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Abstract 

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of 

molecular neuropathology but failed to translate into treatment improvement. This is 

largely attributed to the genetic and phenotypic heterogeneity of GBM, which are 

considered the major obstacle to GBM therapy. Here, we use advanced human GBM 

organoid (LEGO: Laboratory Engineered Glioblastoma Organoid) and provide an 

unprecedented comprehensive characterization of LEGO models using single-cell 

transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-

proteome analysis. We discovered that genetic heterogeneity dictates functional 

heterogeneity across molecular layers and demonstrates that NF1 mutation drives 

mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming 

is a hallmark of GBM, and several targets and drugs were discovered along this line. 

We also provide a genotype-based drug reference map using LEGO-based drug 

screen. This study provides novel human GBM models and a research path toward 

effective GBM therapy. 

Introduction 

Oncogenic genetic alteration is a fundamental hallmark of human cancers and has 

been utilized to characterize genotype-specific molecular features, which form the 

basis for personalized treatment of cancer patients 1,2. Based on these efforts, 

genotype-based personalized cancer treatment options are already available for many 

human cancers, i.e., breast cancer, lung cancer, and leukemia 1. However, it remains 

challenging to expand personalized treatment to most cancer patients 3.   

GBM is the most malignant type of primary brain cancer and was one of the first tumor 

entities selected for The Cancer Genome Atlas (TCGA) project 4,5. With the continuous 

efforts in genomic analysis of GBM, it has been suggested that GBM is a 

heterogeneous group of diseases of different molecular subtypes based on RNA 

expression, DNA methylation, or recently via multi-omics analysis 4,6-8. Single-cell 

RNA-sequencing (scRNA-seq) analysis of human GBM identified intratumoral 

heterogeneity of GBM, which provides a single-cell molecular description of human 

GBM, it was suggested that the GBM cells are of high plasticity, which may switch 

among the molecular phenotypes 9,10. However, it must be noted that how tumor 

genotype contributes to the molecular phenotype-related plasticity remains unclear, 

i.e., NF1 mutation in human GBM is associated with a mesenchymal feature, but this 

has not been verified in animal models 4,5. And it is much more challenging to perform 

in-depth single-cell DNA sequencing. In contrast to the rapid development of molecular 
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characterization of GBM, the clinical treatment options for human GBM patients remain 

to be neurosurgery, plus radiotherapy and temozolomide(TMZ)-based chemotherapy 
11. There is a clear gap between the comprehensive molecular description of GBM and 

treatment improvement, which need to be highly prioritized for future GBM research.   

A genome-based personalized treatment of cancer patients requires a solid 

understanding of genotype-specific cancer pathway dependency and actionable target 

identification. Model systems of GBM have been utilized to systematically analyze and 

compare differences in cancer cells with different mutation combinations. Genetically 

modified mouse models have been used to determine the function of selected genes 

and identify the cell of origin in brain tumors 12. However, mouse models often do not 

represent the molecular pathology of human tumors 13. Patient-derived xenograft (PDX) 

models or organoids harbor patient tumor cells. Still, they are limited by complex 

genetic background variations, differences in treatment histories, and, most 

importantly, the lack of suitable controls 14. Most importantly, the tumor growth 

characteristics identified in PDX models were found to be more dependent on the 

mouse strain than tumor type 15, suggesting the PDX model may generate many 

artificial readouts irrelevant to primary human tumors. 

The recent development of organoid technology coupled with gene editing by 

CRISPR/Cas9 allows the rapid generation of genetic mutations in human-derived 

tissues to model cancer progression 16. Initial attempts were made using induced 

pluripotent stem cells (iPSCs)-derived cerebral organoids to generate glioma-like 

organoids 17,18. This model provides the opportunity to develop genetically customized 

GBM models derived from single iPSC clones. Therefore, a rigorous follow-up analysis 

can be performed using this experimental system. 

Here we generated a set of iPSC-based human GBM organoid models (LEGO: 

Laboratory Engineered Glioblastoma Organoid) based on CRISPR/Cas9 engineered 

loss of tumor suppressors, which are frequently mutated in human GBM patients. 

Comprehensive analysis of LEGOs demonstrates their great potential in identifying 

novel molecular features in cancer cells, providing a path toward personalized 

treatment of human GBM.  
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Results 

Generation of LEGOs with defined genetic mutations 

We used human iPSC-derived organoids to dissect the functional consequences of 

genetic heterogeneity in GBM (Figure 1A). Using CRISPR/Cas9, we generated a 

spectrum of mutation combinations (PT: PTEN-/-; TP53-/-, PTCC: PTEN-/-; TP53-/-; 

CDKN2A-/-;  CDKN2B-/-, PTN: PTEN-/-; TP53-/-; NF1-/-), which are among the most 

frequently mutated tumor suppressors in GBM patients 5, in wildtype (WT) iPSCs 

express GFP. The knockout of individual genes was confirmed by Western blotting 

and sequencing (Figures S1A, S1B). All iPSCs clones grew well except that the PTN 

clone showed signs of differentiation, which was reported previously and could be 

controlled by MEK inhibitor PD0325901 19. These iPSCs were then differentiated into 

organoids with a previously described cerebral organoid protocol 20. Although starting 

from the same number of cells, all the LEGOs grew faster and more extensively than 

WT organoids (Figure 1B, 1C), indicating the activation of cell proliferation and growth 

pathways following the oncogenic mutations. Interestingly, the size of PT organoids 

was the biggest among the three mutant groups (Figure 1C).  

The histological analysis showed that the LEGOs exhibited similar structures 

compared to the WT organoids, indicated by the expression of SOX2 (SRY-box 

transcription factor 2) and TUJ1 (neuron-specific class III beta-tubulin) (Figure 1D). 

However, all mutant LEGOs show an increased stem/progenitor population (Figure 

1D). H&E staining revealed nuclear atypia in LEGOs after more than one month of 

culture (Figure S1C), indicating signs of malignant transformation. To investigate 

whether the LEGOs are tumorigenic in vivo, we performed xenograft experiments, as 

illustrated in Figure 1E. All LEGOs initiated fatal brain tumors upon xenograft (Figure 

1F, S1D). The grafted GFP+ LEGO cells showed infiltrative and angiogenic growth 

patterns (Figure 1G, S1E). Moreover, PTN xenografts exhibited a more infiltrative 

growth pattern with tumor cells migrating to the other hemisphere and being tightly 

associated with blood vessels (Figure 1G, S1E), suggesting that loss of NF1 results in 

a more invasive phenotype, which is a feature of the mesenchymal molecular 

phenotype of human GBM. In addition, all grafts expressed markers, like astrocyte 

marker GFAP (glial fibrillary acid protein), neural stem cell marker Nestin, and cell 

proliferation marker Ki67 (Figure S1F), the tumors also show signs of necrosis, which 

is a hallmark for GBM (Figure 1F). These results demonstrate that the LEGO organoids 

are GBM organoids. 
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ScRNA-seq analysis reveals shared and genotype-specific alterations during 
early tumor development 

One of the advantages of cerebral organoids is that they contain heterogeneous neural 

cell populations and maintain differentiation hierarchies 20, thus can be used to study 

cellular heterogeneity and plasticity. To fully characterize the LEGOs on the single-cell 

level and to understand how different genetic mutations affect cellular heterogeneity, 

we performed scRNA-seq on one- and four-month-old LEGOs. In total, we obtained 

results from 70617 cells for further analysis.  

We next performed UMAP (uniform manifold approximation and projection) analysis to 

visualize cell differentiation trajectory 21. UMAP of one-month-old LEGOs show two 

major lineages (neuron and astrocyte), which was confirmed by the expression of 

immature neuronal marker DCX (doublecortin), astrocytic marker FABP7 (fatty acid 

binding protein 7) and APOE (apolipoprotein E), and neural stem/progenitor marker 

SOX2 (Figure 2A, S2A). The one-month-old WT organoids mainly differentiated toward 

the neuronal lineage, whereas the PT and PTCC organoids switched to astrocytic 

differentiation (Figure 2A, S2A). The PTN organoids exhibited limited neuronal 

differentiation and reduced astrocytic differentiation (Figure 2A, S2A), suggesting a 

general blockage of neural differentiation. We also observed increased expression of 

neural stem/progenitor markers like SOX2 in all the LEGOs, indicating differentiation 

blockage upon loss of tumor suppressors, consistent with staining (Figure 1D, S2A). 

Interestingly, PTCC organoids highly express WNT regulators in the glial progenitor 

population, suggesting the activation of the WNT pathway upon loss of CDKN2A/2B 

(Figure 2B). Surprisingly, the PTN organoids activate several HOX transcription factors 

in the stem cell clusters (Figure 2C). The HOX genes have been reported to be 

involved in the induction of EMT (epithelial-mesenchymal transition) in other cancers 
22, and they are not expressed in normal neural cells (Figure S2B), which highly 

suggests that PTN organoids may activate a non-neural transcriptional program to 

acquire a more aggressive phenotype.  

The scRNA-seq results from four-month-old organoids demonstrate that the PT 

organoids are dominated by two major cell populations, one shows high expression of 

stem/progenitor cell markers like SOX2 and PAX6 (paired box 6), and the other 

express the immature neuron marker DCX and the astrocyte marker FABP7 (Figure 

2D), indicating a proneural-like tumor cell feature. PTCC organoids also maintain a 

differentiation trajectory towards the FABP7 astrocytic lineage from the SOX2-positive 

stem cell cluster (Figure 2E). Strikingly, there are two major differentiation lineages in 

PTN organoids; one is the neural lineage, as indicated by the expression of SOX2, 
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PAX6, and DCX (Figure 2F), while the other lineage highly expresses collagen genes 

and can be divided into two clusters (Figure 2F). The RNA velocity analysis suggested 

a possible differentiation hierarchy between the two clusters (Figure 2G), with the 

stem-cell-like cluster expressing CD44 (Figure 2H). Moreover, this lineage was 

positive for mesenchymal master regulators like STAT3 (signal transducer and 

activator of transcription 3), C/EBPB (CCAAT enhancer binding protein beta), RUNX1 

(RUNX family transcription factor 1), and FOSL2 (FOS like 2, AP-1 transcription factor 

subunit) (Figure 2H) 23. We also found that these cells express unique markers like 

PAX7 (paired box 7) and CHODL (chondrolectin) (Figure S2C), which can potentially 

be used to identify these cells in human cancers.  

