

1 **Title**

2 Brain age as an estimator of neurodevelopmental outcome: A deep learning approach for neonatal
3 cot-side monitoring

4

5

6 **Author names**

7 Amir Ansari^{1a}, Kirubin Pillay^{2a}, Luke Baxter², Emad Arasteh^{1,3}, Anneleen Dereymaeker⁴, Gabriela
8 Schmidt Mellado², Katrien Jansen^{4,5}, Gunnar Naulaers⁴, Aomesh Bhatt², Sabine Van Huffel¹, Caroline
9 Hartley², Maarten De Vos^{1,5}, Rebeccah Slater^{2*}

10

11 ^aThese authors contributed equally

12

13

14 **Author affiliations**

15 ¹ Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal
16 Processing and Data Analytics, KU Leuven, Leuven, Belgium

17 ² Department of Paediatrics, University of Oxford, Oxford, UK

18 ³ Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht,
19 Utrecht, the Netherlands

20 ⁴ Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive
21 Care Unit, KU Leuven, Leuven, Belgium

22 ⁵ Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU
23 Leuven, Leuven, Belgium

24

25

26 **Contact information**

27 * Corresponding author

28 Paediatric Neuroimaging Group, Department of Paediatrics, Level 2 Children's Hospital, John
29 Radcliffe Hospital, University of Oxford, Oxford, United Kingdom

30 rebeccah.slater@paediatrics.ox.ac.uk

31

32

33 **Highlights**

- 34 • Preterm stress exposure leads to long-term neurodevelopmental deficits
35 • Deficits are quantifiable using EEG-based brain age prediction errors
36 • Our deep-learning solution for brain age prediction outperforms previous approaches
37 • Predictions are achieved with only 20 mins EEG and a single bipolar channel
38 • Prediction errors correlate with long-term Bayley scale neurodevelopmental outcomes
39

40 **Abstract**

41 The preterm neonate can experience stressors that affect the rate of brain maturation and lead to
42 long-term neurodevelopmental deficits. However, some neonates who are born early follow normal
43 developmental trajectories. Extraction of data from electroencephalography (EEG) signals can be
44 used to calculate the neonate's brain age which can be compared to their true age. Discrepancies
45 between true age and brain age (the brain age delta) can then be used to quantify maturational
46 deviation, which has been shown to correlate with long-term abnormal neurodevelopmental
47 outcomes. Nevertheless, current brain age models that are based on traditional analytical
48 techniques are less suited to clinical cot-side monitoring due to their dependency on long-duration
49 EEG recordings, the need to record activity across multiple EEG channels, and the manual calculation
50 of predefined EEG features which is time-consuming and may not fully capture the wealth of
51 information in the EEG signal. In this study, we propose an alternative deep-learning approach to
52 determine brain age, which operates directly on the EEG, using a Convolutional Neural Network
53 (CNN) block based on the Inception architecture (called Sinc). Using this deep-learning approach on
54 a dataset of preterm infants with normal neurodevelopmental outcomes (where we assume brain
55 age = postmenstrual age), we can calculate infant brain age with a Mean Absolute Error (MAE) of
56 0.78 weeks (equivalent to a brain age estimation error for the infant within +/- 5.5 days of their true
57 age). Importantly, this level of accuracy can be achieved by recording only 20 minutes of EEG activity
58 from a single channel. This compares favourably to the degree of accuracy that can be achieved
59 using traditional methods that require long duration recordings (typically >2 hours of EEG activity)
60 recorded from a higher density 8-electrode montage (MAE = 0.73 weeks). Importantly, the deep
61 learning model's brain age deltas also distinguish between neonates with normal and severely
62 abnormal outcomes (Normal MAE = 0.71 weeks, severely abnormal MAE = 1.27 weeks, p=0.02, one-
63 way ANOVA), making it highly suited for potential clinical applications. Lastly, in an independent
64 dataset collected at an independent site, we demonstrate the model's generalisability in age
65 prediction, as accurate age predictions were also observed (MAE of 0.97 weeks).
66
67

68 **Keywords**

69 Preterm, Electroencephalography, Machine Learning, Artificial Intelligence, Convolutional Neural
70 Network, Bayley Scales
71
72

73 **1. Introduction**

74 The newborn infant's brain is undergoing rapid developmental change, influenced by both genetic
75 and environmental factors (Colonnese et al., 2010; Milh et al., 2007; Wess et al., 2017). Relative to
76 their term-born counterparts, infants born prematurely are at increased risk of poorer long-term
77 neurodevelopmental outcomes (Blencowe et al., 2013; Wallois et al., 2020). This risk of impairment
78 increases with the degree of prematurity at birth and the presence of gross morphological lesions,
79 but can also be brought about by subtler environmental stressors (Scher, 2008), excessive exposure
80 to painful stimuli (Grunau, 2013; Moultrie et al., 2017), and pharmacological interventions (Duerden
81 et al., 2016; Malk et al., 2014).

82

83 The early identification of abnormal neurodevelopment is essential to identify infants at greatest
84 risk who might benefit most from developmental care interventions (Burke, 2018). To date,
85 neurological assessment of the newborn has remained predominantly subjective (Dempsey et al.,
86 2018). For example, trained neonatologists and clinical neurophysiologists visually inspect infant's
87 brain activity using electroencephalography (EEG) to determine if brain function is developmentally
88 age-appropriate or dysmature (Scher, 1997), based on developmentally changing EEG features
89 characteristic of maturational status (André et al., 2010). While these trained individuals can
90 estimate age with an error of two weeks for preterm babies and one week for term babies, these
91 estimates can be highly variable across reviewers (Stevenson et al., 2020b). Subjectivity, inter-rater
92 variability, and requirement of specialist EEG interpretation are central issues that severely limit the
93 reliability and generalisability of many current neurological assessment methods. There is an urgent
94 need for objective and automated neuromonitoring that can be used cot-side to identify infants at
95 increased risk of abnormal neurodevelopmental outcomes.

96

97 To this end, a variety of metrics have been developed to capture key maturational characteristics
98 from the preterm EEG (De Wel et al., 2017; Dereymaeker et al., 2016; Lavanga et al., 2017; Pillay et
99 al., 2018; Tolonen et al., 2007), and these measures have been combined using machine learning
100 algorithms to successfully predict infants' brain age (O'Toole et al., 2016; Stevenson et al., 2017).
101 An infant's brain age is their predicted age from a model that has been trained using brain-based
102 features (structural or functional) as predictors and true age as the response. In adults, the
103 difference between the brain age and the true age, termed the brain age delta, has been
104 demonstrated to be more than random noise prediction error, but in fact is of biological and clinical
105 value (Smith et al., 2019; Vidal-Pineiro et al., 2021).

106

107 In infants, analogous findings have been observed. Recently, we trained a Random Forest (RF)
108 regression model using a data-driven approach that combined 226 EEG features and demonstrated
109 a significant correlation between the infants' brain age delta and the severity of their abnormal
110 neurodevelopmental outcome, where the neurodevelopmental outcomes were assessed
111 behaviourally using the Bayley Scales of Infant Development (BSID-II) at a 9-month follow-up test
112 occasion (Pillay et al., 2020). Additionally, an independent research group showed a similar
113 correlation when training a multivariate regression model for brain age estimation (Stevenson et
114 al., 2020a). These studies established the proof-of-concept in infant populations that the inter-
115 individual variability in automatically and objectively generated brain age deltas could be used to

116 risk-stratify infants in the first few weeks of postnatal life according to neurodevelopmental
117 outcomes.

118

119 However, a major limitation to these studies is their lack of clinical utility. A large number of features
120 are required to summarize the EEG data, which are computationally time-consuming to calculate.
121 These approaches rely on pre-staging the EEG recording into sleep states (i.e. sleep-staging) or burst
122 periods which require additional algorithms (Dereymaeker et al., 2017b; Palmu et al., 2010).
123 Furthermore, multiple EEG channels are required as well as at least 1 hour EEG recording duration.
124 These data-heavy requirements severely limit the ease with which these methods can be
125 incorporated into the busy clinical environment.

126

127 Here, we directly address these barriers to clinical utility by adopting a deep learning approach.
128 Deep learning has demonstrated superior performance over traditional machine learning methods,
129 has excellent performance on a reduced number of EEG channels, and tends to perform predictions
130 faster once trained (Ansari et al., 2018). Furthermore, deep learning models are gaining popularity
131 in preterm EEG analysis for classifying seizures (Ansari et al., 2019; O’Shea et al., 2021) and for
132 automated sleep-staging (Ansari et al., 2020). Together, these observations suggest deep learning
133 could offer a promising approach for cot-side monitoring and assessment of neurological function.

134

135 In the current study, we implement a novel Convolutional Neural Network (CNN)-based
136 architecture, inspired by Google’s Inception model (and its variants), to generate infant brain age
137 predictions using dramatically reduced EEG data requirements compared to previous proof-of-
138 concept studies. We use our established RF model as a “gold standard” benchmark of performance,
139 a model which requires eight EEG channels, at least 1 hour EEG recording duration, and EEG data
140 sleep-staging. We train the RF and deep learning models on a training dataset, and subsequently
141 test the models’ performance on two independent datasets, demonstrating robust external
142 validation. Using our deep learning approach, we achieve performance comparable to our RF model
143 benchmark, while requiring only a single EEG channel (1-channel bipolar montage), 20 mins EEG
144 recording duration, and no EEG data sleep-staging. Our deep learning model is able to accurately
145 predict infant age within the first few weeks of postnatal life, and generates brain age deltas with
146 magnitudes that significantly differ between infants with normal and severely abnormal
147 neurodevelopmental outcomes assessed using BSID-II at 9-month follow-up. This study thus
148 demonstrates potential clinical utility for an objective and automated deep learning-based
149 approach to cot-side assessment of infants’ neurological function and neurodevelopmental
150 outcomes.

151

152

153 **2. Methods**

154 **2.1. Participants**

155 *2.1.1. Study Design*

156 Data were collected in three independent cohorts. The first cohort, referred to as dataset \mathcal{D}_1 , was
157 used to train the models and compare the relative performances among models e.g. models with
158 different architectures, different channel montages, and different recording durations. The second

159 cohort, referred to as dataset $\mathcal{D}2$, was used to independently test the trained RF and deep learning
160 models in their brain age prediction performances, and to assess the association between brain age
161 deltas and 9-month BSID-II follow-up outcomes. The third cohort, referred to as dataset $\mathcal{D}3$, was
162 used to further test the generalisability of the deep learning model to predict brain age in this
163 dataset collected at an independent site by an independent research team.

164

165 *2.1.2. Recruitment*

166 EEG data for datasets $\mathcal{D}1$ and $\mathcal{D}2$ were recorded from the Neonatal Intensive Care Unit (NICU) at
167 UZ Leuven Hospitals, Leuven, Belgium. Infants were recruited and data recorded with informed
168 consent from the parents and in accordance with the guidelines approved by the ethics committee
169 of the University Hospitals, Leuven. All infants had a gestational age (GA) at birth less than 32 weeks,
170 and between two and four recordings were obtained during their stay in the NICU.

171

172 Infants in dataset $\mathcal{D}3$ were selected from a database of previously recorded data collected at the
173 Newborn Care Unit and Maternity wards of the John Radcliffe Hospital (Oxford University Hospitals
174 NHS Foundation Trust, Oxford, United Kingdom). Ethical approval was obtained from the UK
175 National Research Ethics Service (reference: 12/SC/0447) and parental written informed consent
176 was obtained before each participant was studied.

177

178 All participant recruitment was conducted in accordance with the standards set by the Declaration
179 of Helsinki and Good Clinical Practice guidelines.

180

181 *2.1.3. Datasets*

182 Datasets $\mathcal{D}1$ and $\mathcal{D}2$ were collected as previously described (Pillay et al., 2020). Dataset $\mathcal{D}1$ consists
183 of n=40 infants (111 recordings) with postmenstrual age range (PMA) at time of recording of 27.3–
184 43.1 weeks, with mean recording duration of 8h 07m (standard deviation: 5h 55m) and mean
185 number of recordings per infant of 2.8 (standard deviation: 1.6). All infants in dataset $\mathcal{D}1$ were
186 selected for normal neurodevelopmental outcome at 24-months follow-up age based on
187 behavioural assessment using BSID-II.

188

189 Dataset $\mathcal{D}2$ consists of n=43 infants (142 recordings). One infant with a single recording was
190 excluded as our objective with this dataset was to assess longitudinal multi-recording trajectories.
191 The analysed dataset $\mathcal{D}2$ thus consists of n=42 infants (141 recordings) with a PMA at recording
192 range of 27.3–42.0 weeks, mean recording duration of 7h 05m (standard deviation: 5h 43m), and
193 mean number of recordings per infants of 3.3 (standard deviation: 1.4). Unlike dataset $\mathcal{D}1$, dataset
194 $\mathcal{D}2$ includes infants with a range of both normal and abnormal outcomes, grouped by BSID-II scores
195 at 9-month follow-up (Pillay et al., 2020). N=22 infants (71 recordings) had normal outcome i.e. no
196 neurodevelopmental impairment (NDI); n=10 infants (36 recordings) had mild abnormal outcome
197 (mild NDI); and n=10 infants (34 recordings) had moderate-to-severe abnormal outcome (mild-to-
198 severe NDI) or died (Pascal et al., 2020).

