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Abstract

Human milk is a complex mix of nutritional and bioactive components that provide complete nutrition for
the infant. However, we lack a systematic knowledge of the factors shaping milk compaosition and how
milk variation influences infant health. Here, we used multi-omic profiling to characterize interactions
between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in
242 exclusively breastfeeding mother-infant pairs. We identified 487 genetic loci associated with milk
gene expression unique to the lactating mammary gland, including loci that impacted breast cancer risk
and human milk oligosaccharide concentration. Integrative analyses uncovered connections between
milk gene expression and infant gut microbiome, including an association between the expression of
inflammation-related genes with IL-6 concentration in milk and the abundance of Bifidobacteria in the
infant gut. Our results show how an improved understanding of the genetics and genomics of human
milk connects lactation biology with maternal and infant health.
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Introduction

Lactation is the defining trait of mammals and has been essential for our species for most of human
evolution®. Today, breastfeeding is recommended as the exclusive mode of feeding for infants, given its
documented health benefits for both mothers and infants2. The nutritional significance of human milk
stems from hundreds of milk constituents, including macro- and micro-nutrients, immune factors,
hormones, oligosaccharides, and microbes®. Maternal factors such as diet, health status, and genetics
shape variation in milk composition across lactating women*; however, the relative importance of these
factors on most milk components are poorly understood®. The role of maternal genetics in shaping milk
composition is particularly understudied. A small number of studies suggest important relationships
between maternal genotype, milk composition, and infant health®. For example, maternal secretor
status, determined by the FUT2 gene, is linked to human milk oligosaccharide (HMO) composition’.
HMOs are sugars in human milk that cannot be digested by the infant but promote the growth of
beneficial microbes in the infant gut, and may provide additional immunological and metabolic benefits®.
In addition to HMOs, variation in other milk components, such as fatty acids, has been linked to the
infant gut microbiome®°, and breastfeeding (vs. formula feeding) is one of the strongest factors
shaping the infant gut microbiome!**2, The abundance of certain microbes in the infant gut, particularly
Bifidobacteria, has been linked to health outcomes in infancy and later childhood*. Thus, the
composition of the infant gut microbiome represents a key outcome through which human milk
promotes infant health. Here, we combine maternal clinical and milk composition data with maternal
whole-genome sequences, milk transcriptomes, and infant fecal metagenomics to characterize genetic
influences on gene regulation in milk and identify pathways linking milk gene expression with milk
composition and infant gut health. The results advance our knowledge of the complex molecular and
physiological relationships connecting mother, milk, and infant?4.

Milk gene expression correlates with maternal traits and milk composition in a healthy,
successfully lactating cohort

Human milk contains mammary epithelial luminal cells and a variety of immune cell types, including
macrophages, lymphocytes, and granulocytes'>*°. Thus, a milk sample provides rich information on the
biology of milk production and immune phenotypes in the lactating mammary gland*>6. To characterize
population-level variation in human milk gene expression, we performed bulk RNA-sequencing on the
cell pellets from 1-month postpartum milk samples from 242 women in the Mothers and Infants LinKed
for Healthy Growth (MILK) study?®?? (Fig. S1-3, Table S1). Comparison to gene expression data from
human tissues obtained by the GTEx consortium?® showed that milk expression profiles clustered near
other secretory tissues, such as the pancreas, kidney, and colon (Fig. 1A, Fig. S4). The three most
highly expressed milk genes (CSN2, LALBA, CSN3), which comprise a large proportion of milk
transcripts®®, accounted for 34.5% of protein-coding transcripts in milk, reminiscent of the
preponderance of hemoglobin transcripts typical in whole blood (Fig. 1B)?%. These three genes encode
the major milk proteins beta- and kappa-casein (CSN2, CSN3) and lactalbumin (LALBA), an essential
protein for lactose and HMO synthesis?“.