Next, we annotated the cell clusters using reference gene signatures derived from 

GBM patient single-cell transcriptome data 24,25. The LEGOs contain major tumor cell 

populations such as “stem-like”, “proliferating stem-like”, and “differentiated-like” cells 

(Figure S2D). Moreover, PT was dominated by the “stem-like” cell population 

resembling the proneural subtype (Figure S2E) 24. PTN showed an increased 

proportion of “differentiated-like” cells mimicking the mesenchymal subtype (Figure 

S2E) 24. Moreover, we calculated the single cell meta score 9 of the mutant organoids 

and found that PT organoids were dominated by the NPC-like cells and PTN organoids 

were dominated by the MES-like cells (Figure S2F). These results suggest that NF1 

mutation drives a mesenchymal-like lineage during organoid development, and it will 

be interesting to trace the origin of these cells in the future. 

The LEGO models recapitulated critical features of cellular heterogeneity discovered 

in human GBM. The advantage that all LEGOs were derived from the exact iPSC clone 

with defined mutations allows us to further analyze how genetic heterogeneity 

contributes to cellular heterogeneity, which was not possible based on previous 

models. We first used t-SNE (t-distributed stochastic neighbor embedding) analysis for 

cell cluster analysis of all LEGOs together. There were 26 cell clusters we identified in 

one-month-old LEGOs (Figure 2I). Interestingly, we found that many cell clusters were 

dominated by cells from a single genotype (clusters 2, 5, 6, 7, 10, 13,17, and 22). In 

contrast, the other major clusters contain cells from multiple genotypes (clusters 1, 3, 

4, 8, 9, 11, 12, 14, and 15) (Figure S2G), suggesting these cells are less dependent 

on cell genotypes. We then analyzed major lineage markers for stem cells and 

differentiation in the t-SNE plots. SOX2 positive stem cells were distributed to several 

cell clusters 1, 2, 7, 8, 10, and 17 (Figure 2J). Lineage marker expression showed that 

clusters 8 (mixed by PTN and WT) and 12 (mixed by PT and PTCC) are SOX2 positive 

stem cells (Figure 2J). Cluster 3 (mixed by PTN and WT) and 4 (mixed by PT and 
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PTCC) were cells that express DCX (Figure 2J). APOE clusters are dominated mainly 

by cells of a single genotype (Figure 2J). The influence of genetic mutation on cell 

clusters is more pronounced in 4-month-old LEGOs; out of 34 clusters, most of the big 

clusters are dominated by cells from single genotypes (Figure 2I, S2H). Lineage 

marker expression on the t-SNE plot also suggests that similar lineage still stay close 

to each other on the t-SNE plots, but a clear difference was observed between different 

genotypes (Figure 2K). These results demonstrate that tumor mutations have a strong 

influence on cell phenotypes. However, the stem cell differentiation hierarchy governed 

by neurodevelopmental programs still operates during tumor formation.   

DNA methylome analysis reveals genotype-dependent progressive changes of 
DNA methylation during gliomagenesis 

Tumor cell DNA methylation was recently used for the molecular classification of brain 

tumors 6. However, how different genetic mutations affect the DNA methylation pattern 

in GBM remains largely unclear. We selected the one-, two-, and three-month-old 

LEGOs and WT organoids for DNA methylation analysis using an EPIC (850K) DNA 

methylation array. A principle component analysis (PCA) suggests that the DNA 

methylome of WT organoids changes gradually over time, indicating a maturation 

signature of DNA methylation along PC2 (Figure 3A). Interestingly, the one-month-old 

PT and PTCC organoids are similar to the WT organoids (Figure 3A), indicating that 

these mutations do not lead to immediate dramatic DNA methylome changes. The 

PTN organoids differ from PT and PTCC already at one month of age (Figure 3A). 

Moreover, all LEGOs showed reduced progression along the maturation axis (PC2) 

compared to WT organoids (Figure 3A). This also indicates a sign of differentiation 

blockage, consistent with the scRNA-seq results. On the other hand, PC1 exhibits a 

gradual but genotype-specific change in DNA methylome (Figure 3A), suggesting 

oncogenic mutations induce genotype-specific DNA methylation changes. We then 

identified differentially methylated probes (DMP) among all groups at different 

developmental stages and found that DMP numbers were significantly different, with 

PT organoids showing the lowest and PTN organoids exhibiting the highest (Figure 

3B). Interestingly, the methylation level of the mesenchymal subtype was also shown 

to be the highest among all three GB subtypes (Figure S3A) 26. The dynamic changes 

of DNA methylation in the LEGOs over time demonstrate that the DNA methylome is 

actively changing during tumor progression (Figure 3B), including both 

hypomethylated and hypermethylated probes, particularly during the early 

developmental stage of brain tumors (Figure 3C). However, it remains unclear what 

regulates these dynamic DNA methylome changes during tumor development. We 
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performed a gene set enrichment analysis (GSEA) on the DMPs located on different 

gene features at various stages. There were no enriched hallmark gene sets in PT, 

probably due to the low number of DMPs. For the probes located 0-200 bp upstream 

of the transcription starting site in three-month-old PTCC organoids, we identified the 

enrichment of several hallmark gene sets, such as angiogenesis and interferon alpha 

response (Figure 3D). The most apparent difference was observed in the PTN group 

with strong activation of EMT and inflammatory signatures in different gene feature 

locations at three months and in the 5’UTR at two months (Figures 3D, 3E, S3B), in 

line with its infiltrative growth pattern in vivo.  

MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation is 

associated with better TMZ response in GBM patients 27. Interestingly, we observed 

an increased level of MGMT promoter methylation in PTCC organoids compared to PT 

and PTN organoids (Figure 3F) which indicates that PTCC organoids may respond 

better to TMZ treatment than PT and PTN organoids. Moreover, unsupervised cluster 

analysis demonstrates that different LEGOs can be categorized by human GBM DNA 

methylation classification probes 26 (Figure 3G), indicating a human GBM-like 

methylation pattern in the LEGO model. 

It has been suggested that DNA methylation signatures can be used to determine the 

cell of origin in human cancers 28. Our analysis demonstrated that the DNA methylome 

is dynamic during tumor development and is dependent on the mutation spectrum. 

Therefore, it is crucial to use stable and mutation-independent DNA methylation 

patterns as tracers for cancer cell origin. We generated a probe set (Table S1) that 

shows no significant changes among all different groups of organoids. Gene ontology 

(GO) analysis indicates that these probes are highly enriched for tissue development 

and differentiation (Figure S3C). This probe set can be further explored as candidates 

to trace brain tumor origins.  

Metabolic reprogramming and metabolic heterogeneity during brain tumor 
development 

One of the hallmarks of cancer cells is the dysregulation of metabolism 29. However, it 

remains unclear how genetic heterogeneity affects the metabolic status of cancer cells. 

Therefore, we analyzed the intra- and extracellular metabolome of one- and four-

month-old LEGOs and WT organoids (Figure 4A).  

The metabolome of one-month-old organoids is largely similar to each other (Figures 

4B, S4A, S4C). However, enrichment analysis of group-specific changes compared to 

WT organoids suggests the activation of phospholipid synthesis and glycerol 
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phosphate shuttle in LEGOs (Figure 4C), indicated by the increase of DHAP 

(dihydroxyacetone phosphate), G3P (glycerol-3-phosphate) and CDP-choline (Figures 

4D, S4A). This is consistent with our previous finding that GPD1 (glycerol-3-phosphate 

dehydrogenase 1), which converts DHAP into G3P, is specifically expressed in brain 

tumor stem cells but not in neural stem cells 30.  

The four-month-old organoids’ metabolome showed a clear difference between 

LEGOs and WT organoids (Figure 4B). PT was similar to PTCC, while PTN was very 

distinct from the other LEGOs (Figure 4B). Heatmap analysis of intracellular 

metabolites demonstrates activation of the glycolysis pathway in LEGOs, indicated by 

low levels of glucose and glutamine and high levels of lactic acid, further confirmed by 

the medium metabolite data (Figure S4B, S4D, S4E). The TCA (tricarboxylic acid) 

cycle metabolites (citric acid, aconitic acid, α-ketoglutarate, succinate, fumarate, 

malate, ATP, NAD) were decreased in LEGOs compared to the WT organoids (Figure 

4E, S4B, S4F), suggesting a shift toward glycolysis from oxidative phosphorylation, 

reminiscent of the Warburg effect. 

Metabolites are essential substrates of many epigenetic enzymes 31. We analyzed 

metabolite changes that may explain the DNA methylome changes in the LEGOs. 

Serine contributes to methylation via the major methyl group donor S-

adenosylmethionine 32. In one-month-old organoids, the level of serine in the culture 

medium was reduced in all LEGOs compared to WT organoids (Figure 4F, S4A, S4C), 

and the intracellular level of serine was most significantly decreased in the PTN 

organoids (Figure 4F). In contrast, in four-month-old LEGOs, the utilization of serine 

was increased in PTCC and PTN, while decreased in PT (Figure 4F, S4B, S4D). This 

strongly suggests that serine is consumed by all LEGOs and even more by the PTN 

organoids, which is in line with the observed high levels of hypermethylation in one- 

and three-month-old PTCC and PTN organoids (Figure 3C). Oxoglutaric acid (α-

ketoglutarate, α-KG) is the substrate of many α-KG-dependent dioxygenases, 

including the DNA demethylation enzymes TET1/2/3 and 2-hydoxyglutaric acid (2-HG) 

antagonizes the function of α-KG 31. The level of 2-HG increased in one-month-old 

PTN extra- and intracellularly, and accumulated in four-month-old PTCC and PTN 

organoids as well as in all LEGO culture media, particularly in the PTN group (Figure 

4G). In contrast, the level of α-KG was depleted in all four-month-old LEGOs compared 

to the WT organoids (Figure 4E). This further explains the dynamic DNA methylation 

changes in LEGOs and supports the hypermethylation pattern of PTN organoids.  

Consistent with the results from one-month-old organoids, G3P and CDP-choline 

levels are higher in LEGOs at four months of age (Figure 4H), suggesting the mutant 
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organoids depend on this lipid metabolism pathway. Regarding genotype-specific 

changes, we found that PTN organoids uniquely upregulate the tryptophan metabolism 

pathway by consuming and utilizing more tryptophan and producing more kynurenine 

(Figure 4I). Kynurenine could be catabolized into NAD to facilitate energy production, 

cellular proliferation, and immune suppression 33,34. PTN organoids also have high 

levels of proline and hydroxyproline in the organoids and culture medium (Figure 4J). 