199

200 Dataset $\mathcal{D}3$ consists of n=73 infants, each recorded on a single test occasion (thus 73 recordings).
201 Infants were included in this dataset for the current study if they had at least 20 minutes of EEG

202 data recorded and if the EEG was assessed as normal for age by a trained clinical neurophysiologist
203 (author GSM). The infants had a median PMA at recording of 35.3 weeks (interquartile range: 33.3
204 – 36.9, range: 28.0 – 42.6) and postnatal age of 14 days (interquartile range: 5 – 41, range: 0 – 112).
205 The mean recording duration was 50 minutes (standard deviation: 18 minutes).

206

207 **2.2. EEG data**

208 *2.2.1. Setup*

209 For dataset \mathcal{D}_1 and \mathcal{D}_2 , data were recorded using a sampling frequency of 250 Hz using Brain RT
210 OSG Equipment (Mechelen, Belgium). In a few cases, the EEG was sampled at 256 Hz due to some
211 setup variations on the Brain RT device used. All recordings were performed with nine electrodes in
212 a referential montage: Fp1, Fp2, C3, C4, T3, T4, O1, O2, and Cz reference (Figure 1).

213

214 For dataset \mathcal{D}_3 , EEG recordings were acquired from DC to 800 Hz using a SynAmps RT 64-channel
215 headbox and amplifiers (Compumedics Neuroscan). Activity was recorded using CURRY scan7
216 neuroimaging suite (Compumedics Neuroscan), with a sampling rate of 2000 Hz. Between 8 and 25
217 electrodes were used for recording, positioned according to the modified international 10-20
218 system, including C3 and C4 (those used in the analysis here), with reference at Fz and ground at
219 Fpz. The scalp was cleaned with preparation gel (Nuprep gel, D.O. Weaver and Co.) and disposable
220 Ag/AgCl cup electrodes (Ambu Neuroline) were placed with conductive paste (Elefix EEG paste,
221 Nihon Kohden).

222

223 *2.2.2. Preprocessing*

224 For the deep learning approaches in datasets \mathcal{D}_1 and \mathcal{D}_2 , each recording was downsampled to 64
225 Hz to reduce the number of parameters required to train the model. The downsampling routine
226 included pre-filtering to prevent aliasing using a low-pass filter with cut-off frequency 32 Hz.
227 Filtering and downsampling was performed using the `scipy.signal.resample_poly` function.
228 Recordings were then split into 30-second segments and the amplitudes standardized such that the
229 mean and standard deviation of the amplitudes were zero and one, respectively. The mean and
230 standard deviation were obtained by standardizing the data (across all channels) in the training set,
231 with these values carried forward to standardize the test sets (see below). Finally, any segments
232 where the absolute differences (compared to the mean) at any point exceeded 600 μ V were
233 rejected as artefact.

234

235 For the RF approach in datasets \mathcal{D}_1 and \mathcal{D}_2 , which relied on an explicit pre-calculation of many
236 established features, the pre-processing approach (resampling and standardization) was different
237 and specific to each calculated feature, as described previously (Pillay et al., 2018).

238

239 For dataset \mathcal{D}_3 , pre-processing was matched to the \mathcal{D}_1 and \mathcal{D}_2 deep learning approach. We applied
240 a low-pass 32 Hz anti-aliasing filter followed by downsampling to 64 Hz. For standardization of
241 dataset \mathcal{D}_3 , the mean and standard deviation of \mathcal{D}_1 were used.

242

243 **2.3. Brain age prediction architectures**

244 *2.3.1. Sinc architecture*

245 Figure 2a shows the block-diagram of the proposed deep neural network for brain age prediction.
246 As input, the network processes a 30 s multi-channel EEG segment. Each input segment has
247 dimension $C \times 1920$ where C is the number of EEG channels and 1920 is the total number of
248 timepoints in the 30 s segment (30 s duration x 64 Hz sampling frequency). Each segment has a
249 single output label that is a continuous PMA value.

250
251 The model includes a series of convolutional layers with exponential linear unit (ELU) activations,
252 maximum and average pooling layers to downsample the data, normalization layers for faster
253 training convergence, and a dense layer with linear activation to perform the final regression and
254 produce a brain age estimate. As each convolutional layer is designed to extract specific
255 characteristics from the EEG, these are analogous to a (trainable, data-driven) feature extraction
256 layer. More generally, the proposed architecture can be grouped into a more traditional, sequential
257 CNN block that can be described as an initial feature extraction stage, followed by the two
258 successive Sinc (i.e. Shared Inception) blocks that form a second feature extraction stage.

259
260 We previously introduced Sinc as a powerful CNN-based block for extracting multi-scale temporal
261 information from infant EEG, namely sleep state classification (Ansari et al., 2021). Sinc is an
262 extension of Google's Inception block, where the original independent and parallel convolutional
263 branches are now boosted via parameter sharing. As shown in Figure 2b, the output from each
264 preceding branch is additionally fed into the subsequent one, with the overall output of Sinc
265 comprising the concatenation of all multi-scale convolutions in the block (see also Figure 2biv). This
266 increases the number of temporal scales achievable (by allowing a wider range of receptive fields),
267 when compared to an Inception layer, while avoiding the need to scale up the number of trainable
268 parameters as a result. Only two hyper-parameters are required for a Sinc block: M (the number of
269 convolutional branches), and N (the number of convolutional filters used in each branch). When
270 using a single-channel EEG segment as input ($C = 1$), the total number of trainable parameters in
271 the complete model is 620K.

272
273 *2.3.2. Alternative deep learning architectures*
274 Four different deep learning architectures were also considered, based on recent key developments
275 in the CNN domain (Figure 2b), and the Sinc model was compared against these architectures: No
276 FEII (following the same design as the Sinc architecture but without the entire Feature Extraction II
277 portion), CNN (replaces the Sinc blocks with the same convolutional neural network layer used
278 elsewhere in the model), Residual (similar to CNN but including the additional residual shortcut),
279 and Inc (replacing the Sinc blocks with traditional Inception blocks). These architectures are
280 described in Supplementary Information S.1.

281
282 *2.6.2. Random Forest (RF) architecture*
283 In addition to comparing the Sinc architecture to alternative deep neural network architectures, it
284 was also compared against our established and previously published RF approach (Pillay et al.,
285 2020). The RF model was developed using a large set of pre-calculated features, derived after the
286 EEG is classified into different sleep stages using an additional, unsupervised algorithm known as
287 Cluster-based Adaptive Sleep Staging (CLASS) that we have also previously developed (Dereymaeker

288 et al., 2017b; Pillay et al., 2020). The pre-calculated features were derived from an EEG literature
289 review covering the amplitude domains, Fourier transforms, Wavelet transforms, Empirical Mode
290 Decompositions (EMDs) and other complexity measures (such as entropy and fractal analysis).
291 These features were calculated across all channels and a final median taken across channels as input
292 into the RF model. The RF is an ensemble method that uses a large set (or 'forest') of trained decision
293 trees to provide an averaged final prediction. Each tree is trained on a bootstrapped sample of the
294 dataset and a random selection of the features which is shown to provide better prediction accuracy
295 than from an individual tree and can also provide an implicit measure of the important features
296 used in the algorithm. The RF model uses 1500 trees and utilizes all features for each tree split. All
297 steps and hyperparameter choices used here are the same as our previous published RF approach
298 (Pillay et al., 2020).

299

300 **2.4. Model training and relative performance assessments using dataset \mathcal{D}_1**

301 *2.4.1. Splitting dataset \mathcal{D}_1 into training set and test set*

302 Dataset \mathcal{D}_1 was used to train and test all models. By using a cohort of only normal outcome data, it
303 is assumed that predicted brain age equates to true PMA. This allows training of a normative model
304 to predict the PMA, and therefore brain age, for a normally developing baby (Pillay et al., 2020;
305 Stevenson et al., 2020a, 2017). Further data can then be assessed against this trained model to
306 identify deviations. Dataset \mathcal{D}_1 was divided by recording into age-stratified training and test sets of
307 size 50 and 47 recordings, respectively (Supplementary Information S.2.; Supplementary Figure 1).

308

309 *2.4.2. Model training in dataset \mathcal{D}_1*

310 For the training of both deep learning models and the RF model, the mean squared error (MSE) loss
311 was used. For the RF model, the model was re-trained using the original training procedure as
312 previously outlined (Pillay et al., 2020). For the deep learning models, model training included early
313 stopping, Gaussian noise addition, recording segmentation into 30 s segments, and ensemble
314 learning. These four components are described in detail in Supplementary Information S.3, with
315 early stopping, Gaussian noise addition, and ensemble learning included to increase robustness of
316 the model.

317

318 *2.4.3. Model testing in dataset \mathcal{D}_1*

319 *2.4.3.1. Assessing model performance*

320 The ultimate goal of each brain age prediction model is to generate a single brain age prediction
321 estimate per EEG recording. For the deep learning models, each deep learning model generates ten
322 brain age prediction estimates per 30 s segment of an EEG recording (as a 10-learner ensemble
323 method was used, see Supplementary Information S.3.). During testing, all contiguous 30 s segments
324 across each recording are used with the number of 30 s segments therefore dependent on the
325 overall EEG recording duration. To aggregate a deep learning model's predictions to a single value
326 per recording, the median across the ten ensemble predictions per 30 s segment is determined,
327 then a further median across all 30 s segments in the recording is taken resulting in the final
328 prediction estimate. This is different to the RF model strategy, where a single brain age prediction
329 estimate is generated per recording by manually calculating features in the 30 s segments and taking
330 the medians across all segments before brain age prediction is performed. Across all recordings in

331 the test set in \mathcal{D}_1 , there were a total of 30K segments used. For both the deep learning models and
332 RF model, the final prediction estimate for a recording is used to generate the prediction error (or
333 absolute prediction error) for that recording.

334

335 *2.4.3.2. Reducing EEG channel requirements*

336 The established RF model uses eight channels in a referential montage (Figure 1) to predict infant
337 brain age. The performance of the RF model, the Sinc model, and the other deep learning models
338 were assessed and compared using this initial setup. Subsequently, the deep learning models were
339 re-trained and performances compared as the number of EEG channels were systematically
340 reduced: 4-channel referential (C3, C4, T3 and T4), 2-channel referential (C3 and C4), and finally a
341 1-channel bipolar (C3-C4) montage (Figure 1). Channels were selected to ensure good symmetry
342 across the midline of the scalp and ample coverage. The 1-channel bipolar montage was selected
343 for its similarity to setups used in clinical amplitude-integrated EEG (aEEG) monitors. EEG pre-
344 processing was independently repeated each time, with the amplitude standardisation step
345 recalculated on the reduced channel configurations. After (re)training using the training set, each
346 model generated a brain age prediction per recording in the test set. This set of predictions was
347 used to generate a set of absolute errors per model. Using one-sample paired t-tests ($p < 0.05$
348 significance level), we assessed the model performances by comparing t-statistic magnitudes and
349 tested for statistically significant differences between the Sinc model's mean absolute error and the
350 mean absolute error of each of the alternative models (RF model and other deep learning models).

351

352 It is worth noting that the 1-channel bipolar montage used for our analyses was achieved by ignoring
353 the additional channels unnecessary for this montage. This approach is distinct to a true clinical
354 scenario when only a 1-channel bipolar montage would be used during recording. Our assumption,
355 which we believe to be reasonable, is that both approaches to 1-channel bipolar montage setup are
356 closely matched for this specific use case. However, this assumption should be tested in future
357 external validations of the deep learning model using clinical grade bipolar montage data.

358

359 *2.4.3.3. Reducing EEG recording duration requirements*

360 Having demonstrated the high performance of the deep learning Sinc model using the full-length
361 EEG recording duration with only a 1-channel bipolar setup (section 2.4.3.2.), we next assessed the
362 Sinc model performance using the 1-channel bipolar setup (Figure 1) as the EEG recording duration
363 was systematically varied. We examined a range of recording lengths from 0.5–120 min and
364 compared Sinc model performance on these reduced recording durations relative to the Sinc model
365 performance with the full-length EEG recording duration to identify an appropriate reduced
366 recording duration. To get a reduced recording from a single full recording, we randomly sampled
367 each reduced duration segment from the full recording, generating an absolute error value per
368 reduced duration segment. Due to the arbitrary nature of selecting a reduced recording segment
369 from a full recording, we repeated the procedure using 1000 bootstrapped samples from which a
370 mean absolute error was derived per recording per reduced recording duration. A minimum
371 reduced recording duration was identified as the duration at which the prediction performance,
372 measured using the mean absolute error, noticeably drops below that of the full duration Sinc
373 model. Finally, the mean absolute error of this reduced duration (20 mins – see Section 3.1.) 1-

374 channel Sinc model was compared to the mean absolute error of the 8-channel full duration RF
375 model using a one-sample paired t-tests ($p < 0.05$ significance level). For the reduced duration Sinc
376 data, the initial 20 mins of each recording was selected for t-test analysis.

