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Abstract

Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various
forms of plasticity and clinical conditions. However, our understanding of the PNN role in these
phenomena is limited by the lack of highly quantitative maps of PNN distribution and association
with specific cell types. Here, we present the first comprehensive atlas of PNN distribution (in
Allen Brain Atlas coordinates) and colocalization with parvalbumin (PV) cells for over 600 regions
of the adult mouse brain. Data analysis showed that PV expression is a good predictor of PNN
aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory areas
in correlation with thalamocortical input density, and their distribution mirrors intracortical
connectivity patterns. Gene expression analysis identified many PNN correlated genes. Strikingly,
PNN anticorrelated transcripts were enriched in synaptic plasticity genes, generalizing PNN role
as circuit stability factors. Overall, this atlas offers novel resources for understanding the
organizational principles of the brain extracellular matrix.

Introduction

Perineuronal Nets (PNNs) are specialized reticular structures of the extracellular matrix (ECM) that
ensheath neurons in the entire mouse and human brain (Galtrey et al., 2008; Hendry et al., 1988;
Seeger et al., 1994; Kdppe et al., 1997). These structures aggregate progressively during postna-
tal development, in parallel with the closure of critical periods for developmental plasticity (Piz-
zorusso et al., 2002; Boggio et al., 2019; Reichelt et al., 2019; Ye et al., 2013). Although their precise
composition may vary between different brain regions, PNNs are known to share three essential
molecular constituents: hyaluronic acid, glycosylated proteins called chondroitin-sulfate proteogly-
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cans (CSPGs), and link proteins such as hyaluronan and proteoglycan link protein 1 (HAPLN1) and
Tenascin-R (Carulli et al., 2010; Dauth et al., 2016; Kwok et al., 2010). The sugars present on CSPGs
are also the binding target of the lectin Wisteria floribunda agglutinin (WFA), the most widely used
marker to visualize PNNs in histological analyses (Fawcett et al., 2019; Hartig et al., 1999).

The precise contribution of PNNs in regulating brain function is a strongly active area of re-
search. Many roles have been proposed, but a key overarching theme is that PNNs tightly control
the plasticity and stability of neuronal circuits (Fawcett et al., 2022; Nabel et al., 2013). This func-
tion has been studied throughout many cortical and subcortical regions of the brain. For example,
PNNs are known to control ocular dominance plasticity in the visual cortex (Pizzorusso et al., 2002;
Carulli et al.,, 2010; Miyata et al., 2012; Rowlands et al., 2018; Beurdeley et al., 2012), fear memory
extinction in the amygdala (Gogolla et al., 2009), spatial representation stability of grid cells in the
entorhinal cortex (Christensen et al., 2021), associative motor learning in the cerebellum (Carulli
et al., 2020), and social memory in the hippocampus (Cope et al., 2021; Dominguez et al., 2019).
Enzymatic digestion of PNNs has been shown to promote plasticity and improve recovery after
damage to the central nervous system (Bradbury et al., 2002). Additionally, PNNs are thought to
stabilize neuronal circuitry by protecting fast-spiking neurons against oxidative stress (Cabungcal
et al., 2013) a risk factor for psychiatric diseases. Abnormalities in PNNs that make PV cells more
susceptible to oxidative damage have been reported in schizophrenic patients (Pantazopoulos et
al., 2010).

Despite these general features, PNNs also show a remarkable degree of variability between
different brain regions both in terms of structure and function (Ueno et al., 2018). In the isocortex,
several studies showed that PNNs primarily surround parvalbumin-expressing (PV) fast-spiking
GABAergic interneurons. However, in the hippocampal CA2 and in other areas, they also ensheath
excitatory pyramidal neurons, suggesting a different biological function in these regions (Carstens
et al., 2016). At the functional level, the enzymatic removal of PNNs can have different effects
(Wingert et al.,, 2021). For example, it enhances LTD in the perirhinal cortex (Romberg et al., 2013),
while it impairs both early-phase LTP and LTD in the hippocampus (Bukalo et al., 2007). The lack
of understanding of the principles of PNN organization throughout the brain hinders our compre-
hension of their functional role and possible therapeutic implications. Furthermore, the extent to
which PNNs are linked to PV cells across brain areas has not been systematically studied.

Here, we present a systematic brain-wide analysis of PNNs and PV neurons in the mouse brain.
We provide multiple quantitative measurements for PNNs, PV cells, and their interaction for more
than 600 different brain areas. We also release two deep learning models, pre-trained on a dataset
of approximately 0.8 million manually annotated PNNs and PV cells, for their automatic detection.
Finally, we demonstrate that, thanks to our dataset, it is possible to detect connectivity and gene
expression patterns that correlate with the presence of PNNs. We believe that these resources will
have a significant impact on facilitating research on PNNs.

Results

PNN and PV cells quantification in the mouse brain

We performed immuno-/lectin histochemistry on serially collected whole-brain coronal slices of
seven adult mice, staining sections with both WFA and an anti-PV antibody (Figure 1A). We then
acquired fluorescence images and registered them to the Allen Institute CCFv3.

To automatically detect the (x,y) coordinates of PNNs and PV cells, we trained two deep convo-
lutional neural networks with a dataset comprising roughly 0.67 million manually annotated PNNs
and 0.16 million PV cells (Figure 1B). While manually counting non-trivial structures on a large scale,
an experimenter can be influenced by illumination conditions, fatigue, or different judgements,
spanning from conservative to liberal. As a result, the training dataset can inherit annotation bi-
ases. To address this issue, we implemented a second stage whereby we assigned a confidence
score to each object detected by the two deep neural networks. This scorer module consisted of
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Figure 1. Image registration and analysis pipeline. (A) Schematic of the pipeline for slice registration to the
Allen Institute CCFv3 reference volume. (A) Schematic of the strategy for cell counting. Two different modules
were used, a larger convolutional neural network for localization and a smaller one for scoring. Scale bar:
200um. (A) Diagram showing a graphical explanation of the four metrics used to quantify PNN and PV
staining.

other two deep-learning models trained on two smaller datasets (4,727 PNNs and 5,738 PV cells)
labeled by seven independent expert raters. The aim was to produce scores for each putative ob-
ject that maximally correlate with the raters’ agreement. A detailed description of this method is
available in Ciampi et al., 2022.

In our multi-rater dataset, the average agreement (Jaccard index) between pairs of expert raters
was 64% for PNNs and 72% for PV cells, demonstrating relevant individual differences in counting
strategies (Figure STA). Our scoring models produced detection scores that strongly correlated with
the number of raters that detected each object (Figure S1B, C). Overall, when tested on objects
located by at least three raters, our models proved to be reliable in the detection of PNNs and
PV cells (see Ciampi et al., 2022 and section Deep learning models for cell counting in Methods &
Materials). We release the pre-trained four models used in this study (link) to allow performing
predictions on new images or to fine-tune them based on different experimental setups.

To quantify PV and WFA staining, we defined a set of metrics describing either “general” or “cel-
lular” aspects of the staining signal (Figure 1C). To quantify general staining intensity in a region,
we defined diffuse fluorescence as the average pixel intensity value in that region. This measure
includes the signal coming from both interstitial CSPGs diffusely present in the ECM, and from
CSPGs aggregated in PNNs. To quantify “cellular” aspects (either single PV cells or aggregated, cell-
ensheathing, PNNs), we first defined density, corresponding to the number of objects per unit of
surface area. We then measured the intensity of each individual PNN and PV cell by averaging
the values of the pixels belonging to the object, segmented from a small (80x80 pixels) patch cen-
tered on its (x,y) coordinates. Based on this measurement, we defined cell intensity, expressing
the average staining intensity of individual PNNs or PV cells in a region. Finally, we reasoned that
the functional relevance of PNNs or PV cells might be better represented by a single metric that
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integrates both the density and the intensity of cells. We thus defined energy, as the density mul-
tiplied by the average cell intensity, a metric analogous to the one used by the Allen Institute in
Lein et al., 2007 (Figure 1C, see section Staining metrics definitions in Methods & Materials for de-
tails). As a result, a region with more and brighter PNNs would have increased PNN energy. Diffuse
fluorescence and energy were normalized within each mouse by dividing them by their respective
value calculated on the entire brain. As a result, a value of 1 equals the brain’s average and, impor-
tantly, the two metrics have the same scale. In the rest of the paper, we will use the metrics diffuse
fluorescence and energy respectively as a “general” and “cellular” measurement.

Distribution of PNNs across the mouse brain
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Figure 2. Distribution of WFA-positive PNNs throughout the entire mouse brain. (A) Quantification of
diffuse fluorescence and PNN energy for 12 major brain subdivisions. Asterisks indicate subdivisions
significantly different from the brain average (value of 1. See Table 1 for statistical comparisons). (B)
Heatmaps showing staining metrics for mid-ontology brain regions in individual mice. Grayed-out cells
represent regions where data are not available due to no sampling of that region. (C) Heatmaps showing
coronal sections of the brain, sliced at different anteroposterior locations. On the left hemisphere (blue
colormap) is displayed average diffuse WFA fluorescence, while on the right hemisphere (red colormap) is
displayed average PNN energy for each brain region. (D) Plots of PNN energy versus WFA diffuse fluorescence
for each of the 12 major brain subdivisions. (E) Same as in D but data is split in each brain region of the 12
major brain subdivisions. (F) Representative WFA staining in a selection of brain areas. Scalebar: Tmm. Error
bars in Aand D represent SEM across mice. Dots in A represent mice, in D and E, represent brain regions. In E,
text insets indicate the Spearman correlation coefficient (r,) and the corresponding p-value, the gray line
indicates the X-Y bisector, and, for significant correlations highlighted in red, the blue line shows the best
linear fit.

To describe the distribution of PNNs in the entire brain, we first aggregated data in 12 major
brain subdivisions (Figure 2A). These regions had highly different values for both WFA diffuse flu-
orescence and PNN energy with particular enrichment in the cortex and in posterior areas of the
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brain (Figure 2A, B, see Table 1 for statistical comparisons). We then analyzed PNN energy, repre-
senting aggregated PNNs in a region. Using this metric, the differences between the studied areas
were more pronounced than those observed in measurements of diffuse fluorescence (Figure 2A,
B). These data indicate that there is a non homogeneous expression of diffuse WFA staining and
PNNs in the brain that is already evident at this macroscopic level of analysis.

We then grouped data in a set of 316 mid-ontology brain regions (Figure 2B, Figure S2, for
individual areas, see Table ST4 for area acronyms). The profile of both metrics was consistent
across individual mice and it showed that individual brain areas have remarkably diverse values
for both diffuse fluorescence and PNN energy even within the same major subdivision (Figure 2C,
F). To visualize the results at this granularity, we plotted the average of both metrics across mice
in a series of brain heatmaps coronally sliced at 12 anteroposterior locations (Figure 2C).

Intriguingly, both the diffuse and the cellular measurements of PNNs often varied together.
However, some areas showed striking differences between the two metrics (Figure 2C). Thus, we
asked whether the presence of PNNs in an area is always associated with a high level of diffuse WFA
staining in all brain regions. To answer this question, we plotted WFA diffuse fluorescence versus
PNN energy for all the major brain subdivisions (Figure 2D). Isocortex, midbrain, pons, and medulla
were skewed towards the top-left side of the plot, indicating that they are characterized by strong
individual aggregated PNNs, but relatively weak diffuse CSPG signal. Conversely, all the other brain
subdivisions showed the opposite effect. Notably, for the olfactory areas, we measured the highest
difference between the two metrics, with a strong level of diffuse fluorescence but almost absent
aggregated PNNs. We then split these subdivisions into mid-ontology regions and explored the
relationship between the two metrics within each group of brain areas (Figure 2E). We found that
WFA diffuse fluorescence and PNN energy were significantly correlated in all subdivisions except
for olfactory areas and the cortical subplate, although the strength of such correlation was not
uniform. Striatum had the lowest correlation (r,=0.62), while Midbrain and Pallidum showed the
highest correlation between metrics (r,=0.96 and 0.95 respectively). These results demonstrate
that PNN abundance is not defined at the macrostructure level and that diffuse WFA staining is
not necessarily correlated with numerous and strongly labeled PNNs.

Overall, these data represent the first systematic and highly quantitative description of the dis-
tribution of WFA-positive PNNs in the entire mouse brain. Raw measurements for individual mice
at three levels of anatomical granularity are available in supplementary data SD1.

Brain-wide analysis of the colocalization between PNNs and PV cells

In the same brain slices used for PNN analysis, we also quantified PV-positive inhibitory interneu-
rons (Figure 3A) using the same procedures and metrics used for PNNs (Figure S3, data for PV
staining in all brain areas are available in supplementary data SD2). PV distribution has been ana-
lyzed in previous studies and our results show an overall analogous profile despite methodological
differences (Kim et al., 2017; Bjerke et al., 2021). To explore the relationship between PNNs and PV
cells in the entire brain, we quantified their colocalization as the percentage of PNNs containing a
PV cell (PV* PNNs) or as the percentage of PV cells that are surrounded by a PNN (WFA* PV cells).
On average, in the entire brain, 59.1£1.0% of PNNs were located around a PV cell, while about
one-third of all PV cells in the brain (30.4+1.4%) were surrounded by a PNN. After splitting the data
into 12 brain subdivisions, we found that the relationship between PNNs and PV cells was highly
heterogeneous (Figure 3B). In the isocortex, PNNs surrounded PV cells in more than 70% of the
cases, reaching, for example, 81.1£0.7% in the retrosplenial cortex (RSPv), 80.8+0.4% in layer 4 of
the primary visual cortex (VISp4), and 77.4+0.3% in the anterior cingulate area (ACAv). In all the
other major subdivisions, this was the case for at least one-third of the PNNSs.

