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Abstract

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of
molecular neuropathology but failed to translate into treatment improvement. This is
largely attributed to the genetic and phenotypic heterogeneity of GBM, which are
considered the major obstacle to GBM therapy. Here, we use advanced human GBM
organoid (LEGO: Laboratory Engineered Glioblastoma Organoid) and provide an
unprecedented comprehensive characterization of LEGO models using single-cell
transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-
proteome analysis. We discovered that genetic heterogeneity dictates functional
heterogeneity across molecular layers and demonstrates that NF1 mutation drives
mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming
is a hallmark of GBM, and several targets and drugs were discovered along this line.
We also provide a genotype-based drug reference map using LEGO-based drug
screen. This study provides novel human GBM models and a research path toward

effective GBM therapy.
Introduction

Oncogenic genetic alteration is a fundamental hallmark of human cancers and has
been utilized to characterize genotype-specific molecular features, which form the
basis for personalized treatment of cancer patients '2. Based on these efforts,
genotype-based personalized cancer treatment options are already available for many
human cancers, i.e., breast cancer, lung cancer, and leukemia '. However, it remains

challenging to expand personalized treatment to most cancer patients 3.

GBM is the most malignant type of primary brain cancer and was one of the first tumor
entities selected for The Cancer Genome Atlas (TCGA) project 5. With the continuous
efforts in genomic analysis of GBM, it has been suggested that GBM is a
heterogeneous group of diseases of different molecular subtypes based on RNA
expression, DNA methylation, or recently via multi-omics analysis 488. Single-cell
RNA-sequencing (scRNA-seq) analysis of human GBM identified intratumoral
heterogeneity of GBM, which provides a single-cell molecular description of human
GBM, it was suggested that the GBM cells are of high plasticity, which may switch
among the molecular phenotypes %'°. However, it must be noted that how tumor
genotype contributes to the molecular phenotype-related plasticity remains unclear,
i.e., NF1 mutation in human GBM is associated with a mesenchymal feature, but this
has not been verified in animal models 4°. And it is much more challenging to perform

in-depth single-cell DNA sequencing. In contrast to the rapid development of molecular
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characterization of GBM, the clinical treatment options for human GBM patients remain
to be neurosurgery, plus radiotherapy and temozolomide(TMZ)-based chemotherapy
. There is a clear gap between the comprehensive molecular description of GBM and

treatment improvement, which need to be highly prioritized for future GBM research.

A genome-based personalized treatment of cancer patients requires a solid
understanding of genotype-specific cancer pathway dependency and actionable target
identification. Model systems of GBM have been utilized to systematically analyze and
compare differences in cancer cells with different mutation combinations. Genetically
modified mouse models have been used to determine the function of selected genes
and identify the cell of origin in brain tumors 2. However, mouse models often do not
represent the molecular pathology of human tumors 3. Patient-derived xenograft (PDX)
models or organoids harbor patient tumor cells. Still, they are limited by complex
genetic background variations, differences in treatment histories, and, most
importantly, the lack of suitable controls 4. Most importantly, the tumor growth
characteristics identified in PDX models were found to be more dependent on the
mouse strain than tumor type '°, suggesting the PDX model may generate many

artificial readouts irrelevant to primary human tumors.

The recent development of organoid technology coupled with gene editing by
CRISPR/Cas9 allows the rapid generation of genetic mutations in human-derived
tissues to model cancer progression 6. Initial attempts were made using induced
pluripotent stem cells (iPSCs)-derived cerebral organoids to generate glioma-like
organoids '7-18, This model provides the opportunity to develop genetically customized
GBM models derived from single iPSC clones. Therefore, a rigorous follow-up analysis

can be performed using this experimental system.

Here we generated a set of iPSC-based human GBM organoid models (LEGO:
Laboratory Engineered Glioblastoma Organoid) based on CRISPR/Cas9 engineered
loss of tumor suppressors, which are frequently mutated in human GBM patients.
Comprehensive analysis of LEGOs demonstrates their great potential in identifying
novel molecular features in cancer cells, providing a path toward personalized

treatment of human GBM.
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Results
Generation of LEGOs with defined genetic mutations

We used human iPSC-derived organoids to dissect the functional consequences of
genetic heterogeneity in GBM (Figure 1A). Using CRISPR/Cas9, we generated a
spectrum of mutation combinations (PT: PTEN"; TP537, PTCC: PTEN”/; TP53",
CDKN2A*; CDKN2B”, PTN: PTEN”; TP537; NF17), which are among the most
frequently mutated tumor suppressors in GBM patients °, in wildtype (WT) iPSCs
express GFP. The knockout of individual genes was confirmed by Western blotting
and sequencing (Figures S1A, S1B). All iPSCs clones grew well except that the PTN
clone showed signs of differentiation, which was reported previously and could be
controlled by MEK inhibitor PD0325901 9. These iPSCs were then differentiated into
organoids with a previously described cerebral organoid protocol 2°. Although starting
from the same number of cells, all the LEGOs grew faster and more extensively than
WT organoids (Figure 1B, 1C), indicating the activation of cell proliferation and growth
pathways following the oncogenic mutations. Interestingly, the size of PT organoids

was the biggest among the three mutant groups (Figure 1C).

The histological analysis showed that the LEGOs exhibited similar structures
compared to the WT organoids, indicated by the expression of SOX2 (SRY-box
transcription factor 2) and TUJ1 (neuron-specific class Ill beta-tubulin) (Figure 1D).
However, all mutant LEGOs show an increased stem/progenitor population (Figure
1D). H&E staining revealed nuclear atypia in LEGOs after more than one month of
culture (Figure S1C), indicating signs of malignant transformation. To investigate
whether the LEGOs are tumorigenic in vivo, we performed xenograft experiments, as
illustrated in Figure 1E. All LEGOs initiated fatal brain tumors upon xenograft (Figure
1F, S1D). The grafted GFP* LEGO cells showed infiltrative and angiogenic growth
patterns (Figure 1G, S1E). Moreover, PTN xenografts exhibited a more infiltrative
growth pattern with tumor cells migrating to the other hemisphere and being tightly
associated with blood vessels (Figure 1G, S1E), suggesting that loss of NF7 results in
a more invasive phenotype, which is a feature of the mesenchymal molecular
phenotype of human GBM. In addition, all grafts expressed markers, like astrocyte
marker GFAP (glial fibrillary acid protein), neural stem cell marker Nestin, and cell
proliferation marker Ki67 (Figure S1F), the tumors also show signs of necrosis, which
is a hallmark for GBM (Figure 1F). These results demonstrate that the LEGO organoids

are GBM organoids.
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ScRNA-seq analysis reveals shared and genotype-specific alterations during

early tumor development

One of the advantages of cerebral organoids is that they contain heterogeneous neural
cell populations and maintain differentiation hierarchies 2, thus can be used to study
cellular heterogeneity and plasticity. To fully characterize the LEGOs on the single-cell
level and to understand how different genetic mutations affect cellular heterogeneity,
we performed scRNA-seq on one- and four-month-old LEGOs. In total, we obtained

results from 70617 cells for further analysis.

We next performed UMAP (uniform manifold approximation and projection) analysis to
visualize cell differentiation trajectory 2'. UMAP of one-month-old LEGOs show two
major lineages (neuron and astrocyte), which was confirmed by the expression of
immature neuronal marker DCX (doublecortin), astrocytic marker FABP7 (fatty acid
binding protein 7) and APOE (apolipoprotein E), and neural stem/progenitor marker
SOX2 (Figure 2A, S2A). The one-month-old WT organoids mainly differentiated toward
the neuronal lineage, whereas the PT and PTCC organoids switched to astrocytic
differentiation (Figure 2A, S2A). The PTN organoids exhibited limited neuronal
differentiation and reduced astrocytic differentiation (Figure 2A, S2A), suggesting a
general blockage of neural differentiation. We also observed increased expression of
neural stem/progenitor markers like SOX2 in all the LEGOs, indicating differentiation
blockage upon loss of tumor suppressors, consistent with staining (Figure 1D, S2A).
Interestingly, PTCC organoids highly express WNT regulators in the glial progenitor
population, suggesting the activation of the WNT pathway upon loss of CDKN2A/2B
(Figure 2B). Surprisingly, the PTN organoids activate several HOX transcription factors
in the stem cell clusters (Figure 2C). The HOX genes have been reported to be
involved in the induction of EMT (epithelial-mesenchymal transition) in other cancers
22 and they are not expressed in normal neural cells (Figure S2B), which highly
suggests that PTN organoids may activate a non-neural transcriptional program to

acquire a more aggressive phenotype.

The scRNA-seq results from four-month-old organoids demonstrate that the PT
organoids are dominated by two major cell populations, one shows high expression of
stem/progenitor cell markers like SOX2 and PAX6 (paired box 6), and the other
express the immature neuron marker DCX and the astrocyte marker FABP7 (Figure
2D), indicating a proneural-like tumor cell feature. PTCC organoids also maintain a
differentiation trajectory towards the FABP7 astrocytic lineage from the SOX2-positive
stem cell cluster (Figure 2E). Strikingly, there are two major differentiation lineages in

PTN organoids; one is the neural lineage, as indicated by the expression of SOX2,
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PAX6, and DCX (Figure 2F), while the other lineage highly expresses collagen genes
and can be divided into two clusters (Figure 2F). The RNA velocity analysis suggested
a possible differentiation hierarchy between the two clusters (Figure 2G), with the
stem-cell-like cluster expressing CD44 (Figure 2H). Moreover, this lineage was
positive for mesenchymal master regulators like STAT3 (signal transducer and
activator of transcription 3), C/EBPB (CCAAT enhancer binding protein beta), RUNX1
(RUNX family transcription factor 1), and FOSL2 (FOS like 2, AP-1 transcription factor
subunit) (Figure 2H) 23. We also found that these cells express unique markers like
PAXT7 (paired box 7) and CHODL (chondrolectin) (Figure S2C), which can potentially

be used to identify these cells in human cancers.

Next, we annotated the cell clusters using reference gene signatures derived from
GBM patient single-cell transcriptome data 242%. The LEGOs contain major tumor cell

populations such as “stem-like”, “proliferating stem-like”, and “differentiated-like” cells
(Figure S2D). Moreover, PT was dominated by the “stem-like” cell population
resembling the proneural subtype (Figure S2E) 2*. PTN showed an increased
proportion of “differentiated-like” cells mimicking the mesenchymal subtype (Figure
S2E) 2. Moreover, we calculated the single cell meta score ° of the mutant organoids
and found that PT organoids were dominated by the NPC-like cells and PTN organoids
were dominated by the MES-like cells (Figure S2F). These results suggest that NF1
mutation drives a mesenchymal-like lineage during organoid development, and it will

be interesting to trace the origin of these cells in the future.