Proline and hydroxyproline are the major amino acid components of collagen proteins 
35. Collagen serves as the scaffold to facilitate glioma cell migration, increase the 

stiffness of the tumor, and induce an immune suppressive microenvironment 36,37, and 

elevated levels of hydroxyproline could be indicative of high collagen turnover. In 

PTCC organoids, we observed the accumulation of branched-chain amino acids 

(valine, isoleucine, and leucine) in both the organoids and the medium (Figure 4K), 

indicating an abnormal branched-chain amino acid metabolism. Enrichment analysis 

suggests that the Warburg effect is enriched in all LEGOs, with PTCC particularly 

showing enrichment of phospholipid biosynthesis, whereas tryptophan metabolism is 

among the most enriched pathways in PTN organoids (Figure 4L).   

The results above demonstrate distinct metabolic reprogramming events during tumor 

development (Figure 4M), and it is evident that genetic mutations determine the 

metabolic differences in cancer cells. In addition, some metabolic changes may 

regulate the DNA methylome changes.  

Lipidomics assay uncovers glycerol lipid metabolism being a hallmark of GBM 

The metabolomic analysis identified that the metabolites (DHAP, G3P, CDP-choline) 

in phospholipid biosynthesis are strongly associated with GBM development. We 

therefore performed lipidomic analysis using the same experimental setup shown in 

Figure 4A. The PCA analysis of one-month-old organoids shows that the lipidomes of 

LEGOs are different from WT organoids (Figure 5A). This was unlike the metabolome 

and methylome results, suggesting that lipidome reprogramming is the pioneering 

event upon the loss of tumor suppressors. The heatmap of lipid species indicates both 

DG (diacylglycerols) and TG (triacylglycerols) upregulation in all mutant groups (Figure 

5B), which further illustrates the consequence of increased DHAP and G3P. This was 

further confirmed by enrichment analysis showing that TGs are the most significantly 

enriched lipid species in all LEGOs (Figure 5C). In addition, a decrease in ether-linked 

phosphatidylethanolamine (O-PE) was observed in the PTCC organoids (Figure 5B, 

5C).  
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We next analyzed the lipidome of four-month-old organoids. PCA was similar to the 

four-month-old metabolome PCA, with the leading principal component (PC1) 

separating the LEGOs from WT and the second principal component (PC2) 

distinguishing PTN from PT and PTCC (Figure 5D). DGs, TGs, and 

phosphatidylcholine (PC) were significantly increased in all mutant organoids, 

particularly in PTN (Figure 5E, 5F). This, together with the increase of G3P, DHAP, 

and CDP-choline, as described above, highlights the importance of TG and choline 

metabolism in GBM (Figure 5G). On the other hand, the structural phospholipids (such 

as PG, PI, PS, PE, and O-PE) are decreased in mutant organoids (Figure S5A). It is 

likely that the increased production of DG, TG, and PC in LEGOs leads to decreased 

structural phospholipids as these lipids are derived from the same precursor, G3P. 

Ceramide production could be activated under stress conditions by hydrolyzing 

sphingomyelin (SM) 38. Consistently, we observed a higher amount of SM in WT, and 

abundant ceramides and CDP-choline in all LEGO groups (Figure 5E, 5F, 5G, 4H), 

suggesting augmented activation of SM hydrolysis. PTN exhibited significantly higher 

ceramide expression than all other groups (Figure 5E), implying a unique mechanism 

enhancing ceramide synthesis upon loss of NF1. It was shown that the tryptophan 

metabolite kynurenine can directly bind and activate the aryl hydrocarbon receptor 

(AHR) 34,39, and the activation of AHR elevates the synthesis of ceramides 40,41. 

Altogether, the lipidome analysis identified that lipid reprogramming is a pioneering 

event during gliomagenesis, and glycerol lipid metabolism is a hallmark of GBM (Figure 

5G). 

Proteomic/phospho-proteomic analysis identifies actionable targets and 
pathways for the genotype-based treatment of GBM. 

To search for possible genotype-specific drug targets using the LEGO models, we next 

performed proteomic and phospho-proteomic analyses on four-month-old organoids. 

Proteome and phospho-proteome PCA plots exhibit high similarity to the metabolome 

and lipidome, with a distinct difference between LEGOs and WT organoids, and PTN 

shows a more distinct proteome/phospho-proteome profile compared to PT and PTCC 

(Figure 6A). However, phospho-proteome provided a better separation between PT 

and PTCC (Figure 6A). GSEA analysis of differentially expressed proteins identifies 

processes involved in LEGO development (Table S2). In particular, the cholesterol and 

lipid pathways are enriched in all LEGOs (Figures 6B, 6C, 6D), consistent with the 

metabolomic and lipidomic data. The G2M checkpoint and related stress and mitosis 

pathways are enriched in PTCC (Figure 6C), indicating elevated mitosis as a result of 

CDKN2A/2B deletion. PTN organoids are enriched for negative regulation of immune 
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response and SASP (senescence-associated secretory phenotypes) (Figure 6D, S6A). 

Additionally, signatures associated with DNA methylation, extracellular matrix 

disassembly, as well as several collagen proteins are highly enriched in PTN (Figures 

6D, S6B). This is concordant with the observed DNA methylome changes, the in vivo 

infiltrative phenotype of PTN tumors, and the proline/hydroxyproline enrichment in PTN 

metabolome, respectively.  

RNA expression has been used for the molecular classification of GBM, but little is 

known about whether using protein expression as the classifier will yield similar results. 

We analyzed our proteome data using established tumor-cell-specific RNA signatures 
42 and found that mesenchymal signatures are highly enriched in the PTN organoids 

(Figure 6E, S6C). This result, together with the other omics analyses, firmly confirms 

that the PTN organoid resembles the mesenchymal subtype of GBM. Furthermore, we 

found that the expression of MGMT protein is high in the PTN group, and expression 

of IDH1 is increased in PT and PTCC compared to WT, concordant with the 

methylation changes (Figure S6D). 

To identify possible actionable targets in different subgroups of LEGOs, we utilized a 

drug-gene interaction database 43 to identify druggable targets for LEGOs (Table S3). 

Collectively, enzymes involved in lipid metabolism enzymes, such as MGLL 

(monoglyceride lipase), and FDFT1 (farnesyl-diphosphate farnesyltransferase 1), 

could be potential targets for all LEGOs (Figure S6E); this is in line with the activation 

of lipid metabolism in LEGOs. DNMT3A (DNA methyltransferase 3A), SPTLC2 (serine 

palmitoyltransferase 2), and cholinesterase (BCHE) could be interesting targets for 

PTN (Figure S6E).   

The phospho-proteomic data allow the prediction of possible kinases involved in tumor 

progression. We used a kinase-target interaction database 44  and Kinase Enrichment 

Analysis 45 to identify the upstream kinases of the phosphorylated sites (Table S4). PT 

organoids showed activation of AKT1 and mTOR, due to the mutation of PTEN (Figure 

6F). Surprisingly, the PTCC organoid phospho-proteomic data did not show 

enrichment of CDK4/6, which are classic substrate kinases of CDKN2A/2B. Instead, 

CDK1/2/7 were activated in addition to mTOR and AKT1 (Figure 6G). In addition to 

AKT1 and mTOR, MAPK1, MAPK3 and CDK7 were upregulated due to NF1 mutation 

in PTN organoids (Figure 6H). Using luciferase as a readout for tumor cells in the 

LEGO model, we found that PTCC LEGO is more sensitive than the other two to TMZ 

(Figure 6J), in line with a higher MGMT promoter methylation status. the mTOR 

inhibitors were effective in all LEGOs (Figure 6I, 6J, S6F, S6G), consistent with the 

kinase enrichment analysis. In contrast, CDK4/6 inhibitors exhibited no growth 
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inhibition in all LEGOs (Figure 6J), again concordant with the kinase enrichment 

analysis, which indicated that CDK4/6 were either not enriched or only showed low 

enrichment compared to other CDKs. On the other hand, MEK1/2 inhibitors were 

effective in all groups but most effective in PTN organoids, likely because of the 

enhanced activation of MAPKs (Figure 6J). Combination therapy using mTOR and 

MEK inhibitors show the most effective inhibition of PT and PTN growth, while CDK4/6 

inhibitors compromise mTOR inhibitor effects in PTCC organoids (Figure S6H), 

suggesting that CDK4/6 inhibitors should be carefully examined before being 

considered for treating GBM patients with CDKN2A/2B mutations. Moreover, we 

treated the LEGOs with the CDK inhibitor Zotiraciclib targeting CDK1/2, which was 

highly activated in all the mutant organoids, and observed that all LEGOs were highly 

sensitive to Zotiraciclib treatment (Figure 6J), suggesting that CDK1/2 are valuable 

therapeutic targets in GBM. 

LEGO-based drug screening identifies novel drug candidates for GBM therapy 

With the goal of generating a genotype-based drug reference map and possibly 

identifying new treatment strategies for GBM, we performed a drug screen on 327 

drugs containing FDA-approved drugs that could penetrate through the blood-brain 

barrier (Figure. 7A, Table S5). All LEGO cells were engineered to express luciferase, 

and the bioluminescence signal was used as a readout of cell numbers in the LEGOs.  

To select effective drugs, among the drugs that resulted in significant inhibition of 

bioluminescence signal (P < 0.05), we only selected drugs that resulted in 50% 

inhibition of bioluminescence signal as positive candidates. With this screen, we 

identified 42 drugs with therapeutic effects; seven acted on all three genotypes, and 

the rest only worked on specific genotypes (Figure 7B, 7C, 7D). We found that EGFR 

inhibitors Dacomitinib and Osimertinib inhibit LEGO growth in all genotypes, with a 

particularly strong effect on the PTN organoid (Figure 7C, 7D, 7E), suggesting a 

strategy of patient enrollment for clinical trials for testing EGFR inhibitors. The Syk 

(spleen tyrosine kinase) inhibitor Fostamatinib inhibits all LEGOs, suggesting that Syk 

signaling is essential for GBM progression (Figure 7C). Interestingly, we also found 

that the schizophrenia drug Aripiprazole also inhibits tumor growth in all LEGOs (Figure 

7C, 7F), which implies an alteration of dopamine signaling in GBM.  

