

1 **Title:** Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome

2 **Authors:**

3 Kelsey E. Johnson<sup>1</sup>, Timothy Heisel<sup>2</sup>, Mattea Allert<sup>1</sup>, Annalee Fürst<sup>3</sup>, Nikhila Yerabandi<sup>3</sup>, Dan Knights<sup>4,5</sup>,  
4 Katherine M. Jacobs<sup>6</sup>, Eric F. Lock<sup>7</sup>, Lars Bode<sup>3,8</sup>, David A. Fields<sup>9</sup>, Michael C. Rudolph<sup>10</sup>, Cheryl A.  
5 Gale<sup>2</sup>, Frank W. Albert<sup>1\*</sup>, Ellen W. Demerath<sup>11\*</sup>, Ran Blekhman<sup>12\*</sup>

6 **Affiliations:**

7 1. Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis,  
8 USA.  
9 2. Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School,  
10 Minneapolis, MN, USA.  
11 3. Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.  
12 4. BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN,  
13 USA.  
14 5. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA  
15 6. Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine,  
16 University of Minnesota Medical School, Minneapolis, MN, USA.  
17 7. Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA.  
18 8. Human Milk Institute (HMI) and Mother-Milk-Infant Center of Research Excellence (MOMI CORE),  
19 University of California, San Diego, La Jolla, CA, USA.  
20 9. Department of Pediatrics, the University of Oklahoma Health Sciences Center, Oklahoma City, OK,  
21 USA.  
22 10. Harold Hamm Diabetes Center, Department of Physiology, the University of Oklahoma Health  
23 Sciences Center, Oklahoma City, OK, USA.  
24 11. Division of Epidemiology and Community Health, University of Minnesota School of Public Health,  
25 Minneapolis, MN, USA.  
26 12. Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL,  
27 USA.

28 \*These authors jointly supervised the work

29

30

31

32

33

34 **Abstract**

35 Human milk is a complex mix of nutritional and bioactive components that provide complete nutrition for  
36 the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how  
37 milk variation influences infant health. Here, we used multi-omic profiling to characterize interactions  
38 between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in  
39 242 exclusively breastfeeding mother-infant pairs. We identified 487 genetic loci associated with milk  
40 gene expression unique to the lactating mammary gland, including loci that impacted breast cancer risk  
41 and human milk oligosaccharide concentration. Integrative analyses uncovered connections between  
42 milk gene expression and infant gut microbiome, including an association between the expression of  
43 inflammation-related genes with IL-6 concentration in milk and the abundance of *Bifidobacteria* in the  
44 infant gut. Our results show how an improved understanding of the genetics and genomics of human  
45 milk connects lactation biology with maternal and infant health.

46

47 **Introduction**

48  
49 Lactation is the defining trait of mammals and has been essential for our species for most of human  
50 evolution<sup>1</sup>. Today, breastfeeding is recommended as the exclusive mode of feeding for infants, given its  
51 documented health benefits for both mothers and infants<sup>2</sup>. The nutritional significance of human milk  
52 stems from hundreds of milk constituents, including macro- and micro-nutrients, immune factors,  
53 hormones, oligosaccharides, and microbes<sup>3</sup>. Maternal factors such as diet, health status, and genetics  
54 shape variation in milk composition across lactating women<sup>4</sup>; however, the relative importance of these  
55 factors on most milk components are poorly understood<sup>5</sup>. The role of maternal genetics in shaping milk  
56 composition is particularly understudied. A small number of studies suggest important relationships  
57 between maternal genotype, milk composition, and infant health<sup>6</sup>. For example, maternal secretor  
58 status, determined by the *FUT2* gene, is linked to human milk oligosaccharide (HMO) composition<sup>7</sup>.  
59 HMOs are sugars in human milk that cannot be digested by the infant but promote the growth of  
60 beneficial microbes in the infant gut, and may provide additional immunological and metabolic benefits<sup>8</sup>.  
61 In addition to HMOs, variation in other milk components, such as fatty acids, has been linked to the  
62 infant gut microbiome<sup>9,10</sup>, and breastfeeding (vs. formula feeding) is one of the strongest factors  
63 shaping the infant gut microbiome<sup>11,12</sup>. The abundance of certain microbes in the infant gut, particularly  
64 *Bifidobacteria*, has been linked to health outcomes in infancy and later childhood<sup>13</sup>. Thus, the  
65 composition of the infant gut microbiome represents a key outcome through which human milk  
66 promotes infant health. Here, we combine maternal clinical and milk composition data with maternal  
67 whole-genome sequences, milk transcriptomes, and infant fecal metagenomics to characterize genetic  
68 influences on gene regulation in milk and identify pathways linking milk gene expression with milk  
69 composition and infant gut health. The results advance our knowledge of the complex molecular and  
70 physiological relationships connecting mother, milk, and infant<sup>14</sup>.  
71

72 **Milk gene expression correlates with maternal traits and milk composition in a healthy,  
73 successfully lactating cohort**

74  
75 Human milk contains mammary epithelial luminal cells and a variety of immune cell types, including  
76 macrophages, lymphocytes, and granulocytes<sup>15-19</sup>. Thus, a milk sample provides rich information on the  
77 biology of milk production and immune phenotypes in the lactating mammary gland<sup>15,16</sup>. To characterize  
78 population-level variation in human milk gene expression, we performed bulk RNA-sequencing on the  
79 cell pellets from 1-month postpartum milk samples from 242 women in the Mothers and Infants LinKeD  
80 for Healthy Growth (MILK) study<sup>20-22</sup> (Fig. S1-3, Table S1). Comparison to gene expression data from  
81 human tissues obtained by the GTEx consortium<sup>23</sup> showed that milk expression profiles clustered near  
82 other secretory tissues, such as the pancreas, kidney, and colon (Fig. 1A, Fig. S4). The three most  
83 highly expressed milk genes (*CSN2*, *LALBA*, *CSN3*), which comprise a large proportion of milk  
84 transcripts<sup>15</sup>, accounted for 34.5% of protein-coding transcripts in milk, reminiscent of the  
85 preponderance of hemoglobin transcripts typical in whole blood (Fig. 1B)<sup>23</sup>. These three genes encode  
86 the major milk proteins beta- and kappa-casein (*CSN2*, *CSN3*) and lactalbumin (*LALBA*), an essential  
87 protein for lactose and HMO synthesis<sup>24</sup>.  
88

