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ABSTRACT

Patient-derived xenografts (PDXs) are tumour fragments engrafted into mice for preclinical studies.
PDXs offer clear advantages over simpler in vitro cancer models - such as cancer cell lines (CCLs)
and organoids - in terms of structural complexity, heterogeneity, and stromal interactions. We
characterised 231 colorectal cancer PDXs at the genomic, transcriptomic, and epigenetic level and
measured their response to cetuximab, an EGFR inhibitor in clinical use for metastatic colorectal
cancer. After assessing PDXs’ quality, stability, and molecular concordance with publicly available
patient cohorts, we trained, interpreted, and validated an integrated ensemble classifier (CeSta)
which takes in input the PDXs’ multi-omic characterisation and predicts their sensitivity to
cetuximab treatment (AUROC > 0.9). Our study shows that large PDX collections can be used to
train accurate, interpretable models of drug sensitivity, which 1) better recapitulate patient-derived
therapeutic biomarkers than other models trained on CCL data, 2) can be robustly validated across
independent PDX cohorts, and 3) can be used for the development of novel therapeutic biomarkers.
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INTRODUCTION

Colorectal cancer (CRC) is a heterogeneous disease with distinctly variable molecular features and

responses to therapy. It is among the most prevalent causes of cancer mortality worldwide, with more than

1.85 million cases and 850,000 annual deaths globally1. Around 20% of newly diagnosed CRC patients

have metastatic disease (mCRC) at presentation, with 25% later developing metastases2–4.

In recent years, several clinical trials5–7 have suggested that genome-based treatment selection leads to

more patients deriving therapeutic benefits, with fewer exposed to ineffective therapies, and most mCRC

patients experience a median survival exceeding 30 months when regimens including genotype-informed

treatments are used8. Specifically, ~50% of mCRC patients have KRAS-NRAS-BRAF wild-type (triple

negative) tumours and are routinely treated with cetuximab and panitumumab, monoclonal antibody

inhibitors of the epithelial growth factor receptor EGFR in combination with chemotherapy as an alternative

to surgery. This protocol extends median survival by 2 to 4 months, compared with chemotherapy alone1.

Unfortunately, the overall metastatic CRC clinical trial success rate remains low: 32% of combined phase II

and phase III clinical trials between 2013 and 2015 failed, up from 23% in 20109. This highlights the need

for novel and more robustly predictive markers of drug response for CRC patients.

Biomarkers of response to cetuximab and cetuximab plus chemotherapy, such as the triple negative

signature mentioned above, have been derived from clinical and molecular analysis of patients and

patient-derived experimental models of CRC, including immortalised cancer cell lines, organoids, and

patient-derived xenografts (PDX). However, several other systematic therapeutic biomarkers discovery

efforts conducted using in vitro models have confirmed limited clinical translatability9–11. This is primarily due

to the intrinsic limitations of such models, encompassing genetic, epigenetic, and transcriptomic changes

resulting from their selective adaptation to artificial culture conditions12,13. Furthermore, cancer cell lines do

not maintain the complex heterogeneity of the tumour of derivation; they often lose or gain specific

subclones and might miss relevant components of the human tumour stromal microenvironment14,15.

Unlike cancer cell lines, PDXs have been shown to offer good retention of tumour complexity, mimicking (at

least to a certain extent) stromal interactions. They are relatively easy to screen and characterise. Further,

histopathological characterisation has confirmed a high degree of concordance between PDXs and

corresponding parental tumours in terms of differentiation, mucus secretion, and stromal composition, as

well as maintenance of primary intratumoral clonal heterogeneity2,3,16–18.
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These factors have contributed to PDXs playing a pivotal role in translational cancer research, furthering

our understanding of tumour biology and drug response mechanisms in CRC19,20.  As a result, extensive

multi-institutional efforts (such as EuroPDX21) are now ongoing, aiming to establish and characterise

extensive collections of PDX models at the molecular and histopathological level to ensure that they

recapitulate the broadest possible diversity of clinical cases22.

Using data derived from the multi-omics characterisation of CRC PDXs paired with their

pharmacological/phenotypic features is a profitable means for training supervised machine learning models

to predict drug response in CRC patients. In this case, the extent of training data availability is a critical

determinant of the accuracy of a model, especially when considering high-dimensional multi-omics

datasets. Machine learning models of drug response trained on large pooled pan-cancer cell line datasets

(N = 329) outperform models which only used cell lines (N = 28-68) from a specific tissue23. This suggests

that, in some cases, data quantity can outweigh data specificity. Kurilov and colleagues have also noted

that predicting PDX drug response using models trained on cell line data results in poor performance

across 3 out of 4 examined cohorts, except for the erlotinib lung cancer cohort.

In summary, most of the pre-clinical studies of cetuximab response in CRC cohorts performed to date have

been characterised by 1) relatively small sample sizes,  2) single platform profiling often aimed at

characterising the status of few known CRC driver genes, 3) reliance on biological models which have

proved to be suboptimal for translational purposes, or a combination of these factors. These aspects

negatively influenced the aforementioned studies' ability to capture the tumour ecosystem's complexity and

inter-tumour heterogeneity's impact on drug response, ultimately contributing to the increasingly low

success rate of early-stage CRC clinical trials.

Here, we present one of the largest thoroughly characterised CRC PDX collections to date (N = 231),

which closely recapitulates gold-standard CRC patient cohorts across 3 ‘omics (genomics, transcriptomics,

and methylomics) and results from training an ensemble classifier to predict the response of these models

to cetuximab treatment, based on an integrative stacked architecture.

Our model outperforms other state-of-the-art (SOTA) predictive methods and the biomarker of cetuximab

response currently used in the clinic, i.e. the KRAS-NRAS-BRAF mutational status, internally and when

tested on an independent cohort of CRC PDXs.

Finally, we show that our model's predictions provide an extent of interpretability, highlighting novel

potential biomarkers of cetuximab sensitivity.
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RESULTS

We selected 231 first-pass CRC PDXs (the IRCC-PDX collection), which were fully characterised across

multiple omics (encompassing genomics, transcriptomics, methylomics), clinical metadata, and were

screened for cetuximab response from a larger cohort of >600 xenografts (Fig. 1a). These models were

uniquely derived from surgical resections of CRC liver metastases performed at the Candiolo Cancer

Institute (Candiolo, Torino, IT), the Mauriziano Umberto I Hospital (Torino, IT), the San Giovanni Battista

Hospital (Torino, IT) and the Niguarda Hospital (Milano, IT) between 2008 and 2015.

The initial “raw” multi-omics characterisation of IRCC-PDX consisted of the methylation status of 700,298

Illumina probes, 33,670 gene transcription levels from RNAseq, 1,272 copy number alteration and driver

variant features, and 45 clinical features covering patient demographics, primary tumour characteristics,

and previous patient treatment for a total of 735,285 features (Fig. 1a).

We performed several omic-specific feature engineering steps (Methods, Fig. 1a) before using this data

with our integrative classifier (Fig. 1b-c). These reduced the dimensionality of the “raw” IRCC-PDX dataset

(e.g. non-negative matrix factorisation clustering24 of methylation features), introduced feature curation via

prior knowledge of gene regulatory pathways (e.g. PROGENy25 and MSigDB26 gene set analysis), and

generated potentially more informative agglomerate features (e.g. CELLector27 genomic signatures). Raw

and engineered (1,360 features, 231 PDX models) IRCC-PDX datasets are both fully available for

download (Data and Code Availability).

Multi-omic characterisation of our CRC PDX collection
Previous comprehensive genetic characterisations of CRC models have shown that the frequency of

common genetic mutations observed in PDXs is similar to that observed in primary tumours2,3,16–18,28.

Targeted sequencing of 116 genes in our PDX cohort identified 6,426 driver mutations (Methods), with APC

(90%), TP53 (85%), KRAS (29%), PIK3CA (19%), and ATM (16%) being the most frequently affected

genes (Fig 1d, S1). In our PDX collection, mutational frequencies for KRAS and BRAF were lower than

those reported for large CRC patient cohorts such as TCGA COAD/READ (https://www.cancer.gov/tcga)

and MSK IMPACT29 (https://www.mskcc.org/msk-impact). In the case of KRAS, this is due to a pre-hoc

enrichment of KRAS wild-type models for subsequent treatment with cetuximab (as KRAS mutant models

were assumed to be cetuximab resistant a priori). In the case of BRAF, the lower frequency is ascribable to

the fact that our PDXs were derived from metastatic samples. BRAF mutant tumours are frequently

characterised by microsatellite instability (MSI). Because MSI CRCs have a better prognosis and rarely

progress to metastasis30, they are under-represented in our dataset.  Indeed, after removing MSI samples,
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the frequency of BRAF mutated tumours in TCGA is reduced to 5.3%, which is comparable to that detected

in our collection.

