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Abstract 34 

Human milk is a complex mix of nutritional and bioactive components that provide complete nutrition for 35 

the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how 36 

milk variation influences infant health. Here, we used multi-omic profiling to characterize interactions 37 

between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in 38 

242 exclusively breastfeeding mother-infant pairs. We identified 487 genetic loci associated with milk 39 

gene expression unique to the lactating mammary gland, including loci that impacted breast cancer risk 40 

and human milk oligosaccharide concentration. Integrative analyses uncovered connections between 41 

milk gene expression and infant gut microbiome, including an association between the expression of 42 

inflammation-related genes with IL-6 concentration in milk and the abundance of Bifidobacteria in the 43 

infant gut. Our results show how an improved understanding of the genetics and genomics of human 44 

milk connects lactation biology with maternal and infant health. 45 

  46 
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Introduction 47 

 48 

Lactation is the defining trait of mammals and has been essential for our species for most of human 49 

evolution1. Today, breastfeeding is recommended as the exclusive mode of feeding for infants, given its 50 

documented health benefits for both mothers and infants2. The nutritional significance of human milk 51 

stems from hundreds of milk constituents, including macro- and micro-nutrients, immune factors, 52 

hormones, oligosaccharides, and microbes3. Maternal factors such as diet, health status, and genetics 53 

shape variation in milk composition across lactating women4; however, the relative importance of these 54 

factors on most milk components are poorly understood5. The role of maternal genetics in shaping milk 55 

composition is particularly understudied. A small number of studies suggest important relationships 56 

between maternal genotype, milk composition, and infant health6. For example, maternal secretor 57 

status, determined by the FUT2 gene, is linked to human milk oligosaccharide (HMO) composition7. 58 

HMOs are sugars in human milk that cannot be digested by the infant but promote the growth of 59 

beneficial microbes in the infant gut, and may provide additional immunological and metabolic benefits8. 60 

In addition to HMOs, variation in other milk components, such as fatty acids, has been linked to the 61 

infant gut microbiome9,10, and breastfeeding (vs. formula feeding) is one of the strongest factors 62 

shaping the infant gut microbiome11,12. The abundance of certain microbes in the infant gut, particularly 63 

Bifidobacteria, has been linked to health outcomes in infancy and later childhood13. Thus, the 64 

composition of the infant gut microbiome represents a key outcome through which human milk 65 

promotes infant health. Here, we combine maternal clinical and milk composition data with maternal 66 

whole-genome sequences, milk transcriptomes, and infant fecal metagenomics to characterize genetic 67 

influences on gene regulation in milk and identify pathways linking milk gene expression with milk 68 

composition and infant gut health. The results advance our knowledge of the complex molecular and 69 

physiological relationships connecting mother, milk, and infant14. 70 

  71 

Milk gene expression correlates with maternal traits and milk composition in a healthy, 72 

successfully lactating cohort 73 

  74 

Human milk contains mammary epithelial luminal cells and a variety of immune cell types, including 75 

macrophages, lymphocytes, and granulocytes15–19. Thus, a milk sample provides rich information on the 76 

biology of milk production and immune phenotypes in the lactating mammary gland15,16. To characterize 77 

population-level variation in human milk gene expression, we performed bulk RNA-sequencing on the 78 

cell pellets from 1-month postpartum milk samples from 242 women in the Mothers and Infants LinKed 79 

for Healthy Growth (MILK) study20–22 (Fig. S1-3, Table S1). Comparison to gene expression data from 80 

human tissues obtained by the GTEx consortium23 showed that milk expression profiles clustered near 81 

other secretory tissues, such as the pancreas, kidney, and colon (Fig. 1A, Fig. S4). The three most 82 

highly expressed milk genes (CSN2, LALBA, CSN3), which comprise a large proportion of milk 83 

transcripts15, accounted for 34.5% of protein-coding transcripts in milk, reminiscent of the 84 

preponderance of hemoglobin transcripts typical in whole blood (Fig. 1B)23. These three genes encode 85 

the major milk proteins beta- and kappa-casein (CSN2, CSN3) and lactalbumin (LALBA), an essential 86 

