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Highlights
e Preterm stress exposure leads to long-term neurodevelopmental deficits
e Deficits are quantifiable using EEG-based brain age prediction errors
e Our deep-learning solution for brain age prediction outperforms previous approaches
e Predictions are achieved with only 20 mins EEG and a single bipolar channel
e Prediction errors correlate with long-term Bayley scale neurodevelopmental outcomes

Abstract

The preterm neonate can experience stressors that affect the rate of brain maturation and lead to
long-term neurodevelopmental deficits. However, some neonates who are born early follow normal
developmental trajectories. Extraction of data from electroencephalography (EEG) signals can be
used to calculate the neonate’s brain age which can be compared to their true age. Discrepancies
between true age and brain age (the brain age delta) can then be used to quantify maturational
deviation, which has been shown to correlate with long-term abnormal neurodevelopmental
outcomes. Nevertheless, current brain age models that are based on traditional analytical
techniques are less suited to clinical cot-side monitoring due to their dependency on long-duration
EEG recordings, the need to record activity across multiple EEG channels, and the manual calculation
of predefined EEG features which is time-consuming and may not fully capture the wealth of
information in the EEG signal. In this study, we propose an alternative deep-learning approach to
determine brain age, which operates directly on the EEG, using a Convolutional Neural Network
(CNN) block based on the Inception architecture (called Sinc). Using this deep-learning approach on
a dataset of preterm infants with normal neurodevelopmental outcomes (where we assume brain
age = postmenstrual age), we can calculate infant brain age with a Mean Absolute Error (MAE) of
0.78 weeks (equivalent to a brain age estimation error for the infant within +/- 5.5 days of their true
age). Importantly, this level of accuracy can be achieved by recording only 20 minutes of EEG activity
from a single channel. This compares favourably to the degree of accuracy that can be achieved
using traditional methods that require long duration recordings (typically >2 hours of EEG activity)
recorded from a higher density 8-electrode montage (MAE = 0.73 weeks). Importantly, the deep
learning model’s brain age deltas also distinguish between neonates with normal and severely
abnormal outcomes (Normal MAE = 0.71 weeks, severely abnormal MAE = 1.27 weeks, p=0.02, one-
way ANOVA), making it highly suited for potential clinical applications. Lastly, in an independent
dataset collected at an independent site, we demonstrate the model’s generalisability in age
prediction, as accurate age predictions were also observed (MAE of 0.97 weeks).

Keywords
Preterm, Electroencephalography, Machine Learning, Artificial Intelligence, Convolutional Neural
Network, Bayley Scales
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1. Introduction

The newborn infant’s brain is undergoing rapid developmental change, influenced by both genetic
and environmental factors (Colonnese et al., 2010; Milh et al., 2007; Wess et al., 2017). Relative to
their term-born counterparts, infants born prematurely are at increased risk of poorer long-term
neurodevelopmental outcomes (Blencowe et al., 2013; Wallois et al., 2020). This risk of impairment
increases with the degree of prematurity at birth and the presence of gross morphological lesions,
but can also be brought about by subtler environmental stressors (Scher, 2008), excessive exposure
to painful stimuli (Grunau, 2013; Moultrie et al., 2017), and pharmacological interventions (Duerden
et al.,, 2016; Malk et al., 2014).

The early identification of abnormal neurodevelopment is essential to identify infants at greatest
risk who might benefit most from developmental care interventions (Burke, 2018). To date,
neurological assessment of the newborn has remained predominantly subjective (Dempsey et al.,
2018). For example, trained neonatologists and clinical neurophysiologists visually inspect infant’s
brain activity using electroencephalography (EEG) to determine if brain function is developmentally
age-appropriate or dysmature (Scher, 1997), based on developmentally changing EEG features
characteristic of maturational status (André et al., 2010). While these trained individuals can
estimate age with an error of two weeks for preterm babies and one week for term babies, these
estimates can be highly variable across reviewers (Stevenson et al., 2020b). Subjectivity, inter-rater
variability, and requirement of specialist EEG interpretation are central issues that severely limit the
reliability and generalisability of many current neurological assessment methods. There is an urgent
need for objective and automated neuromonitoring that can be used cot-side to identify infants at
increased risk of abnormal neurodevelopmental outcomes.

To this end, a variety of metrics have been developed to capture key maturational characteristics
from the preterm EEG (De Wel et al., 2017; Dereymaeker et al., 2016; Lavanga et al., 2017; Pillay et
al., 2018; Tolonen et al., 2007), and these measures have been combined using machine learning
algorithms to successfully predict infants’ brain age (O’Toole et al., 2016; Stevenson et al., 2017).
An infant’s brain age is their predicted age from a model that has been trained using brain-based
features (structural or functional) as predictors and true age as the response. In adults, the
difference between the brain age and the true age, termed the brain age delta, has been
demonstrated to be more than random noise prediction error, but in fact is of biological and clinical
value (Smith et al., 2019; Vidal-Pineiro et al., 2021).

In infants, analogous findings have been observed. Recently, we trained a Random Forest (RF)
regression model using a data-driven approach that combined 226 EEG features and demonstrated
a significant correlation between the infants’ brain age delta and the severity of their abnormal
neurodevelopmental outcome, where the neurodevelopmental outcomes were assessed
behaviourally using the Bayley Scales of Infant Development (BSID-II) at a 9-month follow-up test
occasion (Pillay et al., 2020). Additionally, an independent research group showed a similar
correlation when training a multivariate regression model for brain age estimation (Stevenson et
al.,, 2020a). These studies established the proof-of-concept in infant populations that the inter-
individual variability in automatically and objectively generated brain age deltas could be used to
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risk-stratify infants in the first few weeks of postnatal life according to neurodevelopmental
outcomes.

However, a major limitation to these studies is their lack of clinical utility. A large number of features
are required to summarize the EEG data, which are computationally time-consuming to calculate.
These approaches rely on pre-staging the EEG recording into sleep states (i.e. sleep-staging) or burst
periods which require additional algorithms (Dereymaeker et al., 2017b; Palmu et al., 2010).
Furthermore, multiple EEG channels are required as well as at least 1 hour EEG recording duration.
These data-heavy requirements severely limit the ease with which these methods can be
incorporated into the busy clinical environment.

Here, we directly address these barriers to clinical utility by adopting a deep learning approach.
Deep learning has demonstrated superior performance over traditional machine learning methods,
has excellent performance on a reduced number of EEG channels, and tends to perform predictions
faster once trained (Ansari et al., 2018). Furthermore, deep learning models are gaining popularity
in preterm EEG analysis for classifying seizures (Ansari et al., 2019; O’Shea et al., 2021) and for
automated sleep-staging (Ansari et al., 2020). Together, these observations suggest deep learning
could offer a promising approach for cot-side monitoring and assessment of neurological function.

In the current study, we implement a novel Convolutional Neural Network (CNN)-based
architecture, inspired by Google’s Inception model (and its variants), to generate infant brain age
predictions using dramatically reduced EEG data requirements compared to previous proof-of-
concept studies. We use our established RF model as a “gold standard” benchmark of performance,
a model which requires eight EEG channels, at least 1 hour EEG recording duration, and EEG data
sleep-staging. We train the RF and deep learning models on a training dataset, and subsequently
test the models’ performance on two independent datasets, demonstrating robust external
validation. Using our deep learning approach, we achieve performance comparable to our RF model
benchmark, while requiring only a single EEG channel (1-channel bipolar montage), 20 mins EEG
recording duration, and no EEG data sleep-staging. Our deep learning model is able to accurately
predict infant age within the first few weeks of postnatal life, and generates brain age deltas with
magnitudes that significantly differ between infants with normal and severely abnormal
neurodevelopmental outcomes assessed using BSID-1l at 9-month follow-up. This study thus
demonstrates potential clinical utility for an objective and automated deep learning-based
approach to cot-side assessment of infants’ neurological function and neurodevelopmental
outcomes.

2. Methods

2.1. Participants

2.1.1. Study Design

Data were collected in three independent cohorts. The first cohort, referred to as dataset D1, was
used to train the models and compare the relative performances among models e.g. models with
different architectures, different channel montages, and different recording durations. The second
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cohort, referred to as dataset D2, was used to independently test the trained RF and deep learning
models in their brain age prediction performances, and to assess the association between brain age
deltas and 9-month BSID-II follow-up outcomes. The third cohort, referred to as dataset D3, was
used to further test the generalisability of the deep learning model to predict brain age in this
dataset collected at an independent site by an independent research team.

2.1.2. Recruitment

EEG data for datasets D1 and D2 were recorded from the Neonatal Intensive Care Unit (NICU) at
UZ Leuven Hospitals, Leuven, Belgium. Infants were recruited and data recorded with informed
consent from the parents and in accordance with the guidelines approved by the ethics committee
of the University Hospitals, Leuven. All infants had a gestational age (GA) at birth less than 32 weeks,
and between two and four recordings were obtained during their stay in the NICU.

Infants in dataset D3 were selected from a database of previously recorded data collected at the
Newborn Care Unit and Maternity wards of the John Radcliffe Hospital (Oxford University Hospitals
NHS Foundation Trust, Oxford, United Kingdom). Ethical approval was obtained from the UK
National Research Ethics Service (reference: 12/SC/0447) and parental written informed consent
was obtained before each participant was studied.

All participant recruitment was conducted in accordance with the standards set by the Declaration
of Helsinki and Good Clinical Practice guidelines.

