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ABSTRACT 
The mammalian body plan is shaped by rhythmic segmentation of mesoderm into somites, 

which are transient embryonic structures consisting of hundreds of cells that form down each 

side of the neural tube. We have systematically analysed the genome-wide transcriptional and 

chromatin dynamics occurring within nascent somites, from early inception of somitogenesis 

to the latest stages of body plan establishment. We created matched gene expression and 

open chromatin maps for the three leading pairs of somites at six time points during embryonic 

development. Here we show that the rate of somite differentiation accelerates as development 

progresses. We identified a conserved maturation programme followed by all somites after 

segmentation, but somites from more developed embryos concomitantly switch on 

differentiation programmes from derivative cell lineages soon after segmentation. Integrated 

analysis of the somitic transcriptional and chromatin activities revealed opposing regulatory 

modules controlling the onset of differentiation. We identified transcription factors expressed 

during early development that inhibit the activity of proteins required for commitment and 

differentiation of skeletal cell populations. Our results provide a powerful, high-resolution view 

of the molecular genetics underlying somitic development in mammals. 
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INTRODUCTION 
The segmentation of the body plan during early embryogenesis is a fundamental and 

conserved feature of all vertebrate species. It results in the metameric organisation of the 

vertebrae and the associated skeletal muscles, nerves, and blood vessels. This segmentation 

is established via formation of somites, which are transient embryonic structures consisting of 5 
hundreds of cells that bud off from the anterior tip of the presomitic mesoderm (PSM) on each 

side of the neural tube. Each pair of somites is symmetrically and rhythmically formed along 

the anterior-posterior axis according to the clock and wavefront model (Cooke and Zeeman 

1976).  

 10 
This model integrates spatiotemporal information from waves of transcriptionally oscillating 

genes in the PSM (the molecular clock) and antagonistic signalling gradients along the embryo 

axis (the wavefront). The molecular oscillator is known as the segmentation clock, which drives 

cyclic and synchronised gene expression along the PSM (Palmeirim et al. 1997). The so-called 

clock genes belong to the Notch, Wnt and FGF signalling pathways (Dequéant and Pourquié 15 
2008). The wavefront involves posterior gradients of Wnt and FGF signalling that are 

counteracted by an opposing gradient of retinoic acid secreted from the somites (Bénazéraf 

and Pourquié 2013). When the segmentation clock reaches cells that have passed the 

wavefront, segmentation genes, including Mesp2, are activated, leading to the specification of 

the somite boundary (Saga 2012). As well as specifying the somite boundaries, retinoic acid 20 
signalling suppresses signals that break left-right symmetry, ensuring that somite production 

is bilaterally symmetric (J. Vermot and Pourquié 2005; Julien Vermot et al. 2005). This periodic 

addition of somites underlies body plan generation in all vertebrates, and the oscillating signals 

from Notch, Wnt and FGF pathways are conserved in the PSM of model organisms as diverse 

as mouse, chicken, and zebrafish (Krol et al. 2011). 25 
 

The specification of somites along the anterior-posterior axis is determined before 

somitogenesis by Hox gene expression (Krumlauf 1994) and the specific combination of Hox 

genes expressed along the axis establishes the identity of the resulting vertebrae (Wellik 

2007). Somites are further patterned along the dorso-ventral and medio-lateral axes, giving 30 
rise to two somitic derivatives found in all vertebrates: the sclerotome (precursor of vertebral 

and rib cartilage, tendons, and blood vessels) and the dermomyotome (precursor of skeletal 

muscles and back dermis). Fate specification to either derivative is controlled by signals from 

adjacent tissues. Ventral cells of the somite differentiate into sclerotome under the influence 

of Shh signals from the notochord and the floor-plate of the neural tube. Dorsal cells instead 35 
receive Wnt signals from the neural tube and the ectoderm and BMP4 from the lateral 

mesoderm, to give rise to the dermomyotome (Weldon and Münsterberg 2022).  
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Master transcriptional regulators driving somite differentiation have been identified through 

classical genetic approaches (Yusuf and Brand-Saberi 2006; Christ, Huang, and Scaal 2007). 

However, how these master regulators orchestrate somitogenesis through embryonic space 

and time, and indeed what genes they directly regulate, remains less clear. While several 5 
studies have used gene expression microarrays to characterise gene expression patterns 

during somitogenesis, these studies have all been performed in the presomitic mesoderm (Krol 

et al. 2011; Dequéant et al. 2006; Ozbudak, Tassy, and Pourquié 2010).  

 

Here, we map the transcriptional and chromatin changes that occur across somitogenesis by 10 
performing high-resolution RNA and ATAC-sequencing of individual, manually microdissected 

somites at six developmental stages. By comparing the three most recently segmented 

somites, we characterised the molecular basis of the earliest stages of somite maturation. 

Additionally, we identified patterns of dynamic regulatory activity across development, with 

pronounced differences between somites that give rise to differing types of vertebrae. By 15 
characterising the biological processes dominating each stage, we found that somite 

differentiation accelerates with developmental progression. Finally, we used the combined 

information from the transcriptional and chromatin maps to define regulatory modules with 

differing activity during early and late development. These molecular programmes control the 

onset of differentiation, thus regulating the timing of skeletal system development.    20 
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RESULTS 
A high resolution transcriptional and regulatory map of somitogenesis 
To characterise the transcriptional changes that orchestrate mouse somitogenesis, we 

generated coupled transcriptional and chromatin accessibility profiles of individual somite 

pairs, across embryonic development. Each somite typically contains 500-1000 cells, which is 5 
sufficient to generate high-resolution small bulk data. We first compared the transcriptomes of 

matched left and right somites dissected from 20-25 somite embryos, and observed no 

significant differences in expression (Figure S1), indicating that from a molecular genetics 

perspective, the two somites were indistinguishable. Therefore, for each somite pair, we used 

one somite to map the transcriptome (RNA-seq) and one to map matched open chromatin 10 
(ATAC-seq) (Figure 1A). 

 

 
Figure 1 | Expression and chromatin profiling of mouse somitogenesis. A) Schematic of somite 
pairs on each side of the neural tube, and the corresponding vertebrae structures they will form. One 

somite from each pair was used for RNA-seq, and the other for ATAC-seq. Somites and vertebrae are 

coloured based on their vertebral identity (cervical, thoracic, lumbar, sacral or caudal). Somites at 

boundaries between two different types of vertebrae are numbered. The first four somite pairs (occipital) 

are not shown. B) Somites collected in this study. From each embryo, the three most posterior somites 

(SI-SIII) were collected. Embryos profiled were from six different developmental stages, determined by 
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the number of somites. ss = somite stage. n = number of embryos collected. C) Heatmap of the 

expression of all Hox genes. Samples are ordered in columns according to their observed somite stage. 

Each row is a different Hox gene, ordered by paralogous groups from 1 to 13. Expression is represented 

as z-scores. D) Principal component analysis of the expression of Hox genes orders somites 

consistently with their observed somite stage. E) Proportion of open chromatin regions classified based 

on their genomic context. 

 

After segmentation, somites maintain a round shape for several hours before undergoing an 

epithelial-to-mesenchymal transition (EMT) when cells commit to somite-derived lineages and 

initiate migration (Yusuf and Brand-Saberi 2006). To study the molecular changes associated 

with fate commitment, we collected the three most posterior pairs of somites, which correspond 5 
to those most recently segmented, and that have not yet begun EMT (Christ, Huang, and Scaal 

2007; M. Jacob, Christ, and Jacob 1975) (Figure 1B). To understand how somitogenesis 

progresses across embryonic development, we sampled these somite trios from embryos at 

six different developmental stages. We defined the embryonic stage by counting the total 

number of somite pairs, and profiled at least four different embryos containing 8, 18, 21, 25, 10 
27 and 35 pairs of somites (Figure 1B and Table S1). These stages span four of the five 

different types of vertebrae (cervical, thoracic, lumbar and sacral; Figure 1A), providing profiles 

of somites that will contribute to all four structures. 