89 To identify factors associated with the milk transcriptome, we tested for correlations between the  
90 expression of 12,584 genes in milk and 12 maternal or milk traits (Table S2-3, Fig. S5). Among  
91 maternal traits, only parity (the number of previous births) was significantly correlated with expression  
92 of at least one gene (423 genes at q-value<10%; negative binomial generalized log-linear test, see

93 Methods). Genes for which expression correlated with parity were enriched for pathways related to cell  
94 locomotion, potentially reflecting persistent differences in mammary gland remodeling during lactation  
95 in participants who had previously lactated<sup>25</sup> (**Fig. 1C**). Pre-pregnancy BMI and gestational weight gain,  
96 traits associated with delayed lactogenesis and breastfeeding challenges<sup>26</sup>, were not significantly  
97 correlated with milk gene expression (Table S3). This lack of relationship could be due to our study's  
98 inclusion of only women who successfully breastfed for at least 1 month postpartum, thus excluding  
99 participants with difficulties initiating breastfeeding related to metabolic health. Milk concentrations of IL-  
100 6, glucose, insulin, and lactose were each correlated with expression of hundreds of genes, and the  
101 total single breast milk expression volume produced at the study visit was correlated with 65 genes (q-  
102 value<10%; Table S3). These milk trait-correlated genes were enriched for processes such as  
103 cytoplasmic translation (milk insulin) and regulation of cell shape (milk volume) (**Fig. 1C**, Table S4).  
104

105 The gene for which expression was most significantly associated with expressed milk volume is the  
106 core circadian clock gene *PER2*. Higher *PER2* expression correlated with lower milk volume (**Fig. 1D**),  
107 and was also correlated with a higher percentage of milk fat (Table S3). The relationship between  
108 *PER2* expression and milk volume or milk fat was not simply driven by the time of day of milk  
109 expression (volume: ANOVA P=0.77; fat: P=0.75). In addition to *PER2*, the expression levels of 4 of 21  
110 genes in the circadian rhythm pathway were nominally associated (P<0.05) with milk volume (*PER1*,  
111 *PER3*, *NPAS2*, *FBXL3*; Table S3). *PER2* plays a role in cell fate and ductal branching in the mammary  
112 gland<sup>27</sup>, and clock gene expression rhythms are suppressed in the mammary gland during lactation,  
113 possibly to enable milk production in response to suckling cues<sup>28</sup>. Our observation suggests that  
114 differential expression of circadian clock genes in the mammary gland affects milk production in  
115 humans, possibly via regulation of milk production genes or by anatomical changes in the breast during  
116 lactogenesis.  
117

118 Of all milk traits tested, IL-6 protein concentration was correlated with expression of the largest number  
119 of genes (2,291 genes at q-value<10%; Table S3). Genes positively correlated with milk IL-6  
120 concentration were enriched for immune pathways, with “inflammatory response” the most significantly  
121 enriched pathway (q-value = 2.9x10<sup>-27</sup>, Fisher's exact test; **Fig. 1C**), consistent with IL-6's role as a  
122 marker of inflammation in the mammary gland<sup>29</sup>. To estimate the contributions of different cell types to  
123 our milk bulk transcriptomes, we performed cell-type deconvolution using a milk single cell RNA-seq  
124 reference panel (**Fig. 1E**; Methods)<sup>17,30</sup>. Consistent with previous studies, mammary epithelial cells  
125 were estimated to make up the majority of cells<sup>17-19,31</sup>. The estimated proportion of neutrophils and  
126 macrophages were increased in milk samples with higher IL-6 concentration (neutrophils: multiple  
127 regression coefficient = 0.32, q-value = 8.4x10<sup>-4</sup>; macrophages: multiple regression coefficient = 0.24,  
128 q-value = 1.5x10<sup>-3</sup>; **Fig. 1F**; Table S5), suggesting the relationship between IL-6 concentration and  
129 immune gene expression is caused by a greater proportion of immune cells in milk.  
130

### 131 **Genetic influences on gene expression in human milk**

132 Associations between genetic variation and gene expression can illuminate the molecular mechanisms  
133 underlying genetic influences on human traits<sup>32</sup>, but this approach has not been applied to human milk.  
134 To identify associations between maternal genetic variation and milk gene expression, we generated  
135 low-pass whole genome sequencing data and performed an expression quantitative trait locus (eQTL)  
136 scan in 206 unrelated human milk samples (Methods). We identified a local eQTL (q-value<5%) at  
137 2,690 genes out of 16,999 tested (Table S6). Comparing milk eQTLs to those identified in 45 human  
138 tissues in the GTEx project<sup>23</sup>, we partitioned our eQTLs as milk-specific (N=487) or shared with at least  
139

140 one other tissue (N=2,203) (**Fig. 2A**; Table S6). Genes with milk-specific eQTLs highlighted key  
141 biological pathways in the lactating mammary gland: production of caseins (e.g. the abundant milk  
142 proteins *CSN3* and *CSN1S1*); lactose synthesis (*LALBA*); lipogenesis (e.g. *ACSL1*, *CD36*, *LPL*, *LPIN1*,  
143 *SCD5*, *SPTLC3*); hormonal regulation (*INSR*); and immunity (e.g. *LYZ*, *MUC7*, *CD68*) (Table S6). In  
144 addition, genes with milk-specific eQTLs were twice as likely as genes with eQTLs shared across  
145 multiple tissues to overlap genetic associations for milk traits in dairy cattle (odds ratio = 2.1, P-value =  
146  $1.7 \times 10^{-3}$ , Fisher's exact test; **Fig. 2B**; Table S7), a species for which there is far more known about  
147 genetic influences on lactation than in humans. This enrichment suggests that genes with milk-specific  
148 eQTLs are specifically important for milk biology. Genes with milk-specific eQTLs also tended to have  
149 more sequence-level constraint<sup>33</sup> than tissue-shared eQTLs (P-value =  $1.3 \times 10^{-7}$ , Wilcoxon rank sum  
150 test; **Fig. 2C**), and were enriched for the pathways "regulation of ERK1 and ERK2 cascade" and "long-  
151 chain fatty-acyl-CoA metabolic process" (**Fig. 2D**, Methods). These pathways are physiologically  
152 relevant in milk, as ERK cascade signaling has a key role in mammary morphogenesis<sup>34</sup>, and  
153 lipogenesis generates the energy dense fats synthesized by the lactating mammary gland<sup>35</sup>.  
154

