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Abstract17

Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various18

forms of plasticity and clinical conditions. However, our understanding of the PNN role in these19

phenomena is limited by the lack of highly quantitative maps of PNN distribution and association20

with specific cell types. Here, we present the first comprehensive atlas of PNN distribution (in21

Allen Brain Atlas coordinates) and colocalization with parvalbumin (PV) cells for over 600 regions22

of the adult mouse brain. Data analysis showed that PV expression is a good predictor of PNN23

aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory areas24

in correlation with thalamocortical input density, and their distribution mirrors intracortical25

connectivity patterns. Gene expression analysis identified many PNN correlated genes. Strikingly,26

PNN anticorrelated transcripts were enriched in synaptic plasticity genes, generalizing PNN role27

as circuit stability factors. Overall, this atlas offers novel resources for understanding the28

organizational principles of the brain extracellular matrix.29

30

Introduction31

Perineuronal Nets (PNNs) are specialized reticular structures of the extracellular matrix (ECM) that32

ensheath neurons in the entire mouse and human brain (Galtrey et al., 2008; Hendry et al., 1988;33

Seeger et al., 1994; Köppe et al., 1997). These structures aggregate progressively during postna-34

tal development, in parallel with the closure of critical periods for developmental plasticity (Piz-35

zorusso et al., 2002; Boggio et al., 2019; Reichelt et al., 2019; Ye et al., 2013). Although their precise36

composition may vary between different brain regions, PNNs are known to share three essential37

molecular constituents: hyaluronic acid, glycosylated proteins called chondroitin-sulfate proteogly-38
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cans (CSPGs), and link proteins such as hyaluronan and proteoglycan link protein 1 (HAPLN1) and39

Tenascin-R (Carulli et al., 2010; Dauth et al., 2016; Kwok et al., 2010). The sugars present on CSPGs40

are also the binding target of the lectin Wisteria floribunda agglutinin (WFA), the most widely used41

marker to visualize PNNs in histological analyses (Fawcett et al., 2019; Härtig et al., 1999).42

The precise contribution of PNNs in regulating brain function is a strongly active area of re-43

search. Many roles have been proposed, but a key overarching theme is that PNNs tightly control44

the plasticity and stability of neuronal circuits (Fawcett et al., 2022; Nabel et al., 2013). This func-45

tion has been studied throughout many cortical and subcortical regions of the brain. For example,46

PNNs are known to control ocular dominance plasticity in the visual cortex (Pizzorusso et al., 2002;47

Carulli et al., 2010; Miyata et al., 2012; Rowlands et al., 2018; Beurdeley et al., 2012), fear memory48

extinction in the amygdala (Gogolla et al., 2009), spatial representation stability of grid cells in the49

entorhinal cortex (Christensen et al., 2021), associative motor learning in the cerebellum (Carulli50

et al., 2020), and social memory in the hippocampus (Cope et al., 2021; Domínguez et al., 2019).51

Enzymatic digestion of PNNs has been shown to promote plasticity and improve recovery after52

damage to the central nervous system (Bradbury et al., 2002). Additionally, PNNs are thought to53

stabilize neuronal circuitry by protecting fast-spiking neurons against oxidative stress (Cabungcal54

et al., 2013) a risk factor for psychiatric diseases. Abnormalities in PNNs that make PV cells more55

susceptible to oxidative damage have been reported in schizophrenic patients (Pantazopoulos et56

al., 2010).57

Despite these general features, PNNs also show a remarkable degree of variability between58

different brain regions both in terms of structure and function (Ueno et al., 2018). In the isocortex,59

several studies showed that PNNs primarily surround parvalbumin-expressing (PV) fast-spiking60

GABAergic interneurons. However, in the hippocampal CA2 and in other areas, they also ensheath61

excitatory pyramidal neurons, suggesting a different biological function in these regions (Carstens62

et al., 2016). At the functional level, the enzymatic removal of PNNs can have different effects63

(Wingert et al., 2021). For example, it enhances LTD in the perirhinal cortex (Romberg et al., 2013),64

while it impairs both early-phase LTP and LTD in the hippocampus (Bukalo et al., 2007). The lack65

of understanding of the principles of PNN organization throughout the brain hinders our compre-66

hension of their functional role and possible therapeutic implications. Furthermore, the extent to67

which PNNs are linked to PV cells across brain areas has not been systematically studied.68

Here, we present a systematic brain-wide analysis of PNNs and PV neurons in the mouse brain.69

We provide multiple quantitative measurements for PNNs, PV cells, and their interaction for more70

than 600 different brain areas. We also release two deep learningmodels, pre-trained on a dataset71

of approximately 0.8 million manually annotated PNNs and PV cells, for their automatic detection.72

Finally, we demonstrate that, thanks to our dataset, it is possible to detect connectivity and gene73

expression patterns that correlate with the presence of PNNs. We believe that these resources will74

have a significant impact on facilitating research on PNNs.75

Results76

PNN and PV cells quantification in the mouse brain77

We performed immuno-/lectin histochemistry on serially collected whole-brain coronal slices of78

seven adult mice, staining sections with both WFA and an anti-PV antibody (Figure 1A). We then79

acquired fluorescence images and registered them to the Allen Institute CCFv3.80

To automatically detect the (x,y) coordinates of PNNs and PV cells, we trained two deep convo-81

lutional neural networks with a dataset comprising roughly 0.67 million manually annotated PNNs82

and 0.16million PV cells (Figure 1B). Whilemanually counting non-trivial structures on a large scale,83

an experimenter can be influenced by illumination conditions, fatigue, or different judgements,84

spanning from conservative to liberal. As a result, the training dataset can inherit annotation bi-85

ases. To address this issue, we implemented a second stage whereby we assigned a confidence86

score to each object detected by the two deep neural networks. This scorer module consisted of87
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Figure 1. Image registration and analysis pipeline. (A) Schematic of the pipeline for slice registration to theAllen Institute CCFv3 reference volume. (A) Schematic of the strategy for cell counting. Two different moduleswere used, a larger convolutional neural network for localization and a smaller one for scoring. Scale bar:200µm. (A) Diagram showing a graphical explanation of the four metrics used to quantify PNN and PVstaining.

other two deep-learning models trained on two smaller datasets (4,727 PNNs and 5,738 PV cells)88

labeled by seven independent expert raters. The aim was to produce scores for each putative ob-89

ject that maximally correlate with the raters’ agreement. A detailed description of this method is90

available in Ciampi et al., 2022.91

In ourmulti-rater dataset, the average agreement (Jaccard index) between pairs of expert raters92

was 64% for PNNs and 72% for PV cells, demonstrating relevant individual differences in counting93

strategies (Figure S1A). Our scoringmodels produced detection scores that strongly correlatedwith94

the number of raters that detected each object (Figure S1B, C). Overall, when tested on objects95

located by at least three raters, our models proved to be reliable in the detection of PNNs and96

PV cells (see Ciampi et al., 2022 and section Deep learning models for cell counting in Methods &97

Materials). We release the pre-trained four models used in this study (link) to allow performing98

predictions on new images or to fine-tune them based on different experimental setups.99

To quantify PV and WFA staining, we defined a set of metrics describing either “general” or “cel-100

lular” aspects of the staining signal (Figure 1C). To quantify general staining intensity in a region,101

we defined diffuse fluorescence as the average pixel intensity value in that region. This measure102

includes the signal coming from both interstitial CSPGs diffusely present in the ECM, and from103

CSPGs aggregated in PNNs. To quantify “cellular” aspects (either single PV cells or aggregated, cell-104

ensheathing, PNNs), we first defined density, corresponding to the number of objects per unit of105

surface area. We then measured the intensity of each individual PNN and PV cell by averaging106

the values of the pixels belonging to the object, segmented from a small (80x80 pixels) patch cen-107

tered on its (x,y) coordinates. Based on this measurement, we defined cell intensity, expressing108

the average staining intensity of individual PNNs or PV cells in a region. Finally, we reasoned that109

the functional relevance of PNNs or PV cells might be better represented by a single metric that110

Lupori, Totaro et al. 2023 | A Whole-brain Atlas of Perineuronal Nets bioR𝜒 iv | 3 of 45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525313doi: bioRxiv preprint 

https://github.com/ciampluca/counting_perineuronal_nets/releases
https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/


integrates both the density and the intensity of cells. We thus defined energy, as the density mul-111

tiplied by the average cell intensity, a metric analogous to the one used by the Allen Institute in112

Lein et al., 2007 (Figure 1C, see section Staining metrics definitions in Methods & Materials for de-113

tails). As a result, a region with more and brighter PNNs would have increased PNN energy. Diffuse114

fluorescence and energy were normalized within each mouse by dividing them by their respective115

value calculated on the entire brain. As a result, a value of 1 equals the brain’s average and, impor-116

tantly, the two metrics have the same scale. In the rest of the paper, we will use the metrics diffuse117

fluorescence and energy respectively as a “general” and “cellular” measurement.118

Distribution of PNNs across the mouse brain119

Figure 2. Distribution of WFA-positive PNNs throughout the entire mouse brain. (A) Quantification ofdiffuse fluorescence and PNN energy for 12 major brain subdivisions. Asterisks indicate subdivisionssignificantly different from the brain average (value of 1. See Table 1 for statistical comparisons). (B)Heatmaps showing staining metrics for mid-ontology brain regions in individual mice. Grayed-out cellsrepresent regions where data are not available due to no sampling of that region. (C) Heatmaps showingcoronal sections of the brain, sliced at different anteroposterior locations. On the left hemisphere (bluecolormap) is displayed average diffuse WFA fluorescence, while on the right hemisphere (red colormap) isdisplayed average PNN energy for each brain region. (D) Plots of PNN energy versus WFA diffuse fluorescencefor each of the 12 major brain subdivisions. (E) Same as in D but data is split in each brain region of the 12major brain subdivisions. (F) Representative WFA staining in a selection of brain areas. Scalebar: 1mm. Errorbars in A and D represent SEM across mice. Dots in A represent mice, in D and E, represent brain regions. In E,text insets indicate the Spearman correlation coefficient (𝑟𝑠) and the corresponding p-value, the gray lineindicates the X-Y bisector, and, for significant correlations highlighted in red, the blue line shows the bestlinear fit.
To describe the distribution of PNNs in the entire brain, we first aggregated data in 12 major120

brain subdivisions (Figure 2A). These regions had highly different values for both WFA diffuse flu-121

orescence and PNN energy with particular enrichment in the cortex and in posterior areas of the122
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brain (Figure 2A, B, see Table 1 for statistical comparisons). We then analyzed PNN energy, repre-123

senting aggregated PNNs in a region. Using this metric, the differences between the studied areas124

were more pronounced than those observed in measurements of diffuse fluorescence (Figure 2A,125

B). These data indicate that there is a non homogeneous expression of diffuse WFA staining and126

PNNs in the brain that is already evident at this macroscopic level of analysis.127

We then grouped data in a set of 316 mid-ontology brain regions (Figure 2B, Figure S2, for128

individual areas, see Table ST4 for area acronyms). The profile of both metrics was consistent129

across individual mice and it showed that individual brain areas have remarkably diverse values130

for both diffuse fluorescence and PNN energy even within the same major subdivision (Figure 2C,131

F). To visualize the results at this granularity, we plotted the average of both metrics across mice132

in a series of brain heatmaps coronally sliced at 12 anteroposterior locations (Figure 2C).133

Intriguingly, both the diffuse and the cellular measurements of PNNs often varied together.134

However, some areas showed striking differences between the two metrics (Figure 2C). Thus, we135

askedwhether the presence of PNNs in an area is always associatedwith a high level of diffuseWFA136

staining in all brain regions. To answer this question, we plotted WFA diffuse fluorescence versus137

PNN energy for all themajor brain subdivisions (Figure 2D). Isocortex, midbrain, pons, andmedulla138

were skewed towards the top-left side of the plot, indicating that they are characterized by strong139

individual aggregated PNNs, but relatively weak diffuse CSPG signal. Conversely, all the other brain140

subdivisions showed the opposite effect. Notably, for the olfactory areas, wemeasured the highest141

difference between the two metrics, with a strong level of diffuse fluorescence but almost absent142

aggregated PNNs. We then split these subdivisions into mid-ontology regions and explored the143

relationship between the two metrics within each group of brain areas (Figure 2E). We found that144

WFA diffuse fluorescence and PNN energy were significantly correlated in all subdivisions except145

for olfactory areas and the cortical subplate, although the strength of such correlation was not146

uniform. Striatum had the lowest correlation (𝑟𝑠=0.62), while Midbrain and Pallidum showed the147

highest correlation between metrics (𝑟𝑠=0.96 and 0.95 respectively). These results demonstrate148

that PNN abundance is not defined at the macrostructure level and that diffuse WFA staining is149

not necessarily correlated with numerous and strongly labeled PNNs.150

Overall, these data represent the first systematic and highly quantitative description of the dis-151

tribution of WFA-positive PNNs in the entire mouse brain. Raw measurements for individual mice152

at three levels of anatomical granularity are available in supplementary data SD1.153

Brain-wide analysis of the colocalization between PNNs and PV cells154

In the same brain slices used for PNN analysis, we also quantified PV-positive inhibitory interneu-155

rons (Figure 3A) using the same procedures and metrics used for PNNs (Figure S3, data for PV156

staining in all brain areas are available in supplementary data SD2). PV distribution has been ana-157

lyzed in previous studies and our results show an overall analogous profile despitemethodological158

differences (Kim et al., 2017; Bjerke et al., 2021). To explore the relationship between PNNs and PV159

cells in the entire brain, we quantified their colocalization as the percentage of PNNs containing a160

PV cell (PV+ PNNs) or as the percentage of PV cells that are surrounded by a PNN (WFA+ PV cells).161

