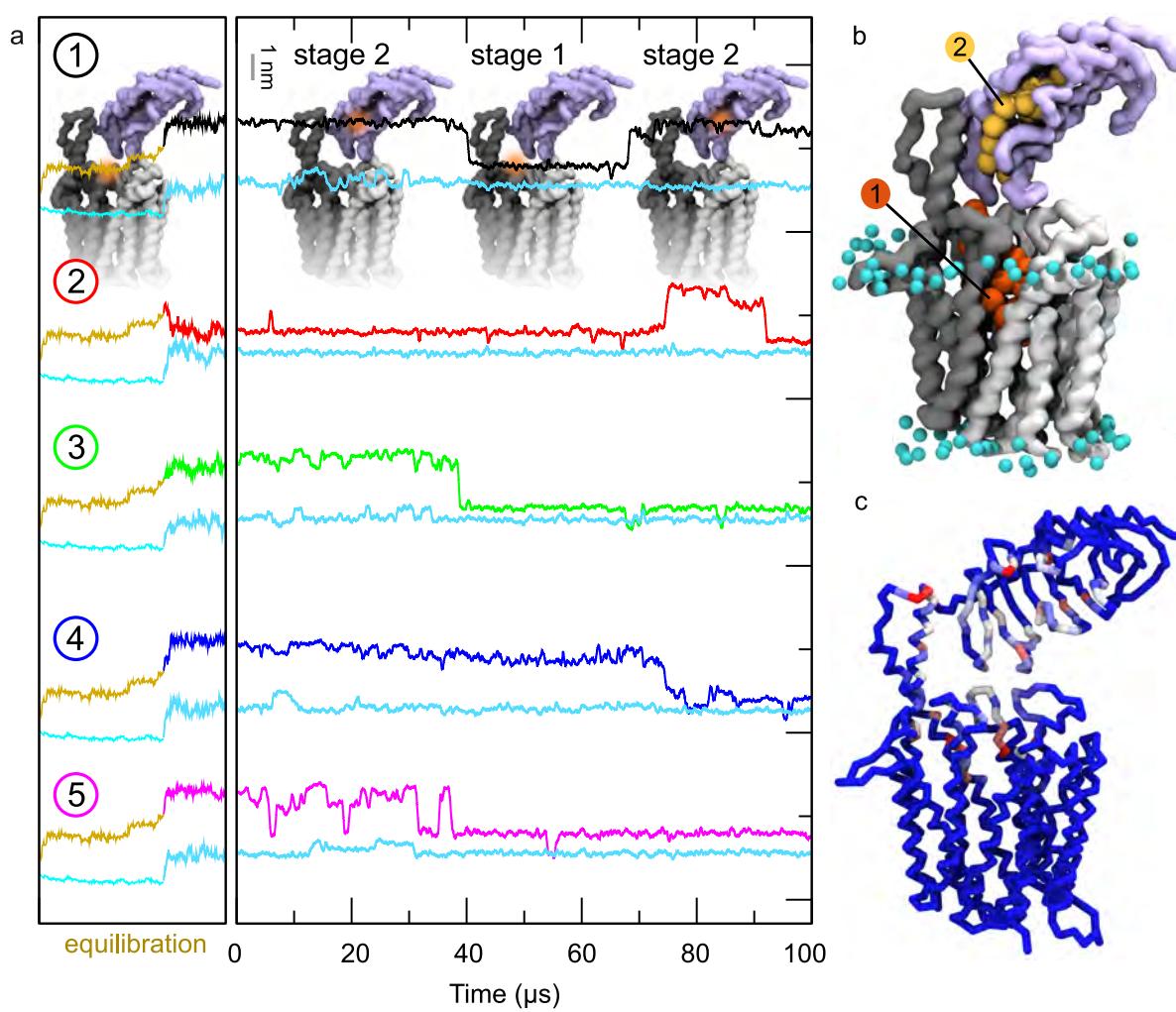
# Figure 3




**Figure 3. Molecular dynamics simulations-guided mutational analysis of MHAS2168.** (a) Shown is the coarse-grained molecular dynamics simulation system of MHAS2168 in the outward-facing conformation. The mycobacterial plasma membrane lipid components are shown on the right, with headgroups colored blue. Solvent is not shown for clarity. (b) Density profile of TAGs along the membrane normal, centered with respect to the membrane midplane. The blue dotted lines are the average position of the phosphate headgroups. (c) Shown are the average number of TAG contacts from the MHAS2168<sup>000</sup> (left) and MHAS2168<sup>111</sup> (right) simulations, respectively, projected on the surface of the protein and colored from blue (no contacts) to red (large number of contacts). (d) Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with wild type LprG/Rv1410 operon (WT<sub>Mtb</sub>), or mutant operons containing unaltered LprG (Rv1411) and mutated transporter Rv1410 as indicated. (e) Analogous analysis as in (d), with *M. smegmatis* dKO cells expressing instead wild type MHAS2167/68 operon (WT<sub>MH</sub>) or mutant operons containing unaltered LprG (MHAS2167) and mutated transporter MHAS2168 as indicated.  $\Delta\beta\text{-HP}$  –  $\beta$ -hairpin truncation;  $\Delta\text{AB}$  - truncation of linker helices A and B. The growth curves in (d) and (e) are representative of three biological replicates and error bars correspond to the standard deviation of four technical replicates.

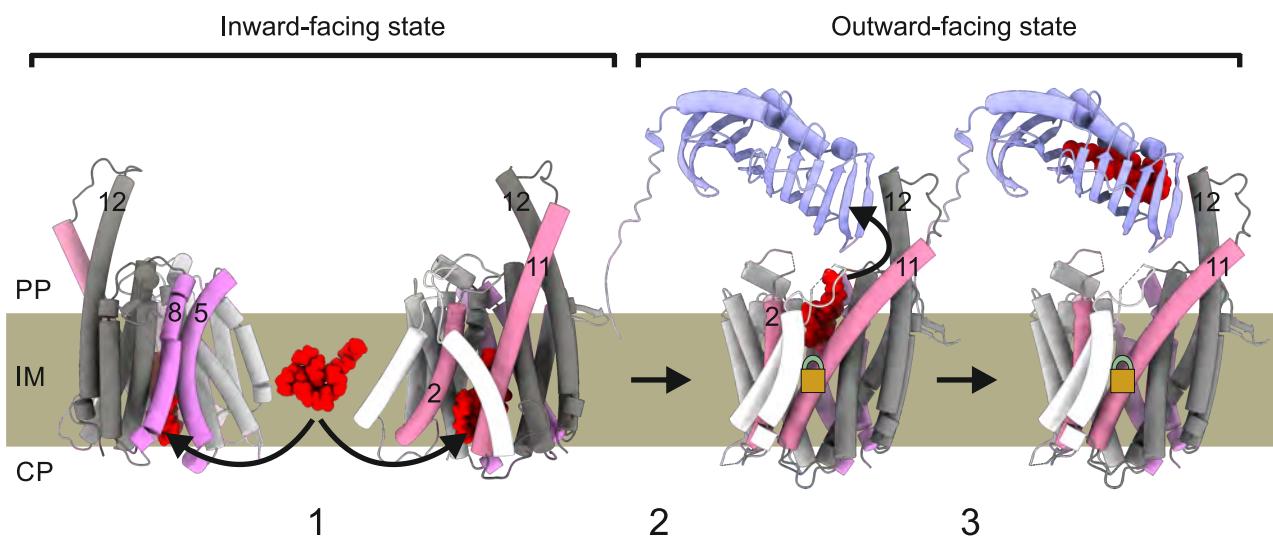
# Figure 4




**Figure 4. Potential TAG entry sites to the central cavity and cavity analysis.** (a) Side view of lateral clefts between TM5-TM8 (left) and TM2-TM11 (right) in outward-facing conformation of MHAS2168 crystal structure. MHAS2168 color scheme same as in Fig 1b. Point mutation sites are shown as colored sticks. Linker helices A and B are depicted partially transparent. (b) Side view of lateral clefts between TM5-TM8 (left) and TM2-TM11 (right) in inward-facing conformation of MHAS2168 homology model. MHAS2168 and point mutation sites' color scheme same as in panel (a). (c) Enlarged periplasmic top view of the central cavity and lateral clefts in outward-facing conformation of MHAS2168 crystal structure. MHAS2168 and point mutation sites' color scheme same as in panel (a). (d) Hydrophobicity surface of the C-domain central cavity wall of MHAS2168 outward-facing crystal structure with mutated residues shown as colored sticks. Hydrophobicity color scheme: hydrophobic – gold; hydrophilic – cyan. (e) Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with wild type LprG/Rv1410 operon (WT<sub>Mtb</sub>), or mutant operons containing unaltered LprG (Rv1411) and mutated transporter Rv1410 as indicated. (f) Analogous analysis as in (e), with *M. smegmatis* dKO cells expressing instead wild type MHAS2167/68 operon (WT<sub>MH</sub>) or mutant operons containing unaltered LprG (MHAS2167) and mutated transporter MHAS2168 as indicated. The growth curves in (e) and (f) are representative of three biological replicates and error bars correspond to the standard deviation of four technical replicates.

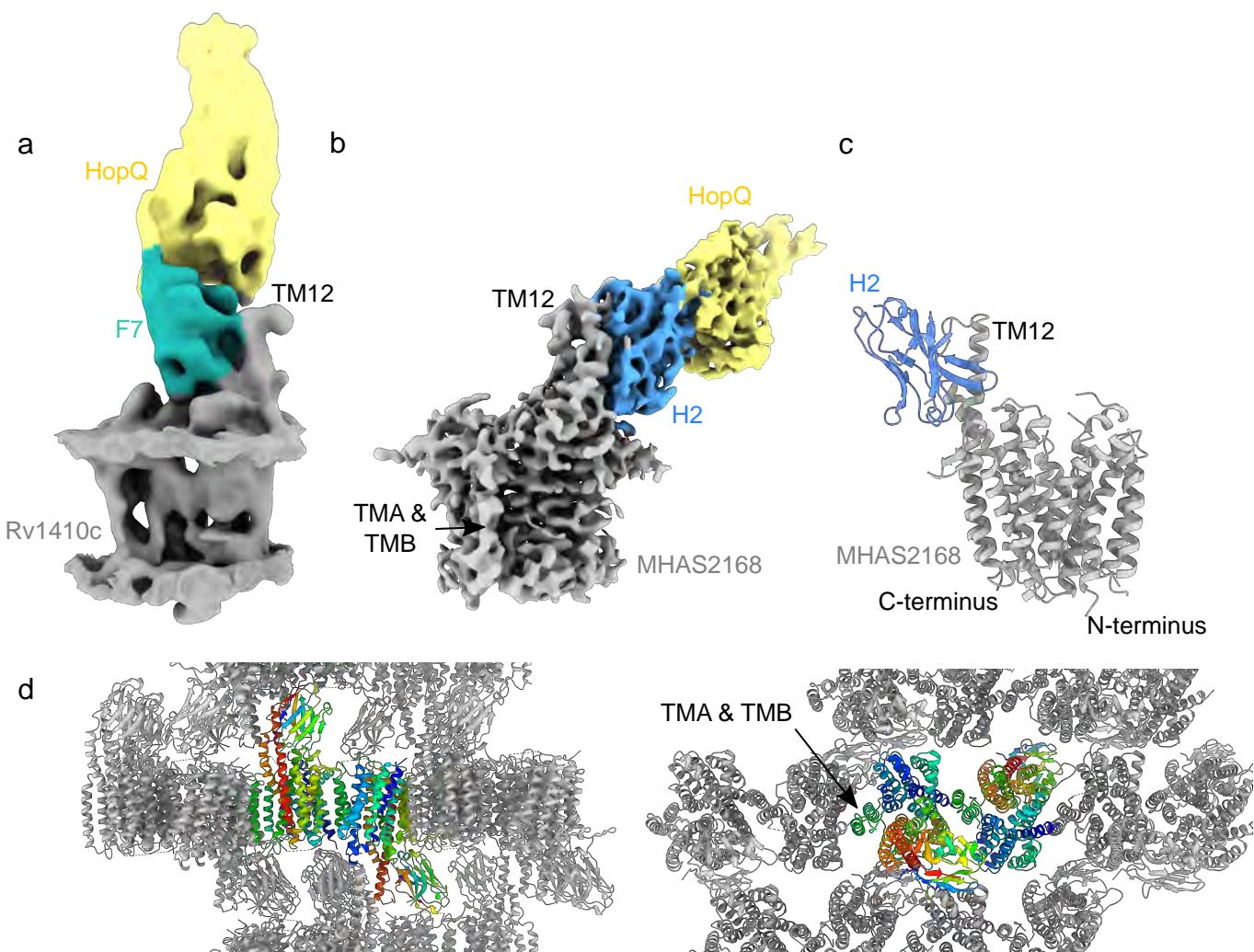
# Figure 5




**Figure 5. TM11 and TM12 periplasmic extensions and transporter-lipoprotein interactions.** (a) Side view of MHAS2168<sup>OUT</sup> crystal structure and predicted structures of truncation mutants 1 (purple) and 2 (light blue) of TM11-TM12 periplasmic extensions. MHAS2168 color scheme same as in Fig 1b. Point mutation sites are shown as colored sticks. (b) Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with wild type LprG/Rv1410 operon (WT<sub>Mtb</sub>), or mutant operons containing unaltered LprG (Rv1411) and mutated transporter Rv1410 as indicated. (c) Analogous analysis as in (b), with *M. smegmatis* dKO cells expressing instead wild type MHAS2167/68 operon (WT<sub>MH</sub>) or mutant operons containing unaltered LprG (MHAS2167) and mutated transporter MHAS2168 as indicated. (d) – (h) Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with different combinations of the transporter and/or lipoprotein from four mycobacterial species (*M. tuberculosis*; *M. smegmatis*; *M. abscessus*; *M. huiaciucum*). (d) Complementation with native operons or empty vector. (e) Complementation with only the transporter. (f) Complementation with only the lipoprotein. (g) Complementation with a shuffled operon in which the transporter from *M. tuberculosis* (Rv1410) is accompanied by lipoprotein from the other three mycobacterial species. (h) Complementation with a shuffled operon in which the lipoprotein from *M. tuberculosis* (Rv1411) is accompanied by transporter from the other three mycobacterial species. Vancomycin sensitivity assays were carried out at 0.1  $\mu$ g/ml concentration on panels (b) and (c) or at 0.08  $\mu$ g/ml concentration on panels (d) – (h). The growth curves in (b) - (h) are representative of three biological replicates and error bars denote the standard deviation of four technical replicates.

