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ABSTRACT

Patient-derived xenografts (PDXs) are tumour fragments engrafted into mice for preclinical studies.
PDXs offer clear advantages over simpler in vitro cancer models - such as cancer cell lines (CCLs)
and organoids - in terms of structural complexity, heterogeneity, and stromal interactions. We
characterised 231 colorectal cancer PDXs at the genomic, transcriptomic, and epigenetic level and
measured their response to cetuximab, an EGFR inhibitor in clinical use for metastatic colorectal
cancer. After assessing PDXs’ quality, stability, and molecular concordance with publicly available
patient cohorts, we trained, interpreted, and validated an integrated ensemble classifier (CeSta)
which takes in input the PDXs’ multi-omic characterisation and predicts their sensitivity to
cetuximab treatment (AUROC > 0.9). Our study shows that large PDX collections can be used to
train accurate, interpretable models of drug sensitivity, which 1) better recapitulate patient-derived
therapeutic biomarkers than other models trained on CCL data, 2) can be robustly validated across

independent PDX cohorts, and 3) can be used for the development of novel therapeutic biomarkers.
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INTRODUCTION

Colorectal cancer (CRC) is a heterogeneous disease with distinctly variable molecular features and
responses to therapy. It is among the most prevalent causes of cancer mortality worldwide, with more than
1.85 million cases and 850,000 annual deaths globally'. Around 20% of newly diagnosed CRC patients
have metastatic disease (MCRC) at presentation, with 25% later developing metastases®*.

In recent years, several clinical trials>’ have suggested that genome-based treatment selection leads to
more patients deriving therapeutic benefits, with fewer exposed to ineffective therapies, and most mCRC
patients experience a median survival exceeding 30 months when regimens including genotype-informed
treatments are used?®. Specifically, ~50% of mCRC patients have KRAS-NRAS-BRAF wild-type (triple
negative) tumours and are routinely treated with cetuximab and panitumumab, monoclonal antibody
inhibitors of the epithelial growth factor receptor EGFR in combination with chemotherapy as an alternative
to surgery. This protocol extends median survival by 2 to 4 months, compared with chemotherapy alone’.
Unfortunately, the overall metastatic CRC clinical trial success rate remains low: 32% of combined phase I
and phase lll clinical trials between 2013 and 2015 failed, up from 23% in 2010°. This highlights the need

for novel and more robustly predictive markers of drug response for CRC patients.

Biomarkers of response to cetuximab and cetuximab plus chemotherapy, such as the triple negative
signature mentioned above, have been derived from clinical and molecular analysis of patients and
patient-derived experimental models of CRC, including immortalised cancer cell lines, organoids, and
patient-derived xenografts (PDX). However, several other systematic therapeutic biomarkers discovery
efforts conducted using in vitro models have confirmed limited clinical translatability®"'. This is primarily due
to the intrinsic limitations of such models, encompassing genetic, epigenetic, and transcriptomic changes
resulting from their selective adaptation to artificial culture conditions'?'*. Furthermore, cancer cell lines do
not maintain the complex heterogeneity of the tumour of derivation; they often lose or gain specific

subclones and might miss relevant components of the human tumour stromal microenvironment's.

Unlike cancer cell lines, PDXs have been shown to offer good retention of tumour complexity, mimicking (at
least to a certain extent) stromal interactions. They are relatively easy to screen and characterise. Further,
histopathological characterisation has confirmed a high degree of concordance between PDXs and
corresponding parental tumours in terms of differentiation, mucus secretion, and stromal composition, as

well as maintenance of primary intratumoral clonal heterogeneity?>%-"8,
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These factors have contributed to PDXs playing a pivotal role in translational cancer research, furthering
our understanding of tumour biology and drug response mechanisms in CRC'®?°. As a result, extensive
multi-institutional efforts (such as EuroPDX?") are now ongoing, aiming to establish and characterise
extensive collections of PDX models at the molecular and histopathological level to ensure that they

recapitulate the broadest possible diversity of clinical cases?®.

Using data derived from the multi-omics characterisation of CRC PDXs paired with their
pharmacological/phenotypic features is a profitable means for training supervised machine learning models
to predict drug response in CRC patients. In this case, the extent of training data availability is a critical
determinant of the accuracy of a model, especially when considering high-dimensional multi-omics
datasets. Machine learning models of drug response trained on large pooled pan-cancer cell line datasets
(N = 329) outperform models which only used cell lines (N = 28-68) from a specific tissue®. This suggests
that, in some cases, data quantity can outweigh data specificity. Kurilov and colleagues have also noted
that predicting PDX drug response using models trained on cell line data results in poor performance

across 3 out of 4 examined cohorts, except for the erlotinib lung cancer cohort.

In summary, most of the pre-clinical studies of cetuximab response in CRC cohorts performed to date have
been characterised by 1) relatively small sample sizes, 2) single platform profiling often aimed at
characterising the status of few known CRC driver genes, 3) reliance on biological models which have
proved to be suboptimal for translational purposes, or a combination of these factors. These aspects
negatively influenced the aforementioned studies' ability to capture the tumour ecosystem's complexity and
inter-tumour heterogeneity's impact on drug response, ultimately contributing to the increasingly low

success rate of early-stage CRC clinical trials.

Here, we present one of the largest thoroughly characterised CRC PDX collections to date (N = 231),
which closely recapitulates gold-standard CRC patient cohorts across 3 ‘omics (genomics, transcriptomics,
and methylomics) and results from training an ensemble classifier to predict the response of these models
to cetuximab treatment, based on an integrative stacked architecture.

Our model outperforms other state-of-the-art (SOTA) predictive methods and the biomarker of cetuximab
response currently used in the clinic, i.e. the KRAS-NRAS-BRAF mutational status, internally and when
tested on an independent cohort of CRC PDXs.

Finally, we show that our model's predictions provide an extent of interpretability, highlighting novel

potential biomarkers of cetuximab sensitivity.
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REsuLTs
We selected 231 first-pass CRC PDXs (the IRCC-PDX collection), which were fully characterised across

multiple omics (encompassing genomics, transcriptomics, methylomics), clinical metadata, and were
screened for cetuximab response from a larger cohort of >600 xenografts (Fig. 1a). These models were
uniquely derived from surgical resections of CRC liver metastases performed at the Candiolo Cancer
Institute (Candiolo, Torino, IT), the Mauriziano Umberto | Hospital (Torino, IT), the San Giovanni Battista
Hospital (Torino, IT) and the Niguarda Hospital (Milano, IT) between 2008 and 2015.

The initial “raw” multi-omics characterisation of IRCC-PDX consisted of the methylation status of 700,298
lllumina probes, 33,670 gene transcription levels from RNAseq, 1,272 copy number alteration and driver
variant features, and 45 clinical features covering patient demographics, primary tumour characteristics,

and previous patient treatment for a total of 735,285 features (Fig. 1a).

We performed several omic-specific feature engineering steps (Methods, Fig. 1a) before using this data
with our integrative classifier (Fig. 1b-c). These reduced the dimensionality of the “raw” IRCC-PDX dataset
(e.g. non-negative matrix factorisation clustering® of methylation features), introduced feature curation via
prior knowledge of gene regulatory pathways (e.g. PROGENy? and MSigDB?® gene set analysis), and
generated potentially more informative agglomerate features (e.g. CELLector?” genomic signatures). Raw
and engineered (1,360 features, 231 PDX models) IRCC-PDX datasets are both fully available for
download (Data and Code Availability).

Multi-omic characterisation of our CRC PDX collection

Previous comprehensive genetic characterisations of CRC models have shown that the frequency of
common genetic mutations observed in PDXs is similar to that observed in primary tumours?316-18.28,
Targeted sequencing of 116 genes in our PDX cohort identified 6,426 driver mutations (Methods), with APC
(90%), TP53 (85%), KRAS (29%), PIK3CA (19%), and ATM (16%) being the most frequently affected
genes (Fig 1d, $1). In our PDX collection, mutational frequencies for KRAS and BRAF were lower than
those reported for large CRC patient cohorts such as TCGA COAD/READ (https://www.cancer.gov/tcga)
and MSK IMPACT?® (https://www.mskcc.org/msk-impact). In the case of KRAS, this is due to a pre-hoc
enrichment of KRAS wild-type models for subsequent treatment with cetuximab (as KRAS mutant models
were assumed to be cetuximab resistant a priori). In the case of BRAF, the lower frequency is ascribable to
the fact that our PDXs were derived from metastatic samples. BRAF mutant tumours are frequently
characterised by microsatellite instability (MSI). Because MSI CRCs have a better prognosis and rarely

progress to metastasis®, they are under-represented in our dataset. Indeed, after removing MSI samples,
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the frequency of BRAF mutated tumours in TCGA is reduced to 5.3%, which is comparable to that detected
in our collection.

Aside from these exceptions, our IRCC-PDX mutational landscape closely matched that of the previous
CRC patient cohorts (Spearman correlation coefficient 0.51 and 0.625 for TCGA and MSK, respectively;

Fig. S2) and recapitulated known top frequently mutated CRC driver genes®'32,
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Figure 1 - A multi-omic overview of the Colorectal cancer PDX cohort and cetuximab response
modelling approach. a) Overview of the IRCC-PDX collection, derived from 231 unique CRC liver
metastasis resections, characterised at a multi-omic level as well as for cetuximab response, including a
schematic of the omic-specific feature engineering steps. b) Overview of our CeSta classifier pipeline. A set
of input features is selected from the training set (Methods) using univariate tests (Fisher’s exact, MW
U-test) and multivariate linear models. These features are passed as input to 3 independent level 1
classifier pipelines (lvl 1 classifiers): forward feature selection plus elastic net classifier, ANOVA feature
selection plus extra trees classifier, ANOVA feature selection plus SV classifier. An additional fourth
classifier uses a boosting (catBoost) model, which we pre-train using pan-cancer data from the cell model
passport repository (CMP), and we then refine using the same IRCC-PDX data as the other Ivl 1 classifiers
(Methods). Lvl 1 classifier predicted probabilities are stacked and provided as input to a meta classifier
which outputs the final binary class label (i.e. cetuximab-responder/-non-responder) corresponding to the
Ivl 1 prediction with the highest predicted probability (i.e. argmax-based soft voting). ¢) CeSta nested
cross-validation approach: 50 train/test split replicates are derived by stratified sampling of the IRCC-PDX
collection. CeSta is trained and tuned independently across these 50 data splits. In each of these iterations,
the training set is split into three folds, two of which are used (in turn) in three successive rounds, jointly as
a ‘“training fold” (green rectangles). In each of these rounds, the level-1-classifiers generate predictions for
the remaining subset not used for model fitting, i.e. the “validation fold” (white rectangle). The resulting
predictions (“P1” and “P2”, green hexagon) are then stacked and provided to the meta-classifier. After
comparing the meta-classifier’s prediction on the validation fold to the corresponding true labels, all
first-level classifiers are fit to the entire training set replicate and CeSta performance is evaluated on the
test set (pink rectangle, N = 71) of the split under consideration (“internal validation”). Finally, CeSta is
trained once over the entire IRCC-PDx dataset and tested (“external validation”) on an independent
CR-PDX dataset (grey rectangle, N=50).

d) Top frequently mutated genes in our IRCC-PDX cohort. e) Selection of multi-omic and clinical features
across the IRCC-PDX collection, including CRIS expression cluster labels, methylation NMF cluster labels,
primary sample anatomical location, and treatment backbone.

To further control our PDX models’ ability to recapitulate characteristics of their tumour sample of origin, we
investigated PDX mutational profile stability for a subset of more extended PDX lineages (i.e. those where
targeted sequencing data was available beyond the first-passage; Fig. $3). We observed a strong
agreement between all models belonging to a given lineage, regardless of their distance from their sample
of origin in terms of passages, with few exceptions attributable to sequencing errors or clonal expansion
(Fig. S4).

Copy number (CN) alterations, derived from the same 116 genes in the targeted sequencing panel
(Methods), affected some known CRC drivers, including EGFR and SMAD4, and showed a strong positive
correlation (Spearman r = 0.87 and 0.93, respectively, for copy number losses and gains) with CN
alteration frequencies observed in TCGA COAD/READ samples (Fig. S5 and S6).
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As described above, we also assessed CN profile stability along PDX lineages which extend beyond the
first passage. We observed solid intra-lineage CN consistency overall (median log2R Pearson coefficient
0.927, Fig. S7) and at the gene level (94% of driver genes are CN-stable within lineages, Fig. S$8), in line

with previous reports®?.

We characterised our PDX collection's transcriptional landscape using two approaches to classify samples
into subtypes: CMS?** and CRIS*. Results from these analyses were broadly consistent with TCGA

COAD/READ and other colorectal cancer datasets where expression data is available (Fig. 1e, S9).