377

378 **2.5. Interpreting Sinc model performance using dataset $\mathcal{D}1$**

379 Deep neural networks are notorious for being black-box machines, limiting interpretability when
380 compared to machine learning approaches and traditional visual assessment approaches.
381 Nevertheless, methods are improving to visualize these networks to understand how they were
382 trained and their potential to generalise well on new data. In this study, two visualization techniques
383 were applied to further understand Sinc model performance: input-loss minimisation and uniform
384 manifold approximation and projection, see Supplementary Information S.4.

385

386 **2.6. External validation of Sinc model performance using dataset $\mathcal{D}2$**

387 The final Sinc model was trained on the entire dataset $\mathcal{D}1$ using the 1-channel bipolar setup (Figure
388 1). Similarly, the final “gold standard” RF model was trained on the entire dataset $\mathcal{D}1$ using the 8-
389 channel referential setup. When applying the final Sinc model to the independent hold-out dataset
390 $\mathcal{D}2$, the 1-channel bipolar setup was used and a 20 mins recording duration was randomly sampled
391 from the full duration EEG recording. When applying the final RF model to dataset $\mathcal{D}2$, the 8-channel
392 referential setup and full EEG recording were used.

393

394 *2.6.1. PMA prediction in independent hold-out dataset*

395 To assess the generalisability of the Sinc model to predict infants’ PMA on independent data, the
396 normal BSID-II outcome data from the independent hold-out dataset $\mathcal{D}2$ was used. To assess the
397 association between true PMA and predicted PMA, a linear mixed effects regression model was
398 used ($p < 0.05$ significance level). Random intercepts were introduced to group repeated recordings
399 from the same infant. Associations between true PMA and predicted PMA were also assessed for
400 the mild abnormal and severe abnormal groups. Similarly, the RF model was used to generate PMA
401 predictions for the normal, mild abnormal, and severe abnormal groups in dataset $\mathcal{D}2$, and
402 associations between true age and predicted age were assessed in an identical manner to the Sinc
403 model.

404

405 The two models’ PMA prediction performances were compared using the linear mixed effects
406 regression models’ z-statistic magnitudes per BSID-II outcome cohort. Additionally, Bland-Altman
407 analysis (Bland and Altman, 1999, 1986) was used to assess Sinc-RF model agreement in absolute
408 error magnitude, pooled across all data in dataset $\mathcal{D}2$. Bland-Altman analysis was implemented in
409 R v4.1.1 (R Core Team, 2018) using a publicly available package
410 (<https://rdrr.io/cran/BlandAltmanLeh>) to estimate the bias (Sinc minus RF) and limits of agreement,
411 along with 95% confidence intervals. Model agreement was assessed using individual recording
412 absolute errors and using within-infant multi-recording mean absolute errors, to assess the
413 influence of within-infant multi-recording averaging on model agreement (Bland-Altman plot y-axis,
414 limits of agreement width) and average prediction error magnitude (Bland-Altman plot x-axis,
415 range).

416

417 **2.6.2. Associating brain age delta magnitude to 9-month BSID-II follow-up outcomes**
418 The association between an infant's brain age delta magnitude and 9-month BSID-II follow-up
419 outcomes (normal, mild abnormal, severe abnormal) was assessed for all infants in dataset \mathcal{D}_2 . For
420 each infant, a brain age delta (absolute error) was determined per recording, and the mean absolute
421 error (MAE) across an infant's multiple recordings was used as an estimate of that infant's brain age
422 delta i.e. the deviation between their brain age and their true age. This per-infant MAE thus
423 represents an infant's overall brain neurodevelopmental trajectory deviation, with a larger
424 trajectory deviation corresponding to greater deviations from the norm.
425
426 Trajectory deviations across all infants in dataset \mathcal{D}_2 were then grouped by neurodevelopmental
427 outcome (as defined in section 2.1.1.) and significant differences between groups assessed using
428 one-way ANOVA ($p < 0.05$ significance level). Tukey's post-hoc test, which corrects for multiple
429 comparisons ($p < 0.05$ significance level), was used to identify significant pair-wise comparisons.
430 Additionally, the two models' BSID-II outcome group separation performances were compared
431 using the pairwise standardised effect size (Cohen's D, estimated using MATLAB's meanEffectSize
432 function) magnitudes per contrast: mild minus normal, severe minus mild, and severe minus normal.
433
434 Finally, group-wise (normal, mild abnormal, severe abnormal) differences in GA, PMA and the
435 number of recordings in each infant's trajectory were checked using one-way ANOVA to assess their
436 potential influence as confounding factors.
437
438 **2.7 External validation of Sinc model performance using dataset \mathcal{D}_3**
439 The final Sinc model was applied to the independent dataset \mathcal{D}_3 collected at an independent centre
440 (Oxford, UK). The 1-channel bipolar montage (C3-C4) and the first 20-minutes of each recording
441 were used in the analysis.
442
443 The association between true PMA and predicted PMA was assessed using Pearson correlation (z-
444 statistic calculated using the Fisher r-to-z transform, $p < 0.05$ significance level). Z-statistics are
445 reported for the results of both datasets \mathcal{D}_2 and \mathcal{D}_3 . Each infant in dataset \mathcal{D}_3 was recorded on a
446 single test occasion; the group-level MAE was calculated as the mean across all recordings of each
447 subject-level brain age delta i.e. each infant's error in predicted versus true age.
448
449 The brain age delta estimate can have a dependency with age – an age association bias that is known
450 to occur for several distinct reasons such as regression dilution (Smith et al., 2019). To correct for
451 this age association bias, we adjusted the predicted brain age using the linear regression between
452 the brain age delta and the true age (Smith et al., 2019). To assess the generalisability of this
453 correction to new data we adjusted the predicted brain age using leave-one-subject-out cross-
454 validation, calculating the MAE of the held-out subject compared with its true age.
455
456
457 **3. Results**
458 **3.1. The Sinc model outperforms alternative model architectures in predicting infant age (dataset
459 \mathcal{D}_1)**

460 A comparison of model performance across the Sinc model and four alternative candidate deep
461 learning models, with reduced channel setups is summarised in Figure 3a and Supplementary Table
462 1. Using the 8-channel setup and the full recording duration data of dataset $\mathcal{D}1$, the Sinc model out-
463 performed both the established benchmark RF model (Sinc error = 0.73 weeks, RF error = 1.01
464 weeks, $n = 47$ recordings, t -statistic = 1.44, $p = 0.078$) as well as the candidate deep learning models.
465 When the number of recording channels was reduced from eight to one (bipolar channel, C3-C4),
466 the Sinc model had consistently lower MAE values compared with alternative models and exhibited
467 a total drop in performance of only 0.05 weeks (Sinc: 8-channel MAE = 0.73 weeks, 1-channel MAE
468 = 0.78 weeks). Furthermore, the 1-channel bipolar Sinc model outperformed the 8-channel
469 referential RF model (Sinc error = 0.78 weeks, RF error = 1.01 weeks, $n = 47$ recordings, t -statistic =
470 1.13, $p = 0.13$).
471
472 The Sinc model prediction error recorded from a single channel with full recording duration
473 (duration: median = 4h 25m, IQR = 4h 4m–7h 10m) was compared to Sinc model prediction error
474 using a single channel and reduced recording durations ranging from 0.5–120 mins (Figure 3b).
475 Using only 20 mins of EEG recording, the mean Sinc model prediction error was equivalent to using
476 the full recording duration. Using the established RF method as a benchmark, which relied on an 8-
477 channel setup and full-length recordings, the proposed Sinc model outperformed this benchmark
478 while having practical setup requirements that are far more achievable and practical for use in a
479 clinical environment (Sinc error = 0.79 weeks, RF error = 1.01 weeks, $n = 47$ recordings, t -statistic =
480 1.07, $p = 0.14$). While the three Sinc models' performances (8-channel full duration, 1-channel full
481 duration, 1-channel 20 min duration) did not statistically significantly differ to the benchmark RF
482 model performance, the Sinc model's performances were marginally but consistently improved (t -
483 statistics = 1.44, 1.13, 1.07, respectively, with positive t -statistics indicating larger MAE for RF).
484
485 **3.2. Sinc model may determine age using degree of EEG continuity (dataset $\mathcal{D}1$)**
486 To shed light on the specific EEG features that the deep learning Sinc model is likely utilising for the
487 brain age prediction, a method called input-loss minimisation was used to generate synthetic EEG
488 data that would force the model to make a brain age prediction of 30 weeks, 35 weeks, and 40
489 weeks PMA, respectively (Figure 4). Visually examining the synthetic EEG data shows that EEG
490 continuity and bursting were qualitatively distinguishing features and are therefore likely features
491 that the Sinc model used to characterise age-dependent activity. The 30-week synthetic data
492 reflects aspects of high discontinuity with short, high amplitude bursts and long-duration inter-burst
493 intervals (approximately 5–20 s) (Figure 4a). With increasing PMA, the inter-burst interval durations
494 decreased and burst periods widened, and by term-age, the signal was almost fully continuous with
495 no clear burst or inter-burst interval patterns (Figure 4c).
496
497 Using UMAP to visualise the data inputs to the three Sinc blocks (FEI, FEII, and Regression), a clear
498 separation of features occurs, beginning with a low-level followed by high-level feature extraction
499 (Figure 5). At the stage of inputs to Regression, the data can visually be seen to separate such that
500 datapoints increase almost monotonically with PMA (Figure 5c). This clear progression is indicative
501 that the network weights are trained well in the intermediate layers, and this visualisation provides
502 further insight into the role of each block.

503

504 **3.3. Sinc model brain age prediction generalises accurately to an independent hold-out dataset**
505 **(dataset \mathcal{D}_2)**

506 Having established the Sinc model in dataset \mathcal{D}_1 (section 3.1), this model was applied to a healthy
507 cohort of infants' data from the independent hold-out dataset \mathcal{D}_2 . Using 1-channel bipolar EEG data
508 of 20 min recording duration, the Sinc model's predicted ages were statistically significantly
509 correlated with infants' true PMA (Normal: $n = 22$ infants, z -statistic = 33.32, $p < 0.0001$) (Figure 6ai),
510 demonstrating that the model successfully generalises to independent data. The Sinc model also
511 generated predicted ages that were statistically significantly correlated with infants' true PMA for
512 the infants in dataset \mathcal{D}_2 that had abnormal BSID-II follow-up outcomes (Mild abnormal: $n = 10$
513 infants, z -statistic = 18.03, $p < 0.0001$; Severe abnormal: $n = 10$ infants, z -statistic = 15.54, $p < 0.0001$)
514 (Figure 6aii). Infants with abnormal BSID-II follow-up outcomes were not used in training the Sinc
515 model, and so age predictions for these cohorts were, as expected, less accurate than those of the
516 healthy outcome cohort and thus exhibited weaker correlations (although still very strong) between
517 brain age and true age.

518

519 Using the 8-channel EEG setup and the entire recording duration, the RF model generated age
520 predictions that were statistically significantly correlated with infants' true PMA for both the normal
521 outcome and abnormal outcome cohorts (Normal: z -statistic = 22.89, $p < 0.0001$; Mild abnormal: z -
522 statistic = 12.51, $p < 0.0001$; Severe abnormal: z -statistic = 10.76, $p < 0.0001$) (Figure 6b). While the
523 brain age prediction correlation results for both the novel Sinc model and the established RF model
524 were very strong and highly significant for all three infant cohorts, the Sinc model consistently
525 outperformed the RF model per cohort (consistently larger z -statistics). Importantly, Sinc's
526 improved prediction accuracy was achieved while using dramatically lower EEG data requirements.
527

528

529 To quantitatively assess the level of agreement in PMA prediction performance between the RF and
530 Sinc models, we generated Bland-Altman plots of absolute prediction errors for the entirety of
531 dataset \mathcal{D}_2 (pooled normal, mild abnormal, and severe abnormal outcome data) based on both
532 individual recordings ($n = 141$ recordings in total) (Figure 6ci) and individual infants ($n = 42$ infants
533 in total) (Figure 6cii). In both instances, there was a statistically significant negative bias reflecting
534 the reduced prediction error using the Sinc model (per-recording: mean bias = -0.202, 95% CI = [-
535 0.387, -0.016]; per-infant: mean bias = -0.231, 95% CI = [-0.444, -0.017]). Assessing the individual
536 recordings data, the limits of agreement were -2.435 and 2.032 with 95% CI = [-2.756, -2.115] and
537 [1.712, 2.353], respectively (Figure 6ci). Assessing the individual infants' data (multi-recording
538 average per infant), the limits of agreement were -1.573 and 1.112 with 95% CI = [-1.943, -1.204]
539 and [0.742, 1.481], respectively (Figure 6cii). The narrower limits of agreement width using the
540 infant-level assessment highlights a noticeable increase in Sinc-RF model agreement when using
541 multi-recording average prediction errors per infant rather than prediction errors based on
542 individual recordings, due to the reduced random noise variance as a consequence of the multi-
543 recording averaging. Using multi-recording average prediction errors per infant, we can expect 95%
544 of absolute prediction error differences between the RF and Sinc models to be approximately ± 1.5
545 weeks, and the Sinc model to have a smaller prediction error of approximately 0.23 weeks on
546 average.