Conversely, analyzing the percentage of PV cells surrounded by a PNN, we observed that in
most brain areas, only between 20 and 30% of the PV cells are enwrapped by a WFApositive PNN.
A different pattern was present in the isocortex, hippocampal formation, and striatum, where colo-
calization was much higher (between 40 and 50% of PV cells, reaching for example 71.9+0.4% in
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Figure 3. Brain-wide interactions between PNNs and PV cells. (A) Representative image of a brain slice
stained with WFA (red) and anti-PV (cyan). An inset is magnified on the right, where split channels are also
shown. Arrowheads show examples of PV cells without a PNN (white) and colocalized PV-PNNs (green). Scale
bar: 100pm. (B) Colocalization percentages across 12 major brain subdivisions (on the left, the fraction of
PNNs containing a PV cell; on the right, the fraction of PV cells surrounded by a PNN). (C) Heatmaps showing
coronal sections of the brain, sliced at different anteroposterior locations. On the two hemispheres are
represented the percentage of PNNs containing a PV cell (left side) and the percentage of PV cells surrounded
by a PNN (right side). (D) WFA diffuse fluorescence versus PV energy for all brain areas at a mid-ontology level.
(E) Same as in D, but areas are split in each major brain subdivision. (F) WFA energy versus PV energy for
brain areas at a mid-ontology level. (G) Same as in F, but areas are split in each major brain subdivision. Error
bars in B represent SEM across mice. Dots in B represent mice, while in D, E, F, and G, represent brain areas.
Textinsets in D, E, F, and G indicate the Spearman correlation coefficient (r,) and the corresponding p-value,
the gray line indicates the X-Y bisector, and, for significant correlations highlighted in red, the blue line shows
the best linear fit.

VISp4), while in the cerebellum, only few PV-positive cells had a PNN, likely due to the high number
of Purkinje cells in the cerebellar cortex that lack PNNs (Baimbridge et al., 1982; Bastianelli, 2003).
As before, we also aggregated data in mid-ontology brain regions and measured colocalization
metrics in individual areas to reveal patterns with finer granularity (Figure 3C, see Figure 4 for
data visualization for each region). Colocalization data at three levels of anatomical granularity are
available in supplementary data SD3.

Given the high degree of colocalization, we next asked whether PNN and PV staining were cor-
related across brain regions. To this end, we plotted either WFA diffuse fluorescence (Figure 3D)
or PNN energy (Figure 3F) as a function of PV energy. We found that, throughout all areas of the
brain, WFA and PV staining metrics were significantly correlated (Figure 3D, F, r,=0.38 for WFA dif-
fuse vs PV energy, r,=0.58 for PNN energy vs PV energy). When performing the same analysis at a
finer resolution, however, only a subset of brain subdivisions showed a high degree of correlation
between WFA and PV (Figure 3E, G). The diffuse staining of CSPGs was positively correlated to PV
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Figure 4. PNN aggregation depends on PV expression levels. (A) Probability density function of the
intensity of all PNNs. The thick line represents the average, while shading represents SEM across mice (N=7
mice, 69,926+5,235 PNNs per mouse). (B) Same as in A but for PV cells (N=7 mice, 13,6479+11,839 PV cells per
mouse). (C) Probability that a PV cell is surrounded by a PNN as a function of PV intensity class (1: low, 2:
intermediate-low, 3: intermediate-high, 4:high) calculated for the whole brain. (D) Same as in C, but splitin
each major brain subdivision. (E) Same as in D but all regions are plotted on the same axis. Text insets
indicate the result of a one-way RM ANOVA (F statistics and the corresponding p-value), and the estimated
parameters of the best first-degree linear fit. Thin lines in C and D represent single mice. Error bars in C, D,
and E represent SEM across mice.

energy in the isocortex, thalamus, hypothalamus, midbrain, and medulla (Figure 3E). Interestingly
when we compared cellular metrics for both PNNs and PV (PNN energy vs PV energy) correlation
coefficients increased, with isocortex showing the most striking trend (Figure 3G). Here, PV energy
alone was highly predictive of the presence of PNNs (r,=0.91).

It has been previously reported that two distinct network configurations of PV cells might exist,
one more permissive towards plasticity and characterized by weak expression of PV (low-PV), and
another that limits plasticity and with strong PV expression (high-PV) (Donato et al., 2013). These
two subpopulations likely reflect distinct timing of neurogenesis and connectivity (Donato et al.,
2015). Thus, we decided to further explore the relationship between PNNs and PV staining inten-
sity at the level of single cells. First, we looked at the intensity distribution of PNNs and PV cells
across our entire dataset. Intriguingly, we found that both PNNs and PV cells had a bimodal inten-
sity distribution (Figure 4A, B), suggesting that each could be composed of two subpopulations of
high and low expression. Since PNNs are known to inhibit plasticity, we asked if plasticity-inhibiting
high-PV cells were more likely to have a PNN. To do this, we grouped all PV cells in four intensity
classes of equal width (1:low, 2:intermediate-low, 3:intermediate-high, and 4:high) and measured
the probability of being surrounded by a PNN as a function of PV cell intensity. Overall, we found
that as PV intensity increased, the probability of having a PNN increased (Figure 4C). Repeating
the analysis for each brain subdivision, we found that the effect we observed was presentin all 12
brain macrostructures except for the hypothalamus, which showed a similar but not statistically
significant trend, and the cerebellum (Figure 4D). However, the magnitude of such dependency ap-
pears to follow three distinct patterns (Figure 4E). In isocortex, striatum, and hippocampal forma-
tion, PNNs aggregation was strongly and robustly dependent on PV expression. The relationship
was inverse in the cerebellum, likely due to the presence of PV-expressing Purkinje cells, and its
strength was only moderate for all the other brain areas.

Overall these data indicate the existence of a mechanism coupling PV expression with PNN
formation. However, the strength of this regulatory mechanism is variable across the brain.

Primary sensory areas share high levels of PNNs

The precise functional role of PNNs in the cerebral cortex is intensely studied (Fawcett et al., 2019).
We reasoned that, by analyzing their expression pattern throughout this anatomical district, we
could highlight principles of organization that might explain the spatially inhomogeneous distri-
bution of PNNs. Furthermore, the cerebral cortex is divided into layers with different functional
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Figure 5. Organization of PNNs in cortical areas. (A) Heatmaps representing WFA diffuse fluorescence and
PNN energy. Average metrics across mice are shown for each cortical area and layer (area acronyms are
available in Table ST3). In brain regions that do not have layer 4, the respective cells are grayed out. (B) Same
as in (A) but for PV energy. (C) WFA diffuse fluorescence and PNN energy in the primary visual cortex versus
higher-order associative visual areas. (D) PNN energy in primary versus associative visual cortical areas split
by layer. (E) Same as in (C) but for auditory areas. (F) Same as in (D) but for auditory areas. (G) Same as in (C)
but for somatosensory areas. (H) Same as in (D) but for somatosensory areas. (I) Correlation between WFA
diffuse fluorescence and thalamic input strength in sensory-related areas of the cortex (all somatosensory,
visual, and auditory cortices, see Methods & Materials) split by layer. In the bottom part, the same analysis
was performed for PNN energy. Text insets indicate the Pearson correlation coefficient (r) and the
corresponding p-value. For significant correlations, highlighted in red, the blue line shows the best linear fit.
(L) Scatterplot of PNN energy vs WFA diffuse fluorescence for all cortical areas colored by their cortical
subnetwork. The transparent shading represents the convex hull of all points in a subnetwork. Regions
cluster into 2 groups: high-WFA and low-WFA. The inset shows the average thalamic input strength of regions
divided into high- and low-WFA groups. (M) Silhouette score, representing a metric for clustering quality,
calculated for each mouse by grouping cortical areas in: 2 groups (Low-High WFA), 5 groups (cortical Subnet.),
or 2 groups but randomly shuffled (shuffle). In C, D, E, F, G, H, and M dots represent mice. In | and L dots
represent brain areas. Error barsinC, D, E, F, G, H, L, and M represent SEM across mice. Error bars in L (inset)
represent SEM across brain regions. See Table 1 for statistical comparisons.

217 properties and PNN expression. We thus plotted WFA diffuse fluorescence and PNN energy in
218 all cortical regions divided by layer (Figure 5A). As previously described, WFA staining was gener-
210 ally more abundant in layers 4 and 5. We noticed that four main groups of regions were char-
220 acterized by a stronger diffuse WFA staining: somatosensory, visual, and auditory areas, and the
221 retrosplenial cortex (Figure 5A). When analyzing aggregated PNNs (PNN energy), this pattern was
222 much sharper and more localized in layer 4 (Figure 5A bottom heatmap). Interestingly, PNN en-
223 ergy was particularly high in primary sensory areas (VISp, AUDp, and all SSp areas) while the same
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enrichment was milder for PV energy (Figure 5B). To further investigate this pattern, we isolated
each sensory system and aggregated data in primary and associative cortical regions. In the vi-
sual cortex, both diffuse fluorescence and PNN energy were lower in associative (VISpor, VISIi, VISI,
VISpl, VISpm, VISal, VISam, VISrl, VISa) than in primary (VISp) areas (Figure 5C) and, splitting data
between layers, this effect was present only in layer 4, 5 and 6, and most prominent in layer 4
(Figure 5D, Figure S5A). An analogous difference was present in auditory (Figure 5E, F, Figure S5B
primary (AUDp) versus associative (AUDv, AUDd, AUDpo)) and somatosensory areas (Figure 5G, H,
Figure S5C, primary (SSp-n, SSp-bfd, SSp-Il, SSp-m, SSp-ul, SSp-tr, SSp-un) versus associative (SSs))
with the exception of diffuse fluorescence in the somatosensory regions of the cortex (Figure 5G).

These results provide the first systematic and layer-specific description of PNNs in all cortical
areas and indicate that layers 4-5 of primary cortical regions are privileged sites of PNN expression
across multiple sensory systems.

Determinants of cortical expression of PNNs: role of PV cells and area connectivity
We then investigated the factors responsible for the specific distribution of PNNs in the cerebral
cortex. Considering the intimate relationship between PV cells and PNNs in the cortex (Figure 3G,
Figure 4D), one hypothesis could be that the high expression of PNNs in primary sensory cortices
mirrors the distribution of PV cells. However, PV energy was only slightly increased in primary
visual and auditory, but not somatosensory areas (Figure 5B, Figure S6A, D, G). Accordingly, by
splitting data by layers, we detected no differences between primary and associative regions for
all the metrics with the exception of PV energy in deep layers of the visual cortex (Figure S6B, C, E,
F, H, I). Intriguingly, we observed that PV cells in primary sensory cortices were more likely to have
PNNs than in secondary areas (Figure S7A, C, E). This effect was not due to a higher proportion of
high-PV cells in primary versus associative areas (Figure S7B, D, F), suggesting that the mechanism
by which PNNs are increased in primary regions might be unrelated to PV expression levels.

The high levels of PNNs in layer 4 of primary sensory cortices could be related to the control
of feed-forward sensory thalamic inputs that densely innervate layer 4 of primary sensory regions.
Indeed, previous work showed that PNNs control plasticity of thalamic connections directly con-
tacting PV cells of the primary visual cortex (Faini et al., 2018). If this hypothesis were true, one
should expect PNN energy to scale with thalamic innervation density across sensory areas. To test
this, we used published data from the mouse brain connectivity atlas of the Allen Institute (Oh et al.,
2014) to measure thalamic input strength for all somatosensory, visual, and auditory areas (total
inputs from the sensory-motor cortex related portion of the thalamus, DORsm as indicated in the
CCFv3 nomenclature, see Correlation with thalamic afferent connectivity in Methods & Materials).
Strikingly, we found that both WFA diffuse fluorescence and PNN energy in cortical layers 2/3, 4,
and 5 were highly correlated with thalamic input strength, and this effect was most prominent in
layer 4 where thalamic afferents could explain respectively 53% and 46% of the variance in the
two PNN metrics (r=0.73 and 0.68) (Figure 51). As a control, we performed the same analysis with
connections originating from the associative cortex-related regions of the thalamus (DORpm) and
we found no correlation with PNNs in any cortical layer (Figure S8).

This data corroborates the possibility that PNNs could be important for the regulation of senso-
rimotor thalamic inputs across multiple sensory modalities and may provide a basis to investigate
the role of PNNs on feed-forward functional signaling in sensory cortices.

If connections represent a determinant factor for PNN abundance, it could be that groups of
highly interconnected cortical regions have coregulated levels of PNNs. Recent work clustered the
cerebral cortex in five distinct functional subnetworks (Kim et al., 2017; Zingg et al., 2014) based
on their intracortical connections. We used this classification to explore whether PNNs were differ-
entially expressed in these subnetworks. To test this hypothesis, we plotted PNN energy vs WFA
diffuse fluorescence for each cortical region. We found that cortical subnetworks were clustered
in two groups, with no overlap: a “low-WFA” group comprising the lateral and medial prefrontal
subnetworks and a “high-WFA” group comprising audiovisual, motor-somatosensory, and medial
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association networks (Figure 5L). To quantify cluster separation, we grouped brain regions using
three strategies: the high/low WFA as described above, the original five cortical subnetworks, and
high/low WFA regions randomly shuffled. For each grouping, we calculated the silhouette score, a
metric representing the separation and quality of data clustering (Zhao et al., 2018). We found that
grouping cortical regions in high- and low-WFA resulted in the highest score (Figure 5M). The sub-
division in high- and low-WFA region groups could not be explained simply by different thalamic
input strength, since we did not observe any significant difference in the overall thalamocortical
connectivity between these two groups of regions in the Allen Institute dataset (Figure 5L, inset).
Conversely, we noticed that high-WFA areas also displayed increased PV energy and an increased
proportion of high-PV cells (Figure $9), suggesting that the different PNN distribution across cortical
subnetworks might be instructed by PV cells.