To identify factors associated with the milk transcriptome, we tested for correlations between the
expression of 12,584 genes in milk and 12 maternal or milk traits (Table S2-3, Fig. S5). Among
maternal traits, only parity (the number of previous births) was significantly correlated with expression
of at least one gene (423 genes at g-value<10%; negative binomial generalized log-linear test, see
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Methods). Genes for which expression correlated with parity were enriched for pathways related to cell
locomotion, potentially reflecting persistent differences in mammary gland remodeling during lactation
in participants who had previously lactated?® (Fig. 1C). Pre-pregnancy BMI and gestational weight gain,
traits associated with delayed lactogenesis and breastfeeding challenges?®, were not significantly
correlated with milk gene expression (Table S3). This lack of relationship could be due to our study’s
inclusion of only women who successfully breastfed for at least 1 month postpartum, thus excluding
participants with difficulties initiating breastfeeding related to metabolic health. Milk concentrations of IL-
6, glucose, insulin, and lactose were each correlated with expression of hundreds of genes, and the
total single breast milk expression volume produced at the study visit was correlated with 65 genes (q-
value<10%; Table S3). These milk trait-correlated genes were enriched for processes such as
cytoplasmic translation (milk insulin) and regulation of cell shape (milk volume) (Fig. 1C, Table S4).

The gene for which expression was most significantly associated with expressed milk volume is the
core circadian clock gene PER2. Higher PER2 expression correlated with lower milk volume (Fig. 1D),
and was also correlated with a higher percentage of milk fat (Table S3). The relationship between
PER2 expression and milk volume or milk fat was not simply driven by the time of day of milk
expression (volume: ANOVA P=0.77; fat: P=0.75). In addition to PER2, the expression levels of 4 of 21
genes in the circadian rhythm pathway were nominally associated (P<0.05) with milk volume (PER1,
PERS3, NPAS2, FBXL3; Table S3). PER2 plays a role in cell fate and ductal branching in the mammary
gland?’, and clock gene expression rhythms are suppressed in the mammary gland during lactation,
possibly to enable milk production in response to suckling cues?®. Our observation suggests that
differential expression of circadian clock genes in the mammary gland affects milk production in
humans, possibly via regulation of milk production genes or by anatomical changes in the breast during
lactogenesis.

Of all milk traits tested, IL-6 protein concentration was correlated with expression of the largest number
of genes (2,291 genes at g-value<10%; Table S3). Genes positively correlated with milk IL-6
concentration were enriched for immune pathways, with “inflammatory response” the most significantly
enriched pathway (g-value = 2.9x10%’, Fisher's exact test; Fig. 1C), consistent with IL-6’s role as a
marker of inflammation in the mammary gland?. To estimate the contributions of different cell types to
our milk bulk transcriptomes, we performed cell-type deconvolution using a milk single cell RNA-seq
reference panel (Fig. 1E; Methods)’=°. Consistent with previous studies, mammary epithelial cells
were estimated to make up the majority of cells}’~193!, The estimated proportion of neutrophils and
macrophages were increased in milk samples with higher IL-6 concentration (neutrophils: multiple
regression coefficient = 0.32, g-value = 8.4x10*; macrophages: multiple regression coefficient = 0.24,
g-value =1.5x107%; Fig. 1F; Table S5), suggesting the relationship between IL-6 concentration and
immune gene expression is caused by a greater proportion of immune cells in milk.

Genetic influences on gene expression in human milk

Associations between genetic variation and gene expression can illuminate the molecular mechanisms
underlying genetic influences on human traits®2, but this approach has not been applied to human milk.
To identify associations between maternal genetic variation and milk gene expression, we generated
low-pass whole genome sequencing data and performed an expression quantitative trait locus (eQTL)
scan in 206 unrelated human milk samples (Methods). We identified a local eQTL (g-value<5%) at
2,690 genes out of 16,999 tested (Table S6). Comparing milk eQTLs to those identified in 45 human
tissues in the GTEXx project?®, we partitioned our eQTLs as milk-specific (N=487) or shared with at least
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one other tissue (N=2,203) (Fig. 2A; Table S6). Genes with milk-specific eQTLs highlighted key
biological pathways in the lactating mammary gland: production of caseins (e.g. the abundant milk
proteins CSN3 and CSN1S1); lactose synthesis (LALBA); lipogenesis (e.g. ACSL1, CD36, LPL, LPIN1,
SCD5, SPTLC3); hormonal regulation (INSR); and immunity (e.g. LYZ, MUC7, CD68) (Table S6). In
addition, genes with milk-specific eQTLs were twice as likely as genes with eQTLs shared across
multiple tissues to overlap genetic associations for milk traits in dairy cattle (odds ratio = 2.1, P-value =
1.7x10°3, Fisher's exact test; Fig. 2B; Table S7), a species for which there is far more known about
genetic influences on lactation than in humans. This enrichment suggests that genes with milk-specific
eQTLs are specifically important for milk biology. Genes with milk-specific eQTLs also tended to have
more sequence-level constraint®® than tissue-shared eQTLs (P-value = 1.3x107, Wilcoxon rank sum
test; Fig. 2C), and were enriched for the pathways “regulation of ERK1 and ERK2 cascade” and “long-
chain fatty-acyl-CoA metabolic process” (Fig. 2D, Methods). These pathways are physiologically
relevant in milk, as ERK cascade signaling has a key role in mammary morphogenesis®*, and
lipogenesis generates the energy dense fats synthesized by the lactating mammary gland®.