Most interestingly, we found that Lomitapide, an inhibitor of microsomal triglyceride-

transfer protein (MTTP), inhibits tumor growth in all LEGOs (Figure 7C, 7G).  MTTP is 

a lipid transfer protein and is essential for the regulation of lipid metabolism. This is in 

line with our discovery that glycerol lipid metabolism is a hallmark of GBM metabolism. 

Expression of Mttp has highly enriched in our previous ribosome RNA-sequencing 
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analysis by comparing mouse neural stem cells (NSCs) and brain tumor stem cells 

(BTSCs), its expression is also highly enriched in tumor-bearing mice after TMZ 

treatment (Figure 7H) 30. High expression of MTTP also shows a worse prognosis in 

GBM patient (Figure 7I) 46, and single-cell analysis in published data sets 9 suggest 

MTTP is more expressed in stem cell or mesenchymal subtype of tumor cells (Figure 

7J), which is consistent with our previous observation of activation of glycerol 

metabolism in BTSCs 30. In the Lomitapide treated LEGOs, we found a striking 

reduction in the number of proliferation cells and stem cells (Figure 7K, 7L). 

Surprisingly, ER (estrogen receptor) modulator Tamoxifen and Bazedoxifene acetate 

exhibited selection inhibition of PTN organoid, warranting additional investigation of 

ER function in mesenchymal GBM (Figure 7D).  

Complete information on treated drugs and outcomes can be found in Supplementary 

Table 5. Noteworthily, some drugs that exhibited therapeutic effects on one genotype 

may promote the growth of another, which further highlights the importance of genetic 

background in directing treatment options. This genotype-based drug reference 

provides a basis for the personalized treatment of GBM patients.  

Discussion  

Our temporal multi-omics analysis (scRNA-seq, DNA methylome, 

Metabolome/Lipidome, and Proteome/Phospho-proteome) covers essential molecular 

layers of the cancer cell molecular network. This allows us to discover genotype-

specific molecular changes during tumor development. In Table S6 (supplementary 

information), we summarized all major molecular milestones during GBM development 

and divided them into shared and genotype-specific milestones. We also list 

milestones that can be validated by analysis of different molecular layers. i.e., early 

changes during GBM development include the increase of stem cell frequency and 

attenuation of neural differentiation. This is accompanied by metabolite changes, 

which can also influence epigenetic modifications like DNA methylation. Coherently, 

active DNA methylation changes during early tumor development shown by 

methylation array data, elevated DNA methylation pathway activity, and low IDH1 

expression presented by proteomics data support hypermethylation in PTN, which 

could be further confirmed by the decrease of a-KG and increase of 2-HG in the 

metabolomic assay. The increase of phospholipid metabolism is an early event, and 

this change persists with brain tumor development. Notable genotype-specific features 

include a WNT activation in PTCC organoids, ectopic expression of the HOX gene 

cluster, and mesenchymal signature in PTN organoids. The MGMT promoter is 

methylated in PTCC organoids, and we show that PTCC organoids are sensitive to 
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TMZ. It is also important to note that the LEGOs are primarily similar to the WT 

organoids at the one-month-old, highlighting that most of the oncogenic changes 

occurred during tumor organoid development, not at the iPSC stage.  

One fundamental question in cancer biology is which features of cancer cells are 

determined by genetic and non-genetic heterogeneity, respectively. This could not be 

investigated so far due to the lack of proper models. The genetically defined LEGOs 

are initially derived from the exact iPSC clone providing an ideal tool to assess the 

contribution of genetic heterogeneity to intratumoral heterogeneity quantitatively. In our 

analysis, CDKN2A/2B mutation in PTEN and TP53 deletion background further push 

the development of PT organoids in a similar direction, suggesting these mutations 

work together and drive similar cancer phenotypes. However, the NF1 mutation 

dramatically reprograms the cancer cell phenotypes across all molecular layers, which 

will be discussed below. Therefore, the LEGO model can serve as genetic building 

blocks of the cancer genome which can be further expanded and used to analyze the 

interaction between cancer genetic and non-genetic heterogeneity. Combining LEGOs 

to generate fully customized genetically heterogenous organoids is also 

straightforward. The scRNA results also demonstrated that genetic mutations have 

mutation specific influences on cell phenotypes. Although the stem cell differentiation 

hierarchy is largely maintained in all LEGOS. The cellular composition and molecular 

phenotype of the lineages in different LEGOs are different from each other. This is 

critical information for future interpretation of scRNA-seq results of human GBM patient 

tissues, the contribution to cellular heterogeneity from genetic and non-genetic factors 

must be clearly demonstrated.   Therefore, obtaining mutation information and 

considering the genetic heterogeneity within different cell clusters is essential before 

claiming they may represent different cell states 9.  

Another striking observation in our multi-omics analysis is the activation of 

phospholipid metabolism throughout LEGO development. Interestingly, this activation 

is already noticeable in one-month-old LEGOs, supported by increased DHAP and 

G3P. DHAP is the intermediate metabolite of glycolysis and can be converted by GPD1 

into G3P, the primary precursor for lipid metabolism. We have shown before that GPD1 

is induced explicitly in brain tumor stem cells during brain tumor development and 

blocking GPD1 alters tumor lipid metabolism and prolongs the survival of brain tumor-

bearing animals 30. The increase of DHAP, G3P, and CDP-choline in the metabolomic 

analysis and the increase of DG, TG, and PC in the lipidomic analysis in LEGOs 

demonstrate that lipid metabolism, particularly the glycerophospholipid metabolism, is 

activated during brain tumor development. This is in line with the clinical observation 
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that the glycerol level in GBM patients is much higher in tumors compared to normal 

tissue in the tumor periphery 47. It was also reported that brain metastasis also 

upregulates lipid metabolism 48,49,  indicating an adaptation of cancer cells to the lipid-

deprived brain environment 48,50. For this purpose, brain tumor cells upregulate GPD1 

to switch the metabolic flow to lipid metabolism by making use of the glycolysis 

metabolite DHAP, which was also reported to be the only sensor metabolite of the 

mTOR pathway in glycolysis 51. More importantly, we also discovered that MTTP 

inhibitor Lomitapide efficiently blocks LEGO growth, providing another attractive target, 

and the drug should be further investigated. Lipid metabolism is likely an emerging 

hallmark of brain cancers that should be further investigated.  

Major mutations that drive human GBM have been identified via genomic sequencing 
4,5. Interestingly, the major molecular subtypes of human GBM are defined primarily 

via RNA expression or DNA methylation pattern 8,42,52, and there is no strong 

correlation between genetic mutation and molecular subtypes.  NF1 mutation is highly 

enriched in the mesenchymal subtype, whereas TP53, PTEN, and CDKN2A/2B 

inactivation were not enriched in particular subtypes 4. Inactivation of Nf1 and Tp53 

leads to brain tumor formation in a mouse model 53. However, whether NF1 mutation 

drives mesenchymal GBM remains not experimentally confirmed. Here we showed 

that NF1 mutant organoids have many unique features compared to other LEGOs. The 

PTN xenograft shows a rather infiltrative growth pattern and high angiogenesis, and 

scRNA-seq identified a mesenchymal cell cluster with increased expression of 

collagen genes. PTN also produces the immunosuppressant kynurenine and has high 

levels of proline and hydroxyproline, which support the high collagen level. Moreover, 

PTNs are not sensitive to TMZ treatment because of lacking MGMT methylation and 

increased expression of MGMT protein. All these factors fit the mesenchymal features 

of human GBM 23 and confirm that NF1 mutation drives the mesenchymal features in 

human GBM. The significant differences between PTN tumors and PT/PTCC tumors 

suggest that the NF1 mutant GBM is a unique subgroup of GBM, which should be 

studied and treated differently.  

The LEGO model analysis demonstrates that genetic mutations determine major 

molecular consequences. Therefore, the realization of personalized treatment of 

human GBM requires knowledge of genotype-specific drug sensitivity information. Our 

preliminary treatment of LEGOs demonstrates that different LEGOs respond differently 

to drug treatments. This set the foundation for using LEGO-like models to study human 

cancer heterogeneity. The results obtained from the LEGOs show an excellent 

correlation across different molecular layers, including drug responses. The MGMT 
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promoter was found to be highly methylated in PTCC organoids, and the PTCC 

organoids respond better to TMZ treatment. In particular, it is unexpected that the 

PTCC organoid do not respond to CDK4/6 inhibitors and our phospho-proteome 

results suggest CDK4/6 are not activated in the PTCC organoids. This raises concern 

about using a CDKN2A/2B mutation as a selection criterion for CDK4/6 inhibitors. The 

drug screen we performed also provided precious information on a genotype-based 

drug sensitivity map, which can be used for drug candidate selections on personalized 

treatment GBM clinical trials.  The following steps will further expand the LEGO 

genotypes and assemble different LEGOs to build fully customized, genetically 

heterogenous organoids, that can be used to investigate clonal evolution, cell 

competition, clonal interactions, and combination therapies. Moreover, adding tumor 

stromal cells like microglia and T cells will also be interesting, as it will allow 

investigations into how genetic heterogeneity determines immune cell behavior.  

Materials and methods 

Genome editing of iPSCs 

Human induced pluripotent stem cells (iPSC) with mEGFP inserted at the safe harbor 

locus AAVS1 under CAGGS promoter were purchased from Coriell Institute (New 

Jersey, USA, Cat#AICS-0036-006; RRID: CVCL_JM19). All the iPSCs were cultured 

in Matrigel (Corning, New York, USA, Cat#354277) coated plates, fed with mTeSR 

Plus medium (Stemcell Technologies, Vancouver, Canada, Cat#100-0276) every 

other day at 37 °C incubators supplied with 5% CO2. The cells were passaged with 

ReleSR (Stemcell Technologies, Cat#05872) as small colonies after reaching 70% - 

80% confluency. 3 μM of CHIR99021 (Tocris Bioscience, Minneapolis, USA, Cat#4423) 

and 1 μM of PD0325901 (Selleckchem, Houston, USA, Cat#S1036) 19 were added to 

the culture medium of PTN iPSCs. The cultures were regularly tested for mycoplasma 

contamination. 