2.1.3. Datasets

Datasets D1 and D2 were collected as previously described (Pillay et al., 2020). Dataset D1 consists
of n=40 infants (111 recordings) with postmenstrual age range (PMA) at time of recording of 27.3—
43.1 weeks, with mean recording duration of 8h 07m (standard deviation: 5h 55m) and mean
number of recordings per infant of 2.8 (standard deviation: 1.6). All infants in dataset D1 were
selected for normal neurodevelopmental outcome at 24-months follow-up age based on
behavioural assessment using BSID-II.

Dataset D2 consists of n=43 infants (142 recordings). One infant with a single recording was
excluded as our objective with this dataset was to assess longitudinal multi-recording trajectories.
The analysed dataset D2 thus consists of n=42 infants (141 recordings) with a PMA at recording
range of 27.3-42.0 weeks, mean recording duration of 7h 05m (standard deviation: 5h 43m), and
mean number of recordings per infants of 3.3 (standard deviation: 1.4). Unlike dataset D1, dataset
D2 includes infants with a range of both normal and abnormal outcomes, grouped by BSID-Il scores
at 9-month follow-up (Pillay et al., 2020). N=22 infants (71 recordings) had normal outcome i.e. no
neurodevelopmental impairment (NDI); n=10 infants (36 recordings) had mild abnormal outcome
(mild NDI); and n=10 infants (34 recordings) had moderate-to-severe abnormal outcome (mild-to-
severe NDI) or died (Pascal et al., 2020).

Dataset D3 consists of n=73 infants, each recorded on a single test occasion (thus 73 recordings).
Infants were included in this dataset for the current study if they had at least 20 minutes of EEG

5


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

data recorded and if the EEG was assessed as normal for age by a trained clinical neurophysiologist
(author GSM). The infants had a median PMA at recording of 35.3 weeks (interquartile range: 33.3
—36.9, range: 28.0 —42.6) and postnatal age of 14 days (interquartile range: 5—41, range: 0—112).
The mean recording duration was 50 minutes (standard deviation: 18 minutes).

2.2. EEG data

2.2.1. Setup

For dataset D1 and D2, data were recorded using a sampling frequency of 250 Hz using Brain RT
0OSG Equipment (Mechelen, Belgium). In a few cases, the EEG was sampled at 256 Hz due to some
setup variations on the Brain RT device used. All recordings were performed with nine electrodes in
a referential montage: Fp1, Fp2, C3, C4, T3, T4, 01, 02, and Cz reference (Figure 1).

For dataset D3, EEG recordings were acquired from DC to 800 Hz using a SynAmps RT 64-channel
headbox and amplifiers (Compumedics Neuroscan). Activity was recorded using CURRY scan?
neuroimaging suite (Compumedics Neuroscan), with a sampling rate of 2000 Hz. Between 8 and 25
electrodes were used for recording, positioned according to the modified international 10-20
system, including C3 and C4 (those used in the analysis here), with reference at Fz and ground at
Fpz. The scalp was cleaned with preparation gel (Nuprep gel, D.O. Weaver and Co.) and disposable
Ag/AgCl cup electrodes (Ambu Neuroline) were placed with conductive paste (Elefix EEG paste,
Nihon Kohden).

2.2.2. Preprocessing

For the deep learning approaches in datasets D1 and D2, each recording was downsampled to 64
Hz to reduce the number of parameters required to train the model. The downsampling routine
included pre-filtering to prevent aliasing using a low-pass filter with cut-off frequency 32 Hz.
Filtering and downsampling was performed using the scipy.signal.resample_poly function.
Recordings were then split into 30-second segments and the amplitudes standardized such that the
mean and standard deviation of the amplitudes were zero and one, respectively. The mean and
standard deviation were obtained by standardizing the data (across all channels) in the training set,
with these values carried forward to standardize the test sets (see below). Finally, any segments
where the absolute differences (compared to the mean) at any point exceeded 600 puV were
rejected as artefact.

For the RF approach in datasets D1 and D2, which relied on an explicit pre-calculation of many
established features, the pre-processing approach (resampling and standardization) was different
and specific to each calculated feature, as described previously (Pillay et al., 2018).

For dataset D3, pre-processing was matched to the D1 and D2 deep learning approach. We applied
a low-pass 32 Hz anti-aliasing filter followed by downsampling to 64 Hz. For standardization of
dataset D3, the mean and standard deviation of D1 were used.

2.3. Brain age prediction architectures
2.3.1. Sinc architecture
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Figure 2a shows the block-diagram of the proposed deep neural network for brain age prediction.
As input, the network processes a 30 s multi-channel EEG segment. Each input segment has
dimension C x 1920 where C is the number of EEG channels and 1920 is the total number of
timepoints in the 30 s segment (30 s duration x 64 Hz sampling frequency). Each segment has a
single output label that is a continuous PMA value.

The model includes a series of convolutional layers with exponential linear unit (ELU) activations,
maximum and average pooling layers to downsample the data, normalization layers for faster
training convergence, and a dense layer with linear activation to perform the final regression and
produce a brain age estimate. As each convolutional layer is designed to extract specific
characteristics from the EEG, these are analogous to a (trainable, data-driven) feature extraction
layer. More generally, the proposed architecture can be grouped into a more traditional, sequential
CNN block that can be described as an initial feature extraction stage, followed by the two
successive Sinc (i.e. Shared Inception) blocks that form a second feature extraction stage.

We previously introduced Sinc as a powerful CNN-based block for extracting multi-scale temporal
information from infant EEG, namely sleep state classification (Ansari et al., 2021). Sinc is an
extension of Google’s Inception block, where the original independent and parallel convolutional
branches are now boosted via parameter sharing. As shown in Figure 2b, the output from each
preceding branch is additionally fed into the subsequent one, with the overall output of Sinc
comprising the concatenation of all multi-scale convolutions in the block (see also Figure 2biv). This
increases the number of temporal scales achievable (by allowing a wider range of receptive fields),
when compared to an Inception layer, while avoiding the need to scale up the number of trainable
parameters as a result. Only two hyper-parameters are required for a Sinc block: M (the number of
convolutional branches), and N (the number of convolutional filters used in each branch). When
using a single-channel EEG segment as input (C = 1), the total number of trainable parameters in
the complete model is 620K.

2.3.2. Alternative deep learning architectures

Four different deep learning architectures were also considered, based on recent key developments
in the CNN domain (Figure 2b), and the Sinc model was compared against these architectures: No
FEIl (following the same design as the Sinc architecture but without the entire Feature Extraction Il
portion), CNN (replaces the Sinc blocks with the same convolutional neural network layer used
elsewhere in the model), Residual (similar to CNN but including the additional residual shortcut),
and Inc (replacing the Sinc blocks with traditional Inception blocks). These architectures are
described in Supplementary Information S.1.

2.6.2. Random Forest (RF) architecture

In addition to comparing the Sinc architecture to alternative deep neural network architectures, it
was also compared against our established and previously published RF approach (Pillay et al.,
2020). The RF model was developed using a large set of pre-calculated features, derived after the
EEG is classified into different sleep stages using an additional, unsupervised algorithm known as
Cluster-based Adaptive Sleep Staging (CLASS) that we have also previously developed (Dereymaeker
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et al., 2017b; Pillay et al., 2020). The pre-calculated features were derived from an EEG literature
review covering the amplitude domains, Fourier transforms, Wavelet transforms, Empirical Mode
Decompositions (EMDs) and other complexity measures (such as entropy and fractal analysis).
These features were calculated across all channels and a final median taken across channels as input
into the RF model. The RF is an ensemble method that uses a large set (or ‘forest’) of trained decision
trees to provide an averaged final prediction. Each tree is trained on a bootstrapped sample of the
dataset and a random selection of the features which is shown to provide better prediction accuracy
than from an individual tree and can also provide an implicit measure of the important features
used in the algorithm. The RF model uses 1500 trees and utilizes all features for each tree split. All
steps and hyperparameter choices used here are the same as our previous published RF approach
(Pillay et al., 2020).

2.4. Model training and relative performance assessments using dataset D1

2.4.1. Splitting dataset D1 into training set and test set

Dataset D1 was used to train and test all models. By using a cohort of only normal outcome data, it
is assumed that predicted brain age equates to true PMA. This allows training of a normative model
to predict the PMA, and therefore brain age, for a normally developing baby (Pillay et al., 2020;
Stevenson et al., 2020a, 2017). Further data can then be assessed against this trained model to
identify deviations. Dataset D1 was divided by recording into age-stratified training and test sets of
size 50 and 47 recordings, respectively (Supplementary Information S.2.; Supplementary Figure 1).

2.4.2. Model training in dataset D1

For the training of both deep learning models and the RF model, the mean squared error (MSE) loss
was used. For the RF model, the model was re-trained using the original training procedure as
previously outlined (Pillay et al., 2020). For the deep learning models, model training included early
stopping, Gaussian noise addition, recording segmentation into 30 s segments, and ensemble
learning. These four components are described in detail in Supplementary Information S.3, with
early stopping, Gaussian noise addition, and ensemble learning included to increase robustness of
the model.