Aside from these exceptions, our IRCC-PDX mutational landscape closely matched that of the previous

CRC patient cohorts (Spearman correlation coefficient 0.51 and 0.625 for TCGA and MSK, respectively;

Fig. S2) and recapitulated known top frequently mutated CRC driver genes31,32.
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Figure 1 - A multi-omic overview of the Colorectal cancer PDX cohort and cetuximab response
modelling approach. a) Overview of the IRCC-PDX collection, derived from 231 unique CRC liver
metastasis resections, characterised at a multi-omic level as well as for cetuximab response, including a
schematic of the omic-specific feature engineering steps. b) Overview of our CeSta classifier pipeline. A set
of input features is selected from the training set (Methods) using univariate tests (Fisher’s exact, MW
U-test) and multivariate linear models. These features are passed as input to 3 independent level 1
classifier pipelines (lvl 1 classifiers): forward feature selection plus elastic net classifier, ANOVA feature
selection plus extra trees classifier, ANOVA feature selection plus SV classifier. An additional fourth
classifier uses a boosting (catBoost) model, which we pre-train using pan-cancer data from the cell model
passport repository (CMP), and we then refine using the same IRCC-PDX data as the other lvl 1 classifiers
(Methods). Lvl 1 classifier predicted probabilities are stacked and provided as input to a meta classifier
which outputs the final binary class label (i.e. cetuximab-responder/-non-responder) corresponding to the
lvl 1 prediction with the highest predicted probability (i.e. argmax-based soft voting). c) CeSta nested
cross-validation approach: 50 train/test split replicates are derived by stratified sampling of the IRCC-PDX
collection. CeSta is trained and tuned independently across these 50 data splits. In each of these iterations,
the training set is split into three folds, two of which are used (in turn) in three successive rounds, jointly as
a “training fold” (green rectangles). In each of these rounds, the level-1-classifiers generate predictions for
the remaining subset not used for model fitting, i.e. the “validation fold” (white rectangle). The resulting
predictions (“P1” and “P2”, green hexagon) are then stacked and provided to the meta-classifier. After
comparing the meta-classifier’s prediction on the validation fold to the corresponding true labels, all
first-level classifiers are fit to the entire training set replicate and CeSta performance is evaluated on the
test set (pink rectangle, N = 71) of the split under consideration (“internal validation”). Finally, CeSta is
trained once over the entire IRCC-PDx dataset and tested (“external validation”) on an independent
CR-PDX dataset (grey rectangle, N=50).
d) Top frequently mutated genes in our IRCC-PDX cohort. e) Selection of multi-omic and clinical features
across the IRCC-PDX collection, including CRIS expression cluster labels, methylation NMF cluster labels,
primary sample anatomical location, and treatment backbone.

To further control our PDX models’ ability to recapitulate characteristics of their tumour sample of origin, we

investigated PDX mutational profile stability for a subset of more extended PDX lineages (i.e. those where

targeted sequencing data was available beyond the first-passage; Fig. S3). We observed a strong

agreement between all models belonging to a given lineage, regardless of their distance from their sample

of origin in terms of passages, with few exceptions attributable to sequencing errors or clonal expansion

(Fig. S4).

Copy number (CN) alterations, derived from the same 116 genes in the targeted sequencing panel

(Methods), affected some known CRC drivers, including EGFR and SMAD4, and showed a strong positive

correlation (Spearman r = 0.87 and 0.93, respectively, for copy number losses and gains) with CN

alteration frequencies observed in TCGA COAD/READ samples (Fig. S5 and S6).
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As described above, we also assessed CN profile stability along PDX lineages which extend beyond the

first passage. We observed solid intra-lineage CN consistency overall (median log2R Pearson coefficient

0.927, Fig. S7) and at the gene level (94% of driver genes are CN-stable within lineages, Fig. S8), in line

with previous reports33.

We characterised our PDX collection's transcriptional landscape using two approaches to classify samples

into subtypes: CMS34,35 and CRIS4. Results from these analyses were broadly consistent with TCGA

COAD/READ and other colorectal cancer datasets where expression data is available (Fig. 1e, S9).

To concisely represent our PDXs’ epigenomics profiles, we grouped samples into five different nonnegative

matrix factorisation24 based clusters (Methods). We observed that the samples belonging to one of these

groups (cluster 1) were remarkably more hypermethylated over all measured CpG islands (median beta

methylation level = 0.81, Kruskal-Wallis test p-value < 2.2e-16, Fig. S10). Consistent with our cluster

definition, we also found cluster 1 to be highly enriched for the CpG island methylator phenotype (CIMP36)

in 130 out of 146 PDXs (Fig. S10). This heterogeneity of PDX methylation profiles resembled that observed

in CRC patients, even though the percentage of IRCC-PDX samples classified as CIMP was slightly lower

than that reported in TCGA COAD/READ (44% vs 58%, Fig. S11). This is expected considering the low

prevalence of MSI tumours - which are typically enriched for CIMP cases - within metastatic CRC cohorts

such as ours29.

Overall, our multi-omic overview of the PDX collection indicates that IRCC-PDX closely recapitulates the

genomics, transcriptomics, and methylomics landscape of gold-standard human colorectal cancer cohorts,

such as TCGA COAD/READ and MSK-IMPACT.

Exploration of established biomarkers of cetuximab sensitivity
Around half of mCRC patients have KRAS-NRAS-BRAF wild-type (triple negative) tumours and routinely

receive anti-EGFR treatment with cetuximab or panitumumab in combination with chemotherapy as an

alternative to surgery. This results in a median survival extension of 2 to 4 months, compared with

chemotherapy alone1. Retrospective analysis of triple-negative patients from the CRYSTAL and FIRE3

trials has also highlighted that patients with left-sided tumours treated with anti-EGFR antibodies had better

survival and treatment response than patients with right-sided tumours37.

Treatment intervention in our PDXs (Methods) closely matched that of cetuximab human trials such as

PEAK7,38 and FIRE35 as well as current clinical best practices39,40; in line with the clinical definition of

‘disease control’, which denotes clinical benefit, we categorised as ‘responders’ those cases in which

cetuximab induced tumour shrinkage (objective response, OR, more than 50% tumour volume reduction
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compared with baseline tumour volumes) or stable disease (SD, less than 50% tumour shrinkage and less

than 35% increase in tumour volume2).

Across our IRCC-PDX collection (N = 231), KRAS mutations were much more frequently observed in PDXs

with a cetuximab non-responder phenotype (Fisher's exact test’s p-value (FET p) = 4x10-6, percent lift:

-0.781, Fig 2a, Tab S1, Methods). NRAS (FET p = 0.001, percent lift: -0.926) and BRAF (FET p = 0.035,

percent lift: -0.702) mutations were noticeably more likely to occur in non-responder PDXs, though only 16

and 13 mutant PDXs were observed across IRCC-PDXs, respectively. However, overall mutational and CN

alteration burden, defined as the total number of events per PDX and intended as coarse-grained proxies

for tumour progression and genomic stability, did not appear to strongly correlate with cetuximab sensitivity

(Fig 2b-c, Tab S1).

Finally, a right-sided localisation of the original tumour showed a moderate association with a

non-responder phenotype (FET p = 0.017, percent lift: -0.470).

As previously mentioned, the KRAS-NRAS-BRAF triple negative signature is widely recognised as the

best-established biomarker of cetuximab sensitivity (FET p =  5x10-15, percent lift: 1.468), being used both

as a clinical discriminant for treatment and as an entry criterion for anti-EGFR trials. These observations

thus indicate that our IRCC-PDX collection recapitulates the best available marker of cetuximab sensitivity

in patients.

A stacked classifier modelling cetuximab sensitivity
We tackled the task of predicting whether a CRC PDX responds to cetuximab treatment in terms of tumour

volume shrinkage2 by leveraging its multi-omic characterisation and formulating this challenge as a binary

classification problem. This mirrors a clinician's choice regarding whether or not a patient might benefit

from cetuximab treatment.

We selected and integrated multi-omic features into a stacked classifier pipeline41: the cetuximab Stacked

classifier (CeSta, Fig 1b). Stacking is a supervised ensemble learning technique which combines multiple

weak classification models (level 1 classifiers, lvl1) using a meta-classifier. This architecture improves upon

individual classifiers’ performance. It is well suited for a classification task such as ours, which is based on

tabular data with relatively few examples (231) and a much larger number of features (1,360): a scenario

where more complex models and deep neural networks fare poorly42,43. A similar architecture has been

successfully used to predict drug response in breast cancer patients from the multi-omic characterisation of

their tumours44.
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Our CeSta pipeline implements a late integration approach to prevent high-dimensional ‘omics

(transcriptomics, methylomics) from overwhelming those with fewer features (typically genomics) by

dominating the feature selection phase (Fig 1b). We used a nested cross-validation approach for model

tuning, training, and validation, based on generating 50 train/test split replicates of our IRCC-PDX dataset

(with 160 and 71 PDXs, respectively, for the training set and test set) assembled via stratified sampling (Fig
1c). On each of these 50 training sets, our classifier pipeline performed a custom single omic feature

selection step which reduced the initial input of 1,360 engineered features (Fig. 1a) to a smaller subset,

with the size of the latter being amongst the hyperparameters tuned independently, across data splits (Fig.
1b, S16, Methods). We used these pre-selected IRCC-PDX features as the input to 4 different lvl1 classifier

pipelines: 1) model-based forward feature selection, followed by elastic net logistic regression, 2)

ANOVA-based feature selection, followed by either SVC or 3) extraTrees classifiers, and 4) a catBoost

classifier pre-trained on a set of 55 multi-omic features from a collection of 860 pan-cancer cell lines from

the Cell Model Passport portal (panCMP45), then refined on the same set of 55 features from the IRCC

PDX (continual learning, Methods). The lvl1 predicted probabilities were then stacked and combined using

a soft voting classifier which outputs a binary classification of cetuximab sensitivity (Fig. 1bc, Methods).
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Figure 2 - Overview of cetuximab response and biomarker candidates. a) Mutation patterns of CRC
driver genes and mutational signature features among those with the most significant impact on CeSta
predictions (Fig 4a) of b) cetuximab non-responders (‘PD’, volume growth > 35%, in orange) and
responders (‘SD-OR’, volume growth <= 35%, in blue). Similarly, c) selection of continuous features which
best differentiate between PD and SD-OR PDX models.