On average, in the entire brain, 59.1±1.0% of PNNs were located around a PV cell, while about162

one-third of all PV cells in the brain (30.4±1.4%) were surrounded by a PNN. After splitting the data163

into 12 brain subdivisions, we found that the relationship between PNNs and PV cells was highly164

heterogeneous (Figure 3B). In the isocortex, PNNs surrounded PV cells in more than 70% of the165

cases, reaching, for example, 81.1±0.7% in the retrosplenial cortex (RSPv), 80.8±0.4% in layer 4 of166

the primary visual cortex (VISp4), and 77.4±0.3% in the anterior cingulate area (ACAv). In all the167

other major subdivisions, this was the case for at least one-third of the PNNs.168

Conversely, analyzing the percentage of PV cells surrounded by a PNN, we observed that in169

most brain areas, only between 20 and 30% of the PV cells are enwrapped by a WFApositive PNN.170

A different pattern was present in the isocortex, hippocampal formation, and striatum, where colo-171

calization was much higher (between 40 and 50% of PV cells, reaching for example 71.9±0.4% in172
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Figure 3. Brain-wide interactions between PNNs and PV cells. (A) Representative image of a brain slicestained with WFA (red) and anti-PV (cyan). An inset is magnified on the right, where split channels are alsoshown. Arrowheads show examples of PV cells without a PNN (white) and colocalized PV-PNNs (green). Scalebar: 100µm. (B) Colocalization percentages across 12 major brain subdivisions (on the left, the fraction ofPNNs containing a PV cell; on the right, the fraction of PV cells surrounded by a PNN). (C) Heatmaps showingcoronal sections of the brain, sliced at different anteroposterior locations. On the two hemispheres arerepresented the percentage of PNNs containing a PV cell (left side) and the percentage of PV cells surroundedby a PNN (right side). (D) WFA diffuse fluorescence versus PV energy for all brain areas at a mid-ontology level.(E) Same as in D, but areas are split in each major brain subdivision. (F) WFA energy versus PV energy forbrain areas at a mid-ontology level. (G) Same as in F, but areas are split in each major brain subdivision. Errorbars in B represent SEM across mice. Dots in B represent mice, while in D, E, F, and G, represent brain areas.Text insets in D, E, F, and G indicate the Spearman correlation coefficient (𝑟𝑠) and the corresponding p-value,the gray line indicates the X-Y bisector, and, for significant correlations highlighted in red, the blue line showsthe best linear fit.

VISp4), while in the cerebellum, only few PV-positive cells had a PNN, likely due to the high number173

of Purkinje cells in the cerebellar cortex that lack PNNs (Baimbridge et al., 1982; Bastianelli, 2003).174

As before, we also aggregated data in mid-ontology brain regions and measured colocalization175

metrics in individual areas to reveal patterns with finer granularity (Figure 3C, see Figure S4 for176

data visualization for each region). Colocalization data at three levels of anatomical granularity are177

available in supplementary data SD3.178

Given the high degree of colocalization, we next asked whether PNN and PV staining were cor-179

related across brain regions. To this end, we plotted either WFA diffuse fluorescence (Figure 3D)180

or PNN energy (Figure 3F) as a function of PV energy. We found that, throughout all areas of the181

brain, WFA and PV staining metrics were significantly correlated (Figure 3D, F, 𝑟𝑠=0.38 for WFA dif-182

fuse vs PV energy, 𝑟𝑠=0.58 for PNN energy vs PV energy). When performing the same analysis at a183

finer resolution, however, only a subset of brain subdivisions showed a high degree of correlation184

between WFA and PV (Figure 3E, G). The diffuse staining of CSPGs was positively correlated to PV185

Lupori, Totaro et al. 2023 | A Whole-brain Atlas of Perineuronal Nets bioR𝜒 iv | 6 of 45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525313doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. PNN aggregation depends on PV expression levels. (A) Probability density function of theintensity of all PNNs. The thick line represents the average, while shading represents SEM across mice (N=7mice, 69,926±5,235 PNNs per mouse). (B) Same as in A but for PV cells (N=7 mice, 13,6479±11,839 PV cells permouse). (C) Probability that a PV cell is surrounded by a PNN as a function of PV intensity class (1: low, 2:intermediate-low, 3: intermediate-high, 4:high) calculated for the whole brain. (D) Same as in C, but split ineach major brain subdivision. (E) Same as in D but all regions are plotted on the same axis. Text insetsindicate the result of a one-way RM ANOVA (F statistics and the corresponding p-value), and the estimatedparameters of the best first-degree linear fit. Thin lines in C and D represent single mice. Error bars in C, D,and E represent SEM across mice.

energy in the isocortex, thalamus, hypothalamus, midbrain, and medulla (Figure 3E). Interestingly186

when we compared cellular metrics for both PNNs and PV (PNN energy vs PV energy) correlation187

coefficients increased, with isocortex showing the most striking trend (Figure 3G). Here, PV energy188

alone was highly predictive of the presence of PNNs (𝑟𝑠=0.91).189

It has been previously reported that two distinct network configurations of PV cells might exist,190

one more permissive towards plasticity and characterized by weak expression of PV (low-PV), and191

another that limits plasticity and with strong PV expression (high-PV) (Donato et al., 2013). These192

two subpopulations likely reflect distinct timing of neurogenesis and connectivity (Donato et al.,193

2015). Thus, we decided to further explore the relationship between PNNs and PV staining inten-194

sity at the level of single cells. First, we looked at the intensity distribution of PNNs and PV cells195

across our entire dataset. Intriguingly, we found that both PNNs and PV cells had a bimodal inten-196

sity distribution (Figure 4A, B), suggesting that each could be composed of two subpopulations of197

high and low expression. Since PNNs are known to inhibit plasticity, we asked if plasticity-inhibiting198

high-PV cells were more likely to have a PNN. To do this, we grouped all PV cells in four intensity199

classes of equal width (1:low, 2:intermediate-low, 3:intermediate-high, and 4:high) and measured200

the probability of being surrounded by a PNN as a function of PV cell intensity. Overall, we found201

that as PV intensity increased, the probability of having a PNN increased (Figure 4C). Repeating202

the analysis for each brain subdivision, we found that the effect we observed was present in all 12203

brain macrostructures except for the hypothalamus, which showed a similar but not statistically204

significant trend, and the cerebellum (Figure 4D). However, the magnitude of such dependency ap-205

pears to follow three distinct patterns (Figure 4E). In isocortex, striatum, and hippocampal forma-206

tion, PNNs aggregation was strongly and robustly dependent on PV expression. The relationship207

was inverse in the cerebellum, likely due to the presence of PV-expressing Purkinje cells, and its208

strength was only moderate for all the other brain areas.209

Overall these data indicate the existence of a mechanism coupling PV expression with PNN210

formation. However, the strength of this regulatory mechanism is variable across the brain.211

Primary sensory areas share high levels of PNNs212

The precise functional role of PNNs in the cerebral cortex is intensely studied (Fawcett et al., 2019).213

We reasoned that, by analyzing their expression pattern throughout this anatomical district, we214

could highlight principles of organization that might explain the spatially inhomogeneous distri-215

bution of PNNs. Furthermore, the cerebral cortex is divided into layers with different functional216
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Figure 5. Organization of PNNs in cortical areas. (A) Heatmaps representing WFA diffuse fluorescence andPNN energy. Average metrics across mice are shown for each cortical area and layer (area acronyms areavailable in Table ST3). In brain regions that do not have layer 4, the respective cells are grayed out. (B) Sameas in (A) but for PV energy. (C) WFA diffuse fluorescence and PNN energy in the primary visual cortex versushigher-order associative visual areas. (D) PNN energy in primary versus associative visual cortical areas splitby layer. (E) Same as in (C) but for auditory areas. (F) Same as in (D) but for auditory areas. (G) Same as in (C)but for somatosensory areas. (H) Same as in (D) but for somatosensory areas. (I) Correlation between WFAdiffuse fluorescence and thalamic input strength in sensory-related areas of the cortex (all somatosensory,visual, and auditory cortices, see Methods & Materials) split by layer. In the bottom part, the same analysiswas performed for PNN energy. Text insets indicate the Pearson correlation coefficient (r) and thecorresponding p-value. For significant correlations, highlighted in red, the blue line shows the best linear fit.(L) Scatterplot of PNN energy vs WFA diffuse fluorescence for all cortical areas colored by their corticalsubnetwork. The transparent shading represents the convex hull of all points in a subnetwork. Regionscluster into 2 groups: high-WFA and low-WFA. The inset shows the average thalamic input strength of regionsdivided into high- and low-WFA groups. (M) Silhouette score, representing a metric for clustering quality,calculated for each mouse by grouping cortical areas in: 2 groups (Low-High WFA), 5 groups (cortical Subnet.),or 2 groups but randomly shuffled (shuffle). In C, D, E, F, G, H, and M dots represent mice. In I and L dotsrepresent brain areas. Error bars in C, D, E, F, G, H, L, and M represent SEM across mice. Error bars in L (inset)represent SEM across brain regions. See Table 1 for statistical comparisons.

properties and PNN expression. We thus plotted WFA diffuse fluorescence and PNN energy in217

all cortical regions divided by layer (Figure 5A). As previously described, WFA staining was gener-218

ally more abundant in layers 4 and 5. We noticed that four main groups of regions were char-219

acterized by a stronger diffuse WFA staining: somatosensory, visual, and auditory areas, and the220

retrosplenial cortex (Figure 5A). When analyzing aggregated PNNs (PNN energy), this pattern was221

much sharper and more localized in layer 4 (Figure 5A bottom heatmap). Interestingly, PNN en-222

ergy was particularly high in primary sensory areas (VISp, AUDp, and all SSp areas) while the same223

Lupori, Totaro et al. 2023 | A Whole-brain Atlas of Perineuronal Nets bioR𝜒 iv | 8 of 45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525313doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/


enrichment was milder for PV energy (Figure 5B). To further investigate this pattern, we isolated224

each sensory system and aggregated data in primary and associative cortical regions. In the vi-225

sual cortex, both diffuse fluorescence and PNN energy were lower in associative (VISpor, VISli, VISl,226

VISpl, VISpm, VISal, VISam, VISrl, VISa) than in primary (VISp) areas (Figure 5C) and, splitting data227

between layers, this effect was present only in layer 4, 5 and 6, and most prominent in layer 4228

(Figure 5D, Figure S5A). An analogous difference was present in auditory (Figure 5E, F, Figure S5B229

primary (AUDp) versus associative (AUDv, AUDd, AUDpo)) and somatosensory areas (Figure 5G, H,230

Figure S5C, primary (SSp-n, SSp-bfd, SSp-Il, SSp-m, SSp-ul, SSp-tr, SSp-un) versus associative (SSs))231

with the exception of diffuse fluorescence in the somatosensory regions of the cortex (Figure 5G).232

These results provide the first systematic and layer-specific description of PNNs in all cortical233

areas and indicate that layers 4-5 of primary cortical regions are privileged sites of PNN expression234

across multiple sensory systems.235

Determinants of cortical expression of PNNs: role of PV cells and area connectivity236

We then investigated the factors responsible for the specific distribution of PNNs in the cerebral237

cortex. Considering the intimate relationship between PV cells and PNNs in the cortex (Figure 3G,238

Figure 4D), one hypothesis could be that the high expression of PNNs in primary sensory cortices239

mirrors the distribution of PV cells. However, PV energy was only slightly increased in primary240

visual and auditory, but not somatosensory areas (Figure 5B, Figure S6A, D, G). Accordingly, by241

splitting data by layers, we detected no differences between primary and associative regions for242

all the metrics with the exception of PV energy in deep layers of the visual cortex (Figure S6B, C, E,243

F, H, I). Intriguingly, we observed that PV cells in primary sensory cortices were more likely to have244

PNNs than in secondary areas (Figure S7A, C, E). This effect was not due to a higher proportion of245

high-PV cells in primary versus associative areas (Figure S7B, D, F), suggesting that the mechanism246

by which PNNs are increased in primary regions might be unrelated to PV expression levels.247

The high levels of PNNs in layer 4 of primary sensory cortices could be related to the control248

of feed-forward sensory thalamic inputs that densely innervate layer 4 of primary sensory regions.249

Indeed, previous work showed that PNNs control plasticity of thalamic connections directly con-250

tacting PV cells of the primary visual cortex (Faini et al., 2018). If this hypothesis were true, one251

should expect PNN energy to scale with thalamic innervation density across sensory areas. To test252

this, we used published data from themouse brain connectivity atlas of the Allen Institute (Oh et al.,253

2014) to measure thalamic input strength for all somatosensory, visual, and auditory areas (total254

inputs from the sensory-motor cortex related portion of the thalamus, DORsm as indicated in the255

CCFv3 nomenclature, see Correlation with thalamic afferent connectivity in Methods & Materials).256