2.4.3. Model testing in dataset D1

2.4.3.1. Assessing model performance

The ultimate goal of each brain age prediction model is to generate a single brain age prediction
estimate per EEG recording. For the deep learning models, each deep learning model generates ten
brain age prediction estimates per 30 s segment of an EEG recording (as a 10-learner ensemble
method was used, see Supplementary Information S.3.). During testing, all contiguous 30 s segments
across each recording are used with the number of 30 s segments therefore dependent on the
overall EEG recording duration. To aggregate a deep learning model’s predictions to a single value
per recording, the median across the ten ensemble predictions per 30 s segment is determined,
then a further median across all 30 s segments in the recording is taken resulting in the final
prediction estimate. This is different to the RF model strategy, where a single brain age prediction
estimate is generated per recording by manually calculating features in the 30 s segments and taking
the medians across all segments before brain age prediction is performed. Across all recordings in
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the test set in D1, there were a total of 30K segments used. For both the deep learning models and
RF model, the final prediction estimate for a recording is used to generate the prediction error (or
absolute prediction error) for that recording.

2.4.3.2. Reducing EEG channel requirements

The established RF model uses eight channels in a referential montage (Figure 1) to predict infant
brain age. The performance of the RF model, the Sinc model, and the other deep learning models
were assessed and compared using this initial setup. Subsequently, the deep learning models were
re-trained and performances compared as the number of EEG channels were systematically
reduced: 4-channel referential (C3, C4, T3 and T4), 2-channel referential (C3 and C4), and finally a
1-channel bipolar (C3-C4) montage (Figure 1). Channels were selected to ensure good symmetry
across the midline of the scalp and ample coverage. The 1-channel bipolar montage was selected
for its similarity to setups used in clinical amplitude-integrated EEG (aEEG) monitors. EEG pre-
processing was independently repeated each time, with the amplitude standardisation step
recalculated on the reduced channel configurations. After (re)training using the training set, each
model generated a brain age prediction per recording in the test set. This set of predictions was
used to generate a set of absolute errors per model. Using one-sample paired t-tests (p<0.05
significance level), we assessed the model performances by comparing t-statistic magnitudes and
tested for statistically significant differences between the Sinc model’s mean absolute error and the
mean absolute error of each of the alternative models (RF model and other deep learning models).

Itis worth noting that the 1-channel bipolar montage used for our analyses was achieved by ignoring
the additional channels unnecessary for this montage. This approach is distinct to a true clinical
scenario when only a 1-channel bipolar montage would be used during recording. Our assumption,
which we believe to be reasonable, is that both approaches to 1-channel bipolar montage setup are
closely matched for this specific use case. However, this assumption should be tested in future
external validations of the deep learning model using clinical grade bipolar montage data.

2.4.3.3. Reducing EEG recording duration requirements

Having demonstrated the high performance of the deep learning Sinc model using the full-length
EEG recording duration with only a 1-channel bipolar setup (section 2.4.3.2.), we next assessed the
Sinc model performance using the 1-channel bipolar setup (Figure 1) as the EEG recording duration
was systematically varied. We examined a range of recording lengths from 0.5-120 min and
compared Sinc model performance on these reduced recording durations relative to the Sinc model
performance with the full-length EEG recording duration to identify an appropriate reduced
recording duration. To get a reduced recording from a single full recording, we randomly sampled
each reduced duration segment from the full recording, generating an absolute error value per
reduced duration segment. Due to the arbitrary nature of selecting a reduced recording segment
from a full recording, we repeated the procedure using 1000 bootstrapped samples from which a
mean absolute error was derived per recording per reduced recording duration. A minimum
reduced recording duration was identified as the duration at which the prediction performance,
measured using the mean absolute error, noticeably drops below that of the full duration Sinc
model. Finally, the mean absolute error of this reduced duration (20 mins — see Section 3.1.) 1-
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channel Sinc model was compared to the mean absolute error of the 8-channel full duration RF
model using a one-sample paired t-tests (p<0.05 significance level). For the reduced duration Sinc
data, the initial 20 mins of each recording was selected for t-test analysis.

2.5. Interpreting Sinc model performance using dataset D1

Deep neural networks are notorious for being black-box machines, limiting interpretability when
compared to machine learning approaches and traditional visual assessment approaches.
Nevertheless, methods are improving to visualize these networks to understand how they were
trained and their potential to generalise well on new data. In this study, two visualization techniques
were applied to further understand Sinc model performance: input-loss minimisation and uniform
manifold approximation and projection, see Supplementary Information S.4.

2.6. External validation of Sinc model performance using dataset D2

The final Sinc model was trained on the entire dataset D1 using the 1-channel bipolar setup (Figure
1). Similarly, the final “gold standard” RF model was trained on the entire dataset D1 using the 8-
channel referential setup. When applying the final Sinc model to the independent hold-out dataset
D2, the 1-channel bipolar setup was used and a 20 mins recording duration was randomly sampled
from the full duration EEG recording. When applying the final RF model to dataset D2, the 8-channel
referential setup and full EEG recording were used.

2.6.1. PMA prediction in independent hold-out dataset

To assess the generalisability of the Sinc model to predict infants’ PMA on independent data, the
normal BSID-Il outcome data from the independent hold-out dataset D2 was used. To assess the
association between true PMA and predicted PMA, a linear mixed effects regression model was
used (p<0.05 significance level). Random intercepts were introduced to group repeated recordings
from the same infant. Associations between true PMA and predicted PMA were also assessed for
the mild abnormal and severe abnormal groups. Similarly, the RF model was used to generate PMA
predictions for the normal, mild abnormal, and severe abnormal groups in dataset D2, and
associations between true age and predicted age were assessed in an identical manner to the Sinc
model.

The two models’ PMA prediction performances were compared using the linear mixed effects
regression models’ z-statistic magnitudes per BSID-II outcome cohort. Additionally, Bland-Altman
analysis (Bland and Altman, 1999, 1986) was used to assess Sinc-RF model agreement in absolute
error magnitude, pooled across all data in dataset D2. Bland-Altman analysis was implemented in
R wv4.1.1 (R Core Team, 2018) using a publicly  available package
(https://rdrr.io/cran/BlandAltmanLeh) to estimate the bias (Sinc minus RF) and limits of agreement,

along with 95% confidence intervals. Model agreement was assessed using individual recording
absolute errors and using within-infant multi-recording mean absolute errors, to assess the
influence of within-infant multi-recording averaging on model agreement (Bland-Altman plot y-axis,
limits of agreement width) and average prediction error magnitude (Bland-Altman plot x-axis,
range).
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2.6.2. Associating brain age delta magnitude to 9-month BSID-II follow-up outcomes

The association between an infant’s brain age delta magnitude and 9-month BSID-II follow-up
outcomes (normal, mild abnormal, severe abnormal) was assessed for all infants in dataset D2. For
each infant, a brain age delta (absolute error) was determined per recording, and the mean absolute
error (MAE) across an infant’s multiple recordings was used as an estimate of that infant’s brain age
delta i.e. the deviation between their brain age and their true age. This per-infant MAE thus
represents an infant’s overall brain neurodevelopmental trajectory deviation, with a larger
trajectory deviation corresponding to greater deviations from the norm.

Trajectory deviations across all infants in dataset D2 were then grouped by neurodevelopmental
outcome (as defined in section 2.1.1.) and significant differences between groups assessed using
one-way ANOVA (p<0.05 significance level). Tukey’s post-hoc test, which corrects for multiple
comparisons (p<0.05 significance level), was used to identify significant pair-wise comparisons.
Additionally, the two models’ BSID-Il outcome group separation performances were compared
using the pairwise standardised effect size (Cohen’s D, estimated using MATLAB’s meanEffectSize
function) magnitudes per contrast: mild minus normal, severe minus mild, and severe minus normal.

Finally, group-wise (normal, mild abnormal, severe abnormal) differences in GA, PMA and the
number of recordings in each infant’s trajectory were checked using one-way ANOVA to assess their
potential influence as confounding factors.

2.7 External validation of Sinc model performance using dataset D3

The final Sinc model was applied to the independent dataset D3 collected at an independent centre
(Oxford, UK). The 1-channel bipolar montage (C3-C4) and the first 20-minutes of each recording
were used in the analysis.

The association between true PMA and predicted PMA was assessed using Pearson correlation (z-
statistic calculated using the Fisher r-to-z transform, p<0.05 significance level). Z-statistics are
reported for the results of both datasets D2 and D3. Each infant in dataset D3 was recorded on a
single test occasion; the group-level MAE was calculated as the mean across all recordings of each
subject-level brain age delta i.e. each infant’s error in predicted versus true age.

The brain age delta estimate can have a dependency with age —an age association bias that is known
to occur for several distinct reasons such as regression dilution (Smith et al., 2019). To correct for
this age association bias, we adjusted the predicted brain age using the linear regression between
the brain age delta and the true age (Smith et al., 2019). To assess the generalisability of this
correction to new data we adjusted the predicted brain age using leave-one-subject-out cross-
validation, calculating the MAE of the held-out subject compared with its true age.

3. Results

3.1. The Sinc model outperforms alternative model architectures in predicting infant age (dataset
D1)
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A comparison of model performance across the Sinc model and four alternative candidate deep
learning models, with reduced channel setups is summarised in Figure 3a and Supplementary Table
1. Using the 8-channel setup and the full recording duration data of dataset D1, the Sinc model out-
performed both the established benchmark RF model (Sinc error = 0.73 weeks, RF error = 1.01
weeks, n =47 recordings, t-statistic = 1.44, p = 0.078) as well as the candidate deep learning models.
When the number of recording channels was reduced from eight to one (bipolar channel, C3-C4),
the Sinc model had consistently lower MAE values compared with alternative models and exhibited
a total drop in performance of only 0.05 weeks (Sinc: 8-channel MAE = 0.73 weeks, 1-channel MAE
= 0.78 weeks). Furthermore, the 1-channel bipolar Sinc model outperformed the 8-channel
referential RF model (Sinc error = 0.78 weeks, RF error = 1.01 weeks, n = 47 recordings, t-statistic =
1.13, p=0.13).