The gRNAs targeting respective tumor suppressor genes were inserted into modified 

pX330 plasmids 54 containing the puromycin-resistant gene. The electroporation was 

conducted with Neon™ Transfection System (Thermo Fisher Scientific, 

Massachusetts, USA). Briefly, cells were harvested by four minutes of Accutase 

(Sigma-Aldrich, Missouri, USA) treatment at 37 °C and resuspended with R 

resuspension buffer containing 15 μg gRNA expression vectors. The electroporation 

was conducted for two pulses with 1200 V, 20 ms. The electroporated cells were 

cultured in mTeSR Plus medium containing ROCK inhibitor (Stemcell Technologies, 

Cat#72304) for 24 hours after the electroporation. Puromycin (2 μg/mL) was added to 
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the culture medium and refreshed every 12 hours for two days. The cells were then 

seeded at a density of 50 ~ 100 cells per 10 cm dish and expanded for ten days. The 

single cell colonies were screened by T7 Endonuclease I (T7E1, New England Biolabs, 

Ipswich, USA, Cat#M0302L) assay, and the Sanger sequencing (Eurofins) results 

were analyzed with the TIDE webtool 55. The A-tailing PCR products from the 

candidate clones were cloned into the pGEM-T vector (Promega, Madison, USA, 

Cat#A3600) and sequenced. Then two clones from each mutation combination were 

selected and further validated by western blotting. In brief, the protein lysis from the 

iPSCs was electrophoresed and transferred onto 0.2 μm PVDF membranes. The 

membranes were blocked with 5% non-fat milk for one hour at room temperature (RT) 

and incubated with primary antibodies overnight at 4 °C with shaking. The next day, 

the membranes were incubated with respective horseradish peroxidase (HRP) 

conjugated secondary antibodies for two hours and imaged using ChemiDoc (Bio-Rad, 

California, USA) after reacting with HRP substrate. gRNA sequences (5’ to 3’): PTEN, 

CAGTTTGTGGTCTGCCAGCT, TP53, GCAGTCACAGCACATGACGG, CDKN2A, 

GATGATGGGCAGCGCCCGAG, CDKN2B, CTGGCCAGCGCCGCGGCGCG, NF1, 

CCAGGATATATCCAAAGACG. Antibody dilutions: PTEN (Cell Signaling Technology, 

Massachusetts, USA, Cat#9559L, RRID: AB_390810), 1:1000; P53 (Thermo Fisher, 

Cat#MA512557, AB_10989883) , 1:1000; P15/P16 (Santa Cruz, Texas, USA, Cat#sc-

377412), 1:50; NF1 (DKFZ, Heidelberg, Germany, Cat#DKFZ-NF1-146/29/25 56), 1:4; 

GAPDH (Cell Signaling Technology, Cat#2118L, Cat#2118L), 1:2000; β-Tubulin (Cell 

Signaling Technology, Cat#2128s, Cat#2128s), 1:2000. 

Organoid culture 

The organoids were generated following previously described protocols 20,57,58 with 

minor adaptions. Briefly, on day 0, the iPSCs were dissociated into single cells as 

described above and seeded in 96-well ultra-low attachment plates (Corning, 

Cat#7007) containing the following medium, 80% DMEM/F12 (v/v, Gibco, Montana, 

USA, Cat#11330032), 20% KOSR (v/v, Gibco, Cat#10828-028), 3% ES-qualified fetal 

bovine serum (v/v, FBS, Gibco, Cat#10270106), 1% GlutaMAX (v/v, Gibco, 

Cat#35050038), 1% MEM-NEAA (v/v, Sigma-Aldrich, Cat#11140050) and 0.7% 2-

Mercaptoethanol (v/v) supplied with 50 μM of ROCK inhibitor and 6 ng/mL of bFGF 

(Peprotech, New Jersey, USA, Cat#100-18B). The medium was refreshed on day 3. 

On day 5 the culture medium was replaced with DMEM/F12 containing 1% N2 (v/v, 

Gibco, Cat#17502048), 1% GlutaMAX (v/v), 1% MEM-NEAA (v/v), and 1 μg/mL 

heparin (Sigma-Aldrich, Cat#H3149) and cultured for four days. The EBs were then 

embedded in Matrigel and cultured in the following medium, 50% DMEM/F12 (v/v), 50% 
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Neurobasal (v/v, Gibco, Cat#21103049), 0.5% N2 (v/v), 2% B27 without Vitamin A (v/v, 

Gibco, Cat#12587010), 0.025% insulin (v/v, Sigma-Aldrich, Cat#I9278), 0.35% 2-

Mercaptoethanol (v/v,), 1% GlutaMAX (v/v), 0.5% MEM-NEAA (v/v), and 1% 

Penicillin/Streptomycin (v/v) for four additional days in 6 well ultra-low attachment 

plates (Corning, Cat#3473). Thereafter, the organoids were cultured on orbital shakers 

in culture medium containing 50% DMEM/F12 (v/v), 50% Neurobasal (v/v), 0.5% N2 

(v/v), 2% B27 (v/v, Gibco, Cat#17504044), 0.025% insulin (v/v), 0.35% 2-

Mercaptoethanol (v/v), 1% GlutaMAX (v/v), 0.5% MEM-NEAA (v/v), 1% Antibiotic-

Antimycotic (v/v, Gibco, Cat#15240096) and 0.4 mM L- Ascorbic Acid (Sigma-Aldrich, 

Cat#A4544). The medium was exchanged every two to three days until sample 

collection. 3 μM of CHIR99021 and 1 μM of PD0325901 19 were added to the PTN 

culture for the first 5 days. Widefield images for the organoids were taken by the Cell 

Observer (Zeiss, California, USA).  

Luciferase labeling of iPSCs 

HEK293T cells were cultured with IMDM (Gibco, Cat#31980030) supplied with 10% 

FBS (v/v, ATCC, Cat#30-2020) at 37 °C incubators supplied with 5% CO2 and 

passaged with Trypsin/EDTA (Gibco, Cat#15400054). For lentivirus production, 5 x 

106 cells were seeded in 10 cm dishes and co-transfected with 2 μg envelope plasmid 

pMD2.G, 2 μg packaging plasmid psPAX2, and 4 μg luciferase (Luc2) expressing 

vector pHHLVX-EF1α-Luc2-puro the next day. DNA vectors were mixed with OptiMEM 

(Gibco, Cat#31985062) to a total volume of 250 μL, and 3x DNA volume 

polyethyleneimine (PEI, 1 mg/mL) was diluted in OptiMEM to a total volume of 250 μL, 

respectively. The two mixtures were then combined, thoroughly mixed, and incubated 

at RT for 15 minutes before being dropwise applied to the HEK293T cells. The virus 

particles were collected 24 hours and 48 hours after transfection and concentrated with 

Lenti-X™ Concentrator (Takara, California, USA, Cat#631232). The pellets were then 

resuspended with PBS, aliquoted, and stored at -80 °C. The iPSCs were infected with 

the lentivirus, and positive clones were selected by bioluminescence imaging (BLI) with 

IVIS Lumina II In Vivo Imaging system (PerkinElmer, Waltham, USA). Ten Luc2 

positive clones were pooled to maximize the labeling rate and minimize the colony 

effect.  

Sample collection and cryosection 

The organoids were fixed in 4% PFA for 20 minutes to 1 hour at 4 °C and emerged in 

30% sucrose (w/v) overnight at 4 °C to dehydrate the tissue. The next day, the 

organoids were embedded in Gelatin/Sucrose solution and froze on dry ice. 
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Gelatin/Sucrose solution was prepared by dissolving 7.5% gelatin (w/v) in 10% 

sucrose (w/v) at 37 °C. The embedded samples were stored in sealed plastic bags in 

a -80 °C freezer. Sections were collected and dried for one hour at RT before storing 

at -80 °C. 

Hematoxylin & Eosin (H&E) staining 

The paraffin sections were deparaffined with the following procedure: 2x 5 minutes 

Xylene, 2x5 minutes 100% Ethanol, 2x 5 minutes 95% Ethanol, and 5 minutes 70% 

Ethanol. The sections (cryosections or deparaffined sections) were rehydrated in 

ddH2O for 5 minutes, stained in Hematoxylin for 1.5 minutes, and rinsed for 5 minutes 

under running tape water. 0.1% Eosin was applied for 1.5 minutes, washed by dipping 

in water, and differentiated in 70% Ethanol for 3 minutes. Dehydration was done with 

the following changing of buffers: 3 minutes 85% Ethanol, 2x 5 minutes 100% Ethanol, 

2x 5 minutes Xylene. The sections were mounted with Eukitt and imaged with Axioscan 

(Zeiss) or Tissue FAXS Plus (Tissue Gnostics, California, USA). 

Immunofluorescence (IF) and Immunohistochemistry (IHC) 

For IF staining, the sections were incubated with primary antibodies overnight at 4 °C 

after deparaffinization (for paraffin sections only), rehydration, antigen retrieval, and 

blocking. The sections were then incubated with respective secondary antibodies 

conjugated with AlexaFluor (Thermo Fisher Scientific, AF488, Cat#A11039, RRID:  

AB_2534096; AF555, Cat#A31572, RRID: AB_162543) or CF® (633, Sigma-Aldrich, 

Cat#SAB4600128) dyes and DAPI for two hours at RT in the dark. The slides were 

mounted with Prolong gold (Invitrogen, California, USA, Cat# P36930) and imaged 

with Axioscan or Tissue FAXS Plus.  

For IHC staining, the sections were first deparaffinized, rehydrated and antigen 

retrieved. Then they were treated with 3% H2O2 (v/v) for 10 minutes to quench the 

endogenous peroxidase before blocking and primary antibody incubation. On the 

second day, the sections were incubated with HRP conjugated secondary antibodies 

for two hours at RT. Then the sections were treated with Streptavidin HRP for 10 

minutes and visualized by DAB substrate application (Abcam, Waltham, USA, 

Cat#ab64238). The cell nuclei were counterstained with Hematoxylin, then dehydrated 

and mounted as the H&E staining. For BrdU staining, the sections were treated with 

2N HCl for 5 minutes at 37 °C before blocking. The slides were imaged with Axioscan 

or Tissue FAXS Plus.  