protein for lactose and HMO synthesis24. 87 

 88 

To identify factors associated with the milk transcriptome, we tested for correlations between the 89 

expression of 12,584 genes in milk and 12 maternal or milk traits (Table S2-3, Fig. S5). Among 90 

maternal traits, only parity (the number of previous births) was significantly correlated with expression 91 

of at least one gene (423 genes at q-value<10%; negative binomial generalized log-linear test, see 92 
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Methods). Genes for which expression correlated with parity were enriched for pathways related to cell 93 

locomotion, potentially reflecting persistent differences in mammary gland remodeling during lactation 94 

in participants who had previously lactated25 (Fig. 1C). Pre-pregnancy BMI and gestational weight gain, 95 

traits associated with delayed lactogenesis and breastfeeding challenges26, were not significantly 96 

correlated with milk gene expression (Table S3). This lack of relationship could be due to our study’s 97 

inclusion of only women who successfully breastfed for at least 1 month postpartum, thus excluding 98 

participants with difficulties initiating breastfeeding related to metabolic health. Milk concentrations of IL-99 

6, glucose, insulin, and lactose were each correlated with expression of hundreds of genes, and the 100 

total single breast milk expression volume produced at the study visit was correlated with 65 genes (q-101 

value<10%; Table S3). These milk trait-correlated genes were enriched for processes such as 102 

cytoplasmic translation (milk insulin) and regulation of cell shape (milk volume) (Fig. 1C, Table S4). 103 

 104 

The gene for which expression was most significantly associated with expressed milk volume is the 105 

core circadian clock gene PER2. Higher PER2 expression correlated with lower milk volume (Fig. 1D), 106 

and was also correlated with a higher percentage of milk fat (Table S3). The relationship between 107 

PER2 expression and milk volume or milk fat was not simply driven by the time of day of milk 108 

expression (volume: ANOVA P=0.77; fat: P=0.75). In addition to PER2, the expression levels of 4 of 21 109 

genes in the circadian rhythm pathway were nominally associated (P<0.05) with milk volume (PER1, 110 

PER3, NPAS2, FBXL3; Table S3). PER2 plays a role in cell fate and ductal branching in the mammary 111 

gland27, and clock gene expression rhythms are suppressed in the mammary gland during lactation, 112 

possibly to enable milk production in response to suckling cues28. Our observation suggests that 113 

differential expression of circadian clock genes in the mammary gland affects milk production in 114 

humans, possibly via regulation of milk production genes or by anatomical changes in the breast during 115 

lactogenesis. 116 

 117 

Of all milk traits tested, IL-6 protein concentration was correlated with expression of the largest number 118 

of genes (2,291 genes at q-value<10%; Table S3). Genes positively correlated with milk IL-6 119 

concentration were enriched for immune pathways, with “inflammatory response” the most significantly 120 

enriched pathway (q-value = 2.9x10-27, Fisher’s exact test; Fig. 1C), consistent with IL-6’s role as a 121 

marker of inflammation in the mammary gland29. To estimate the contributions of different cell types to 122 

our milk bulk transcriptomes, we performed cell-type deconvolution using a milk single cell RNA-seq 123 

reference panel (Fig. 1E; Methods)17,30. Consistent with previous studies, mammary epithelial cells 124 

were estimated to make up the majority of cells17–19,31. The estimated proportion of neutrophils and 125 

macrophages were increased in milk samples with higher IL-6 concentration (neutrophils: multiple 126 

regression coefficient = 0.32, q-value = 8.4x10-4; macrophages: multiple regression coefficient = 0.24, 127 

q-value =1.5x10-3; Fig. 1F; Table S5), suggesting the relationship between IL-6 concentration and 128 

immune gene expression is caused by a greater proportion of immune cells in milk. 129 

 130 

Genetic influences on gene expression in human milk 131 

  132 

Associations between genetic variation and gene expression can illuminate the molecular mechanisms 133 

underlying genetic influences on human traits32, but this approach has not been applied to human milk. 134 