155 To identify tissues for which genetic regulation of gene expression is most similar to milk, we measured  
156 the proportion of shared eQTLs between milk and each GTEx tissue. After correction for tissue sample  
157 size, milk shared the largest proportion of eQTLs with secretory tissues (minor salivary gland, stomach,  
158 and colon), with a higher proportion shared than that observed for non-lactating breast tissue (**Fig. 2E**,  
159 **Fig. S6**). These comparisons highlight the shared regulation of gene expression across secretory  
160 epithelial tissues, and underscore the insufficiency of resting breast tissue for studying gene expression  
161 programs necessary for lactation.  
162

163 Epidemiological studies describe a complex relationship between lactation and breast cancer risk, with  
164 increased short-term risk associated with pregnancy, but decreased lifetime risk associated with longer  
165 duration of lactation<sup>36</sup>. Because the genetics of gene expression in the lactating mammary gland is  
166 distinct from that of resting breast (**Fig. 2E**), milk eQTLs provide unique functional annotations to  
167 genetic associations with breast cancer. Using colocalization analyses between all milk eQTLs and  
168 breast cancer GWAS loci, we identified 9 loci with strong evidence for a shared causal variant  
169 (posterior probability of shared causal variant > 0.9; Table S8). Of these milk eQTL-GWAS  
170 colocalizations, 8 had previously been nominated as a causal gene for breast cancer<sup>37-40</sup>. We identified  
171 a novel candidate gene for one breast cancer GWAS locus, where a milk-specific eQTL that increased  
172 expression of *LMX1B* was associated with increased cancer risk (**Fig. 2F**, **2G**). *LMX1B* is a  
173 transcription factor essential for normal development of limbs, kidneys, and ears<sup>41</sup>.  
174

## 175 Milk gene expression correlates with concentrations of human milk oligosaccharides

176

177 Maternal genetics play a strong role in shaping the concentration of HMOs<sup>7</sup>, sugars in milk that are not  
178 digested by the infant but promote the growth of beneficial microbes in the infant gut. HMOs are  
179 synthesized in the mammary gland by addition of monosaccharides to a lactose molecule, but the  
180 glycosyltransferases catalyzing these reactions are largely uncharacterized<sup>42</sup>. Secretor status,  
181 determined by the absence of a common nonsense variant in the fucosyltransferase 2 (*FUT2*) gene,  
182 strongly predicts the concentration of certain HMOs, with the presence of some HMOs entirely  
183 determined by secretor status<sup>7</sup>. Utilizing 48 participants with both milk gene expression and 1-month  
184 HMO composition data, we observed distinct HMO profiles between secretors and non-secretors (**Fig.**  
185 **3A**, **Fig. S7**; see Table S9 for HMO definitions). We hypothesized that beyond the strong effects of the  
186 secretor polymorphism, the expression of *FUT2* in milk would correlate with HMO concentrations within

187 secretor individuals, reflecting variation in milk among women with a functional FUT2 enzyme. We  
188 observed nominally significant associations between *FUT2* expression and the concentration of two  
189 HMOs: 2'FL (Beta = 0.40, P = 0.03; Fig. S8) and 6'SL (Beta = -0.42, P = 0.04; Fig. S8). This suggested  
190 that milk gene expression data could be useful for identifying critical genes for HMO biosynthesis. We  
191 tested for pairwise correlations between gene expression and 19 individual HMOs (Fig. S9), and the  
192 sums of all HMO concentrations, sialylated HMOs, and fucosylated HMOs. Of these 22 HMO traits, 14  
193 were significantly correlated with expression of between 1 and 196 genes (q-value<10%, Table S10).  
194 These included known HMO biosynthesis genes, such as the sialyltransferase *ST6GAL1*<sup>42</sup> with total  
195 HMO concentration (Beta = 0.75, P = 7.2x10<sup>-5</sup>, q-value=0.08; **Fig. 3B**). All HMO traits significantly  
196 correlated with the expression of more than ten genes were sialylated HMOs (Table S10). The genes  
197 correlated with sialylated HMO concentrations were enriched for inflammatory immune pathways, such  
198 as “cellular response to lipopolysaccharide” enriched in genes correlated with total sialylated HMO  
199 concentration (**Fig. 3C**, Table S11), consistent with previous evidence that the sialylated HMOs 6'SL,  
200 LSTc, and DSLNT were more abundant in women with mastitis compared to healthy women<sup>43</sup>.  
201

202 HMO biosynthesis represents an ideal system to understand the effects of maternal genetics on milk  
203 composition via changes in gene expression, as gene expression from the relevant cell type (mammary  
204 epithelial cells) and HMO concentrations can be measured non-invasively in the same milk samples.  
205 Among 54 candidate glycosyltransferase genes<sup>42</sup>, eight genes had significant milk eQTLs in our data  
206 (Table S12), which we used to test for associations between maternal genotypes at milk eQTL tag  
207 SNPs and HMO concentrations. For five genes we observed an association between genotype and  
208 between 1 and 12 HMOs (Table S13; q-value<10%). These included the known association of *FUT2*  
209 with 2'FL (**Fig. 3D**), and an association between *GCNT3* and *FLNH* (**Fig. 3E**). *GCNT3* was also linked  
210 to *FLNH* in our above analysis of correlations between gene expression and HMO concentrations  
211 (Table S10, Fig. S10). *GCNT3* was identified previously as the best candidate gene responsible for the  
212 addition of a β-1,6-linked N-acetylglucosamine to the lactose core, a step required for the biosynthesis  
213 of *FLNH*<sup>42</sup>. For each of 160 eQTL-HMO pairs, we then estimated the causal effect of modified gene  
214 expression on HMO concentration using a Wald ratio test, and found a significant effect in 18 eQTL-  
215 HMO pairs (**Fig. 3F**; q-value<10%, Table S13). These results provide evidence for direct or indirect  
216 roles of specific glycosyltransferases in HMO biosynthesis in the lactating mammary gland.  
217