Strikingly, we found that both WFA diffuse fluorescence and PNN energy in cortical layers 2/3, 4,257

and 5 were highly correlated with thalamic input strength, and this effect was most prominent in258

layer 4 where thalamic afferents could explain respectively 53% and 46% of the variance in the259

two PNN metrics (r=0.73 and 0.68) (Figure 5I). As a control, we performed the same analysis with260

connections originating from the associative cortex-related regions of the thalamus (DORpm) and261

we found no correlation with PNNs in any cortical layer (Figure S8).262

This data corroborates the possibility that PNNs could be important for the regulation of senso-263

rimotor thalamic inputs across multiple sensory modalities and may provide a basis to investigate264

the role of PNNs on feed-forward functional signaling in sensory cortices.265

If connections represent a determinant factor for PNN abundance, it could be that groups of266

highly interconnected cortical regions have coregulated levels of PNNs. Recent work clustered the267

cerebral cortex in five distinct functional subnetworks (Kim et al., 2017; Zingg et al., 2014) based268

on their intracortical connections. We used this classification to explore whether PNNs were differ-269

entially expressed in these subnetworks. To test this hypothesis, we plotted PNN energy vs WFA270

diffuse fluorescence for each cortical region. We found that cortical subnetworks were clustered271

in two groups, with no overlap: a “low-WFA” group comprising the lateral and medial prefrontal272

subnetworks and a “high-WFA” group comprising audiovisual, motor-somatosensory, and medial273
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association networks (Figure 5L). To quantify cluster separation, we grouped brain regions using274

three strategies: the high/low WFA as described above, the original five cortical subnetworks, and275

high/low WFA regions randomly shuffled. For each grouping, we calculated the silhouette score, a276

metric representing the separation and quality of data clustering (Zhao et al., 2018). We found that277

grouping cortical regions in high- and low-WFA resulted in the highest score (Figure 5M). The sub-278

division in high- and low-WFA region groups could not be explained simply by different thalamic279

input strength, since we did not observe any significant difference in the overall thalamocortical280

connectivity between these two groups of regions in the Allen Institute dataset (Figure 5L, inset).281

Conversely, we noticed that high-WFA areas also displayed increased PV energy and an increased282

proportion of high-PV cells (Figure S9), suggesting that the different PNNdistribution across cortical283

subnetworks might be instructed by PV cells.284

In summary, these results show that each cortical network displays a typical and homogenous285

PNN aggregation and that PV cells and PV expression level contribute to generating cortical PNN286

distribution.287

Gene expression correlates of PNNs288

Finally, we asked whether PNN abundance could be correlated with gene expression patterns, pos-289

sibly highlighting molecular principles underlying PNN organization and function. To answer this290

question, we analyzed data published in the Anatomic Gene Expression Atlas (AGEA) by the Allen In-291

stitute (Lein et al., 2007). This dataset describes region-specific expression levels for about 18,000292

genes. For each gene, we correlated its expression in all the brain areas with a metric for PNN293

staining to detect genes whose pattern of expression is predictive of PNN presence. We found294

about 5,000 genes positively correlated, and about 1,000 negatively correlatedwithWFA (FDR<0.01,295

Benjamini-Hochberg, see also Correlation with gene expression and gene set overrepresentation296

analysis in Methods & Materials, and supplementary data SD4). It is important to note that this297

analysis reflects gene expression and PNNs at the level of brain areas and not single cells. To val-298

idate our approach, we selected a few genes known to be related to PNN structure and function:299

Aggrecan (Acan), a major proteoglycan core protein present in PNNs (Dauth et al., 2016; Fawcett300

et al., 2019; Ueno et al., 2018; Härtig et al., 2022; Oohashi et al., 2015; Yamada et al., 2017), Hyaluro-301

nan and proteoglycan link protein 1 (Hapln1), coding for a link protein essential for PNNs structure302

(Carulli et al., 2010); hyaluronan synthase 3 (Has3), a necessary component for PNN aggregation303

(Kwok et al., 2010); Matrix metallopeptidase 9 (Mmp9), an enzyme known to regulate PNN and PV304

development (Pirbhoy et al., 2020); A disintegrin and metalloproteinase with thrombospondin mo-305

tifs (Adamts5 also known as Adamts11), an aggrecan-degrading protease (Held-Feindt et al., 2006)306

that is expressed by PV interneurons with a PNN (Rossier et al., 2015), and parvalbumin (Pvalb).307

All these genes were significantly correlated with both PNN energy and WFA diffuse fluorescence308

(Figure 6A, B). Strikingly, out of 17639 genes, Acan was respectively the second and fifth most cor-309

related gene with WFA diffuse fluorescence (𝑟𝑠=0.58) and PNN energy (𝑟𝑠=0.57). Consistently, when310

we repeated this analysis for PV energy we found that the topmost correlated gene was Pvalb itself311

(𝑟𝑠=0.81). Other markers associated with PV neurons were also positively correlated (Figure 6C).312

These included the genes encoding the fast voltage-gated potassium channels Kv3.1 and Kv1.1313

(Kcnc1 and Kcna1) (Chow et al., 1999; Lorincz et al., 2008), and the sodium channel Nav1.1 (Scn1A)314

(Ogiwara et al., 2007)); synaptotagmin 2 (Syt2), a protein that ensures fast calcium sensing and vesi-315

cle release (Bouhours et al., 2017), and Acan. These results validated our approach, allowing us316

to provide lists of positive and negatively correlated genes that might highlight molecular regula-317

tors of PNNs. A detailed list of all 17,639 genes and their correlation with PNN and PV staining is318

available in supplementary data SD4.319

To obtain insight into the biological processes of the correlated genes, we performed a gene320

ontology analysis separately on the lists of the top 1,000 most correlated and anticorrelated genes321

with PNN energy, ranked by their correlation coefficient (Figure 6D, E). Genes related to processes322

of axon ensheathment, myelination,mitochondrial function, and cellular respirationwere enriched323
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Figure 6. Gene expression correlates of PNNs. (A) Correlation between PNN energy and gene expressionfor six marker genes. Acan (aggrecan), Hapln1 (link protein), Has3 (Hyaluronan synthase 3), Mmp9 (Matrixmetalloprotease 9), Adamts5 (an aggrecan-degrading protease), and Pvalb (parvalbumin). (B) Same as in A butfor WFA diffuse fluorescence. (C) Correlation between PV energy and gene expression for six marker genes.
Pvalb (parvalbumin), Kcnc1 (potassium channel Kv3.1), Kcna1 (potassium channel Kv1.1), Syt2 (synaptotagmin2), Scn1a (sodium channel Nav1.1), and Acan (aggrecan). (D) Biological process terms enriched in genespositively correlated with PNN energy. (E) Biological process terms enriched in genes negatively correlatedwith PNN energy. (F) Matrisome categories of genes positively correlated with PNN energy. In A, B, and C textinsets indicate the Spearman correlation coefficient (rs), and the corresponding p-value and significantcorrelations are highlighted in red. Blue lines represent kernel density estimations. Data in D, E, and F arepresented in descending order of enrichment ratio, colored based on the q-value with darker red shadescorresponding to more significant values (threshold: FDR < 0.1). The dot size represents the percentage ofgenes of each category, that is present in the experimental gene list.

in the pool of the positively correlated transcripts. Conversely, we found that anticorrelated genes324

were related to processes involved in synaptic plasticity, including among others, postsynaptic den-325

sity organization, regulation of synapse structure, and learning andmemory. This is consistentwith326

the known inhibitory role of PNNs toward synaptic plasticity (Fawcett et al., 2019). Finally, we per-327

formed a similar overrepresentation analysis on a smaller gene set, the “matrisome” (Naba et al.,328

2016), containing about 1,000 genes related to different categories of ECM structure and function.329

Only the category proteoglycans was strongly overrepresented in the set of positively correlated330

genes (Figure 6F).331
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Taken together, these data show that we can reliably identify gene expression correlates of PNN332

abundancewith the approach described above. Moreover, this analysis and the resulting gene lists333

could prove useful for designing experiments to investigate the molecular biology underlying PNN334

development and regulation.335

Table 1. Statistical comparisons

Fig Description Test N (units) Results

2A Diffuse fluorescence differences between
major brain subdivision one-way RM ANOVA 7 mice per brain

region F(11,66)=62.45, P<0.0001

2A PNN energy differences between major brain
subdivision one-way RM ANOVA 7 mice per brain

region F(11,66)=143.1, P<0.0001

2A WFA Diffuse fluorescence significantly
different from 1
Isocortex one sample t-test 7 (mice) t(6)=1.40, P=0.21
Olfactory areas one sample t-test 7 (mice) t(6)=17.87, P<0.001
Hippocampal formation one sample t-test 7 (mice) t(6)=0.59, P=0.58
Cortical subplate one sample t-test 7 (mice) t(6)=3.56, P=0.01
Striatum one sample t-test 7 (mice) t(6)=11.49, P<0.001
Pallidum one sample t-test 7 (mice) t(6)=3.84, P=0.008
Thalamus one sample t-test 7 (mice) t(6)=9.28, P<0.001
Hypothalamus one sample t-test 7 (mice) t(6)=1.66, P=0.15
Midbrain one sample t-test 7 (mice) t(6)=7.52, P<0.001
Pons one sample t-test 7 (mice) t(6)=4.97, P=0.003
Medulla one sample t-test 7 (mice) t(6)=4.84, P=0.003
Cerebellum one sample t-test 7 (mice) t(6)=21.60, P<0.001

2A PNN energy significantly different from 1
Isocortex one sample t-test 7 (mice) t(6)=20.67, P<0.001
Olfactory areas one sample t-test 7 (mice) t(6)=16.48, P<0.001
Hippocampal formation one sample t-test 7 (mice) t(6)=8.19, P<0.001
Cortical subplate one sample t-test 7 (mice) t(6)=39.88, P<0.001
Striatum one sample t-test 7 (mice) t(6)=51.13, P<0.001
Pallidum one sample t-test 7 (mice) t(6)=6.77, P<0.001
Thalamus one sample t-test 7 (mice) t(6)=4.90, P=0.003
Hypothalamus one sample t-test 7 (mice) t(6)=9.34, P<0.001
Midbrain one sample t-test 7 (mice) t(6)=10.12, P<0.001
Pons one sample t-test 7 (mice) t(6)=10.63, P<0.001
Medulla one sample t-test 7 (mice) t(6)=10.46, P<0.001
Cerebellum one sample t-test 7 (mice) t(6)=29.42, P<0.001

4C Probability of having a PNN (whole brain) one way RM ANOVA 7 per class (mice) see figure inset
4D Probability of having a PNN (major brain

subdivisions) one way RM ANOVA 7 per class (mice) see figure inset

5C Visual areas. Diffuse fluorescence
comparison Paired t-test 7 (mice) per group t(6)=4.72, P=0.003
Visual areas. PNN energy comparison Paired t-test 7 (mice) per group t(6)=8.60, P<0.001

5D Visual areas. Comparison by layer two-way RM ANOVA 7 (mice) per group
Interaction
layer*areaHierarchy
F(4,24) =92.50, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.42, P=0.997
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.58, P=0.193
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=12.80, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=10.74, P<0.001
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=5.05, P=0.012

5E Auditory areas. Diffuse fluorescence
comparison Paired t-test 7 (mice) per group t(6)=5.526, P=0.002
Auditory areas. PNN energy comparison Paired t-test 7 (mice) per group t(6)=11.33, P<0.001

5F Auditory areas. Comparison by layer two-way RM ANOVA 7 (mice) per group
Interaction
layer*areaHierarchy
F(4,24) =41.13, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.51, P=0.63
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=4.33, P=0.024
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=10.45, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=8.04, P=0.001
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.48, P=0.216

5G Somatosensory areas. Diffuse fluorescence
comparison Paired t-test 7 (mice) per group t(6)=0.922, P=0.392
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Fig Description Test N (units) Results

Somatosensory areas. PNN energy
comparison Paired t-test 7 (mice) per group t(6)=8.42, P<0.001

5H Somatosensory areas. Comparison by layer two-way RM ANOVA 7 (mice) per group
Interaction
layer*areaHierarchy
F(4,24) = 15.65, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.76, P=0.154
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.47, P=0.220
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=5.23, P=0.009
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=5.37, P=0.008
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=8.05, P=0.001

5L (Inset) - Thalamic input strength different
between high- and low-WFA cortical regions two sample t-test 25 vs 11 (regions) t(34)=0.19, P=0.85

5M Silhouette score comparison One-way ANOVA 7 (mice) per group F(2)=83.37, P<0.001
Low-high-WFA vs Cortical Subnetworks T-test, Holm-Sidak 7 (mice) per group t(6)=9.61, P<0.001
Low-high-WFA vs Shuffle T-test, Holm-Sidak 7 (mice) per group t(6)=10.00, P<0.001
Cortical Subnetworks vs Shuffle T-test, Holm-Sidak 7 (mice) per group t(6)=2.00, P=0.068

Discussion336

In this study, we created and analyzed a whole-brain dataset of PNNs and PV cells in the adult337

mouse brain. We provide several quantitative measurements of the abundance of PNNs and PV338

cells and their colocalization in over 600 brain regions. The atlas was built using a shared spatial339

framework that facilitates replication studies and allows analyzing PNN data together with pub-340

licly available connectomics (Oh et al., 2014; Zingg et al., 2014) and gene expression (Lein et al.,341

2007) datasets, which enabled us to identify potential principles of PNN organization and gene ex-342

pression profiles that are correlated or anticorrelated with PNN abundance. Previous studies have343

analyzed PNNs in multiple brain regions (Dauth et al., 2016; Ueno et al., 2018), however, they have344

been limited by their focus on only a subset of areas, their use of a more qualitative approach, or345

their use of a non-standard reference volume. In contrast, our atlas addresses all these aspects.346

Our public resources (supplementary data SD1-4) will help researchers to generate novel hy-347

potheses and questions, and to design experiments to better understand the function of PNNs348

and their involvement in pathological conditions.349

A toolset for PNN research: advantages and limitations350

One of the challenges in studying PNNs is the difficulty of automatically detecting them due to their351

high morphological variability. To address this issue, we release two deep-learning models for the352

detection of PNNs and PV cells, pre-trained on about 0.8 million manually annotated PNNs/cells.353

The models can also be fine-tuned to specific experimental needs and image qualities with addi-354

tional training. We have alsomade all of the raw and processed data from this study freely available355

(raw dataset: Zenodo link (Lupori et al., 2022), processed data: Supplementary data SD1-4).356

In interpreting our results, it is important to note that we usedWFA as amarker for PNNs. While357