The LEGO models recapitulated critical features of cellular heterogeneity discovered
in human GBM. The advantage that all LEGOs were derived from the exact iPSC clone
with defined mutations allows us to further analyze how genetic heterogeneity
contributes to cellular heterogeneity, which was not possible based on previous
models. We first used t-SNE (t-distributed stochastic neighbor embedding) analysis for
cell cluster analysis of all LEGOs together. There were 26 cell clusters we identified in
one-month-old LEGOs (Figure 2I). Interestingly, we found that many cell clusters were
dominated by cells from a single genotype (clusters 2, 5, 6, 7, 10, 13,17, and 22). In
contrast, the other major clusters contain cells from multiple genotypes (clusters 1, 3,
4, 8,9, 11, 12, 14, and 15) (Figure S2G), suggesting these cells are less dependent
on cell genotypes. We then analyzed major lineage markers for stem cells and
differentiation in the t-SNE plots. SOX2 positive stem cells were distributed to several
cell clusters 1, 2, 7, 8, 10, and 17 (Figure 2J). Lineage marker expression showed that
clusters 8 (mixed by PTN and WT) and 12 (mixed by PT and PTCC) are SOX2 positive
stem cells (Figure 2J). Cluster 3 (mixed by PTN and WT) and 4 (mixed by PT and
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PTCC) were cells that express DCX (Figure 2J). APOE clusters are dominated mainly
by cells of a single genotype (Figure 2J). The influence of genetic mutation on cell
clusters is more pronounced in 4-month-old LEGOs; out of 34 clusters, most of the big
clusters are dominated by cells from single genotypes (Figure 2I, S2H). Lineage
marker expression on the t-SNE plot also suggests that similar lineage still stay close
to each other on the t-SNE plots, but a clear difference was observed between different
genotypes (Figure 2K). These results demonstrate that tumor mutations have a strong
influence on cell phenotypes. However, the stem cell differentiation hierarchy governed

by neurodevelopmental programs still operates during tumor formation.

DNA methylome analysis reveals genotype-dependent progressive changes of

DNA methylation during gliomagenesis

Tumor cell DNA methylation was recently used for the molecular classification of brain
tumors 8. However, how different genetic mutations affect the DNA methylation pattern
in GBM remains largely unclear. We selected the one-, two-, and three-month-old
LEGOs and WT organoids for DNA methylation analysis using an EPIC (850K) DNA
methylation array. A principle component analysis (PCA) suggests that the DNA
methylome of WT organoids changes gradually over time, indicating a maturation
signature of DNA methylation along PC2 (Figure 3A). Interestingly, the one-month-old
PT and PTCC organoids are similar to the WT organoids (Figure 3A), indicating that
these mutations do not lead to immediate dramatic DNA methylome changes. The
PTN organoids differ from PT and PTCC already at one month of age (Figure 3A).
Moreover, all LEGOs showed reduced progression along the maturation axis (PC2)
compared to WT organoids (Figure 3A). This also indicates a sign of differentiation
blockage, consistent with the scRNA-seq results. On the other hand, PC1 exhibits a
gradual but genotype-specific change in DNA methylome (Figure 3A), suggesting
oncogenic mutations induce genotype-specific DNA methylation changes. We then
identified differentially methylated probes (DMP) among all groups at different
developmental stages and found that DMP numbers were significantly different, with
PT organoids showing the lowest and PTN organoids exhibiting the highest (Figure
3B). Interestingly, the methylation level of the mesenchymal subtype was also shown
to be the highest among all three GB subtypes (Figure S3A) 26. The dynamic changes
of DNA methylation in the LEGOs over time demonstrate that the DNA methylome is
actively changing during tumor progression (Figure 3B), including both
hypomethylated and hypermethylated probes, particularly during the early
developmental stage of brain tumors (Figure 3C). However, it remains unclear what

regulates these dynamic DNA methylome changes during tumor development. We
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performed a gene set enrichment analysis (GSEA) on the DMPs located on different
gene features at various stages. There were no enriched hallmark gene sets in PT,
probably due to the low number of DMPs. For the probes located 0-200 bp upstream
of the transcription starting site in three-month-old PTCC organoids, we identified the
enrichment of several hallmark gene sets, such as angiogenesis and interferon alpha
response (Figure 3D). The most apparent difference was observed in the PTN group
with strong activation of EMT and inflammatory signatures in different gene feature
locations at three months and in the 5’UTR at two months (Figures 3D, 3E, S3B), in

line with its infiltrative growth pattern in vivo.

MGMT (O8-methylguanine-DNA methyltransferase) promoter methylation is
associated with better TMZ response in GBM patients ?’. Interestingly, we observed
an increased level of MGMT promoter methylation in PTCC organoids compared to PT
and PTN organoids (Figure 3F) which indicates that PTCC organoids may respond
better to TMZ treatment than PT and PTN organoids. Moreover, unsupervised cluster
analysis demonstrates that different LEGOs can be categorized by human GBM DNA
methylation classification probes 26 (Figure 3G), indicating a human GBM-like

methylation pattern in the LEGO model.

It has been suggested that DNA methylation signatures can be used to determine the
cell of origin in human cancers 2. Our analysis demonstrated that the DNA methylome
is dynamic during tumor development and is dependent on the mutation spectrum.
Therefore, it is crucial to use stable and mutation-independent DNA methylation
patterns as tracers for cancer cell origin. We generated a probe set (Table S1) that
shows no significant changes among all different groups of organoids. Gene ontology
(GO) analysis indicates that these probes are highly enriched for tissue development
and differentiation (Figure S3C). This probe set can be further explored as candidates

to trace brain tumor origins.

Metabolic reprogramming and metabolic heterogeneity during brain tumor

development

One of the hallmarks of cancer cells is the dysregulation of metabolism 2°. However, it
remains unclear how genetic heterogeneity affects the metabolic status of cancer cells.
Therefore, we analyzed the intra- and extracellular metabolome of one- and four-
month-old LEGOs and WT organoids (Figure 4A).

The metabolome of one-month-old organoids is largely similar to each other (Figures
4B, S4A, S4C). However, enrichment analysis of group-specific changes compared to

WT organoids suggests the activation of phospholipid synthesis and glycerol
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phosphate shuttle in LEGOs (Figure 4C), indicated by the increase of DHAP
(dihydroxyacetone phosphate), G3P (glycerol-3-phosphate) and CDP-choline (Figures
4D, S4A). This is consistent with our previous finding that GPD1 (glycerol-3-phosphate
dehydrogenase 1), which converts DHAP into G3P, is specifically expressed in brain

tumor stem cells but not in neural stem cells 3°.

The four-month-old organoids’ metabolome showed a clear difference between
LEGOs and WT organoids (Figure 4B). PT was similar to PTCC, while PTN was very
distinct from the other LEGOs (Figure 4B). Heatmap analysis of intracellular
metabolites demonstrates activation of the glycolysis pathway in LEGOs, indicated by
low levels of glucose and glutamine and high levels of lactic acid, further confirmed by
the medium metabolite data (Figure S4B, S4D, S4E). The TCA (tricarboxylic acid)
cycle metabolites (citric acid, aconitic acid, a-ketoglutarate, succinate, fumarate,
malate, ATP, NAD) were decreased in LEGOs compared to the WT organoids (Figure
4E, S4B, S4F), suggesting a shift toward glycolysis from oxidative phosphorylation,

reminiscent of the Warburg effect.

Metabolites are essential substrates of many epigenetic enzymes 3'. We analyzed
metabolite changes that may explain the DNA methylome changes in the LEGOs.
Serine contributes to methylation via the major methyl group donor S-
adenosylmethionine 32. In one-month-old organoids, the level of serine in the culture
medium was reduced in all LEGOs compared to WT organoids (Figure 4F, S4A, S4C),
and the intracellular level of serine was most significantly decreased in the PTN
organoids (Figure 4F). In contrast, in four-month-old LEGOs, the utilization of serine
was increased in PTCC and PTN, while decreased in PT (Figure 4F, S4B, S4D). This
strongly suggests that serine is consumed by all LEGOs and even more by the PTN
organoids, which is in line with the observed high levels of hypermethylation in one-
and three-month-old PTCC and PTN organoids (Figure 3C). Oxoglutaric acid (a-
ketoglutarate, a-KG) is the substrate of many a-KG-dependent dioxygenases,
including the DNA demethylation enzymes TET1/2/3 and 2-hydoxyglutaric acid (2-HG)
antagonizes the function of a-KG 3'. The level of 2-HG increased in one-month-old
PTN extra- and intracellularly, and accumulated in four-month-old PTCC and PTN
organoids as well as in all LEGO culture media, particularly in the PTN group (Figure
4G). In contrast, the level of a-KG was depleted in all four-month-old LEGOs compared
to the WT organoids (Figure 4E). This further explains the dynamic DNA methylation
changes in LEGOs and supports the hypermethylation pattern of PTN organoids.

Consistent with the results from one-month-old organoids, G3P and CDP-choline

levels are higher in LEGOs at four months of age (Figure 4H), suggesting the mutant
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organoids depend on this lipid metabolism pathway. Regarding genotype-specific
changes, we found that PTN organoids uniquely upregulate the tryptophan metabolism
pathway by consuming and utilizing more tryptophan and producing more kynurenine
(Figure 4l). Kynurenine could be catabolized into NAD to facilitate energy production,
cellular proliferation, and immune suppression 3334, PTN organoids also have high
levels of proline and hydroxyproline in the organoids and culture medium (Figure 4J).
Proline and hydroxyproline are the major amino acid components of collagen proteins
35, Collagen serves as the scaffold to facilitate glioma cell migration, increase the
stiffness of the tumor, and induce an immune suppressive microenvironment 3637 and
elevated levels of hydroxyproline could be indicative of high collagen turnover. In
PTCC organoids, we observed the accumulation of branched-chain amino acids
(valine, isoleucine, and leucine) in both the organoids and the medium (Figure 4K),
indicating an abnormal branched-chain amino acid metabolism. Enrichment analysis
suggests that the Warburg effect is enriched in all LEGOs, with PTCC particularly
showing enrichment of phospholipid biosynthesis, whereas tryptophan metabolism is

among the most enriched pathways in PTN organoids (Figure 4L).