To identify associations between maternal genetic variation and milk gene expression, we generated 135 

low-pass whole genome sequencing data and performed an expression quantitative trait locus (eQTL) 136 

scan in 206 unrelated human milk samples (Methods). We identified a local eQTL (q-value<5%) at 137 

2,690 genes out of 16,999 tested (Table S6). Comparing milk eQTLs to those identified in 45 human 138 

tissues in the GTEx project23, we partitioned our eQTLs as milk-specific (N=487) or shared with at least 139 
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one other tissue (N=2,203) (Fig. 2A; Table S6). Genes with milk-specific eQTLs highlighted key 140 

biological pathways in the lactating mammary gland: production of caseins (e.g. the abundant milk 141 

proteins CSN3 and CSN1S1); lactose synthesis (LALBA); lipogenesis (e.g. ACSL1, CD36, LPL, LPIN1, 142 

SCD5, SPTLC3); hormonal regulation (INSR); and immunity (e.g. LYZ, MUC7, CD68) (Table S6). In 143 

addition, genes with milk-specific eQTLs were twice as likely as genes with eQTLs shared across 144 

multiple tissues to overlap genetic associations for milk traits in dairy cattle (odds ratio = 2.1, P-value = 145 

1.7x10-3, Fisher’s exact test; Fig. 2B; Table S7), a species for which there is far more known about 146 

genetic influences on lactation than in humans. This enrichment suggests that genes with milk-specific 147 

eQTLs are specifically important for milk biology. Genes with milk-specific eQTLs also tended to have 148 

more sequence-level constraint33 than tissue-shared eQTLs (P-value = 1.3x10-7, Wilcoxon rank sum 149 

test; Fig. 2C), and were enriched for the pathways “regulation of ERK1 and ERK2 cascade” and “long-150 

chain fatty-acyl-CoA metabolic process” (Fig. 2D, Methods). These pathways are physiologically 151 

relevant in milk, as ERK cascade signaling has a key role in mammary morphogenesis34, and 152 

lipogenesis generates the energy dense fats synthesized by the lactating mammary gland35. 153 

 154 

To identify tissues for which genetic regulation of gene expression is most similar to milk, we measured 155 

the proportion of shared eQTLs between milk and each GTEx tissue. After correction for tissue sample 156 

size, milk shared the largest proportion of eQTLs with secretory tissues (minor salivary gland, stomach, 157 

and colon), with a higher proportion shared than that observed for non-lactating breast tissue (Fig. 2E, 158 

Fig. S6). These comparisons highlight the shared regulation of gene expression across secretory 159 

epithelial tissues, and underscore the insufficiency of resting breast tissue for studying gene expression 160 

programs necessary for lactation. 161 

 162 

Epidemiological studies describe a complex relationship between lactation and breast cancer risk, with 163 

increased short-term risk associated with pregnancy, but decreased lifetime risk associated with longer 164 

duration of lactation36. Because the genetics of gene expression in the lactating mammary gland is 165 

distinct from that of resting breast (Fig. 2E), milk eQTLs provide unique functional annotations to 166 

genetic associations with breast cancer. Using colocalization analyses between all milk eQTLs and 167 

breast cancer GWAS loci, we identified 9 loci with strong evidence for a shared causal variant 168 

(posterior probability of shared causal variant > 0.9; Table S8). Of these milk eQTL-GWAS 169 

colocalizations, 8 had previously been nominated as a causal gene for breast cancer37–40. We identified 170 

a novel candidate gene for one breast cancer GWAS locus, where a milk-specific eQTL that increased 171 

expression of LMX1B was associated with increased cancer risk (Fig. 2F, 2G). LMX1B is a 172 

transcription factor essential for normal development of limbs, kidneys, and ears41. 173 

 174 

Milk gene expression correlates with concentrations of human milk oligosaccharides 175 