The Sinc model prediction error recorded from a single channel with full recording duration
(duration: median = 4h 25m, IQR = 4h 4m-7h 10m) was compared to Sinc model prediction error
using a single channel and reduced recording durations ranging from 0.5-120 mins (Figure 3b).
Using only 20 mins of EEG recording, the mean Sinc model prediction error was equivalent to using
the full recording duration. Using the established RF method as a benchmark, which relied on an 8-
channel setup and full-length recordings, the proposed Sinc model outperformed this benchmark
while having practical setup requirements that are far more achievable and practical for use in a
clinical environment (Sinc error = 0.79 weeks, RF error = 1.01 weeks, n = 47 recordings, t-statistic =
1.07, p = 0.14). While the three Sinc models’ performances (8-channel full duration, 1-channel full
duration, 1-channel 20 min duration) did not statistically significantly differ to the benchmark RF
model performance, the Sinc model’s performances were marginally but consistently improved (t-
statistics = 1.44, 1.13, 1.07, respectively, with positive t-statistics indicating larger MAE for RF).

3.2. Sinc model may determine age using degree of EEG continuity (dataset D1)

To shed light on the specific EEG features that the deep learning Sinc model is likely utilising for the
brain age prediction, a method called input-loss minimisation was used to generate synthetic EEG
data that would force the model to make a brain age prediction of 30 weeks, 35 weeks, and 40
weeks PMA, respectively (Figure 4). Visually examining the synthetic EEG data shows that EEG
continuity and bursting were qualitatively distinguishing features and are therefore likely features
that the Sinc model used to characterise age-dependent activity. The 30-week synthetic data
reflects aspects of high discontinuity with short, high amplitude bursts and long-duration inter-burst
intervals (approximately 5-20 s) (Figure 4a). With increasing PMA, the inter-burst interval durations
decreased and burst periods widened, and by term-age, the signal was almost fully continuous with
no clear burst or inter-burst interval patterns (Figure 4c).

Using UMAP to visualise the data inputs to the three Sinc blocks (FEI, FEIl, and Regression), a clear
separation of features occurs, beginning with a low-level followed by high-level feature extraction
(Figure 5). At the stage of inputs to Regression, the data can visually be seen to separate such that
datapoints increase almost monotonically with PMA (Figure 5c). This clear progression is indicative
that the network weights are trained well in the intermediate layers, and this visualisation provides
further insight into the role of each block.
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3.3. Sinc model brain age prediction generalises accurately to an independent hold-out dataset
(dataset D2)

Having established the Sinc model in dataset D1 (section 3.1), this model was applied to a healthy
cohort of infants’ data from the independent hold-out dataset D2. Using 1-channel bipolar EEG data
of 20 min recording duration, the Sinc model’s predicted ages were statistically significantly
correlated with infants’ true PMA (Normal: n = 22 infants, z-statistic = 33.32, p < 0.0001) (Figure 6ai),
demonstrating that the model successfully generalises to independent data. The Sinc model also
generated predicted ages that were statistically significantly correlated with infants’ true PMA for
the infants in dataset D2 that had abnormal BSID-II follow-up outcomes (Mild abnormal: n = 10
infants, z-statistic = 18.03, p < 0.0001; Severe abnormal: n = 10 infants, z-statistic = 15.54, p < 0.0001)
(Figure 6aii). Infants with abnormal BSID-II follow-up outcomes were not used in training the Sinc
model, and so age predictions for these cohorts were, as expected, less accurate than those of the
healthy outcome cohort and thus exhibited weaker correlations (although still very strong) between
brain age and true age.

Using the 8-channel EEG setup and the entire recording duration, the RF model generated age
predictions that were statistically significantly correlated with infants’ true PMA for both the normal
outcome and abnormal outcome cohorts (Normal: z-statistic = 22.89, p < 0.0001; Mild abnormal: z-
statistic = 12.51, p < 0.0001; Severe abnormal: z-statistic = 10.76, p < 0.0001) (Figure 6b). While the
brain age prediction correlation results for both the novel Sinc model and the established RF model
were very strong and highly significant for all three infant cohorts, the Sinc model consistently
outperformed the RF model per cohort (consistently larger z-statistics). Importantly, Sinc’s
improved prediction accuracy was achieved while using dramatically lower EEG data requirements.

To quantitatively assess the level of agreement in PMA prediction performance between the RF and
Sinc models, we generated Bland-Altman plots of absolute prediction errors for the entirety of
dataset D2 (pooled normal, mild abnormal, and severe abnormal outcome data) based on both
individual recordings (n = 141 recordings in total) (Figure 6ci) and individual infants (n = 42 infants
in total) (Figure 6cii). In both instances, there was a statistically significant negative bias reflecting
the reduced prediction error using the Sinc model (per-recording: mean bias = -0.202, 95% Cl = [-
0.387, -0.016]; per-infant: mean bias = -0.231, 95% CI = [-0.444, -0.017]). Assessing the individual
recordings data, the limits of agreement were -2.435 and 2.032 with 95% Cl = [-2.756, -2.115] and
[1.712, 2.353], respectively (Figure 6ci). Assessing the individual infants’ data (multi-recording
average per infant), the limits of agreement were -1.573 and 1.112 with 95% Cl = [-1.943, -1.204]
and [0.742, 1.481], respectively (Figure 6cii). The narrower limits of agreement width using the
infant-level assessment highlights a noticeable increase in Sinc-RF model agreement when using
multi-recording average prediction errors per infant rather than prediction errors based on
individual recordings, due to the reduced random noise variance as a consequence of the multi-
recording averaging. Using multi-recording average prediction errors per infant, we can expect 95%
of absolute prediction error differences between the RF and Sinc models to be approximately +1.5
weeks, and the Sinc model to have a smaller prediction error of approximately 0.23 weeks on
average.
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3.4. Sinc model brain age deltas are associated with 9-month follow-up neurodevelopmental
outcomes (dataset D2)

The variability in brain age delta magnitudes between infants with normal and abnormal BSID-II
follow-up outcomes forms the foundation of the possibility of using brain age prediction to risk-
stratify infants in the first few weeks of postnatal life according to neurodevelopmental outcomes.
Here, using the Sinc model, the average brain age deltas for the normal, mild abnormal, and severe
abnormal outcomes groups assessed using the BSID-Il at nine months postnatal age were found to
significantly differ (Normal: mean MAE = 0.71, n = 22 infants; Mild abnormal: mean MAE =0.79, n =
10 infants; Severe abnormal: mean MAE = 1.27, n = 10 infants; one-way ANOVA: f-statistic=4.24, p
= 0.02) (Figure 7a). Significant differences between the mean deltas for the normal and severe
abnormal groups were observed using post-hoc analysis adjusted for multiple comparisons (Tukey
test: g-statistic = 4.20, p = 0.02) (Figure 7a). Taken together, these results indicate that Sinc model
brain age delta magnitudes, generated using a single channel and 20 mins recording duration, scale
with clinically informative BSID-Il outcomes that are assessed several months later.

As reported previously, the RF model’s brain age deltas also significantly differed between the three
BSID-Il outcome cohorts (Normal: mean MAE = 0.83, Mild abnormal: mean MAE = 1.13, Severe
abnormal: mean MAE = 1.63, one-way ANOVA: f-statistic = 4.96, p = 0.01) (Figure 7b), with
significant differences observed between the mean prediction errors for the normal and severe
abnormal groups (Tukey test: g-statistic = 4.36, p = 0.01) (Figure 7b).

Quantitatively assessing the magnitude of the group average MAE separation between BSID-II
outcome cohorts, a similar trend was observed for both the Sinc and RF models (Figure 7c). Both
models exhibited poorest separation between the normal and mild abnormal outcome cohorts
(group separation effect size: Sinc Cohen’s D =0.186; RF Cohen’s D = 0.585), an intermediate degree
of separation between the mild abnormal and severe abnormal outcome cohorts (group separation
effect size: Sinc Cohen’s D = 0.71; RF Cohen’s D = 0.557), and greatest separation between the
normal and severe abnormal outcome cohorts (group separation effect size: Sinc Cohen’s D = 1.104;
RF Cohen’s D = 1.146) (Figure 7c).

No significant differences were identified between outcome groups for the potential confounding
variables. Sinc model MAEs one-way ANOVA results (n = 42): GA: f-statistic = 0.93, p = 0.40; PMA: f-
statistic = 0.51, p = 0.60; trajectory recording number: f-statistic = 0.28, p = 0.76).