The results above demonstrate distinct metabolic reprogramming events during tumor
development (Figure 4M), and it is evident that genetic mutations determine the
metabolic differences in cancer cells. In addition, some metabolic changes may

regulate the DNA methylome changes.
Lipidomics assay uncovers glycerol lipid metabolism being a hallmark of GBM

The metabolomic analysis identified that the metabolites (DHAP, G3P, CDP-choline)
in phospholipid biosynthesis are strongly associated with GBM development. We
therefore performed lipidomic analysis using the same experimental setup shown in
Figure 4A. The PCA analysis of one-month-old organoids shows that the lipidomes of
LEGOs are different from WT organoids (Figure 5A). This was unlike the metabolome
and methylome results, suggesting that lipidome reprogramming is the pioneering
event upon the loss of tumor suppressors. The heatmap of lipid species indicates both
DG (diacylglycerols) and TG (triacylglycerols) upregulation in all mutant groups (Figure
5B), which further illustrates the consequence of increased DHAP and G3P. This was
further confirmed by enrichment analysis showing that TGs are the most significantly
enriched lipid species in all LEGOs (Figure 5C). In addition, a decrease in ether-linked
phosphatidylethanolamine (O-PE) was observed in the PTCC organoids (Figure 5B,
5C).

10
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We next analyzed the lipidome of four-month-old organoids. PCA was similar to the
four-month-old metabolome PCA, with the leading principal component (PC1)
separating the LEGOs from WT and the second principal component (PC2)
distinguishing PTN from PT and PTCC (Figure 5D). DGs, TGs, and
phosphatidylcholine (PC) were significantly increased in all mutant organoids,
particularly in PTN (Figure 5E, 5F). This, together with the increase of G3P, DHAP,
and CDP-choline, as described above, highlights the importance of TG and choline
metabolism in GBM (Figure 5G). On the other hand, the structural phospholipids (such
as PG, PI, PS, PE, and O-PE) are decreased in mutant organoids (Figure S5A). It is
likely that the increased production of DG, TG, and PC in LEGOs leads to decreased
structural phospholipids as these lipids are derived from the same precursor, G3P.
Ceramide production could be activated under stress conditions by hydrolyzing
sphingomyelin (SM) 3. Consistently, we observed a higher amount of SM in WT, and
abundant ceramides and CDP-choline in all LEGO groups (Figure 5E, 5F, 5G, 4H),
suggesting augmented activation of SM hydrolysis. PTN exhibited significantly higher
ceramide expression than all other groups (Figure 5E), implying a unique mechanism
enhancing ceramide synthesis upon loss of NF1. It was shown that the tryptophan
metabolite kynurenine can directly bind and activate the aryl hydrocarbon receptor
(AHR) 3#3% and the activation of AHR elevates the synthesis of ceramides “%41.
Altogether, the lipidome analysis identified that lipid reprogramming is a pioneering
event during gliomagenesis, and glycerol lipid metabolism is a hallmark of GBM (Figure
5G).

Proteomic/phospho-proteomic analysis identifies actionable targets and

pathways for the genotype-based treatment of GBM.

To search for possible genotype-specific drug targets using the LEGO models, we next
performed proteomic and phospho-proteomic analyses on four-month-old organoids.
Proteome and phospho-proteome PCA plots exhibit high similarity to the metabolome
and lipidome, with a distinct difference between LEGOs and WT organoids, and PTN
shows a more distinct proteome/phospho-proteome profile compared to PT and PTCC
(Figure 6A). However, phospho-proteome provided a better separation between PT
and PTCC (Figure 6A). GSEA analysis of differentially expressed proteins identifies
processes involved in LEGO development (Table S2). In particular, the cholesterol and
lipid pathways are enriched in all LEGOs (Figures 6B, 6C, 6D), consistent with the
metabolomic and lipidomic data. The G2M checkpoint and related stress and mitosis
pathways are enriched in PTCC (Figure 6C), indicating elevated mitosis as a result of

CDKNZ2A/2B deletion. PTN organoids are enriched for negative regulation of immune
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response and SASP (senescence-associated secretory phenotypes) (Figure 6D, S6A).
Additionally, signatures associated with DNA methylation, extracellular matrix
disassembly, as well as several collagen proteins are highly enriched in PTN (Figures
6D, S6B). This is concordant with the observed DNA methylome changes, the in vivo
infiltrative phenotype of PTN tumors, and the proline/hydroxyproline enrichmentin PTN

metabolome, respectively.

RNA expression has been used for the molecular classification of GBM, but little is
known about whether using protein expression as the classifier will yield similar results.
We analyzed our proteome data using established tumor-cell-specific RNA signatures
42 and found that mesenchymal signatures are highly enriched in the PTN organoids
(Figure 6E, S6C). This result, together with the other omics analyses, firmly confirms
that the PTN organoid resembles the mesenchymal subtype of GBM. Furthermore, we
found that the expression of MGMT protein is high in the PTN group, and expression
of IDH1 is increased in PT and PTCC compared to WT, concordant with the
methylation changes (Figure S6D).

To identify possible actionable targets in different subgroups of LEGOs, we utilized a
drug-gene interaction database 43 to identify druggable targets for LEGOs (Table S3).
Collectively, enzymes involved in lipid metabolism enzymes, such as MGLL
(monoglyceride lipase), and FDFT1 (farnesyl-diphosphate farnesyltransferase 1),
could be potential targets for all LEGOs (Figure SG6E); this is in line with the activation
of lipid metabolism in LEGOs. DNMT3A (DNA methyltransferase 3A), SPTLC2 (serine
palmitoyltransferase 2), and cholinesterase (BCHE) could be interesting targets for
PTN (Figure S6E).

The phospho-proteomic data allow the prediction of possible kinases involved in tumor
progression. We used a kinase-target interaction database 44 and Kinase Enrichment
Analysis %° to identify the upstream kinases of the phosphorylated sites (Table S4). PT
organoids showed activation of AKT1 and mTOR, due to the mutation of PTEN (Figure
6F). Surprisingly, the PTCC organoid phospho-proteomic data did not show
enrichment of CDK4/6, which are classic substrate kinases of CDKN2A/2B. Instead,
CDK1/2/7 were activated in addition to mTOR and AKT1 (Figure 6G). In addition to
AKT1 and mTOR, MAPK1, MAPK3 and CDKY7 were upregulated due to NF7 mutation
in PTN organoids (Figure 6H). Using luciferase as a readout for tumor cells in the
LEGO model, we found that PTCC LEGO is more sensitive than the other two to TMZ
(Figure 6J), in line with a higher MGMT promoter methylation status. the mTOR
inhibitors were effective in all LEGOs (Figure 61, 6J, S6F, S6G), consistent with the

kinase enrichment analysis. In contrast, CDK4/6 inhibitors exhibited no growth
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inhibition in all LEGOs (Figure 6J), again concordant with the kinase enrichment
analysis, which indicated that CDK4/6 were either not enriched or only showed low
enrichment compared to other CDKs. On the other hand, MEK1/2 inhibitors were
effective in all groups but most effective in PTN organoids, likely because of the
enhanced activation of MAPKs (Figure 6J). Combination therapy using mTOR and
MEK inhibitors show the most effective inhibition of PT and PTN growth, while CDK4/6
inhibitors compromise mTOR inhibitor effects in PTCC organoids (Figure S6H),
suggesting that CDK4/6 inhibitors should be carefully examined before being
considered for treating GBM patients with CDKN2A/2B mutations. Moreover, we
treated the LEGOs with the CDK inhibitor Zotiraciclib targeting CDK1/2, which was
highly activated in all the mutant organoids, and observed that all LEGOs were highly
sensitive to Zotiraciclib treatment (Figure 6J), suggesting that CDK1/2 are valuable

therapeutic targets in GBM.
LEGO-based drug screening identifies novel drug candidates for GBM therapy

With the goal of generating a genotype-based drug reference map and possibly
identifying new treatment strategies for GBM, we performed a drug screen on 327
drugs containing FDA-approved drugs that could penetrate through the blood-brain
barrier (Figure. 7A, Table S5). All LEGO cells were engineered to express luciferase,
and the bioluminescence signal was used as a readout of cell numbers in the LEGOs.
To select effective drugs, among the drugs that resulted in significant inhibition of
bioluminescence signal (P < 0.05), we only selected drugs that resulted in 50%
inhibition of bioluminescence signal as positive candidates. With this screen, we
identified 42 drugs with therapeutic effects; seven acted on all three genotypes, and
the rest only worked on specific genotypes (Figure 7B, 7C, 7D). We found that EGFR
inhibitors Dacomitinib and Osimertinib inhibit LEGO growth in all genotypes, with a
particularly strong effect on the PTN organoid (Figure 7C, 7D, 7E), suggesting a
strategy of patient enroliment for clinical trials for testing EGFR inhibitors. The Syk
(spleen tyrosine kinase) inhibitor Fostamatinib inhibits all LEGOs, suggesting that Syk
signaling is essential for GBM progression (Figure 7C). Interestingly, we also found
that the schizophrenia drug Aripiprazole also inhibits tumor growth in all LEGOs (Figure

7C, 7F), which implies an alteration of dopamine signaling in GBM.

Most interestingly, we found that Lomitapide, an inhibitor of microsomal triglyceride-
transfer protein (MTTP), inhibits tumor growth in all LEGOs (Figure 7C, 7G). MTTP is
a lipid transfer protein and is essential for the regulation of lipid metabolism. This is in
line with our discovery that glycerol lipid metabolism is a hallmark of GBM metabolism.

Expression of Mttp has highly enriched in our previous ribosome RNA-sequencing
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analysis by comparing mouse neural stem cells (NSCs) and brain tumor stem cells
(BTSCs), its expression is also highly enriched in tumor-bearing mice after TMZ
treatment (Figure 7H) 3. High expression of MTTP also shows a worse prognosis in
GBM patient (Figure 71) %6, and single-cell analysis in published data sets ° suggest
MTTP is more expressed in stem cell or mesenchymal subtype of tumor cells (Figure
7J), which is consistent with our previous observation of activation of glycerol
metabolism in BTSCs 3°. In the Lomitapide treated LEGOs, we found a striking
reduction in the number of proliferation cells and stem cells (Figure 7K, 7L).
Surprisingly, ER (estrogen receptor) modulator Tamoxifen and Bazedoxifene acetate
exhibited selection inhibition of PTN organoid, warranting additional investigation of

ER function in mesenchymal GBM (Figure 7D).