 176 

Maternal genetics play a strong role in shaping the concentration of HMOs7, sugars in milk that are not 177 

digested by the infant but promote the growth of beneficial microbes in the infant gut. HMOs are 178 

synthesized in the mammary gland by addition of monosaccharides to a lactose molecule, but the 179 

glycosyltransferases catalyzing these reactions are largely uncharacterized42. Secretor status, 180 

determined by the absence of a common nonsense variant in the fucosyltransferase 2 (FUT2) gene, 181 

strongly predicts the concentration of certain HMOs, with the presence of some HMOs entirely 182 

determined by secretor status7. Utilizing 48 participants with both milk gene expression and 1-month 183 

HMO composition data, we observed distinct HMO profiles between secretors and non-secretors (Fig. 184 

3A, Fig. S7; see Table S9 for HMO definitions). We hypothesized that beyond the strong effects of the 185 

secretor polymorphism, the expression of FUT2 in milk would correlate with HMO concentrations within 186 
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secretor individuals, reflecting variation in milk among women with a functional FUT2 enzyme. We 187 

observed nominally significant associations between FUT2 expression and the concentration of two 188 

HMOs:  2’FL (Beta = 0.40, P = 0.03; Fig. S8) and 6’SL (Beta = -0.42, P = 0.04; Fig. S8). This suggested 189 

that milk gene expression data could be useful for identifying critical genes for HMO biosynthesis. We 190 

tested for pairwise correlations between gene expression and 19 individual HMOs (Fig. S9), and the 191 

sums of all HMO concentrations, sialylated HMOs, and fucosylated HMOs. Of these 22 HMO traits, 14 192 

were significantly correlated with expression of between 1 and 196 genes (q-value<10%, Table S10). 193 

These included known HMO biosynthesis genes, such as the sialyltransferase ST6GAL142 with total 194 

HMO concentration (Beta = 0.75, P = 7.2x10-5, q-value=0.08; Fig. 3B). All HMO traits significantly 195 

correlated with the expression of more than ten genes were sialylated HMOs (Table S10). The genes 196 

correlated with sialylated HMO concentrations were enriched for inflammatory immune pathways, such 197 

as “cellular response to lipopolysaccharide” enriched in genes correlated with total sialylated HMO 198 

concentration (Fig. 3C, Table S11), consistent with previous evidence that the sialylated HMOs 6’SL, 199 

LSTc, and DSLNT were more abundant in women with mastitis compared to healthy women43. 200 

 201 

HMO biosynthesis represents an ideal system to understand the effects of maternal genetics on milk 202 

composition via changes in gene expression, as gene expression from the relevant cell type (mammary 203 

epithelial cells) and HMO concentrations can be measured non-invasively in the same milk samples. 204 

Among 54 candidate glycosyltransferase genes42, eight genes had significant milk eQTLs in our data 205 

(Table S12), which we used to test for associations between maternal genotypes at milk eQTL tag 206 

SNPs and HMO concentrations. For five genes we observed an association between genotype and 207 

between 1 and 12 HMOs (Table S13; q-value<10%). These included the known association of FUT2 208 

with 2’FL (Fig. 3D), and an association between GCNT3 and FLNH (Fig. 3E). GCTN3 was also linked 209 

to FLNH in our above analysis of correlations between gene expression and HMO concentrations 210 

(Table S10, Fig. S10). GCTN3 was identified previously as the best candidate gene responsible for the 211 

addition of a β-1,6-linked N-acetylglucosamine to the lactose core, a step required for the biosynthesis 212 

of FLNH42. For each of 160 eQTL-HMO pairs, we then estimated the causal effect of modified gene 213 

expression on HMO concentration using a Wald ratio test, and found a significant effect in 18 eQTL-214 

HMO pairs (Fig. 3F; q-value<10%, Table S13). These results provide evidence for direct or indirect 215 

roles of specific glycosyltransferases in HMO biosynthesis in the lactating mammary gland. 216 

 217 

Maternal genotype and milk gene expression is associated with the infant gut microbiome 218 

 219 

Studies have found correlations between milk composition and variation in the infant gut 220 

microbiome9,10,44. However, it is unclear how these correlations are shaped by maternal genetics and 221 

milk gene regulation. We hypothesized that given milk gene expression reflects milk composition, it 222 

could be correlated with the infant gut microbiome. We profiled the fecal microbiome of infants in our 223 

study with metagenomic sequencing at 1 (N=108) and 6 (N=113) months postpartum (Fig. 4A, Fig. 224 