3.5 Sinc model accurately predicts brain age in data collected at an independent site (dataset D3)
The Sinc model was applied to an independent dataset collected at an independent centre (Oxford,
UK; dataset D3). The Sinc model’s predicted ages were significantly correlated with the infant’s true
PMA (n = 73 infants, Pearson correlation coefficient r=0.91, z-statistic=1.52, p < 0.0001, Figure 8a),
with good prediction accuracy (MAE = 0.97 weeks). This highlights that the Sinc model can generate
age predictions using single recordings per infant for accurate group-level analysis at an
independent site.
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Unlike dataset D2, a noticeable bias in age prediction was visible in dataset D3 (Figure 8a). The
magnitude of the brain age delta was significantly negatively correlated with the infant’s true PMA
(r =-0.24, p<0.01, Figure 8b). To generate unbiased brain age delta values, this age association
should be minimised (Smith et al., 2019). A simple linear regression model trained on dataset D3,
and validated using leave-one-out cross-validation, reduces this bias (Figure 8c). This additional
linear model could be used in novel single-subject data collected at this site to produce brain age
deltas with minimal age association bias. However, the biological value of the brain age deltas in
dataset D3 has yet to be established. This dataset currently does not have follow-up BSID-II
outcomes, so the association between brain age deltas and follow-up outcomes could not be
assessed.

4. Discussion

This study presents the first deep learning architecture for the prediction of brain age from infant
EEG activity. The model is based on a deep CNN structure incorporating the new Sinc block for
enhanced multi-scale decompositions, with prediction likely utilising between-infant differences in
their EEG continuity and bursting characteristics. Relative to previous proof-of-concept studies
(Pillay et al., 2020; Stevenson et al., 2020a), the current deep learning approach was able to predict
infant brain age with comparable accuracy and generate brain age delta magnitudes that were
significantly associated with neurodevelopmental outcome at a 9-month follow-up using BSID-II
assessment. Importantly, the current approach achieved this using dramatically reduced EEG data
utilisation requirements, relying on only a single channel bipolar montage and 20 mins recording
duration. This is important as it suggests that future systems utilising this method may only require
single-channel capabilities which is simpler to set up and makes EEG data acquisition easier. This
streamlined model, which can be applied in an objective and automated manner, thus
demonstrates potential clinical utility for cot-side monitoring assessment of neurological well-being.

The chosen development strategy for the Sinc model involves training and testing the model first
on a normal development dataset D1 and then additionally assessing performance in two
independent datasets (D2 and D3, the latter collected at an independent site). Although we
performed a single split on D1 for initial training and testing and could have used alternative
techniques (such as cross validation), the goal was to assess relative performance with this dataset
when comparing models, channel numbers, and recording durations. We kept the training and test
splits in D1 consistent across these comparisons ensuring that relative differences in performance
were meaningfully comparable. Furthermore, by showing high performance in the brain age
prediction in the independent datasets, which was comparable to the held-out test set performance
in D1, we can justify with confidence that the training strategies and choices made have still resulted
in a robust generalisable model.

The model performed well on data collected at an independent site, despite differences in data
collection such as EEG recording equipment and research personnel. This importantly suggests that
the model is generalisable and could easily be employed for clinical use across multiple hospitals.
Interestingly, an age association bias in model estimates could be observed between the predicted
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age and true age when the model was applied to dataset D3 (Oxford dataset), with the model likely
to overestimate age in the youngest infants and underestimate age in the oldest infants. The bias
was not observed in dataset D2 (Leuven dataset). Bias in brain age predictions can arise from a
number of factors (Smith et al., 2019): for example, “regression dilution” due to errors in
measurement of the predictors (dataset D3 used single recordings per infant, while dataset D2
used multiple recordings per infant affording reduced measurement error). Using leave-one-
subject-out cross-validation, we demonstrated that it was possible to minimise this bias in dataset
D3, suggesting that this correction would be generalisable for future infants collected at this centre.

Throughout our analyses, we used our previously published (Pillay et al., 2020) RF model as a “gold
standard” benchmark against which our novel Sinc model’s performance was assessed. The RF
model used an 8-channel referential montage, over an hour of EEG recording, required sleep-staging
and an explicit pre-calculation of over 200 established features, while the Sinc model required only
a 1-channel bipolar montage and a 20 min recording duration, no sleep-staging, and included an
implicit feature extraction step. In all analyses, the Sinc model either performed comparably to or
out-performed the RF model. Additionally, in work published by an independent group (Stevenson
et al.,, 2020a), brain age deltas exhibited greatest separation between infants with normal and
severely abnormal BSID-II follow-up outcomes — an observation that is consistent with the current
study’s findings, further supporting the results of the Sinc model.

Although a quantitative analysis of model speed was beyond the scope of this study, it is clear from
previous studies (Pillay et al., 2020; Stevenson et al., 2020a) that the requirement to extract multiple
features (some highly complex and non-linear), as well as the need to pre-stage the EEG based on
sleep state or states of discontinuity would slow performance, and this is suggested in a related
study on neonatal sleep-staging (Ansari et al., 2018). With the right accelerated hardware, however,
the proposed model (once trained) performs brain age predictions very quickly. This simplified
analysis pipeline lends itself well for hospital use if fast feedback is required in high-intensity
contexts, for instance, while the infant is in critical or post-operative care.

A further advantage of the Sinc model over the other deep learning architectures tested here is the
introduction of the Sinc block which, with a reasonable number of parameters, achieves a highly
non-linear architecture for performing multi-scale analysis (Ansari et al., 2021). The streamlined
preprocessing and feature extraction as well as the highly non-linear nature of the Sinc model are
invaluable attributes that provide flexibility for extraction of key signal characteristics and result in
a more focused feature set. The deep learning Sinc model is thus a flexible and efficient approach
for use with neonatal EEG data, which are data that typically exhibits highly variable and diverse
signal patterns.

Using the trained Sinc model to generate synthetic EEG data (Figure 4), our results suggest the
model’s predictive performance may rely on identifying signal characteristics related to changes in
the EEG discontinuity with age (related to bursts and inter-burst intervals). This finding relates
sensibly to other findings in the current paper as well as established understanding of infant EEG
maturation. Regarding our present findings, the Sinc model’s performance did not drop
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substantially going from eight channels to one, or full recording duration to 20 mins. This might
suggest that the feature extraction stages of the architecture may be more tuned to global channel-
independent characteristics (such as bursting and continuity), as opposed to spatially-dependent
characteristics (such as inter-channel synchrony). Further, if the model relies on identifying changes
in burst/inter-burst cycling and encodes this in a highly multi-scale manner, this may indicate that
information on an infant’s burst/inter-burst cycling may be sufficiently discernible from a 20-minute
EEG recording, with additional data providing diminished returns in discriminatory power.

Regarding infant EEG maturation, the progression of burst/inter-burst activity to continuous activity
is the expected characteristic developmental trajectory from preterm to term age (André et al.,
2010). Interestingly, these discontinuity patterns are also key for human experts when performing
visual age prediction (Dereymaeker et al., 2017a; Husain, 2005). Observing this link between the
synthetic inputs generated by the trained model and expected maturational trends strongly
suggests the Sinc model is relying on biophysiologically sensible signal features, which is important
for the generalisability of a model to novel data. We can tentatively suggest further similarities
between the Sinc model’s generated synthetic EEG data and prominent features in the RF model. In
agreement with our previous work (Pillay et al., 2020), prominent features chosen by the
comparison RF model retrained in this study were based on the Line Length Burst %, a measure of
the percentage of burst periods in the EEG (Koolen et al., 2014), as well as measures of skewness of
the EEG amplitudes, which measure the asymmetry of a distribution compared to a Gaussian
distribution. Line Length Burst % would be expected to change with PMA as the burst periods
decrease with age and the EEG transitions to a more continuous pattern. Similarly, during this
transition, the distribution shifts away from a symmetrical Gaussian distribution as the number of
high positive bursts or spike amplitudes decreases. When comparing to the simulated results of Sinc
in Figure 4, we see similar behaviour is also identified by this trained neural network emphasising
the importance of this EEG characteristic across age.

We also note potentially interesting amplitude effects that are visible when looking at the model’s
synthetic data across eight channels. For example, channels C3 and C4 have larger signal amplitudes
relative to other channels. While amplitude is a feature that changes with maturation (André et al.,
2010) making inter-subject variability in amplitude of potential value for brain age prediction, one
must be cautious when interpreting this subtler cross-channel amplitude effect in the synthetic
data. These amplitude effects may reflect a biophysiologically interesting phenomenon or may be
an artefactual consequence of proximity to the Cz reference electrode. Future work on the Sinc
model may help shed light on the potential role of amplitude effects.

Additionally, the role of motion artefacts, potentially related to sleep state and general motor
activity levels, could influence prediction performance. We applied a very simple amplitude-
threshold approach for artefact removal, and while this eliminates any major baseline drifts, periods
of recording drop-off or high-amplitude motion artefacts, some subtler artefacts likely remain. It is
unclear whether any residual motion effects influence prediction performance (either beneficially
or detrimentally). However, the lack of motion-like signals in the model-generated synthetic EEG
data suggests motion is unlikely to be playing a major role.
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The ultimate interest in studying brain age delta magnitude is that neurological dysfunction can
manifest in infants’ EEG as both accelerated or slowed maturation relative to a normative trajectory
(Scher, 1997; Watanabe et al., 1999), and these functional maturational deviations have prognostic
value (lyer et al., 2015; Tokariev et al., 2019). The present study focused on the prognostic value of
preterm and term age resting-state brain function as a basis for risk-stratification using 9-month
BSID-Il follow-up as the relevant outcome. However, as with any scale, there are limitations to BSID-
Il predictive validity (Hack et al., 2005). Clinical decision making regarding the provision of
developmental care interventions (Burke, 2018) using deep learning-based predictions of infant
brain age would benefit from advancing the prognostic validity of the brain age delta metric. For
example, demonstrating associations between the metric and additional follow-up outcome
metrics, such as executive function (Dai et al., 2021), would improve validity. Additionally,
understanding the association between the metric and contemporaneous structural (e.g. body
weight, brain structural MRI) and functional (e.g. sensory-evoked neural and behavioural responses,
brain functional MRI) indices of development would be beneficial. We note that in the severe
outcome group of dataset D2, a particularly large deviation was identified at 27.3 weeks PMA (see
Figure 6aii,bii). When investigating this infant’s recording further (by AD), it was confirmed that the
baby was indeed very clinically unstable, with a history of seizure activity, generally suppressed
baseline EEG and alternating, abnormal rhythmic activity. Further investigations into associations
between the brain age delta magnitude and these contemporaneous and follow-up assessments
will be highly valuable in advancing model validity and appreciating the potential clinical value of
the Sinc brain age prediction model.