 

We generated matched transcriptome (RNA-seq) and open chromatin (ATAC-seq) maps from 15 
the vast majority (71/81) of the samples (Tables S1). From the 77 RNA-seq libraries, all but 

one produced good-quality transcriptomes (Tables S2). We normalised for sequencing depth 

and corrected for batch effects associated with the date of somite collection (Methods; Figure 

S2). 

 20 
Somites from specific axial levels express particular combinations of Hox genes (Wellik 2007), 

which are directly associated with segment identity (Kmita and Duboule 2003; Mallo, Wellik, 

and Deschamps 2010). Somites from different embryonic stages consistently showed clear 

differences in the class and expression level of Hox genes (Figure 1C), and the expression of 

Hox genes alone accurately ordered samples according to our observed somite stage (Figure 25 
1D). 

 

ATAC-seq libraries were successfully produced from 75 samples, but 25 of these were 

removed after applying stringent quality control criteria (Figure S3 and Table S3). The 

remaining 50 open chromatin maps showed efficiency biases, which were correlated with 30 
mean fragment abundance (Figure S4A-B). To compensate for this trend, we used a loess-
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based normalisation strategy (Figure S4C). Additionally, we applied the same batch correction 

approach that was used on the RNA-seq data to remove technical variation (Figure S4D-E).  

 

We classified the possible functional role of open chromatin regions based on their genomic 

location. Peaks that were within 200 bp of an annotated transcription start site were deemed 5 
promoter-like elements and represent 19% of total peaks; an additional 12% of peaks 

overlapped gene exons. The remainder of the peaks were annotated as enhancer-like 

elements, and subdivided into proximal (24%) or distal (7%) if they were within 25 and 100 kb 

of an annotated gene, respectively; or intergenic (1%) (Figure 1E). 

 10 
Epithelial somites deploy a shared maturation programme across embryonic 
development 
We systematically profiled the three most recently segmented somites, which are at the 

beginning of the differentiation process that will give rise to all somitic derivatives, including 

muscle, bone, cartilage and dermis (H. J. Jacob, Christ, and Jacob 1974; Christ et al. 1992; 15 
Ordahl and Le Douarin 1992; Aoyama 1993). Following the nomenclature proposed by Christ 

and Ordahl (Christ and Ordahl 1995), we refer to each somite in these trios as somites I, II and 

III, from the most posterior to the most anterior, respectively (Figure 2A).  

 

To characterise the molecular changes underlying somite maturation, we compared all 20 
pairwise combinations of somites I, II and III at each developmental stage. We identified a 

median of 453 genes that significantly differ per stage (FDR < 5% and |fold-change|>1.5). Most 

differentially expressed genes had subtle changes in expression, with half showing less than 

a two-fold difference between any two somites. To increase statistical power, we repeated the 

analysis using samples from different stages as replicates, and detected genes that showed 25 
consistent changes regardless of developmental stage. Altogether, we identified 2,977 

significantly differentially expressed genes. Similar numbers of genes were up and down-

regulated, with the strongest differences manifested between somites I and III (Figure 2B). The 

vast majority of differentially expressed genes (75.8%) showed consistent expression 

dynamics across different stages. However, most genes (86.9%) also showed differences in 30 
expression levels across developmental time, illustrating the complex regulatory dynamics 

prevalent during embryonic development (Figure 2C).  
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Figure 2 | Somites follow a conserved maturation programme across development. A) Schematic 

indicating the somite trios profiled from each embryo. A: anterior; P: posterior. Colour and shading 

scheme is preserved throughout all figures to indicate the different somites. B) Volcano plot of 
expression changes between somites I and III. Genes significantly differentially expressed are coloured. 

C) Differences in gene expression for two representative genes (Tbx22 and Col2a1) among somites 

I,II,III are consistently maintained across developmental stages. D) Significantly enriched Gene 

Ontology functional categories in the set of differentially expressed genes. Enrichment significance is 

shown on the y axis. The x-axis indicates whether a term contains a majority of genes that are 

downregulated (positive) or upregulated (negative). Points are coloured based on an ‘aggregation 

score’, which corresponds to the average fold-change of all differentially expressed genes in the GO 
term. The size of the points indicates the number of differentially expressed genes in each term. Outlined 

points correspond to terms that are also significantly enriched in the set of differentially accessible 

chromatin regions. E) Barplot of the proportion of peaks falling in different genomic contexts. 

Differentially accessible (DA) regions between somites I,II,III are enriched for enhancers. Colours 

indicate the same classes as in Figure 1E. F) Similar to D but showing the enrichment of transcription 

factor binding sites (TFBS) in differentially accessible peaks. G) Representative examples of motif 

activity dynamics for TFs that are enriched in differentially accessible peaks. Positive (negative) activity 

scores indicate the regions are more (less) accessible compared to background chromatin. Hox and 
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other hoemeodomain TF binding sites close in mature somites, while C4 zinc finger class of receptors 

(Rxra, Nr2c1, Nr2f2, Zbtb12) sites become more accessible in SIII. 

 

The genes downregulated along somite maturation were enriched for biological processes 

related to regionalisation and pattern specification, which are active in the PSM and lead to 

somite segmentation. Consistently, both the Wnt and Notch signalling pathways were 

preferentially downregulated (Dequéant and Pourquié 2008) (Figure 2D). In contrast, a steady 5 
progression towards EMT during somitogenesis was reflected by the upregulation of cell 

adhesion and migration programs, together with a switch to positive regulation of Rho and 

ERK signalling (Figure 2D).  

 

The open chromatin landscape was similarly dynamic across the somite trios, with 2,701 10 
genomic regions showing significantly different accessibility levels (FDR < 5% and |fold-

change|>1.5). Open chromatin regions that actively changed between somites were enriched 

for enhancer-like regions, with fewer promoter elements (Figure 2E). Indeed, only 506 (18.7%) 

differentially accessible regions were located within 5 kb of a differentially expressed gene, 

indicating that the regulatory mechanisms driving expression changes operate through distal 15 
regulatory elements, rather than by directly modulating chromatin accessibility at promoters. 

The coordination of dynamic chromatin accessibility and gene expression changes was also 

reflected in their shared over-representation of the same biological functions (Figure 2D). 

 

Next, we annotated transcription factor (TF) binding motifs within ATAC-seq peaks and 20 
identified 201 regulators whose binding motifs were significantly enriched in the dynamic 

regions, when compared to static open chromatin (Figure 2F). These included Hox factors, as 

well as multiple members of the homeodomain, Tal, Sox and NK families. For example, binding 

motifs for MSGN1 were present in 22% of all dynamic regions (compared to 12% in non 

differentially accessible chromatin), and most of these peaks showed reduced accessibility in 25 
more mature somites, consistent with the role of this protein as a master regulator of PSM 

differentiation (Chalamalasetty et al. 2014) (Figure 2F). In contrast, the dynamic peaks with 

binding motifs for TWIST1, a critical factor mediating EMT, were more accessible in the most 

mature somites (Lamouille, Xu, and Derynck 2014) (Figure 2F).  

 30 
Finally, to understand how the overrepresented transcription factors regulate somite 

maturation, we analysed the accessibility dynamics of the genomic loci with binding sites for 

each of these TFs. Binding sites for all Hox proteins, regardless of their paralogous group or 

stage activity pattern, showed decreased accessibility upon somite maturation (Figure 2G). 

This behaviour also extended to most of the other TFs enriched in differentially accessible 35 
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peaks (Figure 2G). One notable exception gained accessibility as somites matured: the C4 

zinc finger class of receptors, which includes the retinoid X receptor-related factors, critical in 

mediating the biological effects of retinoid signalling and its differentiation-inducing activity 

(Draut, Liebenstein, and Begemann 2019) (Figure 2G).  