S11), and identified six correlated sets of genes expressed in milk and microbial taxa or pathways 225 

present in the infant gut at 1 month postpartum using sparse canonical correlation analysis45 (sparse 226 

CCA, see Methods; Fig. 4B, Table S14). Using pathway enrichment analysis, we identified relevant 227 

biological processes in these milk-expressed gene sets correlated with the infant fecal microbiome. For 228 

example, milk expression of T-cell receptor signaling genes was negatively correlated with the 229 

abundance of Haemophilus spp. in the infant gut (Fig. 4C), and expression of N-glycan biosynthesis 230 

pathway genes in milk was negatively correlated with bacterial ketogluconate metabolism pathway 231 

abundances (Fig. 4D). These links between milk gene expression and the infant gut microbiome 232 
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nominate biological pathways through which normal, healthy variation in human milk composition 233 

influences the infant gut microbiome. 234 

 235 

The sparse CCA algorithm identified species of Bifidobacterium in the infant gut as correlated with milk-236 

expressed genes in the JAK/STAT pathway, which is a key regulator of both milk production and 237 

mammary inflammation46. Given our observation that genes in this pathway were significantly 238 

correlated with milk IL-6 concentration (Table S3), we further examined the relationships between milk 239 

expression of JAK/STAT pathway genes, milk IL-6 concentration, and infant fecal Bifidobacterium 240 

infantis, including computationally-inferred B. infantis growth rates (Methods). B. infantis is an abundant 241 

microbe in the breastfed infant gut that promotes beneficial health outcomes47,48. Both infant fecal B. 242 

infantis growth rate and relative abundance were negatively correlated with milk expression of 243 

JAK/STAT pathway genes, most significantly STAT1 (growth rate: Pearson’s r=-0.70, P=9.7x10-5; 244 

relative abundance: r=-0.24, P=0.02; Fig. 4E, Table S15). STAT1 encodes a key element of the 245 

mammary anti-inflammatory response to bacterial mastitis49 and is mainly expressed in the immune 246 

cells in milk17. Thus, the correlation between increased STAT1 signaling in milk and lower B. infantis 247 

abundance and growth in the infant gut could be related to an immune response to infection of the 248 

mammary gland. 249 

 250 

Finally, we tested for associations between maternal genotypes at milk-specific eQTLs and infant gut 251 

microbiome traits (Fig. 4F, Table S16), reasoning that such associations could be mediated through 252 

differences in milk composition. While no associations were significant at the q-value<10% level, we 253 

identified 8 potential associations between maternal genotype and infant fecal microbiome with q-254 

value<25% (Fig. 4G). These included a milk-specific eQTL for the macrophage marker gene CD68, at 255 

which the expression-increasing allele was associated with lower abundance in the 1-month infant gut 256 

of the microbial pathway “peptidoglycan biosynthesis IV” in species of Enterococci (Fig. 4H). At an 257 

eQTL for CHST10,  the expression-increasing allele was associated with lower Streptococcus peroris 258 

abundance in the 6-month infant gut (Fig. 4I). The enzyme encoded by CHST10 (HNK-1 259 

sulfotransferase) participates in the synthesis of glycosaminoglycans (GAGs)50. GAGs are abundant in 260 

human milk51 and prevent pathogenic bacterial adhesion to epithelial cells52,53; and lower infant gut 261 

Streptococcus peroris is associated with decreased diarrhea risk54. We also found an association 262 

between a milk-specific eQTL at the lactase (LCT) gene with infant gut genus Collinsella at 6 months 263 

(Fig. 4J). The milk LCT expression-increasing allele, which also increases lactase expression in the 264 

intestines of European adults55, is correlated with decreased infant gut Collinsella. This eQTL was 265 

detected as ‘milk-specific’ in our study because LCT had no significant eQTL in any GTEx tissue (q-266 

value<5%). Maternal LCT genotype could alter the breastfed infant microbiome via changes in milk 267 

composition, maternal diet, and/or the maternal microbiome. 268 

 269 

Discussion 270 

 271 

Here, we generated and integrated multiple omics datasets within a cohort of exclusively breastfeeding 272 

mother-infant pairs, leveraging the milk transcriptome as a readout of the biology of milk production. 273 