To concisely represent our PDXs’ epigenomics profiles, we grouped samples into five different nonnegative
matrix factorisation® based clusters (Methods). We observed that the samples belonging to one of these
groups (cluster 1) were remarkably more hypermethylated over all measured CpG islands (median beta
methylation level = 0.81, Kruskal-Wallis test p-value < 2.2e-16, Fig. $10). Consistent with our cluster
definition, we also found cluster 1 to be highly enriched for the CpG island methylator phenotype (CIMP?)
in 130 out of 146 PDXs (Fig. S10). This heterogeneity of PDX methylation profiles resembled that observed
in CRC patients, even though the percentage of IRCC-PDX samples classified as CIMP was slightly lower
than that reported in TCGA COAD/READ (44% vs 58%, Fig. S11). This is expected considering the low
prevalence of MSI tumours - which are typically enriched for CIMP cases - within metastatic CRC cohorts
such as ours®.

Overall, our multi-omic overview of the PDX collection indicates that IRCC-PDX closely recapitulates the
genomics, transcriptomics, and methylomics landscape of gold-standard human colorectal cancer cohorts,
such as TCGA COAD/READ and MSK-IMPACT.

Exploration of established biomarkers of cetuximab sensitivity

Around half of mMCRC patients have KRAS-NRAS-BRAF wild-type (triple negative) tumours and routinely
receive anti-EGFR treatment with cetuximab or panitumumab in combination with chemotherapy as an
alternative to surgery. This results in a median survival extension of 2 to 4 months, compared with
chemotherapy alone’. Retrospective analysis of triple-negative patients from the CRYSTAL and FIRE3
trials has also highlighted that patients with left-sided tumours treated with anti-EGFR antibodies had better
survival and treatment response than patients with right-sided tumours® .

Treatment intervention in our PDXs (Methods) closely matched that of cetuximab human trials such as
PEAK" and FIRE3® as well as current clinical best practices**“’; in line with the clinical definition of
‘disease control’, which denotes clinical benefit, we categorised as ‘responders’ those cases in which

cetuximab induced tumour shrinkage (objective response, OR, more than 50% tumour volume reduction
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compared with baseline tumour volumes) or stable disease (SD, less than 50% tumour shrinkage and less

than 35% increase in tumour volume?).

Across our IRCC-PDX collection (N = 231), KRAS mutations were much more frequently observed in PDXs
with a cetuximab non-responder phenotype (Fisher's exact test’s p-value (FET p) = 4x10°8, percent lift:
-0.781, Fig 2a, Tab S1, Methods). NRAS (FET p = 0.001, percent lift: -0.926) and BRAF (FET p = 0.035,
percent lift; -0.702) mutations were noticeably more likely to occur in non-responder PDXs, though only 16
and 13 mutant PDXs were observed across IRCC-PDXs, respectively. However, overall mutational and CN
alteration burden, defined as the total number of events per PDX and intended as coarse-grained proxies
for tumour progression and genomic stability, did not appear to strongly correlate with cetuximab sensitivity
(Fig 2b-c, Tab S1).

Finally, a right-sided localisation of the original tumour showed a moderate association with a

non-responder phenotype (FET p = 0.017, percent lift: -0.470).

As previously mentioned, the KRAS-NRAS-BRAF triple negative signature is widely recognised as the
best-established biomarker of cetuximab sensitivity (FET p = 5x107'%, percent lift: 1.468), being used both
as a clinical discriminant for treatment and as an entry criterion for anti-EGFR trials. These observations
thus indicate that our IRCC-PDX collection recapitulates the best available marker of cetuximab sensitivity

in patients.

A stacked classifier modelling cetuximab sensitivity

We tackled the task of predicting whether a CRC PDX responds to cetuximab treatment in terms of tumour
volume shrinkage? by leveraging its multi-omic characterisation and formulating this challenge as a binary
classification problem. This mirrors a clinician's choice regarding whether or not a patient might benefit
from cetuximab treatment.

We selected and integrated multi-omic features into a stacked classifier pipeline*': the cetuximab Stacked
classifier (CeSta, Fig 1b). Stacking is a supervised ensemble learning technique which combines multiple
weak classification models (level 1 classifiers, IvI1) using a meta-classifier. This architecture improves upon
individual classifiers’ performance. It is well suited for a classification task such as ours, which is based on
tabular data with relatively few examples (231) and a much larger number of features (1,360): a scenario
where more complex models and deep neural networks fare poorly*>#3. A similar architecture has been
successfully used to predict drug response in breast cancer patients from the multi-omic characterisation of

their tumours*.
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Our CeSta pipeline implements a late integration approach to prevent high-dimensional ‘omics
(transcriptomics, methylomics) from overwhelming those with fewer features (typically genomics) by
dominating the feature selection phase (Fig 1b). We used a nested cross-validation approach for model
tuning, training, and validation, based on generating 50 train/test split replicates of our IRCC-PDX dataset
(with 160 and 71 PDXs, respectively, for the training set and test set) assembled via stratified sampling (Fig
1c). On each of these 50 training sets, our classifier pipeline performed a custom single omic feature
selection step which reduced the initial input of 1,360 engineered features (Fig. 1a) to a smaller subset,
with the size of the latter being amongst the hyperparameters tuned independently, across data splits (Fig.
1b, $16, Methods). We used these pre-selected IRCC-PDX features as the input to 4 different Ivl1 classifier
pipelines: 1) model-based forward feature selection, followed by elastic net logistic regression, 2)
ANOVA-based feature selection, followed by either SVC or 3) extraTrees classifiers, and 4) a catBoost
classifier pre-trained on a set of 55 multi-omic features from a collection of 860 pan-cancer cell lines from
the Cell Model Passport portal (panCMP*°), then refined on the same set of 55 features from the IRCC
PDX (continual learning, Methods). The Ivi1 predicted probabilities were then stacked and combined using

a soft voting classifier which outputs a binary classification of cetuximab sensitivity (Fig. 1bc, Methods).
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Figure 2 - Overview of cetuximab response and biomarker candidates. a) Mutation patterns of CRC
driver genes and mutational signature features among those with the most significant impact on CeSta
predictions (Fig 4a) of b) cetuximab non-responders (‘PD’, volume growth > 35%, in orange) and
responders (‘SD-OR’, volume growth <= 35%, in blue). Similarly, ¢) selection of continuous features which
best differentiate between PD and SD-OR PDX models.

Newly identified candidate biomarkers of cetuximab sensitivity

Our CeSta pipeline selects the most informative biomarkers of cetuximab sensitivity across training
examples sampled from the IRCC-PDX collection by combining univariate statistical tests (Fisher’s exact,
Mann-Whitney U test), percent lift, and logit (statsmodels v0.13.2 logit*®) models (Fig 1b, 1c, Tab S1, and
Methods). Here and in Fig. 2a, we provide an overview of some of CeSta’s top features (i.e. as ranked by
their impact on CeSta’s predictions in Fig 4a) and their relationship with cetuximab sensitivity. The latter
represents our binary target variable, with “responder” PDXs defined as those that grew in volume by 35%

or less at three weeks after treatment (a proxy of disease control, as mentioned above) (Fig 2b, Methods).

Among our genomics features, beyond the KRAS-NRAS-BRAF triple negative signature, CLSPN (FET p =
0.05, percent lift: -0.675), PTEN (percent lift: -0.594), and PIK3CA (percent lift: -0.654) mutations were also
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more frequently observed in non-responder PDXs. Additionally, few other driver gene mutations such as
EGFR (percent lift: -0.721) and MET (percent lift:- 0.702) were noticeably more likely to occur in
non-responder PDXs, though rare overall (21 and 8 observations in IRCC-PDX, respectively). Only
mutations in KRAS (logit p-value (logit p) = 0.002), BRAF (logit p = 0.037), PTEN (logit p = 0.049), and
NRAS (logit p = 0.03) were found to be associated with cetuximab resistance via single-omic multivariate
logit regression. Our CeSta approach combines these metrics (univariate and multivariate p-values,
percent lift) into an aggregated feature selection score (Methods) which allows us to detect both
well-supported and rare candidate markers.

CELLector subgroups 7 (APC, TP53, KRAS, PIK3CA mutated), 16 (TP53 wild-type; APC, KRAS, PIK3CA
mutated), and 5 (APC, TP53, KRAS mutated; PIK3CA wild-type) were significantly associated with a
non-responder phenotype (FET p = 0.002, 0.014, and 0.001, respectively). On the contrary, subgroup 12
(APC, TCF7L2, and TP53 mutated; KRAS, BRCA2, ATM, TPTE, EP400 wild-type) was approximately eight
times (FET p = 0.011, percent lift: 7.934) more likely to contain responder PDXs. However, this was quite
rare, with only 8 PDXs presenting this signature across IRCC-PDX. Subgroups 7,16, and 5 were also
significantly associated with cetuximab resistance after multivariate logit regression (logit p = 2 x 10°¢, 3 x
10, and 3 x 10, respectively).

Finally, FGFR1 CN gain events (FET p = 2 x 10, percent lift: 1.159) were more frequently observed in
responder PDXs. Although ERBB2 and MET amplification events (i.e. more than two copies gained) were
rare (5 and 3 examples in IRCC-PDX, respectively), they were more frequent in non-responders (percent
lift: -1 for both).

These genomic signatures agree with previous surveys of CRC poor-prognosis driver alterations 347,
suggesting at least a partial overlap between markers of colorectal cancer progression and those of

cetuximab resistance in PDX.

For transcriptomics features (Fig 2¢), while EGFR (Mann-Whitney U test p-value (MWU p) = .4) and EGF
(MWU p = .17) were not differentially expressed in cetuximab responders versus non-responders PDXs,
REG4 (MWU p =0.001), and EREG (MWU p = 7x10°) were instead significantly upregulated in resistant
and sensitive cases, respectively. REG4 (Regenerating Islet-Derived Protein 4) is a C-type lectin-like
mitogenic protein known to stimulate EGFR signalling and promote migration and invasion in CRC*8. High
REG4 expression is associated with poor prognosis and low recurrence-free survival in CRC patients*
and, more specifically, with cetuximab resistance® in CRC organoids and PDX models. A suggested
mechanistic explanation points to FZD and LRP5/6, both upstream components of the Wnt/B-catenin
pathway, which are involved in the REG4-mediated promotion of stemness induced by KRAS mutation in
CRC with APC loss®'. EREG (epiregulin) is a member of the EGF family and an EGFR ligand; it is thus
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involved in inflammation, cell proliferation, and cancer progression. EREG activity has been associated with
cetuximab sensitivity in preclinical models and patients®?®®, and it has been suggested that, in an
inflammatory environment, EREG can promote stemness and cancer cell proliferation by stimulating ERK
signalling through EGFR activation in a variety of cancer types®.

We also observed high PROGENy?® EGFR pathway expression scores associated with a non-responder
phenotype (MWU p = 0.002, percent lift: -1.879), whereas, as mentioned above, EGFR expression as an
individual feature was not. We observed a similar pattern for KRAS: It was not differentially expressed
across responders versus non-responders PDXs (MWU p = 0.23) but high MSigDB®>"-*®
HALLMARK_KRAS_SIGNALING_UP gene set ssGSEA scores were strongly associated with
non-responder PDXs (MWU p = 0.001, percent lift: -10.688). These observations suggest that engineering
aggregated expression features using ssGSEA and PROGENYy scores might be more informative than
individual gene expression features for cetuximab sensitivity prediction. However, it is also important to
note that feature aggregation might introduce additional complexity. PROGENYy signals for EGFR could be
partly driven by downstream ERK-mediated signals, which are hard to disentangle from KRAS-triggered

inputs. This may explain why both EGFRand KRAS signatures are associated with resistance to EGFR blockage.

Finally, we observed that higher MSigDB gene set ssGSEA scores for angiogenesis (percent lift: -2.168),
inflammatory response (percent lift: -3.7), UV and DNA damage response (percent lift: -6.63), and
Hedgehog (Hh) signalling (percent lift: -5.44), were all associated with non-responder PDXs (MWU p <<
0.01 for all). The Hh hallmark score is fascinating as it might corroborate the evidence that Hh pathway

activity correlates with reduced response to cetuximab®®.

When considering methylation features (Fig 2¢c), NMF cluster 1, the most hypermethylated, was enriched
for non-responders and MSI-like PDXs (FET p = 2 x 10, percent lift: -0.796). Cluster 4, the second-most
hypo methylated, was strongly enriched for responder PDXs (FET p = 3 x 10, percent lift: 2.299).

Across all omics, both categorical (Fig 2a) and continuous features (Fig 2b) were either too sparse or too
noisy to be adequate predictors of cetuximab response when considered individually. This highlights the
effectiveness of an integrative model which combines the most informative features across ‘omic

boundaries.
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Validation of the CeSta classifier

We set out to internally assess CeSta’s performance on our IRCC-PDX collection using a holdout shuffle
approach, followed by testing the null hypothesis that results generated by different classifiers are
equivalent®.