Primary antibody dilutions: Ki67 (Cell Signaling Technology, Cat#9129, RRID: 

AB_823664), 1: 400 for IF, 1:1000 for IHC; GFP (Abcam, Cat#ab13970, RRID: 
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AB_300798), 1: 500 for IF; GFAP (Cell Signaling Technology, Cat#3670, RRID: 

AB_561049), 1: 1000 for IHC; BrdU (BD Biosciences, New Jersey, USA, Cat#347580, 

RRID: AB_10015219), 1: 500 for IHC; Nestin (Cell Signaling Technology, Cat#33475, 

RRID: AB_10015219), 1: 200 for IF, 1:1000 for IHC; SOX2 (Abcam, Cat#ab97959, 

RRID: AB_2341193), IF 1: 500; Tubulin B3 (TUJ1) (Biolegend, California, USA, 

Cat#801202, RRID: AB_10063408), IF 1: 1000. 

Mouse orthotopic xenograft  

Female NOD/SCID mice were purchased from Shanghai Jihui Laboratory Animal Care 

Co.,Ltd (Shanghai, China) and housed in the Animal Facility at the National Facility for 

Protein Science in Shanghai. All mouse experiments were conducted under Shanghai 

Institutional Animal Care and Use Committee (IACUC) guidelines and an approved 

IACUC protocol of ShanghaiTech University (#20201208001).  

Single cells dissociated from the 45-day-old mutant organoids induced from Luc2+ 

iPSCs (PT, PTCC, PTN) were orthotopically injected into the right striatum of 4- to 5-

week-old female NOD/SCID mice. Briefly, organoids were cut into small pieces with 

scalpels and digested with the Neural dissociation kit (P) (Miltenyi, Bergisch Gladbach, 

Germany, Cat#130-092-628) following the manufacturer’s protocol. 5 x 105 cells were 

resuspended in 2 μL HBSS (Gibco, Cat# 14170088) and stored on ice. The mice were 

anesthetized with 0.15 ‰ tribromoethanol (Sigma-Aldrich, Cat#T48402), and the cells 

were injected at the position 2 mm to the right lateral bregma and 3 mm deep with a 

flow of 0.2 µL/min utilizing a 10 µL precision micro syringe (World Precision 

Instruments, Florida, USA) with a 34-gauge needle. Mice were checked daily for signs 

of distress, including continuous weight loss or neurological disorders (such as 

hydrocephalus or impaired motor skills), and sacrificed with CO2 as soon as they 

showed related symptoms. The brains were collected for histological analysis. 

Single-cell RNA sequencing and data analysis 

The single-cell RNA sequencing libraries were generated from one- and four-month-

old whole organoid dissociations using Chromium Single Cell 3′ Kit v3.1 (10x 

Genomics, California, USA). One-month-old organoids were treated with Cell 

Recovery Solution (Corning, Cat#354253) for 20 minutes at 4 °C to remove the 

surrounding Matrigel, and 4-month-old organoids were cut into four pieces and washed 

with DPBS (Gioco, Cat# 14190144) for three times to remove dead cells from the inner 

core before cell dissociation with the Neural dissociation kit (P). After the dissociation, 

the single cell suspensions were filtered with a 100 μm cell strainer (Gibco) followed 

by 70 μm, and 40 μm Flowmi® cell strainers (Fisher Scientific, Cat#BAH136800070-
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50EA, Cat# BAH136800040-50EA). An equal number of cells from three separately 

digested organoids were pooled and loaded onto the 10X Genomics microfluidics chip. 

The libraries were prepared according to the manufacturer’s protocols and sequenced 

using the NovaSeq 6000 Paired-End S1 kit (Illumina, California, USA) by the NGS 

Core Facility of the German Cancer Research Center (DKFZ).  

Raw RNA-seq reads were aligned to human genome hg19 (Ensembl v75) with Cell 

Ranger (v3.1.0) 59 with non-default parameter “--expect-cells=10000”. Data from WT, 

PT, PTCC, and PTN organoids at one- and four-month-old were aligned separately. 

Raw reads in each condition were analyzed with Seurat (v3.1.5) 60. Briefly, cells with 

the number of features in the quantile range of 5% and 95% in populations, as well as 

with less than 10% of reads aligned to mitochondrial genes, were used for downstream 

analysis. We used 75 principal components for dimension reduction, cluster 

identification, and low-dimension projections. To perform RNA velocity analysis, the 

splicing information of cells was calculated for each organoid separately with velocyto 

(v.0.17.17) 61. We generated the one- and four-month data by concatenate results 

across conditions. Looms were converted to h5ad files integrating cell annations and 

UMAP/t-SNE embedding. RNA velocity was estimated with the stochastic model with 

generated h5ad files as input to scvelo (v0.2.2) 62. The tumor cell state was annotated 

by mapping the cluster gene signature to the reference cell state signatures 25 with 

Fgsea R package 63, the signature with the smallest P value was chosen as annotation, 

in the case when the P values were the same, the enrichment score and the gene 

expression was evaluated to determine the cluster annotation, the cluster remained 

unmapped if there was no significantly enrichment cell state. The tumor cell meta-

module score was calculated with the scallop R package 9. 

DNA methylation array and data analysis 

The organoids were cut into four pieces and washed with DPBS 3 times to remove the 

dead cells. The DNA for one-, two- and three-month-old organoids from each genotype 

was extracted with DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany, Cat# 69504) 

following the manufacturer’s protocol. DNA methylation array analyses were then 

performed with Infinium Methylation EPIC BeadChip Kit (Illumina) according to the 

manufacturer’s instructions by the microarray unit of the DKFZ Genomics and 

Proteomics Core Facility.  

The DNA methylation EPIC array data were processed with the CHAMP R package 64 

following the recommended pipeline. A total of 740031 probes were kept for analysis 

after filtering and normalization. The PCA plot was drawn with the Factoextra R 
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package. Differentially methylated probes (DMP) were identified for PT vs. WT, PTCC 

vs. WT, and PTN vs. WT at different time points. The differential methylation level of 

over-methylated and under-methylated probes was calculated by dividing the number 

of DMP by the total number of probes. The mean delta beta value of all the DMPs 

localized on specific gene features was used to rank the genes for gene set enrichment 

analysis (GSEA) 65 by the Fgsea R package 63. Methylation clustering was performed 

based on previously identified methylation classification probes 26. The MGMT 

methylation level was calculated by the MGMT-STP27 logistic regression model using 

the M values of two probes (cg12434587 and cg12981137) 66, and the M values were 

calculated by log transformation of the beta values (M = log2(beta/(1-beta)) 67. The 

gene ontology analysis of the stable probes was performed with the clusterProfiler R 

package 68. 

Metabolome and lipidome sample processing and data analysis 

Sample collection 

We performed metabolome and lipidome profiling on one- and four-month-old 

organoids (five samples in each group) and corresponding culture medium (five 

samples in each group). Six organoids were transferred to each 6-well-plate well 

containing 3 mL culture medium and conditioned for two days at 37 °C with 5% CO2 

on orbital shakers. Blank medium control was prepared by incubating fresh medium 

under the same condition without organoids. Three organoids were quickly washed 

with 154 mM ammonium acetate on ice and collected as one sample, and 300 μL 

medium was collected from each well. All the samples were snap frozen in liquid 

nitrogen and stored at -80°C before extraction. 

Organoid extraction (water-soluble metabolites and lipids) 

The organoid samples were homogenized with Mixer Mill (Retsch, Haan, Germany) 

and ceramic beads at maximum frequency for two to four minutes in pre-cooled racks 

after adding ice-cold methanol/H2O (4:1, v/v, 500 µL per 40 mg tissue) with internal 

standards (4 µM lamivudine, 4 µM D4-glutaric acid, 4 µM D8-phenylalanine, and 16 µl 

Splash Lipidomix per 40 mg tissue). 500 µL of homogenate was then collected and 

extracted by applying 60 µL 0.2 M HCl, 200 µL chloroform, 200 µL chloroform, and 200 

µL H2O consecutively with vortex. The extracts were spun down at 16000 g for ten 

minutes, and the upper phase (water-soluble metabolites) was evaporated for 30 

minutes at 35°C under nitrogen and dried in SpeedVac (Eppendorf, Hamburg, 

Germany) at 15 °C overnight. The lower phase (lipids) was evaporated to dryness at 
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45 °C under nitrogen. The interphase was used to determine the protein concentration 

with the BCA assay. Samples were stored at -80 °C.  

Culture medium extraction for water-soluble metabolites 

The water-soluble metabolites in the culture medium were extracted with RP18 SPE 

columns (Merck, Darmstadt, Germany, Cat#102014). Briefly, 50 µL medium was 

mixed with 50 µL H2O and 400 µL methanol/acetonitrile (5/3, v/v) containing internal 

standards (4 µM D4-glutaric acid, 4 µM D8-phenylalanine), vortexed and ultrasound 

for three minutes. The supernatants were then filtered through the RP18 SPE columns 

(activated by elution of 1 mL acetonitrile and equilibrated by elution 1 mL 

methanol/acetonitrile/H2O (5/3/2, v/v/v) before usage) after centrifugation (5 minutes, 

16000 g, 4 °C). The eluents were collected and mixed with 400 µL of 

methanol/acetonitrile/H2O (5/3/2, v/v/v). The mixtures were vortexed, ultrasound, 

centrifuged, and filtered as before and the eluent was collected and evaporated in 

SpeedVac overnight at 15 °C. Samples were stored at -80 °C. 

Culture medium extraction for lipids 

The lipids in the culture medium were extracted with methanol and chloroform. Briefly, 

200 µL medium sample was mixed with 800 µL methanol containing internal standards 

(6 µL Splash Lipidomix). 120 µL 0.2 M HCl, 400 µL chloroform, 400 µL chloroform, and 

400 µL H2O were added to the mix consecutively and vortexed. The lower phase of 

the spun-down samples was collected with a 200 µL micro syringe (Hamilton, Reno, 

USA) and evaporated to dryness at 45 °C under nitrogen. Samples were stored at -

80 °C. 

LC-MS analysis of water-soluble metabolites 

Water-soluble metabolites from organoid and culture medium samples were dissolved 

in 200 µl 5 mM ammonium acetate (in 75% acetonitrile (v/v)) before loading to LC/MS. 