Our results highlight how an improved understanding of the genetics and genomics of human milk 274 

reveals connections with maternal and infant health. 275 

 276 

A consistent theme across our results was a link between mammary inflammation-related gene 277 

expression, milk composition, and the infant gut microbiome. Milk IL-6 concentration explained the most 278 

variation in milk gene expression of all tested traits (Table S3). Genes correlated with the concentration 279 
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of sialylated HMOs in milk were enriched for inflammation-related pathways (Fig. 3C, Table S11); and 280 

expression of JAK/STAT pathway genes in milk, particularly STAT1, were inversely correlated with the 281 

abundance and growth of Bifidobacteria in the infant gut (Fig. 4E). All participants in our study were 282 

exclusively breastfeeding and did not report symptoms of mastitis (infection of the mammary gland) at 283 

the time of milk collection. Thus, our results suggest that mammary inflammation, even when 284 

unnoticeable to the lactating individual, is a primary driver of variation in milk composition, with potential 285 

effects on the infant gut microbiome. 286 

 287 

Combining milk gene expression with maternal genetic variation, we identified numerous novel milk-288 

specific eQTLs, which can now be used as targets for investigation of the effects of gene expression on 289 

milk production and composition, and infant and maternal health. For example, combining our milk 290 

eQTLs with breast cancer GWAS summary statistics, we provide the first functional evidence 291 

connecting LMX1B expression to a nearby breast cancer GWAS locus (Fig. 3F,3G). Functional 292 

evidence for this GWAS locus had previously been missing, as this milk-specific eQTL may only be 293 

detectable during lactation. In an analysis of single cell RNA-seq across human tissues, LMX1B was 294 

most highly expressed in salivary and breast glandular cells56. In addition, hypomethylation at a CpG 295 

island in LMX1B in human milk samples was associated with subsequent diagnosis of breast cancer in 296 

an epigenome-wide association study57, suggesting higher expression correlated with breast cancer 297 

risk, which is concordant with the direction of effect in our results. 298 

 299 

We also show that milk eQTLs can be leveraged to understand the effects of milk gene expression on 300 

the breastfed infant. We identified an intriguing association between an allele near the LCT gene that 301 

confers higher lactase expression in milk and decreased infant gut Collinsella (Fig. 4G,4J). The same 302 

allele confers lactase persistence in adults, a phenotype that is likely to have provided selective 303 

advantage in periods of famine and/or infectious disease during human evolution58. The lactase 304 

persistence allele is replicably associated with differences in the adult gut microbiome59, but has not 305 

previously been linked to the microbiome of infants. Moreover, a recent paper found evidence of an 306 

adaptive advantage of the lactase-persistence allele in British infants during WWII through an analysis 307 

of infant mortality60. Our results raise the possibility that maternal genetic effects on infants, possibly 308 

mediated by milk composition, could be under selection at this locus. The LCT eQTL does not have an 309 

effect until later in childhood post-weaning61, such that an indirect (maternal) genetic effect rather than 310 

a direct effect of infant genotype provides a plausible mechanism for selection on breastfed infants who 311 

have not yet experienced the age-dependent effects of the lactase persistence allele. LCT is expressed 312 

in mammary cells at levels comparable to intestine56, though no role for the lactase enzyme in milk 313 

production has been described. More work is needed to understand how the LCT genotype impacts 314 

milk composition, and its effects on the infant gut microbiome. Looking forward, large cohorts with both 315 

maternal and infant genetic information and rich phenotyping will be needed to assess potential effects 316 

of maternal genotype on infant health mediated by milk composition. 317 

 318 

While our study introduced a framework for integrating multiple and diverse data types in the 319 

mother/milk/infant triad, it is limited by the sample sizes of our milk composition phenotypes (especially 320 