It is important to note that the focus of this manuscript was to provide an efficient diagnostic
approach for identifying abnormal brain maturation and to additionally show that this metric
correlates strongly with long term neurodevelopmental outcome. We do not, however, suggest a
cause for deviations between true age and brain age (i.e. brain age deltas) in this study nor that this
is directly associated to specific environmental or genetic causes. There is increasing evidence that
large brain age deltas may be a symptom of pre-existing conditions from birth (such as genetic
factors or low birth weight) which has a lasting impact on the infant’s development presented
through alterations in brain age trajectories (Vidal-Pineiro et al., 2021). Regardless of the specific
causes of brain age deltas, it is clear that the magnitudes of these deviations are of biological and
clinical interest, and the ability to track and estimate brain age deviations with a model such as Sinc
provide a means to identify effects as soon as they manifest potentially allowing for rapid clinical
responses.

5. Conclusions

We outline a deep learning approach for infant brain age prediction and follow-up BSID-Il outcome
risk-stratification with dramatically reduced EEG data requirements relative to previous proof-of-
concept studies. In an independent hold-out dataset, our Sinc model accurately predicts infant brain
age and significantly distinguishes infants with normal outcome from those with severely abnormal
outcome using a 1-channel bipolar montage setup and 20 min recording duration. The model also
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accurately predicts infant brain age when applied to data collected at an independent site. This
objective and automated deep learning approach thus displays potential clinical utility for cot-side
monitoring and use in neurological function assessment. A major next objective will be the efficient
deployment of this model into the hospital setting using clinical grade bipolar montage data.

Data availability statement
Due to ethical restrictions and the sensitive nature of these data, it is not possible to publicly share
the supporting data.

Code availability statement

The underlying code for the deep learning models, including the training, validation, and testing
processes are openly available for download wusing the following GitHub link:
https://github.com/amirans65/brainagemodel.

CRediT authorship contribution statement

Amir Ansari: Methodology, Software, Validation, Formal analysis, Investigation, Writing — Original
Draft, Visualisation. Kirubin Pillay: Conceptualisation, Methodology, Software, Validation, Formal
analysis, Investigation, Data Curation, Writing — Original Draft, Visualisation. Luke Baxter: Formal
analysis, Visualization, Writing — Review & Editing. Emad Arasteh: Formal analysis, Writing — Review
& Editing. Anneleen Dereymaeker: Investigation, Resources, Data Curation, Writing — Review &
Editing. Gabriela Schmidt Mellado: Visualization, Data Curation, Writing — Review & Editing. Katrien
Jansen: Investigation, Resources, Data Curation, Writing — Review & Editing. Gunnar Naulaers:
Resources, Writing — Review & Editing, Supervision, Funding acquisition. Aomesh Bhatt: Writing —
Review & Editing, Supervision. Sabine Van Huffel: Resources, Writing — Review & Editing,
Supervision, Funding acquisition. Caroline Hartley: Data Curation, Writing — Review & Editing,
Supervision. Maarten De Vos: Conceptualization, Resources, Writing — Review & Editing,
Supervision, Funding acquisition, Project Administration. Rebeccah Slater: Resources, Writing —
Review & Editing, Supervision, Funding acquisition, Project Administration.

Acknowledgements

We would like to thank all parents and infants involved in the study and staff at the UZ Leuven and
John Radcliffe Hospitals who helped with data collection.

A.H.A. is supported by the FWO postdoctoral fellowship.

K.P., G.S.M, A.B., and R.S. are funded by a Senior Wellcome Research Fellowship awarded to R.S.
(207457/2/17/2). LB is funded by a BLISS research grant.

S.V.H. and M.D.V. are funded by Bijzonder Onderzoeksfonds KU Leuven (BOF), Prevalentie van
epilepsie en slaapstoornissen in de ziekte van Alzheimer [C24/18/097], Fonds voor
Wetenschappelijk Onderzoek-Vlaanderen (FWO), PhD/Postdoc grants, and Agentschap Innoveren
en Ondernemen (VLAIO) 150466: OSA+.

19


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

CH is funded by a Wellcome Trust/Royal Society Sir Henry Dale Fellowship (213486/2/18/2).

KU Leuven Stadius acknowledges the financial support of imec, EU: EU H2020 FETOPEN 'AMPHORA'
[766456], EU H2020 MSCA-ITN-2018: 'INtegrating Magnetic Resonance SPectroscopy and
Multimodal Imaging for Research and Education in MEDicine (INSPiRE-MED)', funded by the
European Commission under Grant Agreement [813120], EU H2020 MSCA-ITN-2018: 'INtegrating
Functional Assessment measures for Neonatal Safeguard (INFANS)', funded by the European
Commission under Grant Agreement [813483], EIT 19263 — SeizelT2: Discreet Personalized Epileptic
Seizure Detection Device; Flemish Government; COST action CA20124
https://www.cost.eu/actions/CA20124/. This research also received funding from the Flemish

Government (Al Research Program).
A.H.A, S.V.H. and M.D.V. are also affiliated to Leuven.Al - KU Leuven institute for Al, B-3000, Leuven,
Belgium.

Declaration of competing interests
The authors declare no conflicts of interest.

References

André, M., Lamblin, M.-D., dAllest, A.M., Curzi-Dascalova, L., Moussalli-Salefranque, F.,
NguyenTheTich, S., Vecchierini-Blineau, M.-F., Wallois, F., Walls-Esquivel, E., Plouin, P., 2010.
Electroencephalography in premature and full-term infants. Developmental features and
glossary. Neurophysiologie Clinique/Clinical Neurophysiology 40, 59-124.
https://doi.org/10.1016/j.neucli.2010.02.002

Ansari, A.H., Cherian, P.J., Caicedo, A., Naulaers, G., De Vos, M., Van Huffel, S., 2019. Neonatal
Seizure Detection Using Deep Convolutional Neural Networks. Int J Neural Syst 29, 1850011.
https://doi.org/10.1142/50129065718500119

Ansari, A.H., De Wel, O., Lavanga, M., Caicedo, A., Dereymaeker, A., Jansen, K., Vervisch, J., De Vos,
M., Naulaers, G., Van Huffel, S., 2018. Quiet sleep detection in preterm infants using deep
convolutional neural networks. J Neural Eng 15, 066006. https://doi.org/10.1088/1741-
2552/aadclf

Ansari, A.H., De Wel, O., Pillay, K., Dereymaeker, A., Jansen, K., Van Huffel, S., Naulaers, G., De Vos,
M., 2020. A convolutional neural network outperforming state-of-the-art sleep staging
algorithms for both preterm and term infants. J Neural Eng 17, 016028.
https://doi.org/10.1088/1741-2552/ab5469

Ansari, A.H., Pillay, K., Dereymaeker, A., Jansen, K., Van Huffel, S., Naulaers, G., De Vos, M., 2021. A
Deep Shared Multi-Scale Inception Network Enables Accurate Neonatal Quiet Sleep
Detection with Limited EEG Channels. I|EEE J Biomed Health Inform PP.
https://doi.org/10.1109/JBHI.2021.3101117

Bland, J.M., Altman, D.G., 1999. Measuring agreement in method comparison studies. Stat Methods
Med Res 8, 135-160. https://doi.org/10.1177/096228029900800204

Bland, J.M., Altman, D.G., 1986. Statistical methods for assessing agreement between two methods
of clinical measurement. Lancet 1, 307-310.