To identify tissues for which genetic regulation of gene expression is most similar to milk, we measured
the proportion of shared eQTLs between milk and each GTEX tissue. After correction for tissue sample
size, milk shared the largest proportion of eQTLs with secretory tissues (minor salivary gland, stomach,
and colon), with a higher proportion shared than that observed for non-lactating breast tissue (Fig. 2E,
Fig. S6). These comparisons highlight the shared regulation of gene expression across secretory
epithelial tissues, and underscore the insufficiency of resting breast tissue for studying gene expression
programs necessary for lactation.

Epidemiological studies describe a complex relationship between lactation and breast cancer risk, with
increased short-term risk associated with pregnancy, but decreased lifetime risk associated with longer
duration of lactation®. Because the genetics of gene expression in the lactating mammary gland is
distinct from that of resting breast (Fig. 2E), milk eQTLs provide unique functional annotations to
genetic associations with breast cancer. Using colocalization analyses between all milk eQTLs and
breast cancer GWAS loci, we identified 9 loci with strong evidence for a shared causal variant
(posterior probability of shared causal variant > 0.9; Table S8). Of these milk eQTL-GWAS
colocalizations, 8 had previously been nominated as a causal gene for breast cancer®’~%. We identified
a novel candidate gene for one breast cancer GWAS locus, where a milk-specific eQTL that increased
expression of LMX1B was associated with increased cancer risk (Fig. 2F, 2G). LMX1B is a
transcription factor essential for normal development of limbs, kidneys, and ears*..

Milk gene expression correlates with concentrations of human milk oligosaccharides

Maternal genetics play a strong role in shaping the concentration of HMOs’, sugars in milk that are not
digested by the infant but promote the growth of beneficial microbes in the infant gut. HMOs are
synthesized in the mammary gland by addition of monosaccharides to a lactose molecule, but the
glycosyltransferases catalyzing these reactions are largely uncharacterized*?. Secretor status,
determined by the absence of a common nonsense variant in the fucosyltransferase 2 (FUT2) gene,
strongly predicts the concentration of certain HMOs, with the presence of some HMOs entirely
determined by secretor status’. Utilizing 48 participants with both milk gene expression and 1-month
HMO composition data, we observed distinct HMO profiles between secretors and non-secretors (Fig.
3A, Fig. S7; see Table S9 for HMO definitions). We hypothesized that beyond the strong effects of the
secretor polymorphism, the expression of FUT2 in milk would correlate with HMO concentrations within
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secretor individuals, reflecting variation in milk among women with a functional FUT2 enzyme. We
observed nominally significant associations between FUT2 expression and the concentration of two
HMOs: 2'FL (Beta = 0.40, P = 0.03; Fig. S8) and 6'SL (Beta = -0.42, P = 0.04; Fig. S8). This suggested
that milk gene expression data could be useful for identifying critical genes for HMO biosynthesis. We
tested for pairwise correlations between gene expression and 19 individual HMOs (Fig. S9), and the
sums of all HMO concentrations, sialylated HMOs, and fucosylated HMOs. Of these 22 HMO traits, 14
were significantly correlated with expression of between 1 and 196 genes (g-value<10%, Table S10).
These included known HMO biosynthesis genes, such as the sialyltransferase ST6GAL1? with total
HMO concentration (Beta = 0.75, P = 7.2x1075, g-value=0.08; Fig. 3B). All HMO traits significantly
correlated with the expression of more than ten genes were sialylated HMOs (Table S10). The genes
correlated with sialylated HMO concentrations were enriched for inflammatory immune pathways, such
as “cellular response to lipopolysaccharide” enriched in genes correlated with total sialylated HMO
concentration (Fig. 3C, Table S11), consistent with previous evidence that the sialylated HMOs 6°SL,
LSTc, and DSLNT were more abundant in women with mastitis compared to healthy women*3.