 5 
Molecular remodelling across development regulates somite responses to the 
signalling environment 
Our data revealed profound changes in transcriptional and regulatory activity in somites I-III 

across development. We compared the RNA-seq profiles of somites among all different 

developmental stages (Figure 3A) and identified 10,691 genes with significant changes in 10 
expression (FDR < 5% and |fold-change|>1.5; see Methods for details; Figure 3B), including 

most known transcription factors (838 from a total of 1,310 expressed). The chromatin 

landscape was also remodelled extensively, with 33,013 open chromatin regions showing 

significant differences in accessibility (Figure S5A). In contrast to the changes observed across 

somite maturation, a much higher proportion of differentially accessible loci were in promoters 15 
or close to differentially expressed genes (Figure S5B), indicating that across development 

widespread chromatin remodelling plays a crucial role in controlling the genes available for 

expression. 

 

When ordered by developmental stage, somites from different vertebral fates showed waves 20 
of temporally restricted transcriptional and chromatin remodelling (Figure 3B, S5A). We 

analysed these patterns of coordinated gene expression by performing enrichment analysis of 

Gene Ontology functional terms. Differentially expressed genes with highest expression in 

cervical somites (clusters 1-4) were related to epithelial cell development and response to 

retinoic acid signalling, including several retinoic acid receptors (Figure 3B-C). Additional 25 
genes involved in somitogenesis and embryonic patterning were prevalent in both cervical and 

thoracic somites (clusters 1-6, Figure 3C), and were generally expressed at the highest level 

in the most-recently segmented somite. This suggests somites at these early developmental 

stages closely resemble their PSM lineage and are only beginning to activate a somite-specific 

transcriptional profile.  30 
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Figure 3 | Epithelial somites at late development activate differentiation programmes of 
derivative lineages absent in early stages. A) Schematic indicating the somites profiled across 
development, and their vertebral fate. Colour scheme is preserved throughout all figures to indicate the 

different stages.  B) Heatmap of expression of genes differentially expressed across development. 

Samples (columns) are ordered based on their somite number, and their stage and somite level are 

indicated at the top. C) Gene ontology term enrichment analysis results for sets of genes with highest 

activity at particular vertebral fates. The size of the circles indicates the number of differentially 
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expressed genes in each term-fate combination, and the intensity of the colour corresponds to the 

significance of the enrichment. D) Expression of the retinoic acid receptor Rara across development. 

Related factors such as Rxra show a similar pattern. E) Chromatin activity scores from chromVAR for 

the genome-wide binding sites (TFBS) of RARA and RXRA. Positive/negative scores indicate 

higher/lower accessibility than background chromatin. F) Zoomed-in region of the heatmap in B, 

showing the expression of genes in the cholesterol biosynthesis pathway. G) Same as E but for FOXC1. 

H-I) MYOD1 chromatin activity at its TFBSs (H) and gene expression (I) across stages. J-K) Smad5 

gene expression (J) and chromatin activity at its TFBSs (K) across stages. L) Gene expression levels 

for Mef2c across development. M) Significance scores for enrichment of chromatin regions associated 

with genes that show skeletal abnormalities in KO mice. The significance of each term is shown 

separately for the sets of regions with highest activity at each vertebral fate, indicated by the colour of 

the circle. Circle size is proportional to the significance level. 

 

We used our data to dissect the complex interplay between metabolite production, TF activity 

and chromatin dynamics involved in retinoic acid (RA) signalling, which requires precise 

spatiotemporal regulation for adequate differentiation of progenitor cells (Draut, Liebenstein, 

and Begemann 2019). RA signalling effects are mediated by the retinoic acid receptor (RAR) 5 
and retinoid X receptor (RXR) families. These ligand-dependent transcription factors can 

recruit either corepressors or coactivators to induce changes in chromatin condensation and 

regulate transcription (Draut, Liebenstein, and Begemann 2019). Expression of the enzymes 

involved in RA production (Aldh1a2 and Rdh10) as well as of several RAR/RXR TFs peaked 

early in development (Figure 3B,D). However, the accessibility of loci with binding sites for 10 
RAR/RXR factors was lowest at this stage (Figure 3E), suggesting their association with 

corepressors to induce chromatin condensation. As development proceeded these chromatin 

loci progressively increased in accessibility, maintaining an open-chromatin configuration from 

stage 25 onwards (Figure 3E). These data indicate that the epigenetic profile of somites is 

reshaped across development from a repressive to a permissive state for RA signalling activity.  15 
 

Thoracic somites showed strong enrichment for genes involved in the development of the 

skeletal system, including both the muscle and cartilage lineages (clusters 5-6; Figure 3C). We 

observed prominent expression of many components of the TGFbeta, BMP and Smad 

signalling pathways, which are fundamental in orchestrating skeletal system development 20 
(Wu, Chen, and Li 2016) (Figure 3B). We also observed coordinated expression of cholesterol 

biosynthesis, with maximal expression of 17 metabolically central genes at stage 25 before 

being downregulated at later stages (Figure 3F). Cholesterol plays important roles in the 

transduction of hedgehog signalling (S. Xu and Tang 2022; Stottmann et al. 2011) and is 

required for the correct development of muscle and bone (Campos et al. 2015; Anderson et 25 
al. 2020). Sonic hedgehog (SHH) is secreted by the notochord and controls the specification 
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of the sclerotome during patterning of epithelial somites (Murtaugh, Chyung, and Lassar 1999). 

Defective cholesterol biosynthesis leads to impaired response to Shh signalling and skeletal 

defects (Stottmann et al. 2011; S. Xu and Tang 2022). As expected, we did not detect 

significant Shh expression in the somites. However, the tightly controlled expression of the 

cholesterol pathway components suggests a mechanism to control when somites are most 5 
responsive to extrinsic hedgehog signalling. 

 

Somite differentiation accelerates across development 
Our data revealed that chromatin remodelling is concentrated in thoracic somites. In addition 

to activating the gene programmes controlling skeletal system development, somites at stages 10 
18 to 25 generally showed higher levels of open chromatin, compared to other stages. We 

observed a sharp increase in the fraction of reads in peaks in somites from stage 18 embryos, 

with further increases at stages 21 and 25, before dropping in the stage 27 somites (Figure 

3G). Consistently, over half of all differentially accessible chromatin loci showed highest 

accessibility in thoracic somites (Figure S5A). These chromatin loci were enriched for many 15 
transcription factor motifs, including several with well described roles in skeletal system 

development such as forkhead TFs, implicated in both skeletal muscle and cartilage 

development (Sanchez, Candau, and Bernardi 2014; J. Xu et al. 2021) (Figure 3H). We also 

observed increased accessibility at loci harbouring binding sites for MYOD1 (Figure 3I) and 

MYF5 (Figure S5C), which are essential for cell commitment to the myogenic lineage (Chal 20 
and Pourquié 2017). 

 

Previous work (Borman and Yorde 1994; Berti et al. 2015; Gi Fay Mok, Mohammed, and 

Sweetman 2015; Maschner et al. 2016) have characterised the expression dynamics of 

sclerotome and myotome markers, including Myod1, at several embryonic stages. These 25 
studies showed that somites from younger embryos take longer to activate marker gene 

expression compared to somites from more advanced embryos. We hypothesised that the 

shorter times required for marker expression onset in late development stem from a change in 

the permissiveness of the chromatin landscape, which allows lineage-defining TFs to activate 

their downstream pathways sooner. Analysis of the active biological processes prevalent at 30 
later developmental stages indeed revealed a switch from cell development and 

morphogenesis programmes to lineage commitment and differentiation (Figure 3C). These 

transitions were often accompanied by shifts in the active components of canonical signalling 

pathways, both by altering the expression of key TFs and by changing the permissiveness of 

the chromatin at their effector sites throughout the genome. For example, while expression of 35 
Smad3 and Bmp3 was at its highest levels in thoracic somites, increasing expression of Smad5 

alongside Bmp1, Bmp4 and Bmp7 was observed later in development (Figure 3B). Smad5 
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was expressed at all stages, albeit at lower levels early on (Figure 3J); however, its binding 

sites only became accessible from stage 25 onwards, when expression was highest (Figure 

3K). Signalling through SMAD2/3 and SMAD1/5 have opposing effects on differentiation. For 

example, while BMP3-SMAD3 block osteogenesis, BMP1 and BMP7, downstream of 

TGFbeta, promote osteoblast production (Wu, Chen, and Li 2016). Thus, the switch in usage 5 
of the opposing arms of the SMAD-BMP or SMAD-TGFbeta signalling pathways suggests cells 

at later developmental stages have progressed further in their differentiation trajectory. 