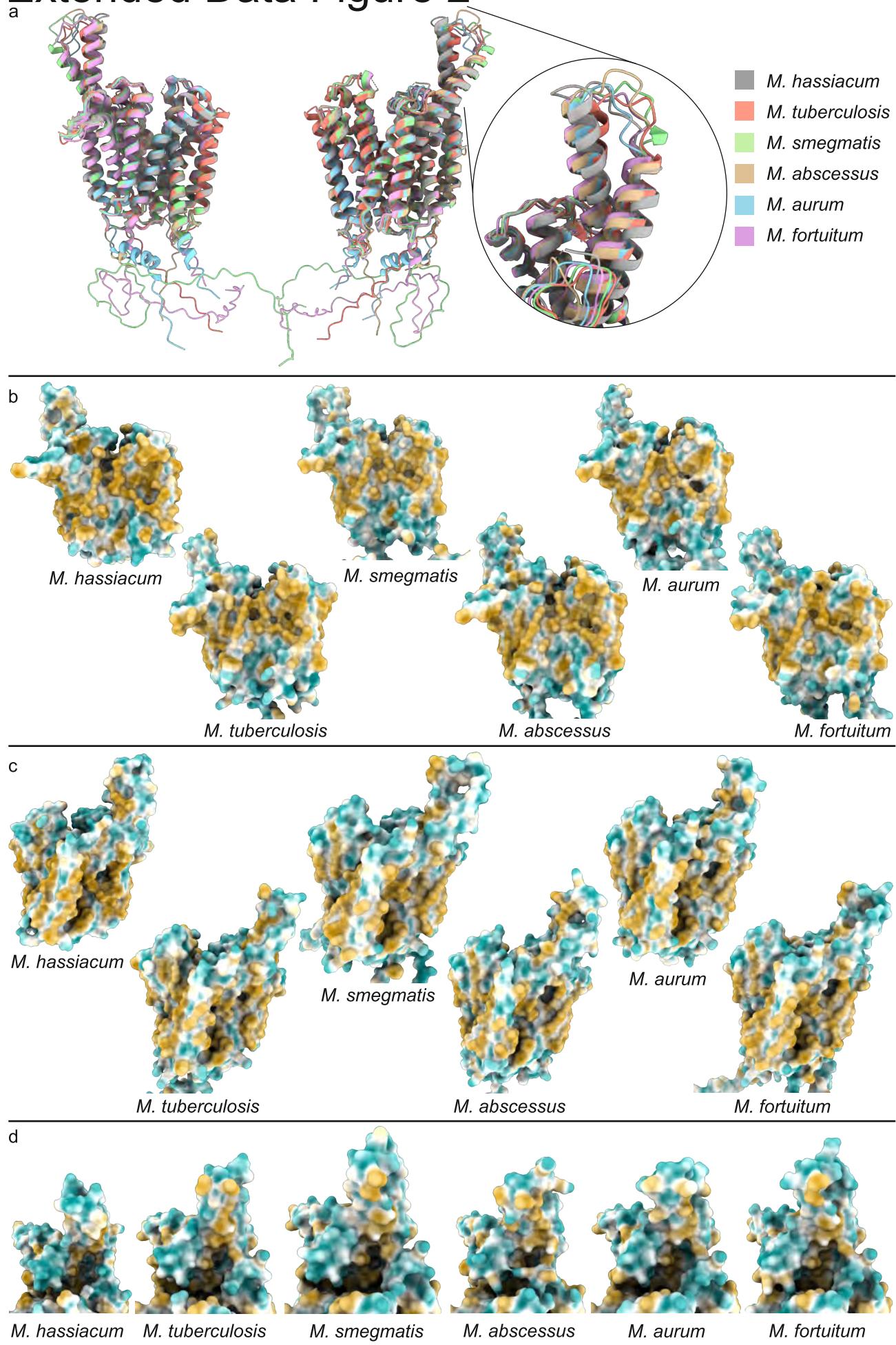
# Figure 6




**Figure 6. TA G loading into LprG in the MD simulations of the MHAS2168<sup>OUT</sup>-LprG complex.**  
(a) For each of the five simulations (numbered 1-5), the upper line depicts the z-coordinate of the center of mass of the TAG molecule. The cyan lines below correspond to the z-coordinate of the average center of mass of the phosphate groups of the upper membrane leaflet. The gold line is the equilibration phase (see methods). The models of the MHAS2168<sup>OUT</sup>-LprG complex shown in the top panel indicate the position of the TAG (orange shade). (b) Visualization of TAG loading from the transporter's main cavity (stage 1) along the TM11-TM12 extension into the LprG hydrophobic cavity (stage 2). Note that the overlay of structures shown displays the position of one single TAG molecule at two different points in time during the MD simulation. (c) TAG contacts with MHAS2168<sup>OUT</sup>-LprG, coloured from blue (no contacts) to red (large number of contacts).

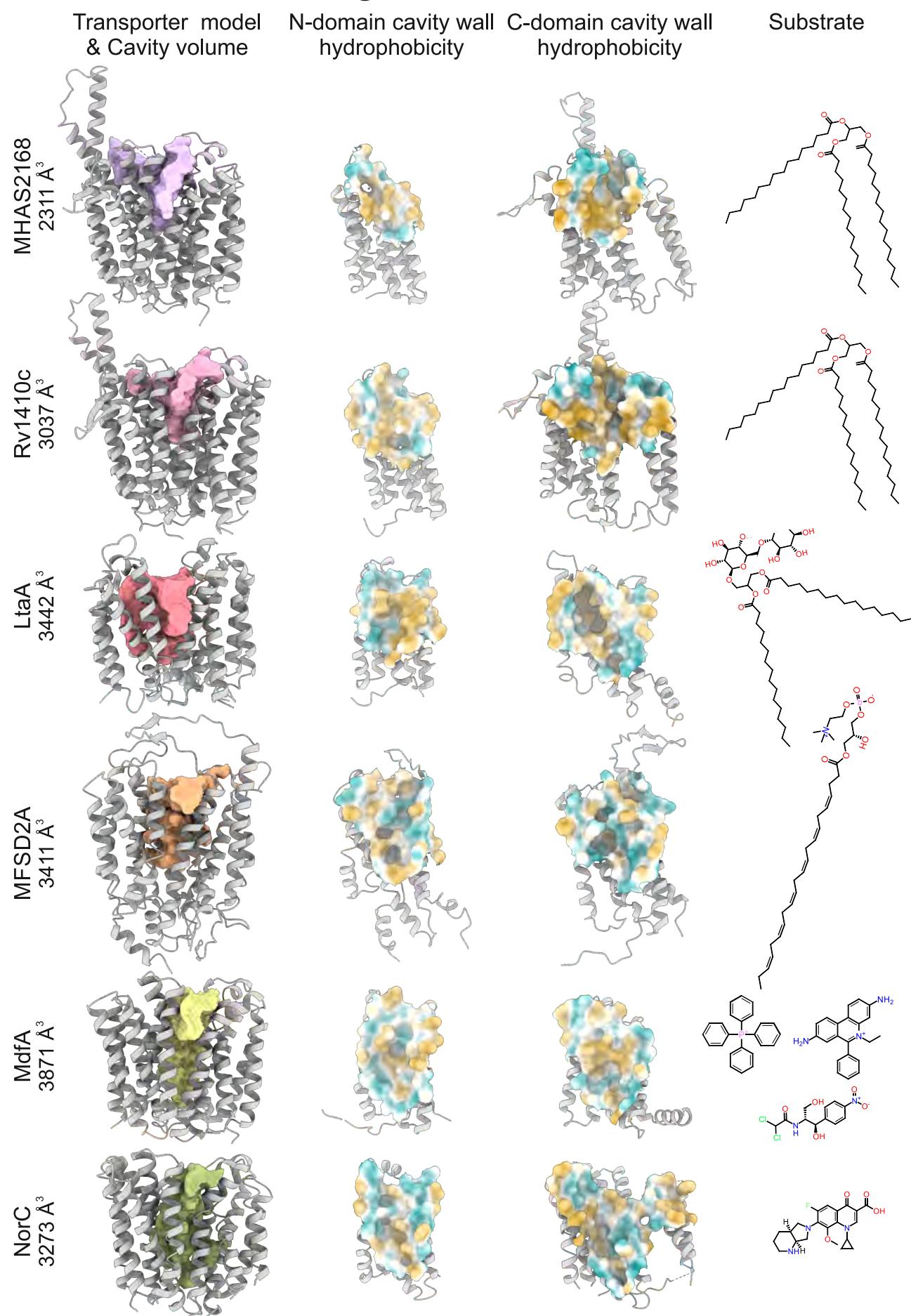
## Figure 7




**Figure 7. Mechanism of TAG transport by Rv1410 and LprG.** Rv1410/MHAS2168 color scheme the same as in Fig 1b, but transmembrane helices 5 and 8 are colored purple and transmembrane helices 2 and 11 are colored pink. LprG crystal structure (PDB ID: 4ZRA) is colored pale lilac. (1) TAG molecule (red) enters the transporter's central cavity through lateral openings between TM5-TM8 and TM2-TM11 in the inward-facing conformation. (2) The transporter switches from inward-facing to outward-facing state while the TAG molecule is occluded within the central cavity. The E147-R417 ion lock (symbolized by golden lock) at the bottom of the central cavity is formed and lifts TAG toward the periplasmic leaflet. (3) TM11 and TM12 periplasmic extensions shield the TAG molecule from hydrophilic periplasm while the TAG molecule relocates from the transporter's cavity to the hydrophobic pocket of LprG.

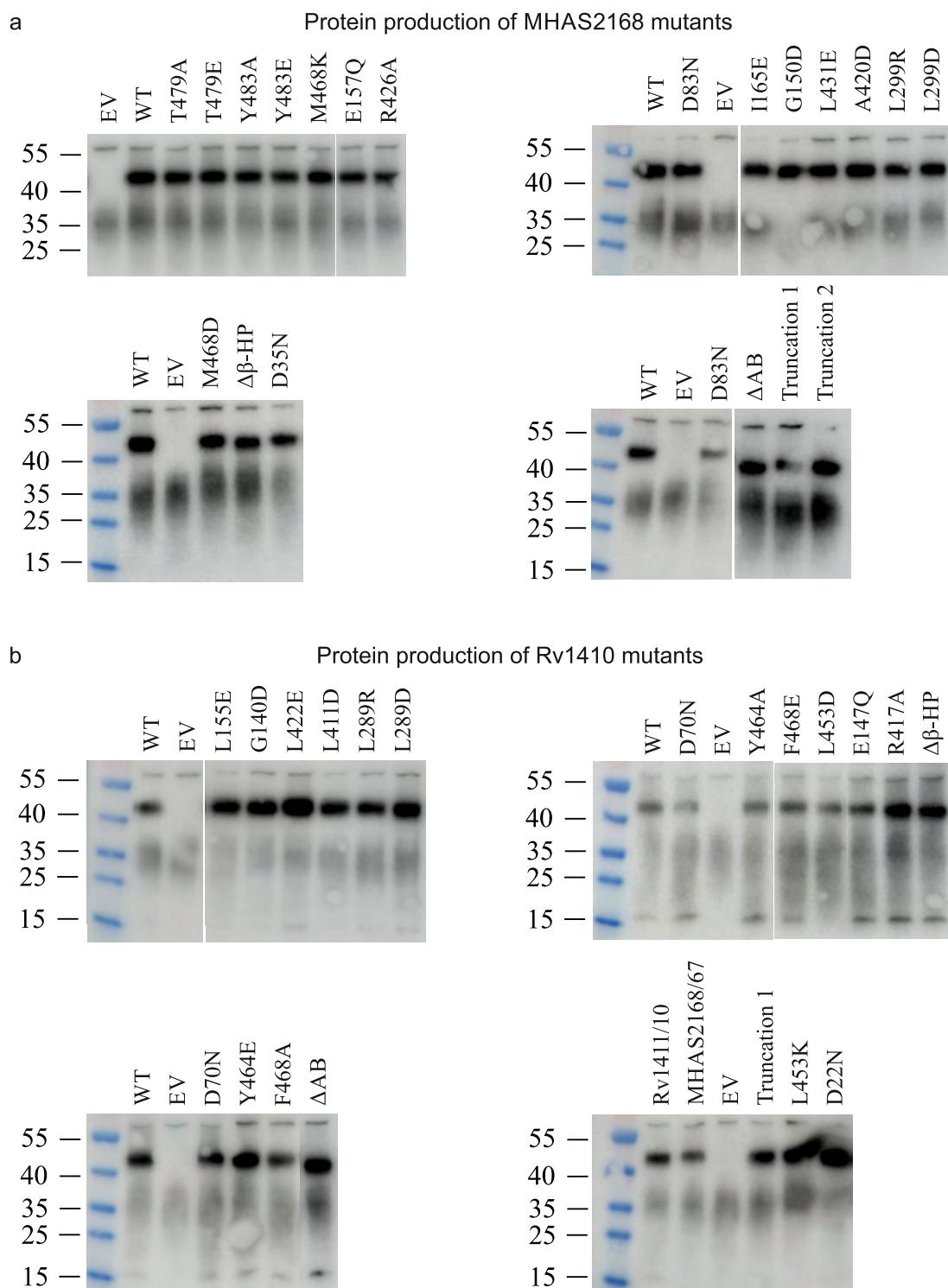
# Extended Data Figure 1




**Extended Data Figure 1. Determination of Rv1410 and MHAS2168 structures.** (a) 7.5 Å cryo-EM map of Rv1410-Mb\_F7 complex. Rv1410 – gray; Nanobody F7 – sea green; Megabody HopQ domain – yellow. (b) 4.0 Å cryo-EM map of MHAS2168-Mb\_H2 complex. MHAS2168 – gray; Nanobody H2 – blue; Megabody HopQ domain – yellow. TMA & TMB – linker helices A and B. (c) 2.7 Å crystal structure of MHAS2168-Nb\_H2 complex. MHAS2168 – gray; Nanobody H2 – blue. (d) Crystal packing of MHAS2168-Nb\_H2 complex lipidic cubic phase (LCP) crystals. The asymmetric unit comprises two transporter/nanobody complexes (rainbow color scheme).