Complete information on treated drugs and outcomes can be found in Supplementary
Table 5. Noteworthily, some drugs that exhibited therapeutic effects on one genotype
may promote the growth of another, which further highlights the importance of genetic
background in directing treatment options. This genotype-based drug reference

provides a basis for the personalized treatment of GBM patients.
Discussion

Our  temporal multi-omics  analysis  (scRNA-seq, DNA  methylome,
Metabolome/Lipidome, and Proteome/Phospho-proteome) covers essential molecular
layers of the cancer cell molecular network. This allows us to discover genotype-
specific molecular changes during tumor development. In Table S6 (supplementary
information), we summarized all major molecular milestones during GBM development
and divided them into shared and genotype-specific milestones. We also list
milestones that can be validated by analysis of different molecular layers. i.e., early
changes during GBM development include the increase of stem cell frequency and
attenuation of neural differentiation. This is accompanied by metabolite changes,
which can also influence epigenetic modifications like DNA methylation. Coherently,
active DNA methylation changes during early tumor development shown by
methylation array data, elevated DNA methylation pathway activity, and low IDH1
expression presented by proteomics data support hypermethylation in PTN, which
could be further confirmed by the decrease of a-KG and increase of 2-HG in the
metabolomic assay. The increase of phospholipid metabolism is an early event, and
this change persists with brain tumor development. Notable genotype-specific features
include a WNT activation in PTCC organoids, ectopic expression of the HOX gene
cluster, and mesenchymal signature in PTN organoids. The MGMT promoter is

methylated in PTCC organoids, and we show that PTCC organoids are sensitive to
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TMZ. It is also important to note that the LEGOs are primarily similar to the WT
organoids at the one-month-old, highlighting that most of the oncogenic changes

occurred during tumor organoid development, not at the iPSC stage.

One fundamental question in cancer biology is which features of cancer cells are
determined by genetic and non-genetic heterogeneity, respectively. This could not be
investigated so far due to the lack of proper models. The genetically defined LEGOs
are initially derived from the exact iPSC clone providing an ideal tool to assess the
contribution of genetic heterogeneity to intratumoral heterogeneity quantitatively. In our
analysis, CDKN2A/2B mutation in PTEN and TP53 deletion background further push
the development of PT organoids in a similar direction, suggesting these mutations
work together and drive similar cancer phenotypes. However, the NF7 mutation
dramatically reprograms the cancer cell phenotypes across all molecular layers, which
will be discussed below. Therefore, the LEGO model can serve as genetic building
blocks of the cancer genome which can be further expanded and used to analyze the
interaction between cancer genetic and non-genetic heterogeneity. Combining LEGOs
to generate fully customized genetically heterogenous organoids is also
straightforward. The scRNA results also demonstrated that genetic mutations have
mutation specific influences on cell phenotypes. Although the stem cell differentiation
hierarchy is largely maintained in all LEGOS. The cellular composition and molecular
phenotype of the lineages in different LEGOs are different from each other. This is
critical information for future interpretation of scRNA-seq results of human GBM patient
tissues, the contribution to cellular heterogeneity from genetic and non-genetic factors
must be clearly demonstrated. Therefore, obtaining mutation information and
considering the genetic heterogeneity within different cell clusters is essential before

claiming they may represent different cell states °.

Another striking observation in our multi-omics analysis is the activation of
phospholipid metabolism throughout LEGO development. Interestingly, this activation
is already noticeable in one-month-old LEGOs, supported by increased DHAP and
G3P. DHAP is the intermediate metabolite of glycolysis and can be converted by GPD1
into G3P, the primary precursor for lipid metabolism. We have shown before that GPD1
is induced explicitly in brain tumor stem cells during brain tumor development and
blocking GPD1 alters tumor lipid metabolism and prolongs the survival of brain tumor-
bearing animals . The increase of DHAP, G3P, and CDP-choline in the metabolomic
analysis and the increase of DG, TG, and PC in the lipidomic analysis in LEGOs
demonstrate that lipid metabolism, particularly the glycerophospholipid metabolism, is

activated during brain tumor development. This is in line with the clinical observation
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that the glycerol level in GBM patients is much higher in tumors compared to normal
tissue in the tumor periphery #7. It was also reported that brain metastasis also
upregulates lipid metabolism 4849, indicating an adaptation of cancer cells to the lipid-
deprived brain environment 4850, For this purpose, brain tumor cells upregulate GPD1
to switch the metabolic flow to lipid metabolism by making use of the glycolysis
metabolite DHAP, which was also reported to be the only sensor metabolite of the
mTOR pathway in glycolysis 5. More importantly, we also discovered that MTTP
inhibitor Lomitapide efficiently blocks LEGO growth, providing another attractive target,
and the drug should be further investigated. Lipid metabolism is likely an emerging

hallmark of brain cancers that should be further investigated.

Major mutations that drive human GBM have been identified via genomic sequencing
45, Interestingly, the major molecular subtypes of human GBM are defined primarily
via RNA expression or DNA methylation pattern 84252 and there is no strong
correlation between genetic mutation and molecular subtypes. NF7 mutation is highly
enriched in the mesenchymal subtype, whereas TP53, PTEN, and CDKNZ2A/2B
inactivation were not enriched in particular subtypes #. Inactivation of Nff and Tp53
leads to brain tumor formation in a mouse model %3. However, whether NF7 mutation
drives mesenchymal GBM remains not experimentally confirmed. Here we showed
that NF1 mutant organoids have many unique features compared to other LEGOs. The
PTN xenograft shows a rather infiltrative growth pattern and high angiogenesis, and
scRNA-seq identified a mesenchymal cell cluster with increased expression of
collagen genes. PTN also produces the immunosuppressant kynurenine and has high
levels of proline and hydroxyproline, which support the high collagen level. Moreover,
PTNs are not sensitive to TMZ treatment because of lacking MGMT methylation and
increased expression of MGMT protein. All these factors fit the mesenchymal features
of human GBM 23 and confirm that NF1 mutation drives the mesenchymal features in
human GBM. The significant differences between PTN tumors and PT/PTCC tumors
suggest that the NF1 mutant GBM is a unique subgroup of GBM, which should be
studied and treated differently.

The LEGO model analysis demonstrates that genetic mutations determine major
molecular consequences. Therefore, the realization of personalized treatment of
human GBM requires knowledge of genotype-specific drug sensitivity information. Our
preliminary treatment of LEGOs demonstrates that different LEGOs respond differently
to drug treatments. This set the foundation for using LEGO-like models to study human
cancer heterogeneity. The results obtained from the LEGOs show an excellent

correlation across different molecular layers, including drug responses. The MGMT
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promoter was found to be highly methylated in PTCC organoids, and the PTCC
organoids respond better to TMZ treatment. In particular, it is unexpected that the
PTCC organoid do not respond to CDK4/6 inhibitors and our phospho-proteome
results suggest CDK4/6 are not activated in the PTCC organoids. This raises concern
about using a CDKN2A/2B mutation as a selection criterion for CDK4/6 inhibitors. The
drug screen we performed also provided precious information on a genotype-based
drug sensitivity map, which can be used for drug candidate selections on personalized
treatment GBM clinical trials. The following steps will further expand the LEGO
genotypes and assemble different LEGOs to build fully customized, genetically
heterogenous organoids, that can be used to investigate clonal evolution, cell
competition, clonal interactions, and combination therapies. Moreover, adding tumor
stromal cells like microglia and T cells will also be interesting, as it will allow

investigations into how genetic heterogeneity determines immune cell behavior.
Materials and methods
Genome editing of iPSCs

Human induced pluripotent stem cells (iPSC) with mEGFP inserted at the safe harbor
locus AAVS1 under CAGGS promoter were purchased from Coriell Institute (New
Jersey, USA, Cat#AICS-0036-006; RRID: CVCL_JM19). All the iPSCs were cultured
in Matrigel (Corning, New York, USA, Cat#354277) coated plates, fed with mTeSR
Plus medium (Stemcell Technologies, Vancouver, Canada, Cat#100-0276) every
other day at 37 °C incubators supplied with 5% CO,. The cells were passaged with
ReleSR (Stemcell Technologies, Cat#05872) as small colonies after reaching 70% -
80% confluency. 3 uM of CHIR99021 (Tocris Bioscience, Minneapolis, USA, Cat#4423)
and 1 uM of PD0325901 (Selleckchem, Houston, USA, Cat#S1036) '° were added to
the culture medium of PTN iPSCs. The cultures were regularly tested for mycoplasma

contamination.

The gRNAs targeting respective tumor suppressor genes were inserted into modified
pX330 plasmids %* containing the puromycin-resistant gene. The electroporation was
conducted with Neon™ Transfection System (Thermo Fisher Scientific,
Massachusetts, USA). Briefly, cells were harvested by four minutes of Accutase
(Sigma-Aldrich, Missouri, USA) treatment at 37 °C and resuspended with R
resuspension buffer containing 15 ug gRNA expression vectors. The electroporation
was conducted for two pulses with 1200 V, 20 ms. The electroporated cells were
cultured in mTeSR Plus medium containing ROCK inhibitor (Stemcell Technologies,

Cat#72304) for 24 hours after the electroporation. Puromycin (2 pg/mL) was added to
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the culture medium and refreshed every 12 hours for two days. The cells were then
seeded at a density of 50 ~ 100 cells per 10 cm dish and expanded for ten days. The
single cell colonies were screened by T7 Endonuclease | (T7E1, New England Biolabs,
Ipswich, USA, Cat#M0302L) assay, and the Sanger sequencing (Eurofins) results
were analyzed with the TIDE webtool %°. The A-tailing PCR products from the
candidate clones were cloned into the pGEM-T vector (Promega, Madison, USA,
Cat#A3600) and sequenced. Then two clones from each mutation combination were
selected and further validated by western blotting. In brief, the protein lysis from the
iPSCs was electrophoresed and transferred onto 0.2 ym PVDF membranes. The
membranes were blocked with 5% non-fat milk for one hour at room temperature (RT)
and incubated with primary antibodies overnight at 4 °C with shaking. The next day,
the membranes were incubated with respective horseradish peroxidase (HRP)
conjugated secondary antibodies for two hours and imaged using ChemiDoc (Bio-Rad,
California, USA) after reacting with HRP substrate. gRNA sequences (5’ to 3’): PTEN,
CAGTTTGTGGTCTGCCAGCT, TP53, GCAGTCACAGCACATGACGG, CDKNZ2A,
GATGATGGGCAGCGCCCGAG, CDKN2B, CTGGCCAGCGCCGCGGCGCEG, NF1,
CCAGGATATATCCAAAGACG. Antibody dilutions: PTEN (Cell Signaling Technology,
Massachusetts, USA, Cat#9559L, RRID: AB_390810), 1:1000; P53 (Thermo Fisher,
Cat#MA512557, AB_10989883) , 1:1000; P15/P16 (Santa Cruz, Texas, USA, Cat#sc-
377412), 1:50; NF1 (DKFZ, Heidelberg, Germany, Cat#DKFZ-NF1-146/29/25 °¢), 1:4;
GAPDH (Cell Signaling Technology, Cat#2118L, Cat#2118L), 1:2000; p-Tubulin (Cell
Signaling Technology, Cat#2128s, Cat#2128s), 1:2000.