## 218 **Maternal genotype and milk gene expression is associated with the infant gut microbiome**

  
219

220 Studies have found correlations between milk composition and variation in the infant gut  
221 microbiome<sup>9,10,44</sup>. However, it is unclear how these correlations are shaped by maternal genetics and  
222 milk gene regulation. We hypothesized that given milk gene expression reflects milk composition, it  
223 could be correlated with the infant gut microbiome. We profiled the fecal microbiome of infants in our  
224 study with metagenomic sequencing at 1 (N=108) and 6 (N=113) months postpartum (**Fig. 4A**, Fig.  
225 S11), and identified six correlated sets of genes expressed in milk and microbial taxa or pathways  
226 present in the infant gut at 1 month postpartum using sparse canonical correlation analysis<sup>45</sup> (sparse  
227 CCA, see Methods; **Fig. 4B**, Table S14). Using pathway enrichment analysis, we identified relevant  
228 biological processes in these milk-expressed gene sets correlated with the infant fecal microbiome. For  
229 example, milk expression of T-cell receptor signaling genes was negatively correlated with the  
230 abundance of *Haemophilus* spp. in the infant gut (**Fig. 4C**), and expression of N-glycan biosynthesis  
231 pathway genes in milk was negatively correlated with bacterial ketogluconate metabolism pathway  
232 abundances (**Fig. 4D**). These links between milk gene expression and the infant gut microbiome

233 nominate biological pathways through which normal, healthy variation in human milk composition  
234 influences the infant gut microbiome.

235  
236 The sparse CCA algorithm identified species of *Bifidobacterium* in the infant gut as correlated with milk-  
237 expressed genes in the JAK/STAT pathway, which is a key regulator of both milk production and  
238 mammary inflammation<sup>46</sup>. Given our observation that genes in this pathway were significantly  
239 correlated with milk IL-6 concentration (Table S3), we further examined the relationships between milk  
240 expression of JAK/STAT pathway genes, milk IL-6 concentration, and infant fecal *Bifidobacterium*  
241 *infantis*, including computationally-inferred *B. infantis* growth rates (Methods). *B. infantis* is an abundant  
242 microbe in the breastfed infant gut that promotes beneficial health outcomes<sup>47,48</sup>. Both infant fecal *B.*  
243 *infantis* growth rate and relative abundance were negatively correlated with milk expression of  
244 JAK/STAT pathway genes, most significantly *STAT1* (growth rate: Pearson's  $r=-0.70$ ,  $P=9.7\times 10^{-5}$ ;  
245 relative abundance:  $r=-0.24$ ,  $P=0.02$ ; **Fig. 4E**, Table S15). *STAT1* encodes a key element of the  
246 mammary anti-inflammatory response to bacterial mastitis<sup>49</sup> and is mainly expressed in the immune  
247 cells in milk<sup>17</sup>. Thus, the correlation between increased *STAT1* signaling in milk and lower *B. infantis*  
248 abundance and growth in the infant gut could be related to an immune response to infection of the  
249 mammary gland.

250  
251 Finally, we tested for associations between maternal genotypes at milk-specific eQTLs and infant gut  
252 microbiome traits (**Fig. 4F**, Table S16), reasoning that such associations could be mediated through  
253 differences in milk composition. While no associations were significant at the  $q$ -value $<10\%$  level, we  
254 identified 8 potential associations between maternal genotype and infant fecal microbiome with  $q$ -  
255 value $<25\%$  (**Fig. 4G**). These included a milk-specific eQTL for the macrophage marker gene *CD68*, at  
256 which the expression-increasing allele was associated with lower abundance in the 1-month infant gut  
257 of the microbial pathway "peptidoglycan biosynthesis IV" in species of *Enterococci* (**Fig. 4H**). At an  
258 eQTL for *CHST10*, the expression-increasing allele was associated with lower *Streptococcus peroris*  
259 abundance in the 6-month infant gut (**Fig. 4I**). The enzyme encoded by *CHST10* (HNK-1  
260 sulfotransferase) participates in the synthesis of glycosaminoglycans (GAGs)<sup>50</sup>. GAGs are abundant in  
261 human milk<sup>51</sup> and prevent pathogenic bacterial adhesion to epithelial cells<sup>52,53</sup>, and lower infant gut  
262 *Streptococcus peroris* is associated with decreased diarrhea risk<sup>54</sup>. We also found an association  
263 between a milk-specific eQTL at the lactase (*LCT*) gene with infant gut genus *Collinsella* at 6 months  
264 (**Fig. 4J**). The milk *LCT* expression-increasing allele, which also increases lactase expression in the  
265 intestines of European adults<sup>55</sup>, is correlated with decreased infant gut *Collinsella*. This eQTL was  
266 detected as 'milk-specific' in our study because *LCT* had no significant eQTL in any GTEx tissue ( $q$ -  
267 value $<5\%$ ). Maternal *LCT* genotype could alter the breastfed infant microbiome via changes in milk  
268 composition, maternal diet, and/or the maternal microbiome.

269  
270 **Discussion**

271  
272 Here, we generated and integrated multiple omics datasets within a cohort of exclusively breastfeeding  
273 mother-infant pairs, leveraging the milk transcriptome as a readout of the biology of milk production.  
274 Our results highlight how an improved understanding of the genetics and genomics of human milk  
275 reveals connections with maternal and infant health.