We started by generating 50 train/test set split (160 and 71 PDXs, respectively) replicates from our
IRCC-PDX dataset. We used a nested cross-validation approach to tune and train 50 independent CeSta
replicates (Fig 1c, “internal validation”). To provide a realistic and stringent benchmark, we evaluated many
baseline cetuximab sensitivity classifiers of varying complexity (Fig 3ab, $12). Here, we present results
from a performance comparison of our CeSta classifier against three of the best-performing baseline
classifiers. These build on the SOTA clinical predictor of cetuximab sensitivity: the KRAS-NRAS-BRAF
triple negative marker®*“° and whether the original tumour is located in the left portion of the patient’s
colon*. These features were combined into a cetuximab sensitivity classifier using either 1) a rule-based
approach entirely analogous to the clinical criterion for cetuximab treatment (i.e. PDXs with the triple
negative marker were predicted as responders to cetuximab, Fig 3a, “fripleNegRule” and
“tripleNegRightRule”) or 2) an elastic net penalised logistic regression model (Fig 3a, “e/Net baseline”)
taking in input the four features above as possible regressors (Methods). As for CeSta, we tuned and
trained 50 independent replicates of this latter baseline classifier over the 50 split replicates we previously

generated.
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Figure 3

CeSta outperforms the state-of-the-art baseline classifier on IRCC-PDX and CR-PDX

a) Classification performances quantified through F1 scores (harmonic mean of precision and recall) across
50 train/test CR-PDX split replicates (x-axis) for the stacked classifier (“CeSta”, in blue), an elastic net
penalised logistic model (‘elNet baseline’, in tan) which uses state-of-the-art clinical features for cetuximab
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sensitivity in CRC (KRAS, NRAS, BRAF mutational status, right colon tumour location), a rule-based
classifier using the KRAS-BRAF-NRAS triple negative clinical signature (tripleNegRule, in orange) as a
binary predictor, and another rule-based classifier which uses both the aforementioned triple-negative
signature and the “right colon” feature (tripleNegRightRule, in green).

b) Area under the receiver-operating-characteristic curve (AUROC) values and confidence intervals
(vertical bars, obtained via DeLong’s method for the total error in the AUC®"%?) across 50 IRCC-PDX
train/test split replicates (x-axis), for CeSta (in blue) and the elastic net penalised logistic model (‘elNet
baseline’, in tan) described in a).

¢) AUROC (DelLong’s method) computed over the external validation CR-PDX dataset for CeSta (in blue)
and the elNet baseline classifier (‘eINet baseline’, in tan) after both models are trained and tuned over
IRCC-PDX. The orange-shaded area between the CeSta and elNet baseline ROC curves represents the
improvement in AUROC. Decision point coordinates correspond to the false-positive and true positive rates
obtained from the corresponding classifier’s predictions. Here, rule-based classifier decision points overlap
with the elNet baseline’s. d) Confusion matrix from a comparison of CeSta classifier outcomes and PDXs
actual cetuximab response over the external validation CR-PDX dataset. Correct predictions are on the
diagonal highlighted in blue, incorrect predictions off the diagonal are highlighted in purple. e) CeSta
correct prediction counts over the CR-PDX external validation set grouped by PDX cetuximab sensitivity
(x-axis) and PDX KRAS-NRAS-BRAF triple-negative status (y-axis). CeSta correctly predicts additional
triple-negative non-responders (3) and triple-positive responders (1), which all baseline classifiers miss.

Figure 3 illustrates how CeSta outperforms all baseline models (mean F1: 0.941, Mann-Whitney post-hoc
test pval: <<0.001) on this internal validation setup. Interestingly, the elNet baseline performance,
measured via F1 score (i.e. the harmonic mean of precision and recall), fully matched the triple negative
rule-based classifier, indicating that the elNet model can recapitulate the clinical decision criterion. Figure
3b shows that CeSta outperforms this same elNet baseline classifier for the vast majority of replicate splits
(mean AUROC = 0.821 versus 0.780, Mann-Whitney post-hoc test pval: <<0.001), with an average .04
increase in ROC AUC, computed using the ROC AUC variance formula first proposed by Delong and

colleagues®'%3,

Following this encouraging result, we evaluated whether our CeSta classifier would outperform the clinical
SOTA baseline classifier on an independent cohort of CRC PDX models (Fig 1b, “external validation”). This
external validation cohort (from now on CR-PDX), consisting of 50 CRC xenografts, was collected and
characterised at the genomic, transcriptomic and clinical levels at Charles River Discovery Research
Services and included samples from European patients (Methods).

We tuned and trained CeSta and the baseline model over the entire IRCC-PDX collection (N = 231). We
then compared their predictive performance on the never-before-seen CR-PDX set (N = 50) using the

same set of multi-omic engineered features we described previously for IRCC-PDX (Methods). Similar to
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what we observed in the internal validation phase, our CeSta classifier outperformed the clinical baseline
classifier (AUROC = 0.88 and 0.78, respectively), with an improvement of 0.1 ROC AUC (Fig 3c). More
specifically, our CeSta pipeline correctly predicted three additional KRAS-NRAS-BRAF triple-negative
PDXs as cetuximab non-responders and one additional triple-positive as a responder; on top of matching

biomarkers correctly predicted by the baseline classifier (Fig 3d,e).

Explanation of the CeSta classifier

Post hoc explanations approximate the behaviour of a classifier by modelling relationships between feature
values and the classifier’s predictions. Here, we relied on SHapley Additive exPlanations (SHAP®*) to
define local feature importance and their impact on the CeSta classifier’s predictions. SHAP is a game
theoretic approach through which values representing a feature’s average marginal contributions over all
possible feature coalitions are computed.

Our CeSta classifier leverages additional informative genomic (e.g. FGFR1 amplification) and
transcriptomics (e.g. EREG and REG4 expression; angiogenesis, inflammation, and Hh signalling ssGSEA
scores) features (Fig 4a) to improve upon the clinical baseline classifier (Fig 3b,c) while retaining the
latter’s top predictive features, namely the KRAS-NRAS-BRAF signature. As shown in the CeSta SHAP
waterfall plot in Figure 4b, we observed high Hh signalling, high angiogenesis ssGSEA scores, and the
KRAS, APC, TP53 mutation signatures being predictive of cetuximab resistance. In the same panel, high
EREG expression and, more noisily, low REG4 expression and FGFR1 amplification appeared to influence
the model towards a “responsive” prediction. Further, stacking our four Ivl1 classifiers resulted in a slight
performance increase over the best-performing Ivl 1 classifier (i.e. the ANOVA SVC pipeline) taken on its
own, albeit with substantial AUROC confidence interval overlap (Fig 4e).

We also detected very low collinearity among the top CeSta features’ values, with the strongest
anticorrelation between the Hh signalling ssGSEA score and EREG expression (Pearson’s r: -0.2). In
contrast, high EREG expression was associated with both increased angiogenesis (Pearson’s r: 0.4) and

high inflammatory response (Pearson’s r: 0.3) ssGSEA scores (Fig. $13).
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Figure 4 - CeSta leverages informative features and combines weaker classifiers. a) Feature
importance detected by CeSta, expressed as the mean absolute SHAP value (x-axis) for top significant
features (y-axis). b) Feature impact on CeSta output using SHAP values (x-axis) for each top feature
(v-axis) across all 50 PDXs in the CR-PDX validation set (scatter dots). The dot colour indicates the feature
value in the corresponding example. The features with the largest importance in a) have the greatest
impact on the model outcome, as well as a clean horizontal separation of positive and negative effects
based on their value for that instance, as we can observe for KRAS mutation, EREG expression. ¢) CeSta
top informative features’ performances on IRCC PDXs and the external cohort. Relationship between a
CeSta feature’s SHAP values and cetuximab sensitivity on the train set (x-axis; full IRCC PDX set) and test
set (CR PDX set) examples, after removing the effect of all other features (partial correlation, parSHAP).
Dot size and colour indicate a feature’s mean absolute CeSta SHAP value on the training set, which
quantifies a feature’s impact on model prediction (Fig 5a). The closer a dot is to the diagonal, the more its
corresponding train and test parSHAP values are similar. CeSta’s top features (KRAS mutation, EREG

expression, hedgehog signalling, NRAS mutation) all fall close to or above the diagonal, indicating either a
very good fit on both datasets or slight underfitting.
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d) CMP-trained model’s top informative features underperform on the external cohort. Relationship
between a CatBoostCMP feature’s SHAP values and cetuximab sensitivity on the train set (x-axis; panCMP
set) and the test set (CR-PDX) after removing the effect of all other features (parSHAP). Dot size and
colour indicate a feature’s mean absolute CatBoostCMP SHAP value on the training set, this quantifies a
feature’s impact on model prediction. As for a), the closer a dot is to the diagonal, the closer its
corresponding feature performs on our train and test sets. Many of this catBoost model’s top features
(VEGFC expression, PTEN expression, MET expression) fall in the lower right quadrant of the plot,
indicating overfitting.

e) AUROC confidence intervals (Cl, vertical bars, obtained via DeLong’s method) computed over the
CR-PDX validation dataset for CeSta (in blue), three of the level 1 classifiers (in orange), a catBoost model
trained on cell line data from the panCMP dataset (‘catBoost_panCMP’, in green), and the same catBoost
model retrained on our IRCC-PDX dataset (‘catBoost_panCMP+IRCC-PDX’). Stacking four level 1
classifiers results in a slight performance improvement for CeSta over the best-performing level 1 classifier
(ANOVA_SVC), albeit with substantial AUROC CI overlap. The cell-line trained CatBoost classifier is a poor
predictor of cetuximab sensitivity in PDXs (no Cl overlap). When this latter model is further trained on
CR-PDX dataset (continual learning), its performance on the CR validation set is comparable with the other
3 IRCC-PDX trained Ivl 1 classifiers.

Comparison of cetuximab response in cell lines and PDX models

PDX models are thought to recapitulate inter and intra-tumour heterogeneity observed in patients more
faithfully than immortalised cell lines. They provide at least some stromal microenvironment interactions
and are more likely to follow pathways of drug sensitivity or resistance found in primary human tumours®.
However, 2d cell line models are undeniably cheaper as well as simpler to screen and characterise, an
advantage that has enabled the generation of large multi-omics cell line datasets**¢%¢” and aided
systematic drug and functional genetic screening efforts'-®.

We investigated whether a cetuximab sensitivity classifier trained 1) on a large pan-cancer multi-omic
dataset (panCMP, N = 860) of 2d cell line models derived from the CMP dataset*®, or 2) on a small
colorectal cancer-specific subset of the same panCMP cell-line dataset (CRC-CMP, N = 44) would compare
favourably against 1) the classifier itself, retrained on the IRCC-PDX dataset (N = 231) or 2) the classifier
itself, retrained on a randomly selected subsample of IRCC-PDX, with the same size as the colorectal 2d
cell-line dataset (subIRCC-PDX, N = 44).

We observed that a panCMP-trained boosting classifier (catBoost® performed very poorly in predicting
PDX sensitivity to cetuximab (Fig. 4). When this catBoost model was further trained on the IRCC-PDX
dataset (continual learning, Methods), its performance on the CR-PDX validation set became comparable

to that of the other IRCC-PDX trained Ivl1 classifiers. We observed a similar result when we traded several
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examples for tissue specificity in the cell-line dataset and compared a CRC-CMP-trained classifier against
itself after retraining on sublIRCC-PDX (Fig S$14).

We evaluated the partial correlation between a feature’s SHAP values and the target variable (parSHAP) to
investigate further these differences in model performance across different training datasets. In this case, a
positive parSHAP suggests that the classifier has identified and successfully exploited an informative
feature for its current classification task. Given that our CeSta classifier performed just as well on the
internal and external validations, it was not surprising to see matching parSHAP across CeSta SHAP
values and cetuximab response in IRCC-PDX and CR-PDX (Fig 4c) for most features, and particularly for
those with the most significant impact on model prediction (Fig 4a,b). On the other hand,several of the
panCMP catBoost classifier’s top features (VEGFBC, PTEN, MET, PIK3CA and LYZ expression, TCF7L2
loss) did not perform as well on CR-PDX, compared to the cell lines training dataset (Fig 4d), that is: their
SHAP values’ partial correlation with the target variable was lower across CR-PDX. This suggests that
cell-line-trained models of cetuximab response struggle to predict PDX cetuximab sensitivity, primarily due
to differences in the relationship between expression features and the target variable. These transcriptional
differences between cell lines and PDXs might be due to the intense selection pressure imposed during cell
line establishment, which makes available 2d models only partially representative of the general patient

population™,

Discussion

In this work, we describe and make available a multi-omic characterisation and drug screening data for one
of the largest CRC PDX collections to date. This dataset recapitulates typical CRC alteration patterns
observed in patient trials and gold-standard primary cohorts across all examined ‘omics, offering a precious
combination of complete cetuximab response labels and dense multi-omic features. This cohort provides a
realistic, stable platform for cetuximab sensitivity biomarker discovery and drug response modelling.
Building on this PDX collection, we developed CeSta, a multi-omic ensemble classifier of cetuximab
sensitivity based on a stacked ensemble architecture. When benchmarked against several state-of-the-art
classifiers, CeSta outperformed all of them, including a classifier based on the current clinical criterion for

patient stratification in cetuximab therapy prescription (KRAS, NRAS, BRAF negative mutational status and
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left sidedness of the primary tumour in the colon), both in a robust internal holdout shuffle validation and in

a fully independent external validation dataset derived from an independent patient population.