Newly identified candidate biomarkers of cetuximab sensitivity
Our CeSta pipeline selects the most informative biomarkers of cetuximab sensitivity across training

examples sampled from the IRCC-PDX collection by combining univariate statistical tests (Fisher’s exact,

Mann-Whitney U test), percent lift, and logit (statsmodels v0.13.2 logit46) models (Fig 1b, 1c, Tab S1, and

Methods). Here and in Fig. 2a, we provide an overview of some of CeSta’s top features (i.e. as ranked by

their impact on CeSta’s predictions in Fig 4a) and their relationship with cetuximab sensitivity. The latter

represents our binary target variable, with “responder” PDXs defined as those that grew in volume by 35%

or less at three weeks after treatment (a proxy of disease control, as mentioned above) (Fig 2b, Methods).

Among our genomics features, beyond the KRAS-NRAS-BRAF triple negative signature, CLSPN (FET p  =

0.05, percent lift: -0.675), PTEN (percent lift: -0.594), and PIK3CA (percent lift: -0.654) mutations were also
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more frequently observed in non-responder PDXs. Additionally, few other driver gene mutations such as

EGFR (percent lift: -0.721) and MET (percent lift:- 0.702) were noticeably more likely to occur in

non-responder PDXs, though rare overall (21 and 8 observations in IRCC-PDX,  respectively). Only

mutations in KRAS (logit p-value (logit p) = 0.002), BRAF (logit p = 0.037), PTEN (logit p =  0.049), and

NRAS (logit p = 0.03) were found to be associated with cetuximab resistance via single-omic multivariate

logit regression. Our CeSta approach combines these metrics (univariate and multivariate p-values,

percent lift) into an aggregated feature selection score (Methods) which allows us to detect both

well-supported and rare candidate markers.

CELLector subgroups 7 (APC, TP53, KRAS, PIK3CA mutated), 16 (TP53 wild-type; APC, KRAS, PIK3CA

mutated), and 5 (APC, TP53, KRAS mutated; PIK3CA wild-type) were significantly associated with a

non-responder phenotype (FET p = 0.002, 0.014, and 0.001, respectively). On the contrary, subgroup 12

(APC, TCF7L2, and TP53 mutated; KRAS, BRCA2, ATM, TPTE, EP400 wild-type) was approximately eight

times (FET p = 0.011, percent lift: 7.934) more likely to contain responder PDXs. However, this was quite

rare, with only 8 PDXs presenting this signature across IRCC-PDX. Subgroups 7,16, and 5 were also

significantly associated with cetuximab resistance after multivariate logit regression (logit p = 2 x 10-6, 3 x

10-6, and 3 x 10-4, respectively).

Finally, FGFR1 CN gain events (FET p = 2 x 10-4, percent lift: 1.159) were more frequently observed in

responder PDXs. Although ERBB2 and MET amplification events  (i.e. more than two copies gained) were

rare (5 and 3 examples in IRCC-PDX, respectively), they were more frequent in non-responders (percent

lift: -1 for both).

These genomic signatures agree with previous surveys of CRC poor-prognosis driver alterations 31,47,

suggesting at least a partial overlap between markers of colorectal cancer progression and those of

cetuximab resistance in PDX.

For transcriptomics features (Fig 2c), while EGFR (Mann-Whitney U test p-value (MWU p) = .4) and EGF

(MWU p = .17) were not differentially expressed in cetuximab responders versus non-responders PDXs,

REG4 (MWU p = 0.001), and EREG (MWU p = 7x10-5) were instead significantly upregulated in resistant

and sensitive cases, respectively. REG4 (Regenerating Islet-Derived Protein 4) is a C-type lectin-like

mitogenic protein known to stimulate EGFR signalling and promote migration and invasion in CRC48. High

REG4 expression is associated with poor prognosis and low recurrence-free survival in CRC patients49

and, more specifically, with cetuximab resistance50 in CRC organoids and PDX models. A suggested

mechanistic explanation points to FZD and LRP5/6, both upstream components of the Wnt/β-catenin

pathway, which are involved in the REG4-mediated promotion of stemness induced by KRAS mutation in

CRC with APC loss51. EREG (epiregulin) is a member of the EGF family and an EGFR ligand; it is thus
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involved in inflammation, cell proliferation, and cancer progression. EREG activity has been associated with

cetuximab sensitivity in preclinical models and patients52,53, and it has been suggested that, in an

inflammatory environment, EREG can promote stemness and cancer cell proliferation by stimulating ERK

signalling through EGFR activation in a variety of cancer types54–56.

We also observed high PROGENy25 EGFR pathway expression scores associated with a non-responder

phenotype (MWU p = 0.002, percent lift: -1.879), whereas, as mentioned above, EGFR expression as an

individual feature was not. We observed a similar pattern for KRAS: It was not differentially expressed

across responders versus non-responders PDXs (MWU p = 0.23) but high MSigDB57,58

HALLMARK_KRAS_SIGNALING_UP gene set ssGSEA scores were strongly associated with

non-responder PDXs (MWU p = 0.001, percent lift: -10.688). These observations suggest that engineering

aggregated expression features using ssGSEA and PROGENy scores might be more informative than

individual gene expression features for cetuximab sensitivity prediction. However, it is also important to

note that feature aggregation might introduce additional complexity. PROGENy signals for EGFR could be

partly driven by downstream ERK-mediated signals, which are hard to disentangle from KRAS-triggered

inputs. This may explain why both EGFRand KRAS signatures are associated with resistance to EGFR blockage.

Finally, we observed that higher MSigDB gene set ssGSEA scores for angiogenesis  (percent lift: -2.168),

inflammatory response  (percent lift: -3.7), UV and DNA damage response  (percent lift: -6.63), and

Hedgehog (Hh) signalling  (percent lift: -5.44), were all associated with non-responder PDXs (MWU p  <<

0.01 for all). The Hh hallmark score is fascinating as it might corroborate the evidence that Hh pathway

activity correlates with reduced response to cetuximab59.

When considering methylation features (Fig 2c), NMF cluster 1, the most hypermethylated, was enriched

for non-responders and MSI-like PDXs (FET p = 2 x 10-4, percent lift: -0.796). Cluster 4, the second-most

hypo methylated, was strongly enriched for responder PDXs (FET p = ​​3 x 10-4, percent lift: 2.299).

Across all omics, both categorical (Fig 2a) and continuous features (Fig 2b) were either too sparse or too

noisy to be adequate predictors of cetuximab response when considered individually. This highlights the

effectiveness of an integrative model which combines the most informative features across ‘omic

boundaries.
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Validation of the CeSta classifier
We set out to internally assess CeSta’s performance on our IRCC-PDX collection using a holdout shuffle

approach, followed by testing the null hypothesis that results generated by different classifiers are

equivalent60.

We started by generating 50 train/test set split (160 and 71 PDXs, respectively) replicates from our

IRCC-PDX dataset. We used a nested cross-validation approach to tune and train 50 independent CeSta

replicates (Fig 1c, “internal validation”). To provide a realistic and stringent benchmark, we evaluated many

baseline cetuximab sensitivity classifiers of varying complexity (Fig 3ab, S12). Here, we present results

from a performance comparison of our CeSta classifier against three of the best-performing baseline

classifiers. These build on the SOTA clinical predictor of cetuximab sensitivity: the KRAS-NRAS-BRAF

triple negative marker39,40 and whether the original tumour is located in the left portion of the patient’s

colon37. These features were combined into a cetuximab sensitivity classifier using either 1) a rule-based

approach entirely analogous to the clinical criterion for cetuximab treatment (i.e. PDXs with the triple

negative marker were predicted as responders to cetuximab, Fig 3a, “tripleNegRule” and

“tripleNegRightRule”) or 2) an elastic net penalised logistic regression model (Fig 3a, “elNet baseline”)

taking in input the four features above as possible regressors (Methods). As for CeSta, we tuned and

trained 50 independent replicates of this latter baseline classifier over the 50 split replicates we previously

generated.
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Figure 3
CeSta outperforms the state-of-the-art baseline classifier on IRCC-PDX and CR-PDX
a) Classification performances quantified through F1 scores (harmonic mean of precision and recall) across
50 train/test CR-PDX split replicates (x-axis) for the stacked classifier (“CeSta”, in blue), an elastic net
penalised logistic model (‘elNet baseline’, in tan) which uses state-of-the-art clinical features for cetuximab
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sensitivity in CRC (KRAS, NRAS, BRAF mutational status, right colon tumour location), a rule-based
classifier using the KRAS-BRAF-NRAS triple negative clinical signature (tripleNegRule, in orange) as a
binary predictor, and another rule-based classifier which uses both the aforementioned triple-negative
signature and the “right colon” feature (tripleNegRightRule, in green).
b) Area under the receiver-operating-characteristic curve (AUROC) values and confidence intervals
(vertical bars, obtained via DeLong’s method for the total error in the AUC61,62) across 50 IRCC-PDX
train/test split replicates (x-axis), for CeSta (in blue) and the elastic net penalised logistic model (‘elNet
baseline’, in tan) described in a).
c) AUROC (DeLong’s method) computed over the external validation CR-PDX dataset for CeSta (in blue)
and the elNet baseline classifier (‘elNet baseline’, in tan) after both models are trained and tuned over
IRCC-PDX. The orange-shaded area between the CeSta and elNet baseline ROC curves represents the
improvement in AUROC. Decision point coordinates correspond to the false-positive and true positive rates
obtained from the corresponding classifier’s predictions. Here, rule-based classifier decision points overlap
with the elNet baseline’s. d) Confusion matrix from a comparison of CeSta classifier outcomes and PDXs
actual cetuximab response over the external validation CR-PDX dataset. Correct predictions are on the
diagonal highlighted in blue, incorrect predictions off the diagonal are highlighted in purple. e) CeSta
correct prediction counts over the CR-PDX external validation set grouped by PDX cetuximab sensitivity
(x-axis) and PDX KRAS-NRAS-BRAF triple-negative status (y-axis). CeSta correctly predicts additional
triple-negative non-responders (3) and triple-positive responders (1), which all baseline classifiers miss.