546

547 **3.4. Sinc model brain age deltas are associated with 9-month follow-up neurodevelopmental**
548 **outcomes (dataset \mathcal{D}_2)**

549 The variability in brain age delta magnitudes between infants with normal and abnormal BSID-II
550 follow-up outcomes forms the foundation of the possibility of using brain age prediction to risk-
551 stratify infants in the first few weeks of postnatal life according to neurodevelopmental outcomes.
552 Here, using the Sinc model, the average brain age deltas for the normal, mild abnormal, and severe
553 abnormal outcomes groups assessed using the BSID-II at nine months postnatal age were found to
554 significantly differ (Normal: mean MAE = 0.71, n = 22 infants; Mild abnormal: mean MAE = 0.79, n =
555 10 infants; Severe abnormal: mean MAE = 1.27, n = 10 infants; one-way ANOVA: f-statistic = 4.24, p
556 = 0.02) (Figure 7a). Significant differences between the mean deltas for the normal and severe
557 abnormal groups were observed using post-hoc analysis adjusted for multiple comparisons (Tukey
558 test: q-statistic = 4.20, p = 0.02) (Figure 7a). Taken together, these results indicate that Sinc model
559 brain age delta magnitudes, generated using a single channel and 20 mins recording duration, scale
560 with clinically informative BSID-II outcomes that are assessed several months later.

561

562 As reported previously, the RF model's brain age deltas also significantly differed between the three
563 BSID-II outcome cohorts (Normal: mean MAE = 0.83, Mild abnormal: mean MAE = 1.13, Severe
564 abnormal: mean MAE = 1.63, one-way ANOVA: f-statistic = 4.96, p = 0.01) (Figure 7b), with
565 significant differences observed between the mean prediction errors for the normal and severe
566 abnormal groups (Tukey test: q-statistic = 4.36, p = 0.01) (Figure 7b).

567

568 Quantitatively assessing the magnitude of the group average MAE separation between BSID-II
569 outcome cohorts, a similar trend was observed for both the Sinc and RF models (Figure 7c). Both
570 models exhibited poorest separation between the normal and mild abnormal outcome cohorts
571 (group separation effect size: Sinc Cohen's D = 0.186; RF Cohen's D = 0.585), an intermediate degree
572 of separation between the mild abnormal and severe abnormal outcome cohorts (group separation
573 effect size: Sinc Cohen's D = 0.71; RF Cohen's D = 0.557), and greatest separation between the
574 normal and severe abnormal outcome cohorts (group separation effect size: Sinc Cohen's D = 1.104;
575 RF Cohen's D = 1.146) (Figure 7c).

576

577 No significant differences were identified between outcome groups for the potential confounding
578 variables. Sinc model MAEs one-way ANOVA results (n = 42): GA: f-statistic = 0.93, p = 0.40; PMA: f-
579 statistic = 0.51, p = 0.60; trajectory recording number: f-statistic = 0.28, p = 0.76).

580

581 **3.5 Sinc model accurately predicts brain age in data collected at an independent site (dataset \mathcal{D}_3)**

582 The Sinc model was applied to an independent dataset collected at an independent centre (Oxford,
583 UK; dataset \mathcal{D}_3). The Sinc model's predicted ages were significantly correlated with the infant's true
584 PMA (n = 73 infants, Pearson correlation coefficient $r=0.91$, z -statistic=1.52, $p < 0.0001$, Figure 8a),
585 with good prediction accuracy (MAE = 0.97 weeks). This highlights that the Sinc model can generate
586 age predictions using single recordings per infant for accurate group-level analysis at an
587 independent site.

588

589 Unlike dataset $\mathcal{D}2$, a noticeable bias in age prediction was visible in dataset $\mathcal{D}3$ (Figure 8a). The
590 magnitude of the brain age delta was significantly negatively correlated with the infant's true PMA
591 ($r = -0.24$, $p < 0.01$, Figure 8b). To generate unbiased brain age delta values, this age association
592 should be minimised (Smith et al., 2019). A simple linear regression model trained on dataset $\mathcal{D}3$,
593 and validated using leave-one-out cross-validation, reduces this bias (Figure 8c). This additional
594 linear model could be used in novel single-subject data collected at this site to produce brain age
595 deltas with minimal age association bias. However, the biological value of the brain age deltas in
596 dataset $\mathcal{D}3$ has yet to be established. This dataset currently does not have follow-up BSID-II
597 outcomes, so the association between brain age deltas and follow-up outcomes could not be
598 assessed.

599

600

601 4. Discussion

602 This study presents the first deep learning architecture for the prediction of brain age from infant
603 EEG activity. The model is based on a deep CNN structure incorporating the new Sinc block for
604 enhanced multi-scale decompositions, with prediction likely utilising between-infant differences in
605 their EEG continuity and bursting characteristics. Relative to previous proof-of-concept studies
606 (Pillay et al., 2020; Stevenson et al., 2020a), the current deep learning approach was able to predict
607 infant brain age with comparable accuracy and generate brain age delta magnitudes that were
608 significantly associated with neurodevelopmental outcome at a 9-month follow-up using BSID-II
609 assessment. Importantly, the current approach achieved this using dramatically reduced EEG data
610 utilisation requirements, relying on only a single channel bipolar montage and 20 mins recording
611 duration. This is important as it suggests that future systems utilising this method may only require
612 single-channel capabilities which is simpler to set up and makes EEG data acquisition easier. This
613 streamlined model, which can be applied in an objective and automated manner, thus
614 demonstrates potential clinical utility for cot-side monitoring assessment of neurological well-being.

615

616 The chosen development strategy for the Sinc model involves training and testing the model first
617 on a normal development dataset $\mathcal{D}1$ and then additionally assessing performance in two
618 independent datasets ($\mathcal{D}2$ and $\mathcal{D}3$, the latter collected at an independent site). Although we
619 performed a single split on $\mathcal{D}1$ for initial training and testing and could have used alternative
620 techniques (such as cross validation), the goal was to assess relative performance with this dataset
621 when comparing models, channel numbers, and recording durations. We kept the training and test
622 splits in $\mathcal{D}1$ consistent across these comparisons ensuring that relative differences in performance
623 were meaningfully comparable. Furthermore, by showing high performance in the brain age
624 prediction in the independent datasets, which was comparable to the held-out test set performance
625 in $\mathcal{D}1$, we can justify with confidence that the training strategies and choices made have still resulted
626 in a robust generalisable model.

627

628 The model performed well on data collected at an independent site, despite differences in data
629 collection such as EEG recording equipment and research personnel. This importantly suggests that
630 the model is generalisable and could easily be employed for clinical use across multiple hospitals.
631 Interestingly, an age association bias in model estimates could be observed between the predicted

632 age and true age when the model was applied to dataset \mathcal{D}_3 (Oxford dataset), with the model likely
633 to overestimate age in the youngest infants and underestimate age in the oldest infants. The bias
634 was not observed in dataset \mathcal{D}_2 (Leuven dataset). Bias in brain age predictions can arise from a
635 number of factors (Smith et al., 2019): for example, “regression dilution” due to errors in
636 measurement of the predictors (dataset \mathcal{D}_3 used single recordings per infant, while dataset \mathcal{D}_2
637 used multiple recordings per infant affording reduced measurement error). Using leave-one-
638 subject-out cross-validation, we demonstrated that it was possible to minimise this bias in dataset
639 \mathcal{D}_3 , suggesting that this correction would be generalisable for future infants collected at this centre.
640

641 Throughout our analyses, we used our previously published (Pillay et al., 2020) RF model as a “gold
642 standard” benchmark against which our novel Sinc model’s performance was assessed. The RF
643 model used an 8-channel referential montage, over an hour of EEG recording, required sleep-staging
644 and an explicit pre-calculation of over 200 established features, while the Sinc model required only
645 a 1-channel bipolar montage and a 20 min recording duration, no sleep-staging, and included an
646 implicit feature extraction step. In all analyses, the Sinc model either performed comparably to or
647 out-performed the RF model. Additionally, in work published by an independent group (Stevenson
648 et al., 2020a), brain age deltas exhibited greatest separation between infants with normal and
649 severely abnormal BSID-II follow-up outcomes – an observation that is consistent with the current
650 study’s findings, further supporting the results of the Sinc model.
651

652 Although a quantitative analysis of model speed was beyond the scope of this study, it is clear from
653 previous studies (Pillay et al., 2020; Stevenson et al., 2020a) that the requirement to extract multiple
654 features (some highly complex and non-linear), as well as the need to pre-stage the EEG based on
655 sleep state or states of discontinuity would slow performance, and this is suggested in a related
656 study on neonatal sleep-staging (Ansari et al., 2018). With the right accelerated hardware, however,
657 the proposed model (once trained) performs brain age predictions very quickly. This simplified
658 analysis pipeline lends itself well for hospital use if fast feedback is required in high-intensity
659 contexts, for instance, while the infant is in critical or post-operative care.
660

661 A further advantage of the Sinc model over the other deep learning architectures tested here is the
662 introduction of the Sinc block which, with a reasonable number of parameters, achieves a highly
663 non-linear architecture for performing multi-scale analysis (Ansari et al., 2021). The streamlined
664 preprocessing and feature extraction as well as the highly non-linear nature of the Sinc model are
665 invaluable attributes that provide flexibility for extraction of key signal characteristics and result in
666 a more focused feature set. The deep learning Sinc model is thus a flexible and efficient approach
667 for use with neonatal EEG data, which are data that typically exhibits highly variable and diverse
668 signal patterns.
669

670 Using the trained Sinc model to generate synthetic EEG data (Figure 4), our results suggest the
671 model’s predictive performance may rely on identifying signal characteristics related to changes in
672 the EEG discontinuity with age (related to bursts and inter-burst intervals). This finding relates
673 sensibly to other findings in the current paper as well as established understanding of infant EEG
674 maturation. Regarding our present findings, the Sinc model’s performance did not drop

675 substantially going from eight channels to one, or full recording duration to 20 mins. This might
676 suggest that the feature extraction stages of the architecture may be more tuned to global channel-
677 independent characteristics (such as bursting and continuity), as opposed to spatially-dependent
678 characteristics (such as inter-channel synchrony). Further, if the model relies on identifying changes
679 in burst/inter-burst cycling and encodes this in a highly multi-scale manner, this may indicate that
680 information on an infant's burst/inter-burst cycling may be sufficiently discernible from a 20-minute
681 EEG recording, with additional data providing diminished returns in discriminatory power.

682

683 Regarding infant EEG maturation, the progression of burst/inter-burst activity to continuous activity
684 is the expected characteristic developmental trajectory from preterm to term age (André et al.,
685 2010). Interestingly, these discontinuity patterns are also key for human experts when performing
686 visual age prediction (Dereymaeker et al., 2017a; Husain, 2005). Observing this link between the
687 synthetic inputs generated by the trained model and expected maturational trends strongly
688 suggests the Sinc model is relying on biophysically sensible signal features, which is important
689 for the generalisability of a model to novel data. We can tentatively suggest further similarities
690 between the Sinc model's generated synthetic EEG data and prominent features in the RF model. In
691 agreement with our previous work (Pillay et al., 2020), prominent features chosen by the
692 comparison RF model retrained in this study were based on the Line Length Burst %, a measure of
693 the percentage of burst periods in the EEG (Koolen et al., 2014), as well as measures of skewness of
694 the EEG amplitudes, which measure the asymmetry of a distribution compared to a Gaussian
695 distribution. Line Length Burst % would be expected to change with PMA as the burst periods
696 decrease with age and the EEG transitions to a more continuous pattern. Similarly, during this
697 transition, the distribution shifts away from a symmetrical Gaussian distribution as the number of
698 high positive bursts or spike amplitudes decreases. When comparing to the simulated results of Sinc
699 in Figure 4, we see similar behaviour is also identified by this trained neural network emphasising
700 the importance of this EEG characteristic across age.

701

702 We also note potentially interesting amplitude effects that are visible when looking at the model's
703 synthetic data across eight channels. For example, channels C3 and C4 have larger signal amplitudes
704 relative to other channels. While amplitude is a feature that changes with maturation (André et al.,
705 2010) making inter-subject variability in amplitude of potential value for brain age prediction, one
706 must be cautious when interpreting this subtler cross-channel amplitude effect in the synthetic
707 data. These amplitude effects may reflect a biophysically interesting phenomenon or may be
708 an artefactual consequence of proximity to the Cz reference electrode. Future work on the Sinc
709 model may help shed light on the potential role of amplitude effects.

710

711 Additionally, the role of motion artefacts, potentially related to sleep state and general motor
712 activity levels, could influence prediction performance. We applied a very simple amplitude-
713 threshold approach for artefact removal, and while this eliminates any major baseline drifts, periods
714 of recording drop-off or high-amplitude motion artefacts, some subtler artefacts likely remain. It is
715 unclear whether any residual motion effects influence prediction performance (either beneficially
716 or detrimentally). However, the lack of motion-like signals in the model-generated synthetic EEG
717 data suggests motion is unlikely to be playing a major role.