WFA is a commonly used method for visualizing PNNs (Fawcett et al., 2019), it does not equally358

bind to all structures of aggregated CSPGs. Therefore, the use of other antibodies that specifically359

target different proteoglycans may be necessary to fully reveal the presence of these structures360

(Galtrey et al., 2008; Ueno et al., 2018; Ariza et al., 2018; Matthews et al., 2002). Our approach can361

be easily adapted to count these different types of PNNs, creating brain atlases of all the major362

components of PNNs using this method. Additionally, colocalization with other cell types could363

also be studied. For example, PV-positive neurons are a heterogeneous population (Tasic et al.,364

2016) that cannot be distinguished using our immunofluorescence approach. However, specific365

promoters and enhancers could be used to label PV-cell subtypes in a brain-widemanner, allowing366

the study of their colocalization with PNNs and a more detailed understanding of PNN expression367

regulation.368
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Diffuse CSPGs and aggregated PNNs distributions369

CSPGs are large, complex molecules that are widely distributed throughout the brain, whereas370

PNNs are aggregated around specific neurons (Fawcett et al., 2019). While most research on PNNs371

has focused on telencephalic and diencephalic structures, our analysis revealed that PNNs are372

highly abundant in the midbrain and hindbrain (pons and medulla) compared to other brain re-373

gions. These areas are important for vital processes such as heartbeat and breathing control, basic374

reflexes, motor control, and sleep (Ruder et al., 2021; Saladin et al., 2021). However, the role of375

PNNs in the neural circuits underlying these functions is largely unknown.376

Another finding of our study is that CSPG aggregation in PNNs may be differentially regulated377

across brain areas. While in most of the brain the amount of non-aggregated CSPGs (as measured378

by diffuse WFA fluorescence) was a good predictor of the presence of aggregated PNNs (as mea-379

sured by PNN energy), some areas showed no relationship between the two metrics. For example,380

all olfactory areas had very intense diffuse staining but contained very few and thin PNNs (Fig-381

ure 2A, C, E) (Hunyadi et al., 2020), indicating that the high amount of CSPGs present in these areas382

did not aggregate into PNNs. This pattern was also observed in the cortical subplate (Figure 2E).383

The region-specific regulatory mechanisms of CSPG aggregation into PNNs and the functional im-384

plications are currently unknown and require further investigation.385

PV levels are associated with the presence of PNNs386

A commonly observedproperty of cortical PNNs is that they preferentially aggregate aroundGABAer-387

gic PV-positive interneurons (Fawcett et al., 2019). Wemeasured that, on average, this was the case388

for about 60% of PNNs in the entire brain, a much higher percentage than expected from chance.389

Moreover, across the whole brain, both PNN metrics were correlated with PV energy. Despite this390

clear association, our study unveils that slightly less than half of the PNNs in the brain do not sur-391

round PV neurons, leaving the still unanswered question of whether they might serve to regulate392

different circuit properties.393

The link between PNNs and PV cells also varied between brain subdivisions with the most strik-394

ing pattern in the isocortex. Here, 70% of all PNNs were around PV cells and half of all PV cells had395

a net. This intimate association was also evident in the relation between staining metrics. Indeed,396

cortical areas had a very tight (𝑟𝑠=0.91) correlation between PNN and PV energy.397

Our analysis showed that the probability of being surrounded by a PNN for a PV cell is highly398

dependent on its PV expression level. Given that PV neurons differentiate before birth (Fishell,399

2008) and PNNs aggregate much later during postnatal development (Reichelt et al., 2019), this400

association suggests that the developmental increase in PV expression enhances the probability401

to develop a PNN.402

The magnitude of the association between PV levels and the probability of having a PNN, how-403

ever, varies across brain structures suggesting that the mechanism that couples PV expression to404

PNN aggregation can be fine-tuned. For example, in the isocortex, hippocampal formation, and405

striatum, PV-PNN coupling was particularly strong. Intriguingly, in all three of these brain regions,406

PV cells have been previously divided, based on their intensity, into two distinct subpopulations407

of early-born high-PV cells and late-born low-PV cells with different roles in plasticity and learn-408

ing (Donato et al., 2013; Donato et al., 2015). Our data are consistent with the interpretation that409

PNNsmight aggregate more onto early-born high-PV neurons contributing to the inhibitory role of410

this subpopulation toward plasticity. In summary, it is currently unknown how perineuronal nets411

and parvalbumin are co-regulated. Previous evidence suggests that Otx2 may act as a mediator of412

this coupling, promoting the maturation of parvalbumin cells and PNNs (Gibel-Russo et al., 2022;413

Lee et al., 2017). This suggests that Otx2 may play a role in the co-regulation of these two factors,414

although further research is needed to confirm this hypothesis.415
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PNN expression in the cortex is correlated with specific connectivity patterns416

Our study demonstrated that strong PNNs are a common feature of layer 4 in all primary sensory417

cortices. This enrichment was evident also when we directly compared the labeling of primary and418

associative cortices within each sensory modality. Interestingly, this pattern cannot be explained419

solely by an increase in the number of PV cells or in the proportion of high-PV expressing cells that420

are more likely to have a PNN. At a functional level, the high expression of PNNs in primary sen-421

sory areas could be related to their action on thalamic afferents. Previous research in the mouse422

primary visual cortex showed that PNNs can selectively control thalamic excitation onto PV cells423

(Faini et al., 2018). Our data suggest that the control of feed-forward thalamo-cortical sensory in-424

puts on PV neurons may be one important function across all sensory cortices. This is supported425

by the observation that the abundance of PNNs correlates with the density of thalamic innervation426

in all sensory areas. This hypothesis is also in accordance with the findings that plasticity in L4 of427

the visual cortex is lower (Trachtenberg et al., 2000) and might rely on a separate set of molecular428

mechanisms (Liu et al., 2008).429

The relationship between thalamic inputs and PNN levels raises the possibility that the type of430

connections may be a determining factor in PNN expression. This idea was further supported by431

the observation that regions of the cortex with strong PV and PNN expression tend to have similar432

intracortical connectivity patterns (Figure 5L). This finding suggests that circuitry within these areas433

requires a certain level of stability, which could be achieved through the expression of PNNs. This434

novel concept merits further investigation to fully understand how this relationship functions.435

Gene expression correlates of PNNs436

The search for a gene expression signature of PNN-enwrapped cells is hampered by the fact that437

PNNs are extracellular multimolecular structures, and that there is currently no means to tag the438

PNN-positive neurons.439

To overcome this problem, we performed a correlational analysis between the AGEA dataset by440

the Allen Institute (Lein et al., 2007) and PNN expression. This novel approach was validated by the441

overrepresentation analysis on the matrisome gene set, which showed that PNN-correlated genes442

are strongly enriched in the proteoglycan category, and by finding key constituents of the PNN443

ranking in the top positions of the list of genes positively correlated with PNN energy. However,444

this approach also revealedmany other genes with positive and negative correlations with PNNs. A445

gene ontology analysis strikingly showed that categories related to synaptic function and synaptic446

plasticity were significantly downregulated in brain areas enriched with PNNs. Furthermore, PNNs447

were found to be correlated with genes involved inmyelination, another plasticity brake (Boghdadi448

et al., 2018; Bonetto et al., 2021), and genes related to cell metabolism, which may be due to the449

high energy demands of fast-spiking PV cells (Carter et al., 2009; Kann et al., 2014).450

These results not only support the hypothesis that PNNs serve as plasticity brakes in the visual451

cortex (Fawcett et al., 2019), but also demonstrate that this functional signature emerges from an452

unbiased comprehensive analysis of all brain regions.453

Ourwork represents a unique approachbasedon abrain-wide comparisonof very large datasets454

of cellular structures with public resources. This type of analysis has the advantage of being un-455

biased and data-driven, which is typical of -omics techniques. It can also be applied to the study456

of many other extracellular matrix components. We envision that the advent of spatial transcrip-457

tomics will further enhance this type of approach.458

Methods & Materials459

Mice Handling460

All experiments were carried out in accordance with the European Directives (2010/63/EU), and461

were approved by the Italian Ministry of Health (authorization number 723 / 2020 PR). A total of462

7 adult C57BL/6J male and female mice, at approximately postnatal day (P)150 were used in this463
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study. Weaning was performed at P21–23. Animals were maintained at 22°C with a standard 12-464

h light-dark cycle. During the light phase, a constant illumination below 40 lux from fluorescent465

lamps was provided. Mice were housed in conventional cages (365 x 207 x 140 mm, 2-3 animals466

per cage) with nestingmaterial, and had access to food and water ad libitum. During the first 12-14467

weeks of life, mice were fed a standard diet (standard diet Mucedola 4RF25). Then, animals were468

fed a balanced purified diet (Research Diets, Inc., New Brunswick, NJ, USA, cat. no. D12450Ji) for 6469

weeks before the sacrifice.470

Immunofluorescence staining471

Mice were anesthetized with chloral hydrate (20 ml/Kg BW) and perfused via intracardiac infusion472

with cold PBS and then 4% paraformaldehyde (PFA, w/vol, dissolved in 0.1M phosphate buffer,473

pH 7.4). Brains were extracted and post-fixed overnight in PFA 4% at 4°C, then transferred to a474

30% (w/vol) sucrose solution for 48 hours. For each brain, 50 µm coronal sections, spanning from475

the anteriormost part of the cerebral cortex to the cerebellum, were cut on a freezing microtome476

(Leica). One out of every 3 sections was collected for further processing, leading to a sampling of477

one slice every 150µm. For a small subset of sections that did not match our quality standards478

due to deformations during the cutting process (on average 3.7±0.5 slices per animal), an adjacent479

section was collected instead. For each animal, slices were assigned a unique ID and pooled in 9-10480

wells of a 24-well plate for free-floating staining. Each well contained 5-6 sections that sampled the481

brain at equally spaced points in the anterior-posterior axis.482

Slices were blocked for 2h at room temperature (RT) in a solution containing 3% bovine serum483

albumin (BSA, A7906 Sigma-Aldrich) in PBS. Then, sliceswere incubated overnight at 4°Cwith a solu-484

tion containing biotinylated Wisteria floribunda Lectin (WFA, B-1355-2, Vector Laboratories, 1:200)485

and 3% BSA in PBS. On the following day, sections were rinsed 3 times in PBS (10 min each) at486

RT, incubated with a solution of red fluorescent streptavidin (Streptavidin, Alexa Fluor™ 555 con-487

jugate, S21381, Thermo Fisher, 1:400) and 3% BSA in PBS for 2h at RT, and rinsed again 3 times488

in PBS. On the same day, slices were incubated with a blocking solution for parvalbumin staining489

containing 10% BSA and 0.3% Triton in PBS for 30 minutes, then washed 3 times (10min each) and490

finally incubated overnight at 4°C with primary antibody solution containing anti-parvalbumin (Par-491

valbumin antibody, 195004, Synaptic System 1:1000) 1%BSA and 0.1% Triton in PBS. Then, sections492

were rinsed 3 times (10 min each) in PBS; incubated with a secondary antibody solution contain-493

ing secondary antibody (anti-Guinea Pig IgG Alexa Fluor™ 488, A11073, Invitrogen, 1:500), 1% BSA.494

plus 0.1% Triton for 2h at RT, and washed again 3 times in PBS. Finally, sections were mounted on495

microscopy slides with a mounting medium (VECTASHIELD® antifade mounting medium, H-100,496

Vector Laboratories), and stored at 4°C. All sections in each staining well were mounted on the497

same slide.498

Image acquisition499

All images were acquired using the acquisition software ZEN blue with a Zeiss Apotome.2 micro-500

scope and a 10x objective and digitized by an AxioCam MR R3 12-bit camera, resulting in a pixel501

size of 0.645µm. For theWFA channel, excitation light passed through a 538-562nmbandpass filter502

and a 570nmdichroicmirror, while emitted light was filteredwith a 570-640nmbandpass filter. For503

the PV channel, filters were a 450-490 nm bandpass for excitation, a 495nm dichroic mirror, and a504

500-550nm bandpass for emission. All images were acquired with the same intensity of excitation505

light and with an exposure time of 80ms for the WFA channel and 850ms for the PV channel. For506

all sections, we acquired 3 apotome images for optical sectioning. Each brain slice was acquired507

as a tiled multi-image experiment on a single z-plane.508

Coronal sections of the entire mouse brain span a relatively large area and even small irreg-509

ularities in the microscope slide can lead to artifacts in image intensity due to the tissue section510

not sitting exactly perpendicular to the optical path. To account for this, we acquired each slice511

with a tilted z-plane linearly interpolated between 4 manually selected focus points at the edges512

Lupori, Totaro et al. 2023 | A Whole-brain Atlas of Perineuronal Nets bioR𝜒 iv | 16 of 45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525313doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525313
http://creativecommons.org/licenses/by-nc-nd/4.0/


of each section. After the acquisition, multi-image tiles were stitched in ZEN and exported as 8-bit513

TIFF files for further processing. The resulting dataset consisted of 842 single channel, 8-bit, TIFF514

images ranging from 7 to 165MB in size and from 2646 to 17631px (width) in resolution.515

Image registration to the Allen Brain Atlas CCF v3516

Image Preprocessing517

For each mouse, all the images were ordered along the anterior-posterior axis according to their518

unique ID. Images were manually inspected and, based on irregularities in the fixed brain and519

anatomical landmarks, a minority of them were mirrored vertically to make sure matching hemi-520

spheres were always on the same side for the whole image sequence.521

All the following steps of preprocessing and image registration were carried out on a down-522

sampled (20% of the original size) TIFF dataset. For each downsampled experimental image, we523

created a matching binary mask of the same size, encoding whether each pixel belongs to brain524

tissue or not. Masks were automatically generated for the entire subsampled dataset by using525

a machine learning model (random decision forest) interactively trained with Ilastik (Berg et al.,526