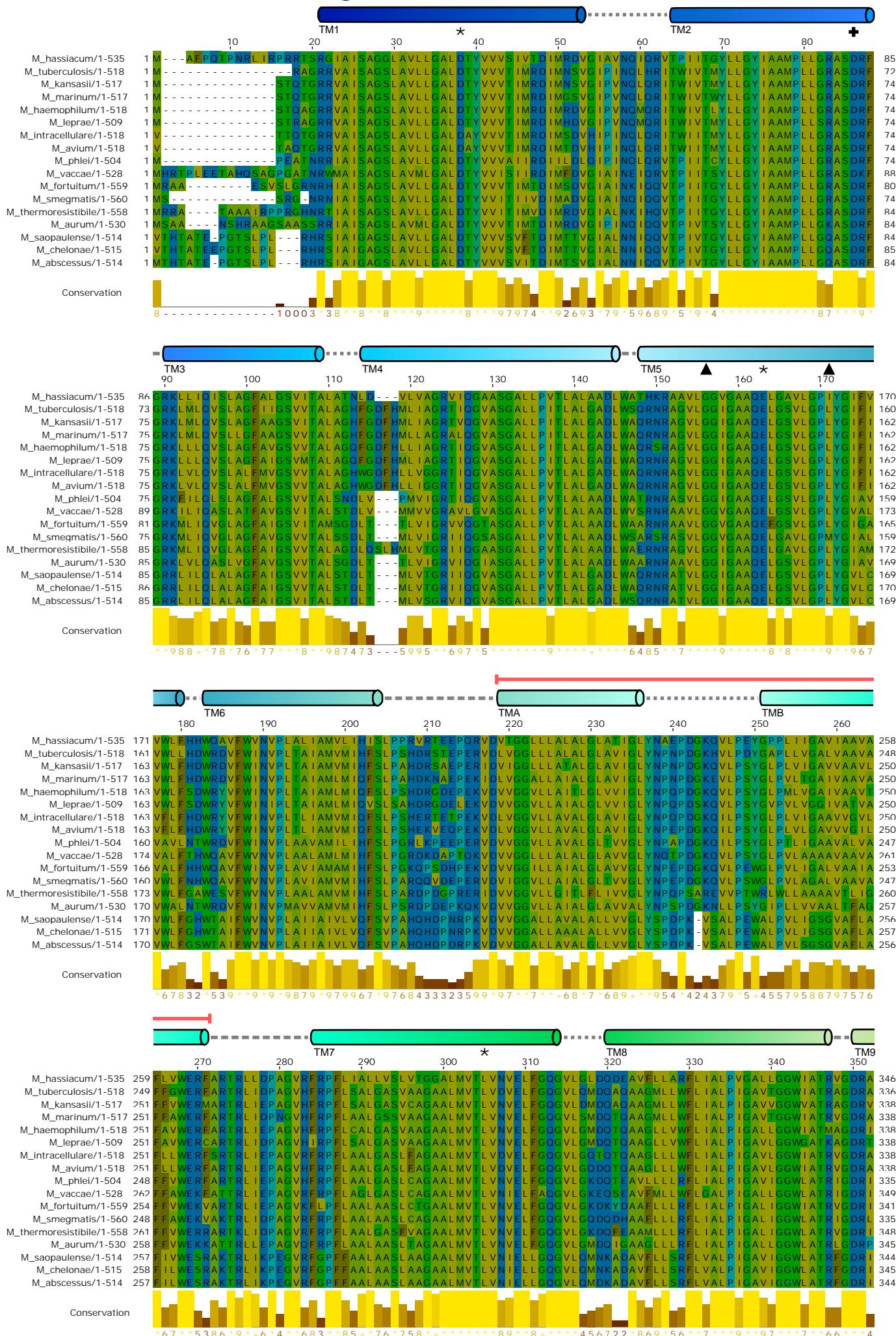
## Extended Data Figure 2

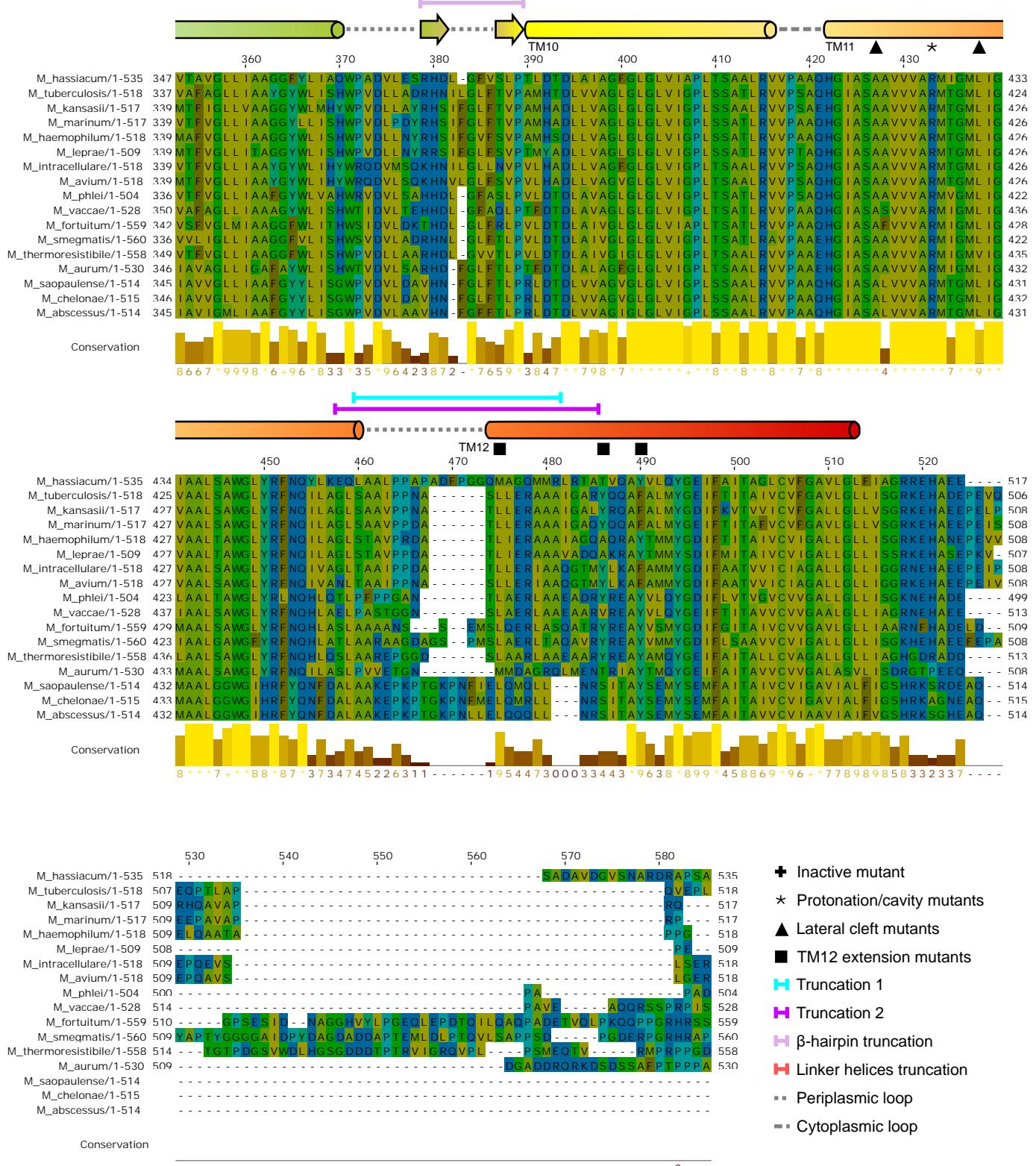



**Extended Data Figure 2. Comparison of MHAS2168 crystal structure and its mycobacterial homologues' structure predictions.** A subset of ColabFold structure predictions in outward-facing conformation that were used to analyze the common features of mycobacterial Rv1410/MHAS2168 homologues are shown together with the MHAS2168 crystal structure. (a) Structure predictions of homologues from *M. tuberculosis* (pale red), *M. smegmatis* (green), *M. abscessus* (beige), *M. aurum* (light blue), and *M. fortuitum* (pale purple) are superimposed on the crystal structure of MHAS2168 from *M. hassiacum* (gray). Inset: more detailed view of the TM11-TM12 periplasmic extensions shows differences in TM11 and loop length in different mycobacterial homologues while TM12 length remains the same. (b) Side views of hydrophobic surfaces of different mycobacterial homologues. The TM5-TM8 lateral openings are narrow and partially obstructed. (c) Opposite side views of hydrophobic surfaces of different mycobacterial homologues. Linker helices A and B are blocking the TM2-TM11 lateral opening. (d) Close-up view of the hydrophobic surfaces of the TM11-TM12 periplasmic extensions towards the central cavity. Hydrophobic patches are the common denominator of all periplasmic helix extensions. On panels (b) – (d), from left: homologues from *M. hassiacum*, *M. tuberculosis*, *M. smegmatis*, *M. abscessus*, *M. aurum*, *M. fortuitum*. On panels (b) – (d) hydrophobicity color scheme: hydrophobic – gold; hydrophilic – cyan.

# Extended Data Figure 3

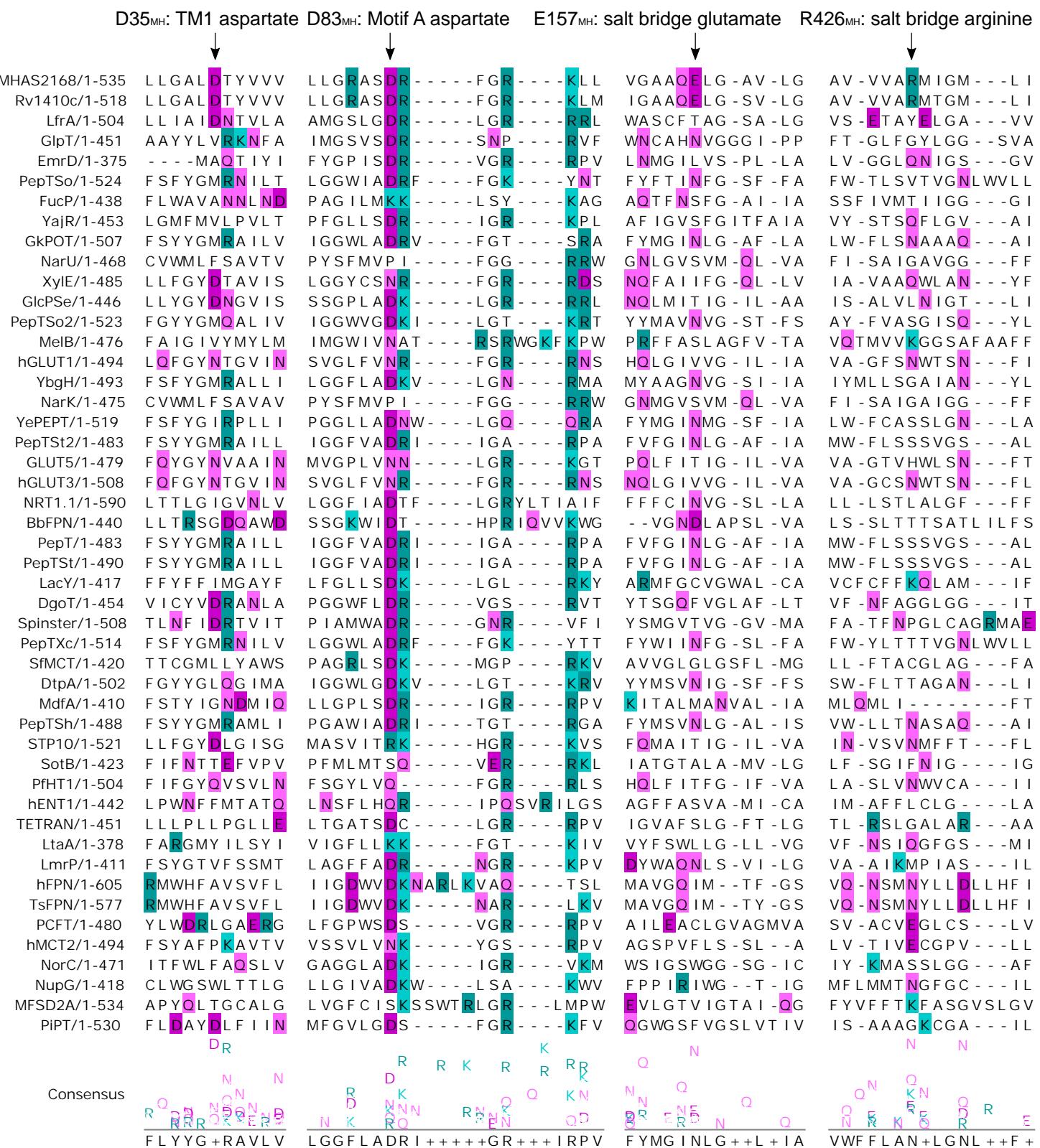



**Extended Data Figure 3. Comparison of central cavities from different MFS transporters known to transport lipids or drugs.** The central cavity surface hydrophobicity/hydrophilicity reflects the polarity of the transporter's substrate(s). Left column: Side views of transporters (gray) with their central cavity volumes highlighted in color. Middle left column: Inside view of the hydrophobicity surfaces of the central cavity walls from N-domains. Middle right column: Inside view of the hydrophobicity surfaces of the central cavity walls from C-domains. Right column: Structures of substrates transported by the corresponding MFS transporters. From top to bottom: TAG exporter MHAS2168 crystal structure (this study) and TAG species tripalmitoylglycerol; TAG exporter Rv1410 ColabFold structure prediction (this study) and TAG species tripalmitoylglycerol; Lipoteichoic acid lipid anchor flippase LtaA crystal structure (PDB ID: 6S7V); Lysophosphatidylcholine-docosahexaenoic acid importer MFSD2A cryo-EM structure (PDB ID: 7N98); Multi-drug efflux pump MdfA crystal structure (PDB ID: 6GV1) and its substrates tetraphenylphosphonium, ethidium, and chloramphenicol; Quinolone efflux pump NorC crystal structure (7D5P) and its substrate moxifloxacin. Hydrophobicity color scheme: hydrophobic – gold; hydrophilic – cyan.


# Extended Data Figure 4

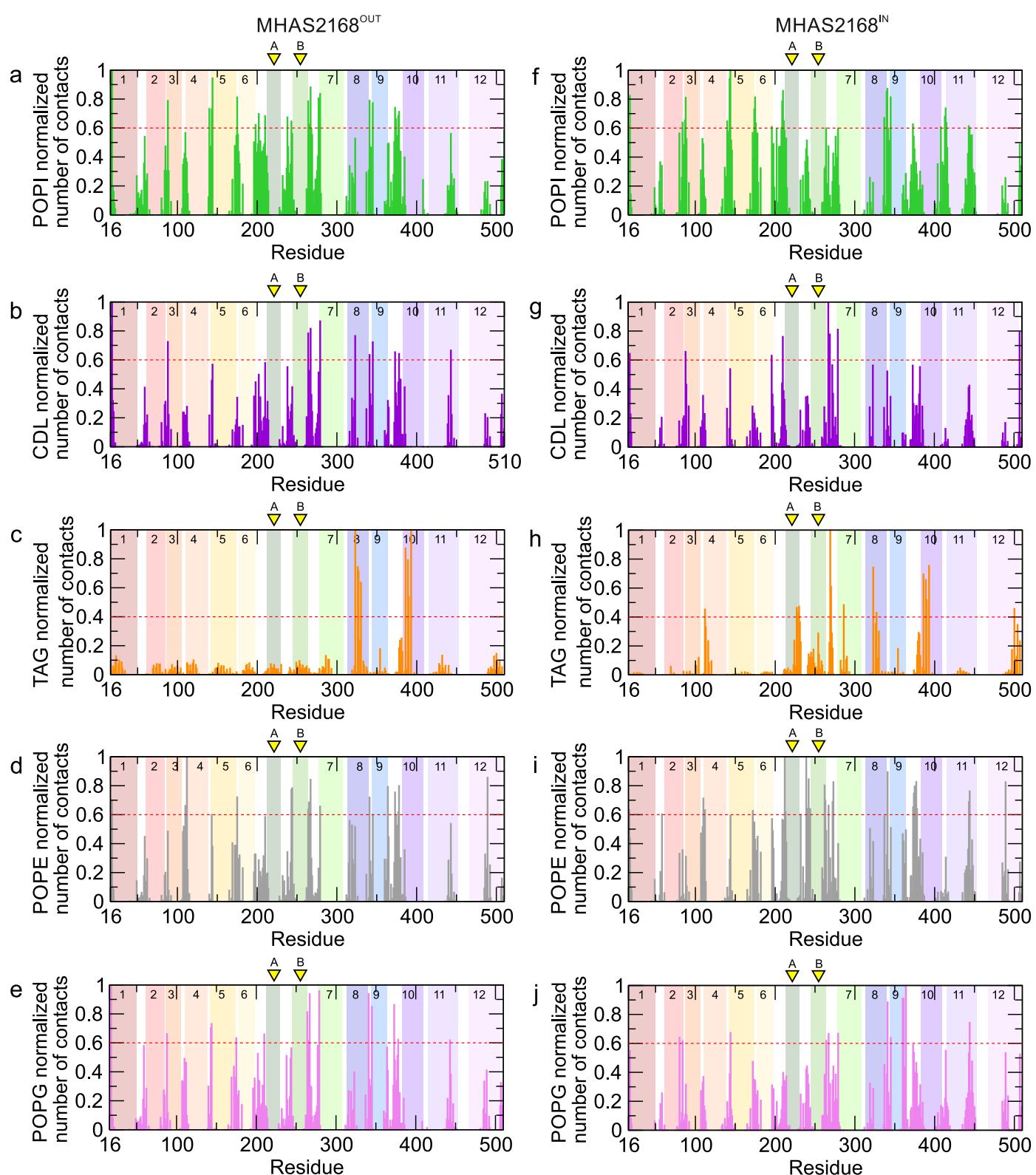


**Extended Data Figure 4. Protein production levels of Rv1410 and MHAS2168 mutants.** Production levels of wild type MHAS2168, Rv1410, or their mutants expressed in *M. smegmatis* dKO using complementation vector pFLAG were probed by Western blotting via a C-terminal 3xFLAG tag. *M. smegmatis* dKO harboring the empty pFLAG vector served as negative control (EV). (a) Protein production levels of MHAS2168 and MHAS2168 mutants. (b) Protein production levels of Rv1410 and Rv1410 mutants.