Consistent with this, genes crucial for fate determination and commitment also increased in 

expression across time: Mef2c (Figure 3L), which is fundamental in myogenic differentiation, 

and Sox9 (Figure S5D), which specifies chondrocytes, peaked in sacral somites (Green et al. 10 
2015; Molkentin et al. 1995).  

 

Additionally, we observed significant upregulation of Bmp4 specifically in lumbar somites 

(cluster7, Figure 3B). Besides regulating the development of the skeletal system, BMP4 has 

been shown to induce the expression of Flk1 (Kdr) in epithelial somites (Nimmagadda et al. 15 
2005), a factor essential for vasculogenesis and angiogenesis. The dermomyotome derivative 

lineages include vascular endothelial cells. Concomitant with Bmp4 upregulation, we also 

observed increased expression of many other genes involved in angiogenesis, such as Gata2, 

Tal1, Ets1 and Tbx20 (cluster7, Figure 3B). Later in development, sacral somites continued to 

express high levels of angiogenic factors and further activated more mature programmes 20 
involved in blood vessel remodelling (Figure 3C). 

 

Finally, to assess whether our molecular atlas captures regulators important in determining 

vertebral fate identity, we tested for enrichment of genes with specific mouse knock-out 

phenotypes. Genomic loci with highest activity in cervical or thoracic somites were strongly 25 
enriched for phenotypes affecting cervical vertebrae and thoracic and rib morphology. In 

contrast, regions active in sacral somites were associated with abnormal lumbar and sacral 

vertebrae (Figure 3M). Thus, our catalogue of differential activity along the axial skeleton can 

be utilised to identify genes and regulatory elements important for the specification of the 

different vertebral structures. 30 
 
Skeletogenesis is shaped by opposing regulatory modules 
Next, we leveraged the paired design of our dataset to map chromatin-transcription regulatory 

interactions driving somite maturation and differentiation, by applying the Functional Inference 

of Gene Regulation (FigR) method (Kartha et al. 2022) (with minor modifications, see Methods 35 
for details). First, we computed the correlation between the activity levels of all differentially 

expressed genes and the open chromatin peaks within 100 kb to identify regulatory elements 
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likely to direct nearby gene expression changes. Peak-gene pairs were considered 

significantly associated if they had stronger correlation values compared to randomised 

interactions. After restricting results to pairs with moderate to high correlation scores (>0.3), 

we identified 12,803 putative regulatory interactions, involving 47% of all differentially 

expressed genes. Although a small fraction of the interactions included promoter-like peaks in 5 
the immediate vicinity of the genes, most resembled enhancers and were dozens of kilobases 

away, with a median distance of 38 kb (interquartile range: 13.1-67.5 kb). Linked peaks 

overlapped more often with FANTOM5 and ENCODE enhancers (H3K27ac-high H3K4me3-

low signature) compared to all peaks, lending support for their regulatory activity (Figure 4A). 

This proportion sharply increased when links were restricted to those with the strongest 10 
correlations (Figure 4A). Thus, this strategy serves to enrich the set of chromatin loci for 

enhancer elements, and to associate their activity to dynamically regulated genes.   

 

Most (93.7%) differentially expressed genes significantly linked with chromatin changes were 

associated with one to five putative enhancer regions but a few hundred genes were linked to 15 
many more enhancers (Figure 4B). The set of 349 strongly-connected genes contained factors 

key in controlling somite development and differentiation, suggesting that these processes are 

under complex regulatory control. Some of the most highly connected genes were Hox factors 

from late paralogous groups (Figure 4B), consistent with chromatin remodelling playing a 

crucial role in controlling their timely expression (Soshnikova and Duboule 2009). Next, we 20 
scanned the peaks associated with these highly-regulated genes and identified enriched TF 

motifs. TF-gene pairs were assigned a regulation score that favours TFs showing correlated 

expression to the accessibility dynamics of linked peaks (Figure 4C).  

 

We identified opposing transcriptional programmes active in early and late development by 25 
clustering transcription factors with large regulation scores (Figure 4D-E). Four different 

modules of regulatory activity were evident. Module 1 acted on genes that show differences in 

expression between the somite trios, including genes involved in the establishment of anterior-

posterior patterning and somitogenesis, such as Cdx1/2, Gbx2, Lef1, and Hox genes from 

early paralogous groups (Figure 4D,E). CDX1 and GBX2 themselves, together with SALL4, 30 
showed some of the strongest regulation scores on these genes. Consistent with their role in 

the specification and patterning of somitic mesoderm, their expression was highest in the most 

immature somite I (Figure 4F). 
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Figure 4 | Regulatory modules with opposing activity along embryonic development ensure 
timely activation of skeletogenesis pathways. A) Fraction of peaks that overlap enhancer elements 

from the ENCODE and FANTOM5 catalogues. Peaks identified as putative regulators of differentially 

expressed genes (linked peaks) are more likely to be annotated enhancers. This fraction increases as 

the set of peaks is restricted to stronger interactions, as shown by limiting to linked peaks with correlation 

scores higher than 0.3-0.7. B) For each differentially expressed (DE) gene, the number of significantly 
associated peaks within 100kb. Several hundred genes are linked to a large number of peaks and these 

include many late Hox genes. C) Regulation scores predicted by FigR between transcription factors 

(TFs) and genes with many linked peaks (blue set from B). The x-axis indicates the strength of the 

correlation between TF expression and peak accessibility; the y-axis corresponds to the significance of 

the enrichment of the TF binding sites in the linked peaks. Interactions involving NR6A1 are highlighted 

with triangles. D) Heatmap depicting patterns of regulatory activity between TFs (columns) and genes 

(rows). Genes are split into four modules by hierarchical clustering. Genes from the TGFbeta and BMP 

signalling pathways  are highlighted with asterisks. Colour scale is the same as in C. E) Heatmap 
showing the expression levels of the same genes as in D across all somites profiled in this study. 

Samples (columns) are ordered based on their observed somite stage (indicated at the top). F) 
Expression levels of Sall4, one of the TFs with large regulation scores on module 1 genes. G) 
Expression levels of Nr6a1 and Gdf11 in all somites show a strong antagonistic relationship. 
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The other three modules were instead related to genes that are downregulated (module 2) or 

upregulated (modules 3 and 4) with developmental progression (Figure 4E). Module 2 activity 

was influenced by Shh signalling (GLI1; Figure 4D), while genes expressed late in 

development were under the control of several transcription factors. Among these, NR6A1 5 
showed a prominent role, particularly in module 4, with its binding sites highly enriched in the 

peaks linked to these genes (Figure 4C). Expression of Nr6a1 was negatively correlated with 

peak accessibility, indicating a repressive regulatory effect. A number of other transcription 

factors, including late Hox TFs, showed large positive regulation scores on the same genes 

(Figure 4D), suggesting antagonistic regulatory activities to NR6A1. Among this set of 10 
activating TFs were factors key in the specification of the muscle and cartilage lineages 

(MEF2C and SOX9), as well as proteins involved in balancing proliferation and differentiation 

of the progenitor cells, with many required to avoid premature differentiation (SNAI2, ZFP637, 

HOXA9 and FOXP1; Figure 4D). 