Figure 3 illustrates how CeSta outperforms all baseline models (mean F1: 0.941, Mann-Whitney post-hoc

test pval: <<0.001) on this internal validation setup. Interestingly, the elNet baseline performance,

measured via F1 score (i.e. the harmonic mean of precision and recall), fully matched the triple negative

rule-based classifier, indicating that the elNet model can recapitulate the clinical decision criterion. Figure
3b shows that CeSta outperforms this same elNet baseline classifier for the vast majority of replicate splits

(mean AUROC = 0.821 versus 0.780, Mann-Whitney post-hoc test pval: <<0.001), with an average .04

increase in ROC AUC, computed using the ROC AUC variance formula first proposed by Delong and

colleagues61–63.

Following this encouraging result, we evaluated whether our CeSta classifier would outperform the clinical

SOTA baseline classifier on an independent cohort of CRC PDX models (Fig 1b, “external validation”). This

external validation cohort (from now on CR-PDX), consisting of 50 CRC xenografts, was collected and

characterised at the genomic, transcriptomic and clinical levels at Charles River Discovery Research

Services and included samples from European patients (Methods).

We tuned and trained CeSta and the baseline model over the entire IRCC-PDX collection (N = 231). We

then compared their predictive performance on the never-before-seen CR-PDX set (N = 50) using the

same set of multi-omic engineered features we described previously for IRCC-PDX (Methods). Similar to
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what we observed in the internal validation phase, our CeSta classifier outperformed the clinical baseline

classifier (AUROC = 0.88 and 0.78, respectively), with an improvement of 0.1 ROC AUC (Fig 3c). More

specifically, our CeSta pipeline correctly predicted three additional KRAS-NRAS-BRAF triple-negative

PDXs as cetuximab non-responders and one additional triple-positive as a responder; on top of matching

biomarkers correctly predicted by the baseline classifier (Fig 3d,e).

Explanation of the CeSta classifier
Post hoc explanations approximate the behaviour of a classifier by modelling relationships between feature

values and the classifier’s predictions. Here, we relied on SHapley Additive exPlanations (SHAP64) to

define local feature importance and their impact on the CeSta classifier’s predictions. SHAP is a game

theoretic approach through which values representing a feature’s average marginal contributions over all

possible feature coalitions are computed.

Our CeSta classifier leverages additional informative genomic (e.g. FGFR1 amplification) and

transcriptomics (e.g. EREG and REG4 expression; angiogenesis, inflammation, and Hh signalling ssGSEA

scores) features (Fig 4a) to improve upon the clinical baseline classifier (Fig 3b,c) while retaining the

latter’s top predictive features, namely the KRAS-NRAS-BRAF signature. As shown in the CeSta SHAP

waterfall plot in Figure 4b, we observed high Hh signalling, high angiogenesis ssGSEA scores, and the

KRAS, APC, TP53 mutation signatures being predictive of cetuximab resistance. In the same panel, high

EREG expression and, more noisily, low REG4 expression and FGFR1 amplification appeared to influence

the model towards a “responsive” prediction. Further, stacking our four lvl1 classifiers resulted in a slight

performance increase over the best-performing lvl 1 classifier (i.e. the ANOVA SVC pipeline) taken on its

own, albeit with substantial AUROC confidence interval overlap (Fig 4e).

We also detected very low collinearity among the top CeSta features’ values, with the strongest

anticorrelation between the Hh signalling ssGSEA score and EREG expression (Pearson’s r: -0.2). In

contrast, high EREG expression was associated with both increased angiogenesis (Pearson’s r: 0.4) and

high inflammatory response (Pearson’s r: 0.3) ssGSEA scores (Fig. S13).
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Figure 4 - CeSta leverages informative features and combines weaker classifiers. a) Feature
importance detected by CeSta, expressed as the mean absolute SHAP value (x-axis) for top significant
features (y-axis). b) Feature impact on CeSta output using SHAP values (x-axis) for each top feature
(y-axis) across all 50 PDXs in the CR-PDX validation set (scatter dots). The dot colour indicates the feature
value in the corresponding example. The features with the largest importance in a) have the greatest
impact on the model outcome, as well as a clean horizontal separation of positive and negative effects
based on their value for that instance, as we can observe for KRAS mutation, EREG expression. c) CeSta
top informative features’ performances on IRCC PDXs and the external cohort. Relationship between a
CeSta feature’s SHAP values and cetuximab sensitivity on the train set (x-axis; full IRCC PDX set) and test
set (CR PDX set) examples, after removing the effect of all other features (partial correlation, parSHAP).
Dot size and colour indicate a feature’s mean absolute CeSta SHAP value on the training set, which
quantifies a feature’s impact on model prediction (Fig 5a). The closer a dot is to the diagonal, the more its
corresponding train and test parSHAP values are similar. CeSta’s top features (KRAS mutation, EREG
expression, hedgehog signalling, NRAS mutation) all fall close to or above the diagonal, indicating either a
very good fit on both datasets or slight underfitting.
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d) CMP-trained model’s top informative features underperform on the external cohort. Relationship
between a CatBoostCMP feature’s SHAP values and cetuximab sensitivity on the train set (x-axis; panCMP
set) and the test set (CR-PDX) after removing the effect of all other features (parSHAP). Dot size and
colour indicate a feature’s mean absolute CatBoostCMP SHAP value on the training set, this quantifies a
feature’s impact on model prediction. As for a), the closer a dot is to the diagonal, the closer its
corresponding feature performs on our train and test sets. Many of this catBoost model’s top features
(VEGFC expression, PTEN expression, MET expression) fall in the lower right quadrant of the plot,
indicating overfitting.
e) AUROC confidence intervals (CI, vertical bars, obtained via DeLong’s method) computed over the
CR-PDX validation dataset for CeSta (in blue), three of the level 1 classifiers (in orange), a catBoost model
trained on cell line data from the panCMP dataset (‘catBoost_panCMP’, in green), and the same catBoost
model retrained on our IRCC-PDX dataset (‘catBoost_panCMP+IRCC-PDX’). Stacking four level 1
classifiers results in a slight performance improvement for CeSta over the best-performing level 1 classifier
(ANOVA_SVC), albeit with substantial AUROC CI overlap. The cell-line trained CatBoost classifier is a poor
predictor of cetuximab sensitivity in PDXs (no CI overlap). When this latter model is further trained on
CR-PDX dataset (continual learning), its performance on the CR validation set is comparable with the other
3 IRCC-PDX trained lvl 1 classifiers.

Comparison of cetuximab response in cell lines and PDX models
PDX models are thought to recapitulate inter and intra-tumour heterogeneity observed in patients more

faithfully than immortalised cell lines. They provide at least some stromal microenvironment interactions

and are more likely to follow pathways of drug sensitivity or resistance found in primary human tumours65.

However, 2d cell line models are undeniably cheaper as well as simpler to screen and characterise, an

advantage that has enabled the generation of large multi-omics cell line datasets45,66,67 and aided

systematic drug and functional genetic screening efforts10,66.

We investigated whether a cetuximab sensitivity classifier trained 1) on a large pan-cancer multi-omic

dataset (panCMP, N = 860) of 2d cell line models derived from the CMP dataset45, or 2) on a small

colorectal cancer-specific subset of the same panCMP cell-line dataset (CRC-CMP, N = 44) would compare

favourably against 1) the classifier itself, retrained on the IRCC-PDX dataset (N = 231) or 2) the classifier

itself, retrained on a randomly selected subsample of IRCC-PDX, with the same size as the colorectal 2d

cell-line dataset (subIRCC-PDX, N = 44).

We observed that a panCMP-trained boosting classifier (catBoost68 performed very poorly in predicting

PDX sensitivity to cetuximab (Fig. 4). When this catBoost model was further trained on the IRCC-PDX

dataset (continual learning, Methods), its performance on the CR-PDX validation set became comparable

to that of the other IRCC-PDX trained lvl1 classifiers. We observed a similar result when we traded several
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examples for tissue specificity in the cell-line dataset and compared a CRC-CMP-trained classifier against

itself after retraining on subIRCC-PDX (Fig S14).

We evaluated the partial correlation between a feature’s SHAP values and the target variable (parSHAP) to

investigate further these differences in model performance across different training datasets. In this case, a

positive parSHAP suggests that the classifier has identified and successfully exploited an informative

feature for its current classification task. Given that our CeSta classifier performed just as well on the

internal and external validations, it was not surprising to see matching parSHAP across CeSta SHAP

values and cetuximab response in IRCC-PDX and CR-PDX (Fig 4c) for most features, and particularly for

those with the most significant impact on model prediction (Fig 4a,b). On the other hand,several of the

panCMP catBoost classifier’s top features (VEGFBC, PTEN, MET, PIK3CA and LYZ expression, TCF7L2

loss) did not perform as well on CR-PDX, compared to the cell lines training dataset (Fig 4d), that is: their

SHAP values’ partial correlation with the target variable was lower across  CR-PDX. This suggests that

cell-line-trained models of cetuximab response struggle to predict PDX cetuximab sensitivity, primarily due

to differences in the relationship between expression features and the target variable. These transcriptional

differences between cell lines and PDXs might be due to the intense selection pressure imposed during cell

line establishment, which makes available 2d models only partially representative of the general patient

population15.

DISCUSSION

In this work, we describe and make available a multi-omic characterisation and drug screening data for one

of the largest CRC PDX collections to date. This dataset recapitulates typical CRC alteration patterns

observed in patient trials and gold-standard primary cohorts across all examined ‘omics, offering a precious

combination of complete cetuximab response labels and dense multi-omic features. This cohort provides a

realistic, stable platform for cetuximab sensitivity biomarker discovery and drug response modelling.