In summary, these results show that each cortical network displays a typical and homogenous
PNN aggregation and that PV cells and PV expression level contribute to generating cortical PNN
distribution.

Gene expression correlates of PNNs

Finally, we asked whether PNN abundance could be correlated with gene expression patterns, pos-
sibly highlighting molecular principles underlying PNN organization and function. To answer this
question, we analyzed data published in the Anatomic Gene Expression Atlas (AGEA) by the Allen In-
stitute (Lein et al., 2007). This dataset describes region-specific expression levels for about 18,000
genes. For each gene, we correlated its expression in all the brain areas with a metric for PNN
staining to detect genes whose pattern of expression is predictive of PNN presence. We found
about 5,000 genes positively correlated, and about 1,000 negatively correlated with WFA (FDR<0.01,
Benjamini-Hochberg, see also Correlation with gene expression and gene set overrepresentation
analysis in Methods & Materials, and supplementary data SD4). It is important to note that this
analysis reflects gene expression and PNNs at the level of brain areas and not single cells. To val-
idate our approach, we selected a few genes known to be related to PNN structure and function:
Aggrecan (Acan), a major proteoglycan core protein present in PNNs (Dauth et al., 2016; Fawcett
etal., 2019; Ueno et al., 2018; Hartig et al., 2022; Oohashi et al., 2015; Yamada et al., 2017), Hyaluro-
nan and proteoglycan link protein 1 (Hap/n1), coding for a link protein essential for PNNs structure
(Carulli et al., 2010); hyaluronan synthase 3 (Has3), a necessary component for PNN aggregation
(Kwok et al., 2010); Matrix metallopeptidase 9 (Mmp9), an enzyme known to regulate PNN and PV
development (Pirbhoy et al., 2020); A disintegrin and metalloproteinase with thrombospondin mo-
tifs (Adamts5 also known as Adamts117), an aggrecan-degrading protease (Held-Feindt et al., 2006)
that is expressed by PV interneurons with a PNN (Rossier et al., 2015), and parvalbumin (Pvalb).
All these genes were significantly correlated with both PNN energy and WFA diffuse fluorescence
(Figure 6A, B). Strikingly, out of 17639 genes, Acan was respectively the second and fifth most cor-
related gene with WFA diffuse fluorescence (r,=0.58) and PNN energy (r,=0.57). Consistently, when
we repeated this analysis for PV energy we found that the top most correlated gene was Pvalb itself
(r,=0.81). Other markers associated with PV neurons were also positively correlated (Figure 6C).
These included the genes encoding the fast voltage-gated potassium channels Kv3.1 and Kv1.1
(Kenc1 and Kcnal) (Chow et al., 1999; Lorincz et al., 2008), and the sodium channel Nav1.1 (Scn1A)
(Ogiwara et al., 2007)); synaptotagmin 2 (Syt2), a protein that ensures fast calcium sensing and vesi-
cle release (Bouhours et al., 2017), and Acan. These results validated our approach, allowing us
to provide lists of positive and negatively correlated genes that might highlight molecular regula-
tors of PNNs. A detailed list of all 17,639 genes and their correlation with PNN and PV staining is
available in supplementary data SD4.

To obtain insight into the biological processes of the correlated genes, we performed a gene
ontology analysis separately on the lists of the top 1,000 most correlated and anticorrelated genes
with PNN energy, ranked by their correlation coefficient (Figure 6D, E). Genes related to processes
of axon ensheathment, myelination, mitochondrial function, and cellular respiration were enriched
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Figure 6. Gene expression correlates of PNNs. (A) Correlation between PNN energy and gene expression
for six marker genes. Acan (aggrecan), Hapin1 (link protein), Has3 (Hyaluronan synthase 3), Mmp9 (Matrix
metalloprotease 9), Adamts5 (an aggrecan-degrading protease), and Pvalb (parvalbumin). (B) Same as in A but
for WFA diffuse fluorescence. (C) Correlation between PV energy and gene expression for six marker genes.
Pvalb (parvalbumin), Kcnc (potassium channel Kv3.1), KcnaT (potassium channel Kv1.1), Syt2 (synaptotagmin
2), Scn1a (sodium channel Nav1.1), and Acan (aggrecan). (D) Biological process terms enriched in genes
positively correlated with PNN energy. (E) Biological process terms enriched in genes negatively correlated
with PNN energy. (F) Matrisome categories of genes positively correlated with PNN energy. In A, B, and C text
insets indicate the Spearman correlation coefficient (rs), and the corresponding p-value and significant
correlations are highlighted in red. Blue lines represent kernel density estimations. Data in D, E, and F are
presented in descending order of enrichment ratio, colored based on the g-value with darker red shades
corresponding to more significant values (threshold: FDR < 0.1). The dot size represents the percentage of
genes of each category, that is present in the experimental gene list.

in the pool of the positively correlated transcripts. Conversely, we found that anticorrelated genes
were related to processes involved in synaptic plasticity, including among others, postsynaptic den-
sity organization, regulation of synapse structure, and learning and memory. This is consistent with
the known inhibitory role of PNNs toward synaptic plasticity (Fawcett et al., 2019). Finally, we per-
formed a similar overrepresentation analysis on a smaller gene set, the “matrisome” (Naba et al.,
2016), containing about 1,000 genes related to different categories of ECM structure and function.
Only the category proteoglycans was strongly overrepresented in the set of positively correlated
genes (Figure 6F).
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332 Taken together, these data show that we can reliably identify gene expression correlates of PNN
;33 abundance with the approach described above. Moreover, this analysis and the resulting gene lists
s3a  could prove useful for designing experiments to investigate the molecular biology underlying PNN

335 development and regulation.

Table 1. Statistical comparisons

Fig Description Test N (units) Results
Diffuse fl iff 7 mi i
A i .use u.orescer.wcle.dl erences between one-way RM ANOVA rnllce per brain F(11,66)=62.45, P<0.000
major brain subdivision region
A PNN ferﬁgrgy differences between major brain one-way RM ANOVA 7 mlce per brain F(11,66)=143.1, P<0.0001
subdivision region
WFA Diffuse fluorescence significantly
2A .
different from 1
Isocortex one sample t-test 7 (mice) t(6)=1.40, P=0.21
Olfactory areas one sample t-test 7 (mice) 1(6)=17.87, P<0.001
Hippocampal formation one sample t-test 7 (mice) (6)=0.59, P=0.58
Cortical subplate one sample t-test 7 (mice) (6)=3.56, P=0.01
Striatum one sample t-test 7 (mice) 1(6)=11.49, P<0.001
Pallidum one sample t-test 7 (mice) 1(6)=3.84, P=0.008
Thalamus one sample t-test 7 (mice) (6)=9.28, P<0.001
Hypothalamus one sample t-test 7 (mice) t(6)=1.66, P=0.15
Midbrain one sample t-test 7 (mice) (6)=7.52, P<0.001
Pons one sample t-test 7 (mice) t(6)=4.97, P=0.003
Medulla one sample t-test 7 (mice) 1(6)=4.84, P=0.003
Cerebellum one sample t-test 7 (mice) 1(6)=21.60, P<0.001
2A PNN energy significantly different from 1
Isocortex one sample t-test 7 (mice) 1(6)=20.67, P<0.001
Olfactory areas one sample t-test 7 (mice) (6)=16.48, P<0.001
Hippocampal formation one sample t-test 7 (mice) (6)=8.19, P<0.001
Cortical subplate one sample t-test 7 (mice) 1(6)=39.88, P<0.001
Striatum one sample t-test 7 (mice) 1(6)=51.13, P<0.001
Pallidum one sample t-test 7 (mice) 1(6)=6.77, P<0.001
Thalamus one sample t-test 7 (mice) 1(6)=4.90, P=0.003
Hypothalamus one sample t-test 7 (mice) (6)=9.34, P<0.001
Midbrain one sample t-test 7 (mice) (6)=10.12, P<0.001
Pons one sample t-test 7 (mice) (6)=10.63, P<0.001
Medulla one sample t-test 7 (mice) 1(6)=10.46, P<0.001
Cerebellum one sample t-test 7 (mice) 1(6)=29.42, P<0.001
4C Probability of having a PNN (whole brain) one way RM ANOVA 7 per class (mice) see figure inset
P ility of havi PNN j i
4D rOb?b,l ,Ity orhaving a (major brain one way RM ANOVA 7 per class (mice) see figure inset
subdivisions)
5c Visual areas. Diffuse fluorescence Paired t-test 7 (mice) per group t(6)=4.72, P=0.003
comparison
Visual areas. PNN energy comparison Paired t-test 7 (mice) per group (6)=8.60, P<0.001
Interaction
5D Visual areas. Comparison by layer two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =92.50, P<0.0001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=0.42, P=0.997
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.58, P=0.193
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=12.80, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=10.74, P<0.001
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=5.05, P=0.012
Audit . Diffuse fl
5E uet or)_/ areas. Ditfuse fluorescence Paired t-test 7 (mice) per group (6)=5.526, P=0.002
comparison
Auditory areas. PNN energy comparison Paired t-test 7 (mice) per group (6)=11.33, P<0.001
Interaction
5F Auditory areas. Comparison by layer two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =41.13, P<0.0001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.51, P=0.63
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=4.33, P=0.024
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=10.45, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=8.04, P=0.001
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.48, P=0.216
. Diffuse fl . .
5G somatosensory areas. Diffuse fluorescence Paired t-test 7 (mice) per group 1(6)=0.922, P=0.392

comparison
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Fig Description Test N (units) Results
Somatosensory areas. PNN energy Paired t-test 7 (mice) per group 1(6)=8.42, P<0.001
comparison
Interaction
5H Somatosensory areas. Comparison by layer two-way RM ANOVA 7 (mice) per group layer*areaHierarchy

F(4,24) = 15.65, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.76, P=0.154

L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.47, P=0.220

L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=5.23, P=0.009

L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=5.37, P=0.008

L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=8.05, P=0.001

(Inset) - Thalamic input strength different .

5L le t- 2 11 1(34)=0.19, P=0.
between high- and low-WFA cortical regions two sample t-test 5vs 11 (regions) (34)20.19, P=0.85

5M Silhouette score comparison One-way ANOVA 7 (mice) per group F(2)=83.37, P<0.001
Low-high-WFA vs Cortical Subnetworks T-test, Holm-Sidak 7 (mice) per group (6)=9.61, P<0.001
Low-high-WFA vs Shuffle T-test, Holm-Sidak 7 (mice) per group (6)=10.00, P<0.001
Cortical Subnetworks vs Shuffle T-test, Holm-Sidak 7 (mice) per group (6)=2.00, P=0.068

Discussion

In this study, we created and analyzed a whole-brain dataset of PNNs and PV cells in the adult
mouse brain. We provide several quantitative measurements of the abundance of PNNs and PV
cells and their colocalization in over 600 brain regions. The atlas was built using a shared spatial
framework that facilitates replication studies and allows analyzing PNN data together with pub-
licly available connectomics (Oh et al., 2014; Zingg et al., 2014) and gene expression (Lein et al.,
2007) datasets, which enabled us to identify potential principles of PNN organization and gene ex-
pression profiles that are correlated or anticorrelated with PNN abundance. Previous studies have
analyzed PNNs in multiple brain regions (Dauth et al., 2016; Ueno et al., 2018), however, they have
been limited by their focus on only a subset of areas, their use of a more qualitative approach, or
their use of a non-standard reference volume. In contrast, our atlas addresses all these aspects.

Our public resources (supplementary data SD1-4) will help researchers to generate novel hy-
potheses and questions, and to design experiments to better understand the function of PNNs
and their involvement in pathological conditions.

A toolset for PNN research: advantages and limitations
One of the challenges in studying PNNs is the difficulty of automatically detecting them due to their
high morphological variability. To address this issue, we release two deep-learning models for the
detection of PNNs and PV cells, pre-trained on about 0.8 million manually annotated PNNs/cells.
The models can also be fine-tuned to specific experimental needs and image qualities with addi-
tional training. We have also made all of the raw and processed data from this study freely available
(raw dataset: Zenodo link (Lupori et al., 2022), processed data: Supplementary data SD1-4).
Ininterpreting our results, it is important to note that we used WFA as a marker for PNNs. While
WEFA is a commonly used method for visualizing PNNs (Fawcett et al., 2019), it does not equally
bind to all structures of aggregated CSPGs. Therefore, the use of other antibodies that specifically
target different proteoglycans may be necessary to fully reveal the presence of these structures
(Galtrey et al., 2008; Ueno et al., 2018; Ariza et al., 2018; Matthews et al., 2002). Our approach can
be easily adapted to count these different types of PNNs, creating brain atlases of all the major
components of PNNs using this method. Additionally, colocalization with other cell types could
also be studied. For example, PV-positive neurons are a heterogeneous population (Tasic et al.,
2016) that cannot be distinguished using our immunofluorescence approach. However, specific
promoters and enhancers could be used to label PV-cell subtypes in a brain-wide manner, allowing
the study of their colocalization with PNNs and a more detailed understanding of PNN expression
regulation.
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;0 Diffuse CSPGs and aggregated PNNs distributions

370 CSPGs are large, complex molecules that are widely distributed throughout the brain, whereas
sn - PNNs are aggregated around specific neurons (Fawcett et al., 2019). While most research on PNNs
372 has focused on telencephalic and diencephalic structures, our analysis revealed that PNNs are
373 highly abundant in the midbrain and hindbrain (pons and medulla) compared to other brain re-
s7a gions. These areas are important for vital processes such as heartbeat and breathing control, basic
375 reflexes, motor control, and sleep (Ruder et al., 2021; Saladin et al., 2021). However, the role of
sz PNNSs in the neural circuits underlying these functions is largely unknown.