LC-MS analysis was performed on an Ultimate 3000 HPLC system (Thermo Fisher 

Scientific) coupled with a Q Exactive Plus MS (Thermo Fisher Scientific) in both ESI 

positive and negative mode. The analytical gradients were carried out using an 

Accucore 150-Amide-HILIC column (2.6 µm, 2.1 mm x 100 mm, Thermo Fisher 

Scientific) with solvent A (5 mM ammonium acetate in 5% acetonitrile) and solvent B 

(5 mM ammonium acetate in 95% acetonitrile). 3 µl sample was applied to the Amide- 

HILIC column at 30°C, and the analytical gradient lasted 20 minutes. During this time, 

98% of solvent B was applied for one minute, followed by a linear decrease to 40% 

within five minutes and maintained for 13 minutes before returning to 98% in one 

minute and appended with a five-minute equilibration step. The flow rate was 
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maintained at 350 µL/min. The eluents were analyzed with MS in ESI positive/negative 

mode with ddMS2. The full scan at 70k resolution (69-1000 m/z scan range, 1e6 AGC-

Target, 50 ms maximum Injection Time (maxIT)) was followed by a ddMS2 at 17.5k 

resolution (1e5 AGC target, 50 ms maxIT, 1 loop count, 0.1 s to 10 s apex trigger, 2e3 

minimum AGC target, 20 s dynamic exclusion). The HESI source parameters were set 

as 30 sheath gas flow rate, 10 auxiliary gas flow rate, 0 sweep gas flow rate, spray 

voltage: 3.6 kV in positive mode, 2.5 kV in negative mode, 320 °C capillary temperature, 

and the heater temperature of auxiliary gas was 120 °C. The annotation of the 

metabolites was performed using the EI-Maven software (Elucidata, 

https://www.elucidata.io/el-maven) with an offset of ± 15ppm.  

LC-MS/MS analysis of lipids 

The lipids from the organoid and culture medium samples were dissolved in 100 µl of 

isopropylalcohol (iPrOH) before loading. The analytical gradients were carried out 

using an Accucore C8 column (2.6 µm, 2.1 mm x 50 mm, Thermo Fisher Scientific) 

with solvent A (acetonitrile/H2O/formic acid (10/89.9/0.1, v/v/v)) and solvent B 

(acetonitrile/iPrOH/H2O/formic acid (45/45/9.9/0.1, v/v/v/v)). 3 µl sample was applied 

to the C8 column at 40°C, and the analytical gradient lasted for 35 minutes. During this 

time, 20% of solvent B was applied for two minutes, followed by a linear increase to 

99.5% within five minutes and maintained for 27 minutes before returning to 20% in 

one minute and appended with a five-minute equilibration step. The flow rate was 

maintained at 350 µL/min. The full scan and ddMS2 parameters were the same as the 

analysis of the water-soluble metabolites, except the scan range were adjusted to 200-

1600 m/z. The HESI source parameters were also adapted with a 3-sweep gas flow 

rate and a 3.2 kV spray voltage in positive and 3.0 kV in negative mode. Peaks 

corresponding to the calculated lipid masses (± 5 ppm) were integrated using El-Maven 

software. 

Metabolome and lipidome data analysis 

Two of the four-month-old organoid samples (one in the PT group and one in the PTN 

group) were removed from downstream analysis due to the low signal intensity of the 

internal standards. For organoid sample normalization, the intensity of each target was 

normalized to respective internal standards (positive/negative standards for 

metabolites, lipid class standards for lipids) and the sample protein concentration. The 

intensities of medium samples were subtracted by the median of the blank medium 

before normalizing to internal standards and protein concentrations to visualize the 

changes driven by organoid metabolism. The metabolomics data was further 
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normalized by variance stabilization normalization (VSN) with the VSN R package 69 

and significant pathways in the Small Molecule Pathway Database (SMPDB) were 

identified by the quantitative enrichment analysis with MetaboAnalystR 70. The 

lipidomics data were further normalized by quantile normalization with the Limma R 

package 71, and the enrichment was calculated by comparing the structural similarities 

with ChemRich 72. 

Proteome and phospho-proteome sample processing and data analysis 

Sample preparation 

The proteomics and phospho-proteomics samples (five samples in each group) were 

prepared according to a previously published protocol with adaptations 73. Briefly, cell 

pellets were resuspended with lysis buffer (100 mM Tris-HCl pH 8.5, 7 M Urea, 1% 

Triton, 10 U/mL DNase I (, 1 mM magnesium chloride, 1% benzonase, 1 mM sodium 

orthovanadate, phosphoSTOP phosphatases inhibitors, complete mini EDTA free 

protease inhibitors) and lysed by sonication. Cell debris was removed by 1.5 hours of 

17000 g centrifugation at 4 °C. 1% benzonase was added to the supernatant, followed 

by incubation at RT for two hours. Protein concentration was determined by the 

Bradford assay. Proteins were precipitated using chloroform/methanol 74, and the 

pellets were resuspended (8 M Urea, 100 mM NaCl, 50 mM triethylammonium 

bicarbonate (TEAB), pH 8.5) and reduced in 10 mM dithiothreitol (DTT) for one hour 

at 27 °C, then alkylated by 30 mM Iodoacetamide for 30 min at RT in the dark and the 

reaction was quenched by adding additional 10 mM DTT. Samples were subsequently 

digested by Lys-C at an enzyme: protein ratio of 1:100 for four hours at 30 °C, diluted 

with 50 mM TEAB to a resulting Urea concentration of 1.6 M, and further digested with 

Trypsin overnight at 37 °C in an enzyme: protein ratio of 1:50. Digestion was stopped 

by acidification using 0.02% trifluoroacetic acid (TFA, v/v). Digested peptides were 

desalted using C18 SepPack Cartridges (Waters) and resuspended in 0.07% TFA (v/v) 

in 30% acetonitrile (v/v) and fractionated by on-column FE3+- Immobilized Metal Ion 

Affinity Chromatography (IMAC) enrichment on an Ultimate 3000 LC system using the 

method described previously 75. The two resulting fractions per sample, containing 

either unphosphorylated or phosphorylated peptides, were desalted by StageTips 76. 

Before LC-MS/MS analysis, the dry peptides were resolved in 50 mM citric acid and 

0.1% TFA. 

LC-MS/MS analysis of proteomics 

LC-MS/MS analysis was carried out on an Ultimate 3000 UPLC system directly 

connected to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific). 
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Peptides were online desalted on a trapping cartridge (Acclaim PepMap300 C18, 5 

µm, 300Å wide pore, Thermo Fisher Scientific) for three minutes using 30 uL/min flow 

of 0.05% TFA in water. The analytical multistep gradient was carried out using a 

nanoEase MZ Peptide analytical column (300Å, 1.7 µm, 75 µm x 200 mm, Waters) 

using solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in 

acetonitrile). A total of 150 minutes of LC-MS/MS analysis time was used per sample. 

The analytical step of the gradient was 134 minutes, during this time, the concentration 

of B was linearly ramped from 4% to 30% (2% to 28%, for phospho-peptides), followed 

by a quick ramp to 78%, and after two minutes the concentration of B was lowered to 

4% (2% for phospho-peptides) and a 10 min equilibration step appended. Eluting 

peptides were analyzed with the mass spectrometer using data-dependent acquisition 

(DDA) mode. A full scan at 120k resolution (380-1400 m/z, 300% AGC target, 45 ms 

maxIT) was followed by up to 2 seconds of MS/MS scans. Peptide features were 

isolated with a window of 1.4 m/z (1.2 m/z for phospho-peptides) and fragmented using 

26% NCE (28% NCE for phospho-peptides). Fragment spectra were recorded at 15k 

resolution (100% AGC target, 22 ms maxIT; 200% AGC target, 54 ms maxIT for 

phospho-peptides). Unassigned and singly charged eluting features were excluded 

from fragmentation, and dynamic exclusion was set to 35 seconds (10 seconds for 

phospho-peptides). 

Target identification and data analysis 

Data analysis was carried out by MaxQuant 77 (version 1.6.14.0) using an organism-

specific database extracted from Uniprot.org under default settings. Identification FDR 

cutoffs were 0.01 on the peptide level and 0.01 on the protein level. For the phospho 

enriched fraction, PTM was set to True and Phospho (STY) was added as variable 

modification. The full proteome samples were given a separate parameter group with 

the default variable modifications. The match between runs (MBR) option was enabled 

to transfer peptide identifications across RAW files based on accurate retention time 

and mass-to-charge ratio. The fractions were set in a condition that MBR was only 

performed within phospho enriched and full proteome and within each condition. The 

full proteome quantification was done based on the MaxLFQ algorithm 78. A minimum 

of two quantified peptides per protein was required for protein quantification. LFQ, and 

phosphosite intensities were filtered for target groups with a non-zero intensity in 70% 

of the samples of at least one of the conditions and normalized via VSN 69. For missing 

values with no complete absence in one condition, the R package missForest 79 was 

used for imputation. The missing values that were completely absent in one condition 

were imputed with random values drawn from a downshifted (2.2 standard deviations) 
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and narrowed (0.3 standard deviations) intensity distribution of the individual samples 
80. The significance for each target was then calculated with Student's t-test and 

adjusted with Benjamini-Hochberg method. 

The protein abundances of GB subtype signature genes 42 were plotted, and the 

enrichment P value was calculated with the ‘‘ssgsea.GBM. classification’’ R package 
42. Enrichment analysis of the full proteome was carried out with the GSEA software 

(NIH Broad Institute, version 4.2.3) on Hallmark, KEGG, Reactome, and GO biological 

process gene sets. Potential druggable targets were identified by mapping the 

significantly differentially expressed proteins (P adjusted < 0.05 and foldchange (FC) > 

1) to a drug-gene interaction database DGIdb 43, and the combinations with an 

interaction group score more than 5 were kept. The upregulated phospho-sites (FC > 

1) were mapped to a kinase/substrate interaction database 44 to identify upstream 

kinases, and the P value for each kinase was calculated by Kinase Enrichment 

Analysis 45. The interactions were visualized by Cytoscape 81 (version 3.9.1), and the 

largest subnetwork was shown in the figure. 

Organoid drug screen  

Drug screens on several selected kinase inhibitors (Sellekchem), TMZ (Sigma), one 

library containing FDA approved drugs that can penetrate through blood-brain barrier 

(269 drugs from TargetMol, Massachusetts, USA), and one library containing drugs 

targeting the possible targets identified in omics analysis (58 drugs from 

MedchemExpress, New Jersey, USA). A list of drug information can be found in 

Supplementary Table 5. 