CeSta identifies and leverages individual drug response biomarkers to increase cetuximab sensitivity
prediction accuracy. These include epiregulin (EREG) and amphiregulin (REG4) expression levels, Hh
signalling, angiogenesis, and inflammation gene set cumulative expression scores. These informative
transcriptional features, in particular, show a weaker correlation with cetuximab response in 2d CRC
models than PDXs, corroborating our observation of poorer predictive performance for models trained on
cancer cell line datasets. The newly identified transcriptional biomarkers might be viable candidates for
inclusion into an improved companion diagnostic for cetuximab sensitivity using clinical-grade gene
expression technologies, such as Nanostring.

Collectively, our results illustrate the value of extensive, cancer type-specific, and well-characterised PDX
collections for drug screening, drug sensitivity modelling and mechanism of action discovery, and motivate
future efforts to increase resource dimensions and improve analytical approaches as a means to enhance

further the informative power and translational potential of PDX-based research.
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METHODS

Primary samples

We set out to build a biobank of surgical materials from mCRC patients. The full study population consisted
of tumour samples from 570 colorectal cancer patients that underwent surgical resection of liver
metastases at the Candiolo Cancer Institute (Candiolo, Torino, Italy), the Mauriziano Umberto | Hospital
(Torino), the San Giovanni Battista Hospital (Torino) and the Niguarda Hospital (Milano, Italy) from
2008-2015. Informed consent for research use was obtained from all patients at the enrolling institution
before tissue banking, and study approval was obtained from the ethics committees of the centres. Tumour

tissue (hepatic metastasis) not required for diagnosis was used to generate PDXs.

Genomic data collection

lllumina PairEnd pre-capture libraries were synthesised from double stranded DNA according to lllumina’s
protocol (lllumina Inc.). Genomic DNA was quality controlled and 200ng were used for library preparation
per sample. DNA was sheared into 300 base-pair fragments (1ug DNA in 100ul volume) using the E210
Covaris plate system (Covaris, Inc. Woburn, MA). The fragmentation settings used are Intensity of 4, 200
Cycles per Burst, for 120 seconds. Sequencing libraries were amplified using the “bridge-amplification”
process by Illlumina HiSeq pair read cluster generation kits (TruSeq PE Cluster Kit v2.5, lllumina) and were
hybridised to custom RNA baits for the Agilent SureSelect® protocol. Paired-end, 75bp sequence reads
were generated using lllumina HiSeq 2000®. The sample mean sequencing coverage was ~ 700X if the
lost coverage because of duplicated and off-target reads is considered. The sequenced reads were aligned
to the reference human genome (NCBI build37) using BWA-aln 0.5.9 (Li H. & Durbin R.,2009). The .bam
files for all sequenced samples are stored at the European Genome-Phenome Archive
(https://www.ebi.ac.uk/ega/ at the EBI) with accession number EGAD00001003334 (cram files are in
EGADO00001003334, the study accession number is EGAS00001001171).

555 samples were sequenced using a custom-designed targeted colon cancer panel (SureSelect, Agilent,
UK) consisting of all coding exons of 116 genes, 22 genes recurrently amplified/deleted, 51 copy number
regions, 121 MSI regions and 2 gene fusions (RSPO2 and 3). Samples were fragmented to an average
insert size of 150bp and subjected to lllumina DNA sequencing library preparation using Bravo automated
liquid handling platform.

Sequencing was performed on an lllumina HiSeq2000 machine using the 75-bp paired-end protocol
targeting 1Gb sequence per sample. Data quality was checked for 95% target coverage at 100x and

mutation analysis was performed using an in-house algorithm. Sequencing reads are aligned to the NCBI
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37 human genome build using the BWA algorithm®® with Smith-Waterman correction and PCR duplicates
are removed. Base substitutions, small insertions or deletions, and breakpoints were identified by
comparison against an unmatched control using established bioinformatic algorithms: CaVEMan
(https://github.com/cancerit/CaVEMan/) for mutations, Pindel (https://github.com/genome/pindel) to detect

insertions and deletions, and CNVKIit (https://github.com/etal/cnvkit) for copy number detection.

We used an unmatched blood sample sequenced to an equivalent depth as control. To account for the
absence of matched control, a bespoke variant selection pipeline was developed. To enrich for
high-confidence somatic variants, we performed further filtering by removing: known somatic
polymorphisms using human variation databases -- Ensembl GRCh37, 1000 genomes release 2.2.2 and
ESP6500 -- and whether the same polymorphism was observed recurrently in 93 normal DNA samples
sequenced using the same protocol and depth.

Cancer genes (CGs) are genes for which we can observe evidence of positive selection. Several statistical
approaches have been developed to categorise the likelihood of a given gene in a specific tumour type to
undergo a mutation at a high enough frequency for this to be indicative of a positive selection process. The
majority of these methods rely on a comparison of non-synonymous (dN) and synonymous (dS) mutations
in each gene and factor in additional covariates. We have elected to use as the foundation of our set of
colorectal CGs two recent statistical approaches developed using large TCGA datasets”"".

6426 driver variants across 113 genes are identified using the statistically significant single-codon hotspots
from Chang et al.*' and variants that are predicted as drivers using the intOGen’? framework. These
variants are combined to generate a reference set of driver variants for this study, annotated based on their
origin (Intogen driver only, Chang driver only, or common to both), their hotspot status, and whether they
are known drivers of colorectal cancer. The final set of driver variants are used for annotating our PDX

variants.

To assign segment log2R to individual genes we used coordinates overlap (BEDtools v2.29.273,

https://github.com/arg5x/bedtools2) between them and gene coordinates (TSS-TES) obtained from

GENCODE (version 34, https://www.gencodegenes.org) for a set of 568 intOGen driver genes.

TCGA COAD/READ copy number calling

We downloaded masked, segmented copy number variation (CNV) data from TCGA-COAD and
TCGA-READ (~1200 samples) on 02/09/2020 via the Genomic Data Commons Data Portal (GDC,
https://portal.gdc.cancer.gov/repository) using the TCGADbiolinks R package (v2.20.074).
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The GDC CNV pipeline uses Affymetrix SNP 6.0 array data (harmonised to GRCh38) to identify genomic
regions that are repeated and infer the copy number of these repeats. This pipeline uses the DNAcopy
R-package’ to perform a circular binary segmentation (CBS) analysis. CBS translates noisy intensity
measurements into chromosomal regions of equal copy number. The final output files are segmented into
genomic regions with the estimated copy number for each region. The GDC further transforms these copy
number values into segment mean values, which are equal to log2(copy-number/2). Diploid regions will
have a segment mean of zero, amplified regions will have positive values, and deletions will have negative
values "®. Masked copy number segments are generated using the same method except that a filtering step
is performed that removes the Y chromosome and probe sets that were previously indicated to be

associated with frequent germline copy-number variation.

We then ran both GISTIC2.0"" (ftp.broadinstitute.org/pub/GISTIC2.0] and ADMIRE v1.27®
(https://ccb.nki.nl/software/admire/) analyses across all the combined TCGA COAD/READ data to filter for

"significant" copy number altered segments giving rise to robust CNV events across this patient cohort.

GISTIC2.0 was executed using the recommended “GISTIC2 Command Line Parameters” listed in the GDC
copy number segmentation documentation at

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/#fcopy-number-segmentation .

Here the “segmentation file” corresponds to the masked segmented copy number variation downloaded
from TCGA COAD/READ, the “marker file” contains the aforementioned probe coordinates filtered for
“freqcnv == FALSE” as per the GDC reference files
(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files), and the “reference gene file” is
the GRCh38 reference provided alongside GISTIC2.0 .

ADMIRE1.2 was executed using the same parameter configuration shown in the example use case

provided at https://ccb.nki.nl/software/admire/readme.txt with the “segmented CNA” file again

corresponding to the combined COAD/READ data, and the “marker file” containing the filtered probe

coordinates.

The output of these two analyses identifies CNV events spanning multiple segments from different samples
across the patient cohort. We then merged these results by computing the union of all (fully or partially)
overlapping ADMIRE or GISTIC segments, and included all non-overlapping segments from either tool
resulting in a set of 2382 events. From this combined output, we extracted event and segment coordinates

and mapped both to 552 known cancer driver genes in the intOGen catalog’?

(02/02/2020 release, https://www.intogen.org/download?file=IntOGen-Cohorts-20191112.zip) using
BEDtools v2.29.2" (https://github.com/arg5x/bedtools2).
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Finally, we computed gene-specific CNV event frequencies by counting the number of TCGA samples with
copy number altered segments mapping to both 1) the event and 2) the gene which shared the same CNV

direction as the event, divided by the number of COAD/READ samples.

Comparing driver gene SNPs in TCGA COAD/READ and PDXs

Frequencies of somatic alteration for TCGA samples was obtained from cBioPortal, selecting the Colorectal
Adenocarcinoma TCGA, PanCancer atlas

(https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018) dataset.

Comparing copy number variation events in TCGA COAD/READ and PDXs

[ T] ” W

We first binned PDX segment log2R values into three categories (“Loss”, “Neutral”,
GISTIC log2R thresholds we applied to the TCGA COAD/READ data (-.2, .1) [using the same threshold as

in TCGA data here might be too strict for PDx sequencing data where there's less non-tumour tissue

Gain”), using the same

contamination as murine cells/DNA are filtered out]. We then computed gene-specific CNV event
frequencies by counting the number of PDX samples with copy number altered segments mapping to each
gene, divided by the number of PDX samples.

We then computed the Spearman correlation coefficient for the TCGA and PDX genewise CNV event (here

Only “LOSS”, “Gain”) frequencies_

Assessing PDX copy number stability within lineages

We grouped 91 PDX samples, according to their genealogy, into 13 multi-passage lineages and retrieved
gene-specific log2R data for 569 genes from the analysis described in the previous sections. We then
computed the Pearson correlation across all gene log2Rs for each pair of PDX samples and labelled each
Pearson coefficient according to whether the two samples belonged to the same lineage or to different

ones.

Assessing PDX mutational stability within lineages

We analysed somatic mutations along multi-passage PDX lineages using the same set of 91 PDX samples

grouped into 13 lineages as described above. To rule out false positive calls for putative WT samples in
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lineages with apparent inconsistencies (Supplementary Figure S4), we further checked the coverage and
absolute number of reads supporting each individual SNVs and only found single mutated reads in three

WT samples with coverages ~400X.

Gene expression data collection

RNA was extracted using miRNeasy Mini Kit (Qiagen), according to the manufacturer’s protocol. The
quantification and quality analysis of RNA was performed on a Bioanalyzer 2100 (Agilent), using RNA 6000
Nano Kit (Agilent). Total RNA was processed for RNA-seq analysis with the TruSeq RNA Library Prep Kit
v2 (lllumina) following manufacturer’s instructions. Sequencing was then performed on Illlumina Nextseq
500 at Biodiversa SRL, obtaining single end 151bp reads, aiming at 20M reads.

Read counts were obtained using an automated pipeline (https://github.com/molinerisLab/StromaDistiller),
that uses a hybrid genome composed of both human and mouse sequences to exploit the aligner ability to
distinguish between human derived reads, representing the tumour component, and mouse ones,
representing the murine host contaminating RNA material.

Reads were aligned using STAR™ (version 2.7.1a, parameters --outSAMunmapped Within
--outFilterMultimapNmax 10 --outFilterMultimapScoreRange 3 --outFilterMismatchNmax 999
--outFilterMismatchNoverLmax 0.04) versus this hybrid genome (GRCh38.p10 plus GRCm38.p5hg38 with
GENCODE version 27 and mouse GRCm38 with GENCODE version 16, indexed with standard
parameters and including annotation information from the GENCODE 27 plus m16 comprehensive
annotation).

Aligned reads were sorted using sambamba® (version 0.6.6) and only non-ribosomal reads were retained
using split_bam.py®' (version 2.6.4) and rRNA coordinates obtained from the GENCODE annotation and
repeatmasker track downloaded from UCSC genome browser hg38 and mm9.

featureCounts (https://rdrr.io/bioc/Rsubread/man/featureCounts.html, version 1.6.3) was run with the
appropriate strandness parameter (-s 2) to count the non multi-mapping reads falling on exons and
reporting gene level information (-t exon -g gene_name) using combined GENCODE basic gene annotation
(27 plus m16).