377 Another finding of our study is that CSPG aggregation in PNNs may be differentially regulated
s7s  across brain areas. While in most of the brain the amount of non-aggregated CSPGs (as measured
370 by diffuse WFA fluorescence) was a good predictor of the presence of aggregated PNNs (as mea-
ss0  sured by PNN energy), some areas showed no relationship between the two metrics. For example,
;1 all olfactory areas had very intense diffuse staining but contained very few and thin PNNs (Fig-
;2 ure 2A, C, E) (Hunyadi et al., 2020), indicating that the high amount of CSPGs present in these areas
33 did not aggregate into PNNs. This pattern was also observed in the cortical subplate (Figure 2E).
3sa  The region-specific regulatory mechanisms of CSPG aggregation into PNNs and the functional im-
sss  plications are currently unknown and require further investigation.

;s PV levels are associated with the presence of PNNs

sz Acommonly observed property of cortical PNNs is that they preferentially aggregate around GABAer-
sss  giC PV-positive interneurons (Fawcett et al., 2019). We measured that, on average, this was the case
30 for about 60% of PNNs in the entire brain, a much higher percentage than expected from chance.
0 Moreover, across the whole brain, both PNN metrics were correlated with PV energy. Despite this
se1  Clear association, our study unveils that slightly less than half of the PNNs in the brain do not sur-
3.2 round PV neurons, leaving the still unanswered question of whether they might serve to regulate
33 different circuit properties.

304 The link between PNNs and PV cells also varied between brain subdivisions with the most strik-
35 iNg pattern in the isocortex. Here, 70% of all PNNs were around PV cells and half of all PV cells had
396 a net. This intimate association was also evident in the relation between staining metrics. Indeed,
37 cortical areas had a very tight (r,=0.91) correlation between PNN and PV energy.

308 Our analysis showed that the probability of being surrounded by a PNN for a PV cell is highly
se0 dependent on its PV expression level. Given that PV neurons differentiate before birth (Fishell,
200 2008) and PNNs aggregate much later during postnatal development (Reichelt et al., 2019), this
201 association suggests that the developmental increase in PV expression enhances the probability
202 to develop a PNN.

403 The magnitude of the association between PV levels and the probability of having a PNN, how-
s0a ever, varies across brain structures suggesting that the mechanism that couples PV expression to
a5 PNN aggregation can be fine-tuned. For example, in the isocortex, hippocampal formation, and
206 Striatum, PV-PNN coupling was particularly strong. Intriguingly, in all three of these brain regions,
w07 PV cells have been previously divided, based on their intensity, into two distinct subpopulations
208 Of early-born high-PV cells and late-born low-PV cells with different roles in plasticity and learn-
a0 ing (Donato et al., 2013; Donato et al., 2015). Our data are consistent with the interpretation that
a0 PNNs might aggregate more onto early-born high-PV neurons contributing to the inhibitory role of
a1 this subpopulation toward plasticity. In summary, it is currently unknown how perineuronal nets
«12 and parvalbumin are co-regulated. Previous evidence suggests that Otx2 may act as a mediator of
a1z this coupling, promoting the maturation of parvalbumin cells and PNNs (Gibel-Russo et al., 2022;
aa  Leeetal., 2017). This suggests that Otx2 may play a role in the co-regulation of these two factors,
a5 although further research is needed to confirm this hypothesis.
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PNN expression in the cortex is correlated with specific connectivity patterns

Our study demonstrated that strong PNNs are a common feature of layer 4 in all primary sensory
cortices. This enrichment was evident also when we directly compared the labeling of primary and
associative cortices within each sensory modality. Interestingly, this pattern cannot be explained
solely by an increase in the number of PV cells or in the proportion of high-PV expressing cells that
are more likely to have a PNN. At a functional level, the high expression of PNNs in primary sen-
sory areas could be related to their action on thalamic afferents. Previous research in the mouse
primary visual cortex showed that PNNs can selectively control thalamic excitation onto PV cells
(Faini et al., 2018). Our data suggest that the control of feed-forward thalamo-cortical sensory in-
puts on PV neurons may be one important function across all sensory cortices. This is supported
by the observation that the abundance of PNNs correlates with the density of thalamic innervation
in all sensory areas. This hypothesis is also in accordance with the findings that plasticity in L4 of
the visual cortex is lower (Trachtenberg et al., 2000) and might rely on a separate set of molecular
mechanisms (Liu et al., 2008).

The relationship between thalamic inputs and PNN levels raises the possibility that the type of
connections may be a determining factor in PNN expression. This idea was further supported by
the observation that regions of the cortex with strong PV and PNN expression tend to have similar
intracortical connectivity patterns (Figure 5L). This finding suggests that circuitry within these areas
requires a certain level of stability, which could be achieved through the expression of PNNs. This
novel concept merits further investigation to fully understand how this relationship functions.

Gene expression correlates of PNNs

The search for a gene expression signature of PNN-enwrapped cells is hampered by the fact that
PNNs are extracellular multimolecular structures, and that there is currently no means to tag the
PNN-positive neurons.

To overcome this problem, we performed a correlational analysis between the AGEA dataset by
the Allen Institute (Lein et al., 2007) and PNN expression. This novel approach was validated by the
overrepresentation analysis on the matrisome gene set, which showed that PNN-correlated genes
are strongly enriched in the proteoglycan category, and by finding key constituents of the PNN
ranking in the top positions of the list of genes positively correlated with PNN energy. However,
this approach also revealed many other genes with positive and negative correlations with PNNs. A
gene ontology analysis strikingly showed that categories related to synaptic function and synaptic
plasticity were significantly downregulated in brain areas enriched with PNNs. Furthermore, PNNs
were found to be correlated with genes involved in myelination, another plasticity brake (Boghdadi
et al., 2018; Bonetto et al., 2021), and genes related to cell metabolism, which may be due to the
high energy demands of fast-spiking PV cells (Carter et al., 2009; Kann et al., 2014).

These results not only support the hypothesis that PNNs serve as plasticity brakes in the visual
cortex (Fawcett et al., 2019), but also demonstrate that this functional signature emerges from an
unbiased comprehensive analysis of all brain regions.

Ourwork represents a unique approach based on a brain-wide comparison of very large datasets
of cellular structures with public resources. This type of analysis has the advantage of being un-
biased and data-driven, which is typical of -omics techniques. It can also be applied to the study
of many other extracellular matrix components. We envision that the advent of spatial transcrip-
tomics will further enhance this type of approach.

Methods & Materials

Mice Handling

All experiments were carried out in accordance with the European Directives (2010/63/EU), and
were approved by the Italian Ministry of Health (authorization number 723 / 2020 PR). A total of
7 adult C57BL/6) male and female mice, at approximately postnatal day (P)150 were used in this
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study. Weaning was performed at P21-23. Animals were maintained at 22°C with a standard 12-
h light-dark cycle. During the light phase, a constant illumination below 40 lux from fluorescent
lamps was provided. Mice were housed in conventional cages (365 x 207 x 140 mm, 2-3 animals
per cage) with nesting material, and had access to food and water ad libitum. During the first 12-14
weeks of life, mice were fed a standard diet (standard diet Mucedola 4RF25). Then, animals were
fed a balanced purified diet (Research Diets, Inc., New Brunswick, NJ, USA, cat. no. D12450Ji) for 6
weeks before the sacrifice.

Immunofluorescence staining

Mice were anesthetized with chloral hydrate (20 ml/Kg BW) and perfused via intracardiac infusion
with cold PBS and then 4% paraformaldehyde (PFA, w/vol, dissolved in 0.1M phosphate buffer,
pH 7.4). Brains were extracted and post-fixed overnight in PFA 4% at 4°C, then transferred to a
30% (w/vol) sucrose solution for 48 hours. For each brain, 50 pm coronal sections, spanning from
the anteriormost part of the cerebral cortex to the cerebellum, were cut on a freezing microtome
(Leica). One out of every 3 sections was collected for further processing, leading to a sampling of
one slice every 150pum. For a small subset of sections that did not match our quality standards
due to deformations during the cutting process (on average 3.7+0.5 slices per animal), an adjacent
section was collected instead. For each animal, slices were assigned a unique ID and pooled in 9-10
wells of a 24-well plate for free-floating staining. Each well contained 5-6 sections that sampled the
brain at equally spaced points in the anterior-posterior axis.

Slices were blocked for 2h at room temperature (RT) in a solution containing 3% bovine serum
albumin (BSA, A7906 Sigma-Aldrich) in PBS. Then, slices were incubated overnight at 4°Cwith a solu-
tion containing biotinylated Wisteria floribunda Lectin (WFA, B-1355-2, Vector Laboratories, 1:200)
and 3% BSA in PBS. On the following day, sections were rinsed 3 times in PBS (10 min each) at
RT, incubated with a solution of red fluorescent streptavidin (Streptavidin, Alexa Fluor™ 555 con-
jugate, S21381, Thermo Fisher, 1:400) and 3% BSA in PBS for 2h at RT, and rinsed again 3 times
in PBS. On the same day, slices were incubated with a blocking solution for parvalbumin staining
containing 10% BSA and 0.3% Triton in PBS for 30 minutes, then washed 3 times (10min each) and
finally incubated overnight at 4°C with primary antibody solution containing anti-parvalbumin (Par-
valbumin antibody, 195004, Synaptic System 1:1000) 1% BSA and 0.1% Triton in PBS. Then, sections
were rinsed 3 times (10 min each) in PBS; incubated with a secondary antibody solution contain-
ing secondary antibody (anti-Guinea Pig IgG Alexa Fluor™ 488, A11073, Invitrogen, 1:500), 1% BSA.
plus 0.1% Triton for 2h at RT, and washed again 3 times in PBS. Finally, sections were mounted on
microscopy slides with a mounting medium (VECTASHIELD® antifade mounting medium, H-100,
Vector Laboratories), and stored at 4°C. All sections in each staining well were mounted on the
same slide.

Image acquisition

All images were acquired using the acquisition software ZEN blue with a Zeiss Apotome.2 micro-
scope and a 10x objective and digitized by an AxioCam MR R3 12-bit camera, resulting in a pixel
size of 0.645um. For the WFA channel, excitation light passed through a 538-562nm bandpass filter
and a 570nm dichroic mirror, while emitted light was filtered with a 570-640nm bandpass filter. For
the PV channel, filters were a 450-490 nm bandpass for excitation, a 495nm dichroic mirror, and a
500-550nm bandpass for emission. All images were acquired with the same intensity of excitation
light and with an exposure time of 80ms for the WFA channel and 850ms for the PV channel. For
all sections, we acquired 3 apotome images for optical sectioning. Each brain slice was acquired
as a tiled multi-image experiment on a single z-plane.

Coronal sections of the entire mouse brain span a relatively large area and even small irreg-
ularities in the microscope slide can lead to artifacts in image intensity due to the tissue section
not sitting exactly perpendicular to the optical path. To account for this, we acquired each slice
with a tilted z-plane linearly interpolated between 4 manually selected focus points at the edges
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of each section. After the acquisition, multi-image tiles were stitched in ZEN and exported as 8-bit
TIFF files for further processing. The resulting dataset consisted of 842 single channel, 8-bit, TIFF
images ranging from 7 to 165MB in size and from 2646 to 17631px (width) in resolution.

Image registration to the Allen Brain Atlas CCF v3

Image Preprocessing

For each mouse, all the images were ordered along the anterior-posterior axis according to their
unique ID. Images were manually inspected and, based on irregularities in the fixed brain and
anatomical landmarks, a minority of them were mirrored vertically to make sure matching hemi-
spheres were always on the same side for the whole image sequence.

All the following steps of preprocessing and image registration were carried out on a down-
sampled (20% of the original size) TIFF dataset. For each downsampled experimental image, we
created a matching binary mask of the same size, encoding whether each pixel belongs to brain
tissue or not. Masks were automatically generated for the entire subsampled dataset by using
a machine learning model (random decision forest) interactively trained with llastik (Berg et al.,
2019) on a subset of 57 image crops (width ranging from 344px to 526px). Masks were used in the
quantification steps to restrict fluorescence analysis only to portions of the images that contained
biological tissue. All the masks were visually inspected through a custom MATLAB graphical user
interface (GUI) and, if necessary, manually adjusted to correct for misclassification of small areas
or to exclude parts of the tissue containing experimental artifacts from further analysis.

Image Registration

We aligned our dataset to the Allen Mouse Brain Common Coordinate Framework (CCFv3) (Wang
et al., 2020) with a multi-step workflow: first, we used the software QuickNIl v2.2 (Puchades et al.,
2019) to interactively assign each experimental image to a specific plane in the reference atlas
based on anatomical landmarks. The software allows the selection of an arbitrary 2D plane out of
the CCFv3 volume, thus improving accuracy for samples where sections were not cut on a perfectly
coronal plane, but with a slight angle. In the same software, we also performed rigid transforma-
tions (i.e., rotations and translations) and uniform horizontal or vertical stretch in order to match
the reference plane to each experimental image. In a second step, we used the software VisuAlign
v0.9 (RRID: SCR_017978, VisuAlign) to manually apply local, non-rigid transformations to the planes
selected in QuickNIl in order to match the experimental images.