718

719 The ultimate interest in studying brain age delta magnitude is that neurological dysfunction can
720 manifest in infants' EEG as both accelerated or slowed maturation relative to a normative trajectory
721 (Scher, 1997; Watanabe et al., 1999), and these functional maturational deviations have prognostic
722 value (Iyer et al., 2015; Tokariev et al., 2019). The present study focused on the prognostic value of
723 preterm and term age resting-state brain function as a basis for risk-stratification using 9-month
724 BSID-II follow-up as the relevant outcome. However, as with any scale, there are limitations to BSID-
725 II predictive validity (Hack et al., 2005). Clinical decision making regarding the provision of
726 developmental care interventions (Burke, 2018) using deep learning-based predictions of infant
727 brain age would benefit from advancing the prognostic validity of the brain age delta metric. For
728 example, demonstrating associations between the metric and additional follow-up outcome
729 metrics, such as executive function (Dai et al., 2021), would improve validity. Additionally,
730 understanding the association between the metric and contemporaneous structural (e.g. body
731 weight, brain structural MRI) and functional (e.g. sensory-evoked neural and behavioural responses,
732 brain functional MRI) indices of development would be beneficial. We note that in the severe
733 outcome group of dataset \mathcal{D}_2 , a particularly large deviation was identified at 27.3 weeks PMA (see
734 Figure 6a_{ii},b_{ii}). When investigating this infant's recording further (by AD), it was confirmed that the
735 baby was indeed very clinically unstable, with a history of seizure activity, generally suppressed
736 baseline EEG and alternating, abnormal rhythmic activity. Further investigations into associations
737 between the brain age delta magnitude and these contemporaneous and follow-up assessments
738 will be highly valuable in advancing model validity and appreciating the potential clinical value of
739 the Sinc brain age prediction model.

740

741 It is important to note that the focus of this manuscript was to provide an efficient diagnostic
742 approach for identifying abnormal brain maturation and to additionally show that this metric
743 correlates strongly with long term neurodevelopmental outcome. We do not, however, suggest a
744 cause for deviations between true age and brain age (i.e. brain age deltas) in this study nor that this
745 is directly associated to specific environmental or genetic causes. There is increasing evidence that
746 large brain age deltas may be a symptom of pre-existing conditions from birth (such as genetic
747 factors or low birth weight) which has a lasting impact on the infant's development presented
748 through alterations in brain age trajectories (Vidal-Pineiro et al., 2021). Regardless of the specific
749 causes of brain age deltas, it is clear that the magnitudes of these deviations are of biological and
750 clinical interest, and the ability to track and estimate brain age deviations with a model such as Sinc
751 provide a means to identify effects as soon as they manifest potentially allowing for rapid clinical
752 responses.

753

754

755 **5. Conclusions**

756 We outline a deep learning approach for infant brain age prediction and follow-up BSID-II outcome
757 risk-stratification with dramatically reduced EEG data requirements relative to previous proof-of-
758 concept studies. In an independent hold-out dataset, our Sinc model accurately predicts infant brain
759 age and significantly distinguishes infants with normal outcome from those with severely abnormal
760 outcome using a 1-channel bipolar montage setup and 20 min recording duration. The model also

761 accurately predicts infant brain age when applied to data collected at an independent site. This
762 objective and automated deep learning approach thus displays potential clinical utility for cot-side
763 monitoring and use in neurological function assessment. A major next objective will be the efficient
764 deployment of this model into the hospital setting using clinical grade bipolar montage data.

765

766

767 **Data availability statement**

768 Due to ethical restrictions and the sensitive nature of these data, it is not possible to publicly share
769 the supporting data.

770

771

772 **Code availability statement**

773 The underlying code for the deep learning models, including the training, validation, and testing
774 processes are openly available for download using the following GitHub link:
775 <https://github.com/amirans65/brainagemodel>.

776

777

778 **CRedit authorship contribution statement**

779 **Amir Ansari:** Methodology, Software, Validation, Formal analysis, Investigation, Writing – Original
780 Draft, Visualisation. **Kirubin Pillay:** Conceptualisation, Methodology, Software, Validation, Formal
781 analysis, Investigation, Data Curation, Writing – Original Draft, Visualisation. **Luke Baxter:** Formal
782 analysis, Visualization, Writing – Review & Editing. **Emad Arasteh:** Formal analysis, Writing – Review
783 & Editing. **Anneleen Dereymaeker:** Investigation, Resources, Data Curation, Writing – Review &
784 Editing. **Gabriela Schmidt Mellado:** Visualization, Data Curation, Writing – Review & Editing. **Katrien
785 Jansen:** Investigation, Resources, Data Curation, Writing – Review & Editing. **Gunnar Naulaers:**
786 Resources, Writing – Review & Editing, Supervision, Funding acquisition. **Aomesh Bhatt:** Writing –
787 Review & Editing, Supervision. **Sabine Van Huffel:** Resources, Writing – Review & Editing,
788 Supervision, Funding acquisition. **Caroline Hartley:** Data Curation, Writing – Review & Editing,
789 Supervision. **Maarten De Vos:** Conceptualization, Resources, Writing – Review & Editing,
790 Supervision, Funding acquisition, Project Administration. **Rebeccah Slater:** Resources, Writing –
791 Review & Editing, Supervision, Funding acquisition, Project Administration.

792

793

794 **Acknowledgements**

795 We would like to thank all parents and infants involved in the study and staff at the UZ Leuven and
796 John Radcliffe Hospitals who helped with data collection.

797 A.H.A. is supported by the FWO postdoctoral fellowship.

798 K.P., G.S.M, A.B., and R.S. are funded by a Senior Wellcome Research Fellowship awarded to R.S.
799 (207457/Z/17/Z). LB is funded by a BLISS research grant.

800 S.V.H. and M.D.V. are funded by Bijzonder Onderzoeksfonds KU Leuven (BOF), Prevalentie van
801 epilepsie en slaapstoornissen in de ziekte van Alzheimer [C24/18/097], Fonds voor
802 Wetenschappelijk Onderzoek-Vlaanderen (FWO), PhD/Postdoc grants, and Agentschap Innoveren
803 en Ondernemen (VLAIO) 150466: OSA+.

804 CH is funded by a Wellcome Trust/Royal Society Sir Henry Dale Fellowship (213486/Z/18/Z).
805 KU Leuven Stadius acknowledges the financial support of imec, EU: EU H2020 FETOPEN 'AMPHORA'
806 [766456], EU H2020 MSCA-ITN-2018: 'INtegrating Magnetic Resonance SPectroscopy and
807 Multimodal Imaging for Research and Education in MEDicine (INSPiRE-MED)', funded by the
808 European Commission under Grant Agreement [813120], EU H2020 MSCA-ITN-2018: 'INtegrating
809 Functional Assessment measures for Neonatal Safeguard (INFANS)', funded by the European
810 Commission under Grant Agreement [813483], EIT 19263 – SeizeIT2: Discreet Personalized Epileptic
811 Seizure Detection Device; Flemish Government; COST action CA20124
812 <https://www.cost.eu/actions/CA20124/>. This research also received funding from the Flemish
813 Government (AI Research Program).

814 A.H.A, S.V.H. and M.D.V. are also affiliated to Leuven.AI - KU Leuven institute for AI, B-3000, Leuven,
815 Belgium.

816

817

818 Declaration of competing interests

819 The authors declare no conflicts of interest.

820

821

822 References

- 823 André, M., Lamblin, M.-D., dAllest, A.M., Curzi-Dascalova, L., Moussalli-Salefranque, F.,
824 NguyenTheTich, S., Vecchierini-Blineau, M.-F., Wallois, F., Walls-Esquivel, E., Plouin, P., 2010. Electroencephalography in premature and full-term infants. Developmental features and glossary. *Neurophysiologie Clinique/Clinical Neurophysiology* 40, 59–124. <https://doi.org/10.1016/j.neucli.2010.02.002>
- 825 Ansari, A.H., Cherian, P.J., Caicedo, A., Naulaers, G., De Vos, M., Van Huffel, S., 2019. Neonatal Seizure Detection Using Deep Convolutional Neural Networks. *Int J Neural Syst* 29, 1850011. <https://doi.org/10.1142/S0129065718500119>
- 826 Ansari, A.H., De Wel, O., Lavanga, M., Caicedo, A., Dereyemaeker, A., Jansen, K., Vervisch, J., De Vos, M., Naulaers, G., Van Huffel, S., 2018. Quiet sleep detection in preterm infants using deep convolutional neural networks. *J Neural Eng* 15, 066006. <https://doi.org/10.1088/1741-2552/aadc1f>
- 827 Ansari, A.H., De Wel, O., Pillay, K., Dereyemaeker, A., Jansen, K., Van Huffel, S., Naulaers, G., De Vos, M., 2020. A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants. *J Neural Eng* 17, 016028. <https://doi.org/10.1088/1741-2552/ab5469>
- 828 Ansari, A.H., Pillay, K., Dereyemaeker, A., Jansen, K., Van Huffel, S., Naulaers, G., De Vos, M., 2021. A Deep Shared Multi-Scale Inception Network Enables Accurate Neonatal Quiet Sleep Detection with Limited EEG Channels. *IEEE J Biomed Health Inform* PP. <https://doi.org/10.1109/JBHI.2021.3101117>
- 829 Bland, J.M., Altman, D.G., 1999. Measuring agreement in method comparison studies. *Stat Methods Med Res* 8, 135–160. <https://doi.org/10.1177/096228029900800204>
- 830 Bland, J.M., Altman, D.G., 1986. Statistical methods for assessing agreement between two methods of clinical measurement. *Lancet* 1, 307–310.
- 831 Blencowe, H., Lee, A.C.C., Cousens, S., Bahalim, A., Narwal, R., Zhong, N., Chou, D., Say, L., Modi, N., Katz, J., Vos, T., Marlow, N., Lawn, J.E., 2013. Preterm birth-associated neurodevelopmental

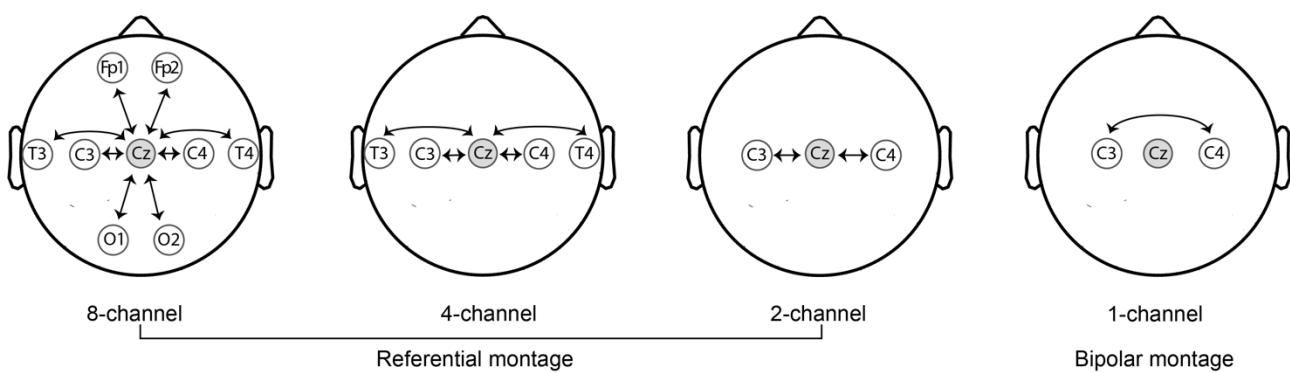
- 849 impairment estimates at regional and global levels for 2010. *Pediatr Res* 74 Suppl 1, 17–34.
850 <https://doi.org/10.1038/pr.2013.204>
- 851 Burke, S., 2018. Systematic review of developmental care interventions in the neonatal intensive
852 care unit since 2006. *J Child Health Care* 22, 269–286.
853 <https://doi.org/10.1177/1367493517753085>
- 854 Colonnese, M.T., Kaminska, A., Minlebaev, M., Milh, M., Bloem, B., Lescure, S., Moriette, G., Chiron,
855 C., Ben-Ari, Y., Khazipov, R., 2010. A Conserved Switch in Sensory Processing Prepares
856 Developing Neocortex for Vision. *Neuron* 67, 480–498.
857 <https://doi.org/10.1016/j.neuron.2010.07.015>
- 858 Dai, D.W.T., Franke, N., Woudes, T.A., Brown, G.T.L., Tottman, A.C., Harding, J.E., PIANO Study
859 Group, 2021. The contributions of intelligence and executive function to behaviour problems
860 in school-age children born very preterm. *Acta Paediatr* 110, 1827–1834.
861 <https://doi.org/10.1111/apa.15763>
- 862 De Wel, O., Lavanga, M., Dorado, A.C., Jansen, K., Dereymaeker, A., Naulaers, G., Van Huffel, S.,
863 2017. Complexity Analysis of Neonatal EEG Using Multiscale Entropy: Applications in Brain
864 Maturation and Sleep Stage Classification. *Entropy* 19, 516.
865 <https://doi.org/10.3390/e19100516>
- 866 Dempsey, E.M., Kooi, E.M.W., Boylan, G., 2018. It's All About the Brain—Neuromonitoring During
867 Newborn Transition. *Seminars in Pediatric Neurology, Fetal Neurology* 28, 48–59.
868 <https://doi.org/10.1016/j.spen.2018.05.006>
- 869 Dereymaeker, A., Koolen, N., Jansen, K., Vervisch, J., Ortibus, E., De Vos, M., Van Huffel, S., Naulaers,
870 G., 2016. The suppression curve as a quantitative approach for measuring brain maturation
871 in preterm infants. *Clin Neurophysiol* 127, 2760–2765.
872 <https://doi.org/10.1016/j.clinph.2016.05.362>
- 873 Dereymaeker, A., Pillay, K., Vervisch, J., De Vos, M., Van Huffel, S., Jansen, K., Naulaers, G., 2017a.
874 Review of sleep-EEG in preterm and term neonates. *Early Hum Dev* 113, 87–103.
875 <https://doi.org/10.1016/j.earlhumdev.2017.07.003>
- 876 Dereymaeker, A., Pillay, K., Vervisch, J., Van Huffel, S., Naulaers, G., Jansen, K., De Vos, M., 2017b.
877 An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess
878 Brain Maturation. *Int J Neural Syst* 27, 1750023.
879 <https://doi.org/10.1142/S012906571750023X>
- 880 Duerden, E.G., Guo, T., Dodbiba, L., Chakravarty, M.M., Chau, V., Poskitt, K.J., Synnes, A., Grunau,
881 R.E., Miller, S.P., 2016. Midazolam dose correlates with abnormal hippocampal growth and
882 neurodevelopmental outcome in preterm infants. *Ann Neurol* 79, 548–559.
883 <https://doi.org/10.1002/ana.24601>
- 884 Efron, B., Tibshirani, R.J., 1994. An Introduction to the Bootstrap. Chapman and Hall/CRC, New York.
885 <https://doi.org/10.1201/9780429246593>
- 886 Grunau, R.E., 2013. Neonatal pain in very preterm infants: long-term effects on brain,
887 neurodevelopment and pain reactivity. *Rambam Maimonides Med J* 4, e0025.
888 <https://doi.org/10.5041/RMMJ.10132>
- 889 Hack, M., Taylor, H.G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., Klein, N., Friedman,
890 H., Mercuri-Minch, N., Morrow, M., 2005. Poor predictive validity of the Bayley Scales of
891 Infant Development for cognitive function of extremely low birth weight children at school
892 age. *Pediatrics* 116, 333–341. <https://doi.org/10.1542/peds.2005-0173>
- 893 Husain, A.M., 2005. Review of neonatal EEG. *Am J Electroneurodiagnostic Technol* 45, 12–35.
- 894 Iyer, K.K., Roberts, J.A., Hellström-Westas, L., Wikström, S., Hansen Pupp, I., Ley, D., Vanhatalo, S.,
895 Breakspear, M., 2015. Cortical burst dynamics predict clinical outcome early in extremely
896 preterm infants. *Brain* 138, 2206–2218. <https://doi.org/10.1093/brain/awv129>