276  
277 A consistent theme across our results was a link between mammary inflammation-related gene  
278 expression, milk composition, and the infant gut microbiome. Milk IL-6 concentration explained the most  
279 variation in milk gene expression of all tested traits (Table S3). Genes correlated with the concentration

280 of sialylated HMOs in milk were enriched for inflammation-related pathways (**Fig. 3C**, Table S11); and  
281 expression of JAK/STAT pathway genes in milk, particularly *STAT1*, were inversely correlated with the  
282 abundance and growth of *Bifidobacteria* in the infant gut (**Fig. 4E**). All participants in our study were  
283 exclusively breastfeeding and did not report symptoms of mastitis (infection of the mammary gland) at  
284 the time of milk collection. Thus, our results suggest that mammary inflammation, even when  
285 unnoticeable to the lactating individual, is a primary driver of variation in milk composition, with potential  
286 effects on the infant gut microbiome.

287  
288 Combining milk gene expression with maternal genetic variation, we identified numerous novel milk-  
289 specific eQTLs, which can now be used as targets for investigation of the effects of gene expression on  
290 milk production and composition, and infant and maternal health. For example, combining our milk  
291 eQTLs with breast cancer GWAS summary statistics, we provide the first functional evidence  
292 connecting *LMX1B* expression to a nearby breast cancer GWAS locus (**Fig. 3F,3G**). Functional  
293 evidence for this GWAS locus had previously been missing, as this milk-specific eQTL may only be  
294 detectable during lactation. In an analysis of single cell RNA-seq across human tissues, *LMX1B* was  
295 most highly expressed in salivary and breast glandular cells<sup>56</sup>. In addition, hypomethylation at a CpG  
296 island in *LMX1B* in human milk samples was associated with subsequent diagnosis of breast cancer in  
297 an epigenome-wide association study<sup>57</sup>, suggesting higher expression correlated with breast cancer  
298 risk, which is concordant with the direction of effect in our results.

299  
300 We also show that milk eQTLs can be leveraged to understand the effects of milk gene expression on  
301 the breastfed infant. We identified an intriguing association between an allele near the *LCT* gene that  
302 confers higher lactase expression in milk and decreased infant gut *Collinsella* (**Fig. 4G,4J**). The same  
303 allele confers lactase persistence in adults, a phenotype that is likely to have provided selective  
304 advantage in periods of famine and/or infectious disease during human evolution<sup>58</sup>. The lactase  
305 persistence allele is replicably associated with differences in the adult gut microbiome<sup>59</sup>, but has not  
306 previously been linked to the microbiome of infants. Moreover, a recent paper found evidence of an  
307 adaptive advantage of the lactase-persistence allele in British infants during WWII through an analysis  
308 of infant mortality<sup>60</sup>. Our results raise the possibility that maternal genetic effects on infants, possibly  
309 mediated by milk composition, could be under selection at this locus. The *LCT* eQTL does not have an  
310 effect until later in childhood post-weaning<sup>61</sup>, such that an indirect (maternal) genetic effect rather than  
311 a direct effect of infant genotype provides a plausible mechanism for selection on breastfed infants who  
312 have not yet experienced the age-dependent effects of the lactase persistence allele. *LCT* is expressed  
313 in mammary cells at levels comparable to intestine<sup>56</sup>, though no role for the lactase enzyme in milk  
314 production has been described. More work is needed to understand how the *LCT* genotype impacts  
315 milk composition, and its effects on the infant gut microbiome. Looking forward, large cohorts with both  
316 maternal and infant genetic information and rich phenotyping will be needed to assess potential effects  
317 of maternal genotype on infant health mediated by milk composition.

318  
319 While our study introduced a framework for integrating multiple and diverse data types in the  
320 mother/milk/infant triad, it is limited by the sample sizes of our milk composition phenotypes (especially  
321 HMOs) and infant fecal microbiome data. We are also hindered by the lack of infant genotypes in our  
322 study, which may account for some of the observed maternal genetic associations with the infant gut  
323 microbiome. Additionally, the MILK study is predominantly composed (~85%) of participants who self-  
324 identify as white and non-Hispanic. Thus, our analysis was limited to genetic variants common in  
325 participants of European ancestry, and our eQTL results may not be generalizable to other ancestral

326 groups. Lastly, we studied mature milk collected at 1-month postpartum which did not allow us to  
327 assess genetic effects on colostrum or milk produced at other points in lactation.  
328

329 The importance of breastfeeding, especially in underdeveloped countries, is widely acknowledged, but  
330 the long-term health effects in modern high-income contexts are less concrete<sup>2</sup>. Similarly, the causal  
331 effects of differences in milk composition for breastfed infants are underexplored due to the ethical and  
332 logistical impediments to performing randomized trials of infant nutrition. The field of human genetics  
333 has been hugely successful in identifying genetic effects on molecular and complex traits, and has  
334 leveraged these associations to improve understanding of disease pathophysiology, identify drug  
335 candidates, and interrogate causal relationships impacting human health. However, traits related to  
336 women's health generally have been overlooked by this area of research, and human milk and lactation  
337 is a glaring example of this neglect. Fortunately, milk represents an easily obtained non-invasive  
338 biospecimen, aiding our ability to close this gap. Our study provides a step towards leveraging modern  
339 human genomics techniques to characterize the factors that shape milk composition, understand how  
340 this composition impacts infant and maternal health, and eventually utilize the information to support  
341 policy and behavioral interventions to optimize breastfeeding and breastmilk at the population level.  
342