We then used a custom set of MATLAB functions to load the output file from VisuAlign and to
generate a displacement field for each experimental image. Each displacement field defines the
local non-rigid transformation as a couple of values (D,, D)) for each pixel, defining the displace-
mentin theimage on the Xand Y axes. By using the coordinates of the 2D plane defined in QuickNII
and the local transformations defined in the displacement field it is possible to match each pixel
position in our experimental images (X,, Y,) to a voxel position in the reference atlas (X, Y,, Z,).

Deep learning models for cell counting

The deep learning models used in this work are based on a novel counting strategy described in
Ciampi et al., 2022 specifically designed to account for the variability between experimenters when
counting non-trivial, overlapping, or low-contrast objects like PNNs in histological preparations.
Briefly, cell counting for both PNNs and PV cells was done through a two-step pipeline. In the
first step, we performed cell detection by using the Faster-RCNN network (Ren et al., 2015) with a
Feature Pyramid Network module and a ResNet-50 backbone. The goal of this stage is to produce
a collection of putative object locations with high recall. The training dataset of this network is
large but labeled by a single rater, thus it is assumed to be “weakly labeled”, i.e., it may contain
spurious (false positives) and missing annotations (false negatives). In the second step, we scored
each detected object to assign it an “objectness” value designed to maximize its correlation with
the raters’ agreement. To do this, we trained a small convolutional network to rank samples with
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se1 iNCreasing agreement values and produce an increasing score for objects with increasing raters’
se2 agreement (Figure S1B, C). In this stage, we employed a smaller training dataset labeled by multiple
ses ratersforwhich the agreement between experimenters on each object was computed (see Training
sea Dataset below).

s65 Following this strategy, we employed four different models: a localization model for PNNs and
ses PV cells, and a scoring model for PNNs and PV cells. From now on, we will refer to these models
sez respectively as PNN, ., PV,,., PNN and PV,,,,.. We first localized and scored PNNs using PNN
ses and PNN_,, and PV cells using PV,,. and PV, on separate image channels. Then, we removed
seo PNNs with a score lower than 0.4 and PV cells with a score lower than 0.55.

570 As a performance metric for this counting pipeline, we computed the mean absolute relative
s71 - error (MARE) as follows:

loc! score! loc

VIARE — 2ot 15~ Gl

2 C
s72  Where N is the number of test images, and C,, and C, , are the ground-truth and the predicted
s73  count of the n-th image, respectively. On the test split of our multi-rater dataset, our counting
s7a approach achieves a MARE of 0.048 and 0.080 respectively for PNNs and PV cells when considering
szs  samples located by at least 3 raters. As a final quality check, we visually inspected all the images
s7¢ and manually removed cases of artefactual cell detection. The source code for training models or

s7z making predictions with a pre-trained model can be found at this link.

s7s  1raining Dataset

s70  Here we describe the training dataset used for each model.

580 The dataset used for the PNN,,. model consists of 580 8-bit grayscale TIFF images (width ranging
ss1 from 2646 to 17631px) dot-annotated with the (x,y) position of each PNN for a total of 678556
ss2  PNNs. The dataset used for the PV,,, model consists of 53 8-bit grayscale TIFF images (width ranging
ss3  from 5157 to 16389px) dot-annotated with the (x,y) position of each cell for a total of 101348 PV
ssa  cells. PNNs were annotated by looking for distinctive circular patterns of WFA staining around
sss cell somata and proximal dendrites. Finer PNN-like structures exclusively present in the neuropil,
sss like those found in the olfactory bulbs (Hunyadi et al., 2020), were not annotated in our training
ss7 dataset due to the magnification factor in our images not allowing for consistent detection of such
sss  Structures.

580 The datasets used for the two scoring models both consist of a collection of 25 8-bit grayscale
se0 TIFF images (2000 x 2000 px). Seven expert experimenters independently dot-annotated each im-
so1 age for a total of 4727 PNNs and 5833 PV cells that vary in the agreement between raters from 1/7
s02 to 7/7. Pre-trained models, ready for making predictions on new images, are available at this link.

53 Brain structure sets

sea Throughout the paper we aggregated data in three sets of brain structures differing by their level of
sos  Spatial resolution or granularity. The first structure set (structure_set_id: 687527670) has a low
sos level of resolution and is composed of 12 coarse-ontology major brain divisions (see Table ST2).
so7 The second structure set (structure_set_id: 167587189) has a medium level of resolution (e.g.,
ses it comprises distinct cortical areas) and is composed of 316 mid-ontology brain regions (see Ta-
s00 ble ST4).

600 These two structure sets were defined by the Allen Institute in their APl and can be accessed
e01 USing the StructureTree object. Lastly, for the analysis of cortical layers, we maintained the finest
e02 level of resolution present in the CCFv3, where individual cortical layers are segmented (see Ta-
s03 ble ST3 for the definition of cortical areas). Please note that, for the visualizations in Fig. 5A-B, we
s0a included the lateral and medial parts of the entorhinal cortex (ENTI and ENTm, that actually belong
s0s to the hippocampal formation) given their layered structure. For all the analyses in the paper, we
s0s dropped data of any structure belonging to, or descending from the fiber tracts (areaID:1009) and
sz the ventricular system (areaID:73).
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Data analysis
All data analysis was done using custom software written in MATLAB 2021b and Python (3.8). We
used the following additional Python libraries for data analysis: NumPy (1.23.5) (Harris et al., 2020),
Pandas (1.5.2) (McKinney, 2010), Scikit-learn (1.1.3) (Pedregosa et al., 2011) and SciPy (1.9.3) (Virta-
nen et al., 2020).

Measurement of single-cell staining intensity

Quantification of the staining intensity of individual cells (PNNs or PV cells) was performed on 80x80
pixels image tiles centered on the (x,y) center positions of each PNN/cell. Within each tile, we
segmented pixels belonging to the cell or the background, and the intensity of each PNN/cell was
defined as the average value of the pixels belonging to that cell. The segmentation was performed
by using a random forest pixel classifier implemented with the MATLAB Treebagger class with the
support of additional custom MATLAB functions (Cicconet et al., 2019). This approach allows the
classification of single pixels as background or foreground, based on a collection of features of that
pixel. Classifying all the pixels in an image tile results in a binary segmentation mask.

The features considered for pixel classification were the contrast-adjusted pixel intensity (using
the imadjust MATLAB function), the position of the pixel relative to the center of the tile in the
horizontal and vertical axes, and the pixel intensity in 16 versions of the image tile filtered with
16 Gabor filters. The wavelength and orientation of each Gabor represented one of the possible
combinations of four different wavelength values (2.8, 5.6, 11.3, 22.6 pixels/cycle) and four different
orientations (0°, 45°,90°, 135°). Wavelengths were sampled in increasing powers of 2 starting from
\% up to the hypotenuse length of the input image tile, while orientations were sampled from 0°
to 135° with a step of 45° (Jaini et al., 1991). Each random forest model for segmentation of PNNs
and PV cells was trained on 69600 pixels from 1160 tiles (60 pixels randomly chosen for each tile).

Staining metrics definitions
We defined four metrics to quantitatively analyze the staining for PNNs and PV cells.

First, diffuse fluorescence represents the amount of average fluorescence signal in a brain re-
gion. It is defined as the average intensity of all the pixels belonging to that region across all the
slices of each mouse. These values were then normalized within each mouse by dividing them by
the mean pixel intensity of all the brain. This normalization removes global differences in inten-
sity between mice (due to for example perfusion quality and post-fixation) while highlighting how
staining intensity is differentially distributed across brain regions. As a result, a region with diffuse
fluorescence of 1 would have a staining intensity equal to the brain average.

Second, density represents the number of cells or PNNs per unit of area in a brain region. It
was defined as the total number of cells or PNNs belonging to that region across all the slices of
each mouse, divided by the total area belonging to that region in mm?2.

Third, cell intensity represents the staining intensity of cells or PNNs in a brain region. Each cell
was assigned a value of staining intensity (see section Measurement of single-cell staining intensity).
For each region, cell intensity was defined as the average intensity of all the cells belonging to that
region. These values were then normalized to the range 0-1 by dividing by 255 (maximum intensity
value for 8-bit images).

Last, we defined a combined, more abstract metric, that takes into account both the number
and the intensity of cells/PNNs, called energy. Cell energy can be thought of as a measure of cell
density, weighted on intensity. For each region, energy is defined as the sum of the cell intensity
of all the cells in that region, divided by the total surface area. For a region of area A, containing ¢
cells:

Y., intensity,
A
These values were then normalized within each mouse by dividing them by energy calculated

on the entire brain. As a result, a region with an energy value of 1 would be equal to the brain’s

Energy =

Lupori, Totaro et al. 2023

A Whole-brain Atlas of Perineuronal Nets bioRyiv | 19 0f45


https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525313; this version posted January 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

658

659

660

661

available under aCC-BY-NC-ND 4.0 International license.

average energy. This definition of energy is analogous to the one used by the Allen Institute in (Lein
etal.,, 2007) for the analysis of in-situ hybridization data (see the technical paper on the informatics
data processing here). It is important to note that the brain of each mouse in this study has been
sampled in its entire anterior-posterior axis with the same sampling rate (1 every 3 slices) thus
ensuring that the normalization step for diffuse fluorescence and energy measurements does not
introduce biases due to differential sampling of areas with extreme staining intensity values.

Colocalization PNN-PV

PV cells and PNNs were counted with two distinct deep learning models on separate channels. We
defined a PNN and a PV cell to be colocalized based on their (x,y) position in the original image
using the following criteria. We selected one cell/PNN at a time as a reference object. For each
reference object, we selected only objects in the other channel with a distance equal to or smaller
than 15 pixels (9.675pm). If multiple objects satisfied this criterion, we picked the closest one as
a colocalized object. Otherwise, if no objects were close enough to the reference one, we defined
the reference object as non-colocalized (either a PV-negative PNN or a WFA-negative PV cell).

We computed two metrics to describe PNNs and PV colocalization: first, the percentage of PV+
PNNs, that is the fraction of PNNs that are around a PV-positive cell; second, the percentage of
WEFA+ PV cells, that is the fraction of PV-positive cells that are surrounded by a net. Colocalization
metrics at the coarse level of resolution (see section Brain structure sets for definition) were calcu-
lated independently for each mouse and the results averaged across mice. For the same analysis at
higher levels of resolution (mid-ontology in Figure 3C and Figure 54), we adopted a different strat-
egy. At higher resolutions, brain subdivisions are much smaller and some areas contain a limited
number, or even no, of PNN or PV-cells (e.g., layer 1 of cortical areas). As a result, the percentage
of colocalization can vary dramatically depending on a few, or even a single cell, thus not providing
a robust measure for that area (e.g., an area with 3 PV cells can vary from 0% to 100% depending
on the state of PNNs on only 3 neurons). To solve this issue, we calculated colocalization metrics
on a dataset of cells pooled from all animals except one, in a manner similar to the leave-one-out
cross-validation approach used in machine learning (Wong, 2015). We repeated this process for
all mice and considered each repetition an “experimental unit”. We then averaged across experi-
mental units. For the analysis of the colocalization of PNNs and PV cells (Figure 3C and Figure $4)
we included only brain regions that contained at least 3 PNN and 3 PV cells in at least 4 mice.

PV intensity classes

PV cells were divided into four intensity classes of equal width based on their cell intensity levels.
The classes were defined as 1: low PV (PV intensity in the range [0, 0.25)); 2: intermediate-low
PV (range [0.25, 0.5)); 3: intermediate-high PV (range [0.5, 0.75)); 4: high PV (range [0.75, 1]). The
probability of being surrounded by a net was estimated by dividing the total number of PV cells
in that class by the number of colocalized PV-PNN cells. This analysis was done independently for
each mouse. We fit data to a first-degree linear equation by using the numpy function np.polyfit.
The estimated first- and zero-order parameters are displayed in the text insets for each plot.

Correlation between staining metrics

The analysis of correlations between staining metrics in all the figures (Figure 2E, Figure 3D-G,
Figure S3E) was done by computing the Spearman’s rank correlation coefficient using the SciPy
function stats.spearmanr. In each graph, we reported the value of the correlation coefficient (r,)
and the associated p-value. We highlighted in red significant (p <0.05) correlations. For significantly
correlated metrics we also reported in blue a linear fit obtained using a Huber regressor robust to
outliers (Huber et al., 2009) using the implementation in sklearn.linear_model.HuberRegressor.