Building on this PDX collection, we developed CeSta, a multi-omic ensemble classifier of cetuximab

sensitivity based on a stacked ensemble architecture. When benchmarked against several state-of-the-art

classifiers, CeSta outperformed all of them, including a classifier based on the current clinical criterion for

patient stratification in cetuximab therapy prescription (KRAS, NRAS, BRAF negative mutational status and
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left sidedness of the primary tumour in the colon), both in a robust internal holdout shuffle validation and in

a fully independent external validation dataset derived from an independent patient population.

CeSta identifies and leverages individual drug response biomarkers to increase cetuximab sensitivity

prediction accuracy. These include epiregulin (EREG) and amphiregulin (REG4) expression levels, Hh

signalling, angiogenesis, and inflammation gene set cumulative expression scores. These informative

transcriptional features, in particular, show a weaker correlation with cetuximab response in 2d CRC

models than PDXs, corroborating our observation of poorer predictive performance for models trained on

cancer cell line datasets. The newly identified transcriptional biomarkers might be viable candidates for

inclusion into an improved companion diagnostic for cetuximab sensitivity using clinical-grade gene

expression technologies, such as Nanostring.

Collectively, our results illustrate the value of extensive, cancer type-specific, and well-characterised PDX

collections for drug screening, drug sensitivity modelling and mechanism of action discovery, and motivate

future efforts to increase resource dimensions and improve analytical approaches as a means to enhance

further the informative power and translational potential of PDX-based research.
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METHODS

Primary samples

We set out to build a biobank of surgical materials from mCRC patients. The full study population consisted

of tumour samples from 570 colorectal cancer patients that underwent surgical resection of liver

metastases at the Candiolo Cancer Institute (Candiolo, Torino, Italy), the Mauriziano Umberto I Hospital

(Torino), the San Giovanni Battista Hospital (Torino) and the Niguarda Hospital (Milano, Italy) from

2008–2015. Informed consent for research use was obtained from all patients at the enrolling institution

before tissue banking, and study approval was obtained from the ethics committees of the centres. Tumour

tissue (hepatic metastasis) not required for diagnosis was used to generate PDXs.

Genomic data collection

Illumina PairEnd pre-capture libraries were synthesised from double stranded DNA according to Illumina’s

protocol (Illumina Inc.). Genomic DNA was quality controlled and 200ng were used for library preparation

per sample. DNA was sheared into 300 base-pair fragments (1ug DNA in 100ul volume) using the E210

Covaris plate system (Covaris, Inc. Woburn, MA). The fragmentation settings used are Intensity of 4, 200

Cycles per Burst, for 120 seconds. Sequencing libraries were amplified using the “bridge-amplification”

process by Illumina HiSeq pair read cluster generation kits (TruSeq PE Cluster Kit v2.5, Illumina) and were

hybridised to custom RNA baits for the Agilent SureSelect® protocol. Paired-end, 75bp sequence reads

were generated using Illumina HiSeq 2000®. The sample mean sequencing coverage was ~ 700X if the

lost coverage because of duplicated and off-target reads is considered. The sequenced reads were aligned

to the reference human genome (NCBI build37) using BWA-aln 0.5.9 (Li H. & Durbin R.,2009). The .bam

files for all sequenced samples are stored at the European Genome-Phenome Archive

(https://www.ebi.ac.uk/ega/ at the EBI) with accession number EGAD00001003334 (cram files are in

EGAD00001003334, the study accession number is EGAS00001001171).

555 samples were sequenced using a custom-designed targeted colon cancer panel (SureSelect, Agilent,

UK) consisting of all coding exons of 116 genes, 22 genes recurrently amplified/deleted, 51 copy number

regions, 121 MSI regions and 2 gene fusions (RSPO2 and 3). Samples were fragmented to an average

insert size of 150bp and subjected to Illumina DNA sequencing library preparation using Bravo automated

liquid handling platform.

Sequencing was performed on an Illumina HiSeq2000 machine using the 75-bp paired-end protocol

targeting 1Gb sequence per sample. Data quality was checked for 95% target coverage at 100x and

mutation analysis was performed using an in-house algorithm. Sequencing reads are aligned to the NCBI
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37 human genome build using the BWA algorithm69 with Smith-Waterman correction and PCR duplicates

are removed. Base substitutions, small insertions or deletions, and breakpoints were identified by

comparison against an unmatched control using established bioinformatic algorithms: CaVEMan

(https://github.com/cancerit/CaVEMan/) for mutations, Pindel (https://github.com/genome/pindel) to detect

insertions and deletions, and CNVKit (https://github.com/etal/cnvkit) for copy number detection.

We used an unmatched blood sample sequenced to an equivalent depth as control. To account for the

absence of matched control, a bespoke variant selection pipeline was developed. To enrich for

high-confidence somatic variants, we performed further filtering by removing: known somatic

polymorphisms using human variation databases -- Ensembl GRCh37, 1000 genomes release 2.2.2 and

ESP6500 -- and whether the same polymorphism was observed recurrently in 93 normal DNA samples

sequenced using the same protocol and depth.

Cancer genes (CGs) are genes for which we can observe evidence of positive selection. Several statistical

approaches have been developed to categorise the likelihood of a given gene in a specific tumour type to

undergo a mutation at a high enough frequency for this to be indicative of a positive selection process. The

majority of these methods rely on a comparison of non-synonymous (dN) and synonymous (dS) mutations

in each gene and factor in additional covariates. We have elected to use as the foundation of our set of

colorectal CGs two recent statistical approaches developed using large TCGA datasets70,71.

6426 driver variants across 113 genes are identified using the statistically significant single-codon hotspots

from Chang et al.31 and variants that are predicted as drivers using the intOGen72 framework. These

variants are combined to generate a reference set of driver variants for this study, annotated based on their

origin (Intogen driver only, Chang driver only, or common to both), their hotspot status, and whether they

are known drivers of colorectal cancer. The final set of driver variants are used for annotating our PDX

variants.

To assign segment log2R to individual genes we used coordinates overlap (BEDtools v2.29.273,

https://github.com/arq5x/bedtools2) between them and gene coordinates (TSS-TES) obtained from

GENCODE (version 34, https://www.gencodegenes.org) for a set of 568 intOGen driver genes.

TCGA COAD/READ copy number calling

We downloaded masked, segmented copy number variation (CNV) data from TCGA-COAD and

TCGA-READ (~1200 samples) on 02/09/2020 via the Genomic Data Commons Data Portal (GDC,

https://portal.gdc.cancer.gov/repository) using the TCGAbiolinks R package (v2.20.074).
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The GDC CNV pipeline uses Affymetrix SNP 6.0 array data (harmonised to GRCh38) to identify genomic

regions that are repeated and infer the copy number of these repeats. This pipeline  uses the DNAcopy

R-package75 to perform a circular binary segmentation (CBS) analysis. CBS translates noisy intensity

measurements into chromosomal regions of equal copy number. The final output files are segmented into

genomic regions with the estimated copy number for each region. The GDC further transforms these copy

number values into segment mean values, which are equal to log2(copy-number/2). Diploid regions will

have a segment mean of zero, amplified regions will have positive values, and deletions will have negative

values 76. Masked copy number segments are generated using the same method except that a filtering step

is performed that removes the Y chromosome and probe sets that were previously indicated to be

associated with frequent germline copy-number variation.

We then ran both GISTIC2.077 (ftp.broadinstitute.org/pub/GISTIC2.0] and ADMIRE v1.278

(https://ccb.nki.nl/software/admire/) analyses across all the combined TCGA COAD/READ data to filter for

"significant" copy number altered segments giving rise to robust CNV events across this patient cohort.

GISTIC2.0 was executed using the recommended “GISTIC2 Command Line Parameters” listed in the GDC

copy number segmentation documentation at

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/#copy-number-segmentation .

Here the “segmentation file” corresponds to the masked segmented copy number variation downloaded

from TCGA COAD/READ, the “marker file” contains the aforementioned probe coordinates filtered for

“freqcnv == FALSE” as per the GDC reference files

(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files), and the “reference gene file” is

the GRCh38 reference provided alongside GISTIC2.0 .

ADMIRE1.2 was executed using the same parameter configuration shown in the example use case

provided at https://ccb.nki.nl/software/admire/readme.txt with the “segmented CNA” file again

corresponding to the combined COAD/READ data, and the “marker file” containing the filtered probe

coordinates.

The output of these two analyses identifies CNV events spanning multiple segments from different samples

across the patient cohort. We then merged these results by computing the union of all (fully or partially)

overlapping ADMIRE or GISTIC segments, and included all non-overlapping segments from either tool

resulting in a set of 2382 events. From this combined output, we extracted event and segment coordinates

and mapped both to 552 known cancer driver genes in the intOGen catalog72

(02/02/2020 release, https://www.intogen.org/download?file=IntOGen-Cohorts-20191112.zip) using

BEDtools v2.29.273 (https://github.com/arq5x/bedtools2).
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Finally, we computed gene-specific CNV event frequencies by counting the number of TCGA  samples with

copy number altered segments mapping to both 1) the event and 2) the gene which shared the same CNV

direction as the event, divided by the number of COAD/READ samples.

Comparing driver gene SNPs in TCGA COAD/READ and PDXs

Frequencies of somatic alteration for TCGA samples was obtained from cBioPortal, selecting the Colorectal

Adenocarcinoma TCGA, PanCancer atlas

(https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018) dataset.

Comparing copy number variation events in TCGA COAD/READ and PDXs

We first binned PDX segment log2R values into three categories (“Loss”, “Neutral”, “Gain”), using the same

GISTIC log2R thresholds we applied to the TCGA COAD/READ data (-.2, .1) [using the same threshold as

in TCGA data here might be too strict for PDx sequencing data where there's less non-tumour tissue

contamination as murine cells/DNA are filtered out]. We then computed gene-specific CNV event

frequencies by counting the number of  PDX samples with copy number altered segments mapping to each

gene, divided by the number of PDX samples.