# Extended Data Figure 5



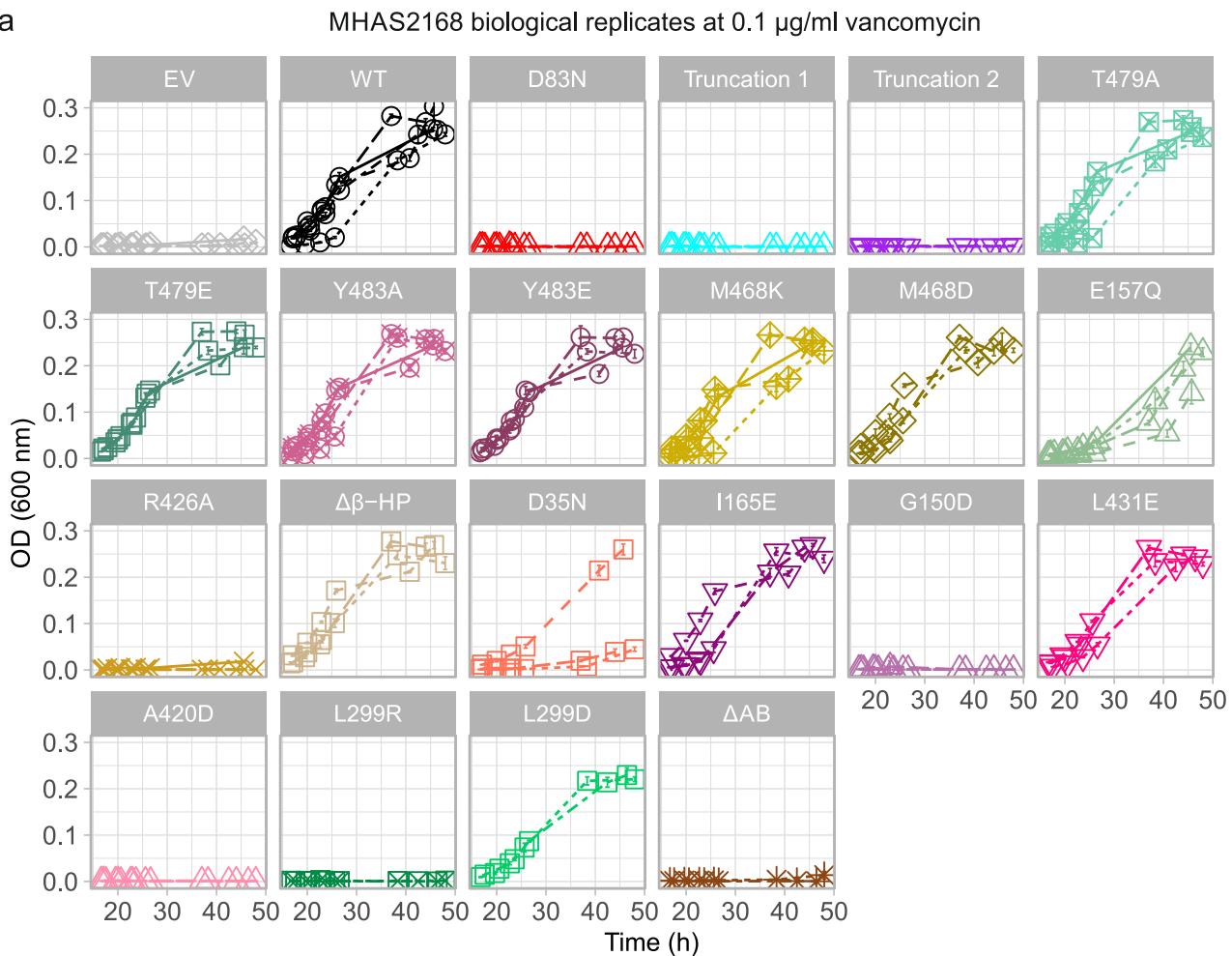



**Extended Data Figure 5. Multiple sequence alignment (MSA) of primary structures of 17 mycobacterial Rv1410 homologues.** The amino acid residues in the MSA are colored according to their hydrophobicity (hydrophilic residues – blue; hydrophobic residues – gold). Secondary structure elements corresponding to the primary structure are depicted above the MSA: transmembrane  $\alpha$ -helices and  $\beta$ -sheets are colored in the rainbow color scheme with the N-terminal end being blue and C-terminal end being red. Loops between secondary structure elements are depicted as gray dashed lines (periplasmic loops – short dashes; cytoplasmic loops – long dashes). Point mutations analyzed in this study are marked by different symbols above the corresponding amino acid residue in the MSA as indicated. Different truncation mutants are marked with colored lines showing the extent of truncations as indicated.

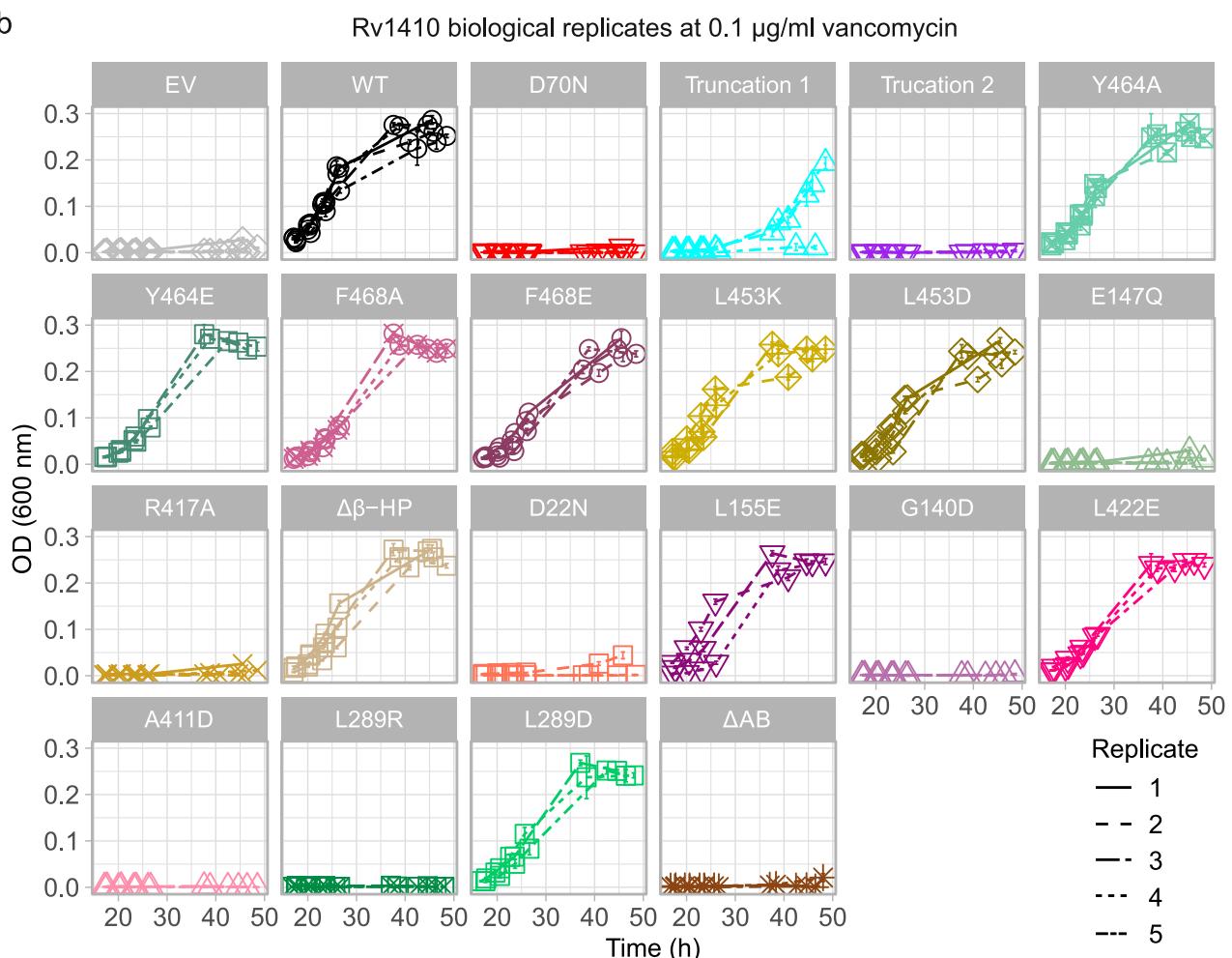
# Extended Data Figure 6



**Extended Data Figure 6. Conservation of different residues potentially involved in proton coupling in Rv1410 and MHAS2168 among other MFS transporters, depicted by a multiple sequence alignment.** Positively charged residues arginine and lysine are highlighted in cyan (R and K). Negatively charged residues glutamate and aspartate are highlighted in dark pink (E and D). Glutamine and asparagine are highlighted in light pink (Q and N). 1st block: D35<sub>MH</sub>/D22<sub>Mtb</sub> (TM1, side chain within the N-domain) is mostly conserved in mycobacterial MFS transporters and some sugar porters. 2nd block: Motif A aspartate D83<sub>MH</sub>/D70<sub>Mtb</sub> (cytoplasmic loop between TM2 and TM3) is very conserved among MFS transporters. 3rd block: Salt bridge glutamate E157<sub>MH</sub>/E147<sub>Mtb</sub> (TM5, side chain within the central cavity) seems to be present only in mycobacterial TAG exporters MHAS2168 and Rv1410. 4th block: Salt bridge arginine R426<sub>MH</sub>/R417<sub>Mtb</sub> (TM11, side chain within the central cavity) seems to be present only in mycobacterial TAG exporters MHAS2168 and Rv1410.

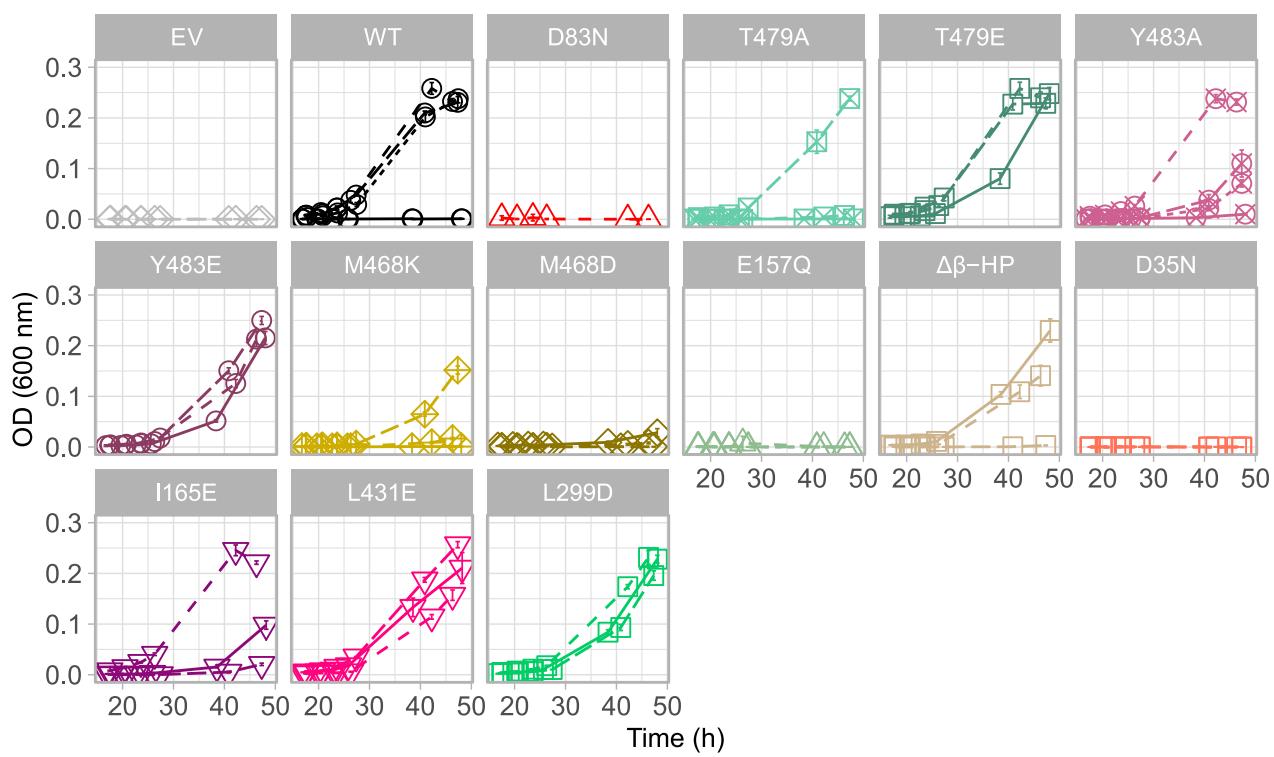

# Extended Data Figure 7




**Extended Data Figure 7. Lipid interactions observed in the simulations.** Protein-lipid contacts were normalized from 0 (no contacts) to 1 (maximal contacts) based on simulations performed with the MHAS2168<sup>OUT</sup> structure (a)-(e) or the MHAS2168<sup>IN</sup> homology model (f)-(j). The lipid color code is the same as in Fig. 3a. The transmembrane helices of MHAS2168 are numbered and depicted as rainbow-colored bars. Linker helices A and B are indicated with yellow arrows. The red dotted line is the threshold above which the contact has been considered as relevant.