Sequencing data was available for 480 samples, but different filtering criteria lead to 470 QC passing
samples. These criteria include: 1) >= than 15M total reads, 2) >= 60% reads assigned to genes by feature
counts, 3) >= 30% reads assigned to human genes over the total of assigned reads.

These filters let us retain only samples with at least 5SM human reads. Having defined the samples with
acceptable mapping, we set out to identify the ones with lymphomatous characteristics*, to remove them.
We considered different sources of information: 1) principal component analysis of the expression data

itself (variance-stabilised); 2) computation of a sample level score for a leukocyte expression signature®?,
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averaging the robust fpkm for all the signature genes; 3) methylation data, when available (see Methylation
analysis); 4) histopathological analysis for a subset of tumours which were explanted and routinely stained
with H&E.

This analysis highlighted a set of samples with lymphomatous characteristics pointed out coherently by the
different data and prompted us to remove samples marked by at least one of the filters (specifically for
expression PC2 >= 30 and leukocyte signature average >= 48), to correctly filter samples with only the
expression data available.

Gene-level variance stabilised expression and robust fpkm values for 33670 genes were obtained using
DESeq2® (version 1.26.0), tmm using edgeR®* (version 3.28.1) using only read counts from human genes.
CRIS and CMS subtyping was obtained for each individual tumour averaging the VST values for replicates,
when available, using the R package CMScaller* (v2.0.1, FDR = 0.05 and RNAseq = TRUE) and the R
package CRISclassifier* (v1.0.0, FDR< 0.2).

Github repositories: https://github.com/molinerisLab/StromaDistiller,
https://github.com/vodkatad/RNASeq_biod_metadata and https://github.com/vodkatad/biodiversa_ DE
The .fastq files for all sequenced samples are stored at the European Genome-Phenome Archive
(https://lwww.ebi.ac.uk/ega/ at the EBI) with accession number EGAS00001006492.

Methylation data collection

Methylation profiles for 568 Colorectal Cancer samples were obtained using lllumina MethylationEPIC bead
chip, which measures methylation status at about 850,000 sites using hybridization on two different probes
after bisulfite treatment on DNA. These samples comprise tissue from the original patient, either primary
tumours or metastases, or both in some cases, and the corresponding engrafted tumours in mice (PDXs).
Raw data have been processed using the minfi package
(https://bioconductor.org/packages/release/bioc/html/minfi.html, version 1.32.0). Data preprocessing was
performed following the best practices outlined by Bioconductor minfi vignette and documentation, and
Hinoue et al.*®

(https://www.bioconductor.org/packages/devel/workflows/vignettes/methylationArrayAnalysis/inst/doc/meth

ylationArrayAnalysis.html).

Background noise was removed using the minfi function preprocessNoob(), which implements the noob
background subtraction method with dye-bias normalisation. Samples and probes that did not pass the
quality control were then excluded from further analyses.

For samples, minfi provides a simple quality control plot that represents the log median intensity in both the
methylated (M) and unmethylated (U) channels. By adopting the default median intensity cutoff of 10.5, six

samples with lower values were removed from the dataset.
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We then filtered the probes, based on their detection p-value (det-Pval), which is indicative of the quality of
the signal. By filtering out all those probes of which det-Pval was higher than 0.01 in at least one sample,
we removed 64,361 probes. We also removed all the probes mapping on X and Y chromosomes (19,627),
to remove gender bias, and those probes that are known to bind to common SNPs (30,435). Moreover,
using the list originally published by Chen et al.?%, we removed 43,177 probes that have been demonstrated
to map to multiple places in the genome.

To work with a coherent set of probes for all the samples, in particular xenografts, we decided to apply one
last probes filter, removing all those probes known to specifically map on murine genome as well, in order
to remove possible methylation signal coming from the murine infiltrate, with the same rationale followed for
microarray data®2. To do this, we combined two lists of murine-specific probes, obtained from Needhamsen
et al.® and Gujar et al.®’, which resulted in removal of other 22,537 probes.

We combined the hg19 annotation package (llluminaHumanMethylationEPICanno.iim10b2.hg19 version
0.6.0), with the liftOver() function from the rtracklayer package® (version 1.46.0) and the imported file
hg19ToHg38.over.chain.gz (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/) in order to convert
the remaining 700,298 probes’ coordinates from hg19 to hg38.

Moreover, as done for expression data (See Gene expression data collection), we removed samples with
clear lymphomatous characteristics. Specifically for methylation, samples with PC2 >= 500 were almost
always flagged by H&E analysis when it was available, therefore we considered all of them to be
lymphomatous.

To identify groups of samples sharing similar methylation profiles, Beta values were used to run

non-negative matrix factorization algorithms in R (https://www.rdocumentation.org/packages/NMF/, version

0.22.0). k=5 was identified as the best parameter by the cophenetic correlation coefficient (bootstrapping
arguments: rank=2:6, nrun=100, seed=42, .options='p70"). We therefore selected 5 as the number of

classes used to characterise the methylation landscape of our samples.

The .idat files for all samples are stored at the Gene Expression Omnibus (GEO) with accession number
GSE208713.

Clinical data collection

Since the patients whose tumours are included in our biobank were not enrolled in a specific clinical trial
and underwent surgery in different hospitals, our clinical data collection is based on personal

communications with the Surgery Departments. This is the main reason behind the sparseness of the data.
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Measuring cetuximab response in PDX models

After surgical removal from patients, each metastatic colorectal cancer specimen was fragmented and
either frozen or prepared for implantation: cut in small pieces and 2 fragments were implanted in 2 mice.
After engraftment and tumour mass formation, the tumours were passaged and expanded for 2 generations
until production of 2 cohorts, each consisting of 12 mice. Tumour size was evaluated once-weekly by
calliper measurements and the approximate volume of the mass was calculated using the formula
4/31-(d/2)*:D/2, where d is the minor tumour axis and D is the major tumour axis. PDXs derived from each
original fragment were then randomised for treatment with placebo (6 mice) or cetuximab (6 mice) -
animals with established tumours, defined as an average volume of 400 mm?, were treated with cetuximab
(Merck, White House Station, NJ) 20 mg/kg/twice-weekly i.p.

For assessing PDX models response to therapy, we used averaged volume measurements at 3 weeks
after treatment normalised to the tumorgraft volume at the time of cetuximab treatment initiation. 231
tumour grafts were classified as follows: 1) “objective response” (OR) models with a decrease of at least
50% in tumour volume 2) “progressive disease” (PD) models with at least a 35% increase in tumour
volume, and 3) “stable disease” (SD) for the ones in between?.

Finally, to obtain a balanced dataset, we elected to combine the “SD” and “OR” classes into a single
“SD-OR” (i.e. treatment responder) class, turning our cetuximab response modelling task into a binary
classification problem.

All animal procedures were approved by the Ethical Commission of the Candiolo Cancer Institute and by
the Italian Ministry of Health (authorization 806/2016-PR) All animal procedures for the CR PDX data set
were executed in an AAALAC accredited animal facility and approved by the Committee on the Ethics of

Animal Experiments of the regional council (Permit Numbers: G-13/13 & G18/12).

Genomic feature engineering

To reduce data sparsity, we reshaped our mutational annotations into a binary matrix -- with columns (116
in total) corresponding to genes and rows (231 in total) corresponding to PDX models -- where a value of 1
indicates that one or more SNVs mapping to a given gene have been observed in a given PDX model. We
also generated additional mutational features: a “mutational burden” feature containing the sum of all
mutated genes for each PDX, and a set of “multiple mutations” features, indicating the number of unique
SNPs hosted by a given gene in a PDX model. Finally, we filtered out any binary feature which was
observed in fewer than 5 PDXs across our IRCC-PDX collection. To obtain a compact representation of
relevant co-occurent or mutually-exclusive mutations, we developed an extended version of the CELLector

methodology?” that partitioned the PDx mutation landscape recursively finding subgroups defined by the
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most recurrent combinations of genomic events (mutations or copy number alterations). Briefly, the original
version of CELLector (from now on referred to as hierarchical), recursively applies the Eclat algorithm® on
a population described by a binary event matrix (BEM), with each column representing a genomic feature
and 0/1 possible entries indicating the absence/presence of that feature in a sample. In the hierarchical
version of CELLector the genomic background of a population is represented as a binary tree whose
topology is defined by the most-frequently observed combination of genomic features (referred as
signature) together with the fraction of samples for which those mutations occur and hence satisfy the
signature rule (sequence of presence/absence of specific features). In particular, CELLector first identifies
the root as the genomic feature with largest support, i.e. number of patients in which that feature is
observed, and then defines two sibling nodes. The left child corresponds to the subset of samples
satisfying the parent feature and the feature with greatest support among the samples in the parent node.
The right child corresponds to the complementary population of the parent node, composed of samples not
satisfying that feature, and among those the feature with greatest support. This algorithm is applied
recursively until no sub-population satisfying a certain signature rule of at least a minGlobSupp percentage
of samples is identified, with minGlobSupp being a hyperparameter defined apriori. This hierarchical
structure outputs K recursive signature rules that can be converted into a partition of K+7 groups as
follows.
Starting from CELLector hierarchical binary tree,

1. for each node starting from the root, we define with U the set of samples satisfying that node rule

defined as the corresponding signature S.

2. If the considered node has a left child (Ul c U) associated to feature F,we defined with u :=U,

the set of samples to be removed from U.
3. If U, has additionally a right child U _defined by feature F , U isupdated withU := U UU
l r r rm rm rm T

4, If Ur has another right child U” defined by signature F”, the update is repeated as
u :=1U_ U U and this step is performed recursively until the considered node has no right child.
5. The new set of samples is defined as u = U\U_ and corresponding signature rule representing

the group is defined as S, ~ F, ~F, ~F ..

If the condition in step 2. is not satisfied, the group is directly defined as samples in node U and satisfying
signature S rule. Once every node in the hierarchical binary tree was considered, the last group is defined
as the remaining samples that were not satisfying any hierarchical signature rule. The signature defining
this group is created as the negation of the root node and all the recursive right childers, as described
before. Note that the newly created groups could be composed of a fraction of patients lower than the

minGlobSupp.
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We applied the partitioned version of CELLector (V2.0.0) to the somatic mutation PDx space in BEM format
with minGlobSupp fixed at 0.02.

Similarly to what we describe for above for mutation features, we discretise each of our 1163 gene-level
log2 features into four categories (“Loss”, “Neutral”, “Gain”, “High Gain”), using, in addition to the GISTIC
log2R thresholds for “Loss” and “Gain” (-.2, .1), an additional threshold at 2, above which a gene is
considered to be involved in a “High Gain” event in which more than 1 additional copy is gained.

This “High Gain” category is added to help capture any association between driver gene high-order copy
number gain and cetuximab sensitivity.

We then reshape these categorical copy number annotations into a binary matrix with columns
corresponding to individual CNV events involving a given gene (e.g. “CD12_Gain”) and rows corresponding
to PDX models. We then remove features which have the same value in 85% or more of our training PDX
models.

After feature engineering and filtering, we are left with 1,295 genomic features.

Transcriptomic feature engineering

To reduce RNAseq data dimensionality from an initial input of 33,670 gene-level expression features, as
well as to include state-of-the-art knowledge of cancer signalling pathways and transcription factor activity,
we computed 1) GSVA scores® (_http://www.biomedcentral.com/1471-2105/14/7) using the GSVAR

package (version 1.34.0, R 3.6.3, kcdf="gaussian") on tmm expression levels and the MSigDB Hallmark

gene sets? as well as 2) PROGENYy scores computed using the progeny R package®. Both sets of scores
were computed separately for each train/test replicate (see following sections) to avoid any information
leakage.

Finally, we considered that many PROGENYy and Hallmarks gene set are partially overlapping: for example
PROGENYy’s "NFkB" set corresponds to Reactome’s "TAK1 activates NFkB by phosphorylation and
activation of IKKs complex" and “RIP-mediated NFkB activation via ZBP1", and thus it shares 8 of its 48
genes with PROGENYy’s “TNFa” set (Reactome’s "TNF signaling”). To avoid excessive collinearity between
scores based on overlapping gene sets, we first computed the Pearson correlation coefficient (PCC) for all
pairs of engineered transcriptomic features over all instances in the training set, and considered as
“collinear” all pairs with a PCC larger than .7. Here, for each pair of collinear features, we discard the one
with the higher Mann-Whitney U test p-value between responder and non-responder PDXs. This yielded 38

engineered expression features.
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Clinical feature engineering

We consolidated our clinical data by: 1) dropping any features with more than 40% missing values, 2)
dropping redundant or inconsistent features (“OXALIPLATIN-based treatments”, "N", "T","N of other
metastatic resections before collected metastasis”, "M", "Site M", "Site of primary", "Site of primary
DICOT"), 3) converting “Stage at first diagnosis” annotations to an integer score and retaining only the
highest score for a given PDX model where multiple annotations are present, 4) converting the “ Lymph
node density” annotations to a numerical score corresponding to the ratio of positive lymph nodes over the
total lymph node count, 5) encoding all treatment backbone annotations as categorical features, 6)
one-hot-encoding all sample anatomical location annotations. This yielded 25 features covering patient,

previous treatment, and tumour metadata.