We then computed the Spearman correlation coefficient for the TCGA and PDX genewise CNV event (here

only “Loss”, “Gain”) frequencies.

Assessing PDX copy number stability within lineages

We grouped 91 PDX samples, according to their genealogy, into 13 multi-passage lineages and retrieved

gene-specific log2R data for 569 genes from the analysis described in the previous sections.  We then

computed the Pearson correlation across all gene log2Rs for each pair of PDX samples and labelled each

Pearson coefficient according to whether the two samples belonged to the same lineage or to different

ones.

Assessing PDX mutational stability within lineages

We analysed somatic mutations along multi-passage PDX lineages using the same set of 91 PDX samples

grouped into 13 lineages as described above. To rule out false positive calls for putative WT samples in
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lineages with apparent inconsistencies (Supplementary Figure S4), we further checked the coverage and

absolute number of reads supporting each individual SNVs and only found single mutated reads in three

WT samples with coverages ~400X.

Gene expression data collection

RNA was extracted using miRNeasy Mini Kit (Qiagen), according to the manufacturer’s protocol. The

quantification and quality analysis of RNA was performed on a Bioanalyzer 2100 (Agilent), using RNA 6000

Nano Kit (Agilent). Total RNA was processed for RNA-seq analysis with the TruSeq RNA Library Prep Kit

v2 (Illumina) following manufacturer’s instructions. Sequencing was then performed on Illumina Nextseq

500  at Biodiversa SRL, obtaining single end 151bp reads, aiming at 20M reads.

Read counts were obtained using an automated pipeline (https://github.com/molinerisLab/StromaDistiller),

that uses a hybrid genome composed of both human and mouse sequences to exploit the aligner ability to

distinguish between human derived reads, representing the tumour component, and mouse ones,

representing the murine host contaminating RNA material.

Reads were aligned using STAR79 (version  2.7.1a, parameters --outSAMunmapped Within

--outFilterMultimapNmax 10 --outFilterMultimapScoreRange 3  --outFilterMismatchNmax 999

--outFilterMismatchNoverLmax 0.04) versus this hybrid genome (GRCh38.p10 plus GRCm38.p5hg38 with

GENCODE version 27 and mouse GRCm38 with GENCODE version 16, indexed with standard

parameters and including annotation information from the GENCODE 27 plus m16 comprehensive

annotation).

Aligned reads were sorted using sambamba80 (version 0.6.6) and only non-ribosomal reads were retained

using split_bam.py81 (version 2.6.4) and rRNA coordinates obtained from the GENCODE annotation and

repeatmasker track downloaded from UCSC genome browser hg38 and mm9.

featureCounts (https://rdrr.io/bioc/Rsubread/man/featureCounts.html, version 1.6.3) was run with the

appropriate strandness parameter (-s 2) to count the non multi-mapping reads falling on exons and

reporting gene level information (-t exon -g gene_name) using combined GENCODE basic gene annotation

(27 plus m16).

Sequencing data was available for 480 samples, but different filtering criteria lead to 470 QC passing

samples. These criteria include: 1) >= than 15M total reads, 2) >= 60% reads assigned to genes by feature

counts, 3) >= 30% reads assigned to human genes over the total of assigned reads.

These filters let us retain only samples with at least 5M human reads. Having defined the samples with

acceptable mapping, we set out to identify the ones with lymphomatous characteristics4, to remove them.

We considered different sources of information: 1) principal component analysis of the expression data

itself (variance-stabilised); 2) computation of a sample level score for a leukocyte expression signature82,
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averaging the robust fpkm for all the signature genes; 3) methylation data, when available (see Methylation

analysis); 4) histopathological analysis for a subset of tumours which were explanted and routinely stained

with H&E.

This analysis highlighted a set of samples with lymphomatous characteristics pointed out coherently by the

different data and prompted us to remove samples marked by at least one of the filters (specifically for

expression PC2 >= 30 and leukocyte signature average >= 48), to correctly filter samples with only the

expression data available.

Gene-level variance stabilised expression and robust fpkm values for 33670 genes were obtained using

DESeq283 (version 1.26.0), tmm using edgeR84 (version 3.28.1) using only read counts from human genes.

CRIS and CMS subtyping was obtained for each individual tumour averaging the VST values for replicates,

when available, using the R package CMScaller34 (v2.0.1, FDR = 0.05 and RNAseq = TRUE) and the R

package CRISclassifier4 (v1.0.0, FDR< 0.2).

Github repositories: https://github.com/molinerisLab/StromaDistiller,

https://github.com/vodkatad/RNASeq_biod_metadata and https://github.com/vodkatad/biodiversa_DE

The .fastq files for all sequenced samples are stored at the European Genome-Phenome Archive

(https://www.ebi.ac.uk/ega/ at the EBI) with accession number EGAS00001006492.

Methylation data collection

Methylation profiles for 568 Colorectal Cancer samples were obtained using Illumina MethylationEPIC bead

chip, which measures methylation status at about 850,000 sites using hybridization on two different probes

after bisulfite treatment on DNA. These samples comprise tissue from the original patient, either primary

tumours or metastases, or both in some cases, and the corresponding engrafted tumours in mice (PDXs).

Raw data have been processed using the minfi package

(https://bioconductor.org/packages/release/bioc/html/minfi.html, version 1.32.0). Data preprocessing  was

performed following the best practices outlined by Bioconductor minfi vignette and documentation, and

Hinoue et al.36

(https://www.bioconductor.org/packages/devel/workflows/vignettes/methylationArrayAnalysis/inst/doc/meth

ylationArrayAnalysis.html).

Background noise was removed using the minfi function preprocessNoob(), which implements the noob

background subtraction method with dye-bias normalisation. Samples and probes that did not pass the

quality control were then excluded from further analyses.

For samples, minfi provides a simple quality control plot that represents the log median intensity in both the

methylated (M) and unmethylated (U) channels. By adopting the default median intensity cutoff of 10.5, six

samples with lower values were removed from the dataset.
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We then filtered the probes, based on their detection p-value (det-Pval), which is indicative of the quality of

the signal. By filtering out all those probes of which det-Pval was higher than 0.01 in at least one sample,

we removed 64,361 probes. We also removed all the probes mapping on X and Y chromosomes (19,627),

to remove gender bias, and those probes that are known to bind to common SNPs (30,435). Moreover,

using the list originally published by Chen et al.85, we removed 43,177 probes that have been demonstrated

to map to multiple places in the genome.

To work with a coherent set of probes for all the samples, in particular xenografts, we decided to apply one

last probes filter, removing all those probes known to specifically map on murine genome as well, in order

to remove possible methylation signal coming from the murine infiltrate, with the same rationale followed for

microarray data82. To do this, we combined two lists of murine-specific probes, obtained from Needhamsen

et al.86 and Gujar et al.87, which resulted in removal of other 22,537 probes.

We combined the hg19 annotation package (IlluminaHumanMethylationEPICanno.ilm10b2.hg19 version

0.6.0), with the liftOver() function from the rtracklayer package88 (version 1.46.0) and the imported file

hg19ToHg38.over.chain.gz (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/) in order to convert

the remaining 700,298 probes’ coordinates from hg19 to hg38.

Moreover, as done for expression data (See Gene expression data collection), we removed samples with

clear lymphomatous characteristics. Specifically for methylation, samples with PC2 >= 500 were almost

always flagged by H&E analysis when it was available, therefore we considered all of them to be

lymphomatous.

To identify groups of samples sharing similar methylation profiles, Beta values were used to run

non-negative matrix factorization algorithms in R (https://www.rdocumentation.org/packages/NMF/, version

0.22.0). k=5 was identified as the best parameter by the cophenetic correlation coefficient (bootstrapping

arguments: rank=2:6, nrun=100, seed=42, .options='p70'). We therefore selected 5 as the number of

classes used to characterise the methylation landscape of our samples.

The .idat files for all samples are stored at the Gene Expression Omnibus (GEO) with accession number

GSE208713.

Clinical data collection

Since the patients whose tumours are included in our biobank were not enrolled in a specific clinical trial

and underwent surgery in different hospitals, our clinical data collection is based on personal

communications with the Surgery Departments. This is the main reason behind the sparseness of the data.
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Measuring cetuximab response in PDX models

After surgical removal from patients, each metastatic colorectal cancer specimen was fragmented and

either frozen or prepared for implantation: cut in small pieces and 2 fragments were implanted in 2 mice.

After engraftment and tumour mass formation, the tumours were passaged and expanded for 2 generations

until production of 2 cohorts, each consisting of 12 mice. Tumour size was evaluated once-weekly by

calliper measurements and the approximate volume of the mass was calculated using the formula

4/3π·(d/2)2·D/2, where d is the minor tumour axis and D is the major tumour axis. PDXs derived from each

original fragment were then randomised for treatment with placebo (6 mice) or cetuximab (6 mice) -

animals with established tumours, defined as an average volume of 400 mm3, were treated with cetuximab

(Merck, White House Station, NJ) 20 mg/kg/twice-weekly i.p.

For assessing PDX models response to therapy, we used averaged volume measurements at 3 weeks

after treatment normalised to the tumorgraft volume at the time of cetuximab treatment initiation. 231

tumour grafts were classified as follows: 1) “objective response” (OR) models with a decrease of at least

50% in tumour volume  2) “progressive disease” (PD) models with at least a 35% increase in tumour

volume, and 3) “stable disease” (SD) for the ones in between2.

Finally, to obtain a balanced dataset, we elected to combine the “SD” and “OR” classes into a single

“SD-OR” (i.e. treatment responder) class, turning our cetuximab response modelling task into a binary

classification problem.