- 897 Koolen, N., Jansen, K., Vervisch, J., Matic, V., De Vos, M., Naulaers, G., Van Huffel, S., 2014. Line
898 length as a robust method to detect high-activity events: automated burst detection in
899 premature EEG recordings. *Clin Neurophysiol* 125, 1985–1994.
900 <https://doi.org/10.1016/j.clinph.2014.02.015>
- 901 Lavanga, M., De Wel, O., Caicedo, A., Jansen, K., Dereymaeker, A., Naulaers, G., Van Huffel, S., 2017.
902 Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study
903 Maturation. *Complexity* 2017, e9078541. <https://doi.org/10.1155/2017/9078541>
- 904 Malk, K., Metsäranta, M., Vanhatalo, S., 2014. Drug effects on endogenous brain activity in preterm
905 babies. *Brain Dev* 36, 116–123. <https://doi.org/10.1016/j.braindev.2013.01.009>
- 906 Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., Khazipov, R., 2007. Rapid cortical
907 oscillations and early motor activity in premature human neonate. *Cereb. Cortex* 17, 1582–
908 1594. <https://doi.org/10.1093/cercor/bhl069>
- 909 Moultrie, F., Slater, R., Hartley, C., 2017. Improving the treatment of infant pain. *Current Opinion in
910 Supportive and Palliative Care* 11, 112–117.
911 <https://doi.org/10.1097/SPC.0000000000000270>
- 912 O’Shea, A., Ahmed, R., Lightbody, G., Pavlidis, E., Lloyd, R., Pisani, F., Marnane, W., Mathieson, S.,
913 Boylan, G., Temko, A., 2021. Deep Learning for EEG Seizure Detection in Preterm Infants. *Int
914 J Neural Syst* 31, 2150008. <https://doi.org/10.1142/S0129065721500088>
- 915 O’Toole, J.M., Boylan, G.B., Vanhatalo, S., Stevenson, N.J., 2016. Estimating functional brain
916 maturity in very and extremely preterm neonates using automated analysis of the
917 electroencephalogram. *Clin Neurophysiol* 127, 2910–2918.
918 <https://doi.org/10.1016/j.clinph.2016.02.024>
- 919 Palmu, K., Stevenson, N., Wikström, S., Hellström-Westas, L., Vanhatalo, S., Palva, J.M., 2010.
920 Optimization of an NLEO-based algorithm for automated detection of spontaneous activity
921 transients in early preterm EEG. *Physiol Meas* 31, N85-93. [https://doi.org/10.1088/0967-3334/31/11/N02](https://doi.org/10.1088/0967-
922 3334/31/11/N02)
- 923 Pascal, A., Naulaers, G., Ortibus, E., Oostra, A., De Coen, K., Michel, S., Cloet, E., Casaer, A., D’haese,
924 J., Laroche, S., Jonckheere, A., Plaskie, K., Van Mol, C., Delanghe, G., Bruneel, E., Van
925 Hoestenberghe, M.-R., Samijn, B., Govaert, P., Van den Broeck, C., 2020. Neurodevelopmental outcomes of very preterm and very-low-birthweight infants in a
926 population-based clinical cohort with a definite perinatal treatment policy. *Eur J Paediatr
927 Neurol* 28, 133–141. <https://doi.org/10.1016/j.ejpn.2020.06.007>
- 928 Pillay, K., Dereymaeker, A., Jansen, K., Naulaers, G., De Vos, M., 2020. Applying a data-driven
929 approach to quantify EEG maturational deviations in preterms with normal and abnormal
930 neurodevelopmental outcomes. *Sci Rep* 10, 7288. [https://doi.org/10.1038/s41598-020-64211-0](https://doi.org/10.1038/s41598-020-
931 64211-0)
- 932 Pillay, K., Dereymaeker, A., Jansen, K., Naulaers, G., Van Huffel, S., De Vos, M., 2018. Automated
933 EEG sleep staging in the term-age baby using a generative modelling approach. *J Neural Eng*
934 15, 036004. <https://doi.org/10.1088/1741-2552/aaab73>
- 935 R Core Team, 2018. R: A language and environment for statistical computing.
- 936 Scher, M.S., 2008. Ontogeny of EEG-sleep from neonatal through infancy periods. *Sleep Med* 9, 615–
937 636. <https://doi.org/10.1016/j.sleep.2007.08.014>
- 938 Scher, M.S., 1997. Neurophysiological assessment of brain function and maturation. II. A measure
939 of brain dysmaturity in healthy preterm neonates. *Pediatr Neurol* 16, 287–295.
940 [https://doi.org/10.1016/s0887-8994\(96\)00009-4](https://doi.org/10.1016/s0887-8994(96)00009-4)
- 941 Smith, S.M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T.E., Miller, K.L., 2019. Estimation of brain age
942 delta from brain imaging. *NeuroImage* 200, 528–539.
943 <https://doi.org/10.1016/j.neuroimage.2019.06.017>

- 945 Stevenson, N.J., Oberdorfer, L., Koolen, N., O'Toole, J.M., Werther, T., Klebermass-Schrehof, K.,
946 Vanhatalo, S., 2017. Functional maturation in preterm infants measured by serial recording
947 of cortical activity. *Sci Rep* 7, 12969. <https://doi.org/10.1038/s41598-017-13537-3>
- 948 Stevenson, N.J., Oberdorfer, L., Tataranno, M.-L., Breakspear, M., Colditz, P.B., Vries, L.S. de,
949 Benders, M.J.N.L., Klebermass-Schrehof, K., Vanhatalo, S., Roberts, J.A., 2020a. Automated
950 cot-side tracking of functional brain age in preterm infants. *Annals of Clinical and
951 Translational Neurology* 7, 891–902. <https://doi.org/10.1002/acn3.51043>
- 952 Stevenson, N.J., Tataranno, M.-L., Kaminska, A., Pavlidis, E., Clancy, R.R., Griesmaier, E., Roberts,
953 J.A., Klebermass-Schrehof, K., Vanhatalo, S., 2020b. Reliability and accuracy of EEG
954 interpretation for estimating age in preterm infants. *Ann Clin Transl Neurol* 7, 1564–1573.
955 <https://doi.org/10.1002/acn3.51132>
- 956 Tokariev, A., Roberts, J.A., Zalesky, A., Zhao, X., Vanhatalo, S., Breakspear, M., Cocchi, L., 2019.
957 Large-scale brain modes reorganize between infant sleep states and carry prognostic
958 information for preterms. *Nat Commun* 10, 2619. [https://doi.org/10.1038/s41467-019-10467-8](https://doi.org/10.1038/s41467-019-
959 10467-8)
- 960 Tolonen, M., Palva, J.M., Andersson, S., Vanhatalo, S., 2007. Development of the spontaneous
961 activity transients and ongoing cortical activity in human preterm babies. *Neuroscience* 145,
962 997–1006. <https://doi.org/10.1016/j.neuroscience.2006.12.070>
- 963 Vidal-Pineiro, D., Wang, Y., Krogsrud, S.K., Amlien, I.K., Baaré, W.F., Bartres-Faz, D., Bertram, L.,
964 Brandmaier, A.M., Drevon, C.A., Düzel, S., Ebmeier, K., Henson, R.N., Junqué, C., Kievit, R.A.,
965 Kühn, S., Leonardsen, E., Lindenberger, U., Madsen, K.S., Magnussen, F., Mowinckel, A.M.,
966 Nyberg, L., Roe, J.M., Segura, B., Smith, S.M., Sørensen, Ø., Suri, S., Westerhausen, R.,
967 Zalesky, A., Zsoldos, E., Walhovd, K.B., Fjell, A., 2021. Individual variations in 'brain age' relate
968 to early-life factors more than to longitudinal brain change. *eLife* 10, e69995.
969 <https://doi.org/10.7554/eLife.69995>
- 970 Wallois, F., Routier, L., Bourel-Ponchel, E., 2020. Impact of prematurity on neurodevelopment, in:
971 Gallagher, A., Bulteau, C., Cohen, D., Michaud, J.L. (Eds.), *Handbook of Clinical Neurology, Neurocognitive
972 Development: Normative Development*. Elsevier, pp. 341–375.
973 <https://doi.org/10.1016/B978-0-444-64150-2.00026-5>
- 974 Watanabe, K., Hayakawa, F., Okumura, A., 1999. Neonatal EEG: a powerful tool in the assessment
975 of brain damage in preterm infants. *Brain Dev* 21, 361–372. [https://doi.org/10.1016/s0387-7604\(99\)00034-0](https://doi.org/10.1016/s0387-
976 7604(99)00034-0)
- 977 Wess, J.M., Isaiah, A., Watkins, P.V., Kanold, P.O., 2017. Subplate neurons are the first cortical
978 neurons to respond to sensory stimuli. *Proc Natl Acad Sci U S A* 114, 12602–12607.
979 <https://doi.org/10.1073/pnas.1710793114>
- 980
981
982

983 Figures

984



985

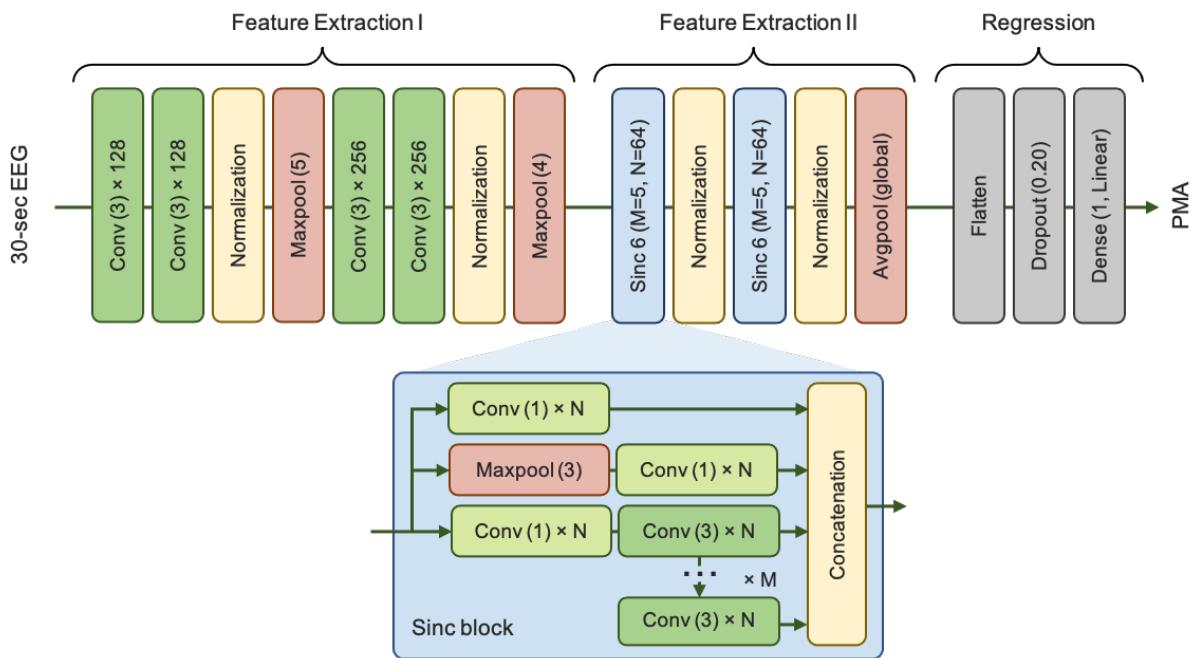
986 **Figure 1: EEG montages used during analysis.** All recordings in datasets $\mathcal{D}1$ and $\mathcal{D}2$ were acquired
987 with eight recording EEG electrodes in positions: $Fp1$, $Fp2$, $C3$, $C4$, $T3$, $T4$, $O1$, $O2$, and a reference
988 electrode placed at Cz (shaded in grey). The arrows represent the specific channels used during
989 analysis. For dataset $\mathcal{D}3$, analysis was conducted using the 1-channel bipolar montage. Recordings
990 were initially acquired with electrode positions Cz , CPz , $C3$, $C4$, Oz , FCz , $T3$ and $T4$, and a reference
991 electrode at Fz .