Organoid culture

The organoids were generated following previously described protocols 205758 with
minor adaptions. Briefly, on day 0, the iPSCs were dissociated into single cells as
described above and seeded in 96-well ultra-low attachment plates (Corning,
Cat#7007) containing the following medium, 80% DMEM/F12 (v/v, Gibco, Montana,
USA, Cat#11330032), 20% KOSR (v/v, Gibco, Cat#10828-028), 3% ES-qualified fetal
bovine serum (v/v, FBS, Gibco, Cat#10270106), 1% GlutaMAX (v/v, Gibco,
Cat#35050038), 1% MEM-NEAA (v/v, Sigma-Aldrich, Cat#11140050) and 0.7% 2-
Mercaptoethanol (v/v) supplied with 50 uM of ROCK inhibitor and 6 ng/mL of bFGF
(Peprotech, New Jersey, USA, Cat#100-18B). The medium was refreshed on day 3.
On day 5 the culture medium was replaced with DMEM/F12 containing 1% N2 (v/v,
Gibco, Cat#17502048), 1% GlutaMAX (v/v), 1% MEM-NEAA (v/v), and 1 pg/mL
heparin (Sigma-Aldrich, Cat#H3149) and cultured for four days. The EBs were then
embedded in Matrigel and cultured in the following medium, 50% DMEM/F12 (v/v), 50%

18


https://doi.org/10.1101/2023.01.24.525374
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525374; this version posted January 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Neurobasal (v/v, Gibco, Cat#21103049), 0.5% N2 (v/v), 2% B27 without Vitamin A (v/v,
Gibco, Cat#12587010), 0.025% insulin (v/v, Sigma-Aldrich, Cat#19278), 0.35% 2-
Mercaptoethanol (v/v,), 1% GlutaMAX (v/v), 0.5% MEM-NEAA (v/v), and 1%
Penicillin/Streptomycin (v/v) for four additional days in 6 well ultra-low attachment
plates (Corning, Cat#3473). Thereafter, the organoids were cultured on orbital shakers
in culture medium containing 50% DMEM/F12 (v/v), 50% Neurobasal (v/v), 0.5% N2
(viv), 2% B27 (v/v, Gibco, Cat#17504044), 0.025% insulin (v/v), 0.35% 2-
Mercaptoethanol (v/v), 1% GlutaMAX (v/v), 0.5% MEM-NEAA (v/v), 1% Antibiotic-
Antimycotic (v/v, Gibco, Cat#15240096) and 0.4 mM L- Ascorbic Acid (Sigma-Aldrich,
Cat#A4544). The medium was exchanged every two to three days until sample
collection. 3 yM of CHIR99021 and 1 uM of PD0325901 '°® were added to the PTN
culture for the first 5 days. Widefield images for the organoids were taken by the Cell
Observer (Zeiss, California, USA).

Luciferase labeling of iPSCs

HEK293T cells were cultured with IMDM (Gibco, Cat#31980030) supplied with 10%
FBS (v/v, ATCC, Cat#30-2020) at 37 °C incubators supplied with 5% CO, and
passaged with Trypsin/EDTA (Gibco, Cat#15400054). For lentivirus production, 5 x
106 cells were seeded in 10 cm dishes and co-transfected with 2 ug envelope plasmid
pMD2.G, 2 ug packaging plasmid psPAX2, and 4 ug luciferase (Luc2) expressing
vector pHHLVX-EF1a-Luc2-puro the next day. DNA vectors were mixed with OptiMEM
(Gibco, Cat#31985062) to a total volume of 250 pL, and 3x DNA volume
polyethyleneimine (PEI, 1 mg/mL) was diluted in OptiMEM to a total volume of 250 pL,
respectively. The two mixtures were then combined, thoroughly mixed, and incubated
at RT for 15 minutes before being dropwise applied to the HEK293T cells. The virus
particles were collected 24 hours and 48 hours after transfection and concentrated with
Lenti-X™ Concentrator (Takara, California, USA, Cat#631232). The pellets were then
resuspended with PBS, aliquoted, and stored at -80 °C. The iPSCs were infected with
the lentivirus, and positive clones were selected by bioluminescence imaging (BLI) with
IVIS Lumina Il /n Vivo Imaging system (PerkinElmer, Waltham, USA). Ten Luc2
positive clones were pooled to maximize the labeling rate and minimize the colony

effect.
Sample collection and cryosection

The organoids were fixed in 4% PFA for 20 minutes to 1 hour at 4 °C and emerged in
30% sucrose (w/v) overnight at 4 °C to dehydrate the tissue. The next day, the

organoids were embedded in Gelatin/Sucrose solution and froze on dry ice.
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Gelatin/Sucrose solution was prepared by dissolving 7.5% gelatin (w/v) in 10%
sucrose (w/v) at 37 °C. The embedded samples were stored in sealed plastic bags in
a -80 °C freezer. Sections were collected and dried for one hour at RT before storing
at -80 °C.

Hematoxylin & Eosin (H&E) staining

The paraffin sections were deparaffined with the following procedure: 2x 5 minutes
Xylene, 2x5 minutes 100% Ethanol, 2x 5 minutes 95% Ethanol, and 5 minutes 70%
Ethanol. The sections (cryosections or deparaffined sections) were rehydrated in
ddH-O for 5 minutes, stained in Hematoxylin for 1.5 minutes, and rinsed for 5 minutes
under running tape water. 0.1% Eosin was applied for 1.5 minutes, washed by dipping
in water, and differentiated in 70% Ethanol for 3 minutes. Dehydration was done with
the following changing of buffers: 3 minutes 85% Ethanol, 2x 5 minutes 100% Ethanol,
2x 5 minutes Xylene. The sections were mounted with Eukitt and imaged with Axioscan
(Zeiss) or Tissue FAXS Plus (Tissue Gnostics, California, USA).

Immunofluorescence (IF) and Immunohistochemistry (IHC)

For IF staining, the sections were incubated with primary antibodies overnight at 4 °C
after deparaffinization (for paraffin sections only), rehydration, antigen retrieval, and
blocking. The sections were then incubated with respective secondary antibodies
conjugated with AlexaFluor (Thermo Fisher Scientific, AF488, Cat#A11039, RRID:
AB_2534096; AF555, Cat#A31572, RRID: AB_162543) or CF® (633, Sigma-Aldrich,
Cat#SAB4600128) dyes and DAPI for two hours at RT in the dark. The slides were
mounted with Prolong gold (Invitrogen, California, USA, Cat# P36930) and imaged

with Axioscan or Tissue FAXS Plus.

For IHC staining, the sections were first deparaffinized, rehydrated and antigen
retrieved. Then they were treated with 3% H.O, (v/v) for 10 minutes to quench the
endogenous peroxidase before blocking and primary antibody incubation. On the
second day, the sections were incubated with HRP conjugated secondary antibodies
for two hours at RT. Then the sections were treated with Streptavidin HRP for 10
minutes and visualized by DAB substrate application (Abcam, Waltham, USA,
Cat#ab64238). The cell nuclei were counterstained with Hematoxylin, then dehydrated
and mounted as the H&E staining. For BrdU staining, the sections were treated with
2N HCI for 5 minutes at 37 °C before blocking. The slides were imaged with Axioscan
or Tissue FAXS Plus.

Primary antibody dilutions: Ki67 (Cell Signaling Technology, Cat#9129, RRID:
AB_823664), 1: 400 for IF, 1:1000 for IHC; GFP (Abcam, Cat#ab13970, RRID:
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AB_300798), 1: 500 for IF; GFAP (Cell Signaling Technology, Cat#3670, RRID:
AB_561049), 1: 1000 for IHC; BrdU (BD Biosciences, New Jersey, USA, Cat#347580,
RRID: AB_10015219), 1: 500 for IHC; Nestin (Cell Signaling Technology, Cat#33475,
RRID: AB_10015219), 1: 200 for IF, 1:1000 for IHC; SOX2 (Abcam, Cat#ab97959,
RRID: AB_2341193), IF 1: 500; Tubulin B3 (TUJ1) (Biolegend, California, USA,
Cat#801202, RRID: AB_10063408), IF 1: 1000.

Mouse orthotopic xenograft

Female NOD/SCID mice were purchased from Shanghai Jihui Laboratory Animal Care
Co.,Ltd (Shanghai, China) and housed in the Animal Facility at the National Facility for
Protein Science in Shanghai. All mouse experiments were conducted under Shanghai
Institutional Animal Care and Use Committee (IACUC) guidelines and an approved
IACUC protocol of ShanghaiTech University (#20201208001).

Single cells dissociated from the 45-day-old mutant organoids induced from Luc2+
iPSCs (PT, PTCC, PTN) were orthotopically injected into the right striatum of 4- to 5-
week-old female NOD/SCID mice. Briefly, organoids were cut into small pieces with
scalpels and digested with the Neural dissociation kit (P) (Miltenyi, Bergisch Gladbach,
Germany, Cat#130-092-628) following the manufacturer’s protocol. 5 x 10° cells were
resuspended in 2 yL HBSS (Gibco, Cat# 14170088) and stored on ice. The mice were
anesthetized with 0.15 %o tribromoethanol (Sigma-Aldrich, Cat#T48402), and the cells
were injected at the position 2 mm to the right lateral bregma and 3 mm deep with a
flow of 0.2 yL/min utilizing a 10 pL precision micro syringe (World Precision
Instruments, Florida, USA) with a 34-gauge needle. Mice were checked daily for signs
of distress, including continuous weight loss or neurological disorders (such as
hydrocephalus or impaired motor skills), and sacrificed with CO, as soon as they

showed related symptoms. The brains were collected for histological analysis.
Single-cell RNA sequencing and data analysis

The single-cell RNA sequencing libraries were generated from one- and four-month-
old whole organoid dissociations using Chromium Single Cell 3' Kit v3.1 (10x
Genomics, California, USA). One-month-old organoids were treated with Cell
Recovery Solution (Corning, Cat#354253) for 20 minutes at 4 °C to remove the
surrounding Matrigel, and 4-month-old organoids were cut into four pieces and washed
with DPBS (Gioco, Cat# 14190144) for three times to remove dead cells from the inner
core before cell dissociation with the Neural dissociation kit (P). After the dissociation,
the single cell suspensions were filtered with a 100 ym cell strainer (Gibco) followed
by 70 ym, and 40 ym Flowmi® cell strainers (Fisher Scientific, Cat#BAH136800070-
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50EA, Cat# BAH136800040-50EA). An equal number of cells from three separately
digested organoids were pooled and loaded onto the 10X Genomics microfluidics chip.
The libraries were prepared according to the manufacturer’s protocols and sequenced
using the NovaSeq 6000 Paired-End S1 kit (lllumina, California, USA) by the NGS
Core Facility of the German Cancer Research Center (DKFZ).