HMO biosynthesis represents an ideal system to understand the effects of maternal genetics on milk
composition via changes in gene expression, as gene expression from the relevant cell type (mammary
epithelial cells) and HMO concentrations can be measured non-invasively in the same milk samples.
Among 54 candidate glycosyltransferase genes?*?, eight genes had significant milk eQTLs in our data
(Table S12), which we used to test for associations between maternal genotypes at milk eQTL tag
SNPs and HMO concentrations. For five genes we observed an association between genotype and
between 1 and 12 HMOs (Table S13; g-value<10%). These included the known association of FUT2
with 2°FL (Fig. 3D), and an association between GCNT3 and FLNH (Fig. 3E). GCTN3 was also linked
to FLNH in our above analysis of correlations between gene expression and HMO concentrations
(Table S10, Fig. S10). GCTN3 was identified previously as the best candidate gene responsible for the
addition of a 3-1,6-linked N-acetylglucosamine to the lactose core, a step required for the biosynthesis
of FLNH*2, For each of 160 eQTL-HMO pairs, we then estimated the causal effect of modified gene
expression on HMO concentration using a Wald ratio test, and found a significant effect in 18 eQTL-
HMO pairs (Fig. 3F; g-value<10%, Table S13). These results provide evidence for direct or indirect
roles of specific glycosyltransferases in HMO biosynthesis in the lactating mammary gland.

Maternal genotype and milk gene expression is associated with the infant gut microbiome

Studies have found correlations between milk composition and variation in the infant gut
microbiome®1%44 However, it is unclear how these correlations are shaped by maternal genetics and
milk gene regulation. We hypothesized that given milk gene expression reflects milk composition, it
could be correlated with the infant gut microbiome. We profiled the fecal microbiome of infants in our
study with metagenomic sequencing at 1 (N=108) and 6 (N=113) months postpartum (Fig. 4A, Fig.
S11), and identified six correlated sets of genes expressed in milk and microbial taxa or pathways
present in the infant gut at 1 month postpartum using sparse canonical correlation analysis*® (sparse
CCA, see Methods; Fig. 4B, Table S14). Using pathway enrichment analysis, we identified relevant
biological processes in these milk-expressed gene sets correlated with the infant fecal microbiome. For
example, milk expression of T-cell receptor signaling genes was negatively correlated with the
abundance of Haemophilus spp. in the infant gut (Fig. 4C), and expression of N-glycan biosynthesis
pathway genes in milk was negatively correlated with bacterial ketogluconate metabolism pathway
abundances (Fig. 4D). These links between milk gene expression and the infant gut microbiome
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233 nominate biological pathways through which normal, healthy variation in human milk composition

234  influences the infant gut microbiome.

235

236  The sparse CCA algorithm identified species of Bifidobacterium in the infant gut as correlated with milk-
237  expressed genes in the JAK/STAT pathway, which is a key regulator of both milk production and

238 mammary inflammation“. Given our observation that genes in this pathway were significantly

239  correlated with milk IL-6 concentration (Table S3), we further examined the relationships between milk
240  expression of JAK/STAT pathway genes, milk IL-6 concentration, and infant fecal Bifidobacterium

241  infantis, including computationally-inferred B. infantis growth rates (Methods). B. infantis is an abundant
242  microbe in the breastfed infant gut that promotes beneficial health outcomes*’#. Both infant fecal B.
243  infantis growth rate and relative abundance were negatively correlated with milk expression of

244  JAK/STAT pathway genes, most significantly STAT1 (growth rate: Pearson’s r=-0.70, P=9.7x10°5;

245  relative abundance: r=-0.24, P=0.02; Fig. 4E, Table S15). STAT1 encodes a key element of the

246  mammary anti-inflammatory response to bacterial mastitis*® and is mainly expressed in the immune
247  cells in milk'’. Thus, the correlation between increased STAT1 signaling in milk and lower B. infantis
248  abundance and growth in the infant gut could be related to an immune response to infection of the

249  mammary gland.