Model architecture

For our cetuximab response model we selected a stacking classifier architecture. Stacking is an ensemble
learning technique which combines the individual contributions of multiple classification models
(level-1-classifiers) via a meta-classifier. Here, we use a soft voting classifier which outputs the final binary
class labels (cetuximab non-responder; cetuximab responder) based on the argmax of the sums of the

predicted probabilities from the level-1-classifiers (scikit-learn VotingClassfier®'*2, v1.02)

Our CeSta classifier uses a late integration approach to prevent high-dimensional ‘omics (transcriptomics,
methylomics) from overwhelming smaller omics by dominating the selected feature set. We perform an
initial round of single-omic supervised feature selection whose output is then piped into each of the four Ivi

1 classifiers described below (Fig. 1b).

This selection step ranks features according to the product of 1) a feature rank based on the Fisher’s exact
statistic (scipy v1.9°%?) for binary features or Mann-Whitney U-test statistic (scipy v1.9) for continuous
features, 2) a feature rank based on percent lift, and 3) a feature rank based on logit model (statsmodels
v0.13.2 logit) coefficients. A set of top K features is then selected from this ranked list, with K being one of
CeSta’s hyperparameters. This selection process is applied exclusively to the training set in each train, test
split replicate during the internal validation (Fig. 1c and below) to avoid any information leakage. In Results
and in Table S1 we are showing selected features and corresponding statistics and metrics obtained over

the entire IRCC-PDX set as per the CeSta instance used for external validation (Fig. 1¢)
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We used 4 distinct level-1-classifier pipelines (Fig 1b): 1) a model-based (scikit-learn KNeighborsClassifier)
forward feature selection, followed by elastic net penalised logistic regression (scikit-learn
LogisticRegression with ‘penalty’ set to ‘elasticnet’), 2) ANOVA feature selection (scikit-learn f_classif),
followed either by a support vector classifier (scikit-learn SVC) or 3) an extra trees classifier (scikit-learn
ExtraTreesClassifier), and 4) a CatBoost classifier (catBoost 1.0.5%) trained on the same set of 30 features
from CMP, then on IRCC PDX (continual learning).

Each level-1-classifier was trained (or re-trained in the case of CatBoost, see following sections) on a
dataset of features selected (see above) from our 5 ‘omic data sources (mutation, CNV, expression,
methylation, clinical). Finally, level-1-classifier prediction probabilities were stacked and taken as input by

our meta-classifier (see above) which, in turn, gave in output a final binary prediction.

Model training, tuning, and validation

We generated 50 train, test split (160/71 PDXs) holdout shuffle replicates by performing stratified sampling
from our IRCC-PDX dataset. The latter consisted of 231 fully characterised (targeted sequencing, RNAseq,
methylation assay, clinical metadata) PDX models which were labelled as cetuximab responders or
non-responders according to tumour volume variation after treatment, as described above.

For the internal validation analysis, we used a nested cross-validation approach (inspired by mlextend’s
StackingCVClassifier®) to tune and train 50 independent CeSta replicates, one per each train, test split.
Each training set replicate was further split into 3 folds, and in 3 successive rounds, 2 folds were used (in
turn) to fit the level-1-classifiers. In each round, the level-1-classifiers were then applied to the remaining 1
subset not used for model fitting in each iteration. The resulting predictions were then stacked and provided
-- as input data -- to the meta-classifier. After comparing the meta-classifier’s prediction on the validation
fold to the corresponding true labels, the first-level classifiers were fit to the entire training set replicate (Fig
1c).

This model training process was performed using a hyperparameter combination suggested by Optuna®
across 200 trials, while maximising the average of the area under the ROC curve (ROC AUC) computed
over 3 training folds. Tuned parameter include: the number of top features selected during the first
selection step, "colsample_bylevel", "depth", "boosting_type","boosting_type","bootstrap_type" for the
CatBoost classifier; number of sequentially-selected features, elastic net ‘C’, ‘I1_ratio’ for the Logistic
elastic net classifier pipeline; number of ANOVA-selected features, ‘C’ and ‘kernel’ for the SVC classifier
pipeline; number of ANOVA-selected features, ‘n_estimators’ for the ExtraTrees classifier pipeline. This

hyperparameter space search was performed, independently, for each model replicate.
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Finally, we validated each of our 50 CeSta pipelines by predicting each PDX model in their respective test
set as a cetuximab “responder” or “non-responder”, and computing the resulting ROC AUC and ROC AUC
.95 confidence interval (using DeLong’s method) by comparing predicted and true labels.

For the external validation analysis, the same tuning, training, and validation process was repeated using
the entire IRCC-PDX dataset as a training set (N=231), and the CR-PDX dataset as a test set (N=50).

Performance baselines

To provide a realistic benchmark for CeSta performance, we define and train a number of alternative,
multi-omic cetuximab sensitivity predictors. The latter are all trained, tuned, and validated using a set of 30

holdout shuffle replicates, analogous to the setup we use for CeSta internal validation in Figure 1c.

“tripleNegRule” is a rule-based classifier based on the KRAS-NRAS-BRAF mutational signature: it will

output a “non-responder” prediction if any of these three genes is mutated in the current PDX example.

“‘tripleNegRightRule” is a rule-based classifier based on the KRAS-NRAS-BRAF mutational signature and
the “right colon” marker (i.e. whether the original tumour was located in the right portion of the patient’s
colon). This decision strategy originates from a retrospective analysis of triple negative patients from the
CRYSTAL and FIRE-3 trials where right-sided tumours had significantly poorer prognosis and lower
response to cetuximab treatment®.

tripleNegRightRule will output a “non-responder” prediction if either 1) any of KRAS, NRAS, BRAF is
mutated or 2) the original tumour was right-sided.

“elNet_baseline” is an Elastic-Net net penalised logistic regression classifier (scikit-learn
LogisticRegression with penalty set to “elasticnet”) based on 4 binary features encoding the mutational
status of KRAS, BRAF, NRAS (i.e. the ‘triple negative’ CRC signature), and whether the primary tumour is
located in the Right Colon. This corresponds to the state-of-the-art clinical signature for cetuximab

sensitivity in colorectal cancer, as we discuss in Introduction and Results.

“rawl 1elasticnet’ is an Elastic-Net net penalised logistic regression classifier which uses our full set of
39960 raw (non-engineered, non pre-selected) features, that is: binary gene mutational status features,

variance-normalised gene-level RNAseq data, clustered methylation probe signal, and binary CNV events.
“MixOmics sPLS-DA” uses mixOmic’'s® multivariate integration approach, based on Partial Least Squares

(PLS) regression and discriminant analysis, in which the most informative features (i.e. those that best

discriminate between cetuximab responsive and non-responsive PDXs) from different ‘omics are selected
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with the constraint of correlation between their first PLS components. More specifically, here we follow the
multi-omic classification case study illustrated in http://mixomics.org/methods/spls/. We 1) perform LASSO
feature selection (gimnet v4.2, https://www.rdocumentation.org/packages/gimnet) for methylation (700,298
non-engineered features) and expression (33,670 non-engineered features), 2) use a sparse patrtial
least-squares discriminant analysis model (sPLS DA) for single-omic dimensionality reduction, 3) followed
by a DIABLO model for horizontal multiple ‘omics integration. We optimise both the number of PLS
components and the number of selected features for each omic and each component via 3-fold cross

validation on each training set replicate.

Finally, we validate these benchmark classifiers on each test set replicate, as described for our CeSta
classifier in Fig 3b by labelling each PDX model as a cetuximab “responder” or “non-responder”, and
computing the resulting ROC AUC by comparing predicted and true labels, again using DeLong’s method
for computing the ROC AUC 0.95 confidence interval where possible.

Cell Model Passport datasets

The Cell Model Passport portal*® (https://cellmodelpassports.sanger.ac.uk/) catalogues and curates
multi-omic data for cancer cell line and organoid models. When combined with the Genomics of Drug
Sensitivity in Cancer (GDSC) dataset

(https://www.sanger.ac.uk/tool/gdsc-genomics-drug-sensitivity-cancer/), it provides genomics,

transcriptomics, and cetuximab response data for 860 unique cancer cell line models (panCMP dataset).
Here, we repeat the same data preprocessing and feature engineering steps we performed for the
IRCC-PDX dataset, with the exception of the NMF-based clustering of methylation probes as this omic is
missing from the CMP collection. Further, as cell line cetuximab response is quantified as IC50 values,
rather than tumour volume change, here we dichotomise our target variable using the median IC50 for all

cell lines in the panCMP dataset with lines falling below this threshold being labelled as “responders”.

For the purpose of comparing the predictive performance of a model trained on cell line data against one
trained on PDX data, we generate a panCMP training set which includes a subset of 860 examples and 55
expert-selected multi-omic features (Data and Code Availability). This feature subset is available in both the
aforementioned panCMP dataset, our IRCC-PDX dataset, and the CR-PDX dataset. This feature subset
fully overlaps with available features from our IRCC PDX train set. We then train and tune a catBoost
classifier pipeline (see above for pipeline architecture, hyperparameters space) over this panCMP training

set using an 8-fold cross-validation approach across 50 Optuna trials. This cell-line trained “base model” is
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then provided, as a starting point for continual learning, to a second round of training (using the ‘init_model’
parameter) over either an IRCC PDX train set replicate for internal validation, or the entire IRCC-PDX
dataset for external validation on the CR-PDX dataset.

From the panCMP dataset, we can further subset 44 colorectal cell lines (CRC-CMP), which are
characterised with the same set of 55 features as in the panCMP dataset. This context-specific dataset can
also be used to train a catBoost “base model” which we then feed into a second catBoost classifier trained
on IRCC-PDX.

External validation: Charles River dataset

An independent CRC PDX cohort®

(https://www.cancermodels.org/data/?facets=model.data_source:CRL%20AND%20model.model type:xen

oaraft%20AND%20patient tumour.cancer_system:Digestive%20System%20Cancer ) has been assembled

and characterised by our collaborators at Charles River Discovery Research Services (CR). We use 50
CRC LMX, first-pass PDX models corresponding to 50 unique patient samples characterised using the
same set of multi-omics as in the IRCC PDX cohort. For missing features (e.g. methylation cluster labels)
we impute their values for this cohort using the mode for categorical features and the median for
continuous features. We then use this CR-PDX dataset as a fully independent validation cohort to compare
our stacked classifier's performance against that of baseline models after training on the entire IRCC-PDX

dataset.

Post-hoc model explanation

As a cross-model proxy for feature importance, for each feature, we calculate the mean of the absolute

SHAP values (https://github.com/slundberg/shap v0.4) across all instances in the test set. We consider the

absolute values as we do not want positive and negative values to offset each other. Features that have
large mean absolute SHAP values are those that more significantly impact model predictions.

We are also interested in assessing, for a given classifier, which features perform equally well across
different datasets (i.e. panCMP, IRCC-PDX, CR-PDX). To do so, we start by evaluating the relationship
between a feature’s SHAP values and the target variable. A positive correlation here indicates that the
model has identified and it is successfully exploiting an informative feature for its current classification task.
Given that SHAP values are additive, with the model’s prediction being the sum of all feature SHAPs, it
makes sense to remove the effect of other features’ contribution by computing the partial correlation

between each feature and the target after removing the effect of all other features (i.e. controlling
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variables). Specifically, here we use pingouin®” (v0.5.1) and its partial_corr function specifying, in turn, all

features but one as x-covariates.

Data and code availability

https://github.com/molinerisLab/StromaDistiller and https://github.com/vodkatad/RNASeq_biod_metadata
contain a pipeline tracking counts and metadata across different sequencing batches for

xenografts/organoids RNAseq.

https://github.com/vodkatad/biodiversa_DE contains code to perform DEG analyses with DESeq2 and

various enrichment analyses on results.

Code for multiomic data preprocessing and integration is available at

https://bitbucket.org/uperron/pdx_multiomics_integration_preproc

Code and data to fully replicate the results in Figures 1,2 is available at

https://bitbucket.org/uperron/ircc-pdx_exploration

Code, models, and data to fully replicate CeSta and the results in Figures 3,4 is available at

https://bitbucket.org/uperron/cesta_pdx

CELLector is available at https://github.com/francescojm/CELLector.