HMOs) and infant fecal microbiome data. We are also hindered by the lack of infant genotypes in our 321 

study, which may account for some of the observed maternal genetic associations with the infant gut 322 

microbiome. Additionally, the MILK study is predominantly composed (~85%) of participants who self-323 

identify as white and non-Hispanic. Thus, our analysis was limited to genetic variants common in 324 

participants of European ancestry, and our eQTL results may not be generalizable to other ancestral 325 
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groups. Lastly, we studied mature milk collected at 1-month postpartum which did not allow us to 326 

assess genetic effects on colostrum or milk produced at other points in lactation. 327 

 328 

The importance of breastfeeding, especially in underdeveloped countries, is widely acknowledged, but 329 

the long-term health effects in modern high-income contexts are less concrete2. Similarly, the causal 330 

effects of differences in milk composition for breastfed infants are underexplored due to the ethical and 331 

logistical impediments to performing randomized trials of infant nutrition. The field of human genetics 332 

has been hugely successful in identifying genetic effects on molecular and complex traits, and has 333 

leveraged these associations to improve understanding of disease pathophysiology, identify drug 334 

candidates, and interrogate causal relationships impacting human health. However, traits related to 335 

women’s health generally have been overlooked by this area of research, and human milk and lactation 336 

is a glaring example of this neglect. Fortunately, milk represents an easily obtained non-invasive 337 

biospecimen, aiding our ability to close this gap. Our study provides a step towards leveraging modern 338 

human genomics techniques to characterize the factors that shape milk composition, understand how 339 

this composition impacts infant and maternal health, and eventually utilize the information to support 340 

policy and behavioral interventions to optimize breastfeeding and breastmilk at the population level. 341 