Raw RNA-seq reads were aligned to human genome hg19 (Ensembl v75) with Cell
Ranger (v3.1.0) ° with non-default parameter “--expect-cells=10000". Data from WT,
PT, PTCC, and PTN organoids at one- and four-month-old were aligned separately.
Raw reads in each condition were analyzed with Seurat (v3.1.5) €. Briefly, cells with
the number of features in the quantile range of 5% and 95% in populations, as well as
with less than 10% of reads aligned to mitochondrial genes, were used for downstream
analysis. We used 75 principal components for dimension reduction, cluster
identification, and low-dimension projections. To perform RNA velocity analysis, the
splicing information of cells was calculated for each organoid separately with velocyto
(v.0.17.17) ¢'. We generated the one- and four-month data by concatenate results
across conditions. Looms were converted to h5ad files integrating cell annations and
UMAP/t-SNE embedding. RNA velocity was estimated with the stochastic model with
generated h5ad files as input to scvelo (v0.2.2) 62, The tumor cell state was annotated
by mapping the cluster gene signature to the reference cell state signatures 2% with
Fgsea R package 83, the signature with the smallest P value was chosen as annotation,
in the case when the P values were the same, the enrichment score and the gene
expression was evaluated to determine the cluster annotation, the cluster remained
unmapped if there was no significantly enrichment cell state. The tumor cell meta-

module score was calculated with the scallop R package °.
DNA methylation array and data analysis

The organoids were cut into four pieces and washed with DPBS 3 times to remove the
dead cells. The DNA for one-, two- and three-month-old organoids from each genotype
was extracted with DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany, Cat# 69504)
following the manufacturer's protocol. DNA methylation array analyses were then
performed with Infinium Methylation EPIC BeadChip Kit (lllumina) according to the
manufacturer’s instructions by the microarray unit of the DKFZ Genomics and

Proteomics Core Facility.

The DNA methylation EPIC array data were processed with the CHAMP R package %
following the recommended pipeline. A total of 740031 probes were kept for analysis

after filtering and normalization. The PCA plot was drawn with the Factoextra R
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package. Differentially methylated probes (DMP) were identified for PT vs. WT, PTCC
vs. WT, and PTN vs. WT at different time points. The differential methylation level of
over-methylated and under-methylated probes was calculated by dividing the number
of DMP by the total number of probes. The mean delta beta value of all the DMPs
localized on specific gene features was used to rank the genes for gene set enrichment
analysis (GSEA) © by the Fgsea R package 3. Methylation clustering was performed
based on previously identified methylation classification probes 26. The MGMT
methylation level was calculated by the MGMT-STP27 logistic regression model using
the M values of two probes (cg12434587 and cg12981137) 66, and the M values were
calculated by log transformation of the beta values (M = logz(beta/(1-beta)) 7. The
gene ontology analysis of the stable probes was performed with the clusterProfiler R

package ©8.
Metabolome and lipidome sample processing and data analysis
Sample collection

We performed metabolome and lipidome profiling on one- and four-month-old
organoids (five samples in each group) and corresponding culture medium (five
samples in each group). Six organoids were transferred to each 6-well-plate well
containing 3 mL culture medium and conditioned for two days at 37 °C with 5% CO:
on orbital shakers. Blank medium control was prepared by incubating fresh medium
under the same condition without organoids. Three organoids were quickly washed
with 154 mM ammonium acetate on ice and collected as one sample, and 300 uL
medium was collected from each well. All the samples were snap frozen in liquid

nitrogen and stored at -80°C before extraction.
Organoid extraction (water-soluble metabolites and lipids)

The organoid samples were homogenized with Mixer Mill (Retsch, Haan, Germany)
and ceramic beads at maximum frequency for two to four minutes in pre-cooled racks
after adding ice-cold methanol/H20 (4:1, v/v, 500 uL per 40 mg tissue) with internal
standards (4 uM lamivudine, 4 yM D4-glutaric acid, 4 yM D8-phenylalanine, and 16 pl
Splash Lipidomix per 40 mg tissue). 500 uL of homogenate was then collected and
extracted by applying 60 uL 0.2 M HCI, 200 pL chloroform, 200 uL chloroform, and 200
ML H2O consecutively with vortex. The extracts were spun down at 16000 g for ten
minutes, and the upper phase (water-soluble metabolites) was evaporated for 30
minutes at 35°C under nitrogen and dried in SpeedVac (Eppendorf, Hamburg,

Germany) at 15 °C overnight. The lower phase (lipids) was evaporated to dryness at
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45 °C under nitrogen. The interphase was used to determine the protein concentration

with the BCA assay. Samples were stored at -80 °C.
Culture medium extraction for water-soluble metabolites

The water-soluble metabolites in the culture medium were extracted with RP18 SPE
columns (Merck, Darmstadt, Germany, Cat#102014). Briefly, 50 yL medium was
mixed with 50 yL H2O and 400 pL methanol/acetonitrile (5/3, v/v) containing internal
standards (4 yM D4-glutaric acid, 4 uM D8-phenylalanine), vortexed and ultrasound
for three minutes. The supernatants were then filtered through the RP18 SPE columns
(activated by elution of 1 mL acetonitriie and equilibrated by elution 1 mL
methanol/acetonitrile/H20 (5/3/2, viviv) before usage) after centrifugation (5 minutes,
16000 g, 4 °C). The eluents were collected and mixed with 400 pL of
methanol/acetonitrile/H2O (5/3/2, viviv). The mixtures were vortexed, ultrasound,
centrifuged, and filtered as before and the eluent was collected and evaporated in

SpeedVac overnight at 15 °C. Samples were stored at -80 °C.
Culture medium extraction for lipids

The lipids in the culture medium were extracted with methanol and chloroform. Briefly,
200 pL medium sample was mixed with 800 uL methanol containing internal standards
(6 uL Splash Lipidomix). 120 pL 0.2 M HCI, 400 pL chloroform, 400 pL chloroform, and
400 pL H>O were added to the mix consecutively and vortexed. The lower phase of
the spun-down samples was collected with a 200 yL micro syringe (Hamilton, Reno,
USA) and evaporated to dryness at 45 °C under nitrogen. Samples were stored at -
80 °C.

LC-MS analysis of water-soluble metabolites

Water-soluble metabolites from organoid and culture medium samples were dissolved
in 200 pI 5 MM ammonium acetate (in 75% acetonitrile (v/v)) before loading to LC/MS.
LC-MS analysis was performed on an Ultimate 3000 HPLC system (Thermo Fisher
Scientific) coupled with a Q Exactive Plus MS (Thermo Fisher Scientific) in both ESI
positive and negative mode. The analytical gradients were carried out using an
Accucore 150-Amide-HILIC column (2.6 ym, 2.1 mm x 100 mm, Thermo Fisher
Scientific) with solvent A (5 mM ammonium acetate in 5% acetonitrile) and solvent B
(5 mM ammonium acetate in 95% acetonitrile). 3 yl sample was applied to the Amide-
HILIC column at 30°C, and the analytical gradient lasted 20 minutes. During this time,
98% of solvent B was applied for one minute, followed by a linear decrease to 40%
within five minutes and maintained for 13 minutes before returning to 98% in one

minute and appended with a five-minute equilibration step. The flow rate was
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maintained at 350 yL/min. The eluents were analyzed with MS in ESI positive/negative
mode with ddMS2. The full scan at 70k resolution (69-1000 m/z scan range, 1e6 AGC-
Target, 50 ms maximum Injection Time (maxIT)) was followed by a ddMS2 at 17.5k
resolution (1e5 AGC target, 50 ms maxIT, 1 loop count, 0.1 s to 10 s apex trigger, 2e3
minimum AGC target, 20 s dynamic exclusion). The HESI source parameters were set
as 30 sheath gas flow rate, 10 auxiliary gas flow rate, 0 sweep gas flow rate, spray
voltage: 3.6 kV in positive mode, 2.5 kV in negative mode, 320 °C capillary temperature,
and the heater temperature of auxiliary gas was 120 °C. The annotation of the
metabolites was performed using the EI-Maven software (Elucidata,

https://www.elucidata.io/el-maven) with an offset of + 15ppm.

LC-MS/MS analysis of lipids

The lipids from the organoid and culture medium samples were dissolved in 100 pl of
isopropylalcohol (iPrOH) before loading. The analytical gradients were carried out
using an Accucore C8 column (2.6 ym, 2.1 mm x 50 mm, Thermo Fisher Scientific)
with solvent A (acetonitrile/H.O/formic acid (10/89.9/0.1, v/v/v)) and solvent B
(acetonitrile/iPrOH/H,O/formic acid (45/45/9.9/0.1, v/viv/v)). 3 ul sample was applied
to the C8 column at 40°C, and the analytical gradient lasted for 35 minutes. During this
time, 20% of solvent B was applied for two minutes, followed by a linear increase to
99.5% within five minutes and maintained for 27 minutes before returning to 20% in
one minute and appended with a five-minute equilibration step. The flow rate was
maintained at 350 yL/min. The full scan and ddMS2 parameters were the same as the
analysis of the water-soluble metabolites, except the scan range were adjusted to 200-
1600 m/z. The HESI source parameters were also adapted with a 3-sweep gas flow
rate and a 3.2 kV spray voltage in positive and 3.0 kV in negative mode. Peaks
corresponding to the calculated lipid masses (x 5 ppm) were integrated using EI-Maven

software.
Metabolome and lipidome data analysis

Two of the four-month-old organoid samples (one in the PT group and one in the PTN
group) were removed from downstream analysis due to the low signal intensity of the
internal standards. For organoid sample normalization, the intensity of each target was
normalized to respective internal standards (positive/negative standards for
metabolites, lipid class standards for lipids) and the sample protein concentration. The
intensities of medium samples were subtracted by the median of the blank medium
before normalizing to internal standards and protein concentrations to visualize the

changes driven by organoid metabolism. The metabolomics data was further
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normalized by variance stabilization normalization (VSN) with the VSN R package ©°
and significant pathways in the Small Molecule Pathway Database (SMPDB) were
identified by the quantitative enrichment analysis with MetaboAnalystR 7°. The
lipidomics data were further normalized by quantile normalization with the Limma R
package 7', and the enrichment was calculated by comparing the structural similarities
with ChemRich 72.