250

251  Finally, we tested for associations between maternal genotypes at milk-specific eQTLs and infant gut
252  microbiome traits (Fig. 4F, Table S16), reasoning that such associations could be mediated through
253  differences in milk composition. While no associations were significant at the g-value<10% level, we
254  identified 8 potential associations between maternal genotype and infant fecal microbiome with g-

255  value<25% (Fig. 4G). These included a milk-specific eQTL for the macrophage marker gene CD68, at
256  which the expression-increasing allele was associated with lower abundance in the 1-month infant gut
257  of the microbial pathway “peptidoglycan biosynthesis IV” in species of Enterococci (Fig. 4H). At an
258 eQTL for CHST10, the expression-increasing allele was associated with lower Streptococcus peroris
259  abundance in the 6-month infant gut (Fig. 41). The enzyme encoded by CHST10 (HNK-1

260 sulfotransferase) participates in the synthesis of glycosaminoglycans (GAGs)*°. GAGs are abundant in
261  human milk®! and prevent pathogenic bacterial adhesion to epithelial cells®2°3; and lower infant gut
262  Streptococcus peroris is associated with decreased diarrhea risk®. We also found an association

263  between a milk-specific eQTL at the lactase (LCT) gene with infant gut genus Collinsella at 6 months
264  (Fig. 4J). The milk LCT expression-increasing allele, which also increases lactase expression in the
265 intestines of European adults®®, is correlated with decreased infant gut Collinsella. This eQTL was

266  detected as ‘milk-specific’ in our study because LCT had no significant eQTL in any GTEX tissue (g-
267  value<t5%). Maternal LCT genotype could alter the breastfed infant microbiome via changes in milk
268 composition, maternal diet, and/or the maternal microbiome.

269

270 Discussion

271

272  Here, we generated and integrated multiple omics datasets within a cohort of exclusively breastfeeding
273  mother-infant pairs, leveraging the milk transcriptome as a readout of the biology of milk production.
274  Our results highlight how an improved understanding of the genetics and genomics of human milk

275  reveals connections with maternal and infant health.

276

277 A consistent theme across our results was a link between mammary inflammation-related gene

278  expression, milk composition, and the infant gut microbiome. Milk IL-6 concentration explained the most
279  variation in milk gene expression of all tested traits (Table S3). Genes correlated with the concentration
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of sialylated HMOs in milk were enriched for inflammation-related pathways (Fig. 3C, Table S11); and
expression of JAK/STAT pathway genes in milk, particularly STAT1, were inversely correlated with the
abundance and growth of Bifidobacteria in the infant gut (Fig. 4E). All participants in our study were
exclusively breastfeeding and did not report symptoms of mastitis (infection of the mammary gland) at
the time of milk collection. Thus, our results suggest that mammary inflammation, even when
unnoticeable to the lactating individual, is a primary driver of variation in milk composition, with potential
effects on the infant gut microbiome.

Combining milk gene expression with maternal genetic variation, we identified numerous novel milk-
specific eQTLs, which can now be used as targets for investigation of the effects of gene expression on
milk production and composition, and infant and maternal health. For example, combining our milk
eQTLs with breast cancer GWAS summary statistics, we provide the first functional evidence
connecting LMX1B expression to a nearby breast cancer GWAS locus (Fig. 3F,3G). Functional
evidence for this GWAS locus had previously been missing, as this milk-specific eQTL may only be
detectable during lactation. In an analysis of single cell RNA-seq across human tissues, LMX1B was
most highly expressed in salivary and breast glandular cells®®. In addition, hypomethylation at a CpG
island in LMX1B in human milk samples was associated with subsequent diagnosis of breast cancer in
an epigenome-wide association study®’, suggesting higher expression correlated with breast cancer
risk, which is concordant with the direction of effect in our results.