2019) on a subset of 57 image crops (width ranging from 344px to 526px). Masks were used in the527

quantification steps to restrict fluorescence analysis only to portions of the images that contained528

biological tissue. All the masks were visually inspected through a custom MATLAB graphical user529

interface (GUI) and, if necessary, manually adjusted to correct for misclassification of small areas530

or to exclude parts of the tissue containing experimental artifacts from further analysis.531

Image Registration532

We aligned our dataset to the Allen Mouse Brain Common Coordinate Framework (CCFv3) (Wang533

et al., 2020) with a multi-step workflow: first, we used the software QuickNII v2.2 (Puchades et al.,534

2019) to interactively assign each experimental image to a specific plane in the reference atlas535

based on anatomical landmarks. The software allows the selection of an arbitrary 2D plane out of536

the CCFv3 volume, thus improving accuracy for samples where sections were not cut on a perfectly537

coronal plane, but with a slight angle. In the same software, we also performed rigid transforma-538

tions (i.e., rotations and translations) and uniform horizontal or vertical stretch in order to match539

the reference plane to each experimental image. In a second step, we used the software VisuAlign540

v0.9 (RRID: SCR_017978, VisuAlign) tomanually apply local, non-rigid transformations to the planes541

selected in QuickNII in order to match the experimental images.542

We then used a custom set of MATLAB functions to load the output file from VisuAlign and to543

generate a displacement field for each experimental image. Each displacement field defines the544

local non-rigid transformation as a couple of values (𝐷𝑥, 𝐷𝑦) for each pixel, defining the displace-545

ment in the image on the X and Y axes. By using the coordinates of the 2D plane defined in QuickNII546

and the local transformations defined in the displacement field it is possible to match each pixel547

position in our experimental images (𝑋𝑒, 𝑌𝑒) to a voxel position in the reference atlas (𝑋𝑎, 𝑌𝑎, 𝑍𝑎).548

Deep learning models for cell counting549

The deep learning models used in this work are based on a novel counting strategy described in550

Ciampi et al., 2022 specifically designed to account for the variability between experimenters when551

counting non-trivial, overlapping, or low-contrast objects like PNNs in histological preparations.552

Briefly, cell counting for both PNNs and PV cells was done through a two-step pipeline. In the553

first step, we performed cell detection by using the Faster-RCNN network (Ren et al., 2015) with a554

Feature Pyramid Network module and a ResNet-50 backbone. The goal of this stage is to produce555

a collection of putative object locations with high recall. The training dataset of this network is556

large but labeled by a single rater, thus it is assumed to be “weakly labeled”, i.e., it may contain557

spurious (false positives) and missing annotations (false negatives). In the second step, we scored558

each detected object to assign it an “objectness” value designed to maximize its correlation with559

the raters’ agreement. To do this, we trained a small convolutional network to rank samples with560
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increasing agreement values and produce an increasing score for objects with increasing raters’561

agreement (Figure S1B, C). In this stage, we employed a smaller training dataset labeled bymultiple562

raters forwhich the agreement between experimenters on each objectwas computed (see Training563

Dataset below).564

Following this strategy, we employed four different models: a localization model for PNNs and565

PV cells, and a scoring model for PNNs and PV cells. From now on, we will refer to these models566

respectively as PNN𝑙𝑜𝑐 , PV𝑙𝑜𝑐 , PNN𝑠𝑐𝑜𝑟𝑒, and PV𝑠𝑐𝑜𝑟𝑒. We first localized and scored PNNs using PNN𝑙𝑜𝑐567

and PNN𝑠𝑐𝑜𝑟𝑒 and PV cells using PV𝑙𝑜𝑐 and PV𝑠𝑐𝑜𝑟𝑒 on separate image channels. Then, we removed568

PNNs with a score lower than 0.4 and PV cells with a score lower than 0.55.569

As a performance metric for this counting pipeline, we computed the mean absolute relative570

error (MARE) as follows:571

MARE =

∑𝑁
𝑛=1 |𝐶

𝑛
𝑔𝑡 − 𝐶𝑛

𝑝𝑟𝑒𝑑|

∑𝑁
𝑛=1 𝐶

𝑛
𝑔𝑡

where 𝑁 is the number of test images, and 𝐶𝑛
𝑔𝑡 and 𝐶𝑛

𝑝𝑟𝑒𝑑 are the ground-truth and the predicted572

count of the n-th image, respectively. On the test split of our multi-rater dataset, our counting573

approach achieves aMARE of 0.048 and 0.080 respectively for PNNs and PV cells when considering574

samples located by at least 3 raters. As a final quality check, we visually inspected all the images575

and manually removed cases of artefactual cell detection. The source code for training models or576

making predictions with a pre-trained model can be found at this link.577

Training Dataset578

Here we describe the training dataset used for each model.579

The dataset used for the PNN𝑙𝑜𝑐 model consists of 580 8-bit grayscale TIFF images (width ranging580

from 2646 to 17631px) dot-annotated with the (x,y) position of each PNN for a total of 678556581

PNNs. The dataset used for the PV𝑙𝑜𝑐 model consists of 53 8-bit grayscale TIFF images (width ranging582

from 5157 to 16389px) dot-annotated with the (x,y) position of each cell for a total of 101348 PV583

cells. PNNs were annotated by looking for distinctive circular patterns of WFA staining around584

cell somata and proximal dendrites. Finer PNN-like structures exclusively present in the neuropil,585

like those found in the olfactory bulbs (Hunyadi et al., 2020), were not annotated in our training586

dataset due to the magnification factor in our images not allowing for consistent detection of such587

structures.588

The datasets used for the two scoring models both consist of a collection of 25 8-bit grayscale589

TIFF images (2000 x 2000 px). Seven expert experimenters independently dot-annotated each im-590

age for a total of 4727 PNNs and 5833 PV cells that vary in the agreement between raters from 1/7591

to 7/7. Pre-trained models, ready for making predictions on new images, are available at this link.592

Brain structure sets593

Throughout the paper we aggregated data in three sets of brain structures differing by their level of594

spatial resolution or granularity. The first structure set (structure_set_id: 687527670) has a low595

level of resolution and is composed of 12 coarse-ontology major brain divisions (see Table ST2).596

The second structure set (structure_set_id: 167587189) has a medium level of resolution (e.g.,597

it comprises distinct cortical areas) and is composed of 316 mid-ontology brain regions (see Ta-598

ble ST4).599

These two structure sets were defined by the Allen Institute in their API and can be accessed600

using the StructureTree object. Lastly, for the analysis of cortical layers, we maintained the finest601

level of resolution present in the CCFv3, where individual cortical layers are segmented (see Ta-602

ble ST3 for the definition of cortical areas). Please note that, for the visualizations in Fig. 5A-B, we603

included the lateral andmedial parts of the entorhinal cortex (ENTl and ENTm, that actually belong604

to the hippocampal formation) given their layered structure. For all the analyses in the paper, we605

dropped data of any structure belonging to, or descending from the fiber tracts (areaID:1009) and606

the ventricular system (areaID:73).607
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Data analysis608

All data analysis was done using custom software written in MATLAB 2021b and Python (3.8). We609

used the following additional Python libraries for data analysis: NumPy (1.23.5) (Harris et al., 2020),610

Pandas (1.5.2) (McKinney, 2010), Scikit-learn (1.1.3) (Pedregosa et al., 2011) and SciPy (1.9.3) (Virta-611

nen et al., 2020).612

Measurement of single-cell staining intensity613

Quantification of the staining intensity of individual cells (PNNs or PV cells) was performedon 80x80614

pixels image tiles centered on the (x,y) center positions of each PNN/cell. Within each tile, we615

segmented pixels belonging to the cell or the background, and the intensity of each PNN/cell was616

defined as the average value of the pixels belonging to that cell. The segmentation was performed617

by using a random forest pixel classifier implemented with the MATLAB Treebagger class with the618

support of additional custom MATLAB functions (Cicconet et al., 2019). This approach allows the619

classification of single pixels as background or foreground, based on a collection of features of that620

pixel. Classifying all the pixels in an image tile results in a binary segmentation mask.621

The features considered for pixel classification were the contrast-adjusted pixel intensity (using622

the imadjust MATLAB function), the position of the pixel relative to the center of the tile in the623

horizontal and vertical axes, and the pixel intensity in 16 versions of the image tile filtered with624

16 Gabor filters. The wavelength and orientation of each Gabor represented one of the possible625

combinations of four differentwavelength values (2.8, 5.6, 11.3, 22.6 pixels/cycle) and four different626

orientations (0°, 45°, 90°, 135°). Wavelengths were sampled in increasing powers of 2 starting from627

4
√

2
up to the hypotenuse length of the input image tile, while orientations were sampled from 0°628

to 135° with a step of 45° (Jaini et al., 1991). Each random forest model for segmentation of PNNs629

and PV cells was trained on 69600 pixels from 1160 tiles (60 pixels randomly chosen for each tile).630

Staining metrics definitions631

We defined four metrics to quantitatively analyze the staining for PNNs and PV cells.632

First, diffuse fluorescence represents the amount of average fluorescence signal in a brain re-633

gion. It is defined as the average intensity of all the pixels belonging to that region across all the634

slices of each mouse. These values were then normalized within each mouse by dividing them by635

the mean pixel intensity of all the brain. This normalization removes global differences in inten-636

sity between mice (due to for example perfusion quality and post-fixation) while highlighting how637

staining intensity is differentially distributed across brain regions. As a result, a region with diffuse638

fluorescence of 1 would have a staining intensity equal to the brain average.639

Second, density represents the number of cells or PNNs per unit of area in a brain region. It640

was defined as the total number of cells or PNNs belonging to that region across all the slices of641

each mouse, divided by the total area belonging to that region in mm2.642

Third, cell intensity represents the staining intensity of cells or PNNs in a brain region. Each cell643

was assigned a value of staining intensity (see sectionMeasurement of single-cell staining intensity).644

For each region, cell intensity was defined as the average intensity of all the cells belonging to that645

region. These values were then normalized to the range 0-1 by dividing by 255 (maximum intensity646

value for 8-bit images).647

Last, we defined a combined, more abstract metric, that takes into account both the number648

and the intensity of cells/PNNs, called energy. Cell energy can be thought of as a measure of cell649

density, weighted on intensity. For each region, energy is defined as the sum of the cell intensity650

of all the cells in that region, divided by the total surface area. For a region of area 𝐴, containing 𝑐651

cells:652

Energy =
∑𝑐

𝑖=1 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖
𝐴These values were then normalized within each mouse by dividing them by energy calculated653

on the entire brain. As a result, a region with an energy value of 1 would be equal to the brain’s654
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average energy. This definition of energy is analogous to the one used by the Allen Institute in (Lein655

et al., 2007) for the analysis of in-situ hybridization data (see the technical paper on the informatics656

data processing here). It is important to note that the brain of each mouse in this study has been657

sampled in its entire anterior-posterior axis with the same sampling rate (1 every 3 slices) thus658

ensuring that the normalization step for diffuse fluorescence and energy measurements does not659

introduce biases due to differential sampling of areas with extreme staining intensity values.660

Colocalization PNN-PV661

PV cells and PNNs were counted with two distinct deep learning models on separate channels. We662

defined a PNN and a PV cell to be colocalized based on their (x,y) position in the original image663

using the following criteria. We selected one cell/PNN at a time as a reference object. For each664

reference object, we selected only objects in the other channel with a distance equal to or smaller665

than 15 pixels (9.675µm). If multiple objects satisfied this criterion, we picked the closest one as666

a colocalized object. Otherwise, if no objects were close enough to the reference one, we defined667

the reference object as non-colocalized (either a PV-negative PNN or a WFA-negative PV cell).668

We computed two metrics to describe PNNs and PV colocalization: first, the percentage of PV+669

PNNs, that is the fraction of PNNs that are around a PV-positive cell; second, the percentage of670

WFA+ PV cells, that is the fraction of PV-positive cells that are surrounded by a net. Colocalization671

metrics at the coarse level of resolution (see section Brain structure sets for definition) were calcu-672

lated independently for eachmouse and the results averaged acrossmice. For the same analysis at673

higher levels of resolution (mid-ontology in Figure 3C and Figure S4), we adopted a different strat-674

egy. At higher resolutions, brain subdivisions are much smaller and some areas contain a limited675

number, or even no, of PNN or PV-cells (e.g., layer 1 of cortical areas). As a result, the percentage676

of colocalization can vary dramatically depending on a few, or even a single cell, thus not providing677

a robust measure for that area (e.g., an area with 3 PV cells can vary from 0% to 100% depending678

on the state of PNNs on only 3 neurons). To solve this issue, we calculated colocalization metrics679

on a dataset of cells pooled from all animals except one, in a manner similar to the leave-one-out680

cross-validation approach used in machine learning (Wong, 2015). We repeated this process for681

all mice and considered each repetition an “experimental unit”. We then averaged across experi-682

mental units. For the analysis of the colocalization of PNNs and PV cells (Figure 3C and Figure S4)683

we included only brain regions that contained at least 3 PNN and 3 PV cells in at least 4 mice.684

PV intensity classes685

PV cells were divided into four intensity classes of equal width based on their cell intensity levels.686

The classes were defined as 1: low PV (PV intensity in the range [0, 0.25)); 2: intermediate-low687

PV (range [0.25, 0.5)); 3: intermediate-high PV (range [0.5, 0.75)); 4: high PV (range [0.75, 1]). The688

probability of being surrounded by a net was estimated by dividing the total number of PV cells689

in that class by the number of colocalized PV-PNN cells. This analysis was done independently for690

each mouse. We fit data to a first-degree linear equation by using the numpy function np.polyfit.691

