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Highlights 33 
• Preterm stress exposure leads to long-term neurodevelopmental deficits 34 
• Deficits are quantifiable using EEG-based brain age prediction errors 35 
• Our deep-learning solution for brain age prediction outperforms previous approaches 36 
• Predictions are achieved with only 20 mins EEG and a single bipolar channel 37 
• Prediction errors correlate with long-term Bayley scale neurodevelopmental outcomes 38 

 39 
Abstract 40 
The preterm neonate can experience stressors that affect the rate of brain maturation and lead to 41 
long-term neurodevelopmental deficits. However, some neonates who are born early follow normal 42 
developmental trajectories. Extraction of data from electroencephalography (EEG) signals can be 43 
used to calculate the neonate’s brain age which can be compared to their true age. Discrepancies 44 
between true age and brain age (the brain age delta) can then be used to quantify maturational 45 
deviation, which has been shown to correlate with long-term abnormal neurodevelopmental 46 
outcomes. Nevertheless, current brain age models that are based on traditional analytical 47 
techniques are less suited to clinical cot-side monitoring due to their dependency on long-duration 48 
EEG recordings, the need to record activity across multiple EEG channels, and the manual calculation 49 
of predefined EEG features which is time-consuming and may not fully capture the wealth of 50 
information in the EEG signal. In this study, we propose an alternative deep-learning approach to 51 
determine brain age, which operates directly on the EEG, using a Convolutional Neural Network 52 
(CNN) block based on the Inception architecture (called Sinc). Using this deep-learning approach on 53 
a dataset of preterm infants with normal neurodevelopmental outcomes (where we assume brain 54 
age = postmenstrual age), we can calculate infant brain age with a Mean Absolute Error (MAE) of 55 
0.78 weeks (equivalent to a brain age estimation error for the infant within +/- 5.5 days of their true 56 
age). Importantly, this level of accuracy can be achieved by recording only 20 minutes of EEG activity 57 
from a single channel. This compares favourably to the degree of accuracy that can be achieved 58 
using traditional methods that require long duration recordings (typically >2 hours of EEG activity) 59 
recorded from a higher density 8-electrode montage (MAE = 0.73 weeks). Importantly, the deep 60 
learning model’s brain age deltas also distinguish between neonates with normal and severely 61 
abnormal outcomes (Normal MAE = 0.71 weeks, severely abnormal MAE = 1.27 weeks, p=0.02, one-62 
way ANOVA), making it highly suited for potential clinical applications. Lastly, in an independent 63 
dataset collected at an independent site, we demonstrate the model’s generalisability in age 64 
prediction, as accurate age predictions were also observed (MAE of 0.97 weeks). 65 
 66 
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1. Introduction 73 
The newborn infant’s brain is undergoing rapid developmental change, influenced by both genetic 74 
and environmental factors (Colonnese et al., 2010; Milh et al., 2007; Wess et al., 2017). Relative to 75 
their term-born counterparts, infants born prematurely are at increased risk of poorer long-term 76 
neurodevelopmental outcomes (Blencowe et al., 2013; Wallois et al., 2020). This risk of impairment 77 
increases with the degree of prematurity at birth and the presence of gross morphological lesions, 78 
but can also be brought about by subtler environmental stressors (Scher, 2008), excessive exposure 79 
to painful stimuli (Grunau, 2013; Moultrie et al., 2017), and pharmacological interventions (Duerden 80 
et al., 2016; Malk et al., 2014). 81 
 82 
The early identification of abnormal neurodevelopment is essential to identify infants at greatest 83 
risk who might benefit most from developmental care interventions (Burke, 2018). To date, 84 
neurological assessment of the newborn has remained predominantly subjective (Dempsey et al., 85 
2018). For example, trained neonatologists and clinical neurophysiologists visually inspect infant’s 86 
brain activity using electroencephalography (EEG) to determine if brain function is developmentally 87 
age-appropriate or dysmature (Scher, 1997), based on developmentally changing EEG features 88 
characteristic of maturational status (André et al., 2010). While these trained individuals can 89 
estimate age with an error of two weeks for preterm babies and one week for term babies, these 90 
estimates can be highly variable across reviewers (Stevenson et al., 2020b). Subjectivity, inter-rater 91 
variability, and requirement of specialist EEG interpretation are central issues that severely limit the 92 
reliability and generalisability of many current neurological assessment methods. There is an urgent 93 
need for objective and automated neuromonitoring that can be used cot-side to identify infants at 94 
increased risk of abnormal neurodevelopmental outcomes. 95 
 96 
To this end, a variety of metrics have been developed to capture key maturational characteristics 97 
from the preterm EEG (De Wel et al., 2017; Dereymaeker et al., 2016; Lavanga et al., 2017; Pillay et 98 
al., 2018; Tolonen et al., 2007), and these measures have been combined using machine learning 99 
algorithms to successfully predict infants’ brain age (O’Toole et al., 2016; Stevenson et al., 2017). 100 
An infant’s brain age is their predicted age from a model that has been trained using brain-based 101 
features (structural or functional) as predictors and true age as the response. In adults, the 102 
difference between the brain age and the true age, termed the brain age delta, has been 103 
demonstrated to be more than random noise prediction error, but in fact is of biological and clinical 104 
value (Smith et al., 2019; Vidal-Pineiro et al., 2021). 105 
 106 
In infants, analogous findings have been observed. Recently, we trained a Random Forest (RF) 107 
regression model using a data-driven approach that combined 226 EEG features and demonstrated 108 
a significant correlation between the infants’ brain age delta and the severity of their abnormal 109 
neurodevelopmental outcome, where the neurodevelopmental outcomes were assessed 110 
behaviourally using the Bayley Scales of Infant Development (BSID-II) at a 9-month follow-up test 111 
occasion (Pillay et al., 2020). Additionally, an independent research group showed a similar 112 
correlation when training a multivariate regression model for brain age estimation (Stevenson et 113 
al., 2020a). These studies established the proof-of-concept in infant populations that the inter-114 
individual variability in automatically and objectively generated brain age deltas could be used to 115 
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risk-stratify infants in the first few weeks of postnatal life according to neurodevelopmental 116 
outcomes. 117 
 118 
However, a major limitation to these studies is their lack of clinical utility. A large number of features 119 
are required to summarize the EEG data, which are computationally time-consuming to calculate. 120 
These approaches rely on pre-staging the EEG recording into sleep states (i.e. sleep-staging) or burst 121 
periods which require additional algorithms (Dereymaeker et al., 2017b; Palmu et al., 2010). 122 
Furthermore, multiple EEG channels are required as well as at least 1 hour EEG recording duration. 123 
These data-heavy requirements severely limit the ease with which these methods can be 124 
incorporated into the busy clinical environment. 125 
 126 
Here, we directly address these barriers to clinical utility by adopting a deep learning approach. 127 
Deep learning has demonstrated superior performance over traditional machine learning methods, 128 
has excellent performance on a reduced number of EEG channels, and tends to perform predictions 129 
faster once trained (Ansari et al., 2018). Furthermore, deep learning models are gaining popularity 130 
in preterm EEG analysis for classifying seizures (Ansari et al., 2019; O’Shea et al., 2021) and for 131 
automated sleep-staging (Ansari et al., 2020). Together, these observations suggest deep learning 132 
could offer a promising approach for cot-side monitoring and assessment of neurological function. 133 
 134 
In the current study, we implement a novel Convolutional Neural Network (CNN)-based 135 
architecture, inspired by Google’s Inception model (and its variants), to generate infant brain age 136 
predictions using dramatically reduced EEG data requirements compared to previous proof-of-137 
concept studies. We use our established RF model as a “gold standard” benchmark of performance, 138 
a model which requires eight EEG channels, at least 1 hour EEG recording duration, and EEG data 139 
sleep-staging. We train the RF and deep learning models on a training dataset, and subsequently 140 