We also show that milk eQTLs can be leveraged to understand the effects of milk gene expression on
the breastfed infant. We identified an intriguing association between an allele near the LCT gene that
confers higher lactase expression in milk and decreased infant gut Collinsella (Fig. 4G,4J). The same
allele confers lactase persistence in adults, a phenotype that is likely to have provided selective
advantage in periods of famine and/or infectious disease during human evolution®®. The lactase
persistence allele is replicably associated with differences in the adult gut microbiome®®, but has not
previously been linked to the microbiome of infants. Moreover, a recent paper found evidence of an
adaptive advantage of the lactase-persistence allele in British infants during WWII through an analysis
of infant mortality®. Our results raise the possibility that maternal genetic effects on infants, possibly
mediated by milk composition, could be under selection at this locus. The LCT eQTL does not have an
effect until later in childhood post-weaning®, such that an indirect (maternal) genetic effect rather than
a direct effect of infant genotype provides a plausible mechanism for selection on breastfed infants who
have not yet experienced the age-dependent effects of the lactase persistence allele. LCT is expressed
in mammary cells at levels comparable to intestine®®, though no role for the lactase enzyme in milk
production has been described. More work is needed to understand how the LCT genotype impacts
milk composition, and its effects on the infant gut microbiome. Looking forward, large cohorts with both
maternal and infant genetic information and rich phenotyping will be needed to assess potential effects
of maternal genotype on infant health mediated by milk composition.

While our study introduced a framework for integrating multiple and diverse data types in the
mother/milk/infant triad, it is limited by the sample sizes of our milk composition phenotypes (especially
HMOs) and infant fecal microbiome data. We are also hindered by the lack of infant genotypes in our
study, which may account for some of the observed maternal genetic associations with the infant gut
microbiome. Additionally, the MILK study is predominantly composed (~85%) of participants who self-
identify as white and non-Hispanic. Thus, our analysis was limited to genetic variants common in
participants of European ancestry, and our eQTL results may not be generalizable to other ancestral
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groups. Lastly, we studied mature milk collected at 1-month postpartum which did not allow us to
assess genetic effects on colostrum or milk produced at other points in lactation.

The importance of breastfeeding, especially in underdeveloped countries, is widely acknowledged, but
the long-term health effects in modern high-income contexts are less concrete?. Similarly, the causal
effects of differences in milk composition for breastfed infants are underexplored due to the ethical and
logistical impediments to performing randomized trials of infant nutrition. The field of human genetics
has been hugely successful in identifying genetic effects on molecular and complex traits, and has
leveraged these associations to improve understanding of disease pathophysiology, identify drug
candidates, and interrogate causal relationships impacting human health. However, traits related to
women'’s health generally have been overlooked by this area of research, and human milk and lactation
is a glaring example of this neglect. Fortunately, milk represents an easily obtained non-invasive
biospecimen, aiding our ability to close this gap. Our study provides a step towards leveraging modern
human genomics techniques to characterize the factors that shape milk composition, understand how
this composition impacts infant and maternal health, and eventually utilize the information to support
policy and behavioral interventions to optimize breastfeeding and breastmilk at the population level.
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Figure Legends

Figure 1. Overview of gene expression in human milk. A) Principal components analysis of
transcriptomes from a subset of GTEX tissues and milk. PCs were calculated using the 1000 most
variable genes within GTEX, then milk samples were projected onto the GTEx samples. An equivalent
plot including all GTEx tissues is in Fig. S1. B) Cumulative TPM (transcripts per million) of the top 10
genes by median TPM for milk and GTEX tissues. Color scheme is the same as in 1A. C) Gene
ontology enrichment of genes with expression correlated to maternal and milk traits. The most
significant term for each trait is shown (Methods). The dashed white vertical line denotes a g-value of
10%. D) Correlation between milk volume (from a standardized electric breast pump expression during
a study visit, see Methods) and normalized PER2 gene expression in milk. E) Cell type proportion
estimates generated using Bisque®° for transcriptomes from this study, and reference milk single cell
RNA-seq from Nyquist et al 20227, F) Heatmap of Spearman correlations between estimated cell type
proportions (x-axis) and maternal/milk traits (y-axis). *g-value<10%.