Correlation with thalamic afferent connectivity
To measure thalamic input strength we used connectomics data from the Allen Institute (Oh et al.,
2014). In that dataset, we selected the connections that originated from the thalamus and that ter-
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minated in sensory-related cortical regions (SSp-n, SSp-bfd, SSp-Il, SSp-m, SSp-ul, SSp-tr, SSp-un,
SSs, VISal, VISam, VISI, VISp, VISpl, VISpm, VISIi, VISpor, AUDd, AUDp, AUDpo, AUDv). For Figure 5|
we selected only thalamic inputs originating from the sensory-motor cortex related part of the tha-
lamus (DORsm, area ID: 864, according to the CCFv3 nomenclature, https://atlas.brain-map.org/).
For Figure S8 we selected only thalamic inputs originating from the polymodal-association cortex
related part of the thalamus (DORpm, areaID: 856). Input strength for each cortical area was mea-
sured as the sum of connection strength from all brain regions belonging to either the DORsm or
the DORpm to both the ipsilateral and contralateral parts of that cortex. To uniform the scale of
PNN measurements and thalamic connectivity, we z-scored each set of data. For the correlation
analysis (Figure 51), we computed Pearson’s correlation coefficient and the associated p-values. To
estimate connection strength in high-WFA and low-WFA region clusters (Figure 5L inset), we aver-
aged thalamic input strength values, obtained in the same way, of all the areas in each cluster.

Correlation with gene expression and gene set overrepresentation analysis

We correlated the distribution of PNN energy, WFA diffuse fluorescence and PV energy with the
pattern of expression of approximately 18,000 genes, published in the Anatomic Gene Expression
Atlas (AGEA) by the Allen Institute (Lein et al., 2007). In this dataset, levels of expression of each
gene are derived from the signal intensity of whole-brain in situ hybridization essays and quantified
as expression energy, a metric defined in an analogous way to PNN and PV energy. For correlation
analysis, both gene expression data and PNN or PV staining parameters were expressed at mid-
ontology resolution (see Table ST4). The five areas showing the largest standard deviation in PNN
or PV staining metrics were excluded from the analysis. We computed Spearman’s rank correlation
coefficient between each of the 3 staining metrics and the pattern of expression of each of the AGEA
genes. Correction for multiple testing was performed with Benjamini-Hochberg method. For all the
analyses, we considered genes with a g-value<0.01 (Benjamini-Hochberg method) as significantly
correlated (if Spearman’s correlation coefficient was positive) or anticorrelated (if Spearman’s cor-
relation coefficient was negative) with the staining metric considered.

For the genes correlated and anticorrelated with PNN energy and WFA fluorescence, we per-
formed gene ontology analysis using WebGestalt platform (Zhang et al., 2005). Overrepresentation
of gene ontology terms (biological process domain) was tested separately for the 1,000 genes most
correlated (with the largest correlation coefficient) and the 1,000 genes most anticorrelated (with
the most negative correlation coefficient) with each of the two metrics. The list of all the genes
present in the AGEA was used as the background for all the analyses. Overrepresented gene on-
tology terms were filtered to ensure a false discovery rate<0.1 (Benjamini-Hochberg method) and
clustered via affinity propagation to reduce redundancy.

We then tested for overrepresentation of gene sets related to ECM biology, defined by (Naba
et al., 2016) as matrisome categories, in the 200 genes most correlated with PNN energy. As for
gene ontology, the entire list of genes of the AGEA was used as the background. To assess sta-
tistical significance, we performed hypergeometric test and corrected for multiple testing using
Benjamini-Hochberg method. For each matrisome category, the enrichment ratio was calculated
as the number of genes observed in both the matrisome category and the 200-gene list divided by
the number of genes expected assuming independence of the matrisome set and the gene list.

Data visualization

Data visualization for all the figures was done in Python (3.8). Heatmaps, bar plots, and scatterplots
were created using the libraries Seaborn (0.12.1) (Waskom, 2021) and Matplotlib (3.4.2) (Hunter,
2007). Rendered heatmaps of coronal brain slices were done by using BrainRender (Claudi et al.,
20217) and bg-heatmaps (Claudi et al., 2022).
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Figure 7. Author contributions. For each type of contribution, there are three levels indicated by color in the
diagram: 'support’ (light), ‘equal’ (medium), and ‘lead’ (dark).
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Figure S1. The scores assigned by the scoring models correlate with raters’ agreement. (A) Agreement
(Jaccard index) between the manual cell annotations of 7 independent raters (R1-R7). The lower part of the
matrix (blue shade) represents agreement in PNN counts, while the upper part (green shade) represents
agreement in PV counts. (B) Performance of the scorer module for PNNs. Individual PNNs are grouped
according to their agreement level in the multi-rater dataset and the score assigned to them by the scorer
module is shown on the Y-axis. (C) Performance of the scorer module for PV cells. Individual PV cells are
grouped according to their agreement level in the multi-rater dataset and the score assigned to them by the
scorer module is shown on the Y-axis. In B and C, text insets represent Pearson'’s correlation coefficient (r)
and the corresponding p-value. Boxes represent quartiles, whiskers extend to 1.5 IQRs of the lower and
upper quartile, and observations that fall outside this range are displayed independently.
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Figure S2. PNN energy and WFA diffuse fluorescence measurements for medium-resolution brain
areas grouped by their major subdivision. For each plot, on the left in orange is represented PNN energy,
while on the right in blue is represented WFA diffuse fluorescence. Error bars represent SEM across mice.
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Figure S2. PNN energy and WFA diffuse fluorescence measurements for medium-resolution brain

areas grouped by their major subdivision. ...continues.
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Figure S3. Distribution of PV-positive cells throughout the entire mouse brain. (A) Quantification of PV

diffuse fluorescence and PV energy for 12 aggregated major brain subdivisions. Dots represent mice.

Asterisks indicate brain subdivisions significantly different from the brain average (see Table ST1 for statistical
comparisons). (B) Heatmaps showing the two quantification metrics for mid-ontology brain regions in
individual mice. Grayed-out cells represent brain regions where data is unavailable due to no sampling of that
region. (C) Heatmaps showing coronal sections of the brain, sliced at different anteroposterior locations. On
the left hemisphere (blue colormap) is displayed average diffuse PV fluorescence, while on the right
hemisphere (red colormap) is displayed average PV energy for each brain region. (D) Plots of PV energy
versus PV diffuse fluorescence for each of the 12 major brain subdivisions. (E) Same as in D but data is splitin
each brain region of the 12 major brain subdivisions. Error bars in A and D represent SEM across mice. In D
and E, dots represent brain regions. In E, text insets indicate the Spearman correlation coefficient (r,) and the
corresponding p-value, the gray line indicates the X-Y bisector, and, for significant correlations highlighted in

red, the blue line shows the best linear fit.
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Figure S4. Colocalization of PNNs and PV cells in medium-resolution brain areas grouped by their
major subdivision. For each plot, on the left in blue is represented the fraction of PNNs containing a PV cell
(PV+ PNNs), while on the right in light orange is represented the fraction of PV cells surrounded by a PNN
(WFA+ PV cells). In all the plots, dots represent “experimental units” and not single animals as described in the
methods section “colocalization PNN-PV”. Each experimental unit is composed of the aggregated data of all
mice in the dataset except one, in a manner similar to the leave-one-out cross-validation approach used in
machine learning. This analysis includes only areas that had at least 3 PNNs and 3 PV cells in at least 4 mice.
Error bars represent SEM across experimental units.
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Figure S5. WFA Diffuse Fluorescence in primary vs secondary areas by layers. (A) WFA diffuse
fluorescence in primary versus associative visual cortical areas split by layer. (B) Same as in (A) but for
auditory areas. (C) Same as in (A) but for somatosensory areas. See Table ST1 for statistical comparisons.
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Figure S6. PV cell distribution in sensory cortical areas. (A) PV energy and PV diffuse fluorescence in
primary versus associative visual areas. (B) PV energy and (C) PV diffuse fluorescence in primary versus
associative visual areas split by layer. (D) Same as (A), but for auditory areas. (E) Same as (B), but for auditory
areas. (F) Same as (C), but for auditory areas. (G) Same as (A), but for somatosensory areas. (H) Same as (B),
but for somatosensory areas. (1) Same as (C) but for somatosensory areas. See Table ST1 for statistical

comparisons.
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Figure S7. PV cell intensity and colocalization with PNNs in the sensory areas of the cortex. (A)
Percentage of WFA+ PV cells in primary versus associative visual areas. (B) Distribution of PV cells in 4
intensity classes (low PV, intermediate-low PV, intermediate-high PV, and high PV) for primary versus
associative visual areas. (C) Same as in (A) but for auditory areas. (D) Same as in (B) but for auditory areas. (E)
Same as in (A) but for somatosensory areas. (F) Same as in (B) but for somatosensory areas. See Table ST1 for

statistical comparisons.
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Figure S8. Thalamic inputs from the association-cortex-related portion of the thalamus (DORpm) do
not correlate with PNNs in sensory cortices. (A) Correlation between WFA diffuse fluorescence and input
strength of association-cortex-related thalamic areas (DORpm) in sensory-related cortices (all somatosensory,
visual, and auditory cortices, see Correlation with thalamic afferent connectivity in Methods & Materials) split
by layer. Text insets indicate the Pearson correlation coefficient (r) and the corresponding p-value. (B) Same

asin (A) but for PNN energy.
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Figure S9. Properties of PV cells in high-WFA and low-WFA cortical subnetworks. (A) PV energy and (B)
Distribution of PV cells in 4 intensity classes (1: low PV, 2: intermediate-low PV, 3: intermediate-high PV, and 4:
high PV) for high-WFA and low-WFA cortical subnetworks, as defined in Fig.5. See Table ST1 for statistical

comparisons.
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w2 Supplementary Tables

Table ST1. Statistical comparisons

Fig Description Test N (units) Results
PVDiffuse fluorescence significantly different
S2A
from 1
Isocortex one sample t-test 7 (mice) 1(6)=3.88, P=008
Olfactory areas one sample t-test 7 (mice) 1(6)=4.65, P=0.004
Hippocampal formation one sample t-test 7 (mice) 1(6)=1.12, P=0.306
Cortical subplate one sample t-test 7 (mice) 1(6)=4.56, P=0.004
Striatum one sample t-test 7 (mice) 1(6)=6.51, P<0.001
Pallidum one sample t-test 7 (mice) t(6)=5.31, P=0.002
Thalamus one sample t-test 7 (mice) t(6)=2.54, P=0.044
Hypothalamus one sample t-test 7 (mice) 1(6)=4.50, P=0.004
Midbrain one sample t-test 7 (mice) t(6)=1.89, P=0.107
Pons one sample t-test 7 (mice) t(6)=1.37, P=0.220
Medulla one sample t-test 7 (mice) 1(6)=3.36, P=0.015
Cerebellum one sample t-test 7 (mice) 1(6)=6.73, P<0.001
S2A PVEnergy significantly different from 1
Isocortex one sample t-test 7 (mice) t(6)=4.32, P=005
Olfactory areas one sample t-test 7 (mice) 1(6)=41.01, P<0.001
Hippocampal formation one sample t-test 7 (mice) t(6)=11.16, P<0.001
Cortical subplate one sample t-test 7 (mice) 1(6)=24.27, P<0.001
Striatum one sample t-test 7 (mice) 1(6)=73.48, P<0.001
Pallidum one sample t-test 7 (mice) 1(6)=3.96, P=0.008
Thalamus one sample t-test 7 (mice) (6)=0.85, P=0.428
Hypothalamus one sample t-test 7 (mice) t(6)=11.78, P<0.001
Midbrain one sample t-test 7 (mice) 1(6)=3.01, P=0.024
Pons one sample t-test 7 (mice) t(6)=1.56, P=0.170
Medulla one sample t-test 7 (mice) t(6)=2.11, P=0.079
Cerebellum one sample t-test 7 (mice) 1(6)=15.06, P<0.001
- . Interaction
S4A \(;Ii:;fsleafrlizsn:ezz)::\gznson by layer of WFA two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =49.63, P<0.0001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.48, P=0.649
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=1.42, P=0.684
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=8.60, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=6.40, P=0.003
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=3.50, P=0.062
. ) Interaction
S4B g;?ioe?/ljgf:s&cg:czparlson by layer of WFA two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =36.54, P<0.0001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=0.28, P=0.999
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=4.43, P=0.022
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=6.50, P=0.003
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=6.21, P=0.004
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.73, P=0.048
s c . by | £ Interaction
Yl V\;)Fn;adt;:;r;s;uryof;:j;csmparlson ylayero two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =7.65, P<0.001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=3.54, P=0.060
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=0.88, P=0.930
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=0.92, P<0.916
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.43, P=0.675
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.67, P=0.172
S6A Visual areas. PV energy comparison :’_\:\/e(;sample paired 7 (mice) per group (6)=4.78, P=0.003
Visual areas. PV diffuse fluorescence Two-sample paired 7 (mice) per group {(6)=2.62, P=0.393
comparison t-test
Interaction
S6B Visual areas.Comparison by layer of PV energy Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy

F(4,24) =14.00, P<0.001

L1 - Primary vs Associative
L2/3 - Primary vs Associative
L4 - Primary vs Associative
L5 - Primary vs Associative
L6 - Primary vs Associative

Paired T-test, Sidak
Paired T-test, Sidak
Paired T-test, Sidak
Paired T-test, Sidak
Paired T-test, Sidak

7 (mice) per group
7 (mice) per group
7 (mice) per group
7 (mice) per group
7 (mice) per group

t(6)=-0.45, P=0.996
(6)=0.24, P=0.999
(6)=3.39, P=0.071
t(6)=7.27, P=0.002
(6)=12.00, P<0.001