test the models’ performance on two independent datasets, demonstrating robust external 141 
validation. Using our deep learning approach, we achieve performance comparable to our RF model 142 
benchmark, while requiring only a single EEG channel (1-channel bipolar montage), 20 mins EEG 143 
recording duration, and no EEG data sleep-staging. Our deep learning model is able to accurately 144 
predict infant age within the first few weeks of postnatal life, and generates brain age deltas with 145 
magnitudes that significantly differ between infants with normal and severely abnormal 146 
neurodevelopmental outcomes assessed using BSID-II at 9-month follow-up. This study thus 147 
demonstrates potential clinical utility for an objective and automated deep learning-based 148 
approach to cot-side assessment of infants’ neurological function and neurodevelopmental 149 
outcomes. 150 
 151 
 152 
2. Methods 153 
2.1. Participants 154 
2.1.1. Study Design 155 
Data were collected in three independent cohorts. The first cohort, referred to as dataset 𝒟1, was 156 
used to train the models and compare the relative performances among models e.g. models with 157 
different architectures, different channel montages, and different recording durations. The second 158 
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cohort, referred to as dataset 𝒟2, was used to independently test the trained RF and deep learning 159 
models in their brain age prediction performances, and to assess the association between brain age 160 
deltas and 9-month BSID-II follow-up outcomes. The third cohort, referred to as dataset 𝒟3, was 161 
used to further test the generalisability of the deep learning model to predict brain age in this 162 
dataset collected at an independent site by an independent research team. 163 
 164 
2.1.2. Recruitment 165 
EEG data for datasets 𝒟1 and 𝒟2 were recorded from the Neonatal Intensive Care Unit (NICU) at 166 
UZ Leuven Hospitals, Leuven, Belgium. Infants were recruited and data recorded with informed 167 
consent from the parents and in accordance with the guidelines approved by the ethics committee 168 
of the University Hospitals, Leuven. All infants had a gestational age (GA) at birth less than 32 weeks, 169 
and between two and four recordings were obtained during their stay in the NICU. 170 
 171 
Infants in dataset 𝒟3 were selected from a database of previously recorded data collected at the 172 
Newborn Care Unit and Maternity wards of the John Radcliffe Hospital (Oxford University Hospitals 173 
NHS Foundation Trust, Oxford, United Kingdom). Ethical approval was obtained from the UK 174 
National Research Ethics Service (reference: 12/SC/0447) and parental written informed consent 175 
was obtained before each participant was studied.  176 
 177 
All participant recruitment was conducted in accordance with the standards set by the Declaration 178 
of Helsinki and Good Clinical Practice guidelines. 179 
 180 
2.1.3. Datasets 181 
Datasets 𝒟1 and 𝒟2 were collected as previously described (Pillay et al., 2020). Dataset 𝒟1 consists 182 
of n=40 infants (111 recordings) with postmenstrual age range (PMA) at time of recording of 27.3–183 
43.1 weeks, with mean recording duration of 8h 07m (standard deviation: 5h 55m) and mean 184 
number of recordings per infant of 2.8 (standard deviation: 1.6). All infants in dataset 𝒟1 were 185 
selected for normal neurodevelopmental outcome at 24-months follow-up age based on 186 
behavioural assessment using BSID-II. 187 
 188 
Dataset 𝒟2 consists of n=43 infants (142 recordings). One infant with a single recording was 189 
excluded as our objective with this dataset was to assess longitudinal multi-recording trajectories. 190 
The analysed dataset 𝒟2 thus consists of n=42 infants (141 recordings) with a PMA at recording 191 
range of 27.3–42.0 weeks, mean recording duration of 7h 05m (standard deviation: 5h 43m), and 192 
mean number of recordings per infants of 3.3 (standard deviation: 1.4). Unlike dataset 𝒟1, dataset 193 
𝒟2 includes infants with a range of both normal and abnormal outcomes, grouped by BSID-II scores 194 
at 9-month follow-up (Pillay et al., 2020). N=22 infants (71 recordings) had normal outcome i.e. no 195 
neurodevelopmental impairment (NDI); n=10 infants (36 recordings) had mild abnormal outcome 196 
(mild NDI); and n=10 infants (34 recordings) had moderate-to-severe abnormal outcome (mild-to-197 
severe NDI) or died (Pascal et al., 2020). 198 
 199 
Dataset 𝒟3 consists of n=73 infants, each recorded on a single test occasion (thus 73 recordings). 200 
Infants were included in this dataset for the current study if they had at least 20 minutes of EEG 201 
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data recorded and if the EEG was assessed as normal for age by a trained clinical neurophysiologist 202 
(author GSM). The infants had a median PMA at recording of 35.3 weeks (interquartile range: 33.3 203 
– 36.9, range: 28.0 – 42.6) and postnatal age of 14 days (interquartile range: 5 – 41, range: 0 – 112). 204 
The mean recording duration was 50 minutes (standard deviation: 18 minutes). 205 
 206 
2.2. EEG data 207 
2.2.1. Setup 208 
For dataset 𝒟1 and 𝒟2, data were recorded using a sampling frequency of 250 Hz using Brain RT 209 
OSG Equipment (Mechelen, Belgium). In a few cases, the EEG was sampled at 256 Hz due to some 210 
setup variations on the Brain RT device used. All recordings were performed with nine electrodes in 211 
a referential montage: Fp1, Fp2, C3, C4, T3, T4, O1, O2, and Cz reference (Figure 1). 212 
 213 
For dataset 𝒟3, EEG recordings were acquired from DC to 800 Hz using a SynAmps RT 64-channel 214 
headbox and amplifiers (Compumedics Neuroscan). Activity was recorded using CURRY scan7 215 
neuroimaging suite (Compumedics Neuroscan), with a sampling rate of 2000 Hz. Between 8 and 25 216 
electrodes were used for recording, positioned according to the modified international 10-20 217 
system, including C3 and C4 (those used in the analysis here), with reference at Fz and ground at 218 
Fpz. The scalp was cleaned with preparation gel (Nuprep gel, D.O. Weaver and Co.) and disposable 219 
Ag/AgCl cup electrodes (Ambu Neuroline) were placed with conductive paste (Elefix EEG paste, 220 
Nihon Kohden). 221 
 222 
2.2.2. Preprocessing 223 
For the deep learning approaches in datasets 𝒟1 and 𝒟2, each recording was downsampled to 64 224 
Hz to reduce the number of parameters required to train the model. The downsampling routine 225 
included pre-filtering to prevent aliasing using a low-pass filter with cut-off frequency 32 Hz. 226 
Filtering and downsampling was performed using the scipy.signal.resample_poly function. 227 
Recordings were then split into 30-second segments and the amplitudes standardized such that the 228 
mean and standard deviation of the amplitudes were zero and one, respectively. The mean and 229 
standard deviation were obtained by standardizing the data (across all channels) in the training set, 230 
with these values carried forward to standardize the test sets (see below). Finally, any segments 231 
where the absolute differences (compared to the mean) at any point exceeded 600 µV were 232 
rejected as artefact. 233 
 234 
For the RF approach in datasets 𝒟1 and 𝒟2, which relied on an explicit pre-calculation of many 235 
established features, the pre-processing approach (resampling and standardization) was different 236 
and specific to each calculated feature, as described previously (Pillay et al., 2018). 237 
 238 
For dataset 𝒟3, pre-processing was matched to the 𝒟1 and 𝒟2 deep learning approach. We applied 239 
a low-pass 32 Hz anti-aliasing filter followed by downsampling to 64 Hz. For standardization of 240 
dataset 𝒟3, the mean and standard deviation of 𝒟1 were used. 241 
 242 
2.3. Brain age prediction architectures 243 
2.3.1. Sinc architecture 244 
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Figure 2a shows the block-diagram of the proposed deep neural network for brain age prediction. 245 
As input, the network processes a 30 s multi-channel EEG segment. Each input segment has 246 
dimension 𝐶 x 1920 where 𝐶	is the number of EEG channels and 1920 is the total number of 247 
timepoints in the 30 s segment (30 s duration x 64 Hz sampling frequency). Each segment has a 248 
single output label that is a continuous PMA value.  249 
 250 
The model includes a series of convolutional layers with exponential linear unit (ELU) activations, 251 
maximum and average pooling layers to downsample the data, normalization layers for faster 252 
training convergence, and a dense layer with linear activation to perform the final regression and 253 
produce a brain age estimate. As each convolutional layer is designed to extract specific 254 
characteristics from the EEG, these are analogous to a (trainable, data-driven) feature extraction 255 
layer. More generally, the proposed architecture can be grouped into a more traditional, sequential 256 