Figure 2: Genetic influences on gene expression in human milk. A) Counts of genes that have
milk-specific eQTLs (orange, genes that have an eQTL only in milk or where the milk eQTL did not
colocalize with any GTEX tissue, see Methods) vs. tissue-shared eQTLs (blue, genes with milk eQTLs
that colocalized with at least one other tissue in GTEX). B) Fraction of genes in each category that
overlapped with a milk trait QTL in the dairy cattle genome. C) Distributions of sequence-level
constraint, measured by the loss-of-function observed/expected upper bound fraction (LOEUF)
statistic®3. D) Enriched gene ontologies for genes with milk-specific (orange) or tissue-shared (blue)
eQTLs. The dashed vertical line denotes a g-value of 10%. E) Sharing of eQTLs between milk and a
subset of GTEX tissues, measured through statistical colocalization. Each bar shows each tissue’s
similarity to milk, measured by the residual fraction of eQTLs colocalized with milk, after regressing out
tissue sample size. Error bars represent a 95% confidence interval. F) LocusZoom genetic associations
in the LMX1B region with milk gene expression (top panel) and breast cancer risk (bottom panel). Each
data point represents a SNP, plotted by their chromosomal location (x-axis) and significance of
association (y-axis), with colors corresponding to LD (linkage disequilibrium, r?) to the lead SNP for
each dataset, shown as a purple diamond. G) Each point is a variant, plotted by the strength of
association with milk gene expression (y-axis) and breast cancer risk (x-axis). Colors are the same as
the top panel in 2F, with a purple diamond representing the lead milk eQTL SNP. The pattern of
variants in the top right suggests a shared underlying causal variant.

Figure 3. Effects of milk gene expression on HMO composition. A) HMO concentration profiles (y-
axis) for milk samples in our study (x-axis), grouped by secretor status. B) Correlation between
ST6GAL1 gene expression in milk and normalized total HMO concentration, colored by secretor status
(beta = 0.75, P = 7.2x10%, g-value = 0.08.). C) Gene ontology enrichment of genes with expression
correlated to a single HMO or HMO category. The most significant term for each HMO is plotted. The
dashed vertical line denotes a g-value of 10%. D) Relationships between genotype at the lead SNP at
the FUT2 eQTL and FUT2 expression in milk (green) or 2’FL abundance (purple). E) Relationships
between genotype at the lead SNP at the GCNT3 eQTL and GCNT3 expression in milk (green) or
FLNH abundance (purple). F) Estimates of the effect of milk gene expression of candidate HMO-
biosynthesis pathway genes on the abundance of HMOs, from a Wald ratio test. Some genes had
significant effects on more than one HMO (Table S11). The most significant HMO for each gene is
plotted here.

Figure 4. Interactions between milk gene expression and the infant fecal microbiome. A)
Principal components analysis of infant fecal microbiome metagenomic data, summarized at the
taxonomic level, with each point representing a fecal sample and colors representing infant age (light
blue: 1 month; dark blue: 6 months). B) Sparse canonical correlation analysis integrating milk host gene
expression and infant fecal microbial species or microbial gene pathway relative abundances (at 1
month of age) identified six significant sparse components (in rows). The heatmap on the left shows
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correlation coefficients between each mother/infant pairs’ score for a given sparse component and
clinical data (in columns). The table lists the top most highly weighted microbial taxon or genetic
pathway, and most significantly enriched host gene set in milk gene expression. (+) or (-) indicates if
these features were positively or negatively weighted in the sparse component. C-D) Network diagrams
generated using the correlation matrix of infant fecal microbial species/pathways and milk-expressed
host genes within an enriched pathway for two of the sparse components in (B). Line size corresponds
to the absolute value of correlation coefficient, line type correspond to negative (dashed) or positive
(solid) correlations. Node color signifies milk-expressed host genes (green), infant fecal microbial
pathways/taxa (green), or milk traits (yellow). E) Network diagram displaying correlations between milk
IL-6 concentration, JAK/STAT pathway genes expressed in milk, and Bifidobacterium infantis relative
abundance and estimated growth rate in the infant gut at 1 month. JAK/STAT pathway genes were
selected that had a significant correlation with either B. infantis trait after multiple test correction (g-
value<10%). F) Q-Q plot showing expected (x-axis) vs. observed (y-axis) p-values from association
tests between maternal genotype at milk-specific eQTLs and relative abundances of infant fecal
microbial taxa/pathways. Top associations are labeled with the gene name. G) Details on 8
associations (rows) between milk eQTL and infant fecal microbe abundance that passed g-value<25%.
H-I) Associations between maternal genotype at a milk-specific eQTL with the expression of that gene
in milk (green, left), and with the relative abundance of an infant microbiome feature (blue, right).
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Figure 1. Overview of gene expression in human milk
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Figure 2. Genetic influences on gene expression in human milk
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Figure 3. Effects of milk gene expression on HMO composition
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Figure 4. Interactions between milk géti&'e¥Xpression  and e iifait fecal microbiome