Lupori, Totaro et al. 2023

A Whole-brain Atlas of Perineuronal Nets

bioRyiv |

37 of 45


https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525313; this version posted January 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Fig Description Test N (units) Results
- ) ; Interaction
S6C }/lljs;:lelsjacree:cse.Comparlson by layer of PV diffuse Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =4.26, P=0.009
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=-0.48, P=0.995
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=3.45, P=0.07
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=1.89, P=0.432
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.29, P=0.272
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=1.99, P=0.387
Two- | i
SeD Auditory areas. PV energy comparison t_\:\;ostsamp e paired 7 (mice) per group (6)=3.86, P=0.008
Auditory areas. PV diffuse fluorescence Two-sample paired 7 (mice) per group t(6)=1.21, P=0.272
comparison t-test
Interaction
Audit . C i by | f PV
S6E erL:ell ory areas. Lomparison by layer o Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
& F(4,24) =1.87, P=0.148
Interaction
Audi 3 i | f PV
S6F d;:ii%j;z;f:c:panson by layer o Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =3.73, P=0.017
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=1.59, P=0.589
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=1.70, P=0.53
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.76, P=0.155
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=0.77, P=0.958
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=-0.74, P=0.965
Two- | ired
S6G Somatosensory areas. PV energy comparison t_\:;ostsamp € paire 7 (mice) per group (6)=1.83, P=0.11
Somatols.ensory areas. PV diffuse fluorescence Two-sample paired 7 (mice) per group £(6)=0.79, P=0.456
comparison t-test
Somatosensory areas. Comparison by layer of Interaction
S6H PV ener v : P ylay Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
&y F(4,24) =4.23, P=0.009
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=-2.57, P=0.194
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=1.65, P=0.556
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=0.31, P=0.999
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.47, P=0.065
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=3.65, P=0.052
Somatosensory areas. Comparison by layer of Interaction
sel PV diffuse flugescenc.e P yiay Two-way RM ANOVA 7 (mice) per group layer*areaHierarchy
F(4,24) =12.02, P<0.001
L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=-0.48, P=0.995
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group (6)=-0.27, P=0.999
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.11, P=0.843
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.21, P=0.302
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=0.66, P=0.979
S7A V|§ua| areas. Percentégg of WFA+ PV cells in Two-sample paired 7 (mice) per group £(6)=16.34, P<0.001
primary versus associative t-test
Visual Areas. Distribution of PV cells in Interaction intensity-
S7B intensity classes in primary vs associative Two-way RM ANOVA 7 (mice) per group Class*areaHierarchy
areas. F(3,18) =5.93, P=0.005
Int class 1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=3.29, P=0.065
Int class 2 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=0.77, P=0.921
Int class 3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=2.40, P=0.197
Int class 4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.35, P=0.209
s7c Au.ditory areas. Perce.nt.age of WFA+ PV cells in Two-sample paired 7 (mice) per group £(6)=9.05, P<0.001
primary versus associative t-test
AuditoryAreas. Distribution of PV cells in Interaction intensity-
S7D intensity classes in primary vs associative Two-way RM ANOVA 7 (mice) per group Class*areaHierarchy
areas. F(3,18) =5.93, P=0.008
Int class 1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.01, P=0.092
Int class 2 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.23, P=0.242
Int class 3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.53, P=0.979
Int class 4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group 1(6)=0.55, P=0.975
S7E Soma.tosgnsory areas. Percelnte.age of WFA+ PV Two-sample paired 7 (mice) per group £(6)=3.77, P=0.009
cells in primary versus associative t-test
Somatosensory Areas. Distribution of PV cells Interaction intensity-
S7F in intensity classes in primary vs associative Two-way RM ANOVA 7 (mice) per group Class*areaHierarchy

areas.

F(3,18) =5.93, P=0.185
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Fig Description

Test

N (units)

Results

PV energy in high-WFA vs low-WFA

S9A
subnetworks

Two-sample paired
t-test

7 (mice) per group

(6)=10.03, P<0.001

High-WFA vs low-WFA subnetworks.
S9B Distribution of PV cells in intensity classes in
primary vs associative areas.

Two-way RM ANOVA

7 (mice) per group

Interaction intensity-
Class*areaHierarchy
F(3,18) =30.86, P<0.001

Int class 1 - High-WFA vs Low-WFA
Int class 2 - High-WFA vs Low-WFA

Paired T-test, Sidak
Paired T-test, Sidak

mice) per group

t(6)=10.87, P<0.001
(6)=2.68, P=0.138

Paired T-test, Sidak
Paired T-test, Sidak

Int class 3 - High-WFA vs Low-WFA
Int class 4 - High-WFA vs Low-WFA

mice) per group
mice) per group

(6)=5.86, P=0.0.004

7(
7 (mice) per group
7(
7 t(6)=2.40, P=0.197

Table ST2. Coarse-ontology brain regions

Name Acronym regionID

Isocortex [socortex 315

Olfactory areas OLF 698

Hippocampal formation HPF 1089

Cortical subplate CTXsp 703

Striatum STR 477

Pallidum PAL 803

Thalamus TH 549

Hypothalamus HY 1097

Midbrain MB 313

Pons P 771

Medulla MY 354

Cerebellum CB 512

Table ST3. Cortical regions

Name Acronym regionID
Frontal pole, cerebral cortex FRP 184
Primary motor area MOp 985
Secondary motor area MOs 993
Primary somatosensory area, nose SSp-n 353
Primary somatosensory area, barrel field SSp-bfd 329
Primary somatosensory area, lower limb SSp-ll 337
Primary somatosensory area, mouth SSp-m 345
Primary somatosensory area, upper limb SSp-ul 369
Primary somatosensory area, trunk SSp-tr 361
Primary somatosensory area, unassigned SSp-un 182305689
Supplemental somatosensory area SSs 378
Anterolateral visual area ViSal 402
Anteromedial visual area ViSam 394
Lateral visual area VISl 409
Primary visual area VISp 385
Posterolateral visual area VISpl 425
posteromedial visual area VISpm 533
Laterointermediate area VISli 312782574
Postrhinal area VISpor 312782628
Anterior area VISa 312782546
Rostrolateral visual area VISrl 417
Dorsal auditory area AUDd 1011
Primary auditory area AUDp 1002
Posterior auditory area AUDpo 1027
Ventral auditory area AUDv 1018
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Name Acronym regionID
Infralimbic area ILA 44
Prelimbic area PL 972
Orbital area, medial part ORBmM 731
Orbital area, lateral part ORBI 723
Orbital area, ventrolateral part ORBvI 746
Anterior cingulate area, dorsal part ACAd 39
Anterior cingulate area, ventral part ACAv 48
Retrosplenial area, lateral agranular part RSPagl 894
Retrosplenial area, dorsal part RSPd 879
Retrosplenial area, ventral part RSPv 886
Gustatory areas GU 1057
Visceral area VISC 677
Agranular insular area, dorsal part Ald 104
Agranular insular area, posterior part Alp 11
Agranular insular area, ventral part Alv 119
Temporal association areas TEa 541
Ectorhinal area ECT 895
Perirhinal area PERI 922
Entorhinal area, lateral part ENTI 918
Entorhinal area, medial part, dorsal zone ENTm 926

Table ST4. Mid-ontology brain regions

Name Acronym Parent Area regionID
Frontal pole, cerebral cortex FRP Isocortex 184
Primary motor area MOp Isocortex 985
Secondary motor area MOs Isocortex 993
Primary somatosensory area, nose SSp-n Isocortex 353
Primary somatosensory area, barrel field SSp-bfd Isocortex 329
Primary somatosensory area, lower limb SSp-ll Isocortex 337
Primary somatosensory area, mouth SSp-m Isocortex 345
Primary somatosensory area, upper limb SSp-ul Isocortex 369
Primary somatosensory area, trunk SSp-tr Isocortex 361
Primary somatosensory area, unassigned SSp-un Isocortex 182305689
Supplemental somatosensory area SSs Isocortex 378
Gustatory areas GU Isocortex 1057
Visceral area VISC Isocortex 677
Dorsal auditory area AuUDd Isocortex 1011
Primary auditory area AUDp Isocortex 1002
Posterior auditory area AUDpo Isocortex 1027
Ventral auditory area AUDv Isocortex 1018
Anterolateral visual area Visal Isocortex 402
Anteromedial visual area Visam Isocortex 394
Lateral visual area VISl Isocortex 409
Primary visual area VISp Isocortex 385
Posterolateral visual area VISpl Isocortex 425
posteromedial visual area VISpm Isocortex 533
Laterointermediate area VISi Isocortex 312782574
Postrhinal area VISpor Isocortex 312782628
Anterior cingulate area, dorsal part ACAd Isocortex 39
Anterior cingulate area, ventral part ACAv Isocortex 48
Prelimbic area PL Isocortex 972
Infralimbic area ILA Isocortex 44
Orbital area, lateral part ORBI Isocortex 723
Orbital area, medial part ORBmM Isocortex 731
Orbital area, ventrolateral part ORBvI Isocortex 746
Agranular insular area, dorsal part Ald Isocortex 104
Agranular insular area, posterior part Alp Isocortex 111
Agranular insular area, ventral part Alv Isocortex 119
Retrosplenial area, lateral agranular part RSPag| Isocortex 894
Retrosplenial area, dorsal part RSPd Isocortex 879
Retrosplenial area, ventral part RSPv Isocortex 886
Anterior area ViSa Isocortex 312782546
Rostrolateral visual area VISt Isocortex 417
Temporal association areas TEa Isocortex 541
Perirhinal area PERI Isocortex 922
Ectorhinal area ECT Isocortex 895

Main olfactory bulb MOB Olfactory areas 507
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Name Acronym Parent Area regionID
Accessory olfactory bulb AOB Olfactory areas 151
Anterior olfactory nucleus AON Olfactory areas 159
Taenia tecta T Olfactory areas 589
Dorsal peduncular area DP Olfactory areas 814
Piriform area PIR Olfactory areas 961
Nucleus of the lateral olfactory tract NLOT Olfactory areas 619
Cortical amygdalar area, anterior part COAa Olfactory areas 639
Cortical amygdalar area, posterior part COAp Olfactory areas 647
Piriform-amygdalar area PAA Olfactory areas 788
Postpiriform transition area TR Olfactory areas 566
Field CA1 CA1 Hippocampal formation 382
Field CA2 CA2 Hippocampal formation 423
Field CA3 CA3 Hippocampal formation 463
Dentate gyrus DG Hippocampal formation 726
Fasciola cinerea FC Hippocampal formation 982
Induseum griseum 1G Hippocampal formation 19
Entorhinal area, lateral part ENTI Hippocampal formation 918
Entorhinal area, medial part, dorsal zone ENTm Hippocampal formation 926
Parasubiculum PAR Hippocampal formation 843
Postsubiculum POST Hippocampal formation 1037
Presubiculum PRE Hippocampal formation 1084
Subiculum suB Hippocampal formation 502
Prosubiculum ProS Hippocampal formation 484682470
Hippocampo-amygdalar transition area HATA Hippocampal formation 589508447
Area prostriata APr Hippocampal formation 484682508
Claustrum CLA Cortical subplate 583
Endopiriform nucleus, dorsal part EPd Cortical subplate 952
Endopiriform nucleus, ventral part EPv Cortical subplate 966
Lateral amygdalar nucleus LA Cortical subplate 131
Basolateral amygdalar nucleus BLA Cortical subplate 295
Basomedial amygdalar nucleus BMA Cortical subplate 319
Posterior amygdalar nucleus PA Cortical subplate 780
Caudoputamen CcpP Striatum 672
Nucleus accumbens ACB Striatum 56
Fundus of striatum FS Striatum 998
Olfactory tubercle oT Striatum 754
Lateral septal nucleus, caudal (caudodorsal) part LSc Striatum 250
Lateral septal nucleus, rostral (rostroventral) part LSr Striatum 258
Lateral septal nucleus, ventral part LSv Striatum 266
Septofimbrial nucleus SF Striatum 310
Septohippocampal nucleus SH Striatum 333
Anterior amygdalar area AAA Striatum 23
Bed nucleus of the accessory olfactory tract BA Striatum 292
Central amygdalar nucleus CEA Striatum 536
Intercalated amygdalar nucleus 1A Striatum 1105
Medial amygdalar nucleus MEA Striatum 403
Globus pallidus, external segment GPe Pallidum 1022
Globus pallidus, internal segment GPi Pallidum 1031
Substantia innominata S| Pallidum 342
Magnocellular nucleus MA Pallidum 298
Medial septal nucleus MS Pallidum 564
Diagonal band nucleus NDB Pallidum 596
Triangular nucleus of septum TRS Pallidum 581
Bed nuclei of the stria terminalis BST Pallidum 351
Bed nucleus of the anterior commissure BAC Pallidum 287
Ventral anterior-lateral complex of the thalamus VAL Thalamus 629
Ventral medial nucleus of the thalamus VM Thalamus 685
Ventral posterolateral nucleus of the thalamus VPL Thalamus 718
Ventral posterolateral nucleus of the thalamus, parvicellular part VPLpc Thalamus 725
Ventral posteromedial nucleus of the thalamus VPM Thalamus 733
Ventral posteromedial nucleus of the thalamus, parvicellular part VPMpc Thalamus 741
Posterior triangular thalamic nucleus PoT Thalamus 563807435
Subparafascicular nucleus, magnocellular part SPFm Thalamus 414
Subparafascicular nucleus, parvicellular part SPFp Thalamus 422
Subparafascicular area SPA Thalamus 609
Peripeduncular nucleus PP Thalamus 1044
Medial geniculate complex MG Thalamus 475
Dorsal part of the lateral geniculate complex LGd Thalamus 170
Lateral posterior nucleus of the thalamus LP Thalamus 218
Posterior complex of the thalamus PO Thalamus 1020
Posterior limiting nucleus of the thalamus POL Thalamus 1029
Suprageniculate nucleus SGN Thalamus 325
Anteroventral nucleus of thalamus AV Thalamus 255
Anteromedial nucleus AM Thalamus 127
Anterodorsal nucleus AD Thalamus 64
Interanteromedial nucleus of the thalamus IAM Thalamus 1120
Interanterodorsal nucleus of the thalamus IAD Thalamus 1113
Lateral dorsal nucleus of thalamus LD Thalamus 155
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Name Acronym Parent Area regionID
Intermediodorsal nucleus of the thalamus IMD Thalamus 59
Mediodorsal nucleus of thalamus MD Thalamus 362
Submedial nucleus of the thalamus SMT Thalamus 366
Perireunensis nucleus PR Thalamus 1077
Paraventricular nucleus of the thalamus PVT Thalamus 149
Parataenial nucleus PT Thalamus 15
Nucleus of reuniens RE Thalamus 181
Xiphoid thalamic nucleus Xi Thalamus 560581559
Rhomboid nucleus RH Thalamus 189
Central medial nucleus of the thalamus (@] Thalamus 599
Paracentral nucleus PCN Thalamus 907
Central lateral nucleus of the thalamus CcL Thalamus 575
Parafascicular nucleus PF Thalamus 930
Posterior intralaminar thalamic nucleus PIL Thalamus 560581563
Reticular nucleus of the thalamus RT Thalamus 262
Intergeniculate leaflet of the lateral geniculate complex IGL Thalamus 27
Intermediate geniculate nucleus IntG Thalamus 563807439
Ventral part of the lateral geniculate complex LGv Thalamus 178
Subgeniculate nucleus SubG Thalamus 321
Medial habenula MH Thalamus 483
Lateral habenula LH Thalamus 186
Supraoptic nucleus SO Hypothalamus 390
Accessory supraoptic group ASO Hypothalamus 332
Paraventricular hypothalamic nucleus PVH Hypothalamus 38
Periventricular hypothalamic nucleus, anterior part PVa Hypothalamus 30
Periventricular hypothalamic nucleus, intermediate part PVi Hypothalamus 118
Arcuate hypothalamic nucleus ARH Hypothalamus 223
Anterodorsal preoptic nucleus ADP Hypothalamus 72
Anteroventral preoptic nucleus AVP Hypothalamus 263
Anteroventral periventricular nucleus AVPV Hypothalamus 272
Dorsomedial nucleus of the hypothalamus DMH Hypothalamus 830
Median preoptic nucleus MEPO Hypothalamus 452
Medial preoptic area MPO Hypothalamus 523
Vascular organ of the lamina terminalis ov Hypothalamus 763
Posterodorsal preoptic nucleus PD Hypothalamus 914
Parastrial nucleus PS Hypothalamus 1109
Periventricular hypothalamic nucleus, posterior part PVp Hypothalamus 126
Periventricular hypothalamic nucleus, preoptic part PVpo Hypothalamus 133
Subparaventricular zone SBPV Hypothalamus 347
Suprachiasmatic nucleus SCH Hypothalamus 286
Subfornical organ SFO Hypothalamus 338
Ventromedial preoptic nucleus VMPO Hypothalamus 576073699
Ventrolateral preoptic nucleus VLPO Hypothalamus 689
Anterior hypothalamic nucleus AHN Hypothalamus 88
Lateral mammillary nucleus LM Hypothalamus 210
Medial mammillary nucleus MM Hypothalamus 491
Supramammillary nucleus SUM Hypothalamus 525
Tuberomammillary nucleus, dorsal part ™d Hypothalamus 1126
Tuberomammillary nucleus, ventral part TMv Hypothalamus 1