The estimated first- and zero-order parameters are displayed in the text insets for each plot.692

Correlation between staining metrics693

The analysis of correlations between staining metrics in all the figures (Figure 2E, Figure 3D-G,694

Figure S3E) was done by computing the Spearman’s rank correlation coefficient using the SciPy695

function stats.spearmanr. In each graph, we reported the value of the correlation coefficient (𝑟𝑠)696

and the associated p-value. We highlighted in red significant (p <0.05) correlations. For significantly697

correlated metrics we also reported in blue a linear fit obtained using a Huber regressor robust to698

outliers (Huber et al., 2009) using the implementation in sklearn.linear_model.HuberRegressor.699

Correlation with thalamic afferent connectivity700

To measure thalamic input strength we used connectomics data from the Allen Institute (Oh et al.,701

2014). In that dataset, we selected the connections that originated from the thalamus and that ter-702
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minated in sensory-related cortical regions (SSp-n, SSp-bfd, SSp-ll, SSp-m, SSp-ul, SSp-tr, SSp-un,703

SSs, VISal, VISam, VISl, VISp, VISpl, VISpm, VISli, VISpor, AUDd, AUDp, AUDpo, AUDv). For Figure 5I704

we selected only thalamic inputs originating from the sensory-motor cortex related part of the tha-705

lamus (DORsm, area ID: 864, according to the CCFv3 nomenclature, https://atlas.brain-map.org/).706

For Figure S8 we selected only thalamic inputs originating from the polymodal-association cortex707

related part of the thalamus (DORpm, areaID: 856). Input strength for each cortical area was mea-708

sured as the sum of connection strength from all brain regions belonging to either the DORsm or709

the DORpm to both the ipsilateral and contralateral parts of that cortex. To uniform the scale of710

PNN measurements and thalamic connectivity, we z-scored each set of data. For the correlation711

analysis (Figure 5I), we computed Pearson’s correlation coefficient and the associated p-values. To712

estimate connection strength in high-WFA and low-WFA region clusters (Figure 5L inset), we aver-713

aged thalamic input strength values, obtained in the same way, of all the areas in each cluster.714

Correlation with gene expression and gene set overrepresentation analysis715

We correlated the distribution of PNN energy, WFA diffuse fluorescence and PV energy with the716

pattern of expression of approximately 18,000 genes, published in the Anatomic Gene Expression717

Atlas (AGEA) by the Allen Institute (Lein et al., 2007). In this dataset, levels of expression of each718

gene are derived from the signal intensity of whole-brain in situ hybridization essays and quantified719

as expression energy, a metric defined in an analogous way to PNN and PV energy. For correlation720

analysis, both gene expression data and PNN or PV staining parameters were expressed at mid-721

ontology resolution (see Table ST4). The five areas showing the largest standard deviation in PNN722

or PV stainingmetrics were excluded from the analysis. We computed Spearman’s rank correlation723

coefficient between eachof the 3 stainingmetrics and the pattern of expression of each of the AGEA724

genes. Correction formultiple testingwas performedwith Benjamini-Hochbergmethod. For all the725

analyses, we considered genes with a q-value<0.01 (Benjamini-Hochberg method) as significantly726

correlated (if Spearman’s correlation coefficient was positive) or anticorrelated (if Spearman’s cor-727

relation coefficient was negative) with the staining metric considered.728

For the genes correlated and anticorrelated with PNN energy and WFA fluorescence, we per-729

formed gene ontology analysis usingWebGestalt platform (Zhang et al., 2005). Overrepresentation730

of gene ontology terms (biological process domain) was tested separately for the 1,000 genesmost731

correlated (with the largest correlation coefficient) and the 1,000 genes most anticorrelated (with732

the most negative correlation coefficient) with each of the two metrics. The list of all the genes733

present in the AGEA was used as the background for all the analyses. Overrepresented gene on-734

tology terms were filtered to ensure a false discovery rate<0.1 (Benjamini-Hochberg method) and735

clustered via affinity propagation to reduce redundancy.736

We then tested for overrepresentation of gene sets related to ECM biology, defined by (Naba737

et al., 2016) as matrisome categories, in the 200 genes most correlated with PNN energy. As for738

gene ontology, the entire list of genes of the AGEA was used as the background. To assess sta-739

tistical significance, we performed hypergeometric test and corrected for multiple testing using740

Benjamini-Hochberg method. For each matrisome category, the enrichment ratio was calculated741

as the number of genes observed in both the matrisome category and the 200-gene list divided by742

the number of genes expected assuming independence of the matrisome set and the gene list.743

Data visualization744

Data visualization for all the figures was done in Python (3.8). Heatmaps, bar plots, and scatterplots745

were created using the libraries Seaborn (0.12.1) (Waskom, 2021) and Matplotlib (3.4.2) (Hunter,746

2007). Rendered heatmaps of coronal brain slices were done by using BrainRender (Claudi et al.,747

2021) and bg-heatmaps (Claudi et al., 2022).748
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Figure 7. Author contributions. For each type of contribution, there are three levels indicated by color in thediagram: ’support’ (light), ‘equal’ (medium), and ‘lead’ (dark).
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Supplementary Material1069

Supplementary Figures1070

Figure S1. The scores assigned by the scoring models correlate with raters’ agreement. (A) Agreement(Jaccard index) between the manual cell annotations of 7 independent raters (R1-R7). The lower part of thematrix (blue shade) represents agreement in PNN counts, while the upper part (green shade) representsagreement in PV counts. (B) Performance of the scorer module for PNNs. Individual PNNs are groupedaccording to their agreement level in the multi-rater dataset and the score assigned to them by the scorermodule is shown on the Y-axis. (C) Performance of the scorer module for PV cells. Individual PV cells aregrouped according to their agreement level in the multi-rater dataset and the score assigned to them by thescorer module is shown on the Y-axis. In B and C, text insets represent Pearson’s correlation coefficient (𝑟)and the corresponding p-value. Boxes represent quartiles, whiskers extend to 1.5 IQRs of the lower andupper quartile, and observations that fall outside this range are displayed independently.
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Figure S2. PNN energy and WFA diffuse fluorescence measurements for medium-resolution brain
areas grouped by their major subdivision. For each plot, on the left in orange is represented PNN energy,while on the right in blue is represented WFA diffuse fluorescence. Error bars represent SEM across mice.
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Figure S2. PNN energy and WFA diffuse fluorescence measurements for medium-resolution brain
areas grouped by their major subdivision. ...continues.
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Figure S3. Distribution of PV-positive cells throughout the entire mouse brain. (A) Quantification of PVdiffuse fluorescence and PV energy for 12 aggregated major brain subdivisions. Dots represent mice.Asterisks indicate brain subdivisions significantly different from the brain average (see Table ST1 for statisticalcomparisons). (B) Heatmaps showing the two quantification metrics for mid-ontology brain regions inindividual mice. Grayed-out cells represent brain regions where data is unavailable due to no sampling of thatregion. (C) Heatmaps showing coronal sections of the brain, sliced at different anteroposterior locations. Onthe left hemisphere (blue colormap) is displayed average diffuse PV fluorescence, while on the righthemisphere (red colormap) is displayed average PV energy for each brain region. (D) Plots of PV energyversus PV diffuse fluorescence for each of the 12 major brain subdivisions. (E) Same as in D but data is split ineach brain region of the 12 major brain subdivisions. Error bars in A and D represent SEM across mice. In Dand E, dots represent brain regions. In E, text insets indicate the Spearman correlation coefficient (𝑟𝑠) and thecorresponding p-value, the gray line indicates the X-Y bisector, and, for significant correlations highlighted inred, the blue line shows the best linear fit.
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Figure S4. Colocalization of PNNs and PV cells in medium-resolution brain areas grouped by their
major subdivision. For each plot, on the left in blue is represented the fraction of PNNs containing a PV cell(PV+ PNNs), while on the right in light orange is represented the fraction of PV cells surrounded by a PNN(WFA+ PV cells). In all the plots, dots represent “experimental units” and not single animals as described in themethods section “colocalization PNN-PV”. Each experimental unit is composed of the aggregated data of allmice in the dataset except one, in a manner similar to the leave-one-out cross-validation approach used inmachine learning. This analysis includes only areas that had at least 3 PNNs and 3 PV cells in at least 4 mice.Error bars represent SEM across experimental units.

Figure S5. WFA Diffuse Fluorescence in primary vs secondary areas by layers. (A) WFA diffusefluorescence in primary versus associative visual cortical areas split by layer. (B) Same as in (A) but forauditory areas. (C) Same as in (A) but for somatosensory areas. See Table ST1 for statistical comparisons.
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Figure S6. PV cell distribution in sensory cortical areas. (A) PV energy and PV diffuse fluorescence inprimary versus associative visual areas. (B) PV energy and (C) PV diffuse fluorescence in primary versusassociative visual areas split by layer. (D) Same as (A), but for auditory areas. (E) Same as (B), but for auditoryareas. (F) Same as (C), but for auditory areas. (G) Same as (A), but for somatosensory areas. (H) Same as (B),but for somatosensory areas. (I) Same as (C) but for somatosensory areas. See Table ST1 for statisticalcomparisons.
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Figure S7. PV cell intensity and colocalization with PNNs in the sensory areas of the cortex. (A)Percentage of WFA+ PV cells in primary versus associative visual areas. (B) Distribution of PV cells in 4intensity classes (low PV, intermediate-low PV, intermediate-high PV, and high PV) for primary versusassociative visual areas. (C) Same as in (A) but for auditory areas. (D) Same as in (B) but for auditory areas. (E)Same as in (A) but for somatosensory areas. (F) Same as in (B) but for somatosensory areas. See Table ST1 forstatistical comparisons.
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Figure S8. Thalamic inputs from the association-cortex-related portion of the thalamus (DORpm) do
not correlate with PNNs in sensory cortices. (A) Correlation between WFA diffuse fluorescence and inputstrength of association-cortex-related thalamic areas (DORpm) in sensory-related cortices (all somatosensory,visual, and auditory cortices, see Correlation with thalamic afferent connectivity in Methods & Materials) splitby layer. Text insets indicate the Pearson correlation coefficient (r) and the corresponding p-value. (B) Sameas in (A) but for PNN energy.

Figure S9. Properties of PV cells in high-WFA and low-WFA cortical subnetworks. (A) PV energy and (B)Distribution of PV cells in 4 intensity classes (1: low PV, 2: intermediate-low PV, 3: intermediate-high PV, and 4:high PV) for high-WFA and low-WFA cortical subnetworks, as defined in Fig.5. See Table ST1 for statisticalcomparisons.
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Supplementary Tables1071

Table ST1. Statistical comparisons

Fig Description Test N (units) Results

S2A PVDiffuse fluorescence significantly different
from 1
Isocortex one sample t-test 7 (mice) t(6)=3.88, P=008
Olfactory areas one sample t-test 7 (mice) t(6)=4.65, P=0.004
Hippocampal formation one sample t-test 7 (mice) t(6)=1.12, P=0.306
Cortical subplate one sample t-test 7 (mice) t(6)=4.56, P=0.004
Striatum one sample t-test 7 (mice) t(6)=6.51, P<0.001
Pallidum one sample t-test 7 (mice) t(6)=5.31, P=0.002
Thalamus one sample t-test 7 (mice) t(6)=2.54, P=0.044
Hypothalamus one sample t-test 7 (mice) t(6)=4.50, P=0.004
Midbrain one sample t-test 7 (mice) t(6)=1.89, P=0.107
Pons one sample t-test 7 (mice) t(6)=1.37, P=0.220
Medulla one sample t-test 7 (mice) t(6)=3.36, P=0.015
Cerebellum one sample t-test 7 (mice) t(6)=6.73, P<0.001

S2A PVEnergy significantly different from 1
Isocortex one sample t-test 7 (mice) t(6)=4.32, P=005
Olfactory areas one sample t-test 7 (mice) t(6)=41.01, P<0.001
Hippocampal formation one sample t-test 7 (mice) t(6)=11.16, P<0.001
Cortical subplate one sample t-test 7 (mice) t(6)=24.27, P<0.001
Striatum one sample t-test 7 (mice) t(6)=73.48, P<0.001
Pallidum one sample t-test 7 (mice) t(6)=3.96, P=0.008
Thalamus one sample t-test 7 (mice) t(6)=0.85, P=0.428
Hypothalamus one sample t-test 7 (mice) t(6)=11.78, P<0.001
Midbrain one sample t-test 7 (mice) t(6)=3.01, P=0.024
Pons one sample t-test 7 (mice) t(6)=1.56, P=0.170
Medulla one sample t-test 7 (mice) t(6)=2.11, P=0.079
Cerebellum one sample t-test 7 (mice) t(6)=15.06, P<0.001

S4A Visual areas. Comparison by layer of WFA
diffuse fluorescence two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =49.63, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.48, P=0.649
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.42, P=0.684
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=8.60, P<0.001
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=6.40, P=0.003
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.50, P=0.062

S4B Auditory areas. Comparison by layer of WFA
diffuse fluorescence two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =36.54, P<0.0001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.28, P=0.999
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=4.43, P=0.022
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=6.50, P=0.003
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=6.21, P=0.004
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.73, P=0.048

S4C Somatosensory areas. Comparison by layer of
WFA diffuse fluorescence two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =7.65, P<0.001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.54, P=0.060
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.88, P=0.930
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.92, P<0.916
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.43, P=0.675
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.67, P=0.172

S6A Visual areas. PV energy comparison Two-sample paired
t-test 7 (mice) per group t(6)=4.78, P=0.003