Proteome and phospho-proteome sample processing and data analysis
Sample preparation

The proteomics and phospho-proteomics samples (five samples in each group) were
prepared according to a previously published protocol with adaptations 73. Briefly, cell
pellets were resuspended with lysis buffer (100 mM Tris-HCI pH 8.5, 7 M Urea, 1%
Triton, 10 U/mL DNase | (, 1 mM magnesium chloride, 1% benzonase, 1 mM sodium
orthovanadate, phosphoSTOP phosphatases inhibitors, complete mini EDTA free
protease inhibitors) and lysed by sonication. Cell debris was removed by 1.5 hours of
17000 g centrifugation at 4 °C. 1% benzonase was added to the supernatant, followed
by incubation at RT for two hours. Protein concentration was determined by the
Bradford assay. Proteins were precipitated using chloroform/methanol 74, and the
pellets were resuspended (8 M Urea, 100 mM NaCl, 50 mM triethylammonium
bicarbonate (TEAB), pH 8.5) and reduced in 10 mM dithiothreitol (DTT) for one hour
at 27 °C, then alkylated by 30 mM lodoacetamide for 30 min at RT in the dark and the
reaction was quenched by adding additional 10 mM DTT. Samples were subsequently
digested by Lys-C at an enzyme: protein ratio of 1:100 for four hours at 30 °C, diluted
with 50 mM TEAB to a resulting Urea concentration of 1.6 M, and further digested with
Trypsin overnight at 37 °C in an enzyme: protein ratio of 1:50. Digestion was stopped
by acidification using 0.02% trifluoroacetic acid (TFA, v/v). Digested peptides were
desalted using C18 SepPack Cartridges (Waters) and resuspended in 0.07% TFA (v/v)
in 30% acetonitrile (v/v) and fractionated by on-column FE3*- Immobilized Metal lon
Affinity Chromatography (IMAC) enrichment on an Ultimate 3000 LC system using the
method described previously 5. The two resulting fractions per sample, containing
either unphosphorylated or phosphorylated peptides, were desalted by StageTips 6.
Before LC-MS/MS analysis, the dry peptides were resolved in 50 mM citric acid and
0.1% TFA.

LC-MS/MS analysis of proteomics
LC-MS/MS analysis was carried out on an Ultimate 3000 UPLC system directly

connected to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific).
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Peptides were online desalted on a trapping cartridge (Acclaim PepMap300 C18, 5
um, 300A wide pore, Thermo Fisher Scientific) for three minutes using 30 uL/min flow
of 0.05% TFA in water. The analytical multistep gradient was carried out using a
nanoEase MZ Peptide analytical column (300A, 1.7 ym, 75 um x 200 mm, Waters)
using solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in
acetonitrile). A total of 150 minutes of LC-MS/MS analysis time was used per sample.
The analytical step of the gradient was 134 minutes, during this time, the concentration
of B was linearly ramped from 4% to 30% (2% to 28%, for phospho-peptides), followed
by a quick ramp to 78%, and after two minutes the concentration of B was lowered to
4% (2% for phospho-peptides) and a 10 min equilibration step appended. Eluting
peptides were analyzed with the mass spectrometer using data-dependent acquisition
(DDA) mode. A full scan at 120k resolution (380-1400 m/z, 300% AGC target, 45 ms
maxIT) was followed by up to 2 seconds of MS/MS scans. Peptide features were
isolated with a window of 1.4 m/z (1.2 m/z for phospho-peptides) and fragmented using
26% NCE (28% NCE for phospho-peptides). Fragment spectra were recorded at 15k
resolution (100% AGC target, 22 ms maxIT; 200% AGC target, 54 ms maxIT for
phospho-peptides). Unassigned and singly charged eluting features were excluded
from fragmentation, and dynamic exclusion was set to 35 seconds (10 seconds for

phospho-peptides).
Target identification and data analysis

Data analysis was carried out by MaxQuant 7 (version 1.6.14.0) using an organism-
specific database extracted from Uniprot.org under default settings. Identification FDR
cutoffs were 0.01 on the peptide level and 0.01 on the protein level. For the phospho
enriched fraction, PTM was set to True and Phospho (STY) was added as variable
modification. The full proteome samples were given a separate parameter group with
the default variable modifications. The match between runs (MBR) option was enabled
to transfer peptide identifications across RAW files based on accurate retention time
and mass-to-charge ratio. The fractions were set in a condition that MBR was only
performed within phospho enriched and full proteome and within each condition. The
full proteome quantification was done based on the MaxLFQ algorithm 78. A minimum
of two quantified peptides per protein was required for protein quantification. LFQ, and
phosphosite intensities were filtered for target groups with a non-zero intensity in 70%
of the samples of at least one of the conditions and normalized via VSN . For missing
values with no complete absence in one condition, the R package missForest 7° was
used for imputation. The missing values that were completely absent in one condition

were imputed with random values drawn from a downshifted (2.2 standard deviations)
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and narrowed (0.3 standard deviations) intensity distribution of the individual samples
80  The significance for each target was then calculated with Student's t-test and

adjusted with Benjamini-Hochberg method.

The protein abundances of GB subtype signature genes 42 were plotted, and the
enrichment P value was calculated with the “ssgsea.GBM. classification” R package
42, Enrichment analysis of the full proteome was carried out with the GSEA software
(NIH Broad Institute, version 4.2.3) on Hallmark, KEGG, Reactome, and GO biological
process gene sets. Potential druggable targets were identified by mapping the
significantly differentially expressed proteins (P adjusted < 0.05 and foldchange (FC) >
1) to a drug-gene interaction database DGIldb 43, and the combinations with an
interaction group score more than 5 were kept. The upregulated phospho-sites (FC >
1) were mapped to a kinase/substrate interaction database 4 to identify upstream
kinases, and the P value for each kinase was calculated by Kinase Enrichment
Analysis °. The interactions were visualized by Cytoscape 8! (version 3.9.1), and the

largest subnetwork was shown in the figure.
Organoid drug screen

Drug screens on several selected kinase inhibitors (Sellekchem), TMZ (Sigma), one
library containing FDA approved drugs that can penetrate through blood-brain barrier
(269 drugs from TargetMol, Massachusetts, USA), and one library containing drugs
targeting the possible targets identified in omics analysis (58 drugs from
MedchemExpress, New Jersey, USA). A list of drug information can be found in

Supplementary Table 5.

For drug screening, the organoids generated from Luc2+ iPSCs were cultured with the
culture medium containing kinase inhibitors (5 days, 10 uM, applied daily), TMZ (6
days, 100 uM, applied every other day), drug libraries (6 days, 10 uM, applied every
other day) or DMSO vehicle on the orbital shakers at 37 °C with 5% CO.. BLI was
performed before drug administration to one (for daily administration) or two (for every
other day administration) days after the last dose. For BLI, the organoids were
incubated with 150 pyg/mL D-luciferin in a 37 °C incubator supplied with 5% CO- on the
orbital shakers for 15 minutes and then imaged with IVIS or Quick View 3000 (Bio Real,
Salzburg, Austria). To assess the treatment effects, the BLI signals were normalized
to the DMSO control measured on the same day, then compared to before treatment.
Drugs with a P value less than 0.05 and a signal drop of more than 15% were

considered effective. In addition, 100 yM BrdU (Sigma-Aldrich) was applied to the
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culture medium after the final imaging and cultured for 2 hours, and the samples were

collected and stained as described above.
Quantification and statistical analysis

All the data analysis was performed with R (version 4.1.2), Graphpad Prism 8 and
Microsoft Excel. The 2D areas of the organoids were measured with ImagedJ (NIH) and
the comparison was carried out with two-way ANOVA. For cell number quantification,
positive cells were manually counted using the cell counter function in Imaged. Group
comparisons of Kaplan-Meier survival analysis of xenografted mice were calculated
with Log-rank test. Students’ t-tests were applied when comparing variables between
two groups (paired t-test for drug treatment and heteroskedastic for the rest). N
numbers for each experiment can be found in the corresponding figure legend. All data
values were presented as mean * SEM and the P values are represented as follows:
¥ P < 0.0001, *** P<0.001, ** P<0.01, * P<0.05, and P > 0.05 is recognized as

non-statistically significant (ns).
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Figure 1. Generation and histological characterization of LEGOs with defined genetic mutations
(A). Schematic illustration of experimental procedures in this study.

(B). Representative images showing the morphology of organoids at different ages.

(C). Organoid growth curves. P values of the comparison between different groups of organoids were
calculated by Two-way ANOVA. Data are represented as mean + SEM for quantifying the 2D area of at
least 65 organoids from at least four independent batches at each time point.

(D). Representative immunofluorescent staining images of 1-month-old organoids stained with SOX2 and
TUJ1. White circles show rosette-like structures. Scale bars, 50 ym.

(E). Schematic diagram illustrating mouse xenograft workflow.

(F). Representative H&E staining images of brain tumors in mouse xenografts. “n” in the enlarged image
marks necrotic areas. Scale bar, 1000 um for the overview, and 100 ym for insets

(G). Representative immunofluorescent images of the tumor-infiltrating area stained with GFP and CD31.
Note a strong association between GFP (green) and CD31(magenta) -positive cells in the PTN xenografts.
Scale bars, 1000 um for overview images, and 100 ym for insets.

See also Figure S1
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Figure 2. ScCRNA-seq analysis reveals shared and genotype-specific alterations during early GBM
development

(A). UMAP plots show the relative expression of lineage markers in one-month-old organoids.
(B). UMAP plots for RSPO genes in one-month-old PTCC organoids.

(C). UMAP plots for HOX genes in one-month-old PTN organoids.

UMARP plots for lineage markers in four-month-old PT (D), PTCC (E), and PTN (F) organoids.
(G). RNA velocity analysis of the mesenchymal-like clusters in PTN organoids.

(H). UMAP plots of the mesenchymal-related marker genes in PTN organoids.

(). t-SNE plots of the one- and four-month-old organoids colored by sample groups or clusters.
t-SNE plots for lineage markers in one- (J) and four-month-old (K) organoids.