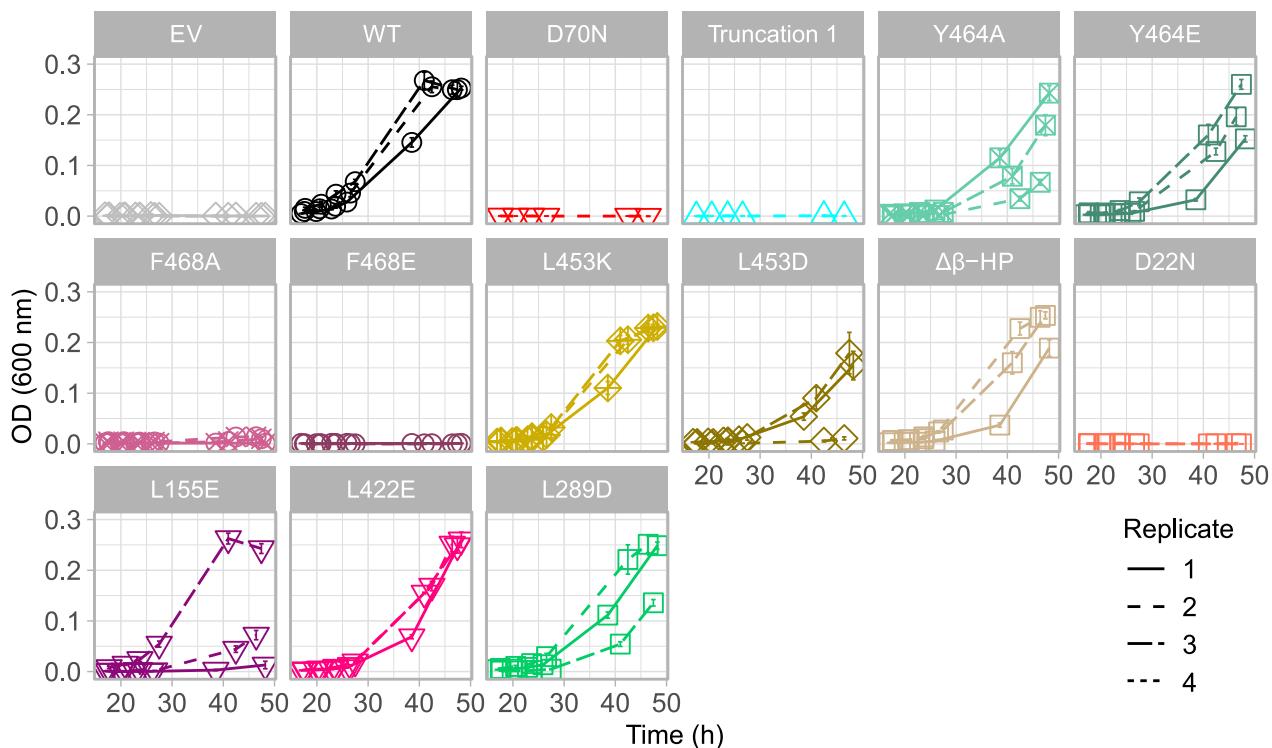
# Extended Data Figure 8

a



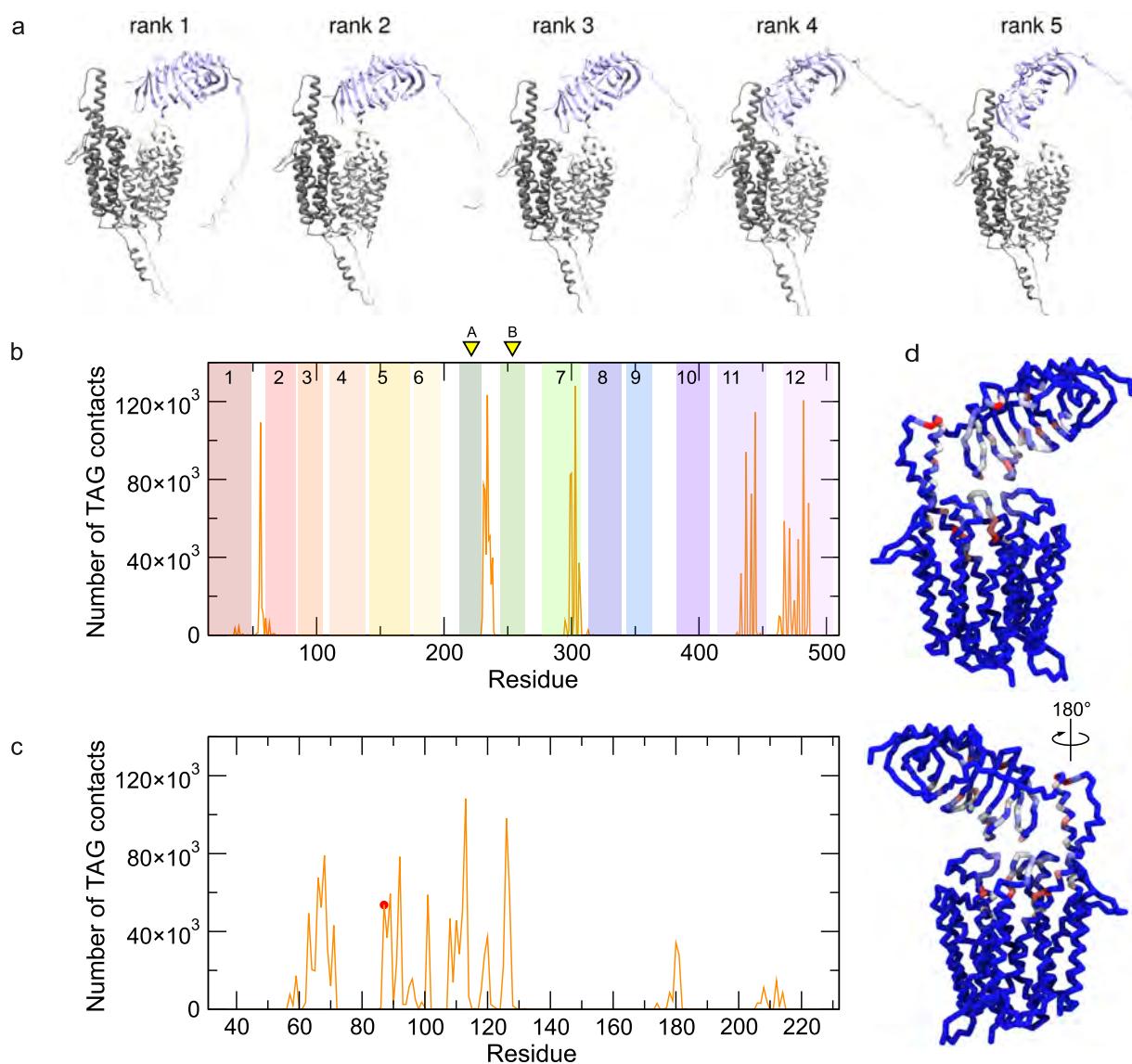

b




C

MHAS2168 biological replicates at 0.4  $\mu$ g/ml vancomycin




d

Rv1410 biological replicates at 0.4  $\mu$ g/ml vancomycin



**Extended Data Figure 8. All vancomycin sensitivity assay results at 0.1 and 0.4  $\mu$ g/ml vancomycin concentration.** Vancomycin sensitivity assays in *M. smegmatis* dKO cells, complemented with empty vector control (EV), wild type LprG/Rv1410 or MHAS2167/68 operon (WT), or mutant operons where LprG (Rv1411/MHAS2167) is intact, but the transporter Rv1410/MHAS2168 exhibits mutations as indicated. For each tested mutant, growth curves from all biological replicates (3-5) grown at 0.1  $\mu$ g/ml (a)-(b) or 0.4  $\mu$ g/ml (c)-(d) vancomycin concentration are shown. The error bars of the growth curves denote the standard deviation of four technical replicates. (a) and (c) MHAS2168 mutants and controls. (b) and (d) Rv1410 mutants and controls.

# Extended Data Figure 9



**Extended Data Figure 9. Analysis of TAG contacts with MHAS2168<sup>OUT</sup>-LprG during MD simulations.** (a) Five possible models of the MHAS2168<sup>OUT</sup>-LprG complex predicted by Colabfold. The rank 2 model was selected for the MD simulations. (b) Average number of MHAS2168-TAG contacts among the five repeat simulations (orange). The transmembrane helices of MHAS2168 are numbered and depicted as rainbow-colored bars. Linker helices A and B are indicated with yellow arrows. (c) LprG-TAG contacts (orange). T87, which corresponds to V91 in *M. tuberculosis* LprG, is indicated in red. (d) TAG contacts projected onto the protein backbone and colored from blue (no contacts) to red (large number of contacts).

**Extended Data Video 1. Video of TAG transfer between MHAS2168 and LprG.** The video shows coarse-grained MD simulation of TAG transfer between MHAS2168 and LprG depicted on Figure 6a, replicate 1. MHAS2168 N-domain, light gray; MHAS2168 C-domain, dark gray; LprG, pale lilac. For clarity, the three TAG acyl tails have been colored differently (yellow, green, and purple).

## Supplementary tables

**Table S1.** X-ray data collection and refinement statistics. In parentheses, parameters of the highest resolution shell are shown.

|                                    | MHAS2168 + Nb_H2            |                                         |
|------------------------------------|-----------------------------|-----------------------------------------|
| Data collection                    | Crystal I<br>(Full dataset) | Crystals II and III<br>(Merged dataset) |
| Space group                        | P 1 2 <sub>1</sub> 1        | P 1 2 <sub>1</sub> 1                    |
| Cell dimensions                    |                             |                                         |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 57.75, 160.68, 82.78        | 57.78, 160.7, 82.96                     |
| $\alpha$ , $\beta$ , $\gamma$ (°)  | 90.0, 108.854, 90.0         | 90.0, 109.014, 90.0                     |
| Resolution (Å)                     | 2.7 (2.76-2.70)             | 2.7 (2.76-2.70)                         |
| R <sub>meas</sub> (%)              | 6.2 (124.1)                 | 10.7 (183.8)                            |
| I/σ (I)                            | 11.44 (0.97)                | 8.77 (0.97)                             |
| Completeness (%)                   | 94.9 (97.8)                 | 99.3 (99.7)                             |
| cc(1/2)                            | 99.9 (46.7)                 | 99.9 (34.7)                             |
| Refinement                         |                             |                                         |
| Resolution range (Å)               |                             | 44.7 - 2.7 (2.797 - 2.7)                |
| No. unique reflections             |                             | 39031 (3911)                            |
| R-work/R-free                      |                             | 0.2450/0.2915                           |
| No. of atoms                       |                             |                                         |
| Macromolecules                     |                             | 8824                                    |
| Ligands                            |                             | 0                                       |
| Solvent                            |                             | 0                                       |
| Average B-factor                   |                             | 92.85                                   |
| RMS deviations                     |                             |                                         |
| Bonds                              |                             | 0.003                                   |
| Angles                             |                             | 0.73                                    |
| Ramachandran favored (%)           |                             | 98.29                                   |
| Ramachandran allowed (%)           |                             | 1.71                                    |
| Ramachandran outliers (%)          |                             | 0                                       |
| Rotamer outliers (%)               |                             | 0.23                                    |
| Clashscore                         |                             | 2.00                                    |
| RSRZ (%)                           |                             | 14.4                                    |
| MolProbity score                   |                             | 0.77                                    |

**Table S2.** Cryo-EM data collection and processing statistics.

|                                                     | <b>MHAS2168 + Mb_H2</b>                               | <b>Rv1410 + Mb_F7</b>                                 |
|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| <b>Data collection and processing</b>               |                                                       |                                                       |
| Magnification                                       | 130 000x                                              | 130 000x                                              |
| Voltage (kV)                                        | 300                                                   | 300                                                   |
| Electron exposure (e <sup>-</sup> /Å <sup>2</sup> ) | 66.54                                                 | 65.0 / 55.0                                           |
| Defocus range (μm)                                  | -1 to -2.5 μm                                         | -1 to -2.5 μm                                         |
| Pixel size (Å)                                      | 0.325 (in super-resolution)<br>0.65 (in construction) | 0.325 (in super-resolution)<br>0.65 (in construction) |
| Symmetry imposed                                    | C1                                                    | C1                                                    |
| No. of initial particle images                      | 4 759 395                                             | 1 833 683                                             |
| No. of final particle images                        | 402 229                                               | 127 196                                               |
| Map resolution (Å)                                  | 3.99                                                  | 7.51                                                  |
| FSC threshold                                       | 0.143                                                 | 0.143                                                 |

**Table S3.** MD simulations. 1-palmitoyl-2-oleyl-phosphatidylethanolamine, POPE; 1-palmitoyl-2-oleyl-phosphatidylglycerol, POPG; cardiolipin, CDL; 1-palmitoyl-2-oleyl-phosphatidylinositol, POPI; triacylglycerol, TAG. ul = upper leaflet; ll = lower leaflet. ‡ = The systems with 2 and 1 TAG hydrophobic tails pointing upwards (towards LprG) are identical.

| System                            | Protein particles | Lipids particles                                         | Membrane composition (leaflet %)                      | Water particles | Ions (Na <sup>+</sup> , Cl <sup>-</sup> ) | Total particles | Box size (nm <sup>3</sup> ) |
|-----------------------------------|-------------------|----------------------------------------------------------|-------------------------------------------------------|-----------------|-------------------------------------------|-----------------|-----------------------------|
| MHAS2168 <sup>OUT</sup>           | 985               | ul: 100 molecules<br>ll: 100 molecules<br>2942 particles | POPE: 34<br>POPG: 29<br>CDL: 15<br>POPI: 21<br>TAG: 1 | 5631            | 222, 63                                   | 9843            | ca. 1137                    |
| MHAS2168 <sup>IN</sup>            | 985               | ul: 100 molecules<br>ll: 98 molecules<br>2918 particles  | POPE: 34<br>POPG: 29<br>CDL: 15<br>POPI: 21<br>TAG: 1 | 5850            | 224, 66                                   | 10043           | ca. 1166                    |
| MHAS2168 <sup>IN-TAG</sup>        | 985               | ul: 100 molecules<br>ll: 98 molecules<br>2918 particles  | POPE: 34<br>POPG: 29<br>CDL: 15<br>POPI: 21<br>TAG: 1 | 5850            | 224, 66                                   | 10043           | ca. 1166                    |
| MHAS2168 <sup>OUT-</sup><br>LprG‡ | 1384              | ul: 196 molecules<br>ll: 189 molecules<br>5649 particles | POPE: 34<br>POPG: 29<br>CDL: 15<br>POPI: 21<br>TAG: 1 | 8798            | 493,<br>169                               | 16493           | ca. 1872                    |
| Myco <sup>mem</sup>               | -                 | ul: 141 molecules<br>ll: 141 molecules<br>4142 particles | POPE: 34<br>POPG: 29<br>CDL: 15<br>POPI: 21<br>TAG: 1 | 5702            | 329,<br>103                               | 10276           | ca. 1175                    |