CNN block that can be described as an initial feature extraction stage, followed by the two 257 
successive Sinc (i.e. Shared Inception) blocks that form a second feature extraction stage. 258 
 259 
We previously introduced Sinc as a powerful CNN-based block for extracting multi-scale temporal 260 
information from infant EEG, namely sleep state classification (Ansari et al., 2021). Sinc is an 261 
extension of Google’s Inception block, where the original independent and parallel convolutional 262 
branches are now boosted via parameter sharing. As shown in Figure 2b, the output from each 263 
preceding branch is additionally fed into the subsequent one, with the overall output of Sinc 264 
comprising the concatenation of all multi-scale convolutions in the block (see also Figure 2biv). This 265 
increases the number of temporal scales achievable (by allowing a wider range of receptive fields), 266 
when compared to an Inception layer, while avoiding the need to scale up the number of trainable 267 
parameters as a result. Only two hyper-parameters are required for a Sinc block: 𝑀 (the number of 268 
convolutional branches), and 𝑁 (the number of convolutional filters used in each branch). When 269 
using a single-channel EEG segment as input (𝐶 = 1), the total number of trainable parameters in 270 
the complete model is 620K. 271 
 272 
2.3.2. Alternative deep learning architectures 273 
Four different deep learning architectures were also considered, based on recent key developments 274 
in the CNN domain (Figure 2b), and the Sinc model was compared against these architectures: No 275 
FEII (following the same design as the Sinc architecture but without the entire Feature Extraction II 276 
portion), CNN (replaces the Sinc blocks with the same convolutional neural network layer used 277 
elsewhere in the model), Residual (similar to CNN but including the additional residual shortcut), 278 
and Inc (replacing the Sinc blocks with traditional Inception blocks). These architectures are 279 
described in Supplementary Information S.1.   280 
 281 
2.6.2. Random Forest (RF) architecture 282 
In addition to comparing the Sinc architecture to alternative deep neural network architectures, it 283 
was also compared against our established and previously published RF approach (Pillay et al., 284 
2020). The RF model was developed using a large set of pre-calculated features, derived after the 285 
EEG is classified into different sleep stages using an additional, unsupervised algorithm known as 286 
Cluster-based Adaptive Sleep Staging (CLASS) that we have also previously developed (Dereymaeker 287 
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et al., 2017b; Pillay et al., 2020). The pre-calculated features were derived from an EEG literature 288 
review covering the amplitude domains, Fourier transforms, Wavelet transforms, Empirical Mode 289 
Decompositions (EMDs) and other complexity measures (such as entropy and fractal analysis). 290 
These features were calculated across all channels and a final median taken across channels as input 291 
into the RF model. The RF is an ensemble method that uses a large set (or ‘forest’) of trained decision 292 
trees to provide an averaged final prediction. Each tree is trained on a bootstrapped sample of the 293 
dataset and a random selection of the features which is shown to provide better prediction accuracy 294 
than from an individual tree and can also provide an implicit measure of the important features 295 
used in the algorithm. The RF model uses 1500 trees and utilizes all features for each tree split. All 296 
steps and hyperparameter choices used here are the same as our previous published RF approach 297 
(Pillay et al., 2020). 298 
 299 
2.4. Model training and relative performance assessments using dataset 𝓓𝟏 300 
2.4.1. Splitting dataset 𝒟1 into training set and test set 301 
Dataset 𝒟1 was used to train and test all models. By using a cohort of only normal outcome data, it 302 
is assumed that predicted brain age equates to true PMA. This allows training of a normative model 303 
to predict the PMA, and therefore brain age, for a normally developing baby (Pillay et al., 2020; 304 
Stevenson et al., 2020a, 2017). Further data can then be assessed against this trained model to 305 
identify deviations. Dataset 𝒟1 was divided by recording into age-stratified training and test sets of 306 
size 50 and 47 recordings, respectively (Supplementary Information S.2.; Supplementary Figure 1).  307 
 308 
2.4.2. Model training in dataset 𝒟1 309 
For the training of both deep learning models and the RF model, the mean squared error (MSE) loss 310 
was used. For the RF model, the model was re-trained using the original training procedure as 311 
previously outlined (Pillay et al., 2020). For the deep learning models, model training included early 312 
stopping, Gaussian noise addition, recording segmentation into 30 s segments, and ensemble 313 
learning. These four components are described in detail in Supplementary Information S.3, with 314 
early stopping, Gaussian noise addition, and ensemble learning included to increase robustness of 315 
the model. 316 
 317 
2.4.3. Model testing in dataset 𝒟1 318 
2.4.3.1. Assessing model performance 319 
The ultimate goal of each brain age prediction model is to generate a single brain age prediction 320 
estimate per EEG recording. For the deep learning models, each deep learning model generates ten 321 
brain age prediction estimates per 30 s segment of an EEG recording (as a 10-learner ensemble 322 
method was used, see Supplementary Information S.3.). During testing, all contiguous 30 s segments 323 
across each recording are used with the number of 30 s segments therefore dependent on the 324 
overall EEG recording duration. To aggregate a deep learning model’s predictions to a single value 325 
per recording, the median across the ten ensemble predictions per 30 s segment is determined, 326 
then a further median across all 30 s segments in the recording is taken resulting in the final 327 
prediction estimate.  This is different to the RF model strategy, where a single brain age prediction 328 
estimate is generated per recording by manually calculating features in the 30 s segments and taking 329 
the medians across all segments before brain age prediction is performed.  Across all recordings in 330 
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the test set in 𝒟1, there were a total of 30K segments used. For both the deep learning models and 331 
RF model, the final prediction estimate for a recording is used to generate the prediction error (or 332 
absolute prediction error) for that recording. 333 
 334 
2.4.3.2. Reducing EEG channel requirements 335 
The established RF model uses eight channels in a referential montage (Figure 1) to predict infant 336 
brain age. The performance of the RF model, the Sinc model, and the other deep learning models 337 
were assessed and compared using this initial setup. Subsequently, the deep learning models were 338 
re-trained and performances compared as the number of EEG channels were systematically 339 
reduced: 4-channel referential (C3, C4, T3 and T4), 2-channel referential (C3 and C4), and finally a 340 
1-channel bipolar (C3-C4) montage (Figure 1). Channels were selected to ensure good symmetry 341 
across the midline of the scalp and ample coverage. The 1-channel bipolar montage was selected 342 
for its similarity to setups used in clinical amplitude-integrated EEG (aEEG) monitors. EEG pre-343 
processing was independently repeated each time, with the amplitude standardisation step 344 
recalculated on the reduced channel configurations. After (re)training using the training set, each 345 
model generated a brain age prediction per recording in the test set. This set of predictions was 346 
used to generate a set of absolute errors per model. Using one-sample paired t-tests (p<0.05 347 
significance level), we assessed the model performances by comparing t-statistic magnitudes and 348 
tested for statistically significant differences between the Sinc model’s mean absolute error and the 349 
mean absolute error of each of the alternative models (RF model and other deep learning models). 350 
 351 
It is worth noting that the 1-channel bipolar montage used for our analyses was achieved by ignoring 352 
the additional channels unnecessary for this montage. This approach is distinct to a true clinical 353 
scenario when only a 1-channel bipolar montage would be used during recording. Our assumption, 354 
which we believe to be reasonable, is that both approaches to 1-channel bipolar montage setup are 355 
closely matched for this specific use case. However, this assumption should be tested in future 356 
external validations of the deep learning model using clinical grade bipolar montage data. 357 
 358 
2.4.3.3. Reducing EEG recording duration requirements 359 
Having demonstrated the high performance of the deep learning Sinc model using the full-length 360 