343 **References**

- 344 1. Lefèvre, C. M., Sharp, J. A. & Nicholas, K. R. Evolution of lactation: ancient origin and extreme  
345 adaptations of the lactation system. *Annu. Rev. Genomics Hum. Genet.* **11**, 219–238 (2010).
- 346 2. Victora, C. G. *et al.* Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong  
347 effect. *Lancet* **387**, 475–490 (2016).
- 348 3. Ballard, O. & Morrow, A. L. Human milk composition: nutrients and bioactive factors. *Pediatr. Clin.*  
349 *North Am.* **60**, 49–74 (2013).
- 350 4. Andreas, N. J., Kampmann, B. & Mehring Le-Doare, K. Human breast milk: A review on its  
351 composition and bioactivity. *Early Hum. Dev.* **91**, 629–635 (2015).
- 352 5. Christian, P. *et al.* The need to study human milk as a biological system. *Am. J. Clin. Nutr.* (2021)  
353 doi:10.1093/ajcn/nqab075.
- 354 6. Golan, Y. & Assaraf, Y. G. Genetic and Physiological Factors Affecting Human Milk Production and  
355 Composition. *Nutrients* **12**, (2020).
- 356 7. Williams, J. E. *et al.* Key genetic variants associated with variation of milk oligosaccharides from  
357 diverse human populations. *Genomics* (2021) doi:10.1016/j.ygeno.2021.04.004.
- 358 8. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. *Glycobiology* **22**, 1147–  
359 1162 (2012).
- 360 9. Babakobi, M. D. *et al.* Effect of Maternal Diet and Milk Lipid Composition on the Infant Gut and  
361 Maternal Milk Microbiomes. *Nutrients* **12**, (2020).
- 362 10. Pace, R. M. *et al.* Variation in Human Milk Composition Is Related to Differences in Milk and Infant  
363 Fecal Microbial Communities. *Microorganisms* **9**, (2021).
- 364 11. Stewart, C. J. *et al.* Temporal development of the gut microbiome in early childhood from the  
365 TEDDY study. *Nature* **562**, 583–588 (2018).
- 366 12. Fehr, K. *et al.* Breastmilk Feeding Practices Are Associated with the Co-Occurrence of Bacteria in  
367 Mothers' Milk and the Infant Gut: the CHILD Cohort Study. *Cell Host Microbe* **0**, (2020).
- 368 13. Milani, C. *et al.* The First Microbial Colonizers of the Human Gut: Composition, Activities, and  
369 Health Implications of the Infant Gut Microbiota. *Microbiol. Mol. Biol. Rev.* **81**, (2017).
- 370 14. Bode, L., Raman, A. S., Murch, S. H., Rollins, N. C. & Gordon, J. I. Understanding the mother-  
371 breastmilk-infant 'triad'. *Science* **367**, 1070–1072 (2020).
- 372 15. Lemay, D. G. *et al.* RNA sequencing of the human milk fat layer transcriptome reveals distinct  
373 gene expression profiles at three stages of lactation. *PLoS One* **8**, e67531 (2013).
- 374 16. Lemay, D. G. *et al.* Sequencing the transcriptome of milk production: milk trumps mammary tissue.  
375 *BMC Genomics* **14**, 872 (2013).
- 376 17. Nyquist, S. K. *et al.* Cellular and transcriptional diversity over the course of human lactation. *Proc.*  
377 *Natl. Acad. Sci. U. S. A.* **119**, e2121720119 (2022).
- 378 18. Twigger, A.-J. *et al.* Transcriptional changes in the mammary gland during lactation revealed by  
379 single cell sequencing of cells from human milk. *Nat. Commun.* **13**, 562 (2022).
- 380 19. Martin Carli, J. F. *et al.* Single Cell RNA Sequencing of Human Milk-Derived Cells Reveals Sub-  
381 Populations of Mammary Epithelial Cells with Molecular Signatures of Progenitor and Mature  
382 States: a Novel, Non-invasive Framework for Investigating Human Lactation Physiology. *J.*  
383 *Mammary Gland Biol. Neoplasia* (2020) doi:10.1007/s10911-020-09466-z.
- 384 20. Whitaker, K. M. *et al.* Associations of Maternal Weight Status Before, During, and After Pregnancy  
385 with Inflammatory Markers in Breast Milk. *Obesity* **25**, 2092–2099 (2017).
- 386 21. Sadr Dadres, G. *et al.* Relationship of Maternal Weight Status Before, During, and After Pregnancy  
387 with Breast Milk Hormone Concentrations. *Obesity* **27**, 621–628 (2019).
- 388 22. Fields, D. A. *et al.* Associations between human breast milk hormones and adipocytokines and

389 infant growth and body composition in the first 6 months of life. *Pediatr. Obes.* **12 Suppl 1**, 78–85  
390 (2017).

391 23. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.  
392 *Science* **369**, 1318–1330 (2020).

393 24. Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. *Am. J. Clin. Nutr.* **77**,  
394 1537S–1543S (2003).

395 25. Wagner, K.-U. *et al.* An adjunct mammary epithelial cell population in parous females: its role in  
396 functional adaptation and tissue renewal. *Development* **129**, 1377–1386 (2002).

397 26. Nommsen-Rivers, L. A., Chantry, C. J., Peerson, J. M., Cohen, R. J. & Dewey, K. G. Delayed  
398 onset of lactogenesis among first-time mothers is related to maternal obesity and factors  
399 associated with ineffective breastfeeding. *Am. J. Clin. Nutr.* **92**, 574–584 (2010).

400 27. McQueen, C. M. *et al.* PER2 regulation of mammary gland development. *Development* **145**,  
401 (2018).

402 28. Casey, T. M. *et al.* Tissue-specific changes in molecular clocks during the transition from  
403 pregnancy to lactation in mice. *Biol. Reprod.* **90**, 127 (2014).

404 29. Garofalo, R. Cytokines in human milk. *J. Pediatr.* **156**, S36–40 (2010).

405 30. Jew, B. *et al.* Accurate estimation of cell composition in bulk expression through robust integration  
406 of single-cell information. *Nat. Commun.* **11**, 1971 (2020).

407 31. Gleeson, J. P. *et al.* Profiling of mature-stage human breast milk cells identifies six unique  
408 lactocyte subpopulations. *Sci Adv* **8**, eabm6865 (2022).

409 32. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. *Nat. Rev.  
410 Genet.* **16**, 197–212 (2015).

411 33. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in 141,456  
412 humans. *Nature* **581**, 434–443 (2020).