For drug screening, the organoids generated from Luc2+ iPSCs were cultured with the 

culture medium containing kinase inhibitors (5 days, 10 µM, applied daily), TMZ (6 

days, 100 µM, applied every other day), drug libraries (6 days, 10 µM, applied every 

other day) or DMSO vehicle on the orbital shakers at 37 °C with 5% CO2. BLI was 

performed before drug administration to one (for daily administration) or two (for every 

other day administration) days after the last dose. For BLI, the organoids were 

incubated with 150 μg/mL D-luciferin in a 37 °C incubator supplied with 5% CO2 on the 

orbital shakers for 15 minutes and then imaged with IVIS or Quick View 3000 (Bio Real, 

Salzburg, Austria). To assess the treatment effects, the BLI signals were normalized 

to the DMSO control measured on the same day, then compared to before treatment. 

Drugs with a P value less than 0.05 and a signal drop of more than 15% were 

considered effective. In addition, 100 μM BrdU (Sigma-Aldrich) was applied to the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525374doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525374
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

culture medium after the final imaging and cultured for 2 hours, and the samples were 

collected and stained as described above. 

Quantification and statistical analysis 

All the data analysis was performed with R (version 4.1.2), Graphpad Prism 8 and 

Microsoft Excel. The 2D areas of the organoids were measured with ImageJ (NIH) and 

the comparison was carried out with two-way ANOVA. For cell number quantification, 

positive cells were manually counted using the cell counter function in ImageJ. Group 

comparisons of Kaplan-Meier survival analysis of xenografted mice were calculated 

with Log-rank test. Students’ t-tests were applied when comparing variables between 

two groups (paired t-test for drug treatment and heteroskedastic for the rest). N 

numbers for each experiment can be found in the corresponding figure legend. All data 

values were presented as mean ± SEM and the P values are represented as follows: 

**** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05, and P > 0.05 is recognized as 

non-statistically significant (ns). 
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Figures and legends 

 

Figure 1. Generation and histological characterization of LEGOs with defined genetic mutations 
(A). Schematic illustration of experimental procedures in this study. 
(B). Representative images showing the morphology of organoids at different ages. 
(C). Organoid growth curves. P values of the comparison between different groups of organoids were 
calculated by Two-way ANOVA. Data are represented as mean ± SEM for quantifying the 2D area of at 
least 65 organoids from at least four independent batches at each time point. 
(D). Representative immunofluorescent staining images of 1-month-old organoids stained with SOX2 and 
TUJ1. White circles show rosette-like structures. Scale bars, 50 μm. 
(E). Schematic diagram illustrating mouse xenograft workflow.  
(F). Representative H&E staining images of brain tumors in mouse xenografts. “n” in the enlarged image 
marks necrotic areas. Scale bar, 1000 μm for the overview, and 100 μm for insets 
(G). Representative immunofluorescent images of the tumor-infiltrating area stained with GFP and CD31. 
Note a strong association between GFP (green) and CD31(magenta) -positive cells in the PTN xenografts. 
Scale bars, 1000 μm for overview images, and 100 μm for insets. 
See also Figure S1 
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Figure 2. ScRNA-seq analysis reveals shared and genotype-specific alterations during early GBM 
development 
(A). UMAP plots show the relative expression of lineage markers in one-month-old organoids. 
(B). UMAP plots for RSPO genes in one-month-old PTCC organoids. 
(C). UMAP plots for HOX genes in one-month-old PTN organoids. 
UMAP plots for lineage markers in four-month-old PT (D), PTCC (E), and PTN (F) organoids. 
(G). RNA velocity analysis of the mesenchymal-like clusters in PTN organoids. 
(H). UMAP plots of the mesenchymal-related marker genes in PTN organoids. 
(I). t-SNE plots of the one- and four-month-old organoids colored by sample groups or clusters. 
t-SNE plots for lineage markers in one- (J) and four-month-old (K) organoids. 
See also Figure S2. 
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Figure 3. DNA methylome analysis reveals genotype-dependent progressive changes of DNA 
methylation during gliomagenesis 
(A). PCA analysis of one-, two- and three-month-old organoids’ methylome, the ovals indicate 95% 
confidence ellipse of each genotype. 
(B). Venn diagrams demonstrate unique and common DMPs in LEGOs at one, two, and three months 
compared to age-matched WT. 
(C). Differential methylation level comparing LEGOs to age-matched WT control. 
(D). Probe gene feature distribution and GSEA hallmark enrichment of the DMPs located on different gene 
features (adjusted P value < 0.05) in three-month-old LEGOs. TSS, transcription starting site, UTR, 
untranslated region, IGR, intergenic region, ExonBnd, exon boundaries. 
(E). GSEA enrichment plots for the two hallmark gene sets enriched at the 5’UTR region in the three-
month-old PTN organoids. 
(F). MGMT promoter methylation probability estimation in different organoids. N = 3 for all groups of one- 
and two-month-old organoids and three-month-old WT organoids, and N = 4 for three-month-old LEGOs. 
Data are represented as mean ± SEM. P values were calculated by Student’s t-tests comparing LEGOs 
to age-matched WT, and only significant values are labeled. ** P < 0.01, * P < 0.05.  
(G). Methylation classification heatmap with 8000 GB probes for two- and three-month-old LEGOs.  
See also Figure S3, Table S1 
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Figure 4. Metabolic reprogramming and metabolic heterogeneity during brain tumor development  
(A). Schematic illustration of sample collection and extraction for metabolomic and lipidomic analysis. 
(B). PCA of one- and four-month-old organoid metabolome. 
(C). Dot plot shows the top five enriched pathways from the quantitative enrichment analysis of one-
month-old LEGOs compared to WT organoids.  
(D). The relative abundance of lipid metabolism-related metabolites in one-month-old organoids.  
(E). The relative abundance of α-ketoglutarate in four-month-old organoids. 
(F). The relative abundance of L-serine in one- and four-month-old organoids and culture medium. 
(G). The relative abundance of 2-hydroxyglutaric acid in one- and four-month-old organoids and culture 
medium. 
(H). The relative abundance of lipid metabolism-related metabolites in four-month-old organoids.  
(I). The relative abundance of tryptophan (upper panel) in four-month-old organoids and culture medium 
and of the tryptophan metabolite kynurenine (lower panel) in four-month-old organoids. 
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(J). The relative abundance of the major amino acids constituting collagen in four-month-old organoids 
and culture medium.  
(K). The relative abundance of branched-chain amino acids in four-month-old organoids and culture 
medium. 
(L). Top five enriched pathways from the quantitative enrichment analysis of the metabolites from four-
month-old LEGOs compared to WT organoids.  
(M). Diagram demonstrating the metabolic changes in LEGOs. GA3P, glyceraldehyde-3-phosphate; 3PG, 
3-phosphoglyceric acid; PEP, phosphoenolpyruvic acid. 
In D, E, F, G, H, I, J, and K, the color of the dots indicates the sample group, data are represented as 
mean ± SEM; N = 4 for four-month-old PT and PTN organoid samples, and N = 5 for the rest of the groups; 
P values were calculated with Student’s t-tests comparing LEGOs to WT; **** P < 0.0001, *** P < 0.001, 
** P < 0.01, * P < 0.05, and ns, non-significant.  
See also Figure S4. 
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Figure 5. Lipidomics assay uncovers glycerol lipid metabolism being a hallmark of GBM  
(A). PCA of the one-month-old organoid lipidome 
(B). Abundance heatmap of different lipids in one-month-old organoids. 
(C). Enrichment plot for different lipid groups in one-month-old organoids.  
(D). PCA of four-month-old organoid lipidome. 
(E). Abundance heatmap of different lipids in four-month-old organoids. 
(F). Enrichment plot for different lipid groups in four-month-old organoids. 
(G). Diagram demonstrating the lipidomic changes in the LEGOs compared to WT organoids. 
In C and F, the cluster size indicates the number of significantly changed lipids in the group comparison. 
The increased ratio was calculated by dividing the number of significantly increased lipids by the total 
number of significantly changed lipids. See also Figure S5. 
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Figure 6. Proteomic/phospho-proteomic analysis identifies actionable targets and pathways for 
the genotype-based treatment of GBM 
(A). PCA of proteomics and phospho-proteomics of four-month-old organoids. 
Representative significantly enriched pathways or terms in PT (B), PTCC (C), and PTN (D) compared to 
WT identified by GSEA. 
(E). Heatmap showing the enrichment of GBM subtype signatures 42 in different LEGOs. 
Enriched kinases together with their substrates in PT (F), PTCC (G), and PTN (H) compared to WT. 
(I). Illustration of selected drugs and their targets. 
(J). Treatment outcome for the proof-of-principle drug tests. N = 3 for TMZ treatment groups, N = 4 for 
kinase inhibitor treatments. P values were calculated with paired Student’s t-tests comparing signals 
measured after treatments to before treatments 
See also Figure S6, Table S2, Table S3, Table S4 
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Figure 7. LEGO organoids respond to drugs that target mutation-specific mechanisms 
(A). Illustration of BLI-based drug screen.  
(B). Venn diagrams demonstrating effective drug distribution in different LEGOs  
(C). Treatment outcome for drugs effective in all LEGOs. N = 3 for each group. 
(D). Treatment outcome for drugs that are effective in at least one group. The black frames around the 
cells highlight the effective group. N = 3 for each group. 
Cell viability tracing with BLI signal in LEGOs treated with Dacomitinib and Osimertinib (E), Aripiprazole 
(F), and Lomitapide (G). 
(H). Normalized Mttp expression from ribo-seq analysis of mouse BTSC and NSC (left) and RNA-seq 
analysis of mouse brain tumors treated with/without TMZ (right) 
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(I). MTTP expression on GBM patient survival from an external data set 46, P value was calculated with 
Log rank test 
(J). MTTP expression from GBM patient single-cell RNA sequencing data. 
(K). Representative Ki67 and Nestin staining on LEGOs treated with DMSO or Lomitapide. Scale bar, 50 
μm. 
(L). Quantification of Ki67+ and Nestin+ cells treated with lomitapide, N = 9 sections for each group. 
In C and D, P values were calculated with paired Student’s t-tests comparing signals measured after 
treatments to before treatments; **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05. In E, F and G, data 
are represented as mean ± SEM. 
See also Table S5 
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