EEG recording duration with only a 1-channel bipolar setup (section 2.4.3.2.), we next assessed the 361 
Sinc model performance using the 1-channel bipolar setup (Figure 1) as the EEG recording duration 362 
was systematically varied. We examined a range of recording lengths from 0.5–120 min and 363 
compared Sinc model performance on these reduced recording durations relative to the Sinc model 364 
performance with the full-length EEG recording duration to identify an appropriate reduced 365 
recording duration. To get a reduced recording from a single full recording, we randomly sampled 366 
each reduced duration segment from the full recording, generating an absolute error value per 367 
reduced duration segment. Due to the arbitrary nature of selecting a reduced recording segment 368 
from a full recording, we repeated the procedure using 1000 bootstrapped samples from which a 369 
mean absolute error was derived per recording per reduced recording duration. A minimum 370 
reduced recording duration was identified as the duration at which the prediction performance, 371 
measured using the mean absolute error, noticeably drops below that of the full duration Sinc 372 
model. Finally, the mean absolute error of this reduced duration (20 mins – see Section 3.1.) 1-373 
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channel Sinc model was compared to the mean absolute error of the 8-channel full duration RF 374 
model using a one-sample paired t-tests (p<0.05 significance level). For the reduced duration Sinc 375 
data, the initial 20 mins of each recording was selected for t-test analysis. 376 
 377 
2.5. Interpreting Sinc model performance using dataset 𝓓𝟏 378 
Deep neural networks are notorious for being black-box machines, limiting interpretability when 379 
compared to machine learning approaches and traditional visual assessment approaches. 380 
Nevertheless, methods are improving to visualize these networks to understand how they were 381 
trained and their potential to generalise well on new data. In this study, two visualization techniques 382 
were applied to further understand Sinc model performance: input-loss minimisation and uniform 383 
manifold approximation and projection, see Supplementary Information S.4. 384 
 385 
2.6. External validation of Sinc model performance using dataset 𝓓𝟐 386 
The final Sinc model was trained on the entire dataset 𝒟1 using the 1-channel bipolar setup (Figure 387 
1). Similarly, the final “gold standard” RF model was trained on the entire dataset 𝒟1 using the 8-388 
channel referential setup. When applying the final Sinc model to the independent hold-out dataset 389 
𝒟2, the 1-channel bipolar setup was used and a 20 mins recording duration was randomly sampled 390 
from the full duration EEG recording. When applying the final RF model to dataset 𝒟2, the 8-channel 391 
referential setup and full EEG recording were used. 392 
 393 
2.6.1. PMA prediction in independent hold-out dataset 394 
To assess the generalisability of the Sinc model to predict infants’ PMA on independent data, the 395 
normal BSID-II outcome data from the independent hold-out dataset 𝒟2 was used. To assess the 396 
association between true PMA and predicted PMA, a linear mixed effects regression model was 397 
used (p<0.05 significance level). Random intercepts were introduced to group repeated recordings 398 
from the same infant. Associations between true PMA and predicted PMA were also assessed for 399 
the mild abnormal and severe abnormal groups. Similarly, the RF model was used to generate PMA 400 
predictions for the normal, mild abnormal, and severe abnormal groups in dataset 𝒟2, and 401 
associations between true age and predicted age were assessed in an identical manner to the Sinc 402 
model. 403 
 404 
The two models’ PMA prediction performances were compared using the linear mixed effects 405 
regression models’ z-statistic magnitudes per BSID-II outcome cohort. Additionally, Bland-Altman 406 
analysis (Bland and Altman, 1999, 1986) was used to assess Sinc-RF model agreement in absolute 407 
error magnitude, pooled across all data in dataset 𝒟2. Bland-Altman analysis was implemented in 408 
R v4.1.1 (R Core Team, 2018) using a publicly available package 409 
(https://rdrr.io/cran/BlandAltmanLeh) to estimate the bias (Sinc minus RF) and limits of agreement, 410 
along with 95% confidence intervals. Model agreement was assessed using individual recording 411 
absolute errors and using within-infant multi-recording mean absolute errors, to assess the 412 
influence of within-infant multi-recording averaging on model agreement (Bland-Altman plot y-axis, 413 
limits of agreement width) and average prediction error magnitude (Bland-Altman plot x-axis, 414 
range). 415 
 416 
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2.6.2. Associating brain age delta magnitude to 9-month BSID-II follow-up outcomes 417 
The association between an infant’s brain age delta magnitude and 9-month BSID-II follow-up 418 
outcomes (normal, mild abnormal, severe abnormal) was assessed for all infants in dataset 𝒟2. For 419 
each infant, a brain age delta (absolute error) was determined per recording, and the mean absolute 420 
error (MAE) across an infant’s multiple recordings was used as an estimate of that infant’s brain age 421 
delta i.e. the deviation between their brain age and their true age. This per-infant MAE thus 422 
represents an infant’s overall brain neurodevelopmental trajectory deviation, with a larger 423 
trajectory deviation corresponding to greater deviations from the norm. 424 
 425 
Trajectory deviations across all infants in dataset 𝒟2 were then grouped by neurodevelopmental 426 
outcome (as defined in section 2.1.1.) and significant differences between groups assessed using 427 
one-way ANOVA (p<0.05 significance level). Tukey’s post-hoc test, which corrects for multiple 428 
comparisons (p<0.05 significance level), was used to identify significant pair-wise comparisons. 429 
Additionally, the two models’ BSID-II outcome group separation performances were compared 430 
using the pairwise standardised effect size (Cohen’s D, estimated using MATLAB’s meanEffectSize 431 
function) magnitudes per contrast: mild minus normal, severe minus mild, and severe minus normal. 432 
 433 
Finally, group-wise (normal, mild abnormal, severe abnormal) differences in GA, PMA and the 434 
number of recordings in each infant’s trajectory were checked using one-way ANOVA to assess their 435 
potential influence as confounding factors. 436 
 437 
2.7 External validation of Sinc model performance using dataset 𝓓𝟑 438 
The final Sinc model was applied to the independent dataset 𝒟3 collected at an independent centre 439 
(Oxford, UK). The 1-channel bipolar montage (C3-C4) and the first 20-minutes of each recording 440 
were used in the analysis. 441 
 442 
The association between true PMA and predicted PMA was assessed using Pearson correlation (z-443 
statistic calculated using the Fisher r-to-z transform, p<0.05 significance level). Z-statistics are 444 
reported for the results of both datasets 𝒟2 and 𝒟3.  Each infant in dataset 𝒟3 was recorded on a 445 
single test occasion; the group-level MAE was calculated as the mean across all recordings of each 446 
subject-level brain age delta i.e. each infant’s error in predicted versus true age. 447 
 448 
The brain age delta estimate can have a dependency with age – an age association bias that is known 449 
to occur for several distinct reasons such as regression dilution (Smith et al., 2019). To correct for 450 
this age association bias, we adjusted the predicted brain age using the linear regression between 451 
the brain age delta and the true age (Smith et al., 2019). To assess the generalisability of this 452 
correction to new data we adjusted the predicted brain age using leave-one-subject-out cross-453 
validation, calculating the MAE of the held-out subject compared with its true age. 454 
 455 
 456 
3. Results 457 
3.1. The Sinc model outperforms alternative model architectures in predicting infant age (dataset 458 
𝓓𝟏) 459 
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A comparison of model performance across the Sinc model and four alternative candidate deep 460 
learning models, with reduced channel setups is summarised in Figure 3a and Supplementary Table 461 
1. Using the 8-channel setup and the full recording duration data of dataset 𝒟1, the Sinc model out-462 
performed both the established benchmark RF model (Sinc error = 0.73 weeks, RF error = 1.01 463 
weeks, n = 47 recordings, t-statistic = 1.44, p = 0.078) as well as the candidate deep learning models. 464 
When the number of recording channels was reduced from eight to one (bipolar channel, C3-C4), 465 
the Sinc model had consistently lower MAE values compared with alternative models and exhibited 466 
a total drop in performance of only 0.05 weeks (Sinc: 8-channel MAE = 0.73 weeks, 1-channel MAE 467 