Blencowe, H., Lee, A.C.C., Cousens, S., Bahalim, A., Narwal, R., Zhong, N., Chou, D., Say, L., Modi, N.,
Katz, J., Vos, T., Marlow, N., Lawn, J.E., 2013. Preterm birth-associated neurodevelopmental

20


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

impairment estimates at regional and global levels for 2010. Pediatr Res 74 Suppl 1, 17-34.
https://doi.org/10.1038/pr.2013.204

Burke, S., 2018. Systematic review of developmental care interventions in the neonatal intensive
care unit since 2006. J Child Health Care 22, 269-286.
https://doi.org/10.1177/1367493517753085

Colonnese, M.T., Kaminska, A., Minlebaev, M., Milh, M., Bloem, B., Lescure, S., Moriette, G., Chiron,
C., Ben-Ari, Y., Khazipov, R., 2010. A Conserved Switch in Sensory Processing Prepares
Developing Neocortex for Vision. Neuron 67, 480-498.
https://doi.org/10.1016/j.neuron.2010.07.015

Dai, D.W.T., Franke, N., Wouldes, T.A., Brown, G.T.L., Tottman, A.C., Harding, J.E., PIANO Study
Group, 2021. The contributions of intelligence and executive function to behaviour problems
in school-age children born very preterm. Acta Paediatr 110, 1827-1834.
https://doi.org/10.1111/apa.15763

De Wel, 0., Lavanga, M., Dorado, A.C., Jansen, K., Dereymaeker, A., Naulaers, G., Van Huffel, S.,
2017. Complexity Analysis of Neonatal EEG Using Multiscale Entropy: Applications in Brain
Maturation and Sleep Stage Classification. Entropy 19, 516.
https://doi.org/10.3390/€19100516

Dempsey, E.M., Kooi, E.M.W., Boylan, G., 2018. It’s All About the Brain—Neuromonitoring During
Newborn Transition. Seminars in Pediatric Neurology, Fetal Neurology 28, 48-59.
https://doi.org/10.1016/j.spen.2018.05.006

Dereymaeker, A., Koolen, N., Jansen, K., Vervisch, J., Ortibus, E., De Vos, M., Van Huffel, S., Naulaers,
G., 2016. The suppression curve as a quantitative approach for measuring brain maturation
in preterm infants. Clin Neurophysiol 127, 2760-2765.
https://doi.org/10.1016/j.clinph.2016.05.362

Dereymaeker, A, Pillay, K., Vervisch, J., De Vos, M., Van Huffel, S., Jansen, K., Naulaers, G., 2017a.
Review of sleep-EEG in preterm and term neonates. Early Hum Dev 113, 87-103.
https://doi.org/10.1016/j.earlhumdev.2017.07.003

Dereymaeker, A, Pillay, K., Vervisch, J., Van Huffel, S., Naulaers, G., Jansen, K., De Vos, M., 2017b.
An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess
Brain Maturation. Int J Neural Syst 27, 1750023.
https://doi.org/10.1142/5012906571750023X

Duerden, E.G., Guo, T., Dodbiba, L., Chakravarty, M.M., Chau, V., Poskitt, K.J., Synnes, A., Grunau,
R.E., Miller, S.P., 2016. Midazolam dose correlates with abnormal hippocampal growth and
neurodevelopmental outcome in preterm infants. Ann Neurol 79, 548-559.
https://doi.org/10.1002/ana.24601

Efron, B., Tibshirani, R.J., 1994. An Introduction to the Bootstrap. Chapman and Hall/CRC, New York.
https://doi.org/10.1201/9780429246593

Grunau, R.E., 2013. Neonatal pain in very preterm infants: long-term effects on brain,
neurodevelopment and pain reactivity. Rambam Maimonides Med J 4, e0025.
https://doi.org/10.5041/RMMJ.10132

Hack, M., Taylor, H.G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., Klein, N., Friedman,
H., Mercuri-Minich, N., Morrow, M., 2005. Poor predictive validity of the Bayley Scales of
Infant Development for cognitive function of extremely low birth weight children at school
age. Pediatrics 116, 333—341. https://doi.org/10.1542/peds.2005-0173

Husain, A.M., 2005. Review of neonatal EEG. Am J Electroneurodiagnostic Technol 45, 12-35.

lyer, K.K., Roberts, J.A., Hellstrom-Westas, L., Wikstrém, S., Hansen Pupp, I., Ley, D., Vanhatalo, S.,
Breakspear, M., 2015. Cortical burst dynamics predict clinical outcome early in extremely
preterm infants. Brain 138, 2206—2218. https://doi.org/10.1093/brain/awv129

21


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Koolen, N., Jansen, K., Vervisch, J., Matic, V., De Vos, M., Naulaers, G., Van Huffel, S., 2014. Line
length as a robust method to detect high-activity events: automated burst detection in
premature EEG recordings. Clin Neurophysiol 125, 1985-1994.
https://doi.org/10.1016/j.clinph.2014.02.015

Lavanga, M., De Wel, O., Caicedo, A., Jansen, K., Dereymaeker, A., Naulaers, G., Van Huffel, S., 2017.
Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study
Maturation. Complexity 2017, e9078541. https://doi.org/10.1155/2017/9078541

Malk, K., Metsaranta, M., Vanhatalo, S., 2014. Drug effects on endogenous brain activity in preterm
babies. Brain Dev 36, 116—123. https://doi.org/10.1016/j.braindev.2013.01.009

Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., Khazipov, R., 2007. Rapid cortical
oscillations and early motor activity in premature human neonate. Cereb. Cortex 17, 1582—
1594. https://doi.org/10.1093/cercor/bhl069

Moultrie, F., Slater, R., Hartley, C., 2017. Improving the treatment of infant pain. Current Opinion in
Supportive and Palliative Care 11, 112-117.
https://doi.org/10.1097/SPC.0000000000000270

O’Shea, A., Ahmed, R., Lightbody, G., Pavlidis, E., Lloyd, R., Pisani, F., Marnane, W., Mathieson, S.,
Boylan, G., Temko, A., 2021. Deep Learning for EEG Seizure Detection in Preterm Infants. Int
J Neural Syst 31, 2150008. https://doi.org/10.1142/5S0129065721500088

O’Toole, J.M., Boylan, G.B., Vanhatalo, S., Stevenson, N.J., 2016. Estimating functional brain
maturity in very and extremely preterm neonates using automated analysis of the
electroencephalogram. Clin Neurophysiol 127, 2910-2918.
https://doi.org/10.1016/j.clinph.2016.02.024

Palmu, K., Stevenson, N., Wikstrom, S., Hellstrom-Westas, L., Vanhatalo, S., Palva, J.M., 2010.
Optimization of an NLEO-based algorithm for automated detection of spontaneous activity
transients in early preterm EEG. Physiol Meas 31, N85-93. https://doi.org/10.1088/0967-
3334/31/11/N02

Pascal, A., Naulaers, G., Ortibus, E., Oostra, A., De Coen, K., Michel, S., Cloet, E., Casaer, A., D’haese,
J., Laroche, S., Jonckheere, A., Plaskie, K., Van Mol, C., Delanghe, G., Bruneel, E., Van
Hoestenberghe, M.-R., Samijn, B., Govaert, P., Van den Broeck, C., 2020.
Neurodevelopmental outcomes of very preterm and very-low-birthweight infants in a
population-based clinical cohort with a definite perinatal treatment policy. Eur J Paediatr
Neurol 28, 133—-141. https://doi.org/10.1016/j.ejpn.2020.06.007

Pillay, K., Dereymaeker, A., Jansen, K., Naulaers, G., De Vos, M., 2020. Applying a data-driven
approach to quantify EEG maturational deviations in preterms with normal and abnormal
neurodevelopmental outcomes. Sci Rep 10, 7288. https://doi.org/10.1038/s41598-020-
64211-0

Pillay, K., Dereymaeker, A., Jansen, K., Naulaers, G., Van Huffel, S., De Vos, M., 2018. Automated
EEG sleep staging in the term-age baby using a generative modelling approach. J Neural Eng
15, 036004. https://doi.org/10.1088/1741-2552/aaab73

R Core Team, 2018. R: A language and environment for statistical computing.

Scher, M.S., 2008. Ontogeny of EEG-sleep from neonatal through infancy periods. Sleep Med 9, 615-
636. https://doi.org/10.1016/j.sleep.2007.08.014

Scher, M.S., 1997. Neurophysiological assessment of brain function and maturation. Il. A measure
of brain dysmaturity in healthy preterm neonates. Pediatr Neurol 16, 287-295.
https://doi.org/10.1016/s0887-8994(96)00009-4

Smith, S.M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T.E., Miller, K.L., 2019. Estimation of brain age
delta from brain imaging. Neurolmage 200, 528-539.
https://doi.org/10.1016/j.neuroimage.2019.06.017

22


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

981
982

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Stevenson, N.J., Oberdorfer, L., Koolen, N., O’Toole, J.M., Werther, T., Klebermass-Schrehof, K.,
Vanhatalo, S., 2017. Functional maturation in preterm infants measured by serial recording
of cortical activity. Sci Rep 7, 12969. https://doi.org/10.1038/s41598-017-13537-3

Stevenson, N.J., Oberdorfer, L., Tataranno, M.-L., Breakspear, M., Colditz, P.B., Vries, L.S. de,
Benders, M.J.N.L., Klebermass-Schrehof, K., Vanhatalo, S., Roberts, J.A., 2020a. Automated
cot-side tracking of functional brain age in preterm infants. Annals of Clinical and
Translational Neurology 7, 891-902. https://doi.org/10.1002/acn3.51043

Stevenson, N.J., Tataranno, M.-L., Kaminska, A., Pavlidis, E., Clancy, R.R., Griesmaier, E., Roberts,
J.A., Klebermass-Schrehof, K., Vanhatalo, S., 2020b. Reliability and accuracy of EEG
interpretation for estimating age in preterm infants. Ann Clin Transl Neurol 7, 1564-1573.
https://doi.org/10.1002/acn3.51132

Tokariev, A., Roberts, J.A., Zalesky, A., Zhao, X., Vanhatalo, S., Breakspear, M., Cocchi, L., 2019.
Large-scale brain modes reorganize between infant sleep states and carry prognostic
information for preterms. Nat Commun 10, 2619. https://doi.org/10.1038/s41467-019-
10467-8

Tolonen, M., Palva, J.M., Andersson, S., Vanhatalo, S., 2007. Development of the spontaneous
activity transients and ongoing cortical activity in human preterm babies. Neuroscience 145,
997-1006. https://doi.org/10.1016/j.neuroscience.2006.12.070