  342 
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Figure Legends 578 

 579 

Figure 1. Overview of gene expression in human milk. A) Principal components analysis of 580 
transcriptomes from a subset of GTEx tissues and milk. PCs were calculated using the 1000 most 581 
variable genes within GTEx, then milk samples were projected onto the GTEx samples. An equivalent 582 
plot including all GTEx tissues is in Fig. S1. B) Cumulative TPM (transcripts per million) of the top 10 583 
genes by median TPM for milk and GTEx tissues. Color scheme is the same as in 1A. C) Gene 584 
ontology enrichment of genes with expression correlated to maternal and milk traits. The most 585 
significant term for each trait is shown (Methods). The dashed white vertical line denotes a q-value of 586 
10%. D) Correlation between milk volume (from a standardized electric breast pump expression during 587 
a study visit, see Methods) and normalized PER2 gene expression in milk. E) Cell type proportion 588 
estimates generated using Bisque30 for transcriptomes from this study, and reference milk single cell 589 
RNA-seq from Nyquist et al 202217. F) Heatmap of Spearman correlations between estimated cell type 590 
proportions (x-axis) and maternal/milk traits (y-axis). *q-value<10%. 591 
 592 
Figure 2: Genetic influences on gene expression in human milk. A) Counts of genes that have 593 
milk-specific eQTLs (orange, genes that have an eQTL only in milk or where the milk eQTL did not 594 
colocalize with any GTEx tissue, see Methods) vs. tissue-shared eQTLs (blue, genes with milk eQTLs 595 
that colocalized with at least one other tissue in GTEx). B) Fraction of genes in each category that 596 
overlapped with a milk trait QTL in the dairy cattle genome. C) Distributions of sequence-level 597 
constraint, measured by the loss-of-function observed/expected upper bound fraction (LOEUF) 598 
statistic33. D) Enriched gene ontologies for genes with milk-specific (orange) or tissue-shared (blue) 599 
eQTLs. The dashed vertical line denotes a q-value of 10%. E) Sharing of eQTLs between milk and a 600 
subset of GTEx tissues, measured through statistical colocalization. Each bar shows each tissue’s 601 
similarity to milk, measured by the residual fraction of eQTLs colocalized with milk, after regressing out 602 
tissue sample size. Error bars represent a 95% confidence interval. F) LocusZoom genetic associations 603 
in the LMX1B region with milk gene expression (top panel) and breast cancer risk (bottom panel). Each 604 
data point represents a SNP, plotted by their chromosomal location (x-axis) and significance of 605 
association (y-axis), with colors corresponding to LD (linkage disequilibrium, r2) to the lead SNP for 606 
each dataset, shown as a purple diamond. G) Each point is a variant, plotted by the strength of 607 
association with milk gene expression (y-axis) and breast cancer risk (x-axis). Colors are the same as 608 
the top panel in 2F, with a purple diamond representing the lead milk eQTL SNP. The pattern of 609 
variants in the top right suggests a shared underlying causal variant. 610 
 611 
Figure 3. Effects of milk gene expression on HMO composition. A) HMO concentration profiles (y-612 
axis) for milk samples in our study (x-axis), grouped by secretor status. B) Correlation between 613 
ST6GAL1 gene expression in milk and normalized total HMO concentration, colored by secretor status 614 
(beta = 0.75, P = 7.2x10-5, q-value = 0.08.). C) Gene ontology enrichment of genes with expression 615 
correlated to a single HMO or HMO category. The most significant term for each HMO is plotted. The 616 
dashed vertical line denotes a q-value of 10%. D) Relationships between genotype at the lead SNP at 617 
the FUT2 eQTL and FUT2 expression in milk (green) or 2’FL abundance (purple). E) Relationships 618 
between genotype at the lead SNP at the GCNT3 eQTL and GCNT3 expression in milk (green) or 619 
FLNH abundance (purple). F) Estimates of the effect of milk gene expression of candidate HMO-620 
biosynthesis pathway genes on the abundance of HMOs, from a Wald ratio test. Some genes had 621 
significant effects on more than one HMO (Table S11). The most significant HMO for each gene is 622 
plotted here. 623 
 624 
Figure 4. Interactions between milk gene expression and the infant fecal microbiome. A) 625 
Principal components analysis of infant fecal microbiome metagenomic data, summarized at the 626 
taxonomic level, with each point representing a fecal sample and colors representing infant age (light 627 
blue: 1 month; dark blue: 6 months). B) Sparse canonical correlation analysis integrating milk host gene 628 
expression and infant fecal microbial species or microbial gene pathway relative abundances (at 1 629 
month of age) identified six significant sparse components (in rows). The heatmap on the left shows 630 
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correlation coefficients between each mother/infant pairs’ score for a given sparse component and 631 
clinical data (in columns). The table lists the top most highly weighted microbial taxon or genetic 632 
pathway, and most significantly enriched host gene set in milk gene expression. (+) or (-) indicates if 633 
these features were positively or negatively weighted in the sparse component. C-D) Network diagrams 634 
generated using the correlation matrix of infant fecal microbial species/pathways and milk-expressed 635 
host genes within an enriched pathway for two of the sparse components in (B). Line size corresponds 636 
to the absolute value of correlation coefficient, line type correspond to negative (dashed) or positive 637 
(solid) correlations. Node color signifies milk-expressed host genes (green), infant fecal microbial 638 
pathways/taxa (green), or milk traits (yellow). E) Network diagram displaying correlations between milk 639 
IL-6 concentration, JAK/STAT pathway genes expressed in milk, and Bifidobacterium infantis relative 640 
abundance and estimated growth rate in the infant gut at 1 month. JAK/STAT pathway genes were 641 
selected that had a significant correlation with either B. infantis trait after multiple test correction (q-642 
value<10%). F) Q-Q plot showing expected (x-axis) vs. observed (y-axis) p-values from association 643 
tests between maternal genotype at milk-specific eQTLs and relative abundances of infant fecal 644 
microbial taxa/pathways. Top associations are labeled with the gene name. G) Details on 8 645 
associations (rows) between milk eQTL and infant fecal microbe abundance that passed q-value<25%. 646 
H-I) Associations between maternal genotype at a milk-specific eQTL with the expression of that gene 647 
in milk (green, left), and with the relative abundance of an infant microbiome feature (blue, right). 648 
 649 
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Figure 1. Overview of gene expression in human milk
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Figure 2. Genetic influences on gene expression in human milk
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Figure 4. Interactions between milk gene expression and the infant fecal microbiome
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