= 0.78 weeks). Furthermore, the 1-channel bipolar Sinc model outperformed the 8-channel 468 
referential RF model (Sinc error = 0.78 weeks, RF error = 1.01 weeks, n = 47 recordings, t-statistic = 469 
1.13, p = 0.13).  470 
 471 
The Sinc model prediction error recorded from a single channel with full recording duration 472 
(duration: median = 4h 25m, IQR = 4h 4m–7h 10m) was compared to Sinc model prediction error 473 
using a single channel and reduced recording durations ranging from 0.5–120 mins (Figure 3b). 474 
Using only 20 mins of EEG recording, the mean Sinc model prediction error was equivalent to using 475 
the full recording duration. Using the established RF method as a benchmark, which relied on an 8-476 
channel setup and full-length recordings, the proposed Sinc model outperformed this benchmark 477 
while having practical setup requirements that are far more achievable and practical for use in a 478 
clinical environment (Sinc error = 0.79 weeks, RF error = 1.01 weeks, n = 47 recordings, t-statistic = 479 
1.07, p = 0.14). While the three Sinc models’ performances (8-channel full duration, 1-channel full 480 
duration, 1-channel 20 min duration) did not statistically significantly differ to the benchmark RF 481 
model performance, the Sinc model’s performances were marginally but consistently improved (t-482 
statistics = 1.44, 1.13, 1.07, respectively, with positive t-statistics indicating larger MAE for RF). 483 
 484 
3.2. Sinc model may determine age using degree of EEG continuity (dataset 𝓓𝟏) 485 
To shed light on the specific EEG features that the deep learning Sinc model is likely utilising for the 486 
brain age prediction, a method called input-loss minimisation was used to generate synthetic EEG 487 
data that would force the model to make a brain age prediction of 30 weeks, 35 weeks, and 40 488 
weeks PMA, respectively (Figure 4). Visually examining the synthetic EEG data shows that EEG 489 
continuity and bursting were qualitatively distinguishing features and are therefore likely features 490 
that the Sinc model used to characterise age-dependent activity. The 30-week synthetic data 491 
reflects aspects of high discontinuity with short, high amplitude bursts and long-duration inter-burst 492 
intervals (approximately 5-20 s) (Figure 4a). With increasing PMA, the inter-burst interval durations 493 
decreased and burst periods widened, and by term-age, the signal was almost fully continuous with 494 
no clear burst or inter-burst interval patterns (Figure 4c). 495 
 496 
Using UMAP to visualise the data inputs to the three Sinc blocks (FEI, FEII, and Regression), a clear 497 
separation of features occurs, beginning with a low-level followed by high-level feature extraction 498 
(Figure 5). At the stage of inputs to Regression, the data can visually be seen to separate such that 499 
datapoints increase almost monotonically with PMA (Figure 5c). This clear progression is indicative 500 
that the network weights are trained well in the intermediate layers, and this visualisation provides 501 
further insight into the role of each block. 502 
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 503 
3.3. Sinc model brain age prediction generalises accurately to an independent hold-out dataset 504 
(dataset 𝓓𝟐) 505 
Having established the Sinc model in dataset 𝒟1 (section 3.1), this model was applied to a healthy 506 
cohort of infants’ data from the independent hold-out dataset 𝒟2. Using 1-channel bipolar EEG data 507 
of 20 min recording duration, the Sinc model’s predicted ages were statistically significantly 508 
correlated with infants’ true PMA (Normal: n = 22 infants, z-statistic = 33.32, p < 0.0001) (Figure 6ai), 509 
demonstrating that the model successfully generalises to independent data. The Sinc model also 510 
generated predicted ages that were statistically significantly correlated with infants’ true PMA for 511 
the infants in dataset 𝒟2 that had abnormal BSID-II follow-up outcomes (Mild abnormal: n = 10 512 
infants, z-statistic = 18.03, p < 0.0001; Severe abnormal: n = 10 infants, z-statistic = 15.54, p < 0.0001) 513 
(Figure 6aii). Infants with abnormal BSID-II follow-up outcomes were not used in training the Sinc 514 
model, and so age predictions for these cohorts were, as expected, less accurate than those of the 515 
healthy outcome cohort and thus exhibited weaker correlations (although still very strong) between 516 
brain age and true age. 517 
 518 
Using the 8-channel EEG setup and the entire recording duration, the RF model generated age 519 
predictions that were statistically significantly correlated with infants’ true PMA for both the normal 520 
outcome and abnormal outcome cohorts (Normal: z-statistic = 22.89, p < 0.0001; Mild abnormal: z-521 
statistic = 12.51, p < 0.0001; Severe abnormal: z-statistic = 10.76, p < 0.0001) (Figure 6b). While the 522 
brain age prediction correlation results for both the novel Sinc model and the established RF model 523 
were very strong and highly significant for all three infant cohorts, the Sinc model consistently 524 
outperformed the RF model per cohort (consistently larger z-statistics). Importantly, Sinc’s 525 
improved prediction accuracy was achieved while using dramatically lower EEG data requirements. 526 
 527 
To quantitatively assess the level of agreement in PMA prediction performance between the RF and 528 
Sinc models, we generated Bland-Altman plots of absolute prediction errors for the entirety of 529 
dataset 𝒟2 (pooled normal, mild abnormal, and severe abnormal outcome data) based on both 530 
individual recordings (n = 141 recordings in total) (Figure 6ci) and individual infants (n = 42 infants 531 
in total) (Figure 6cii). In both instances, there was a statistically significant negative bias reflecting 532 
the reduced prediction error using the Sinc model (per-recording: mean bias = -0.202, 95% CI = [-533 
0.387, -0.016]; per-infant: mean bias = -0.231, 95% CI = [-0.444, -0.017]). Assessing the individual 534 
recordings data, the limits of agreement were -2.435 and 2.032 with 95% CI = [-2.756, -2.115] and 535 
[1.712, 2.353], respectively (Figure 6ci). Assessing the individual infants’ data (multi-recording 536 
average per infant), the limits of agreement were -1.573 and 1.112 with 95% CI = [-1.943, -1.204] 537 
and [0.742, 1.481], respectively (Figure 6cii). The narrower limits of agreement width using the 538 
infant-level assessment highlights a noticeable increase in Sinc-RF model agreement when using 539 
multi-recording average prediction errors per infant rather than prediction errors based on 540 
individual recordings, due to the reduced random noise variance as a consequence of the multi-541 
recording averaging. Using multi-recording average prediction errors per infant, we can expect 95% 542 
of absolute prediction error differences between the RF and Sinc models to be approximately ±1.5 543 
weeks, and the Sinc model to have a smaller prediction error of approximately 0.23 weeks on 544 
average. 545 
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 546 
3.4. Sinc model brain age deltas are associated with 9-month follow-up neurodevelopmental 547 
outcomes (dataset 𝓓𝟐) 548 
The variability in brain age delta magnitudes between infants with normal and abnormal BSID-II 549 
follow-up outcomes forms the foundation of the possibility of using brain age prediction to risk-550 
stratify infants in the first few weeks of postnatal life according to neurodevelopmental outcomes. 551 
Here, using the Sinc model, the average brain age deltas for the normal, mild abnormal, and severe 552 
abnormal outcomes groups assessed using the BSID-II at nine months postnatal age were found to 553 
significantly differ (Normal: mean MAE = 0.71, n = 22 infants; Mild abnormal: mean MAE = 0.79, n = 554 
10 infants; Severe abnormal: mean MAE = 1.27, n = 10 infants; one-way ANOVA: f-statistic = 4.24, p 555 
= 0.02) (Figure 7a). Significant differences between the mean deltas for the normal and severe 556 
abnormal groups were observed using post-hoc analysis adjusted for multiple comparisons (Tukey 557 
test: q-statistic = 4.20, p = 0.02) (Figure 7a). Taken together, these results indicate that Sinc model 558 
brain age delta magnitudes, generated using a single channel and 20 mins recording duration, scale 559 
with clinically informative BSID-II outcomes that are assessed several months later. 560 
 561 
As reported previously, the RF model’s brain age deltas also significantly differed between the three 562 
BSID-II outcome cohorts (Normal: mean MAE = 0.83, Mild abnormal: mean MAE = 1.13, Severe 563 
abnormal: mean MAE = 1.63, one-way ANOVA: f-statistic = 4.96, p = 0.01) (Figure 7b), with 564 
significant differences observed between the mean prediction errors for the normal and severe 565 
abnormal groups (Tukey test: q-statistic = 4.36, p = 0.01) (Figure 7b). 566 
 567 
Quantitatively assessing the magnitude of the group average MAE separation between BSID-II 568 