**Table S4.** Protein-lipid interactions in CG-MD simulations.

| MHAS2168 interactions with TAG <sup>a</sup> (threshold of 40%)           |                        |                         |                          |                         |                         |                         |
|--------------------------------------------------------------------------|------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Phe393                                                                   | Thr386                 | Ala327                  | Arg323                   | Ala389                  | Ile390                  | Ile326                  |
| Val330                                                                   | Leu270                 | Leu230                  | Phe500                   | Leu286                  | Thr227                  | Asp112                  |
| <u>Ile228</u>                                                            |                        |                         |                          |                         |                         |                         |
| MHAS2168 interactions with POPE <sup>b</sup> (threshold of 60%)          |                        |                         |                          |                         |                         |                         |
| Asp112                                                                   | Glu489                 | Arg267                  | Phe378                   | Arg341                  | Tyr244                  | Glu243                  |
| Arg373                                                                   | Asn110                 | Gly377                  | His374                   | Phe265                  | Arg18                   | His175                  |
| Arg279                                                                   | Arg264                 | Gln364                  | His143                   | Arg345                  | <u>Asp212</u>           | <u>Gln239</u>           |
| <u>Pro242</u>                                                            | <u>Pro273</u>          | <u>Trp262</u>           | <u>Asp375</u>            | <u>Leu376</u>           | <u>Arg444</u>           | <u>Glu263</u>           |
| <u>Asp272</u>                                                            | <u>Tyr443</u>          | <u>Leu241</u>           | <u>Ser17</u>             | <u>Trp172</u>           | <u>Val213</u>           | <u>Gln58</u>            |
| <u>Asn232</u>                                                            |                        |                         |                          |                         |                         |                         |
| MHAS2168 interactions with POPG <sup>c</sup> (threshold of 60%)          |                        |                         |                          |                         |                         |                         |
| Arg279                                                                   | Arg341                 | Arg267                  | Arg345                   | Arg264                  | Lys144                  | Arg18                   |
| Arg373                                                                   | His143                 | Thr16                   | Lys88                    | Arg210                  | His175                  | Phe378                  |
| Tyr443                                                                   | Phe265                 | <u>Gln364</u>           | <u>Tyr360</u>            | <u>Leu361</u>           | <u>Arg444</u>           | <u>Arg80</u>            |
| <u>Arg84</u>                                                             |                        |                         |                          |                         |                         |                         |
| MHAS2168 interactions with POPI <sup>d</sup> (threshold of 60%)          |                        |                         |                          |                         |                         |                         |
| Arg18                                                                    | Lys144                 | Ser17                   | Thr16                    | Arg279                  | His175                  | Arg341                  |
| Lys88                                                                    | Arg264                 | Arg345                  | Arg373                   | Trp140                  | His143                  | Arg202                  |
| Arg210                                                                   | Arg267                 | Arg277                  | Phe378                   | Gly377                  | Lys238                  | His374                  |
| Glu243                                                                   | Phe278                 | Phe265                  | Ser198                   | <u>Gln209</u>           | <u>Thr340</u>           | <u>Gln414</u>           |
| <u>Phe174</u>                                                            | <u>Ala413</u>          | <u>Trp337</u>           | <u>Gly510</u>            | <u>Arg87</u>            | <u>Val211</u>           | <u>Arg84</u>            |
| <u>His415</u>                                                            | <u>His176</u>          | <u>Tyr443</u>           | <u>His196</u>            | <u>Arg408</u>           | <u>Pro208</u>           | <u>Arg444</u>           |
| <u>Val342</u>                                                            |                        |                         |                          |                         |                         |                         |
| MHAS2168 interactions with CDL <sup>e</sup> (threshold of 60%)           |                        |                         |                          |                         |                         |                         |
| Arg18                                                                    | Arg279                 | Thr16                   | Arg267                   | Arg264                  | Arg323                  | Lys88                   |
| Arg345                                                                   | Tyr443                 | Ser17                   | Arg373                   | Phe378                  | <u>Arg341</u>           | <u>Phe507</u>           |
| <u>Arg269</u>                                                            | <u>Arg210</u>          | <u>Thr268</u>           | <u>His196</u>            |                         |                         |                         |
| MHAS2168 interactions with TAG in the MHAS2168-LprG complex <sup>f</sup> |                        |                         |                          |                         |                         |                         |
| Gln56 <sup>1-5</sup>                                                     | Glu234 <sup>1-5</sup>  | Glu303 <sup>1-5</sup>   | Leu437 <sup>1-5</sup>    | Arg444 <sup>1-5</sup>   | Ala482 <sup>1-5</sup>   | Tyr231 <sup>1,2,5</sup> |
| Asn232 <sup>2,3,5</sup>                                                  | Ala233 <sup>3</sup>    | Pro235 <sup>1,2,5</sup> | Asp236 <sup>1,5</sup>    | Leu299 <sup>1,2,5</sup> | Val300 <sup>1,3,5</sup> | Gly306 <sup>2</sup>     |
| Gly441 <sup>1,3,5</sup>                                                  | Gln467 <sup>1,4</sup>  | Gln471 <sup>1,4</sup>   | Ala478 <sup>3</sup>      | Gln486 <sup>1,3,5</sup> |                         |                         |
| LprG interactions with TAG in the MHAS2168-LprG complex <sup>g</sup>     |                        |                         |                          |                         |                         |                         |
| Leu63 <sup>1,3</sup>                                                     | Leu66 <sup>1,3,4</sup> | Pro67 <sup>1,4</sup>    | Ile68 <sup>1,3,4,5</sup> | Leu71 <sup>4</sup>      | Thr87 <sup>1,4</sup>    | Thr88 <sup>4</sup>      |

|                      |                           |                         |                       |                     |                     |                           |
|----------------------|---------------------------|-------------------------|-----------------------|---------------------|---------------------|---------------------------|
| Val89 <sup>1,4</sup> | Met92 <sup>2,3,5</sup>    | Phe101 <sup>1,4</sup>   | Leu108 <sup>1,4</sup> | Ala110 <sup>4</sup> | Leu112 <sup>4</sup> | Phe113 <sup>1,2,3,5</sup> |
| Ile120 <sup>4</sup>  | Ile126 <sup>1,3,4,5</sup> | Tyr127 <sup>1,3,4</sup> |                       |                     |                     |                           |

(a-e) The residues listed have lipid contacts above the indicated threshold with respect to the residue that has the maximum number of contacts for that specific lipid. Residues underlined and not underlined refer to MHAS2168<sup>IN</sup> and MHAS2168<sup>OUT</sup>, respectively. Residues highlighted in bold are found in both MHAS2168<sup>IN</sup> and MHAS2168<sup>OUT</sup>. (f) The residues listed have TAG contacts above a threshold of 40% with respect to the residue that has the maximum number of TAG contacts. The superscript indicates in which repeat simulation the interaction was found. This is because TAG samples the MHAS-LprG regions within the hydrophobic tunnel for different time periods in different repeat simulations (see Fig. 6), and thus statistics for that region is improved in the respective repeat(s). Residues highlighted in bold are found in all the repeat simulations. (g) The residues listed have TAG contacts above a threshold of 40% with respect to the residue that has the maximum number of TAG contacts. The superscript indicates in which repeat simulation the interaction was found (see also f).

**Table S5.** Primers used for generating pFLAG plasmids with shuffled operons.

| Primer name                                | Sequences (5' -> 3')                                  |
|--------------------------------------------|-------------------------------------------------------|
| <b>FX cloning <i>M. hassiacum</i> ORFs</b> | SapI recognition site and scar are underlined         |
| MHASS1410_for                              | ATATAT <u>GCTCTTCTAGT</u> GCTTCCCGCAGACACCGAACCGACTG  |
| MHASS1410_rev                              | ACTGAC <u>GCTCTTCAT</u> GCAGCTGATGGCGCGCGGTCTCGAGC    |
| FX_MHAS2167_FOR                            | ATATAT <u>GCTCTTCTAGT</u> CAGACCCGCCTGACGGCGATCCTCGCC |
| FX_MHAS2168_REV                            | TATATA <u>GCTCTTCATGCCGCTGATGGCGCGCGGTCTCGAGCGTT</u>  |
| <b>CPEC pFLAG_MHAS2167</b>                 |                                                       |
| pFLAG_MHAS2167_FOR2                        | CGAGGCATGCGAAGGAGATATACATATGCAGACCCGCCTGACGG          |
| FLAG_MHAS2167_REV2                         | ACCGTCATGGTCTTGTAGTCTGCGGCGGCCGGCTTG                  |
| FLAG_FOR                                   | GCAGACTACAAAGACCATGACGGT                              |
| pFLAG_REV2                                 | CATATGTATATCTCCTTCGCATGCCTCG                          |
| <b>CPEC pFLAG_MHAS2167_Rv1410</b>          |                                                       |
| pFLAG_MHAS2167_FOR                         | GGCATGCGAAGGAGATATACATATGAGTAGTCAGACCCGCCTGACGG       |
| FLAG_RV1410_REV                            | ACCGTCATGGTCTTGTAGTCTGCGGCGGCCGGCTTG                  |
| FLAG_FOR                                   | GCAGACTACAAAGACCATGACGGT                              |
| pFLAG_REV                                  | ACTCATATGTATATCTCCTTCGCATGCC                          |
| <b>CPEC pINIT_Rv1411_mfs</b>               |                                                       |
| pINIT_FOR2                                 | GAAGCCCTGGGCCAACTTTG                                  |
| Rv1411_REV                                 | GCTGATCAGCTACCGGGG                                    |
| pINIT_REV2                                 | CAAAAGTTGGCCCAGGGCTTC                                 |
| Rv1411_MSM3069_FOR                         | CCCCGGTGAGCTGATCAGCGTGAGTTCCGGGGCAACC                 |
| Rv1411_MHAS2168_FOR                        | CCCCGGTGAGCTGATCAGCATGGCGTCCCGCAGACAC                 |
| Rv1411_MAB2807_FOR                         | CCCCGGTGAGCTGATCAGCGTACGCACACAGCGACG                  |
| <b>CPEC pINIT_lprG_Rv1410</b>              |                                                       |
| pINIT_REV2                                 | CAAAAGTTGGCCCAGGGCTTC                                 |
| Rv1410_FOR                                 | TCAGCATGCGAGCAGGACG                                   |
| pINIT_FOR2                                 | GAAGCCCTGGGCCAACTTTG                                  |
| Rv1410_MAB2806_REV                         | CGTCCTGCTCGCATGCTGATCACTGGCGGGCTTGTGTC                |
| Rv1410_MSMEG3070_REV                       | CGTCCTGCTCGCATGCTGATCAGCCCCGGGGCTTG                   |
| Rv1410_MHAS2167_REV                        | CGTCCTGCTCGCATGCTGATCAGGGCGCCGGCTTG                   |

**Table S6.** Primers used for introducing mutations into Rv1410 and MHAS2168.

| Primer name   | Sequences (5' -> 3')                       |
|---------------|--------------------------------------------|
| <b>Rv1410</b> |                                            |
| A411D_FOR     | GCATCGCTTCGGACGCGGTGGTGGTC                 |
| A411D_REV     | GCGTCCGAAGCGATGCCGTG                       |
| D22N_FOR      | GGC GCC CTG AAC ACC TAT GTC GTG            |
| D22N_REV      | AGG TGT TCA GGG CGC CCA G                  |
| E147Q_FOR     | GCCGCCAGCAGCTCGGCAG                        |
| E147Q_REV     | CTGCCGAGCTGCTGCGCGG                        |
| F468A_FOR     | GTACCAGCAGGCCGCCGCGCTGATGTAC               |
| F468A_REV     | GTACATCAGCGCCGCCGCTGCTGGTAC                |
| F468E_FOR     | GTACCAGCAGGCCGCCGCGCTGATGTAC               |
| F468E_REV     | GTACATCAGCGCCCTCCGCCGCTGCTGGTAC            |
| G140D_FOR     | GACGGTATCGGCCGCCGCGCAGGAG                  |
| G140D_REV     | GCGCCGATACCGTCGAGCAC                       |
| L155E_FOR     | CTG GGC CCG GAG TAC GGA ATC TTC ATC GTT TG |
| L155E_REV     | CCG TAC TCC GGG CCC AGA ACG CTG            |
| L289D_FOR     | CGCTGATGGTGACGGACGTTGATGTCGAGCTGTC         |
| L289D_REV     | CGAACAGCTCGACATCAACGTCCGTACCATCAG          |
| L289R_FOR     | CTGATGGTGACGCCGTTGATGTCGAGCTG              |
| L289R_REV     | CAGCTCGACATCAACGCCGTCACCATCAG              |
| L422E_FOR     | GGATGACCGGCATGGAGATCGGCGTG                 |
| L422E_REV     | CCACGCCGATCTCCATGCCGGTCATC                 |
| L453D_FOR     | CCCAACGCCAGCGACCTCGAGCGCGC                 |
| L453D_REV     | GCGCGCTCGAGGTCGCTGGCGTTGGG                 |
| L453K_FOR     | CCCAACGCCAGCAAGCTCGAGCGCGC                 |
| L453K_REV2    | GAGCTTGGCTGGCGTTGGCGGGAT                   |
| R417A_FOR     | GGTGGTGGTCGCCCGATGACCGGCATG                |
| R417A_REV     | CATGCCGGTCATCGCGGCGACCAC                   |
| Y464A_FOR     | CAATTGGAGCCCGGGCCCAGCAGCGTTC               |
| Y464A_REV     | GAACGCCCTGCTGGGCCGGCTCCAATTG               |
| Y464E_FOR     | CAATTGGAGCCCGGGAGCAGCAGCGTTC               |
| Y464E_REV     | GAACGCCCTGCTGCTCCGGCTCCAATTG               |
| Rv_delAB_FOR  | GCTCGCACCCGGCTG                            |

|                 |                                         |
|-----------------|-----------------------------------------|
| Rv_delAB_REV    | CAGCCGGGTGCGAGCGTCGACTCGCTGGGCTC        |
| Rv_delbHP_REV   | CATCGCACCACCACCATGGCCAACAGGTCCAC        |
| Rv_delbHP_FOR   | GGTGGTGGTGGTGCATGCACACCGACCTG           |
| <b>MHAS2168</b> |                                         |
| A420D_FOR       | CATCGCCTCGGACGCCGTGGTGGT                |
| A420D_REV       | CACCACCACGGCGTCCGAGGCGATG               |
| D35N_FOR        | GCG CGC TGA ACA CCT ACG TCG TG          |
| D35N_REV        | AGG TGT TCA GCG CGC CGA G               |
| D83N_FOR        | GCCGGCGTCCAACCGGTT                      |
| D83N_REV        | GTTGGACGCCCGGCCAG                       |
| E157Q_FOR       | CGGCCAGCAGCTCGGTGCCGTG                  |
| E157Q_REV       | CGAGCTGCTGGGCCGACCGAC                   |
| G150D_FOR       | CGGTGCTCGACGGAGTCGGTG                   |
| G150D_REV       | CACCGACTCCGTCGAGCAC                     |
| I165E_FOR       | GTG CTC GGC CCC GAG TAC GGC ATC TTC GTG |
| I165E_REV       | GTA CTC GGG GCC GAG CAC GGC AC          |
| L299D_FOR       | CGCTGATGGTACCGACGTCAACGTCGAACGTTC       |
| L299D_REV       | CCGAACAGTTGACGTTGACGTCGGTCACCATCAG      |
| L299R_FOR       | CTGATGGTACCCGCGTCAACGTCGAACGTTC         |
| L299R_REV       | GAACAGTTGACGTTGACGCCGGTCACCATCAG        |
| L431E_FOR       | GGCATGAAATCGGCATGCCCGCGCTGAG            |
| L431E_REV       | CGGCGATGCCATTCCATGCCGATCATG             |
| M468D_FOR       | CGGGTGGCCAGGACGCCGGCCAGATGATG           |
| M468D_REV       | CTGGCCGGCGTCTGGCCACCCGGAAAG             |
| M468K_FOR       | GTGGCCAGAAGGCCGGCCAGATG                 |
| M468K_REV       | CATCTGGCCGGCCTCTGGCCAC                  |
| R426A_FOR       | GTGGTGGTGGCGGCCATGATGGCATGCTG           |
| R426A_REV       | GCATGCCGATCATGCCGCCACCAAC               |
| T479A_FOR       | CTGCGACCGCCCGGTCCAGGCCTAC               |
| T479A_REV       | GTAGGCCTGGACCGCCGGTGCAG                 |
| T479E_FOR       | CTGCGACCGCCCGAGGTCCAGGCCTAC             |
| T479E_REV       | GTAGGCCTGGACCTCGGCCGGTGCAG              |
| Y483A_FOR       | CACCGTCCAGGCCGCCGTGCTGCAGTAC            |
| Y483A_REV       | GTACTGCAGCACGGCGGCCGGTGCAGGTG           |

|                     |                                          |
|---------------------|------------------------------------------|
| Y483E_FOR           | CACCGTCCAGGCCGAGGTGCTGCAGTAC             |
| Y483E_REV           | GTACTGCAGCACCTCGGCCTGGACGGTGG            |
| MH_delAB_FOR        | GCGCGGACCCGCCTGCTC                       |
| MH_delAB_REV        | GGCGGGTCCCGCGCGTCCACCCGTTGTGGCTC         |
| MH_delbHP_FOR       | GAATCCGGTGGTGGTGGTACGCTCGACACCGACCTG     |
| MH_delbHP_REV       | ACCACCAACCACCGATTCCAGGACATCGGCG          |
| Long_FOR            | GGAGGGCGGTGGAGGTGGTCTGCGCACCGCCAC        |
| Long_REV            | ACCACCTCCACCGCCTCCCTGCTCCTGAGGTACTGGTTG  |
| Medium_FOR          | AAGGGTGGCGGAGGTACCGTCCAGGCCTACGTG        |
| Medium_REV          | GGTACCTCCGCCACCCCTGAGGTACTGGTTGAACCGGTAC |
| <b>CPEC primers</b> |                                          |
| pFLAG_FOR2          | CGAGGCATGCGAAGGAGATATACATATG             |
| pFLAG_REV2          | CATATGTATATCTCCTCGCATGCCTCG              |

## **Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410**

---

### **Supplementary Information**

Sille Remm<sup>1</sup>, Dario De Vecchis<sup>2</sup>, Jendrik Schöppe<sup>3,4</sup>, Cedric A.J. Hutter<sup>1,5</sup>, Imre Gonda<sup>1</sup>,

Michael Hohl<sup>1,6</sup>, Simon Newstead<sup>7</sup>, Lars V. Schäfer<sup>2</sup>, Markus A. Seeger<sup>1</sup>

<sup>1</sup>Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland

<sup>2</sup>Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany

<sup>3</sup>Institute of Biochemistry, University of Zürich, Zürich, Switzerland

<sup>4</sup>Present address: Novo Nordisk, København, Denmark

<sup>5</sup>Present address: Linkster Therapeutics, Zürich, Switzerland

<sup>6</sup>Present address: Department of Infectious Disease, Imperial College London, London, United Kingdom

<sup>7</sup>Department of Biochemistry, University of Oxford, Oxford, United Kingdom

## Table of Contents

|                                                                                  |    |
|----------------------------------------------------------------------------------|----|
| Rationale for mutant design.....                                                 | 3  |
| Unique ion lock mutations.....                                                   | 3  |
| D22/D35 .....                                                                    | 3  |
| β-hairpin truncation.....                                                        | 3  |
| Truncation of linker helices.....                                                | 3  |
| Mutations in lateral clefts .....                                                | 4  |
| Mutations in cavity .....                                                        | 4  |
| Truncations of periplasmic helix extensions .....                                | 4  |
| TM12 mutations.....                                                              | 5  |
| Description of MD simulations.....                                               | 6  |
| Lipid interactions in MHAS2168 <sup>OUT</sup> and MHAS2168 <sup>IN</sup> .....   | 6  |
| TAGs in MHAS2168 <sup>OUT</sup> and MHAS2168 <sup>IN</sup> central cavities..... | 6  |
| References .....                                                                 | 11 |

## Rationale for mutant design

The tested mutations were always introduced to both Rv1410 and MHAS2168 to assure the relevance of the phenotype. The mutation sites were chosen according to our MHAS2168<sup>OUT</sup> crystal structure or the MHAS2168<sup>IN</sup> homology model, but the mutation locations were checked on Rv1410 structure predictions by ColabFold. Also, conservation in mycobacterial homologues in general (Extended Data Fig. 5) was taken into account. Production of each mutant was tested by Western blotting (Extended Data Fig. 4), to ensure that the phenotypes are not due to insufficient protein production or aberrant folding.