Visual areas. PV diffuse fluorescence
comparison

Two-sample paired
t-test 7 (mice) per group t(6)=2.62, P=0.393

S6B Visual areas.Comparison by layer of PV energy Two-way RM ANOVA 7 (mice) per group
Interaction
layer*areaHierarchy
F(4,24) =14.00, P<0.001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=-0.45, P=0.996
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.24, P=0.999
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.39, P=0.071
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=7.27, P=0.002
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=12.00, P<0.001
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Fig Description Test N (units) Results

S6C Visual areas.Comparison by layer of PV diffuse
fluorescence Two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =4.26, P=0.009

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=-0.48, P=0.995
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.45, P=0.07
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.89, P=0.432
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.29, P=0.272
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.99, P=0.387

S6D Auditory areas. PV energy comparison Two-sample paired
t-test 7 (mice) per group t(6)=3.86, P=0.008

Auditory areas. PV diffuse fluorescence
comparison

Two-sample paired
t-test 7 (mice) per group t(6)=1.21, P=0.272

S6E Auditory areas. Comparison by layer of PV
energy Two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =1.87, P=0.148

S6F Auditory areas. Comparison by layer of PV
diffuse fluorescence Two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =3.73, P=0.017

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.59, P=0.589
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.70, P=0.53
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.76, P=0.155
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.77, P=0.958
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=-0.74, P=0.965

S6G Somatosensory areas. PV energy comparison Two-sample paired
t-test 7 (mice) per group t(6)=1.83, P=0.11

Somatosensory areas. PV diffuse fluorescence
comparison

Two-sample paired
t-test 7 (mice) per group t(6)=0.79, P=0.456

S6H Somatosensory areas. Comparison by layer of
PV energy Two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =4.23, P=0.009

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=–2.57, P=0.194
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.65, P=0.556
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.31, P=0.999
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.47, P=0.065
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.65, P=0.052

S6I Somatosensory areas. Comparison by layer of
PV diffuse fluorescence Two-way RM ANOVA 7 (mice) per group

Interaction
layer*areaHierarchy
F(4,24) =12.02, P<0.001

L1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=-0.48, P=0.995
L2/3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=-0.27, P=0.999
L4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=1.11, P=0.843
L5 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.21, P=0.302
L6 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.66, P=0.979

S7A Visual areas. Percentage of WFA+ PV cells in
primary versus associative

Two-sample paired
t-test 7 (mice) per group t(6)=16.34, P<0.001

S7B
Visual Areas. Distribution of PV cells in
intensity classes in primary vs associative
areas.

Two-way RM ANOVA 7 (mice) per group
Interaction intensity-
Class*areaHierarchy
F(3,18) =5.93, P=0.005

Int class 1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.29, P=0.065
Int class 2 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.77, P=0.921
Int class 3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.40, P=0.197
Int class 4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.35, P=0.209

S7C Auditory areas. Percentage of WFA+ PV cells in
primary versus associative

Two-sample paired
t-test 7 (mice) per group t(6)=9.05, P<0.001

S7D
AuditoryAreas. Distribution of PV cells in
intensity classes in primary vs associative
areas.

Two-way RM ANOVA 7 (mice) per group
Interaction intensity-
Class*areaHierarchy
F(3,18) =5.93, P=0.008

Int class 1 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=3.01, P=0.092
Int class 2 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=2.23, P=0.242
Int class 3 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.53, P=0.979
Int class 4 - Primary vs Associative Paired T-test, Sidak 7 (mice) per group t(6)=0.55, P=0.975

S7E Somatosensory areas. Percentage of WFA+ PV
cells in primary versus associative

Two-sample paired
t-test 7 (mice) per group t(6)=3.77, P=0.009

S7F
Somatosensory Areas. Distribution of PV cells
in intensity classes in primary vs associative
areas.

Two-way RM ANOVA 7 (mice) per group
Interaction intensity-
Class*areaHierarchy
F(3,18) =5.93, P=0.185
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Fig Description Test N (units) Results

S9A PV energy in high-WFA vs low-WFA
subnetworks

Two-sample paired
t-test 7 (mice) per group t(6)=10.03, P<0.001

S9B
High-WFA vs low-WFA subnetworks.
Distribution of PV cells in intensity classes in
primary vs associative areas.

Two-way RM ANOVA 7 (mice) per group
Interaction intensity-
Class*areaHierarchy
F(3,18) =30.86, P<0.001

Int class 1 - High-WFA vs Low-WFA Paired T-test, Sidak 7 (mice) per group t(6)=10.87, P<0.001
Int class 2 - High-WFA vs Low-WFA Paired T-test, Sidak 7 (mice) per group t(6)=2.68, P=0.138
Int class 3 - High-WFA vs Low-WFA Paired T-test, Sidak 7 (mice) per group t(6)=5.86, P=0.0.004
Int class 4 - High-WFA vs Low-WFA Paired T-test, Sidak 7 (mice) per group t(6)=2.40, P=0.197

Table ST2. Coarse-ontology brain regions

Name Acronym regionID

Isocortex Isocortex 315
Olfactory areas OLF 698
Hippocampal formation HPF 1089
Cortical subplate CTXsp 703
Striatum STR 477
Pallidum PAL 803
Thalamus TH 549
Hypothalamus HY 1097
Midbrain MB 313
Pons P 771
Medulla MY 354
Cerebellum CB 512

Table ST3. Cortical regions

Name Acronym regionID
Frontal pole, cerebral cortex FRP 184Primary motor area MOp 985Secondary motor area MOs 993Primary somatosensory area, nose SSp-n 353Primary somatosensory area, barrel field SSp-bfd 329Primary somatosensory area, lower limb SSp-ll 337Primary somatosensory area, mouth SSp-m 345Primary somatosensory area, upper limb SSp-ul 369Primary somatosensory area, trunk SSp-tr 361Primary somatosensory area, unassigned SSp-un 182305689Supplemental somatosensory area SSs 378Anterolateral visual area VISal 402Anteromedial visual area VISam 394Lateral visual area VISl 409Primary visual area VISp 385Posterolateral visual area VISpl 425posteromedial visual area VISpm 533Laterointermediate area VISli 312782574Postrhinal area VISpor 312782628Anterior area VISa 312782546Rostrolateral visual area VISrl 417Dorsal auditory area AUDd 1011Primary auditory area AUDp 1002Posterior auditory area AUDpo 1027Ventral auditory area AUDv 1018
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Name Acronym regionID
Infralimbic area ILA 44Prelimbic area PL 972Orbital area, medial part ORBm 731Orbital area, lateral part ORBl 723Orbital area, ventrolateral part ORBvl 746Anterior cingulate area, dorsal part ACAd 39Anterior cingulate area, ventral part ACAv 48Retrosplenial area, lateral agranular part RSPagl 894Retrosplenial area, dorsal part RSPd 879Retrosplenial area, ventral part RSPv 886Gustatory areas GU 1057Visceral area VISC 677Agranular insular area, dorsal part AId 104Agranular insular area, posterior part AIp 111Agranular insular area, ventral part AIv 119Temporal association areas TEa 541Ectorhinal area ECT 895Perirhinal area PERI 922Entorhinal area, lateral part ENTl 918Entorhinal area, medial part, dorsal zone ENTm 926

Table ST4. Mid-ontology brain regions

Name Acronym Parent Area regionID

Frontal pole, cerebral cortex FRP Isocortex 184
Primary motor area MOp Isocortex 985
Secondary motor area MOs Isocortex 993
Primary somatosensory area, nose SSp-n Isocortex 353
Primary somatosensory area, barrel field SSp-bfd Isocortex 329
Primary somatosensory area, lower limb SSp-ll Isocortex 337
Primary somatosensory area, mouth SSp-m Isocortex 345
Primary somatosensory area, upper limb SSp-ul Isocortex 369
Primary somatosensory area, trunk SSp-tr Isocortex 361
Primary somatosensory area, unassigned SSp-un Isocortex 182305689
Supplemental somatosensory area SSs Isocortex 378
Gustatory areas GU Isocortex 1057
Visceral area VISC Isocortex 677
Dorsal auditory area AUDd Isocortex 1011
Primary auditory area AUDp Isocortex 1002
Posterior auditory area AUDpo Isocortex 1027
Ventral auditory area AUDv Isocortex 1018
Anterolateral visual area VISal Isocortex 402
Anteromedial visual area VISam Isocortex 394
Lateral visual area VISl Isocortex 409
Primary visual area VISp Isocortex 385
Posterolateral visual area VISpl Isocortex 425
posteromedial visual area VISpm Isocortex 533
Laterointermediate area VISli Isocortex 312782574
Postrhinal area VISpor Isocortex 312782628
Anterior cingulate area, dorsal part ACAd Isocortex 39
Anterior cingulate area, ventral part ACAv Isocortex 48
Prelimbic area PL Isocortex 972
Infralimbic area ILA Isocortex 44
Orbital area, lateral part ORBl Isocortex 723
Orbital area, medial part ORBm Isocortex 731
Orbital area, ventrolateral part ORBvl Isocortex 746
Agranular insular area, dorsal part AId Isocortex 104
Agranular insular area, posterior part AIp Isocortex 111
Agranular insular area, ventral part AIv Isocortex 119
Retrosplenial area, lateral agranular part RSPagl Isocortex 894
Retrosplenial area, dorsal part RSPd Isocortex 879
Retrosplenial area, ventral part RSPv Isocortex 886
Anterior area VISa Isocortex 312782546
Rostrolateral visual area VISrl Isocortex 417
Temporal association areas TEa Isocortex 541
Perirhinal area PERI Isocortex 922
Ectorhinal area ECT Isocortex 895
Main olfactory bulb MOB Olfactory areas 507
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Name Acronym Parent Area regionID

Accessory olfactory bulb AOB Olfactory areas 151
Anterior olfactory nucleus AON Olfactory areas 159
Taenia tecta TT Olfactory areas 589
Dorsal peduncular area DP Olfactory areas 814
Piriform area PIR Olfactory areas 961
Nucleus of the lateral olfactory tract NLOT Olfactory areas 619
Cortical amygdalar area, anterior part COAa Olfactory areas 639
Cortical amygdalar area, posterior part COAp Olfactory areas 647
Piriform-amygdalar area PAA Olfactory areas 788
Postpiriform transition area TR Olfactory areas 566
Field CA1 CA1 Hippocampal formation 382
Field CA2 CA2 Hippocampal formation 423
Field CA3 CA3 Hippocampal formation 463
Dentate gyrus DG Hippocampal formation 726
Fasciola cinerea FC Hippocampal formation 982
Induseum griseum IG Hippocampal formation 19
Entorhinal area, lateral part ENTl Hippocampal formation 918
Entorhinal area, medial part, dorsal zone ENTm Hippocampal formation 926
Parasubiculum PAR Hippocampal formation 843
Postsubiculum POST Hippocampal formation 1037
Presubiculum PRE Hippocampal formation 1084
Subiculum SUB Hippocampal formation 502
Prosubiculum ProS Hippocampal formation 484682470
Hippocampo-amygdalar transition area HATA Hippocampal formation 589508447
Area prostriata APr Hippocampal formation 484682508
Claustrum CLA Cortical subplate 583
Endopiriform nucleus, dorsal part EPd Cortical subplate 952
Endopiriform nucleus, ventral part EPv Cortical subplate 966
Lateral amygdalar nucleus LA Cortical subplate 131
Basolateral amygdalar nucleus BLA Cortical subplate 295
Basomedial amygdalar nucleus BMA Cortical subplate 319
Posterior amygdalar nucleus PA Cortical subplate 780
Caudoputamen CP Striatum 672
Nucleus accumbens ACB Striatum 56
Fundus of striatum FS Striatum 998
Olfactory tubercle OT Striatum 754
Lateral septal nucleus, caudal (caudodorsal) part LSc Striatum 250
Lateral septal nucleus, rostral (rostroventral) part LSr Striatum 258
Lateral septal nucleus, ventral part LSv Striatum 266
Septofimbrial nucleus SF Striatum 310
Septohippocampal nucleus SH Striatum 333
Anterior amygdalar area AAA Striatum 23
Bed nucleus of the accessory olfactory tract BA Striatum 292
Central amygdalar nucleus CEA Striatum 536
Intercalated amygdalar nucleus IA Striatum 1105
Medial amygdalar nucleus MEA Striatum 403
Globus pallidus, external segment GPe Pallidum 1022
Globus pallidus, internal segment GPi Pallidum 1031
Substantia innominata SI Pallidum 342
Magnocellular nucleus MA Pallidum 298
Medial septal nucleus MS Pallidum 564
Diagonal band nucleus NDB Pallidum 596
Triangular nucleus of septum TRS Pallidum 581
Bed nuclei of the stria terminalis BST Pallidum 351
Bed nucleus of the anterior commissure BAC Pallidum 287
Ventral anterior-lateral complex of the thalamus VAL Thalamus 629
Ventral medial nucleus of the thalamus VM Thalamus 685
Ventral posterolateral nucleus of the thalamus VPL Thalamus 718
Ventral posterolateral nucleus of the thalamus, parvicellular part VPLpc Thalamus 725
Ventral posteromedial nucleus of the thalamus VPM Thalamus 733
Ventral posteromedial nucleus of the thalamus, parvicellular part VPMpc Thalamus 741
Posterior triangular thalamic nucleus PoT Thalamus 563807435
Subparafascicular nucleus, magnocellular part SPFm Thalamus 414
Subparafascicular nucleus, parvicellular part SPFp Thalamus 422
Subparafascicular area SPA Thalamus 609
Peripeduncular nucleus PP Thalamus 1044
Medial geniculate complex MG Thalamus 475
Dorsal part of the lateral geniculate complex LGd Thalamus 170
Lateral posterior nucleus of the thalamus LP Thalamus 218
Posterior complex of the thalamus PO Thalamus 1020
Posterior limiting nucleus of the thalamus POL Thalamus 1029
Suprageniculate nucleus SGN Thalamus 325
Anteroventral nucleus of thalamus AV Thalamus 255
Anteromedial nucleus AM Thalamus 127
Anterodorsal nucleus AD Thalamus 64
Interanteromedial nucleus of the thalamus IAM Thalamus 1120
Interanterodorsal nucleus of the thalamus IAD Thalamus 1113
Lateral dorsal nucleus of thalamus LD Thalamus 155
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Name Acronym Parent Area regionID