 15 
Recently, NR6A1 was shown to be a key regulator of the trunk-to-tail transition in the tailbud, 

where its expression early in development prevents premature activation of late-expressing 

genes, including late Hox genes. Nr6a1 expression is then terminated by Gdf11 to allow the 

trunk-to-tail transition (Chang et al. 2022). Although these regulatory interactions were 

dissected in undifferentiated tailbud mesoderm cells, we observed the antagonistic expression 20 
between Nr6a1 and Gdf11 is retained in segmented somites (Figure 4G), suggesting this 

regulatory programme remains at play as cells commit to the somitic lineage. Consistently, 

FigR predicted the strongest effects exerted by NR6A1 to affect all Hox genes in paralogous 

groups 10 to 13 (Figure 4D). Additional predicted regulatory interactions included several 

components of the TGFbeta and BMP signalling pathways from modules 3 and 4 (highlighted 25 
with asterisks in Figure 4D), with the peaks associated with these genes also showing 

significant enrichment for NR6A1 binding motifs. Among these genes was Smad5, with a 

regulation score only slightly lower than those observed for late Hox genes. Further, SMAD5 

itself was identified as a positive regulator of module 4 genes (Figure 4D). Thus, these data 

suggest that the regulatory network controlled by NR6A1 not only regulates the trunk-to-tail 30 
transition in paraxial mesoderm, but it may participate in the timely activation of differentiation 

pathways required for skeletogenesis. As Nr6a1 expression diminishes in later development, 

so does its repression of TGFbeta and BMP signalling. In turn, other transcription factors 

increase in activity to enhance these pathways and drive the commitment and differentiation 

of cells down the various somitic derivative lineages. 35 
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DISCUSSION 
The establishment of the vertebrate body plan through somitogenesis is deeply conserved. 

Although the molecular mechanisms driving the segmentation process are shared, alterations 

to the number and class of segments between different species allows facile generation of 

vastly different body structures among vertebrates (Gomez et al. 2008). Previous studies have 5 
characterised the transcriptional changes accompanying the transition from unsegmented 

mesoderm to nascent and differentiated somites in the chick (G. F. Mok et al. 2021), mouse 

(Chal et al. 2015) and human embryos (Xi et al. 2017), at a single developmental stage. These 

studies have provided insights into the molecular pathways controlling segmentation and the 

subsequent differentiation of somitic mesoderm derivatives. 10 
 

Here, we have experimentally analysed how the three most recently segmented somites of 

mouse embryos remodel their transcriptional and chromatin landscapes at six different 

developmental stages, capturing the earliest molecular mechanisms that give rise to cervical, 

thoracic, lumbar and sacral structures. We identified three thousand genes transcriptionally 15 
remodelled during somite maturation. The expression of these genes after segmentation 

follows the same pattern at independent stages, indicating that somites from different axial 

levels adhere to a conserved differentiation trajectory. However, we also identified genes 

expressed in specific developmental stages of the embryo, reflecting changes in the 

microenvironment in which somites develop.  20 
 

Although the pace with which new somites are formed is roughly constant across development 

(Palmeirim et al. 1997), our data reveals that somite differentiation accelerates as embryos 

grow. We observed that somites from stage 8 embryos maintain a naive transcriptional profile 

for the entirety of the 6 hours captured in our data, but progression along development results 25 
in a shortening of the time spent in such an undifferentiated state. At later stages, somitic gene 

regulation is dominated by transcription factors controlling cell fate commitment. By the time 

embryos have formed 35 pairs of somites, differentiation programmes of derivative lineages 

are upregulated within a few hours post-segmentation and can already be observed in somite 

III. This is consistent with previous work in chick embryos (Borman and Yorde 1994; Berti et 30 
al. 2015; Gi Fay Mok, Mohammed, and Sweetman 2015; Maschner et al. 2016) that showed 

pronounced differences in the onset of expression of key factors for the commitment of cells 

to the myogenic lineage, depending on embryonic age. Our data characterises the regulatory 

mechanisms controlling cell fate specification and commitment well before the onset of 

definitive lineage markers, and revealed that the acceleration of somite differentiation in later 35 
development initiates soon after somite segmentation. This phenomenon is not restricted to 

the myogenic lineage, but extends to other cell type populations, including chondrogenic and 
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endothelial cells. In sum, our high-resolution view of the molecular mechanisms underlying the 

specification and development of somitic lineages has revealed novel features of 

somitogenesis and is a powerful resource for the developmental biology community to study 

its progression in mammals.   
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METHODS 
 

Mouse embryo collection and dissection 
All experiments followed the Animals (Scientific Procedures) Act 1986 (United Kingdom) and 

with the approval of the Cancer Research UK Cambridge Institute Animal Welfare and Ethical 5 
Review Body (form number: NRWF-DO-01- v3). Animal experiments conformed to the Animal 

Research: Reporting of In Vivo Experiments (ARRIVE) guidelines developed by the National 

Centre for the Replacement, Refinement and Reduction of Animals in Research 

(NC3Rs). C57BL/6J strain mice were obtained from Charles River Laboratories and 

maintained under standard husbandry practices. 10 
 

Mouse embryos from the appropriate somite stages (8 to 35 somites) were dissected in 

RNAse-free conditions in cold PBS, on silicone plates. Utmost care was taken to accurately 

count the number of somite pairs of each embryo; however, for the 35-somite stage embryos 

this task becomes very difficult and it is possible that there is a one or two somite error range 15 
in the number estimated. Photos of all the embryos profiled are provided in Supplementary 

File 1. To dissect out the somites, embryos were treated with dispase II (1mg/mL in DMEM) 

for 30-45 seconds at 37°C. The three most posterior pairs of somites were then collected using 

tungsten needles, dissecting out every somite separately. We labelled each somite pair as 

somite I, II or III from the most posterior to the most anterior, respectively. Thus, somite I 20 
corresponds to the most recently segmented somite, while somites II and III were segmented 

~2 and ~4 hours before (Dequéant and Pourquié 2008); we refer to this as the somite’s age. 

Each individual somite was placed in 10µL of lysis buffer (Takara) containing RNase inhibitor. 

One somite from each pair was flash frozen in liquid nitrogen and stored at -80°C for later 

processing for RNA-seq. The matching somites were directly processed to generate ATAC-25 
seq libraries. 

 
Experimental design 
We collected at least four different embryos from each developmental stage (Table S1). 

Dissections were performed on ten different days with every stage represented on at least two 30 
separate collection dates. However, samples from three different stages were collected on five 

days, without overlap with the samples from the remaining three stages, resulting in a partially 

confounded design. 
 
RNA-seq experiments and library preparation 35 
Reverse transcription was performed directly on frozen lysed somites and cDNA was amplified 

with 8 cycles of PCR, using the SMART-seq v4 Ultra Low Input RNA Kit for Sequencing 
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(TaKaRa, 634891). RNA-seq libraries were generated from 100pg of amplified cDNA using 

the NEXTERA XT DNA Library Preparation kit (Illumina, FC-131-1096), according to the 

manufacturer’s instructions, except only a quarter of the recommended reagents’ amount was 

used. The resulting libraries were quantified using a Qubit instrument and their size 

distributions were assessed with a TapeStation machine. Pooled libraries were sequenced on 5 
an Illumina HiSeq 4000 according to manufacturer’s instructions to produce paired-end 150bp 

reads. 

 

ATAC-seq experiments and library preparation 
ATAC-seq experiments were performed following the protocol from Corces and colleagues 10 
(Corces et al. 2017). Briefly, individual somites were lysed and transposed with 1µL of 

transposome (Nextera DNA Sample Preparation kit FC-121-1030) at 37°C for 30 minutes. 

Samples were then purified with the Zymo Clean & Concentrator kit and eluted in 21µL of 

elution buffer. Transposed DNA was quantified by qPCR using 5 μl of PCR products. The 

number of additional cycles was determined by plotting linear Rn versus cycle and 15 
corresponded to one third of the maximum fluorescence intensity. Transposed DNA was then 

amplified with 13 cycles of PCR. The final products were double size-selected with AMPure 

beads (0.55X - 1.5X) to obtain fragments between 100bp and 700bp. Libraries were quantified 

and the sizes were assessed with a TapeStation machine. Pooled libraries were sequenced 

on an Illumina HiSeq 4000 according to manufacturer’s instructions to produce paired-end 20 
150bp reads. Samples were sequenced to a median depth of 70.5 million fragments. 