A B Infant fecal microbiome Milk gene expression
Top + Top - Top + Top -
104 pecies or pathway pecies or pathway pathway pathway
° - I NA Hae_mﬂophi/us T ce_ll relc_eptor NA
G_) . c parainfluenzae signaling
8 5 ° ° OC) Adenosine nu_cleotides NA VaIi_ne/Ieucine/is_o- Purine metabolism
g ° ) degradation Il leucine degradation
E ® o .. g‘ Bifidobacterium bifidum Klebsiella oxytoca Ribosome JAK/STAT signaling
>
\O 04 ..‘ ) .” .. 8 Flavin biosynthesis | NAD/NADH Steroid hormone NA
8) ° ‘ ’: o0 '. o (bacteria and plants) (de)phosphorylation biosynthesis
— ° ‘ o o .. .‘ ° [ J % * Thiazols(;Ebiosyll_?thesis 1 Tetrla(p;yrrolelbiosyntth)esis Prostate cancer NA
~ 1 . . . coli rom glutamate
Al i ) (]
O -5 ~ ﬁ "' UQ)' Ketogluconate Stach d dati Phosphatidylinositol N-glycan
o ° .'h IR % metabolism achyose degradation signaling biosynthesis
[ ] ° SEQQ y9cEL>S
I x2S ET @
176 month e §§§§§,§£—§'§5
T T T T T 8 § % = = % Ef § -0.2 0.0 0.2
-10 -5 0 5 10 =2 = ? o
PC1: 19% variance 3 ¢
C Tecell receptor signaling D N-glycan biosynthesis E JAK/STAT signaling
Milk-expressed gene
H. hilus D infl DPM3 ®
& Haemophilus D parainfluenzae) Infant gut microbe _
(Haemophilus D parainfluenzae N® .
UDP-N-acetyl-D-glucosamine »
biosynthesis | h
(ketogluconate metabolism] &
B.infantis growth rate
pECEE
]
[Haemophilus D parainfluenzae M] i
pyrimidine deoxyribonucleotides POS'“Ye correlathn v
de novo biosynthesis Il | Negative correlation S0CS4
F G
= 61 FAW%\S‘OX.5 Gene eQTL SNP  Microbial taxon or pathway -I(-:::t?":)t Beta (95% ClI) P-value FDR
>
= sggﬁff’, SOX5 1310771048 Klebsiella variicola 6 0.68 (0.41,0.95)  2.59x10° 0.1
> CD68~" 7
A . LCA| LONRF2 FAM69B  rs3124607 Enterobactin biosynthesis 1 -0.66 (-0.92,-0.4) 3.00x10¢ 0.1
S 47 ccDe4d’”
5 CHST10  rs2309823 Streptococcus peroris 6 0.61(0.35,0.86) 9.26x10° 0.21
£,> DOCK1  rs10794126 Clostridium paraputrificum 6 0.53 (0.3, 0.76) 1.58x10° 0.21
e
GE) 24 SRSF4 rs2819608 Clostridium neonatale 6 0.73(0.41,1.04) 1.87x105 0.21
@ cD68  rsBopss77 - eptidoglycan biosynthesis 1 0.7 (-1.01,-0.39) 2.24x105 0.21
a IV (Enterococcus faecium)
o CCDC40 rs111831101 Klebsiella variicola 6 0.53 (0.3, 0.76) 2.41x10% 0.21
o.
0 1 2 3 4 LCT rs3820794 Collinsella 6 0.57 (0.31,0.82) 2.68x105 0.21
Expected -log10(p-value)
H
CD68 expression Peptidoglycan biosynthesis [V CHST10 expression Streptococcus peroris LCT expression Collinsella abundance
(milk) abundance (infant gut) (milk) abundance (infant gut) (milk) (infant gut)
< 3
1.0 ° ° 24
d 14 °d
o L ]
0.5+ 2 1 - o
0.0- ol 07 04 L
-0.54 §° -1 4 R -1
@
-0 *° o -2
° _2
T T T T T
CC CG GG CcC cCc

Maternal genotype (rs8065577) Maternal genotype (rs2309823) Maternal genotype (rs3820794)


https://doi.org/10.1101/2023.01.24.525211
http://creativecommons.org/licenses/by/4.0/

	Abstract
	​​Human milk is a complex mix of nutritional and bioactive components that provide complete nutrition for the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how milk variation influences infant health. Here...
	Introduction
	References
	Acknowledgements