### Unique ion lock mutations

The only acidic residue that could be protonated/deprotonated during transport cycle in the central cavity is E147<sub>Mtb</sub>/E157<sub>MH</sub>. This glutamate is fully conserved in 17 Rv1410 homologue proteins (Extended Data Fig. 5) and forms a salt bridge with a fully conserved arginine (R417<sub>Mtb</sub>/R426<sub>MH</sub>). This ion lock seems to be unique, as it is not commonly found in other MFS transporters (Extended Data Fig. 6). To test whether the protonation/deprotonation of the glutamate is important for transport, we introduced mutations E147Q<sub>Mtb</sub>/E157Q<sub>MH</sub> to Rv1410 and MHAS2168, correspondingly. The glutamine cannot be deprotonated. In addition, we introduced the R417A<sub>Mtb</sub>/R426A<sub>MH</sub> mutations to Rv1410 and MHAS2168, correspondingly, to investigate whether the formation of the ion lock is important for the transporter's activity.

### D22/D35

In a paper by Farrow and Rubin<sup>1</sup>, the D22 residue of Rv1410 was investigated as it was speculated to belong to a conserved motif D1. It was discovered that mutation D22A was as sensitive to ethidium as Rv1410 deletion mutant while D22E which also harbours a carboxylate group retained some of ethidium resistance, although not at wild-type level. We reasoned that if the importance of D22 lies in coupling proton translocation to substrate transport, D22N mutation should inactivate Rv1410. Therefore, we introduced the D22N<sub>Mtb</sub> and D35N<sub>MH</sub> mutations to Rv1410 and MHAS2168, correspondingly. This aspartate was fully conserved in 17 Rv1410 homologue proteins (Extended Data Fig. 5).

### β-hairpin truncation

To assess whether the extracellular β-hairpin found between TM9 and TM10 has any impact on the transporter's function, we decided to truncate the β-hairpin. To do that, we removed the two β-sheets forming the hairpin and residues connecting them, replacing them with a linker formed of four glycine residues. Therefore, Δβ-HP<sub>MH</sub> is a MHAS2168ΔR373-P382::GGGG mutant and Δβ-HP<sub>Mtb</sub> is Rv1410ΔR363-P373::GGGG mutant.

### Truncation of linker helices

To assess whether the linker helices TMA and TMB have any impact on the transporter's function, we decided to truncate these linker helices to turn Rv1410/MHAS2168 into a classical 12-helix MFS transporter. In this case, the lateral opening between TM2-TM11 in outward-facing conformation is not blocked by linker helices anymore. To achieve that, we deleted the linker helices TMA and TMB and the periplasmic loop connecting them. Since we deemed the

remaining cytoplasmic loops to be long enough to connect N- and C-domains, we did not add any extra linker. Therefore,  $\Delta AB_{MH}$  is a MHAS2168 $\Delta V213-F265$  mutant and  $\Delta AB_{Mtb}$  is Rv1410 $\Delta L203-F255$  mutant.

### Mutations in lateral clefts

To investigate whether lateral openings between N- and C-domain could serve as the entry or exit points for TAGs, we adopted a mutation strategy similar to one used in assessment of MFSD2A<sup>2</sup>. However, we decided to introduce mutations to each lateral cleft, forming in both outward-facing and inward-facing conformations, assessed in our MHAS2168<sup>OUT</sup> crystal structure and MHAS2168<sup>IN</sup> homology model. We selected residues on TM2 and TM5 in the middle of each cleft whose side chains (if existing) were faced towards TM11 or TM8, correspondingly. We assumed that if these hydrophobic residues were mutated into glutamates or aspartates, the charged/polar side chains might prevent TAG diffusion through the lateral clefts. To choose whether a glutamate could be introduced into a given location, steric hindrances in each mutant were assessed *in silico* in both MHAS2168<sup>OUT</sup> and MHAS2168<sup>IN</sup> conformations. If the side-chain of glutamate seemed to encounter steric hindrances in either of the two conformations, an aspartate was introduced to the loci instead. The mutations are summarized below in Table S7.

**Table S7.** Mutations introduced to lateral openings between N- and C-domains in Rv1410 and MHAS2168.

| Mutation in Rv1410   | Mutation in MHAS2168 | Helices lining the lateral cleft | The lateral cleft is open in |
|----------------------|----------------------|----------------------------------|------------------------------|
| L155E <sub>Mtb</sub> | I165E <sub>MH</sub>  | TM5-TM8                          | Outward-facing state         |
| G140D <sub>Mtb</sub> | G150D <sub>MH</sub>  | TM5-TM8                          | Inward-facing state          |
| L422E <sub>Mtb</sub> | L431E <sub>MH</sub>  | TM2-TM11                         | Outward-facing state         |
| A411D <sub>Mtb</sub> | A420D <sub>MH</sub>  | TM2-TM11                         | Inward-facing state          |

### Mutations in cavity

The aim of these mutations was to introduce charge (and bulk) to the hydrophobic wall of the central cavity, in the hope that it might interfere with TAG transport if the molecule resides in the central cavity during its transport. L289<sub>Mtb</sub>/L299<sub>MH</sub> was chosen as the mutation site because i) its side chain is located in the middle of the hydrophobic central cavity wall in the MHAS2168<sup>OUT</sup> C-domain, ii) it is fully conserved in 17 Rv1410 homologue proteins (Extended Data Fig. 5), iii) the MHAS2168<sup>IN</sup> homology model could accommodate a bulky residue in that position. Therefore, L289R<sub>Mtb</sub>/L299R<sub>MH</sub> mutations were introduced to Rv1410 and MHAS2168, correspondingly, to introduce charge and bulk into the cavity. As a control, L289D<sub>Mtb</sub>/L299D<sub>MH</sub> mutations were introduced to Rv1410 and MHAS2168, correspondingly, to introduce polar residues with similar size as the original leucine in that position.

### Truncations of periplasmic helix extensions

In our previous work<sup>3</sup>, we detected a unique “periplasmic loop” between TM11 and TM12 and investigated its truncation mutants which exhibited gradual loss of functionality, the

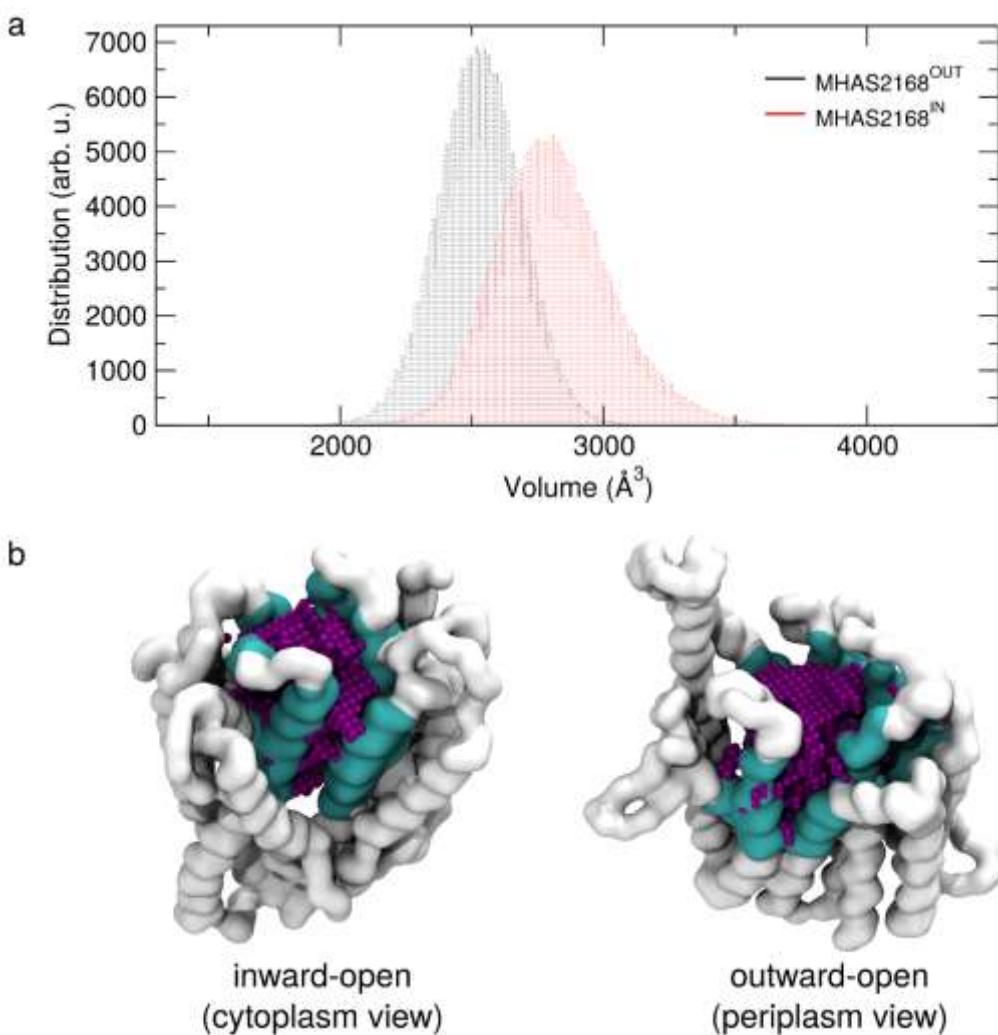
more residues were removed (Long loop = Truncation 1[ $\Delta$ 10aa]; Medium loop = Truncation 2[ $\Delta$ 18aa]; Short loop [ $\Delta$ 26aa]). Our structure showed the presence of TM11 and TM12 helix extensions, instead of a periplasmic loop. When the structures of Rv1410 truncation mutants were predicted by ColabFold platform<sup>4</sup>, surprisingly, the truncation mutants exhibited equal lengths of TM11 and TM12, even if TM12 N-terminal residues had to be conscripted to make up lost length of TM11 C-terminus or vice versa. We decided to design truncation mutants in MHAS2168 to confirm that loss of helix length incurs inactivity of the transporter. However, instead of deleting the corresponding residues of Rv1410 truncation mutants in MHAS2168, we decided to mimic the tertiary structure of these truncations by deleting residues from both TM11, TM12 and the loop connecting them, and introducing a glycine linker (of similar length to the original truncation mutants in Rv1410) between the remaining helices to ensure that the original helices are not disturbed. Therefore, Truncation 1<sub>MH</sub> is a MHAS2168 $\Delta$ L453-R474::GGGGGG mutant and Truncation 2<sub>MH</sub> is MHAS2168 $\Delta$ E451-A478::GGGG mutant.

### TM12 mutations

Analysis of periplasmic helix extensions uncovered some conserved features that were common in all the Rv1410 mycobacterial homologues investigated by MSA (Extended Data Fig. 5) and ColabFold structure predictions (Extended Data Fig. 2). The residues on the tip of the TM12 extension (1<sup>st</sup>  $\alpha$ -turn) directed towards the cavity are hydrophobic and aromatic residues are commonly found on TM12 above the cavity (whether on the 4<sup>th</sup> or 5<sup>th</sup>  $\alpha$ -turn or both). Therefore, we decided to mutate these features to assess whether they might play a role in TAG transport. To judge the necessity for aromatic residues to TAG transport, we introduced alanine mutations Y464A<sub>Mtb</sub>, F468A<sub>Mtb</sub>, T479A<sub>MH</sub>, Y483A<sub>MH</sub> to the sites of aromatic residues above cavity. To assess whether charged and bulkier side-chains at these locations might interfere with TAG transport, we introduced glutamate mutations Y464E<sub>Mtb</sub>, F468E<sub>Mtb</sub>, T479E<sub>MH</sub>, Y483E<sub>MH</sub> to the aromatic residues above cavity. To investigate whether the hydrophobic tip of TM12 has a role in TAG transport, we introduced mutations with either positive (L453K<sub>Mtb</sub>, M468K<sub>MH</sub>) or negative charge (L453D<sub>Mtb</sub>, M468D<sub>MH</sub>) to this locus.