 

RNA-seq data processing and quality control 
RNA-seq paired-end fragments were aligned to the mouse reference genome (GRCm38) with 

STAR 2.6.0c (Dobin et al. 2013) with options --outFilterMismatchNmax 6 --25 
outFilterMatchNminOverLread 0.5 --outFilterScoreMinOverLread 0.5 --outSAMtype BAM 

SortedByCoordinate --outFilterType BySJout --outFilterMultimapNmax 20 --

alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --alignIntronMin 20 --alignIntronMax 

1000000 --alignMatesGapMax 1000000 --outSAMstrandField intronMotif. On average, 84% of 

the sequencing fragments mapped uniquely. We also set the option --quantMode GeneCounts 30 
to quantify the number of fragments overlapping annotated transcripts, using Ensembl‘s 

genome annotation version 96 (http://apr2019.archive.ensembl.org/index.html). 

 

Samples were sequenced to a median depth of 17.4 million paired-end fragments. One sample 

had a library size of only 88 thousand fragments and was discarded. All other samples showed 35 
a uniform number of fragments mapped uniquely (median 85.6%, standard deviation (SD) 
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5.6%) and most of these were within annotated exons (median 84.9%, SD 2.8%). On average, 

we detected around 22 thousand expressed genes per sample (Table S2). 

 

To validate the staging of samples we exploited the Hox code that serves as a molecular 

indicative of developmental stage. As shown in Figure 1C-D, our embryo stages defined by 5 
the observed number of somites agreed with the expected expression levels of Hox genes. 

However, samples from one stage 27 embryo were more similar to the stage 35 somites, 

showing expression of several late Hox genes from paralogous groups 12 and 13 that are only 

observed in the stage 35 samples. These data suggest this particular embryo was likely of a 

more advanced stage than 27 somites and was removed from downstream analyses (Table 10 
S1). 

 

RNA-seq data normalisation 
Downstream analyses were restricted to genes with at least 10 counts in three or more 

samples, as implemented in the filterByExpr function from the edgeR package (Mark D. 15 
Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and Smyth 2012); this represents 

20,062 genes. To normalise for differences in sequencing depth we used the calcNormFactors 

function that implements the weighted trimmed mean of M-values method (M. D. Robinson 

and Oshlack 2010), and generated counts-per-million normalised expression estimates. 

 20 
A PCA of the thousand most variable genes (determined from variance-stabilised data, 

computed with the vst function form the DESeq2 package) revealed good separation of 

samples from different developmental stages (Figure S2A). However, we also observed 

subgrouping by the date of collection, indicating substantial batch effects (Figure S2A). Since 

the experimental design is partially confounded with the date of collection of the samples, we 25 
were unable to include this as a covariate in downstream analyses. Instead, to control for 

technical variation unrelated to the biological variables of interest, we used the function lmFit 

from the limma package (Ritchie et al. 2015) to fit a linear model of the combination of 

developmental stage and somite age for each sample. We then performed PCA on the 

residuals from the fit (function residuals) to capture systematic variation unrelated to the 30 
biological design of interest. To determine how many principal components (PCs) captured 

significant variation we used the parallelPCA function from the scran package (Lun, McCarthy, 

and Marioni 2016) on the normalised counts; this function estimates, via permutation analysis, 

the number of PCs that explain more variation than expected by chance, which in our case 

was 14. Thus, the 14 first PCs were used as covariates in downstream analyses to control for 35 
unwanted variation (Figure S2B). We note that this procedure captures both technical and 

biological variation not modelled in our design of interest (i.e. the sex of the embryos). 
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RNA-seq differential expression analysis 
To identify genes significantly differentially expressed across conditions we used edgeR (Mark 

D. Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and Smyth 2012), with a design 

matrix of the interaction of each sample’s age and developmental stage, plus the 14 PCs 5 
representing technical variation as covariates. Dispersion was estimated with the estimateDisp 

function (setting robust = TRUE) and fitting the model with glmQLFit. Specific contrasts were 

then tested with the glmQLFTest function. 

 

To identify the regions that change as somites differentiate we compared samples from 10 
somites I, II and III. To identify conserved differences across development we defined contrasts 

for all three pairwise comparisons, using the average of same-age samples from all six stages: 

𝑠𝑜𝑚𝑖𝑡𝑒!.#$.% 		= )
&∈{),+),,+,,-,,.,/-}

𝑠𝑡𝑎𝑔𝑒& . 𝑠𝑜𝑚𝑖𝑡𝑒! 	/	6	

−	 )
&∈{),+),,+,,-,,.,/-}

𝑠𝑡𝑎𝑔𝑒& . 𝑠𝑜𝑚𝑖𝑡𝑒% 	/	6	 

where i.vs.j corresponds to I.vs.II, I.vs.III and II.vs.III. To recover possible stage-specific 15 
changes, we also defined contrasts on a per-stage basis: 

𝑠𝑜𝑚𝑖𝑡𝑒!.#$.% . 𝑠𝑡𝑎𝑔𝑒& = 𝑠𝑜𝑚𝑖𝑡𝑒! . 𝑠𝑡𝑎𝑔𝑒& 	− 	𝑠𝑜𝑚𝑖𝑡𝑒% . 𝑠𝑡𝑎𝑔𝑒& 

where k is one of the six stages and i.vs.j the same as above. All three pairwise comparisons 

from each stage were tested at once.  Thus, in these cases the p-value indicates whether the 

gene is differentially expressed between at least a pair of somite ages.  20 
 

We used a similar approach to test for differences in expression across development. 

Conserved differences between all somites irrespective of their maturity level were assessed 

by averaging somites I, II and III and testing each pairwise comparison between the six stages: 

𝑠𝑡𝑎𝑔𝑒&.#$.1 		= )
!∈{2,22,222}

𝑠𝑜𝑚𝑖𝑡𝑒! . 𝑠𝑡𝑎𝑔𝑒& 	/	3	 −	 )
!∈{2,22,222}

𝑠𝑜𝑚𝑖𝑡𝑒! . 𝑠𝑡𝑎𝑔𝑒1 	/	3	 25 

where k.vs.l corresponds to all pairwise comparisons between the six stages. All contrasts 

were tested at once to avoid performing too many tests and, again, p-values indicate whether 

the gene is significantly different between at least a pair of stages. To check for any changes 

specific to a given somite age we repeated the analysis separately for somites I, II and III: 

𝑠𝑡𝑎𝑔𝑒&.#$.1 . 𝑠𝑜𝑚𝑖𝑡𝑒! 	= 𝑠𝑡𝑎𝑔𝑒& . 𝑠𝑜𝑚𝑖𝑡𝑒! 	− 𝑠𝑡𝑎𝑔𝑒1 . 𝑠𝑜𝑚𝑖𝑡𝑒! 30 
where i is any of the three somite ages and k.vs.l the same as above. Genes were considered 

significantly differentially expressed if their adjusted p-value was lower than 0.05 (FDR < 5%) 
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and their absolute fold-change was greater than 1.5. Results from all differential expression 

analyses are available at https://github.com/xibarrasoria/somitogenesis2022. 

 

ATAC-seq data alignment 
Raw sequencing reads were aligned to the mouse reference genome (GRCm38) using bwa 5 
mem 0.7.12-r1039 (Li and Durbin 2009) with default parameters. On average, 93% of the total 

fragments were successfully aligned. The resulting SAM files were processed with samtools 

1.5 (Li et al. 2009). One sample was sequenced to a disproportionately high depth compared 

to the rest (1.5 billion fragments compared to a median of 70.5 million). The mapped data for 

this sample was downsampled to 15% of the total reads (samtools -s 0.15), and the resulting 10 
BAM file was used in the downstream processing steps. 

 

Duplicated fragments were marked and removed using MarkDuplicates 1.103 from Picard 

tools (http://broadinstitute.github.io/picard) with option REMOVE_DUPLICATES=TRUE. We 

further used samtools to remove any pairs that were not properly aligned (-f 0x02); 15 
supplementary alignments (-F 0x800); alignments with mapping quality lower than 30 (-q 30); 

and alignments outside the autosomes or chromosome X. The resulting BAM files represent 

the clean, good quality alignments used in all downstream analyses. 