outcome cohorts, a similar trend was observed for both the Sinc and RF models (Figure 7c). Both 569 
models exhibited poorest separation between the normal and mild abnormal outcome cohorts 570 
(group separation effect size: Sinc Cohen’s D = 0.186; RF Cohen’s D = 0.585), an intermediate degree 571 
of separation between the mild abnormal and severe abnormal outcome cohorts (group separation 572 
effect size: Sinc Cohen’s D = 0.71; RF Cohen’s D = 0.557), and greatest separation between the 573 
normal and severe abnormal outcome cohorts (group separation effect size: Sinc Cohen’s D = 1.104; 574 
RF Cohen’s D = 1.146) (Figure 7c). 575 
 576 
No significant differences were identified between outcome groups for the potential confounding 577 
variables. Sinc model MAEs one-way ANOVA results (n = 42): GA: f-statistic = 0.93, p = 0.40; PMA: f-578 
statistic = 0.51, p = 0.60; trajectory recording number: f-statistic = 0.28, p = 0.76). 579 
 580 
3.5 Sinc model accurately predicts brain age in data collected at an independent site (dataset 𝓓𝟑) 581 
The Sinc model was applied to an independent dataset collected at an independent centre (Oxford, 582 
UK; dataset 𝒟3). The Sinc model’s predicted ages were significantly correlated with the infant’s true 583 
PMA (n = 73 infants, Pearson correlation coefficient r=0.91, z-statistic=1.52, p < 0.0001, Figure 8a), 584 
with good prediction accuracy (MAE = 0.97 weeks). This highlights that the Sinc model can generate 585 
age predictions using single recordings per infant for accurate group-level analysis at an 586 
independent site. 587 
 588 
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Unlike dataset 𝐷2, a noticeable bias in age prediction was visible in dataset 𝒟3 (Figure 8a). The 589 
magnitude of the brain age delta was significantly negatively correlated with the infant’s true PMA 590 
(r =-0.24, p<0.01, Figure 8b). To generate unbiased brain age delta values, this age association 591 
should be minimised (Smith et al., 2019). A simple linear regression model trained on dataset 𝒟3, 592 
and validated using leave-one-out cross-validation, reduces this bias (Figure 8c). This additional 593 
linear model could be used in novel single-subject data collected at this site to produce brain age 594 
deltas with minimal age association bias. However, the biological value of the brain age deltas in 595 
dataset 𝒟3 has yet to be established. This dataset currently does not have follow-up BSID-II 596 
outcomes, so the association between brain age deltas and follow-up outcomes could not be 597 
assessed. 598 
 599 
 600 
4. Discussion 601 
This study presents the first deep learning architecture for the prediction of brain age from infant 602 
EEG activity. The model is based on a deep CNN structure incorporating the new Sinc block for 603 
enhanced multi-scale decompositions, with prediction likely utilising between-infant differences in 604 
their EEG continuity and bursting characteristics. Relative to previous proof-of-concept studies 605 
(Pillay et al., 2020; Stevenson et al., 2020a), the current deep learning approach was able to predict 606 
infant brain age with comparable accuracy and generate brain age delta magnitudes that were 607 
significantly associated with neurodevelopmental outcome at a 9-month follow-up using BSID-II 608 
assessment. Importantly, the current approach achieved this using dramatically reduced EEG data 609 
utilisation requirements, relying on only a single channel bipolar montage and 20 mins recording 610 
duration. This is important as it suggests that future systems utilising this method may only require 611 
single-channel capabilities which is simpler to set up and makes EEG data acquisition easier. This 612 
streamlined model, which can be applied in an objective and automated manner, thus 613 
demonstrates potential clinical utility for cot-side monitoring assessment of neurological well-being. 614 
 615 
The chosen development strategy for the Sinc model involves training and testing the model first 616 
on a normal development dataset 𝒟1 and then additionally assessing performance in two 617 
independent datasets (𝒟2 and 𝒟3, the latter collected at an independent site). Although we 618 
performed a single split on 𝒟1 for initial training and testing and could have used alternative 619 
techniques (such as cross validation), the goal was to assess relative performance with this dataset 620 
when comparing models, channel numbers, and recording durations. We kept the training and test 621 
splits in 𝒟1 consistent across these comparisons ensuring that relative differences in performance 622 
were meaningfully comparable. Furthermore, by showing high performance in the brain age 623 
prediction in the independent datasets, which was comparable to the held-out test set performance 624 
in 𝒟1, we can justify with confidence that the training strategies and choices made have still resulted 625 
in a robust generalisable model. 626 
 627 
The model performed well on data collected at an independent site, despite differences in data 628 
collection such as EEG recording equipment and research personnel. This importantly suggests that 629 
the model is generalisable and could easily be employed for clinical use across multiple hospitals. 630 
Interestingly, an age association bias in model estimates could be observed between the predicted 631 
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age and true age when the model was applied to dataset 𝒟3 (Oxford dataset), with the model likely 632 
to overestimate age in the youngest infants and underestimate age in the oldest infants. The bias 633 
was not observed in dataset 𝒟2 (Leuven dataset). Bias in brain age predictions can arise from a 634 
number of factors (Smith et al., 2019): for example, “regression dilution” due to errors in 635 
measurement of the predictors (dataset 𝒟3 used single recordings per infant, while dataset 𝒟2 636 
used multiple recordings per infant affording reduced measurement error). Using leave-one-637 
subject-out cross-validation, we demonstrated that it was possible to minimise this bias in dataset 638 
𝒟3, suggesting that this correction would be generalisable for future infants collected at this centre. 639 
 640 
Throughout our analyses, we used our previously published (Pillay et al., 2020) RF model as a “gold 641 
standard” benchmark against which our novel Sinc model’s performance was assessed. The RF 642 
model used an 8-channel referential montage, over an hour of EEG recording, required sleep-staging 643 
and an explicit pre-calculation of over 200 established features, while the Sinc model required only 644 
a 1-channel bipolar montage and a 20 min recording duration, no sleep-staging, and included an 645 
implicit feature extraction step. In all analyses, the Sinc model either performed comparably to or 646 
out-performed the RF model. Additionally, in work published by an independent group (Stevenson 647 
et al., 2020a), brain age deltas exhibited greatest separation between infants with normal and 648 
severely abnormal BSID-II follow-up outcomes – an observation that is consistent with the current 649 
study’s findings, further supporting the results of the Sinc model. 650 
 651 
Although a quantitative analysis of model speed was beyond the scope of this study, it is clear from 652 
previous studies (Pillay et al., 2020; Stevenson et al., 2020a) that the requirement to extract multiple 653 
features (some highly complex and non-linear), as well as the need to pre-stage the EEG based on 654 
sleep state or states of discontinuity would slow performance, and this is suggested in a related 655 
study on neonatal sleep-staging (Ansari et al., 2018). With the right accelerated hardware, however, 656 
the proposed model (once trained) performs brain age predictions very quickly. This simplified 657 
analysis pipeline lends itself well for hospital use if fast feedback is required in high-intensity 658 
contexts, for instance, while the infant is in critical or post-operative care. 659 
 660 
A further advantage of the Sinc model over the other deep learning architectures tested here is the 661 
introduction of the Sinc block which, with a reasonable number of parameters, achieves a highly 662 
non-linear architecture for performing multi-scale analysis (Ansari et al., 2021). The streamlined 663 
preprocessing and feature extraction as well as the highly non-linear nature of the Sinc model are 664 
invaluable attributes that provide flexibility for extraction of key signal characteristics and result in 665 
a more focused feature set. The deep learning Sinc model is thus a flexible and efficient approach 666 
for use with neonatal EEG data, which are data that typically exhibits highly variable and diverse 667 
signal patterns. 668 
 669 
Using the trained Sinc model to generate synthetic EEG data (Figure 4), our results suggest the 670 
model’s predictive performance may rely on identifying signal characteristics related to changes in 671 