413 34. Ender, P. *et al.* Spatiotemporal control of ERK pulse frequency coordinates fate decisions during  
414 mammary acinar morphogenesis. *Dev. Cell* **57**, 2153–2167.e6 (2022).

415 35. Rudolph, M. C., Neville, M. C. & Anderson, S. M. Lipid synthesis in lactation: diet and the fatty acid  
416 switch. *J. Mammary Gland Biol. Neoplasia* **12**, 269–281 (2007).

417 36. Migliavacca Zucchetti, B., Peccatori, F. A. & Codacci-Pisanelli, G. Pregnancy and Lactation: Risk  
418 or Protective Factors for Breast Cancer? *Adv. Exp. Med. Biol.* **1252**, 195–197 (2020).

419 37. Fachal, L. *et al.* Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.  
420 *Nat. Genet.* **52**, 56–73 (2020).

421 38. Ferreira, M. A. *et al.* Genome-wide association and transcriptome studies identify target genes and  
422 risk loci for breast cancer. *Nat. Commun.* **10**, 1741 (2019).

423 39. Beesley, J. *et al.* eQTL Colocalization Analyses Identify NTN4 as a Candidate Breast Cancer Risk  
424 Gene. *Am. J. Hum. Genet.* **107**, 778–787 (2020).

425 40. Zhang, H. *et al.* Genome-wide association study identifies 32 novel breast cancer susceptibility loci  
426 from overall and subtype-specific analyses. *Nat. Genet.* **52**, 572–581 (2020).

427 41. Harita, Y., Kitanaka, S., Isojima, T., Ashida, A. & Hattori, M. Spectrum of LMX1B mutations: from  
428 nail-patella syndrome to isolated nephropathy. *Pediatr. Nephrol.* **32**, 1845–1850 (2017).

429 42. Kellman, B. P. *et al.* Elucidating Human Milk Oligosaccharide biosynthetic genes through network-  
430 based multi-omics integration. *Nat. Commun.* **13**, 2455 (2022).

431 43. Castro, I. *et al.* Interactions between human milk oligosaccharides, microbiota and immune factors  
432 in milk of women with and without mastitis. *Sci. Rep.* **12**, 1367 (2022).

433 44. Pannaraj, P. S. *et al.* Association Between Breast Milk Bacterial Communities and Establishment  
434 and Development of the Infant Gut Microbiome. *JAMA Pediatr.* **171**, 647–654 (2017).

435 45. Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to

436 sparse principal components and canonical correlation analysis. *Biostatistics* **10**, 515–534 (2009).

437 46. Watson, C. J. & Neoh, K. The Stat family of transcription factors have diverse roles in mammary  
438 gland development. *Semin. Cell Dev. Biol.* **19**, 401–406 (2008).

439 47. Henrick, B. M. *et al.* Bifidobacteria-mediated immune system imprinting early in life. *Cell* **184**,  
440 3884–3898.e11 (2021).

441 48. Barratt, M. J. *et al.* Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants  
442 with severe acute malnutrition. *Sci. Transl. Med.* **14**, (2022).

443 49. Zahoor, A. *et al.* MerTK negatively regulates *Staphylococcus aureus* induced inflammatory  
444 response via Toll-like receptor signaling in the mammary gland. *Mol. Immunol.* **122**, 1–12 (2020).

445 50. Hashiguchi, T. *et al.* Involvement of human natural killer-1 (HNK-1) sulfotransferase in the  
446 biosynthesis of the GlcUA(3-O-sulfate)-Gal-Gal-Xyl tetrasaccharide found in  $\alpha$ -thrombomodulin  
447 from human urine. *J. Biol. Chem.* **286**, 33003–33011 (2011).

448 51. Coppa, G. V. *et al.* Composition and structure elucidation of human milk glycosaminoglycans.  
449 *Glycobiology* **21**, 295–303 (2011).

450 52. Rajas, O. *et al.* Glycosaminoglycans are involved in bacterial adherence to lung cells. *BMC Infect.*  
451 *Dis.* **17**, 319 (2017).

452 53. Coppa, G. V. *et al.* Human milk glycosaminoglycans inhibit in vitro the adhesion of *Escherichia coli*  
453 and *Salmonella* *fyris* to human intestinal cells. *Pediatr. Res.* **79**, 603–607 (2016).

454 54. Moroishi, Y. *et al.* The relationship between the gut microbiome and the risk of respiratory  
455 infections among newborns. *Commun. Med.* **2**, 87 (2022).

456 55. Wang, Y. *et al.* The lactase persistence/non-persistence polymorphism is controlled by a cis-acting  
457 element. *Hum. Mol. Genet.* **4**, 657–662 (1995).

458 56. Karlsson, M. *et al.* A single-cell type transcriptomics map of human tissues. *Sci Adv* **7**, (2021).

459 57. Salas, L. A. *et al.* Prediagnostic breast milk DNA methylation alterations in women who develop  
460 breast cancer. *Hum. Mol. Genet.* **29**, 662–673 (2020).

461 58. Evershed, R. P. *et al.* Dairying, diseases and the evolution of lactase persistence in Europe.  
462 *Nature* **608**, 336–345 (2022).

463 59. Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and future  
464 directions for studying effects of host genetics on the gut microbiome. *Nat. Genet.* **54**, 100–106  
465 (2022).

466 60. Wu, Y. *et al.* GWAS on birth year infant mortality rates provides evidence of recent natural  
467 selection. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2117312119 (2022).

468 61. Wang, Y. *et al.* The genetically programmed down-regulation of lactase in children.  
469 *Gastroenterology* **114**, 1230–1236 (1998).

470 62. Isganaitis, E. *et al.* Maternal obesity and the human milk metabolome: associations with infant  
471 body composition and postnatal weight gain. *Am. J. Clin. Nutr.* **110**, 111–120 (2019).

472 63. Heisel, T. *et al.* Bacterial, fungal, and interkingdom microbiome features of exclusively  
473 breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. *Front.*  
474 *Microbiol.* **13**, 1050574 (2022).