## Description of MD simulations

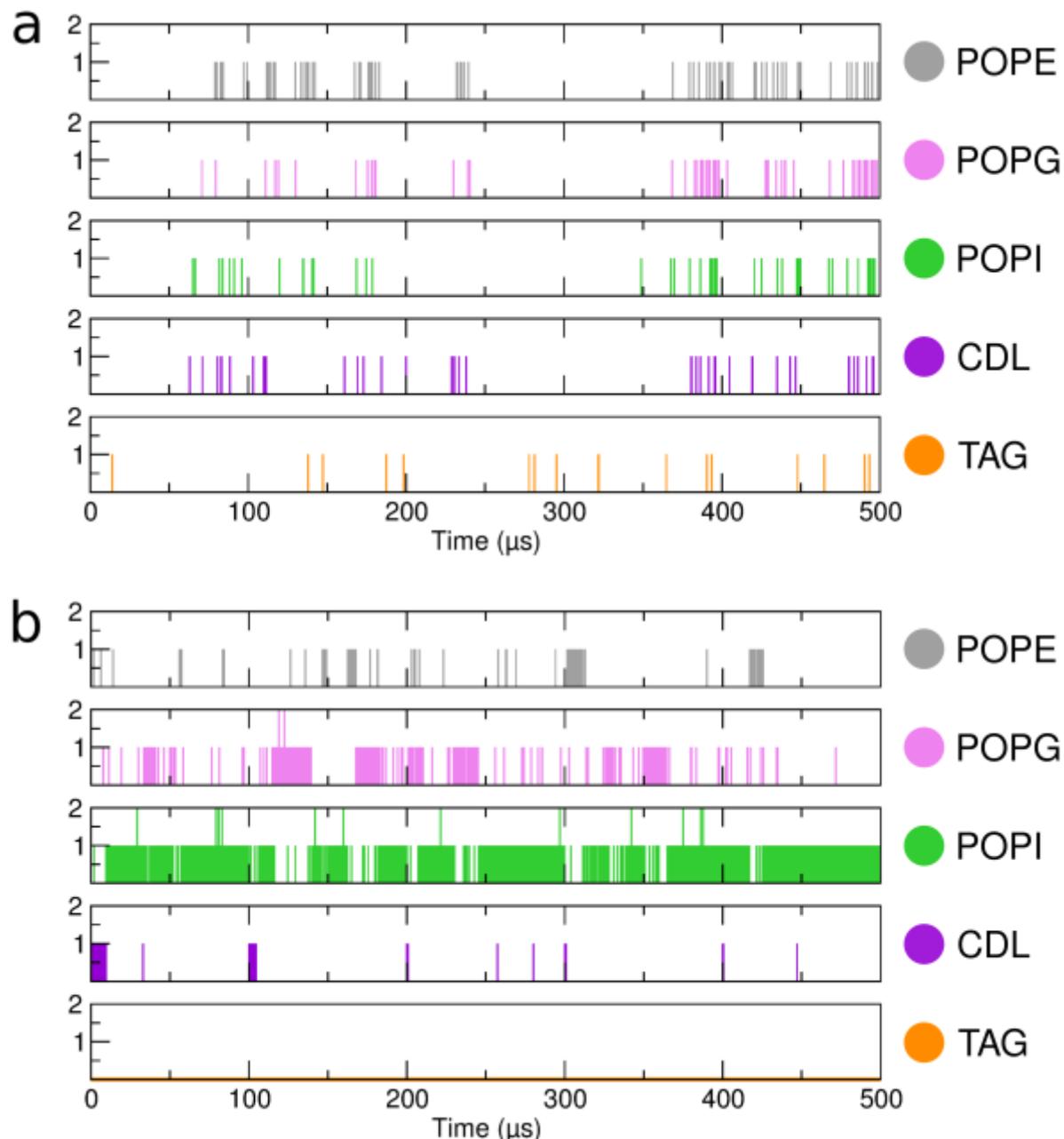
### Lipid interactions in MHAS2168<sup>OUT</sup> and MHAS2168<sup>IN</sup>


Coarse-grained molecular dynamics (MD) simulations of MHAS2168 were performed in both outward-open (MHAS2168<sup>OUT</sup>) and inward-open conformations (MHAS2168<sup>IN</sup>) embedded in a phospholipid bilayer doped with TAGs, mimicking the mycobacterial plasma membrane (see methods; Table S3; Fig. 3a). The MFS fold and the sequence similarity shared with other transporters from the same family, allowed the generation of a structural model of MHAS2168 in the inward open conformation, using PepT<sub>SO2</sub> as template (see methods).

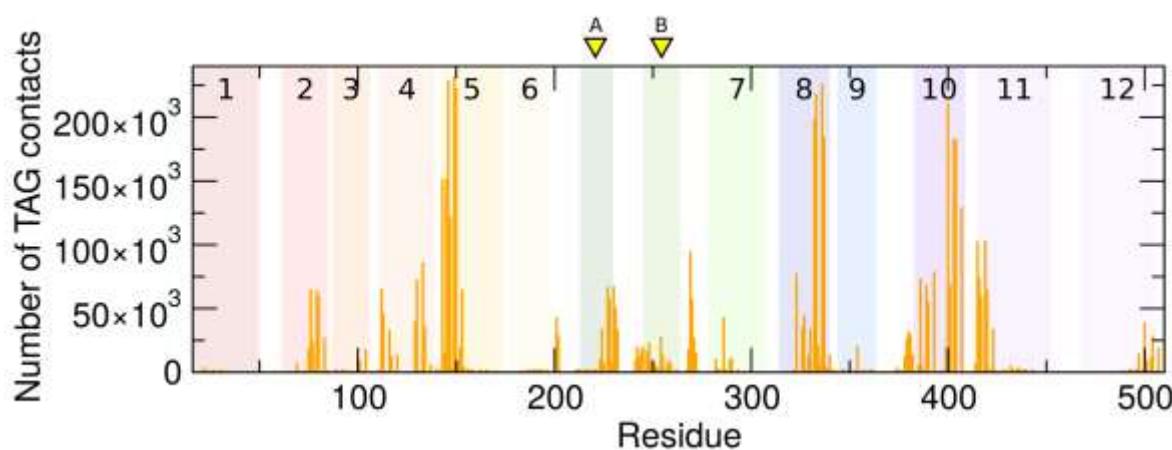
The embedment of the TAGs in the hydrophobic core of the membrane (Fig. 3b) enables them to probe a range of different positions along the transporter TM helices (Fig. 3c). TAGs visit both lateral openings of the transporter with a preference for TM8 and TM10 (Extended Data Fig. 7). Protein-lipid contact analyses show that TAGs are more strongly interacting with MHAS2168<sup>IN</sup> (Extended Data Fig. 7; Table S4), with a particular involvement of the TM4 N-terminus, TM7 N-terminus, TM12 C-terminus and the linker helices A and B.

Concerning the interactions of the transporter with the phospholipids, it is found that MHAS2168 strongly interacts with CDL and POPI lipids, which form an annular lipid belt around the transporter that shields it from other membrane components. Small differences are observed between the MHAS2168<sup>OUT</sup> and MHAS2168<sup>IN</sup> conformations (Extended Data Fig. 7; Table S4). Different phospholipid interactions were found especially for the connecting loop between TM10 and TM11 (residues 409-415) and for the TM11 C-term (Extended Data Fig. 7), where MHAS2168<sup>IN</sup> was found to interact more with POPI than MHAS2168<sup>OUT</sup>.

### TAGs in MHAS2168<sup>OUT</sup> and MHAS2168<sup>IN</sup> central cavities


We further investigated the central cavity and its interactions with TAG during the MD simulations of both conformations. The outward-open conformation cavity volume was estimated to be  $\sim$ 2500 Å<sup>3</sup>, while the inward-open homology model displays a slightly larger cavity and a broader distribution, centred around 2800 Å<sup>3</sup> (Fig. S1).

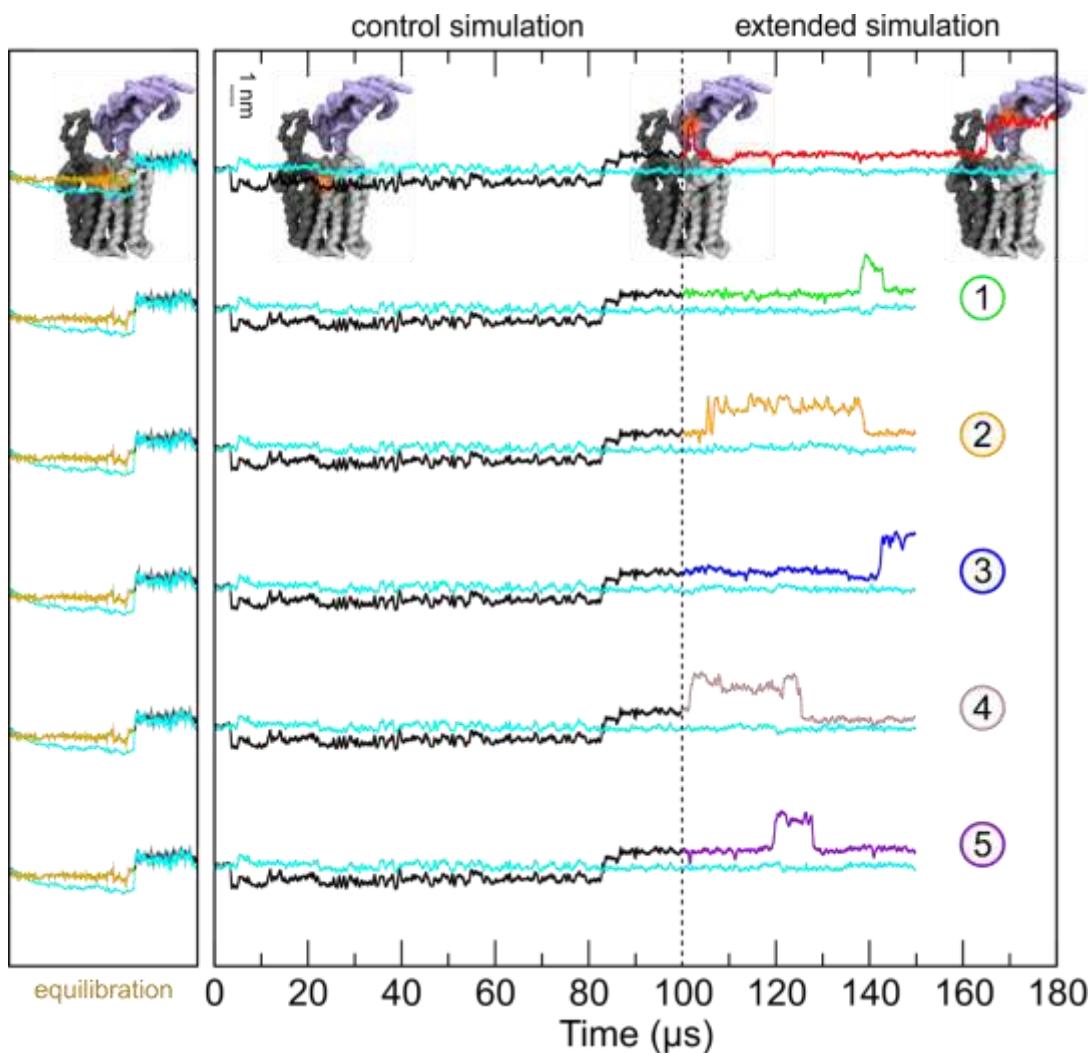



**Figure S1. The main cavity of MHAS2168.** (a) The histograms show the volume of the main cavity encompassed by the N- and C-terminal domains calculated during the MD simulations for the  $\text{MHAS2168}^{\text{OUT}}$  and the  $\text{MHAS2168}^{\text{IN}}$  conformations. (b) Snapshots from the MD simulations with the main cavity and the protein backbone atoms highlighted in purple and white, respectively. Residues in cyan were selected for the cavity calculations (see methods).

Furthermore, we recorded the entrance events of the different lipid species into the main cavity of MHAS2168 during MD simulations (Fig. S2). Apart from a few snorkelling events, in which a TAG molecule probes the periphery of the cavity but does not fully enter, the  $\text{MHAS2168}^{\text{OUT}}$  cavity is little accessed by phospholipids and TAGs. Conversely, for  $\text{MHAS2168}^{\text{IN}}$  multiple entry and exit events were observed for POPG, POPE and especially POPI (Fig. S2), in line with our above results according to which POPI creates an annular belt around the protein. Phospholipid entrance and exit events occur via both lateral openings (i.e., TM5-TM8 and TM2-TM11). However, no TAG molecule entered the cavity in the MD simulations, likely because of the much lower TAG concentration compared to the competing phospholipid species. To probe whether the central cavity can accommodate TAG, we ran five additional MD simulations for  $\text{MHAS2168}^{\text{IN}}$ , where we inserted one TAG molecule into the main cavity from the beginning of the simulations ( $\text{MHAS2168}^{\text{IN-TAG}}$ , see Table S3, Fig. S3). The TAG residence times within the cavity in these 5 simulations are 20, 15, 18, 8 and 74  $\mu\text{s}$ ,

respectively, enabling us to collect a total of 135  $\mu$ s of simulation time that allow one to map the TAG interactions within the cavity (Fig. S3). Especially the TM5 N-terminus and the TM8 C-terminus, where the non-proteinaceous density was found in the cryo-EM structure (Fig. 1a), preferably interact with TAG in the simulations (Fig. S3).




**Figure S2. Mapping TAG and phospholipid entrance from the membrane into the transporter during the MD simulations of MHAS2168.** Number of entrance and snorkeling events of the membrane components within the protein main cavity during the MD simulation of the MHAS2168<sup>OUT</sup> (a) and MHAS2168<sup>IN</sup> (b) systems. An event of entrance/snorkeling was recorded if the phosphate bead or the TAG backbone bead overlap with the cavity volume shown in Fig. S1. All the five independent repeats of 100  $\mu$ s each were concatenated together for clarity.



**Figure S3. MD simulations of inward-open MHAS2168 with TAG initially placed within the main cavity.** Overall protein-TAG contacts (orange) in the 135  $\mu$ s of collected simulation time of MHAS2168<sup>IN</sup> (see text). The transmembrane helices of MHAS2168 are numbered and depicted as rainbow-colored bars. Linker helices A and B are indicated with yellow arrows.

In addition, we studied TAG interactions with the central cavity of MHAS2168<sup>OUT</sup> and its loading process from MHAS2168 to LprG (MHAS2168<sup>OUT</sup>-LprG simulation system, Table S3). To achieve that, a complex of MHAS2168<sup>OUT</sup> and LprG was built, utilizing the ColabFold<sup>4</sup> platform. In these simulations, TAG moved between the hydrophobic cavities of MHAS2168<sup>OUT</sup> and LprG (see description in main text; Fig. 6; Extended Data Fig. 9; Extended Data Video 1).

Initially, the docked TAG was inserted into the transporter with 2 hydrophobic tails pointing upwards (towards LprG) and 1 tail downwards (embedded into the main cavity of MHAS2168, Fig. 6). To probe whether this particular initial configuration could bias the movement of TAG towards LprG, an additional control simulation was carried out in which the TAG molecule was docked with only 1 tail pointing upwards and 2 tails downwards (Fig. S4). In this control simulation, the TAG initially remained in its 2-tails-down configuration for around 80  $\mu$ s, but then spontaneously transitioned to a 2-tails-up configuration until the end of the simulation run at 100  $\mu$ s (Fig. S4). When this control simulation was extended (Fig. S4, red line) or used as a starting point for additional 5 repeat simulations with different starting velocities (Fig. S4, lines from 1 to 5), the TAG was found to be loaded into LprG, akin to the independent simulations having a 2-tails-up configuration at the onset of the simulation (Fig. 6). We thus conclude that the initial configuration of the TAG does not determine the outcome of the simulations, and that at least 2 tails of the TAG need to be first oriented towards LprG for the TAG molecule to be spontaneously loaded into LprG.



**Figure S4. TAG loading into LprG in the control MD simulations of the MHAS2168<sup>OUT</sup>-LprG complex.** A control simulation was carried out for 100 μs, starting with TAG in a 2-tails-down configuration. The black line depicts the z-coordinate of the center of mass of the TAG molecule. The cyan line is the z-coordinate of the average center of mass of the phosphate groups of the upper membrane leaflet. The extended simulation (in red), and the five repeat simulations with different starting velocities (green, orange, blue, grey and purple) are indicated and numbered respectively. The gold line is the equilibration phase (see methods). The models of the MHAS2168<sup>OUT</sup>-LprG complex shown in the top panel indicate the position of the TAG (orange shade).

## References

1. Farrow, M. F. & Rubin, E. J. Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. *J. Bacteriol.* **190**, 1783–1791 (2008).
2. Wood, C. A. P. *et al.* Structure and mechanism of blood–brain-barrier lipid transporter MFSD2A. *Nature* **596**, 444–448 (2021).
3. Hohl, M. *et al.* Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. *Mol. Microbiol.* **111**, 1263–1282 (2019).
4. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat. Methods* **19**, 679–682 (2022).