the EEG discontinuity with age (related to bursts and inter-burst intervals). This finding relates 672 
sensibly to other findings in the current paper as well as established understanding of infant EEG 673 
maturation. Regarding our present findings, the Sinc model’s performance did not drop 674 
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substantially going from eight channels to one, or full recording duration to 20 mins. This might 675 
suggest that the feature extraction stages of the architecture may be more tuned to global channel-676 
independent characteristics (such as bursting and continuity), as opposed to spatially-dependent 677 
characteristics (such as inter-channel synchrony). Further, if the model relies on identifying changes 678 
in burst/inter-burst cycling and encodes this in a highly multi-scale manner, this may indicate that 679 
information on an infant’s burst/inter-burst cycling may be sufficiently discernible from a 20-minute 680 
EEG recording, with additional data providing diminished returns in discriminatory power. 681 
 682 
Regarding infant EEG maturation, the progression of burst/inter-burst activity to continuous activity 683 
is the expected characteristic developmental trajectory from preterm to term age (André et al., 684 
2010). Interestingly, these discontinuity patterns are also key for human experts when performing 685 
visual age prediction (Dereymaeker et al., 2017a; Husain, 2005). Observing this link between the 686 
synthetic inputs generated by the trained model and expected maturational trends strongly 687 
suggests the Sinc model is relying on biophysiologically sensible signal features, which is important 688 
for the generalisability of a model to novel data. We can tentatively suggest further similarities 689 
between the Sinc model’s generated synthetic EEG data and prominent features in the RF model. In 690 
agreement with our previous work (Pillay et al., 2020), prominent features chosen by the 691 
comparison RF model retrained in this study were based on the Line Length Burst %, a measure of 692 
the percentage of burst periods in the EEG (Koolen et al., 2014), as well as measures of skewness of 693 
the EEG amplitudes, which measure the asymmetry of a distribution compared to a Gaussian 694 
distribution. Line Length Burst % would be expected to change with PMA as the burst periods 695 
decrease with age and the EEG transitions to a more continuous pattern. Similarly, during this 696 
transition, the distribution shifts away from a symmetrical Gaussian distribution as the number of 697 
high positive bursts or spike amplitudes decreases. When comparing to the simulated results of Sinc 698 
in Figure 4, we see similar behaviour is also identified by this trained neural network emphasising 699 
the importance of this EEG characteristic across age. 700 
 701 
We also note potentially interesting amplitude effects that are visible when looking at the model’s 702 
synthetic data across eight channels. For example, channels C3 and C4 have larger signal amplitudes 703 
relative to other channels. While amplitude is a feature that changes with maturation (André et al., 704 
2010) making inter-subject variability in amplitude of potential value for brain age prediction, one 705 
must be cautious when interpreting this subtler cross-channel amplitude effect in the synthetic 706 
data. These amplitude effects may reflect a biophysiologically interesting phenomenon or may be 707 
an artefactual consequence of proximity to the Cz reference electrode. Future work on the Sinc 708 
model may help shed light on the potential role of amplitude effects.  709 
 710 
Additionally, the role of motion artefacts, potentially related to sleep state and general motor 711 
activity levels, could influence prediction performance. We applied a very simple amplitude-712 
threshold approach for artefact removal, and while this eliminates any major baseline drifts, periods 713 
of recording drop-off or high-amplitude motion artefacts, some subtler artefacts likely remain. It is 714 
unclear whether any residual motion effects influence prediction performance (either beneficially 715 
or detrimentally). However, the lack of motion-like signals in the model-generated synthetic EEG 716 
data suggests motion is unlikely to be playing a major role. 717 
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 718 
The ultimate interest in studying brain age delta magnitude is that neurological dysfunction can 719 
manifest in infants’ EEG as both accelerated or slowed maturation relative to a normative trajectory 720 
(Scher, 1997; Watanabe et al., 1999), and these functional maturational deviations have prognostic 721 
value (Iyer et al., 2015; Tokariev et al., 2019). The present study focused on the prognostic value of 722 
preterm and term age resting-state brain function as a basis for risk-stratification using 9-month 723 
BSID-II follow-up as the relevant outcome. However, as with any scale, there are limitations to BSID-724 
II predictive validity (Hack et al., 2005). Clinical decision making regarding the provision of 725 
developmental care interventions (Burke, 2018) using deep learning-based predictions of infant 726 
brain age would benefit from advancing the prognostic validity of the brain age delta metric. For 727 
example, demonstrating associations between the metric and additional follow-up outcome 728 
metrics, such as executive function (Dai et al., 2021), would improve validity. Additionally, 729 
understanding the association between the metric and contemporaneous structural (e.g. body 730 
weight, brain structural MRI) and functional (e.g. sensory-evoked neural and behavioural responses, 731 
brain functional MRI) indices of development would be beneficial. We note that in the severe 732 
outcome group of dataset 𝒟2, a particularly large deviation was identified at 27.3 weeks PMA (see 733 
Figure 6aii,bii). When investigating this infant’s recording further (by AD), it was confirmed that the 734 
baby was indeed very clinically unstable, with a history of seizure activity, generally suppressed 735 
baseline EEG and alternating, abnormal rhythmic activity. Further investigations into associations 736 
between the brain age delta magnitude and these contemporaneous and follow-up assessments 737 
will be highly valuable in advancing model validity and appreciating the potential clinical value of 738 
the Sinc brain age prediction model. 739 
 740 
It is important to note that the focus of this manuscript was to provide an efficient diagnostic 741 
approach for identifying abnormal brain maturation and to additionally show that this metric 742 
correlates strongly with long term neurodevelopmental outcome. We do not, however, suggest a 743 
cause for deviations between true age and brain age (i.e. brain age deltas) in this study nor that this 744 
is directly associated to specific environmental or genetic causes. There is increasing evidence that 745 
large brain age deltas may be a symptom of pre-existing conditions from birth (such as genetic 746 
factors or low birth weight) which has a lasting impact on the infant’s development presented 747 
through alterations in brain age trajectories (Vidal-Pineiro et al., 2021). Regardless of the specific 748 
causes of brain age deltas, it is clear that the magnitudes of these deviations are of biological and 749 
clinical interest, and the ability to track and estimate brain age deviations with a model such as Sinc 750 
provide a means to identify effects as soon as they manifest potentially allowing for rapid clinical 751 
responses.  752 
 753 
 754 
5. Conclusions 755 
We outline a deep learning approach for infant brain age prediction and follow-up BSID-II outcome 756 
risk-stratification with dramatically reduced EEG data requirements relative to previous proof-of-757 
concept studies. In an independent hold-out dataset, our Sinc model accurately predicts infant brain 758 
age and significantly distinguishes infants with normal outcome from those with severely abnormal 759 
outcome using a 1-channel bipolar montage setup and 20 min recording duration. The model also 760 
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accurately predicts infant brain age when applied to data collected at an independent site. This 761 
objective and automated deep learning approach thus displays potential clinical utility for cot-side 762 
monitoring and use in neurological function assessment. A major next objective will be the efficient 763 
deployment of this model into the hospital setting using clinical grade bipolar montage data. 764 
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Figures 983 
 984 

 985 
Figure 1: EEG montages used during analysis. All recordings in datasets 𝒟1 and 𝒟2 were acquired 986 
with eight recording EEG electrodes in positions: Fp1, Fp2, C3, C4, T3, T4, O1, O2, and a reference 987 