Medial preoptic nucleus MPN Hypothalamus 515
Dorsal premammillary nucleus PmMd Hypothalamus 980
Ventral premammillary nucleus PMv Hypothalamus 1004
Paraventricular hypothalamic nucleus, descending division PVHd Hypothalamus 63
Ventromedial hypothalamic nucleus VMH Hypothalamus 693
Posterior hypothalamic nucleus PH Hypothalamus 946
Lateral hypothalamic area LHA Hypothalamus 194
Lateral preoptic area LPO Hypothalamus 226
Preparasubthalamic nucleus PST Hypothalamus 356
Parasubthalamic nucleus PSTN Hypothalamus 364
Perifornical nucleus PeF Hypothalamus 576073704
Retrochiasmatic area RCH Hypothalamus 173
Subthalamic nucleus STN Hypothalamus 470
Tuberal nucleus TU Hypothalamus 614
Zonaincerta Zl Hypothalamus 797
Median eminence ME Hypothalamus 10671
Superior colliculus, sensory related SCs Midbrain 302
Inferior colliculus IC Midbrain 4
Nucleus of the brachium of the inferior colliculus NB Midbrain 580
Nucleus sagulum SAG Midbrain 271
Parabigeminal nucleus PBG Midbrain 874
Midbrain trigeminal nucleus MEV Midbrain 460
Subcommissural organ SCO Midbrain 599626923
Substantia nigra, reticular part SNr Midbrain 381
Ventral tegmental area VTA Midbrain 749
Paranigral nucleus PN Midbrain 607344830
Midbrain reticular nucleus, retrorubral area RR Midbrain 246
Midbrain reticular nucleus MRN Midbrain 128
Superior colliculus, motor related SCm Midbrain 294
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Name Acronym Parent Area regionID
Periaqueductal gray PAG Midbrain 795
Anterior pretectal nucleus APN Midbrain 215
Medial pretectal area MPT Midbrain 531
Nucleus of the optic tract NOT Midbrain 628
Nucleus of the posterior commissure NPC Midbrain 634
Olivary pretectal nucleus oP Midbrain 706
Posterior pretectal nucleus PPT Midbrain 1061
Cuneiform nucleus CUN Midbrain 616

Red nucleus RN Midbrain 214
Oculomotor nucleus 1] Midbrain 35

Medial accesory oculomotor nucleus MA3 Midbrain 549009211
Edinger-Westphal nucleus EW Midbrain 975
Trochlear nucleus v Midbrain 115
Paratrochlear nucleus Pa4 Midbrain 606826663
Ventral tegmental nucleus VTN Midbrain 757
Anterior tegmental nucleus AT Midbrain 231
Lateral terminal nucleus of the accessory optic tract LT Midbrain 66

Dorsal terminal nucleus of the accessory optic tract DT Midbrain 75

Medial terminal nucleus of the accessory optic tract MT Midbrain 58
Substantia nigra, compact part SNc Midbrain 374
Pedunculopontine nucleus PPN Midbrain 1052
Interfascicular nucleus raphe IF Midbrain 12
Interpeduncular nucleus IPN Midbrain 100
Rostral linear nucleus raphe RL Midbrain 197
Central linear nucleus raphe CLI Midbrain 591

Dorsal nucleus raphe DR Midbrain 872
Nucleus of the lateral lemniscus NLL Pons 612
Principal sensory nucleus of the trigeminal PSv Pons 7
Parabrachial nucleus PB Pons 867
Superior olivary complex SOC Pons 398
Barrington’s nucleus B Pons 280
Dorsal tegmental nucleus DTN Pons 880
Posterodorsal tegmental nucleus PDTg Pons 599626927
Pontine central gray PCG Pons 898
Pontine gray PG Pons 931
Pontine reticular nucleus, caudal part PRNc Pons 1093
Supragenual nucleus SG Pons 318
Supratrigeminal nucleus SuT Pons 534
Tegmental reticular nucleus TRN Pons 574
Motor nucleus of trigeminal \ Pons 621
Peritrigeminal zone P5 Pons 549009215
Accessory trigeminal nucleus Acs5 Pons 549009219
Parvicellular motor 5 nucleus PC5 Pons 549009223
Intertrigeminal nucleus 15 Pons 549009227
Superior central nucleus raphe (& Pons 679

Locus ceruleus LC Pons 147
Laterodorsal tegmental nucleus LDT Pons 162
Nucleus incertus NI Pons 604
Pontine reticular nucleus PRNr Pons 146
Nucleus raphe pontis RPO Pons 238
Subceruleus nucleus SLC Pons 350
Sublaterodorsal nucleus SLD Pons 358

Area postrema AP Medulla 207
Dorsal cochlear nucleus DCO Medulla 96

Ventral cochlear nucleus vCco Medulla 101
Cuneate nucleus Ccu Medulla 711
Gracile nucleus GR Medulla 1039
External cuneate nucleus ECU Medulla 903
Nucleus of the trapezoid body NTB Medulla 642
Nucleus of the solitary tract NTS Medulla 651

Spinal nucleus of the trigeminal, caudal part SPVC Medulla 429

Spinal nucleus of the trigeminal, interpolar part SPVI Medulla 437

Spinal nucleus of the trigeminal, oral part SPVO Medulla 445
Paratrigeminal nucleus Pa5 Medulla 589508451
Abducens nucleus \ Medulla 653

Facial motor nucleus Vi Medulla 661
Accessory facial motor nucleus ACVII Medulla 576
Nucleus ambiguus AMB Medulla 135
Dorsal motor nucleus of the vagus nerve DMX Medulla 839
Gigantocellular reticular nucleus GRN Medulla 1048
Infracerebellar nucleus ICB Medulla 372
Inferior olivary complex 10 Medulla 83
Intermediate reticular nucleus IRN Medulla 136
Inferior salivatory nucleus ISN Medulla 106

Linear nucleus of the medulla LIN Medulla 203
Lateral reticular nucleus LRN Medulla 235
Magnocellular reticular nucleus MARN Medulla 307
Medullary reticular nucleus MDRN Medulla 395
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Name Acronym Parent Area regionID
Medullary reticular nucleus, dorsal part MDRNd Medulla 1098
Medullary reticular nucleus, ventral part MDRNv Medulla 1107
Parvicellular reticular nucleus PARN Medulla 852
Parasolitary nucleus PAS Medulla 859
Paragigantocellular reticular nucleus, dorsal part PGRNd Medulla 970
Paragigantocellular reticular nucleus, lateral part PGRNI Medulla 978
Nucleus of Roller NR Medulla 177
Nucleus prepositus PRP Medulla 169
Parapyramidal nucleus PPY Medulla 1069
Lateral vestibular nucleus LAV Medulla 209
Medial vestibular nucleus MV Medulla 202
Spinal vestibular nucleus SPIV Medulla 225
Superior vestibular nucleus SUV Medulla 217
Nucleus x X Medulla 765
Hypoglossal nucleus Xl Medulla 773
Nucleus y y Medulla 781
Nucleus raphe magnus RM Medulla 206
Nucleus raphe pallidus RPA Medulla 230
Nucleus raphe obscurus RO Medulla 222
Lingula (1) LING Cerebellum 912
Central lobule CENT Cerebellum 920
Culmen CuL Cerebellum 928
Declive (VI) DEC Cerebellum 936
Folium-tuber vermis (VII) FOTU Cerebellum 944
Pyramus (VIII) PYR Cerebellum 951
Uvula (IX) uvu Cerebellum 957
Nodulus (X) NOD Cerebellum 968
Simple lobule SIM Cerebellum 1007
Ansiform lobule AN Cerebellum 1017
Paramedian lobule PRM Cerebellum 1025
Copula pyramidis COPY Cerebellum 1033
Paraflocculus PFL Cerebellum 1041
Flocculus FL Cerebellum 1049
Fastigial nucleus FN Cerebellum 989
Interposed nucleus P Cerebellum 91
Dentate nucleus DN Cerebellum 846
Vestibulocerebellar nucleus VeCB Cerebellum 589508455
fiber tracts fiber tracts root 1009
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Supplementary Data

Supplementary data SD1

Whole-brain PNNs metrics. This .xlIsx file contains tables with quantitative measurements for
PNN density, WFA diffuse fluorescence, PNN intensity, and PNN energy for all brain areas. Data
are presented at three levels of resolution: coarse, medium, and fine. For each resolution level, we
report data from each mouse and the mean values across all mice in separate sheets.

Supplementary data SD2

Whole-brain PV-positive cells metrics. This .xIsx file contains tables with quantitative measure-
ments for PV cell density, PV diffuse fluorescence, PV cell intensity, and PV energy for all brain
areas. Data are presented at three levels of resolution: coarse, medium, and fine. For each level,
we report data from each mouse and the mean values across all mice in separate sheets.

Supplementary data SD3

Whole-brain PNN-PV colocalization metrics. This .xIsx file contains tables with the percentage
of PNNs ensheathing a PV cell (pvPositive_pnn) and the percentage of PV cells surrounded by a
PNN (wfaPositive_pv), for all brain areas. Data are presented at three levels of resolution: coarse,
medium, and fine, in separate sheets. For the coarse resolution level, we report data from each
mouse and the mean values across all mice. For medium and fine and resolution levels, we report
data from each experimental unit (indicated with the identifier of the animal that was excluded,
see section Colocalization PNN-PV in Methods & Materials for details) as well as the mean values
across all experimental units. Only areas with at least 3 PNNs and 3 PV cells in at least 4 animals
are included.

Supplementary data SD4

Correlation of staining metrics with gene expression. This .xIsx file contains tables with the
results of the correlation analysis of the staining metrics in our dataset with the gene expression
data published in the Allen Institute Anatomic Gene Expression Atlas (AGEA). Correlations with
PNN energy, PV energy, and WFA diffuse fluorescence are reported in separate sheets. Each gene
is referred to with the acronym, the ID in the AGEA, the Entrez ID, and the full name. For each gene,
we report the Spearman correlation coefficient, the correspondent p-value, the false discovery rate
(FDR), and the Bonferroni-adjusted p-value.
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