See also Figure S2.
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Figure 3. DNA methylome analysis reveals genotype-dependent progressive changes of DNA
methylation during gliomagenesis
(A). PCA analysis of one-, two- and three-month-old organoids’ methylome, the ovals indicate 95%
confidence ellipse of each genotype.
(B). Venn diagrams demonstrate unique and common DMPs in LEGOs at one, two, and three months
compared to age-matched WT.
(C). Differential methylation level comparing LEGOs to age-matched WT control.
(D). Probe gene feature distribution and GSEA hallmark enrichment of the DMPs located on different gene
features (adjusted P value < 0.05) in three-month-old LEGOs. TSS, transcription starting site, UTR,
untranslated region, IGR, intergenic region, ExonBnd, exon boundaries.
(E). GSEA enrichment plots for the two hallmark gene sets enriched at the 5UTR region in the three-
month-old PTN organoids.
(F). MGMT promoter methylation probability estimation in different organoids. N = 3 for all groups of one-
and two-month-old organoids and three-month-old WT organoids, and N = 4 for three-month-old LEGOs.
Data are represented as mean + SEM. P values were calculated by Student’s t-tests comparing LEGOs
to age-matched WT, and only significant values are labeled. ** P < 0.01, * P < 0.05.
(G). Methylation classification heatmap with 8000 GB probes for two- and three-month-old LEGOs.
See also Figure S3, Table S1

39


https://doi.org/10.1101/2023.01.24.525374
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525374; this version posted January 24, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A B
"g — 1 month | 4 month : Sample group
u|
) e .
1m or 4m organoids 5 - 5 . . ° ® WT_1m
= — oo P
o I . x$ . e PT_1m
= S IS . e PTCC_im
e . °l PTN_1
} £ Water soluble N . N e, ° -m
2 metabolites 8 ° 8 ° .. ® WT_4m
é . 3 e PT_4m
. .
Conditioned for 72 hours ° > Lipids . e PTCC_4m
S e PTN_4
2 . . . |_4m
>
© PC 1 (32%) PC 1 (33%)
(o] Plasmalogen Synthesis| ® . D i E
o . 22 DHAP 4 G3P CDP-Choline a-Ketoglutarate
Phospholipid Biosynthesis| @® ° © 0 ®
Compared group & o (Y3
Lysine Degradation ®PTvs WT S ES * e o, 24 ° B S 221 +
" " ° o _I_ oFe ° .
Homocysteine Degradation [ PTCC vs WT S 21 Fkk T = ‘} —+ ®  rn _i;_. S KRR KRR ko
o - . o® —_— . el . —
Glycerol Phosphate Shuttle{ ® ®PTN vs WT © ¢ il .%1 LS |, ki s | 20 =2 7= _i_
Glucose-Alanine Cycle -log10(P) 2 * = = = 2
3 22 o . 2 18 °
De Novo Triacylglycerol Biosynthesis| ® o4 & HTS— . . . & .
o5 oo 1m organoid 2 1m organoid 20 1m organoid 4m organoid
Cardiolipin Biosynthesis{| ® ° |@6
F L-Serine G 2-Hydroxyglutaric acid J Proline
° . 9 o 8285 s |
€ |2 £m T $n s o8 . o < : ns (27
8 F c = LU L - o 2§ 2 I e
H — oo °
3 I o 0w R e S - SR Suol T o e T
I — =+ o © | F v 20 s [ D 26
$ oo 2 S = g ol . = g T ° I =
2 2 . 2
g2 * g2 . s T Sus) 0 &
[0} . . o] = . 19 [0}
© 1m organoid 1m medium[16 o 1m organoid 1m medium © 4m organoids 4 4m medium(-25
L-Serine 2-Hydroxyglutaric acid Hydroxyproline
@ 22 c . H g 2 H s [22 @ 2 .
g I 2 g . % & g N &,
S * 192 ] o . g 18 fuid oo =
g + P oo E .+ R g F o
2 <. . — e e a . H Tt 2 Ll [
3 | . ¥ salr T .2l F=x A IR S
- 4 18.8 ¢ % H .
£ n LS Eal R I S e I £ 1 + T y
ko) ° . o) — k= ko) o D 19
[ 4m organoid 4m medium 184 o© ' 4m organoid o 4m medium|[ 20 2 4m organoids 4m medium
H G3P CDP-Choline | Tryptophan ]
@ ° ° 3 ¢ ns ns °© ﬂmpared group \
5 2 T =, 2§ v e e = oPTus WT Glucose ¢¢¢
ns —_—
e +x _I_ we g s <+ % - L. —E— 2 @PTCC vs WT
3 Tk . 2 - 3 PN " ®PTN Vs WT T T
© 2 4 ex X o |22 © _} . % HE— Glucose-6-phosphate
2 o — - 2 20 —
: T + R 3 N N A
o - - |
o © 4m organoid 4m organoid| o 4m organoid 4m mediom Fructose-1,6-phosphate
23 0 NAD ¢¢ /
K L-Isoleucine Kynurenine
NADH DHAP GA3P
° >
3 . e g 20 + 4
g ¥ o 2 ; ! )
g & e . S 8 Mf
£ e . + s 15 S ons s G3P 3PG ¢¢¢
= . .
° o ' - o 18] 2 -
2 Lil % = = 2P TETF A Lipia PEP
8 =2 % ° ° S P
o} E o o} ) l
o© 24 4m organoid 4m medium| 14 ['4 4m organoid o .
VAT yruvate
' L\alne . 2 L Warburg Effect| @ @ /
8 _9':_ arburg Effex fﬁ*Lactate
*
§ % N . - j:r - b Valine, Leucine and Isoleucine Degradation Acetyl-CoA
< *
< 23 :“* iy :'1:: L . Tryptophan Metabolism ° Citrate¢
) — — o
= Plasmalogen Synthesis [ ]
w o ° }E 8 ] A Oxaloacetate
8 22{ = e X Phospholipid Biosynthesis ° cis-Aconitic acid
° 4m organoid|| & 4m medium| 1 )
6 Gluconeogenesis| @ [ ) °
-leuci Isocitrate
° L-leveine Cardiolipin Biosynthesis|  ® . Malate
225 [X X
ns A M li °
g . _I._ ._1_. RS spartate Metabolism ) HG ok ¢¢¢
3 _’} ° * 2 Arginine and Proline Metabolism{ @ Fumarate¢
a L
AR ; .
2 L Compared group @ PTvs WT @ PTCC vs WT @ PTN vs WT ¢¢¢G|utamine Succmate¢
224 . 1og10(P) 5 €6 @7 @8 \ /
4m organoid|

Figure 4. Metabolic reprogramming and metabolic heterogeneity during brain tumor development
(A). Schematic illustration of sample collection and extraction for metabolomic and lipidomic analysis.
(B). PCA of one- and four-month-old organoid metabolome.
(C). Dot plot shows the top five enriched pathways from the quantitative enrichment analysis of one-
month-old LEGOs compared to WT organoids.
(D). The relative abundance of lipid metabolism-related metabolites in one-month-old organoids.
(E). The relative abundance of a-ketoglutarate in four-month-old organoids.
(F). The relative abundance of L-serine in one- and four-month-old organoids and culture medium.

(G). The relative abundance of 2-hydroxyglutaric acid in one- and four-month-old organoids and culture
medium.
(H). The relative abundance of lipid metabolism-related metabolites in four-month-old organoids.

(). The relative abundance of tryptophan (upper panel) in four-month-old organoids and culture medium
and of the tryptophan metabolite kynurenine (lower panel) in four-month-old organoids.
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(J)- The relative abundance of the major amino acids constituting collagen in four-month-old organoids
and culture medium.

(K). The relative abundance of branched-chain amino acids in four-month-old organoids and culture
medium.

(L). Top five enriched pathways from the quantitative enrichment analysis of the metabolites from four-
month-old LEGOs compared to WT organoids.

(M). Diagram demonstrating the metabolic changes in LEGOs. GA3P, glyceraldehyde-3-phosphate; 3PG,
3-phosphoglyceric acid; PEP, phosphoenolpyruvic acid.

InD, E, F, G, H, I, J, and K, the color of the dots indicates the sample group, data are represented as
mean + SEM; N = 4 for four-month-old PT and PTN organoid samples, and N = 5 for the rest of the groups;
P values were calculated with Student’s t-tests comparing LEGOs to WT; **** P < 0.0001, *** P < 0.001,
** P <0.01, * P<0.05, and ns, non-significant.

See also Figure S4.
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Figure 5. Lipidomics assay uncovers glycerol lipid metabolism being a hallmark of GBM
(A). PCA of the one-month-old organoid lipidome
(B). Abundance heatmap of different lipids in one-month-old organoids.
(C). Enrichment plot for different lipid groups in one-month-old organoids.
(D). PCA of four-month-old organoid lipidome.
(E). Abundance heatmap of different lipids in four-month-old organoids.
(F). Enrichment plot for different lipid groups in four-month-old organoids.
(G). Diagram demonstrating the lipidomic changes in the LEGOs compared to WT organoids.

In C and F, the cluster size indicates the number of significantly changed lipids in the group comparison.
The increased ratio was calculated by dividing the number of significantly increased lipids by the total

number of significantly changed lipids. See also Figure S5.
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Figure 6. Proteomic/phospho-proteomic analysis identifies actionable targets and pathways for
the genotype-based treatment of GBM
(A). PCA of proteomics and phospho-proteomics of four-month-old organoids.
Representative significantly enriched pathways or terms in PT (B), PTCC (C), and PTN (D) compared to
WT identified by GSEA.
(E). Heatmap showing the enrichment of GBM subtype signatures “2 in different LEGOs.

Enriched kinases together with their substrates in PT (F), PTCC (G), and PTN (H) compared to WT.
(). Nustration of selected drugs and their targets.
(J). Treatment outcome for the proof-of-principle drug tests. N = 3 for TMZ treatment groups, N = 4 for
kinase inhibitor treatments. P values were calculated with paired Student’s t-tests comparing signals
measured after treatments to before treatments
See also Figure S6, Table S2, Table S3, Table S4
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Figure 7. LEGO organoids respond to drugs that target mutation-specific mechanisms

(A\). llustration of BLI-based drug screen.

(B). Venn diagrams demonstrating effective drug distribution in
(C). Treatment outcome for drugs effective in all LEGOs. N =3
(D). Treatment outcome for drugs that are effective in at least
cells highlight the effective group. N = 3 for each group.

different LEGOs
for each group.
one group. The black frames around the

Cell viability tracing with BLI signal in LEGOs treated with Dacomitinib and Osimertinib (E), Aripiprazole

(F), and Lomitapide (G).

(H). Normalized Mttp expression from ribo-seq analysis of mouse BTSC and NSC (left) and RNA-seq
analysis of mouse brain tumors treated with/without TMZ (right)
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(). MTTP expression on GBM patient survival from an external data set %6, P value was calculated with
Log rank test

(J). MTTP expression from GBM patient single-cell RNA sequencing data.

(K). Representative Ki67 and Nestin staining on LEGOs treated with DMSO or Lomitapide. Scale bar, 50
pm.

(L). Quantification of Ki67* and Nestin* cells treated with lomitapide, N = 9 sections for each group.

In C and D, P values were calculated with paired Student’s t-tests comparing signals measured after
treatments to before treatments; **** P < 0.0001, ** P < 0.001, ** P<0.01, * P<0.05. In E, F and G, data
are represented as mean + SEM.

See also Table S5
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