Intermediodorsal nucleus of the thalamus IMD Thalamus 59
Mediodorsal nucleus of thalamus MD Thalamus 362
Submedial nucleus of the thalamus SMT Thalamus 366
Perireunensis nucleus PR Thalamus 1077
Paraventricular nucleus of the thalamus PVT Thalamus 149
Parataenial nucleus PT Thalamus 15
Nucleus of reuniens RE Thalamus 181
Xiphoid thalamic nucleus Xi Thalamus 560581559
Rhomboid nucleus RH Thalamus 189
Central medial nucleus of the thalamus CM Thalamus 599
Paracentral nucleus PCN Thalamus 907
Central lateral nucleus of the thalamus CL Thalamus 575
Parafascicular nucleus PF Thalamus 930
Posterior intralaminar thalamic nucleus PIL Thalamus 560581563
Reticular nucleus of the thalamus RT Thalamus 262
Intergeniculate leaflet of the lateral geniculate complex IGL Thalamus 27
Intermediate geniculate nucleus IntG Thalamus 563807439
Ventral part of the lateral geniculate complex LGv Thalamus 178
Subgeniculate nucleus SubG Thalamus 321
Medial habenula MH Thalamus 483
Lateral habenula LH Thalamus 186
Supraoptic nucleus SO Hypothalamus 390
Accessory supraoptic group ASO Hypothalamus 332
Paraventricular hypothalamic nucleus PVH Hypothalamus 38
Periventricular hypothalamic nucleus, anterior part PVa Hypothalamus 30
Periventricular hypothalamic nucleus, intermediate part PVi Hypothalamus 118
Arcuate hypothalamic nucleus ARH Hypothalamus 223
Anterodorsal preoptic nucleus ADP Hypothalamus 72
Anteroventral preoptic nucleus AVP Hypothalamus 263
Anteroventral periventricular nucleus AVPV Hypothalamus 272
Dorsomedial nucleus of the hypothalamus DMH Hypothalamus 830
Median preoptic nucleus MEPO Hypothalamus 452
Medial preoptic area MPO Hypothalamus 523
Vascular organ of the lamina terminalis OV Hypothalamus 763
Posterodorsal preoptic nucleus PD Hypothalamus 914
Parastrial nucleus PS Hypothalamus 1109
Periventricular hypothalamic nucleus, posterior part PVp Hypothalamus 126
Periventricular hypothalamic nucleus, preoptic part PVpo Hypothalamus 133
Subparaventricular zone SBPV Hypothalamus 347
Suprachiasmatic nucleus SCH Hypothalamus 286
Subfornical organ SFO Hypothalamus 338
Ventromedial preoptic nucleus VMPO Hypothalamus 576073699
Ventrolateral preoptic nucleus VLPO Hypothalamus 689
Anterior hypothalamic nucleus AHN Hypothalamus 88
Lateral mammillary nucleus LM Hypothalamus 210
Medial mammillary nucleus MM Hypothalamus 491
Supramammillary nucleus SUM Hypothalamus 525
Tuberomammillary nucleus, dorsal part TMd Hypothalamus 1126
Tuberomammillary nucleus, ventral part TMv Hypothalamus 1
Medial preoptic nucleus MPN Hypothalamus 515
Dorsal premammillary nucleus PMd Hypothalamus 980
Ventral premammillary nucleus PMv Hypothalamus 1004
Paraventricular hypothalamic nucleus, descending division PVHd Hypothalamus 63
Ventromedial hypothalamic nucleus VMH Hypothalamus 693
Posterior hypothalamic nucleus PH Hypothalamus 946
Lateral hypothalamic area LHA Hypothalamus 194
Lateral preoptic area LPO Hypothalamus 226
Preparasubthalamic nucleus PST Hypothalamus 356
Parasubthalamic nucleus PSTN Hypothalamus 364
Perifornical nucleus PeF Hypothalamus 576073704
Retrochiasmatic area RCH Hypothalamus 173
Subthalamic nucleus STN Hypothalamus 470
Tuberal nucleus TU Hypothalamus 614
Zona incerta ZI Hypothalamus 797
Median eminence ME Hypothalamus 10671
Superior colliculus, sensory related SCs Midbrain 302
Inferior colliculus IC Midbrain 4
Nucleus of the brachium of the inferior colliculus NB Midbrain 580
Nucleus sagulum SAG Midbrain 271
Parabigeminal nucleus PBG Midbrain 874
Midbrain trigeminal nucleus MEV Midbrain 460
Subcommissural organ SCO Midbrain 599626923
Substantia nigra, reticular part SNr Midbrain 381
Ventral tegmental area VTA Midbrain 749
Paranigral nucleus PN Midbrain 607344830
Midbrain reticular nucleus, retrorubral area RR Midbrain 246
Midbrain reticular nucleus MRN Midbrain 128
Superior colliculus, motor related SCm Midbrain 294
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Name Acronym Parent Area regionID

Periaqueductal gray PAG Midbrain 795
Anterior pretectal nucleus APN Midbrain 215
Medial pretectal area MPT Midbrain 531
Nucleus of the optic tract NOT Midbrain 628
Nucleus of the posterior commissure NPC Midbrain 634
Olivary pretectal nucleus OP Midbrain 706
Posterior pretectal nucleus PPT Midbrain 1061
Cuneiform nucleus CUN Midbrain 616
Red nucleus RN Midbrain 214
Oculomotor nucleus III Midbrain 35
Medial accesory oculomotor nucleus MA3 Midbrain 549009211
Edinger-Westphal nucleus EW Midbrain 975
Trochlear nucleus IV Midbrain 115
Paratrochlear nucleus Pa4 Midbrain 606826663
Ventral tegmental nucleus VTN Midbrain 757
Anterior tegmental nucleus AT Midbrain 231
Lateral terminal nucleus of the accessory optic tract LT Midbrain 66
Dorsal terminal nucleus of the accessory optic tract DT Midbrain 75
Medial terminal nucleus of the accessory optic tract MT Midbrain 58
Substantia nigra, compact part SNc Midbrain 374
Pedunculopontine nucleus PPN Midbrain 1052
Interfascicular nucleus raphe IF Midbrain 12
Interpeduncular nucleus IPN Midbrain 100
Rostral linear nucleus raphe RL Midbrain 197
Central linear nucleus raphe CLI Midbrain 591
Dorsal nucleus raphe DR Midbrain 872
Nucleus of the lateral lemniscus NLL Pons 612
Principal sensory nucleus of the trigeminal PSV Pons 7
Parabrachial nucleus PB Pons 867
Superior olivary complex SOC Pons 398
Barrington’s nucleus B Pons 280
Dorsal tegmental nucleus DTN Pons 880
Posterodorsal tegmental nucleus PDTg Pons 599626927
Pontine central gray PCG Pons 898
Pontine gray PG Pons 931
Pontine reticular nucleus, caudal part PRNc Pons 1093
Supragenual nucleus SG Pons 318
Supratrigeminal nucleus SUT Pons 534
Tegmental reticular nucleus TRN Pons 574
Motor nucleus of trigeminal V Pons 621
Peritrigeminal zone P5 Pons 549009215
Accessory trigeminal nucleus Acs5 Pons 549009219
Parvicellular motor 5 nucleus PC5 Pons 549009223
Intertrigeminal nucleus I5 Pons 549009227
Superior central nucleus raphe CS Pons 679
Locus ceruleus LC Pons 147
Laterodorsal tegmental nucleus LDT Pons 162
Nucleus incertus NI Pons 604
Pontine reticular nucleus PRNr Pons 146
Nucleus raphe pontis RPO Pons 238
Subceruleus nucleus SLC Pons 350
Sublaterodorsal nucleus SLD Pons 358
Area postrema AP Medulla 207
Dorsal cochlear nucleus DCO Medulla 96
Ventral cochlear nucleus VCO Medulla 101
Cuneate nucleus CU Medulla 711
Gracile nucleus GR Medulla 1039
External cuneate nucleus ECU Medulla 903
Nucleus of the trapezoid body NTB Medulla 642
Nucleus of the solitary tract NTS Medulla 651
Spinal nucleus of the trigeminal, caudal part SPVC Medulla 429
Spinal nucleus of the trigeminal, interpolar part SPVI Medulla 437
Spinal nucleus of the trigeminal, oral part SPVO Medulla 445
Paratrigeminal nucleus Pa5 Medulla 589508451
Abducens nucleus VI Medulla 653
Facial motor nucleus VII Medulla 661
Accessory facial motor nucleus ACVII Medulla 576
Nucleus ambiguus AMB Medulla 135
Dorsal motor nucleus of the vagus nerve DMX Medulla 839
Gigantocellular reticular nucleus GRN Medulla 1048
Infracerebellar nucleus ICB Medulla 372
Inferior olivary complex IO Medulla 83
Intermediate reticular nucleus IRN Medulla 136
Inferior salivatory nucleus ISN Medulla 106
Linear nucleus of the medulla LIN Medulla 203
Lateral reticular nucleus LRN Medulla 235
Magnocellular reticular nucleus MARN Medulla 307
Medullary reticular nucleus MDRN Medulla 395
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Name Acronym Parent Area regionID

Medullary reticular nucleus, dorsal part MDRNd Medulla 1098
Medullary reticular nucleus, ventral part MDRNv Medulla 1107
Parvicellular reticular nucleus PARN Medulla 852
Parasolitary nucleus PAS Medulla 859
Paragigantocellular reticular nucleus, dorsal part PGRNd Medulla 970
Paragigantocellular reticular nucleus, lateral part PGRNl Medulla 978
Nucleus of Roller NR Medulla 177
Nucleus prepositus PRP Medulla 169
Parapyramidal nucleus PPY Medulla 1069
Lateral vestibular nucleus LAV Medulla 209
Medial vestibular nucleus MV Medulla 202
Spinal vestibular nucleus SPIV Medulla 225
Superior vestibular nucleus SUV Medulla 217
Nucleus x x Medulla 765
Hypoglossal nucleus XII Medulla 773
Nucleus y y Medulla 781
Nucleus raphe magnus RM Medulla 206
Nucleus raphe pallidus RPA Medulla 230
Nucleus raphe obscurus RO Medulla 222
Lingula (I) LING Cerebellum 912
Central lobule CENT Cerebellum 920
Culmen CUL Cerebellum 928
Declive (VI) DEC Cerebellum 936
Folium-tuber vermis (VII) FOTU Cerebellum 944
Pyramus (VIII) PYR Cerebellum 951
Uvula (IX) UVU Cerebellum 957
Nodulus (X) NOD Cerebellum 968
Simple lobule SIM Cerebellum 1007
Ansiform lobule AN Cerebellum 1017
Paramedian lobule PRM Cerebellum 1025
Copula pyramidis COPY Cerebellum 1033
Paraflocculus PFL Cerebellum 1041
Flocculus FL Cerebellum 1049
Fastigial nucleus FN Cerebellum 989
Interposed nucleus IP Cerebellum 91
Dentate nucleus DN Cerebellum 846
Vestibulocerebellar nucleus VeCB Cerebellum 589508455
fiber tracts fiber tracts root 1009
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Supplementary Data1072

Supplementary data SD11073

Whole-brain PNNs metrics. This .xlsx file contains tables with quantitative measurements for1074

PNN density, WFA diffuse fluorescence, PNN intensity, and PNN energy for all brain areas. Data1075

are presented at three levels of resolution: coarse, medium, and fine. For each resolution level, we1076

report data from each mouse and the mean values across all mice in separate sheets.1077

Supplementary data SD21078

Whole-brain PV-positive cells metrics. This .xlsx file contains tables with quantitative measure-1079

ments for PV cell density, PV diffuse fluorescence, PV cell intensity, and PV energy for all brain1080

areas. Data are presented at three levels of resolution: coarse, medium, and fine. For each level,1081

we report data from each mouse and the mean values across all mice in separate sheets.1082

Supplementary data SD31083

Whole-brain PNN-PV colocalization metrics. This .xlsx file contains tables with the percentage1084

of PNNs ensheathing a PV cell (pvPositive_pnn) and the percentage of PV cells surrounded by a1085

PNN (wfaPositive_pv), for all brain areas. Data are presented at three levels of resolution: coarse,1086

medium, and fine, in separate sheets. For the coarse resolution level, we report data from each1087

mouse and the mean values across all mice. For medium and fine and resolution levels, we report1088

data from each experimental unit (indicated with the identifier of the animal that was excluded,1089

see section Colocalization PNN-PV in Methods & Materials for details) as well as the mean values1090

across all experimental units. Only areas with at least 3 PNNs and 3 PV cells in at least 4 animals1091

are included.1092

Supplementary data SD41093

Correlation of staining metrics with gene expression. This .xlsx file contains tables with the1094

results of the correlation analysis of the staining metrics in our dataset with the gene expression1095

data published in the Allen Institute Anatomic Gene Expression Atlas (AGEA). Correlations with1096

PNN energy, PV energy, and WFA diffuse fluorescence are reported in separate sheets. Each gene1097

is referred to with the acronym, the ID in the AGEA, the Entrez ID, and the full name. For each gene,1098

we report the Spearman correlation coefficient, the correspondent p-value, the false discovery rate1099

(FDR), and the Bonferroni-adjusted p-value.1100
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