Raw sequencing data:
1. Targeted DNA sequencing: https://ega-archive.org/studies/EGAS00001001171
2. RNAseq: https://ega-archive.org/studies/EGAS00001006492
Access to these datasets will be granted upon request via the EGA portal, as required for personally

identifiable data.

Methylation data:
1. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE208713
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We set up a temporary token to access this dataset during review: cfihygswijlohxqd. This data will be made

fully public upon publication of this manuscript.

Author contribution

U.P,E.G,AC,N.C.,, UM, L.Tru, AB., and F.I. conceived the project and scope.

E.R.Z. derived and characterised the IRCC-PDX collection, collected metadata from the original patients,
coordinated by E.M., M.E., L. Tru., and A.B.

U.P,E.G,AC, MV, EK, L.Tra., C.l, and .M. processed and analysed the IRCC-PDX data. U.M., L.Tru.,
A.B., and F.I. supervised IRCC-PDX data processing and analysis.

H.K. and J.S. derived, characterised, and analysed the CR-PDX collection.

U.P. designed and implemented the CeSta pipeline. U.P., E.G., and A.C. drafted the manuscript and
designed the figures. U.P,, E.G., A.C., L.Tru., A.B. and F.I. edited and revised manuscript and figures.

All authors discussed the results and contributed to the final manuscript.

References

1. Biller, L. H. & Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA
325, 669-685 (2021).

2. Bertotti, A. et al. A Molecularly Annotated Platform of Patient-Derived Xenografts (‘Xenopatients’)
Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer
Discov. 1, 508-523 (2011).

3. Burgenske, D. M. et al. Establishment of genetically diverse patient-derived xenografts of colorectal
cancer. Am. J. Cancer Res. 4, 824-837 (2014).

4. Isella, C. et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically
relevant subtypes of colorectal cancer. Nat. Commun. 8, 15107 (2017).

5. Stintzing, S. et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal

cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this

38


http://paperpile.com/b/bxSJrP/8uDJZ
http://paperpile.com/b/bxSJrP/8uDJZ
http://paperpile.com/b/bxSJrP/TKIao
http://paperpile.com/b/bxSJrP/TKIao
http://paperpile.com/b/bxSJrP/TKIao
http://paperpile.com/b/bxSJrP/ieM9d
http://paperpile.com/b/bxSJrP/ieM9d
http://paperpile.com/b/bxSJrP/aFI7F
http://paperpile.com/b/bxSJrP/aFI7F
http://paperpile.com/b/bxSJrP/6hPrB
http://paperpile.com/b/bxSJrP/6hPrB
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

10.

1.

12.

13.

14.

15.

16.

17.

e e B T
randomised open-label phase 3 trial. Lancet Oncol. 17, 1426-1434 (2016).
Heinemann, V. et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final
survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br. J. Cancer 124, 587-594
(2021).
Schwartzberg, L. S. et al. PEAK: a randomized, multicenter phase Il study of panitumumab plus
modified fluorouracil, leucovorin, and oxaliplatin (MFOLFOX®6) or bevacizumab plus mFOLFOX6 in
patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer.
J. Clin. Oncol. 32, 2240-2247 (2014).
Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic
colorectal cancer. Ann. Oncol. 27, 1386—-1422 (2016).
Harrison, R. K. Phase Il and phase Il failures: 2013-2015. Nat. Rev. Drug Discov. 15, 817-818 (2016).
lorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740-754 (2016).
Tsherniak, A., Vazquez, F., Montgomery, P. G. & Weir, B. A. Defining a cancer dependency map. Cell
(2017).
Ledford, H. US cancer institute overhauls cell lines: veteran cells to be replaced by human tumours
grown in mice. Nature 530, 391 (2016).
Santaballa, A. et al. SEOM Clinical Guideline in ovarian cancer (2016). Clin. Transl. Oncol. 18,
1206-1212 (2016).
Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature
560, 325-330 (2018).
Trastulla, L., Noorbakhsh, J., Vazquez, F., McFarland, J. & lorio, F. Computational estimation of quality
and clinical relevance of cancer cell lines. Mol. Syst. Biol. 18, e11017 (2022).
Julien, Merino-Trigo, Lacroix & Pocard. Characterization of a Large Panel of Patient-Derived Tumor
Xenografts Representing the Clinical Heterogeneity of Human Colorectal CancerColorectal Patient ....
Clin. Cancer Drugs.

Bertotti, A. et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature

39


http://paperpile.com/b/bxSJrP/6hPrB
http://paperpile.com/b/bxSJrP/s3yDN
http://paperpile.com/b/bxSJrP/s3yDN
http://paperpile.com/b/bxSJrP/s3yDN
http://paperpile.com/b/bxSJrP/6NRpQ
http://paperpile.com/b/bxSJrP/6NRpQ
http://paperpile.com/b/bxSJrP/6NRpQ
http://paperpile.com/b/bxSJrP/6NRpQ
http://paperpile.com/b/bxSJrP/SqEIU
http://paperpile.com/b/bxSJrP/SqEIU
http://paperpile.com/b/bxSJrP/oj5gG
http://paperpile.com/b/bxSJrP/ZTqxs
http://paperpile.com/b/bxSJrP/e6JmY
http://paperpile.com/b/bxSJrP/e6JmY
http://paperpile.com/b/bxSJrP/vMFyu
http://paperpile.com/b/bxSJrP/vMFyu
http://paperpile.com/b/bxSJrP/KpmPc
http://paperpile.com/b/bxSJrP/KpmPc
http://paperpile.com/b/bxSJrP/foVDw
http://paperpile.com/b/bxSJrP/foVDw
http://paperpile.com/b/bxSJrP/8A2EG
http://paperpile.com/b/bxSJrP/8A2EG
http://paperpile.com/b/bxSJrP/jNows
http://paperpile.com/b/bxSJrP/jNows
http://paperpile.com/b/bxSJrP/jNows
http://paperpile.com/b/bxSJrP/HOVeN
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

e e B T
526, 263-267 (2015).
Ziemke, E. K. et al. Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That
Cotargets MEK and CDK4/6. Clin. Cancer Res. 22, 405-414 (2016).
Cho, Y. B. et al. Colorectal cancer patient-derived xenografted tumors maintain characteristic features
of the original tumors. J. Surg. Res. 187, 502-509 (2014).
Cayrefourcq, Mazard, Joosse & Solassol. Establishment and Characterization of a Cell Line from
Human Circulating Colon Cancer CellsCharacterization of a Colon CTC Line. Cancer Res.
Dudova, Z. et al. The EurOPDX Data Portal: an open platform for patient-derived cancer xenograft
data sharing and visualization. BMC Genomics 23, 156 (2022).
Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived
xenografts. Nat. Rev. Cancer 17, 254-268 (2017).
Kurilov, R., Haibe-Kains, B. & Brors, B. Assessment of modelling strategies for drug response
prediction in cell lines and xenografts. Sci. Rep. 10, 2849 (2020).
Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC
Bioinformatics 11, 367 (2010).
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression.
Nat. Commun. 9, 20 (2018).
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell
Syst 1, 417-425 (2015).
Najgebauer, H. et al. CELLector: Genomics-Guided Selection of Cancer In Vitro Models. Cell Syst 10,
424-432.e6 (2020).
Tignanelli, C. J., Herrera Loeza, S. G. & Yeh, J. J. KRAS and PIK3CA mutation frequencies in
patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors
and stable across passages. Am. Surg. 80, 873-877 (2014).
Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets

(MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid

40


http://paperpile.com/b/bxSJrP/HOVeN
http://paperpile.com/b/bxSJrP/aUHVE
http://paperpile.com/b/bxSJrP/aUHVE
http://paperpile.com/b/bxSJrP/z3T9f
http://paperpile.com/b/bxSJrP/z3T9f
http://paperpile.com/b/bxSJrP/5Utua
http://paperpile.com/b/bxSJrP/5Utua
http://paperpile.com/b/bxSJrP/3DbMV
http://paperpile.com/b/bxSJrP/3DbMV
http://paperpile.com/b/bxSJrP/dfVgp
http://paperpile.com/b/bxSJrP/dfVgp
http://paperpile.com/b/bxSJrP/oZ4Ki
http://paperpile.com/b/bxSJrP/oZ4Ki
http://paperpile.com/b/bxSJrP/UaxnI
http://paperpile.com/b/bxSJrP/UaxnI
http://paperpile.com/b/bxSJrP/qSmzk
http://paperpile.com/b/bxSJrP/qSmzk
http://paperpile.com/b/bxSJrP/vsCUS
http://paperpile.com/b/bxSJrP/vsCUS
http://paperpile.com/b/bxSJrP/8JIhd
http://paperpile.com/b/bxSJrP/8JIhd
http://paperpile.com/b/bxSJrP/Rz1he
http://paperpile.com/b/bxSJrP/Rz1he
http://paperpile.com/b/bxSJrP/Rz1he
http://paperpile.com/b/bxSJrP/UAhx
http://paperpile.com/b/bxSJrP/UAhx
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

e e B T
Tumor Molecular Oncology. J. Mol. Diagn. 17, 251-264 (2015).
Battaglin, F., Naseem, M., Lenz, H.-J. & Salem, M. E. Microsatellite instability in colorectal cancer:
overview of its clinical significance and novel perspectives. Clin. Adv. Hematol. Oncol. 16, 735—-745
(2018).
Chang, M. T. et al. Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discov. 8,
174-183 (2018).
Normanno, N. et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC.
Nat. Rev. Clin. Oncol. 6, 519-527 (2009).
Woo, X.Y. et al. Conservation of copy number profiles during engraftment and passaging of
patient-derived cancer xenografts. Nat. Genet. 53, 86—99 (2021).
Eide, P. W., Bruun, J., Lothe, R. A. & Sveen, A. CMScaller: an R package for consensus molecular
subtyping of colorectal cancer pre-clinical models. Sci. Rep. 7, 16618 (2017).
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350-1356
(2015).
Hinoue, T. et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome
Res. 22, 271-282 (2012).
Tejpar, S. et al. Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS
Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.
JAMA Oncol 3, 194-201 (2017).
Vogel, C. L. et al. Author: Schwartzberg, Lee S : Search.
https://ascopubs.org/author/Schwartzberg%2C+Lee+S.
Yoshino, T. et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with
metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and
TOS. Ann. Oncol. 29, 44-70 (2018).
Benson, A. B. et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J.

Natl. Compr. Canc. Netw. 19, 329-359 (2021).

41


http://paperpile.com/b/bxSJrP/UAhx
http://paperpile.com/b/bxSJrP/VNXK
http://paperpile.com/b/bxSJrP/VNXK
http://paperpile.com/b/bxSJrP/VNXK
http://paperpile.com/b/bxSJrP/3rBE5
http://paperpile.com/b/bxSJrP/3rBE5
http://paperpile.com/b/bxSJrP/9vJ3w
http://paperpile.com/b/bxSJrP/9vJ3w
http://paperpile.com/b/bxSJrP/CPGw
http://paperpile.com/b/bxSJrP/CPGw
http://paperpile.com/b/bxSJrP/Gm8IG
http://paperpile.com/b/bxSJrP/Gm8IG
http://paperpile.com/b/bxSJrP/kiGeW
http://paperpile.com/b/bxSJrP/kiGeW
http://paperpile.com/b/bxSJrP/MgbsU
http://paperpile.com/b/bxSJrP/MgbsU
http://paperpile.com/b/bxSJrP/gKPdf
http://paperpile.com/b/bxSJrP/gKPdf
http://paperpile.com/b/bxSJrP/gKPdf
http://paperpile.com/b/bxSJrP/p5TDx
https://ascopubs.org/author/Schwartzberg%2C+Lee+S
http://paperpile.com/b/bxSJrP/p5TDx
http://paperpile.com/b/bxSJrP/QRTj9
http://paperpile.com/b/bxSJrP/QRTj9
http://paperpile.com/b/bxSJrP/QRTj9
http://paperpile.com/b/bxSJrP/bYEAx
http://paperpile.com/b/bxSJrP/bYEAx
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

e L b o B 02 T
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241-259 (1992).
Shwartz-Ziv, R. & Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 81, 84-90
(2022).
Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning
on tabular data? arXiv [cs.LG] (2022) doi:10.48550/ARXIV.2207.08815.
Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature
601, 623-629 (2022).
van der Meer, D. et al. Cell Model Passports-a hub for clinical, genetic and functional datasets of
preclinical cancer models. Nucleic Acids Res. 47, D923-D929 (2019).
Seabold, S. & Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python.
Proceedings of the Python in Science Conference Preprint at
https://doi.org/10.25080/majora-92bf1922-011 (2010).
Ried, T. et al. The landscape of genomic copy number alterations in colorectal cancer and their
consequences on gene expression levels and disease outcome. Mol. Aspects Med. 69, 48-61 (2019).
Rafa, L. et al. REG4 acts as a mitogenic, motility and pro-invasive factor for colon cancer cells. Int. J.
Oncol. 36, 689-698 (2010).
Kang, G., Oh, I, Pyo, J., Kang, D. & Son, B. Clinicopathological Significance and Prognostic
Implications of REG4 Immunohistochemical Expression in Colorectal Cancer. Medicina 57, (2021).
Schiitte, M. et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers
predicting sensitivity to EGFR inhibitors. Nat. Commun. 8, 14262 (2017).
Hwang, J.-H. et al. A mutant KRAS-induced factor REG4 promotes cancer stem cell properties via
Whnt/B-catenin signaling. Int. J. Cancer 146, 2877—-2890 (2020).
Jonker, D. J. et al. Epiregulin gene expression as a biomarker of benefit from cetuximab in the
treatment of advanced colorectal cancer. Br. J. Cancer 110, 648—-655 (2014).
Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict

disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25,

42


http://paperpile.com/b/bxSJrP/iaQzB
http://paperpile.com/b/bxSJrP/LLnOD
http://paperpile.com/b/bxSJrP/LLnOD
http://paperpile.com/b/bxSJrP/LgZ5f
http://paperpile.com/b/bxSJrP/LgZ5f
http://dx.doi.org/10.48550/ARXIV.2207.08815
http://paperpile.com/b/bxSJrP/LgZ5f
http://paperpile.com/b/bxSJrP/qbIxX
http://paperpile.com/b/bxSJrP/qbIxX
http://paperpile.com/b/bxSJrP/0TIHJ
http://paperpile.com/b/bxSJrP/0TIHJ
http://paperpile.com/b/bxSJrP/PY12
http://paperpile.com/b/bxSJrP/PY12
http://paperpile.com/b/bxSJrP/PY12
http://dx.doi.org/10.25080/majora-92bf1922-011
http://paperpile.com/b/bxSJrP/PY12
http://paperpile.com/b/bxSJrP/swrBs
http://paperpile.com/b/bxSJrP/swrBs
http://paperpile.com/b/bxSJrP/QHkqy
http://paperpile.com/b/bxSJrP/QHkqy
http://paperpile.com/b/bxSJrP/mxbrc
http://paperpile.com/b/bxSJrP/mxbrc
http://paperpile.com/b/bxSJrP/BwoyA
http://paperpile.com/b/bxSJrP/BwoyA
http://paperpile.com/b/bxSJrP/3Nq0T
http://paperpile.com/b/bxSJrP/3Nq0T
http://paperpile.com/b/bxSJrP/Oyusf
http://paperpile.com/b/bxSJrP/Oyusf
http://paperpile.com/b/bxSJrP/K3Kt7
http://paperpile.com/b/bxSJrP/K3Kt7
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

e e B T
3230-3237 (2007).
Kumbrink, J. et al. p130Cas Is Correlated with EREG Expression and a Prognostic Factor Depending
on Colorectal Cancer Stage and Localization Reducing FOLFIRI Efficacy. Int. J. Mol. Sci. 22, (2021).
Liu, S. et al. EREG-driven oncogenesis of Head and Neck Squamous Cell Carcinoma exhibits higher
sensitivity to Erlotinib therapy. Theranostics 10, 10589-10605 (2020).
Zhang, Y. et al. Epiregulin increases stemness-associated genes expression and promotes
chemoresistance of non-small cell lung cancer via ERK signaling. Stem Cell Res. Ther. 13, 197 (2022).
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740 (2011).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550 (2005).
Park, S. H. et al. Sonic hedgehog pathway activation is associated with cetuximab resistance and
EPHB3 receptor induction in colorectal cancer. Theranostics 9, 2235-2251 (2019).
Nicholls, A. Confidence limits, error bars and method comparison in molecular modeling. Part 2:
comparing methods. J. Comput. Aided Mol. Des. 30, 103—-126 (2016).
DelLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837—845
(1988).
Sun, X. & Xu, W. Fast Implementation of DeLong’s Algorithm for Comparing the Areas Under
Correlated Receiver Operating Characteristic Curves. IEEE Signal Process. Lett. 21, 1389-1393
(2014).
Nicholls, A. Confidence limits, error bars and method comparison in molecular modeling. Part 1: the
calculation of confidence intervals. J. Comput. Aided Mol. Des. 28, 887-918 (2014).
Lundberg, S. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv [cs.Al] (2017)
doi:10.48550/ARXIV.1705.07874.
Rivera, M. et al. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform

for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia 23, 21-35 (2021).

43


http://paperpile.com/b/bxSJrP/K3Kt7
http://paperpile.com/b/bxSJrP/UKh66
http://paperpile.com/b/bxSJrP/UKh66
http://paperpile.com/b/bxSJrP/pFcpN
http://paperpile.com/b/bxSJrP/pFcpN
http://paperpile.com/b/bxSJrP/nI1NN
http://paperpile.com/b/bxSJrP/nI1NN
http://paperpile.com/b/bxSJrP/kutDz
http://paperpile.com/b/bxSJrP/lydK2
http://paperpile.com/b/bxSJrP/lydK2
http://paperpile.com/b/bxSJrP/eIJXr
http://paperpile.com/b/bxSJrP/eIJXr
http://paperpile.com/b/bxSJrP/qTHZ9
http://paperpile.com/b/bxSJrP/qTHZ9
http://paperpile.com/b/bxSJrP/yv0Hs
http://paperpile.com/b/bxSJrP/yv0Hs
http://paperpile.com/b/bxSJrP/yv0Hs
http://paperpile.com/b/bxSJrP/wBiN4
http://paperpile.com/b/bxSJrP/wBiN4
http://paperpile.com/b/bxSJrP/wBiN4
http://paperpile.com/b/bxSJrP/ZrivG
http://paperpile.com/b/bxSJrP/ZrivG
http://paperpile.com/b/bxSJrP/kfJdX
http://paperpile.com/b/bxSJrP/kfJdX
http://dx.doi.org/10.48550/ARXIV.1705.07874
http://paperpile.com/b/bxSJrP/kfJdX
http://paperpile.com/b/bxSJrP/ltgxW
http://paperpile.com/b/bxSJrP/ltgxW
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

e e B T
Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR—Cas9 screens. Nature
568, 511-516 (2019).

Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569,
503-508 (2019).

Prokhorenkova, L., Gusev, G., Vorobeyv, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased boosting
with categorical features. arXiv [cs.LG] (2017).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25, 1754—1760 (2009).

Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 174,
1034-1035 (2018).

Martincorena, |. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171,
1029-1041.e21 (2017).

Martinez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20,
555-572 (2020).

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics 26, 841-842 (2010).

Colaprico, A. et al. TCGADbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res. 44, e71 (2016).

Seshan, V. E. & Olshen, A. B. DNAcopy: a package for analyzing DNA copy data. Bioconductor
Vignette (2014).

Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature
463, 899-905 (2010).

Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal
somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

van Dyk, E., Reinders, M. J. T. & Wessels, L. F. A. A scale-space method for detecting recurrent DNA

copy number changes with analytical false discovery rate control. Nucleic Acids Res. 41, e100 (2013).

44


http://paperpile.com/b/bxSJrP/H8D76
http://paperpile.com/b/bxSJrP/H8D76
http://paperpile.com/b/bxSJrP/YpEJ
http://paperpile.com/b/bxSJrP/YpEJ
http://paperpile.com/b/bxSJrP/NTKyp
http://paperpile.com/b/bxSJrP/NTKyp
http://paperpile.com/b/bxSJrP/wwMll
http://paperpile.com/b/bxSJrP/wwMll
http://paperpile.com/b/bxSJrP/EmLwQ
http://paperpile.com/b/bxSJrP/EmLwQ
http://paperpile.com/b/bxSJrP/B56XV
http://paperpile.com/b/bxSJrP/B56XV
http://paperpile.com/b/bxSJrP/Pl92U
http://paperpile.com/b/bxSJrP/Pl92U
http://paperpile.com/b/bxSJrP/F3M1G
http://paperpile.com/b/bxSJrP/F3M1G
http://paperpile.com/b/bxSJrP/xUBeo
http://paperpile.com/b/bxSJrP/xUBeo
http://paperpile.com/b/bxSJrP/oH9oE
http://paperpile.com/b/bxSJrP/oH9oE
http://paperpile.com/b/bxSJrP/gLjHd
http://paperpile.com/b/bxSJrP/gLjHd
http://paperpile.com/b/bxSJrP/TsrPz
http://paperpile.com/b/bxSJrP/TsrPz
http://paperpile.com/b/bxSJrP/rjYMX
http://paperpile.com/b/bxSJrP/rjYMX
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

e e B T
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS
alignment formats. Bioinformatics 31, 2032—2034 (2015).

Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28,
2184-2185 (2012).

Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312-319
(2015).

Love, M. |, Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biol. 15, 550 (2014).

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139—-140 (2010).

Chen, Y.-A. et al. Discovery of cross-reactive probes and polymorphic CpGs in the lllumina Infinium
HumanMethylation450 microarray. Epigenetics 8, 203—209 (2013).

Needhamsen, M. et al. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA
methylation studies. BMC Bioinformatics 18, 486 (2017).

Guijar, H., Liang, J. W., Wong, N. C. & Mozhui, K. Profiling DNA methylation differences between
inbred mouse strains on the lllumina Human Infinium MethylationEPIC microarray. PLoS One 13,
0193496 (2018).

Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome
browsers. Bioinformatics 25, 1841-1842 (2009).

Kaur, M. & Grag, U. ECLAT algorithm for frequent itemsets generation. Int. J. Comput. Syst. Softw.
Eng.

Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and
RNA-seq data. BMC Bioinformatics 14, 7 (2013).

Buitinck, L. et al. APl design for machine learning software: experiences from the scikit-learn project.

arXiv [cs.LG] (2013).

45


http://paperpile.com/b/bxSJrP/cOikf
http://paperpile.com/b/bxSJrP/Ekd1s
http://paperpile.com/b/bxSJrP/Ekd1s
http://paperpile.com/b/bxSJrP/OKsBb
http://paperpile.com/b/bxSJrP/OKsBb
http://paperpile.com/b/bxSJrP/d6wgy
http://paperpile.com/b/bxSJrP/d6wgy
http://paperpile.com/b/bxSJrP/Q5y48
http://paperpile.com/b/bxSJrP/Q5y48
http://paperpile.com/b/bxSJrP/KXfAI
http://paperpile.com/b/bxSJrP/KXfAI
http://paperpile.com/b/bxSJrP/9HAgR
http://paperpile.com/b/bxSJrP/9HAgR
http://paperpile.com/b/bxSJrP/U5GmO
http://paperpile.com/b/bxSJrP/U5GmO
http://paperpile.com/b/bxSJrP/H0UDH
http://paperpile.com/b/bxSJrP/H0UDH
http://paperpile.com/b/bxSJrP/H0UDH
http://paperpile.com/b/bxSJrP/sWmi7
http://paperpile.com/b/bxSJrP/sWmi7
http://paperpile.com/b/bxSJrP/C5IvM
http://paperpile.com/b/bxSJrP/C5IvM
http://paperpile.com/b/bxSJrP/kUwI4
http://paperpile.com/b/bxSJrP/kUwI4
http://paperpile.com/b/bxSJrP/3UujV
http://paperpile.com/b/bxSJrP/3UujV
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

92.

93.

94.

95.

96.

97.

e e B T
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods
17, 261-272 (2020).

Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to
Python’s scientific computing stack. J. Open Source Softw. 3, 638 (2018).

Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A Next-generation Hyperparameter
Optimization Framework. in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining 2623-2631 (Association for Computing Machinery, 2019).
doi:10.1145/3292500.3330701.

Rohart, F., Gautier, B., Singh, A. & L& Cao, K.-A. mixOmics: An R package for ‘'omics feature selection
and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

Conte, N. et al. PDX Finder: A portal for patient-derived tumor xenograft model discovery. Nucleic
Acids Res. 47, D1073-D1079 (2019).

Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).

46


http://paperpile.com/b/bxSJrP/zrfL
http://paperpile.com/b/bxSJrP/zrfL
http://paperpile.com/b/bxSJrP/9CgN
http://paperpile.com/b/bxSJrP/9CgN
http://paperpile.com/b/bxSJrP/7racV
http://paperpile.com/b/bxSJrP/7racV
http://paperpile.com/b/bxSJrP/7racV
http://paperpile.com/b/bxSJrP/7racV
http://dx.doi.org/10.1145/3292500.3330701
http://paperpile.com/b/bxSJrP/7racV
http://paperpile.com/b/bxSJrP/9jJue
http://paperpile.com/b/bxSJrP/9jJue
http://paperpile.com/b/bxSJrP/o3Rs
http://paperpile.com/b/bxSJrP/o3Rs
http://paperpile.com/b/bxSJrP/NMkPr
https://doi.org/10.1101/2023.01.24.525314
http://creativecommons.org/licenses/by-nc-nd/4.0/