 

ATAC-seq quality control 20 
To assess the quality of the libraries we used three different criteria: 1) the insert size 

distribution of the sequenced fragments; 2) the level of signal enrichment at the transcription 

start site (TSS) of expressed genes; and 3) the signal-to-noise ratio, assessed by the ability to 

call peaks (Figure S3 and Table S3). 

 25 
To compute the insert size distribution of each library we used the getPESizes function from 

the csaw package (Lun and Smyth 2016). Each library’s distribution was visually inspected 

and scored based on the number of nucleosomal peaks. Thus, a score of 0 implies that only 

short fragments were recovered, a score of 1 indicates presence of mononucleosomes, 2 

corresponds to samples with both monomers and dimers, and so on. The maximum score 30 
assigned was 4, including samples with fragment sizes corresponding to nucleosome 

tetramers or larger (Figure S3A).  

 

To estimate the enrichment of fragments at transcription start sites we applied the method 

recommended by the ENCODE standards for ATAC-seq data 35 
(https://www.encodeproject.org/data-standards/terms/#enrichment). Specifically, we restricted 

the analysis to genes with moderate to high expression as assessed from the RNA-seq data 
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(mean normalised counts per million greater than 10, corresponding to 8,025 genes). We then 

used the biomaRt package (Durinck et al. 2005) to extract the most 5’ TSS for each gene and 

created a BED file of 2kb intervals centred at each TSS. We computed the coverage of such 

intervals using bedtools coverage 2.26.0 (Quinlan and Hall 2010) a BEDPE file containing the 

Tn5 insertion sites inferred from the aligned fragments (by shifting the start/end coordinates 5 
by +5/-4 bp with an ad hoc perl script). To calculate the enrichment at the TSS we first 

computed the mean insertion counts at each base pair from all genes. We then used the mean 

of the first and last 100bp as an estimate of the background insertion rate. For each base pair, 

we computed the enrichment score as the fold-change against the background rate; this results 

in an enrichment score of ~1 at the flanks of the 2kb interval which increases as it approaches 10 
the TSS (Figure S3B). 

 

Finally, to assess the signal-to-noise ratio of each sample we used MACS2 2.1 (Zhang et al. 

2008) to call peaks, with options callpeak -f BAMPE -g mm --keep-dup all --broad. Peaks 

overlapping blacklisted regions (Amemiya, Kundaje, and Boyle 2019) (obtained from 15 
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/mm10-blacklist.v2.bed.gz) were 

discarded. We calculated the fraction of reads in peaks (FRiP) as the total fragments 

overlapping called peaks over the total library size and used this, along with the total number 

of peaks, as proxies for the signal-to-noise ratio (Figure S3C).  

 20 
Libraries with an insert size distribution showing a good nucleosomal pattern generally had 

good TSS enrichment scores and signal-to-noise ratios. For each sample we defined a quality 

control pass if they had an insert size distribution score of 2 or higher; a fraction of reads in 

peaks of 3% or larger; at least 15,000 peaks; and a TSS enrichment score of 5 or higher 

(Figure S3D). Samples satisfying at least three of these criteria were annotated as good quality 25 
and used in downstream analyses (50 of the 75 libraries). Importantly, insert size distribution 

scores were positively correlated with the experimentally measured DNA fragment sizes but 

showed no relation to sequencing depth, indicating that samples with poor quality control 

characteristics are not due to insufficient sequencing (Figure S3E). 

 30 
ATAC-seq peak calling 
To define a unified set of peaks for the whole dataset we combined the clean BAM files from 

the 50 samples that passed quality control and used them as input for MACS2 (same 

parameters as stated above). By calling peaks on the combined data from all samples, the 

peak calling process becomes agnostic to the different conditions in our experimental design, 35 
which is important for downstream differential accessibility analyses. After removing peaks 

overlapping blacklisted regions, a total of 131,743 peaks were called, with a median width of 
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777 bp (interquartile range 418-1394 bp). We re-computed the FRiP for each sample using 

this common peak set. 

 

It is possible that by merging all samples together, some low-enrichment stage-specific peaks 

are lost. Thus, we repeated the peak calling procedure but on a stage-specific basis. When 5 
comparing the per-stage peak calls to the set obtained by using all 50 samples, around 96.6% 

of the peaks called in each stage were also called in the all-sample set (range 93.43-98.09%). 

The small proportion of peaks missed generally had small fold-changes and high q-values, 

and thus correspond to low significance calls. This provides confidence that we have not 

missed stage-specific peaks by merging data from all samples. 10 
 

ATAC-seq data normalisation 
To normalise the ATAC-seq data we used the methods implemented in the csaw package (Lun 

and Smyth 2016). We generated MA plots comparing all pairs of samples by counting the 

number of fragments in 10 kb windows tiling the genome. For high-abundance windows, which 15 
correspond to open chromatin, we observed a deviation of the log2 fold-change from the 

expected value of 0 that was correlated with the abundance level of the genomic region (Figure 

S4A). Conventional normalisation techniques used in the majority of ATAC-seq analyses 

compute a single size factor that captures systematic differences between samples; these 

approaches fail to account for the trend observed in our data (Figure S4B). Thus, we instead 20 
used a loess-based approach to compute size factors specific to each abundance level. For 

this, we counted the number of fragments mapped to 150 bp windows, sliding along the 

genome by 50 bp, using the function windowCounts (with filter set to 75 and excluding any 

reads overlapping blacklisted regions). We then filtered out any windows that did not overlap 

the common peak set or that had less than an average count of 4 fragments across samples. 25 
We finally used this set of windows to compute the size factors with the normOffsets function 

(with type=loess). This approach successfully removed the observed trend (Figure S4C). 

However, the first principal component estimated from the normalised counts of the 5000 most 

variable windows was strongly correlated with samples’ FRiP (Pearson’s r = -0.59), suggesting 

other technical effects were still dominant in the data (Figure S4D). 30 
 

To remove unwanted variation from the dataset we used the same strategy that we applied to 

the RNA-seq samples. That is, we obtained the residuals from a linear model fit of the 

interaction of the stage and somite age of each sample and applied PCA to capture the major 

sources of variation. We retained the first 18 PCs, since these were deemed to explain 35 
significantly more variation than chance (as determined by the parallelPCA function), which 

significantly removed efficiency and batch effects (Figure S4E).  
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ATAC-seq differential accessibility analysis 
To test for differences in accessibility across conditions we used the approach implemented in 

csaw (Lun and Smyth 2016). We based the analysis on the window counts described above. 

Window counts along with the corresponding size factors were converted into a DGEList object 5 
compatible with edgeR (Mark D. Robinson, McCarthy, and Smyth 2010) to perform differential 

analysis. The same approach as described for the RNA-seq data was used. 

 

After each window was tested, we used the mergeWindows function to merge windows that 

were no more than 150 bp apart, restricting the maximum width to 1.5 kb. Regions larger than 10 
1.5 kb were broken into smaller overlapping regions of roughly equal size (+/- 100bp). We then 

computed a combined p-value for each of these regions with the combineTests function, using 

Simes’ method. Correction for multiple testing was performed at the region level and regions 

were considered significantly different if their adjusted p-value was lower than 0.05 and their 

absolute fold-change was greater than 1.5. Results from all differential expression analyses 15 
are available at https://github.com/xibarrasoria/somitogenesis2022. 

 

Functional terms enrichment analysis 
Gene ontology enrichment analysis was performed using the elim method from the TopGo 

package (Alexa and Rahnenfuhrer 2022), as implemented in the topGOtable function from the 20 
PCAexplorer 2.18.0 package (Marini and Binder 2019). Enrichment of GO terms among 

differentially expressed genes was computed, using all genes expressed in somites as the 

background.  

 

Enrichment analysis of GO terms and mouse KO phenotypes in differentially accessible 25 
chromatin regions was computed with GREAT (McLean et al. 2010), using the implementation 

from the rGREAT 1.24.0 package (Gu and Hübschmann 2022). All somite peaks were used 

as the background set. 