All animal procedures were approved by the Ethical Commission of the Candiolo Cancer Institute and by

the Italian Ministry of Health (authorization 806/2016-PR) All animal procedures for the CR PDX data set

were executed in an AAALAC accredited animal facility and approved by the Committee on the Ethics of

Animal Experiments of the regional council (Permit Numbers: G-13/13 & G18/12).

Genomic feature engineering

To reduce data sparsity, we reshaped our mutational annotations into a binary matrix -- with columns (116

in total) corresponding to genes and rows (231 in total) corresponding to PDX models -- where a value of 1

indicates that one or more SNVs mapping to a given gene have been observed in a given PDX model. We

also generated additional mutational features: a “mutational burden” feature containing the sum of all

mutated genes for each PDX, and a set of “multiple mutations” features, indicating the number of unique

SNPs hosted by a given gene in a PDX model. Finally, we filtered out any binary feature which was

observed in fewer than 5 PDXs across our IRCC-PDX collection. To obtain a compact representation of

relevant co-occurent or mutually-exclusive mutations, we developed an extended version of the CELLector

methodology27 that partitioned the PDx mutation landscape recursively finding subgroups defined by the
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most recurrent combinations of genomic events (mutations or copy number alterations). Briefly, the original

version of CELLector (from now on referred to as hierarchical), recursively applies the Eclat algorithm89 on

a population described by a binary event matrix (BEM), with each column representing a genomic feature

and 0/1 possible entries indicating the absence/presence of that feature in a sample. In the hierarchical

version of CELLector the genomic background of a population is represented as a binary tree whose

topology is defined by the most-frequently observed combination of genomic features (referred as

signature) together with the fraction of samples for which those mutations occur and hence satisfy the

signature rule (sequence of presence/absence of specific features). In particular, CELLector first identifies

the root as the genomic feature with largest support, i.e. number of patients in which that feature is

observed, and then defines two sibling nodes. The left child corresponds to the subset of samples

satisfying the parent feature and the feature with greatest support among the samples in the parent node.

The right child corresponds to the complementary population of the parent node, composed of samples not

satisfying that feature, and among those the feature with greatest support. This algorithm is applied

recursively until no sub-population satisfying a certain signature rule of at least a minGlobSupp percentage

of samples is identified, with minGlobSupp being a hyperparameter defined apriori. This hierarchical

structure outputs K recursive signature rules that can be converted into a partition of K+1 groups as

follows.

Starting from CELLector hierarchical binary tree,

1. for each node starting from the root, we define with U the set of samples satisfying that node rule

defined as the corresponding signature S.

2. If the considered node has a left child ( ) associated to feature , we defined with𝑈
𝑙 
⊂ 𝑈 𝐹

𝑙
𝑈

𝑟𝑚
: =  𝑈
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the set of samples to be removed from U.
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4. If has another right child defined by signature , the update is repeated as 𝑈
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and this step is performed recursively until the considered node has no right child.𝑈
𝑟𝑚

: =  𝑈
𝑟𝑚

 ⋃ 𝑈
𝑟,𝑟

5. The new set of samples is defined as and corresponding signature rule representing𝑈
𝑛
 =  𝑈 \ 𝑈

𝑟𝑚

the group is defined as 𝑆,  ~ 𝐹
𝑙
,  ~𝐹

𝑟
,  ~𝐹

𝑟,𝑟
,  ...

If the condition in step 2. is not satisfied, the group is directly defined as samples in node U and satisfying

signature S rule. Once every node in the hierarchical binary tree was considered, the last group is defined

as the remaining samples that were not satisfying any hierarchical signature rule. The signature defining

this group is created as the negation of the root node and all the recursive right childers, as described

before. Note that the newly created groups could be composed of a fraction of patients lower than the

minGlobSupp.
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We applied the partitioned version of CELLector (V2.0.0) to the somatic mutation PDx space in BEM format

with minGlobSupp fixed at 0.02.

Similarly to what we describe for above for mutation features, we discretise each of our 1163 gene-level

log2 features into four categories (“Loss”, “Neutral”, “Gain”, “High Gain”), using, in addition to the GISTIC

log2R thresholds for “Loss” and “Gain” (-.2, .1), an additional threshold at 2, above which a gene is

considered to be involved in a “High Gain” event in which more than 1 additional copy is gained.

This “High Gain” category is added to help capture any association between driver gene high-order copy

number gain and cetuximab sensitivity.

We then reshape these categorical copy number annotations into a binary matrix with columns

corresponding to individual CNV events involving a given gene (e.g. “CD12_Gain”) and rows corresponding

to PDX models. We then remove features which have the same value in 85% or more of our training PDX

models.

After feature engineering and filtering, we are left with 1,295 genomic features.

Transcriptomic feature engineering

To reduce RNAseq data dimensionality from an initial input of 33,670 gene-level expression features, as

well as to include state-of-the-art knowledge of cancer signalling pathways and transcription factor activity,

we computed 1) GSVA scores90 ( http://www.biomedcentral.com/1471-2105/14/7) using the GSVA R

package (version 1.34.0, R 3.6.3, kcdf="gaussian")  on tmm expression levels and the MSigDB Hallmark

gene sets26 as well as 2) PROGENy scores computed using the progeny R package25. Both sets of scores

were computed separately for each train/test replicate (see following sections) to avoid any information

leakage.

Finally, we considered that many PROGENy and Hallmarks gene set are partially overlapping: for example

PROGENy’s "NFkB" set corresponds to Reactome’s "TAK1 activates NFkB by phosphorylation and

activation of IKKs complex" and “RIP-mediated NFkB activation via ZBP1", and thus it shares 8 of its 48

genes with PROGENy’s “TNFa” set (Reactome’s "TNF signaling”). To avoid excessive collinearity between

scores based on overlapping gene sets, we first computed the Pearson correlation coefficient (PCC) for all

pairs of engineered transcriptomic features over all instances in the training set, and considered as

“collinear” all pairs with a PCC larger than .7. Here, for each pair of collinear features, we discard the one

with the higher Mann-Whitney U test p-value between responder and non-responder PDXs. This yielded 38

engineered expression features.
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Clinical feature engineering

We consolidated our clinical data by: 1) dropping any features with more than 40% missing values, 2)

dropping redundant or inconsistent features (“OXALIPLATIN-based treatments”, "N", "T","N of other

metastatic resections before collected metastasis", "M", "Site M", "Site of primary", "Site of primary

DICOT"), 3) converting “Stage at first diagnosis” annotations to an integer score and retaining only the

highest score for a given PDX model where multiple annotations are present, 4) converting the “ Lymph

node density” annotations to a numerical score corresponding to the ratio of positive lymph nodes over the

total lymph node count, 5) encoding all treatment backbone annotations as categorical features, 6)

one-hot-encoding all sample anatomical location annotations. This yielded 25 features covering patient,

previous treatment, and tumour metadata.

Model architecture

For our cetuximab response model we selected a stacking classifier architecture. Stacking is an ensemble

learning technique which combines the individual contributions of multiple classification models

(level-1-classifiers) via a meta-classifier. Here, we use a soft voting classifier which outputs the final binary

class labels (cetuximab non-responder; cetuximab responder) based on the argmax of the sums of the

predicted probabilities from the level-1-classifiers (scikit-learn VotingClassfier91,92, v1.02)

Our CeSta classifier uses a late integration approach to prevent high-dimensional ‘omics (transcriptomics,

methylomics) from overwhelming smaller omics by dominating the selected feature set. We perform an

initial round of single-omic supervised feature selection whose output is then piped into each of the four lvl

1 classifiers described below (Fig. 1b).

This selection step ranks features according to the product of 1) a feature rank based on the Fisher’s exact

statistic (scipy v1.991,92) for binary features or Mann-Whitney U-test statistic (scipy v1.9) for continuous

features, 2) a feature rank based on percent lift, and 3) a feature rank based on logit model (statsmodels

v0.13.2 logit) coefficients. A set of top K features is then selected from this ranked list, with K being one of

CeSta’s hyperparameters. This selection process is applied exclusively to the training set in each train, test

split replicate during the internal validation (Fig. 1c and below) to avoid any information leakage. In Results

and in Table S1 we are showing selected features and corresponding statistics and metrics obtained over

the entire IRCC-PDX set as per the CeSta instance used for external validation (Fig. 1c)
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We used 4 distinct level-1-classifier pipelines (Fig 1b): 1) a model-based (scikit-learn KNeighborsClassifier)

forward feature selection, followed by elastic net penalised logistic regression (scikit-learn

LogisticRegression with ‘penalty’ set to ‘elasticnet’), 2) ANOVA feature selection (scikit-learn f_classif),

followed either by a support vector classifier (scikit-learn SVC) or 3) an extra trees classifier (scikit-learn

ExtraTreesClassifier), and 4) a CatBoost classifier (catBoost 1.0.568) trained on the same set of 30 features

from CMP, then on IRCC PDX (continual learning).

Each level-1-classifier was trained (or re-trained in the case of CatBoost, see following sections) on a

dataset of features selected (see above) from our 5 ‘omic data sources (mutation, CNV, expression,

methylation, clinical). Finally, level-1-classifier prediction probabilities were stacked and taken as input by

our meta-classifier (see above) which, in turn, gave in output a final binary prediction.

Model training, tuning, and validation

We generated 50 train, test split (160/71 PDXs) holdout shuffle replicates by performing stratified sampling

from our IRCC-PDX dataset. The latter consisted of 231 fully characterised (targeted sequencing, RNAseq,

methylation assay, clinical metadata) PDX models which were labelled as cetuximab responders or

non-responders according to tumour volume variation after treatment, as described above.

For the internal validation analysis, we used a nested cross-validation approach (inspired by mlextend’s

StackingCVClassifier93) to tune and train 50 independent CeSta replicates, one per each train, test split.