electrode placed at Cz (shaded in grey). The arrows represent the specific channels used during 988 
analysis. For dataset 𝒟3, analysis was conducted using the 1-channel bipolar montage. Recordings 989 
were initially acquired with electrode positions Cz, CPz, C3, C4, Oz, FCz, T3 and T4, and a reference 990 
electrode at Fz. 991 
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 995 
Figure 2: Deep learning architectures. a. Block-diagram of the proposed Sinc network architecture, 996 
including the typical structure of the Sinc block. b. Illustrative block diagrams of different blocks in 997 
the deep architectures: (i) Sequential Convolutional layers, (ii) Residual block, (iii) Inception block, 998 
(iv) Shared Inception (Sinc) block. 999 
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 1003 
Figure 3: The Sinc model outperforms alternative architectures in predicting infant brain age. Brain 1004 
age prediction performance (MAE) using dataset 𝒟1 test set. a. Each line represents a different 1005 
model, and each model uses the entire recording duration. See Supplementary Table 1 for plotted 1006 
values. The RF model is the established benchmark, which uses eight channels. The Sinc model 1007 
consistently outperforms both the RF model and the alternative deep learning models, with a lower 1008 
prediction error using a single channel (MAE = 0.78 weeks) than the RF model using eight channels 1009 
(MAE = 1.01 weeks). b. The Sinc model’s performance using a single channel and the full recording 1010 
duration (MAE = 0.78 weeks, dotted line) was used as a benchmark to assess Sinc model performance 1011 
with a single channel and systematically reduced recording durations (solid line). Performance using 1012 
the reduced recording durations are matched to the full recording duration when recordings of 20 1013 
mins or longer are used; using less than 20 mins recording duration exhibits a gradual drop in 1014 
prediction performance. Shaded intervals denote the standard deviation for the reduced recording 1015 
durations. Note, MAE performance suggests a drop below the full signal performance beyond 20 min 1016 
duration. This is due to the bootstrap sampling error (Efron and Tibshirani, 1994), and this inherent 1017 
bias is a fluctuation about the full recording MAE with standard deviation <1. We can assume that 1018 
the MAE beyond 20 mins is equivalent to the MAE when the full recording duration is used. As it is 1019 
too computationally intensive to show performance beyond 2 hour signal durations the random 1020 
variation cannot be fully shown here. Abbreviations: FE = feature extraction; CNN = convolutional 1021 
neural network; Inc = inception; Sinc = shared inception; RF = random forest; ch = channel; MAE = 1022 
mean absolute error. 1023 
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 1026 
Figure 4: Synthetic EEG data generated using the Sinc model highlight changes in discontinuity 1027 
characteristics with PMA, reminiscent of maturational trends seen in real EEG data. Results are 1028 
generated using the input-loss minimization technique for three target PMAs (30, 35, and 40 weeks) 1029 
spanning the early preterm to term age range. This is performed for the 8-channel full recording 1030 
duration case. The degree of continuity in activity can be seen to increase with PMA. 1031 
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 1035 
Figure 5: Visualising Sinc model performance using UMAPs. Visualization of the inputs at various 1036 
blocks in the proposed model: Feature Extraction I (FEI), Feature Extraction II (FEII), and Regression 1037 
(see Figure 1b). Results are shown for the 1-channel, full recording duration case in Dataset 𝒟1. An 1038 
increasing separation of the features with respect to PMA is seen on moving from a-c. This clear 1039 
progression is indicative that the network weights are trained well in the intermediate layers, and 1040 
this visualisation provides further insight into the role of each CNN block. a. Input to FEI has not yet 1041 
been processed, so there is no separation of inputs to FEI. b. The input to FEII is the output from FEI. 1042 
It is evident that the role of FEI is to perform a low-level ‘feature extraction’ that performs an initial 1043 
separation between the very preterm (blue dots) and preterm and term age groups (green and 1044 
yellow dots) i.e. a general separation between strong discontinuity and continuity in the EEG. c. The 1045 
input to Regression is the output of FEII. The FEII stage performs a higher-level feature extraction 1046 
providing further discriminatory power, allowing better separation of these mid-age (31-37 weeks) 1047 
and term age groups. Furthermore, at the stage of input to Regression, we observe that the PMAs 1048 
of the datapoints from left to right increase almost monotonically such that the very left and right 1049 
datapoints correspond to the extremely young and old neonates, respectively, while the middle ages 1050 
are almost uniformly distributed in-between. Abbreviations: UMAP = uniform manifold 1051 
approximation and projection. 1052 
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 1056 
Figure 6: Brain age prediction models generalise to independent dataset 𝓓𝟐. a. Sinc model brain 1057 
age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes (Dataset 1058 
𝒟2). Each string of connected points is a single infant’s longitudinally-assessed multi-recording 1059 
trajectory, and the dashed black line is the y=x line along which perfect predictions would lie. b. RF 1060 
model brain age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes. 1061 
c. Bland-Altman plots to assess agreement between Sinc and RF models’ PMA prediction 1062 
performances, quantified using absolute prediction errors. In both plots, the x-axis is the mean 1063 
prediction error of the two models, and the y-axis is the difference in prediction errors (Sinc minus 1064 
RF). The heavy grey lines are the mean bias and limits of agreement, while the light grey lines 1065 
indicate the 95% CI for the bias and limits of agreement. (i) Per-recording model agreement 1066 
assessment. (ii) Per-infant model agreement assessment i.e. multi-recording average per infant. 1067 
Note the greater model agreement (narrower limits of agreement along y-axis) and reduced average 1068 
prediction error (shorter range along x-axis) when using the multi-recording average prediction error 1069 
in (ii) compared to the single recording prediction error in (i). Abbreviations: Sinc = shared inception; 1070 
RF = random forest; PMA = postmenstrual age.  1071 
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 1074 
Figure 7: Brain age delta magnitudes scale with 9-month follow-up neurodevelopmental 1075 
outcomes. a. Sinc model absolute prediction error magnitudes (brain age deltas) for each of the 1076 
three BSID-II outcome cohorts: normal, mild abnormal, and severe abnormal. The average prediction 1077 
error is larger for poorer 9-month follow-up BSID-II neurodevelopmental outcomes, and the mean 1078 
prediction error for the severe abnormal group is significantly larger than that of the normal group. 1079 
b. RF model absolute prediction error magnitudes for each of the three BSID-II outcome cohorts. The 1080 
average prediction error is larger for poorer 9-month follow-up BSID-II neurodevelopmental 1081 
outcomes, and the mean prediction error for the severe abnormal group is significantly larger than 1082 
that of the normal group. c. The x-axis displays each of the three combinations of pairwise 1083 
comparisons for the three BSID-II outcome cohorts: mild minus normal, severe minus mild, and 1084 
severe minus normal. For each model, the y-axis displays the standardised effect size (Cohen’s D) 1085 
separating each pair of BSID-II outcome cohort. Sinc = shared inception; RF = random forest; MAE = 1086 
mean absolute error; BSID-II = Bayley scale of infant development; * = statistically significant. 1087 
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 1091 
Figure 8: Sinc model brain age prediction generalises to dataset 𝓓𝟑. In each panel (a-c), each point 1092 
indicates a single infant (n=73); the dashed black line is the ideal fit line; and the red solid line is the 1093 
true fit line (least squares). a. Sinc model brain age predictions for dataset 𝒟3. The ideal fit line is 1094 
the y=x line of perfect prediction. The misalignment between the ideal fit line and the true fit line 1095 
indicates an age association bias. b. Correlation between the brain age delta (predicted age minus 1096 
true age) and the infant’s true age. The ideal fit line is the y=0 line of zero age association bias. The 1097 
slope of the true fit line indicates the magnitude and direction of the age association bias. c. The 1098 
predicted brain age after adjusting for the delta age association bias using leave-one-out cross 1099 
validation. The ideal fit line is the y=x line of perfect prediction. 1100 
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