 

Motif enrichment analysis 30 
To determine transcription factor (TF) motifs enriched in the regions of open chromatin, we 

used Analysis of Motif Enrichment (McLeay and Bailey 2010) from the MEME suite (Bailey et 

al. 2009), with the human and mouse HOCOMOCOv11_full motif databases. Enrichment in 

differentially accessible regions (either between somite ages, or between stages, split by the 

vertebral fate showing highest accessibility) was computed by comparing to a set of non-35 
differentially accessible regions with a similar length distribution.  
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chromVAR 
To estimate the accessibility dynamics of sites harbouring specific TF binding sites we used 

chromVAR 1.12.0 (Schep et al. 2017), on the normalised and corrected window counts 

described above. Following the authors’ recommendations, we removed overlapping windows 

with the filterPeaks function, and then scanned them for matches to the motif collection 5 
provided with the package (mouse_pwms_v2). Accessibility deviation scores were then 

computed with the computeDeviations function. For all plots, we use the z-scores returned by 

this function. 

 

FigR 10 
To infer peak-gene putative regulatory links we used FigR 0.1.0 (Kartha et al. 2022), restricted 

to the normalised and corrected counts of the 43 samples with both RNA and ATAC-seq 

profiles available. The function runGenePeakcorr was used to compute the correlation 

between each differentially expressed gene and all peaks within 100kb. This function uses 

chromVAR to determine a set of 100 background peaks matched for accessibility and GC 15 
content levels, to determine if the observed correlation of the gene-peak of interest is 

significantly higher than the correlation of the gene to these unrelated background peaks. 

chromVAR samples with replacement to define the background set. When there are not 

enough matching peaks, the number of different peaks in the background set can drop 

substantially; in extreme cases this can result in a single peak repeated 100 times. Using this 20 
distribution as a null is non-informative and thus the p-values computed for such gene-peak 

pairs are misleading. To avoid these cases, we modified the code to check for the number of 

different peaks included in the background and set the p-values to NA for any gene-peak pairs 

with background sets containing fewer than 50 different peaks. Downstream analyses were 

performed using gene-peak pairs with a p-value < 0.05 and a correlation score greater than 25 
0.3. To infer regulatory interactions, we used the getDORCScores and runFigRGRN functions, 

on all genes with more than 5 linked peaks. TF-gene pairs with an absolute regulation score 

greater than 1.25 are considered putative interactions (Figure 4C-D). 

 

Data availability 30 
The raw and processed data from this study are available in the ArrayExpress repository and 

can be accessed through the BioStudies database (https://www.ebi.ac.uk/biostudies/) under 

accession numbers E-MTAB-12511 for the RNA-seq dataset and E-MTAB-12539 for the 

ATAC-seq dataset. These include the raw FASTQ files as well as raw, normalised and batch-

corrected count tables. All code used for data processing and analysis are available at 35 
https://github.com/xibarrasoria/somitogenesis2022. 
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SUPPLEMENTAL INFORMATION 

 
Figure S1 | The left and right somites are transcriptionally equivalent. We compared the 

transcriptomes of matched left and right somites by RNA-seq using the two most posterior somite pairs, 

as shown in the schematic. The scatter plot shows the average gene expression level on the x-axis and 

the corresponding fold-change between the left and right somites on the y-axis. No significantly 

differentially expressed (DE) genes were identified (FDR 5%), indicating that the transcriptomes of the 

two somites from the same pair are equivalent. A: anterior; P: posterior. 

 
 

 
Figure S2 | Batch correction of RNA-seq data. A) PCA of the normalised counts of the thousand most 
variable genes across samples. There is clear separation by developmental stage (left). However, PC1 

also separates samples based on their collection day (right). B) PCA after regressing out covariates 

capturing variation unrelated to the experimental design. Samples separate better by their 

developmental stage (left) and grouping by collection day is no longer evident (right). 
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Figure S3 | Quality control of ATAC-seq libraries. Several metrics were used to determine if the 

ATAC-seq libraries were of good quality. A) Representative density plots of the fragment sizes of the 
sequencing data for each score group. Scores were determined based on the number of nucleosomal 

peaks. B) Representative plots of the cumulative signal for 2 kb intervals centred at the transcription 

start site (TSS) of expressed genes, for the same samples shown in A. An enrichment score larger than 

1 indicates an excess of insertions relative to background. Signal is smoothed by taking the rolling 

median of 25 bp intervals. C) Violin plots depicting the number of total peaks called from each library 

(left) and the fraction of reads in peaks (FRiP; right), stratified by the sample’s insert size distribution 

score. The samples depicted in A-B are highlighted by coloured points. D) Number of samples that pass 

each of the QC criteria. The 50 samples that passed three or four criteria were deemed of good enough 
quality for downstream analyses. Samples that failed all four criteria are not shown. E) Boxplots of the 

experimentally determined DNA fragment size (top) and the library size of the sequenced samples 

(bottom), stratified by the insert size distribution score. No relationship is observed between library size 

and size distribution score, indicating that the poor-quality samples are not due to insufficient 

sequencing. 
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Figure S4 | Normalisation of ATAC-seq data. A) MA plots of two representative samples. On the x-

axis is the log2 average number of sequencing fragments in 10kb bins covering the mouse genome. The 

y-axis corresponds to the log2 fold-change against a reference sample (same for both panels). 

Comparable samples should show log fold-changes centred around 0. High abundance bins (which 

contain open regions) show significant deviation from 0. This deviation shows a trend dependent on 
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mean abundance. B) To normalise the observed biases we focused on the regions of open chromatin. 

The MA plots now show on the x-axis the average counts in 150bp windows that slide 50bp, restricted 

to regions overlapping called peaks. At the top, the raw counts for the same samples in A. At the bottom, 

scaling normalisation is applied, which results in a shift towards a fold-change of 0. However, the 

observed trend dependent on mean abundance is still present in the data. C) MA plots for the same 

samples in B, but after applying loess-based normalisation, which computes a size factor for each 

abundance level. This successfully captured and removed the observed trend, with windows now 
centred around 0. D) PCA of the normalised counts of the 5000 most variable windows. On the left, 

samples are coloured by developmental stage while on the right they are coloured by their fraction of 

reads in peaks (FRiP). There is clear grouping of samples based on their FRiP. The Pearson correlation 

coefficient between FRiP and PC1 is noted. E) PCA after regressing out covariates capturing variation 

unrelated to the experimental design. Samples separate better by their developmental stage (left) and 

there is no longer a significant correlation with FRiP (right). 

 

 
 

 
Figure S5 | Differentially accessible chromatin loci across development. A) Similar to Figure 3B 

but showing the accessibility levels of all differential peaks across development. Samples (columns) are 

ordered based on their observed somite number, and their stage and somite level are indicated at the 

top. Peaks (rows) are split into clusters by hierarchical clustering. B) Same as Figure 2E but for 
differentially accessible regions across development. C) Chromatin activity scores from chromVAR for 

the genome-wide binding sites (TFBS) of MYF5 across development. D) Gene expression levels for 

Sox9 across development. 
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File S1 | Photos of all the embryos profiled in this study. 

 
Table S1 | Metadata of the samples collected and the RNA- and ATAC-seq libraries 
produced. The QC columns indicate whether the sample passed quality control (1) or not (0; 

highlighted in red); NA indicates that the sample did not yield a successful library for 

sequencing. 

 

Table S2 | Quality control statistics from the RNA-seq libraries. Only one sample failed 

QC (in red) due to insufficient sequencing depth (totalFragments). The 'uniqueInExons' column 

indicates the number of fragments uniquely mapped to the genome that also can be assigned 

unambiguously to annotated exons. The 'numberGenes' column indicates the total number of 

genes with at least one count. 

 
Table S3 | Quality control statistics from the ATAC-seq libraries. A third of the samples 

failed QC (in red). The 'unique' column corresponds to the number of fragments retained after 

removing PCR duplicates. The 'insertSizeDist', 'numberPeaks', 'readsInPeaks' and 

'TSSenrichment' columns correspond to the metrics used to determine if a sample was of good 

quality (see Figure S3 for details).  
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