Vidal-Pineiro, D., Wang, Y., Krogsrud, S.K., Amlien, |.K., Baaré, W.F., Bartres-Faz, D., Bertram, L.,
Brandmaier, A.M., Drevon, C.A,, Dlzel, S., Ebmeier, K., Henson, R.N., Junqué, C., Kievit, R.A.,
Kihn, S., Leonardsen, E., Lindenberger, U., Madsen, K.S., Magnussen, F., Mowinckel, A.M.,
Nyberg, L., Roe, J.M., Segura, B., Smith, S.M., Serensen, @., Suri, S., Westerhausen, R.,
Zalesky, A., Zsoldos, E., Walhovd, K.B., Fjell, A., 2021. Individual variations in ‘brain age’ relate
to early-life factors more than to longitudinal brain change. elife 10, e69995.
https://doi.org/10.7554/elLife.69995

Wallois, F., Routier, L., Bourel-Ponchel, E., 2020. Impact of prematurity on neurodevelopment, in:
Gallagher, A., Bulteau, C., Cohen, D., Michaud, J.L. (Eds.), Handbook of Clinical Neurology,
Neurocognitive Development: Normative Development. Elsevier, pp. 341-375.
https://doi.org/10.1016/B978-0-444-64150-2.00026-5

Watanabe, K., Hayakawa, F., Okumura, A., 1999. Neonatal EEG: a powerful tool in the assessment
of brain damage in preterm infants. Brain Dev 21, 361-372. https://doi.org/10.1016/s0387-
7604(99)00034-0

Wess, J.M., Isaiah, A., Watkins, P.V., Kanold, P.O., 2017. Subplate neurons are the first cortical
neurons to respond to sensory stimuli. Proc Natl Acad Sci U S A 114, 12602-12607.
https://doi.org/10.1073/pnas.1710793114

23


https://doi.org/10.1101/2023.01.24.525361
http://creativecommons.org/licenses/by/4.0/

983
984

985
986

987
988
989
990
991
992
993
994

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525361; this version posted January 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Figures

8-cha|nne| 4-channel 2-cha|nne| 1-channel

Referential montage Bipolar montage
Figure 1: EEG montages used during analysis. All recordings in datasets D1 and D2 were acquired
with eight recording EEG electrodes in positions: Fp1, Fp2, C3, C4, T3, T4, O1, O2, and a reference
electrode placed at Cz (shaded in grey). The arrows represent the specific channels used during
analysis. For dataset D3, analysis was conducted using the 1-channel bipolar montage. Recordings
were initially acquired with electrode positions Cz, CPz, C3, C4, Oz, FCz, T3 and T4, and a reference
electrode at Fz.
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Figure 2: Deep learning architectures. a. Block-diagram of the proposed Sinc network architecture,
including the typical structure of the Sinc block. b. lllustrative block diagrams of different blocks in
the deep architectures: (i) Sequential Convolutional layers, (ii) Residual block, (iii) Inception block,
(iv) Shared Inception (Sinc) block.
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Figure 3: The Sinc model outperforms alternative architectures in predicting infant brain age. Brain
age prediction performance (MAE) using dataset D1 test set. a. Each line represents a different
model, and each model uses the entire recording duration. See Supplementary Table 1 for plotted
values. The RF model is the established benchmark, which uses eight channels. The Sinc model
consistently outperforms both the RF model and the alternative deep learning models, with a lower
prediction error using a single channel (MAE = 0.78 weeks) than the RF model using eight channels
(MAE = 1.01 weeks). b. The Sinc model’s performance using a single channel and the full recording
duration (MAE = 0.78 weeks, dotted line) was used as a benchmark to assess Sinc model performance
with a single channel and systematically reduced recording durations (solid line). Performance using
the reduced recording durations are matched to the full recording duration when recordings of 20
mins or longer are used; using less than 20 mins recording duration exhibits a gradual drop in
prediction performance. Shaded intervals denote the standard deviation for the reduced recording
durations. Note, MAE performance suggests a drop below the full signal performance beyond 20 min
duration. This is due to the bootstrap sampling error (Efron and Tibshirani, 1994), and this inherent
bias is a fluctuation about the full recording MAE with standard deviation <1. We can assume that
the MAE beyond 20 mins is equivalent to the MAE when the full recording duration is used. As it is
too computationally intensive to show performance beyond 2 hour signal durations the random
variation cannot be fully shown here. Abbreviations: FE = feature extraction; CNN = convolutional
neural network; Inc = inception; Sinc = shared inception; RF = random forest; ch = channel;, MAE =
mean absolute error.
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Figure 4: Synthetic EEG data generated using the Sinc model highlight changes in discontinuity
characteristics with PMA, reminiscent of maturational trends seen in real EEG data. Results are
generated using the input-loss minimization technique for three target PMAs (30, 35, and 40 weeks)
spanning the early preterm to term age range. This is performed for the 8-channel full recording
duration case. The degree of continuity in activity can be seen to increase with PMA.
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a. Input to FEI Layer b. Input to FEII Layer c. Input to Regression Layer
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Figure 5: Visualising Sinc model performance using UMAPs. Visualization of the inputs at various
blocks in the proposed model: Feature Extraction | (FEI), Feature Extraction Il (FEIl), and Regression
(see Figure 1b). Results are shown for the 1-channel, full recording duration case in Dataset D1. An
increasing separation of the features with respect to PMA is seen on moving from a-c. This clear
progression is indicative that the network weights are trained well in the intermediate layers, and
this visualisation provides further insight into the role of each CNN block. a. Input to FEI has not yet
been processed, so there is no separation of inputs to FEI. b. The input to FEll is the output from FEI.
It is evident that the role of FEI is to perform a low-level ‘feature extraction’ that performs an initial
separation between the very preterm (blue dots) and preterm and term age groups (green and
yellow dots) i.e. a general separation between strong discontinuity and continuity in the EEG. c. The
input to Regression is the output of FEIl. The FEIl stage performs a higher-level feature extraction
providing further discriminatory power, allowing better separation of these mid-age (31-37 weeks)
and term age groups. Furthermore, at the stage of input to Regression, we observe that the PMAs
of the datapoints from left to right increase almost monotonically such that the very left and right
datapoints correspond to the extremely young and old neonates, respectively, while the middle ages
are almost uniformly distributed in-between. Abbreviations: UMAP = uniform manifold
approximation and projection.
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Figure 6: Brain age prediction models generalise to independent dataset D2. a. Sinc model brain
age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes (Dataset
D2). Each string of connected points is a single infant’s longitudinally-assessed multi-recording
trajectory, and the dashed black line is the y=x line along which perfect predictions would lie. b. RF
model brain age predictions for infants with (i) normal and (ii) abnormal BSID-II follow-up outcomes.
c. Bland-Altman plots to assess agreement between Sinc and RF models’ PMA prediction
performances, quantified using absolute prediction errors. In both plots, the x-axis is the mean
prediction error of the two models, and the y-axis is the difference in prediction errors (Sinc minus
RF). The heavy grey lines are the mean bias and limits of agreement, while the light grey lines
indicate the 95% Cl for the bias and limits of agreement. (i) Per-recording model agreement
assessment. (ii) Per-infant model agreement assessment i.e. multi-recording average per infant.
Note the greater model agreement (narrower limits of agreement along y-axis) and reduced average
prediction error (shorter range along x-axis) when using the multi-recording average prediction error
in (ii) compared to the single recording prediction error in (i). Abbreviations: Sinc = shared inception;
RF = random forest; PMA = postmenstrual age.
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Figure 7: Brain age delta magnitudes scale with 9-month follow-up neurodevelopmental
outcomes. a. Sinc model absolute prediction error magnitudes (brain age deltas) for each of the
three BSID-1l outcome cohorts: normal, mild abnormal, and severe abnormal. The average prediction
error is larger for poorer 9-month follow-up BSID-Il neurodevelopmental outcomes, and the mean
prediction error for the severe abnormal group is significantly larger than that of the normal group.
b. RF model absolute prediction error magnitudes for each of the three BSID-1l outcome cohorts. The
average prediction error is larger for poorer 9-month follow-up BSID-Il neurodevelopmental
outcomes, and the mean prediction error for the severe abnormal group is significantly larger than
that of the normal group. c. The x-axis displays each of the three combinations of pairwise
comparisons for the three BSID-Il outcome cohorts: mild minus normal, severe minus mild, and
severe minus normal. For each model, the y-axis displays the standardised effect size (Cohen’s D)
separating each pair of BSID-Il outcome cohort. Sinc = shared inception; RF = random forest; MAE =
mean absolute error; BSID-1I = Bayley scale of infant development; * = statistically significant.
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Figure 8: Sinc model brain age prediction generalises to dataset D3. In each panel (a-c), each point
indicates a single infant (n=73); the dashed black line is the ideal fit line; and the red solid line is the
true fit line (least squares). a. Sinc model brain age predictions for dataset D3. The ideal fit line is
the y=x line of perfect prediction. The misalignment between the ideal fit line and the true fit line
indicates an age association bias. b. Correlation between the brain age delta (predicted age minus
true age) and the infant’s true age. The ideal fit line is the y=0 line of zero age association bias. The
slope of the true fit line indicates the magnitude and direction of the age association bias. c. The
predicted brain age after adjusting for the delta age association bias using leave-one-out cross
validation. The ideal fit line is the y=x line of perfect prediction.
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