992

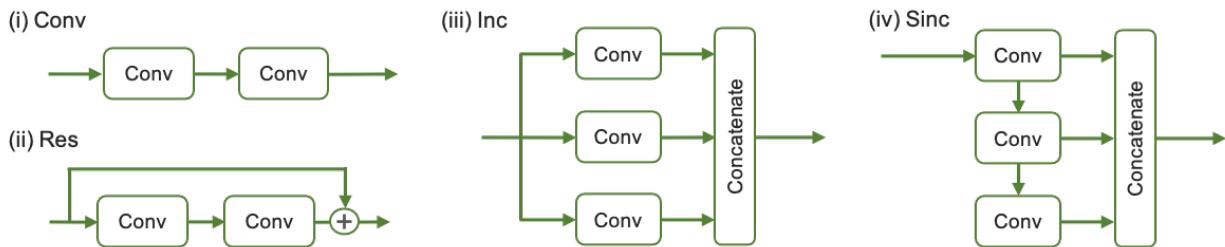
993

994

a. Sinc model architecture



b. Deep learning blocks



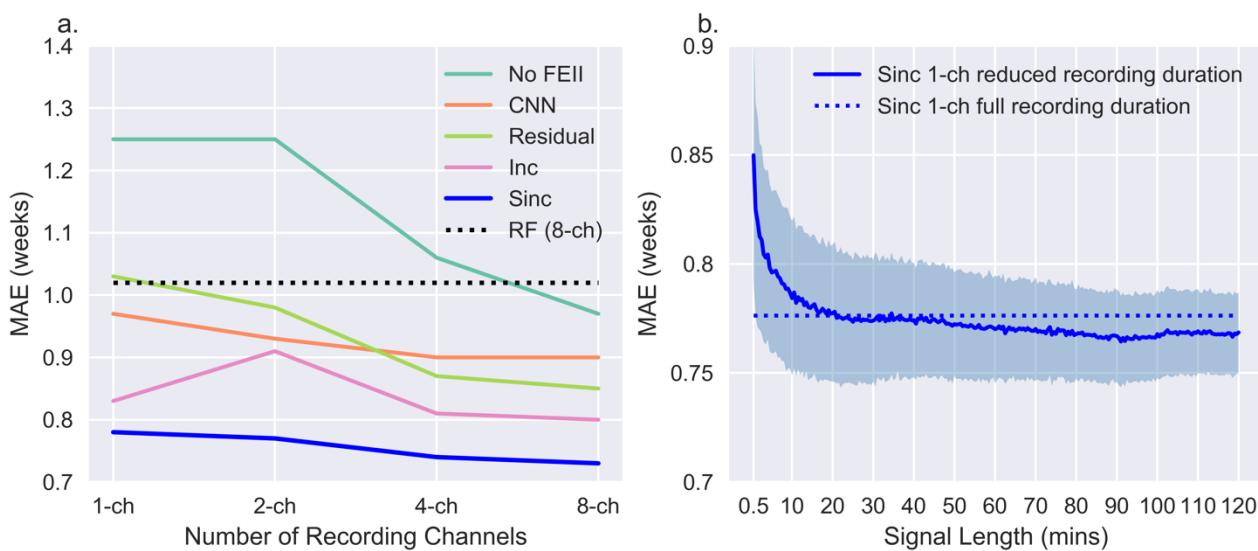
995

996 **Figure 2: Deep learning architectures.** a. Block-diagram of the proposed Sinc network architecture,
997 including the typical structure of the Sinc block. b. Illustrative block diagrams of different blocks in
998 the deep architectures: (i) Sequential Convolutional layers, (ii) Residual block, (iii) Inception block,
999 (iv) Shared Inception (Sinc) block.

1000

1001

1002



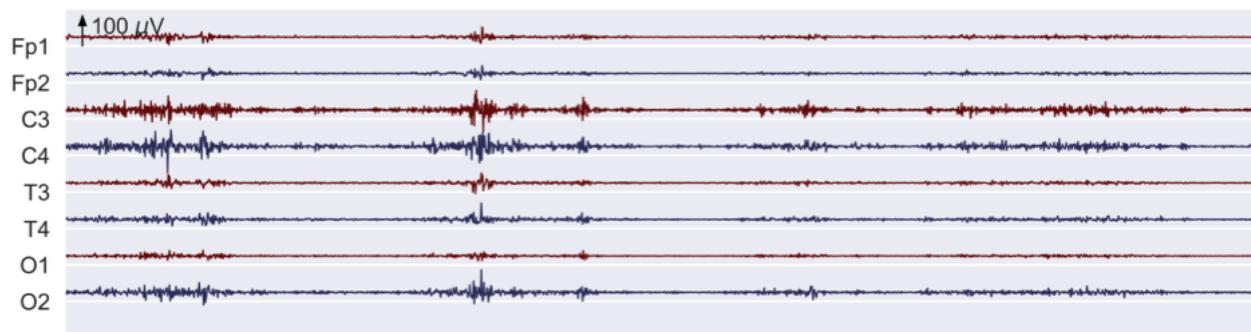
L003

L004 **Figure 3: The Sinc model outperforms alternative architectures in predicting infant brain age.** Brain
L005 age prediction performance (MAE) using dataset $\mathcal{D}1$ test set. **a.** Each line represents a different
L006 model, and each model uses the entire recording duration. See Supplementary Table 1 for plotted
L007 values. The RF model is the established benchmark, which uses eight channels. The Sinc model
L008 consistently outperforms both the RF model and the alternative deep learning models, with a lower
L009 prediction error using a single channel (MAE = 0.78 weeks) than the RF model using eight channels
L010 (MAE = 1.01 weeks). **b.** The Sinc model's performance using a single channel and the full recording
L011 duration (MAE = 0.78 weeks, dotted line) was used as a benchmark to assess Sinc model performance
L012 with a single channel and systematically reduced recording durations (solid line). Performance using
L013 the reduced recording durations are matched to the full recording duration when recordings of 20
L014 mins or longer are used; using less than 20 mins recording duration exhibits a gradual drop in
L015 prediction performance. Shaded intervals denote the standard deviation for the reduced recording
L016 durations. Note, MAE performance suggests a drop below the full signal performance beyond 20 min
L017 duration. This is due to the bootstrap sampling error (Efron and Tibshirani, 1994), and this inherent
L018 bias is a fluctuation about the full recording MAE with standard deviation <1 . We can assume that
L019 the MAE beyond 20 mins is equivalent to the MAE when the full recording duration is used. As it is
L020 too computationally intensive to show performance beyond 2 hour signal durations the random
L021 variation cannot be fully shown here. Abbreviations: FE = feature extraction; CNN = convolutional
L022 neural network; Inc = inception; Sinc = shared inception; RF = random forest; ch = channel; MAE =
L023 mean absolute error.

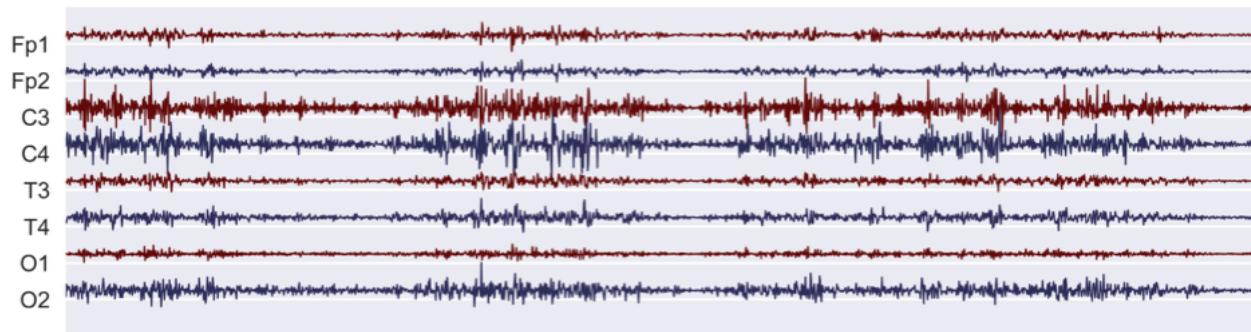
L024

L025

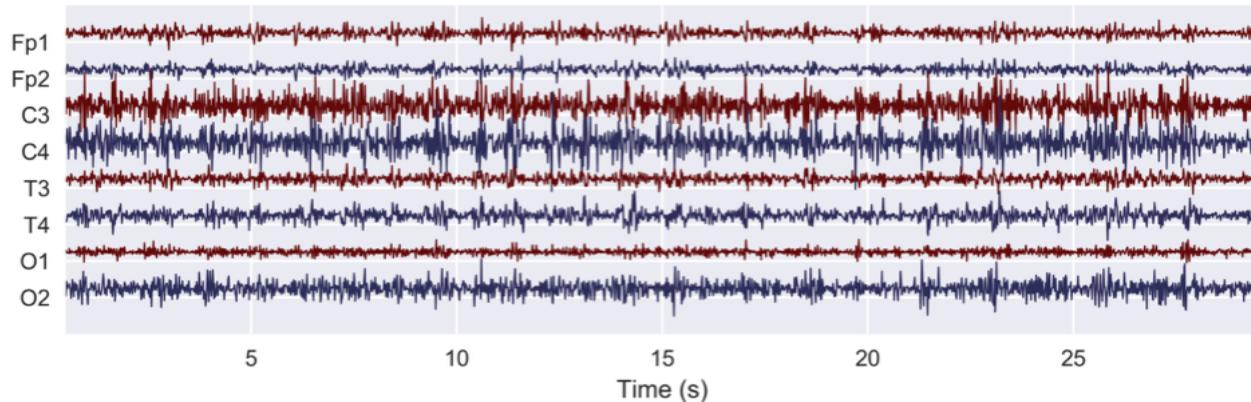
a. PMA = 30 weeks



b. PMA = 35 weeks



c. PMA = 40 weeks



L026

L027

L028

L029

L030

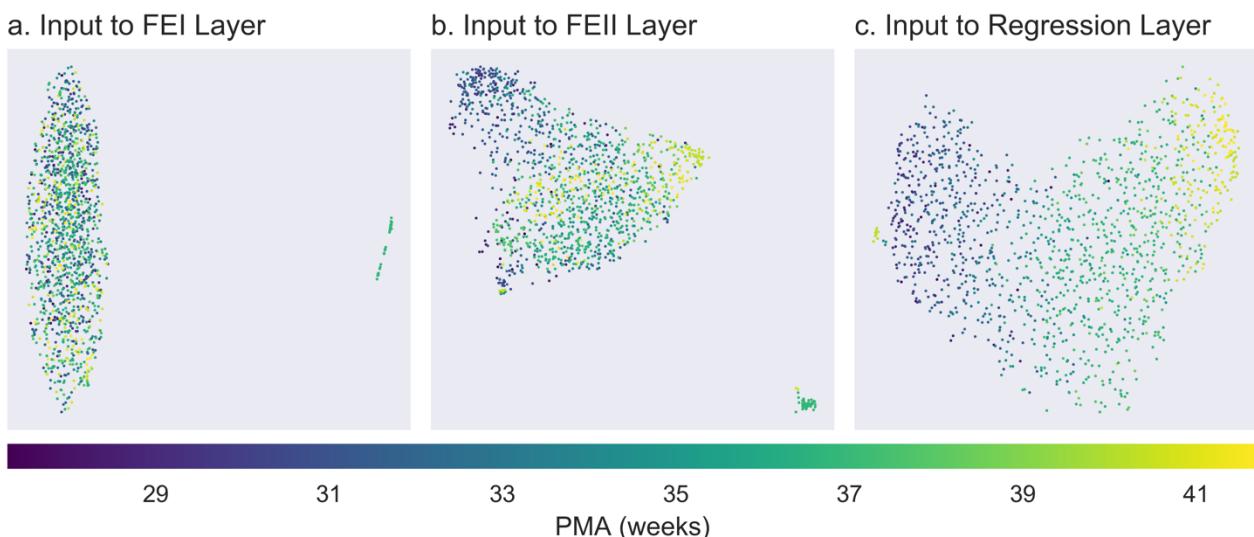
L031

L032

L033

L034

Figure 4: Synthetic EEG data generated using the Sinc model highlight changes in discontinuity characteristics with PMA, reminiscent of maturational trends seen in real EEG data. Results are generated using the input-loss minimization technique for three target PMAs (30, 35, and 40 weeks) spanning the early preterm to term age range. This is performed for the 8-channel full recording duration case. The degree of continuity in activity can be seen to increase with PMA.