Each training set replicate was further split into 3 folds, and in 3 successive rounds, 2 folds were used (in

turn) to fit the level-1-classifiers. In each round, the level-1-classifiers were then applied to the remaining 1

subset not used for model fitting in each iteration. The resulting predictions were then stacked and provided

-- as input data -- to the meta-classifier. After comparing the meta-classifier’s prediction on the validation

fold to the corresponding true labels, the first-level classifiers were fit to the entire training set replicate (Fig
1c).

This model training process was performed using a hyperparameter combination suggested by Optuna94

across 200 trials, while maximising the average of  the area under the ROC curve (ROC AUC) computed

over 3 training folds. Tuned parameter include: the number of top features selected during the first

selection step, "colsample_bylevel", "depth", "boosting_type","boosting_type","bootstrap_type" for the

CatBoost classifier; number of sequentially-selected features, elastic net ‘C’, ‘l1_ratio’ for the Logistic

elastic net classifier pipeline; number of ANOVA-selected features, ‘C’ and ‘kernel’ for the SVC classifier

pipeline; number of ANOVA-selected features, ‘n_estimators’ for the ExtraTrees classifier pipeline. This

hyperparameter space search was performed, independently, for each model replicate.
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Finally, we validated each of our 50 CeSta pipelines by predicting each PDX model in their respective test

set as a cetuximab “responder” or  “non-responder”, and computing the resulting ROC AUC and ROC AUC

.95 confidence interval (using DeLong’s method) by comparing predicted and true labels.

For the external validation analysis, the same tuning, training, and validation process was repeated using

the entire IRCC-PDX dataset as a training set (N=231), and the CR-PDX dataset as a test set (N=50).

Performance baselines

To provide a realistic benchmark for CeSta performance, we define and train a number of alternative,

multi-omic cetuximab sensitivity predictors. The latter are all trained, tuned, and validated using a set of 30

holdout shuffle replicates, analogous to the setup we use for CeSta internal validation in Figure 1c.

“tripleNegRule” is a rule-based classifier based on the KRAS-NRAS-BRAF mutational signature: it will

output a “non-responder” prediction if any of these three genes is mutated in the current PDX example.

“tripleNegRightRule” is a rule-based classifier based on the KRAS-NRAS-BRAF mutational signature and
the “right colon” marker (i.e. whether the original tumour was located in the right portion of the patient’s
colon). This decision strategy originates from a retrospective analysis of triple negative patients from the
CRYSTAL and FIRE-3 trials where right-sided tumours had significantly poorer prognosis and lower
response to cetuximab treatment37.
tripleNegRightRule will output a “non-responder” prediction if either 1) any of KRAS, NRAS, BRAF is
mutated or 2) the original tumour was right-sided.

“elNet_baseline” is an Elastic-Net net penalised logistic regression classifier (scikit-learn

LogisticRegression with penalty set to “elasticnet”) based on 4 binary features encoding the mutational

status of KRAS, BRAF, NRAS (i.e. the ‘triple negative’ CRC signature), and whether the primary tumour is

located in the Right Colon. This corresponds to the state-of-the-art clinical signature for cetuximab

sensitivity in colorectal cancer, as we discuss in Introduction and Results.

“rawL1elasticnet” is an Elastic-Net net penalised logistic regression classifier which uses our full set of

39960 raw (non-engineered, non pre-selected) features, that is: binary gene mutational status features,

variance-normalised gene-level RNAseq data,  clustered methylation probe signal, and binary CNV events.

“MixOmics sPLS-DA” uses mixOmic’s95 multivariate integration approach, based on Partial Least Squares

(PLS) regression and discriminant analysis, in which the most informative features (i.e. those that best

discriminate between cetuximab responsive and non-responsive PDXs) from different ‘omics are selected
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with the constraint of correlation between their first PLS components. More specifically, here we follow the

multi-omic classification case study illustrated in http://mixomics.org/methods/spls/. We 1) perform LASSO

feature selection (glmnet v4.2, https://www.rdocumentation.org/packages/glmnet) for methylation (700,298

non-engineered features) and expression (33,670 non-engineered features), 2) use a sparse partial

least-squares discriminant analysis model (sPLS DA) for single-omic dimensionality reduction, 3) followed

by a DIABLO model for horizontal multiple ‘omics integration. We optimise both the number of PLS

components and the number of selected features for each omic and each component via 3-fold cross

validation on each training set replicate.

Finally, we validate these benchmark classifiers on each test set replicate, as described for our CeSta

classifier in Fig 3b by labelling each PDX model as a cetuximab “responder” or  “non-responder”, and

computing the resulting ROC AUC by comparing predicted and true labels, again using DeLong’s method

for computing the ROC AUC 0.95 confidence interval where possible.

Cell Model Passport datasets

The Cell Model Passport portal45 (https://cellmodelpassports.sanger.ac.uk/) catalogues and curates

multi-omic data for cancer cell line and organoid models. When combined with the Genomics of Drug

Sensitivity in Cancer (GDSC) dataset

(https://www.sanger.ac.uk/tool/gdsc-genomics-drug-sensitivity-cancer/), it provides genomics,

transcriptomics, and cetuximab response data for 860 unique cancer cell line models (panCMP dataset).

Here, we repeat the same data preprocessing and feature engineering steps we performed for the

IRCC-PDX dataset, with the exception of the NMF-based clustering of methylation probes as this omic is

missing from the CMP collection. Further, as cell line cetuximab response is quantified as IC50 values,

rather than tumour volume change, here we dichotomise our target variable using the median IC50 for all

cell lines in the panCMP dataset with lines falling below this threshold being labelled as “responders”.

For the purpose of comparing the predictive performance of a model trained on cell line data against one

trained on PDX data, we generate a panCMP training set which includes a subset of 860 examples and 55

expert-selected multi-omic features (Data and Code Availability). This feature subset is available in both the

aforementioned panCMP dataset, our IRCC-PDX dataset, and the CR-PDX dataset. This feature subset

fully overlaps with available features from our IRCC PDX train set. We then train and tune a catBoost

classifier pipeline (see above for pipeline architecture, hyperparameters space) over this panCMP training

set using an 8-fold cross-validation approach across 50 Optuna trials. This cell-line trained “base model” is
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then provided, as a starting point for continual learning, to a second round of training (using the ‘init_model’

parameter) over either an IRCC PDX train set replicate for internal validation, or the entire IRCC-PDX

dataset for external validation on the CR-PDX dataset.

From the panCMP dataset, we can further subset 44 colorectal cell lines (CRC-CMP), which are

characterised with the same set of 55 features as in the panCMP dataset. This context-specific dataset can

also be used to train a catBoost “base model” which we then feed into a second catBoost classifier trained

on IRCC-PDX.

External validation: Charles River dataset

An independent CRC PDX cohort96

(https://www.cancermodels.org/data/?facets=model.data_source:CRL%20AND%20model.model_type:xen

ograft%20AND%20patient_tumour.cancer_system:Digestive%20System%20Cancer ) has been assembled

and characterised by our collaborators at Charles River Discovery Research Services (CR). We use 50

CRC LMX, first-pass PDX models corresponding to 50 unique patient samples characterised using the

same set of multi-omics as in the IRCC PDX cohort. For missing features (e.g. methylation cluster labels)

we impute their values for this cohort using the mode for categorical features and the median for

continuous features. We then use this CR-PDX dataset as a fully independent validation cohort to compare

our stacked classifier’s performance against that of baseline models after training on the entire IRCC-PDX

dataset.

Post-hoc model explanation

As a cross-model proxy for feature importance, for each feature, we calculate the mean of the absolute

SHAP values (https://github.com/slundberg/shap v0.4) across all instances in the test set. We consider the

absolute values as we do not want positive and negative values to offset each other. Features that have

large mean absolute SHAP values are those that more significantly impact model predictions.

We are also interested in assessing, for a given classifier, which features perform equally well across

different datasets (i.e. panCMP, IRCC-PDX, CR-PDX). To do so, we start by evaluating the relationship

between a feature’s SHAP values and the target variable. A positive correlation here indicates that the

model has identified and it is successfully exploiting an informative feature for its current classification task.

Given that SHAP values are additive, with the model’s prediction being the sum of all feature SHAPs, it

makes sense to  remove the effect of other features’ contribution by computing the partial correlation

between each feature and the target after removing the effect of all other features (i.e. controlling
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variables). Specifically, here we use pingouin97 (v0.5.1) and its partial_corr function specifying, in turn, all

features but one as x-covariates.

Data and code availability

https://github.com/molinerisLab/StromaDistiller and https://github.com/vodkatad/RNASeq_biod_metadata

contain a pipeline tracking counts and metadata across different sequencing batches for

xenografts/organoids RNAseq.

https://github.com/vodkatad/biodiversa_DE contains code to perform DEG analyses with DESeq2 and

various enrichment analyses on results.

Code for multiomic data preprocessing and integration is available at

https://bitbucket.org/uperron/pdx_multiomics_integration_preproc

Code and data to fully replicate the results in Figures 1,2 is available at

https://bitbucket.org/uperron/ircc-pdx_exploration

Code, models, and data to fully replicate CeSta and the results in Figures 3,4 is available at

https://bitbucket.org/uperron/cesta_pdx

CELLector is available at https://github.com/francescojm/CELLector.

Raw sequencing data:

1. Targeted DNA sequencing: https://ega-archive.org/studies/EGAS00001001171

2. RNAseq: https://ega-archive.org/studies/EGAS00001006492

Access to these datasets will be granted upon request via the EGA portal, as required for personally

identifiable data.

Methylation data:

1. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE208713
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We set up a temporary token to access this dataset during review: cfihygswjlohxqd. This data will be made

fully public upon publication of this manuscript.
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