L035

L036

L037

L038

L039

L040

L041

L042

L043

L044

L045

L046

L047

L048

L049

L050

L051

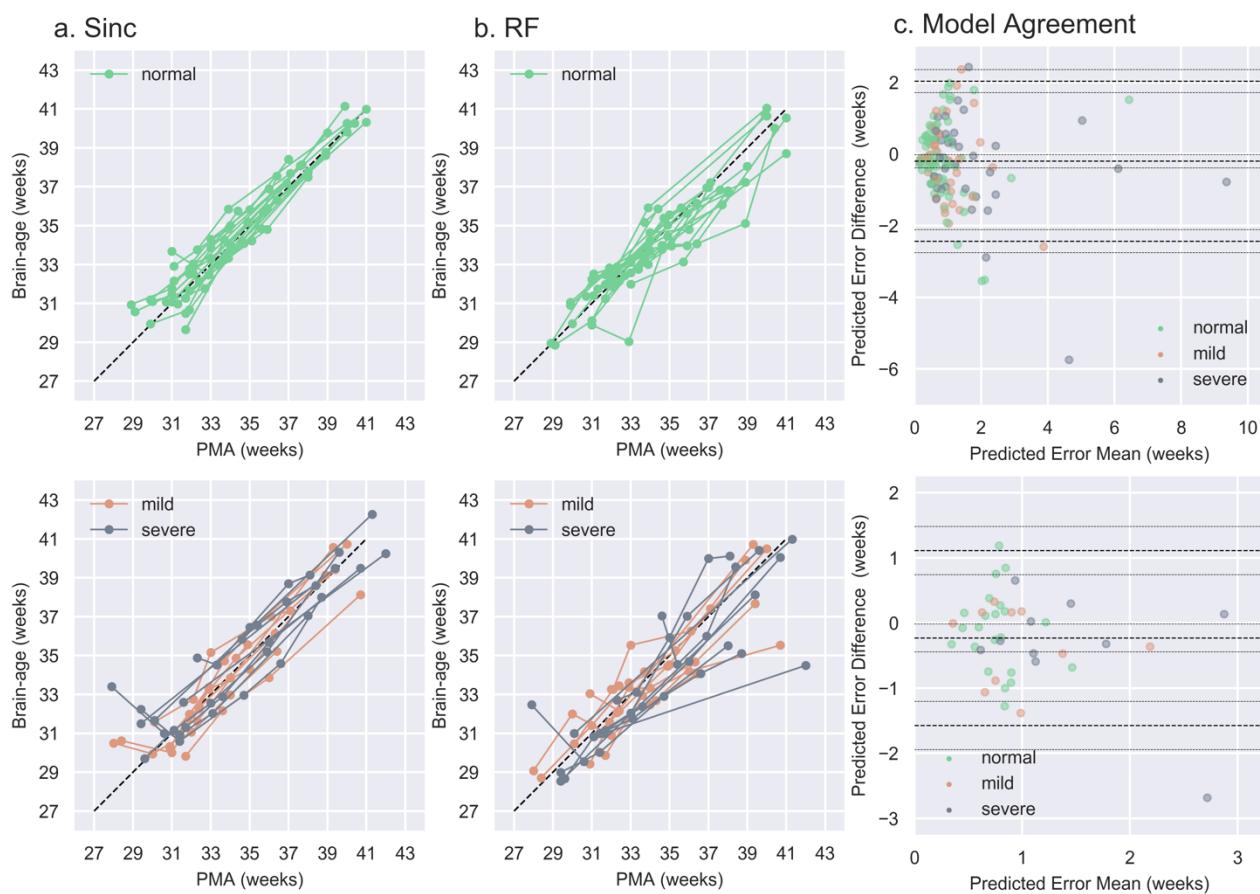
L052

L053

L054

L055

Figure 5: Visualising Sinc model performance using UMAPs. Visualization of the inputs at various blocks in the proposed model: Feature Extraction I (FEI), Feature Extraction II (FEII), and Regression (see Figure 1b). Results are shown for the 1-channel, full recording duration case in Dataset D1. An increasing separation of the features with respect to PMA is seen on moving from a-c. This clear progression is indicative that the network weights are trained well in the intermediate layers, and this visualisation provides further insight into the role of each CNN block. **a.** Input to FEI has not yet been processed, so there is no separation of inputs to FEI. **b.** The input to FEII is the output from FEI. It is evident that the role of FEI is to perform a low-level ‘feature extraction’ that performs an initial separation between the very preterm (blue dots) and preterm and term age groups (green and yellow dots) i.e. a general separation between strong discontinuity and continuity in the EEG. **c.** The input to Regression is the output of FEII. The FEII stage performs a higher-level feature extraction providing further discriminatory power, allowing better separation of these mid-age (31-37 weeks) and term age groups. Furthermore, at the stage of input to Regression, we observe that the PMAs of the datapoints from left to right increase almost monotonically such that the very left and right datapoints correspond to the extremely young and old neonates, respectively, while the middle ages are almost uniformly distributed in-between. Abbreviations: UMAP = uniform manifold approximation and projection.



L056

L057

L058

L059

L060

L061

L062

L063

L064

L065

L066

L067

L068

L069

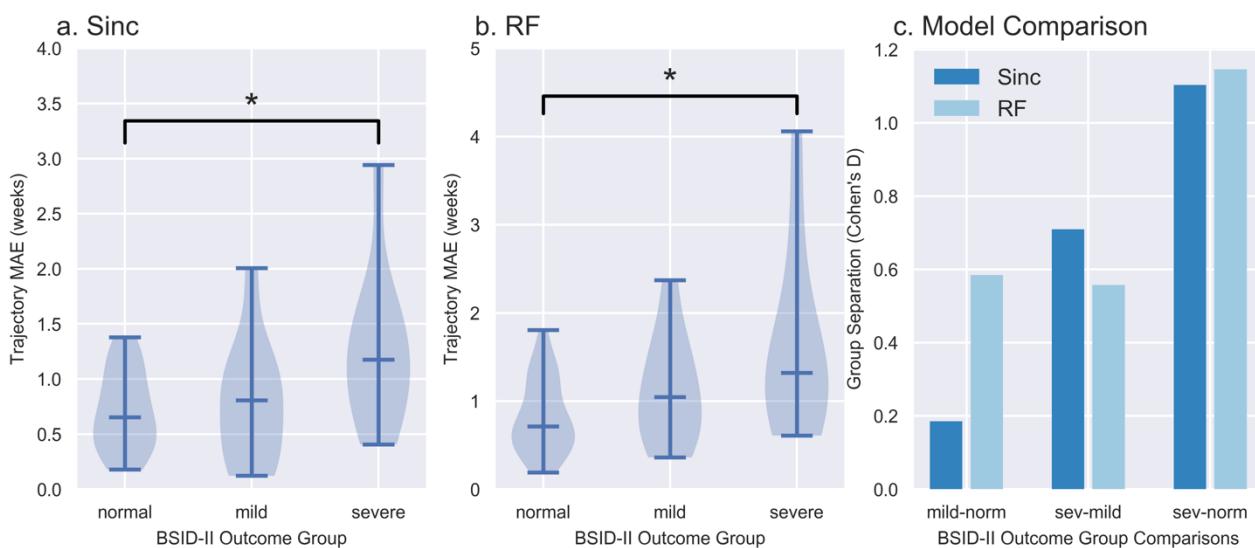
L070

L071

L072

L073

Figure 6: Brain age prediction models generalise to independent dataset D2. a. Sinc model brain age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes (Dataset D2). Each string of connected points is a single infant's longitudinally-assessed multi-recording trajectory, and the dashed black line is the $y=x$ line along which perfect predictions would lie. b. RF model brain age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes. c. Bland-Altman plots to assess agreement between Sinc and RF models' PMA prediction performances, quantified using absolute prediction errors. In both plots, the x-axis is the mean prediction error of the two models, and the y-axis is the difference in prediction errors (Sinc minus RF). The heavy grey lines are the mean bias and limits of agreement, while the light grey lines indicate the 95% CI for the bias and limits of agreement. (i) Per-recording model agreement assessment. (ii) Per-infant model agreement assessment i.e. multi-recording average per infant. Note the greater model agreement (narrower limits of agreement along y-axis) and reduced average prediction error (shorter range along x-axis) when using the multi-recording average prediction error in (ii) compared to the single recording prediction error in (i). Abbreviations: Sinc = shared inception; RF = random forest; PMA = postmenstrual age.



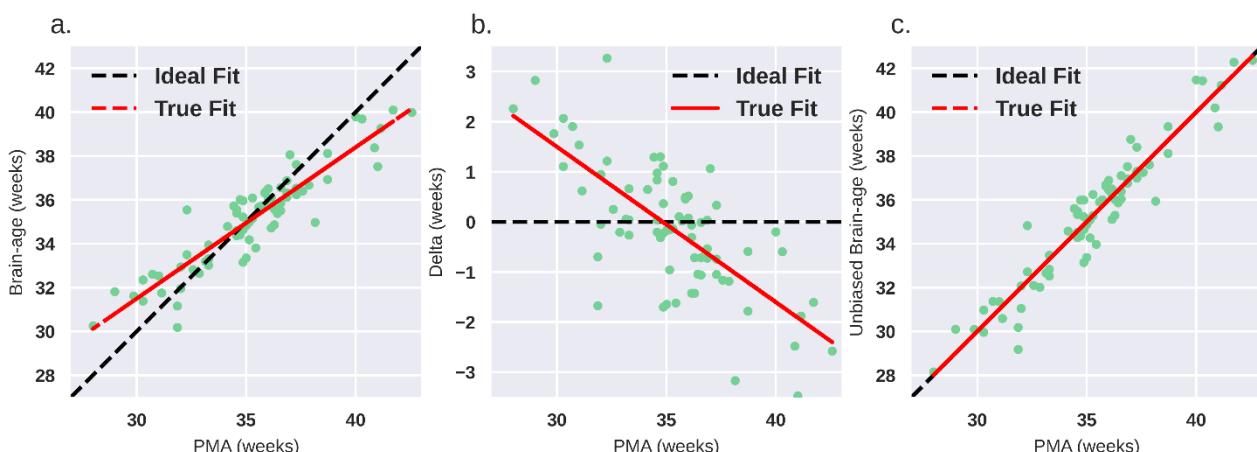
L074

L075 **Figure 7: Brain age delta magnitudes scale with 9-month follow-up neurodevelopmental**
L076 **outcomes. a. Sinc model absolute prediction error magnitudes (brain age deltas) for each of the**
L077 **three BSID-II outcome cohorts: normal, mild abnormal, and severe abnormal. The average prediction**
L078 **error is larger for poorer 9-month follow-up BSID-II neurodevelopmental outcomes, and the mean**
L079 **prediction error for the severe abnormal group is significantly larger than that of the normal group.**
L080 **b. RF model absolute prediction error magnitudes for each of the three BSID-II outcome cohorts. The**
L081 **average prediction error is larger for poorer 9-month follow-up BSID-II neurodevelopmental**
L082 **outcomes, and the mean prediction error for the severe abnormal group is significantly larger than**
L083 **that of the normal group. c. The x-axis displays each of the three combinations of pairwise**
L084 **comparisons for the three BSID-II outcome cohorts: mild minus normal, severe minus mild, and**
L085 **severe minus normal. For each model, the y-axis displays the standardised effect size (Cohen's D)**
L086 **separating each pair of BSID-II outcome cohort. Sinc = shared inception; RF = random forest; MAE =**
L087 **mean absolute error; BSID-II = Bayley scale of infant development; * = statistically significant.**

L088

L089

L090



L091

L092 **Figure 8: Sinc model brain age prediction generalises to dataset D3.** In each panel (a-c), each point
L093 indicates a single infant ($n=73$); the dashed black line is the ideal fit line; and the red solid line is the
L094 true fit line (least squares). **a.** Sinc model brain age predictions for dataset D3. The ideal fit line is
L095 the $y=x$ line of perfect prediction. The misalignment between the ideal fit line and the true fit line
L096 indicates an age association bias. **b.** Correlation between the brain age delta (predicted age minus
L097 true age) and the infant's true age. The ideal fit line is the $y=0$ line of zero age association bias. The
L098 slope of the true fit line indicates the magnitude and direction of the age association bias. **c.** The
L099 predicted brain age after adjusting for the delta age association bias using leave-one-out cross
L100 validation. The ideal fit line is the $y=x$ line of perfect prediction.

L101

L102