475 64. Seferovic, M. D. *et al.* Maternal diet alters human milk oligosaccharide composition with  
476 implications for the milk metagenome. *Sci. Rep.* **10**, 22092 (2020).

477 65. Fields, D. A. & Demerath, E. W. Relationship of insulin, glucose, leptin, IL-6 and TNF- $\alpha$  in human  
478 breast milk with infant growth and body composition. *Pediatr. Obes.* **7**, 304–312 (2012).

479 66. Casadio, Y. S. *et al.* Evaluation of a mid-infrared analyzer for the determination of the  
480 macronutrient composition of human milk. *J. Hum. Lact.* **26**, 376–383 (2010).

481 67. Billard, H. *et al.* Calibration Adjustment of the Mid-infrared Analyzer for an Accurate Determination  
482 of the Macronutrient Composition of Human Milk. *J. Hum. Lact.* **32**, NP19–27 (2016).

483 68. Wehr, H. M. Standard Methods. in *Standard Methods for the Examination of Dairy Products*  
484 (American Public Health Association, 2004).

485 69. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

486 70. DeLuca, D. S. *et al.* RNA-SeQC: RNA-seq metrics for quality control and process optimization.  
*Bioinformatics* **28**, 1530–1532 (2012).

488 71. Harrell, F. E., Jr. Hmisc: Harrell Miscellaneous. Preprint at <https://CRAN.R-project.org/package=Hmisc> (2022).

490 72. Li, J. H., Mazur, C. A., Berisa, T. & Pickrell, J. K. Low-pass sequencing increases the power of  
491 GWAS and decreases measurement error of polygenic risk scores compared to genotyping arrays.  
*Genome Res.* **31**, 529–537 (2021).

493 73. Wasik, K. *et al.* Comparing low-pass sequencing and genotyping for trait mapping in  
494 pharmacogenetics. *BMC Genomics* **22**, 197 (2021).

495 74. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, (2021).

496 75. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage  
497 analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

498 76. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential  
499 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).

500 77. Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. Preprint at (2022).

501 78. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful  
502 approach to multiple testing. *J. R. Stat. Soc.* **57**, 289–300 (1995).

503 79. Grolemond, G. & Wickham, H. Dates and Times Made Easy with lubridate. *J. Stat. Softw.* **40**, 1–25  
504 (2011).

505 80. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-  
506 seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

507 81. McCaw, Z. RNOmni: Rank Normal Transformation Omnibus Test. Preprint at <https://CRAN.R-project.org/package=RNOmni> (2022).

509 82. Quick, C. *et al.* A versatile toolkit for molecular QTL mapping and meta-analysis at scale. *Biorxiv*  
510 2020.12.18.423490 (2020) doi:10.1101/2020.12.18.423490.

511 83. Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of genetic association  
512 studies using summary statistics. *PLoS Genet.* **10**, e1004383 (2014).

513 84. Null, N. *et al.* The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation  
514 in humans. *Science* **348**, 648–660 (2015).

515 85. He, Y. *et al.* sn-spMF: matrix factorization informs tissue-specific genetic regulation of gene  
516 expression. *Genome Biol.* **21**, 235 (2020).

517 86. Kuleshov, M. V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server 2016  
518 update. *Nucleic Acids Res.* **44**, W90–7 (2016).

519 87. Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for  
520 Mendelian randomization. *Stat. Methods Med. Res.* **26**, 2333–2355 (2017).

521 88. Priya, S. *et al.* Identification of shared and disease-specific host gene-microbiome associations  
522 across human diseases using multi-omic integration. *Nat Microbiol* **7**, 780–795 (2022).

523 89. Briatte, F. ggnetwork: Geometries to Plot Networks with ‘ggplot2’. Preprint at <https://CRAN.R-project.org/package=ggnetwork> (2021).

525 90. Joseph, T. A., Chlenski, P., Litman, A., Korem, T. & Pe'er, I. Accurate and robust inference of  
526 microbial growth dynamics from metagenomic sequencing reveals personalized growth rates.  
*Genome Res.* **32**, 558–568 (2022).

528 91. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–  
529 359 (2012).

530 92. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. *Nat.*  
531 *Genet.* **44**, 821–824 (2012).

532

533 **Acknowledgements**

534

535 We thank Katy Duncan, Laurie Foster, Tipper Gallagher, and all MILK study staff and participants for  
536 their contributions, and members of the Albert and Blekhman labs for helpful discussions related to this  
537 project. This work was supported by the resources and staff at the University of Minnesota Genomics  
538 Center (<https://genomics.umn.edu>). This work was carried out in part by resources provided by the  
539 Minnesota Supercomputing Institute (<https://www.msi.umn.edu/>).

540

541 **Funding:**

542 This study was supported by a University of Minnesota Department of Pediatrics Masonic Cross-  
543 Departmental Research Grant (FWA, RB, EWD, CAG), University of Minnesota Masonic Children's  
544 Hospital Research Fund Award (CAG, EWD, and DK), NIH/NICHD grant R01HD109830 (RB, EWD,  
545 CAG), NIH/NICHD grant R21HD099473 (CAG), NIH/NIGMS grant R35GM124676 (FWA), a Pew  
546 Biomedical Fellowship (FWA), and a University of Minnesota Office of Academic and Clinical Affairs  
547 Faculty Research Development Grant (CAG, EWD, KMJ, and DK). The MILK Study which provided the  
548 cohort and milk samples for this study was supported by NIH/NICHD grant R01HD080444 (EWD and  
549 DAF). KEJ was supported by NIH/NICHD F32HD105364 and NIH/NIDCR T90DE0227232.

550

551 **Author contributions:**

552 Conceptualization: KEJ, FWA, EWD, RB

553 Formal analysis: KEJ, TH, MA

554 Funding acquisition: KEJ, DK, KMJ, EFL, LB, DAF, CAG, FWA, EWD, RB

555 Investigation: KEJ, TH, AF, NY

556 Supervision: KEJ, LB, MCR, CAG, FWA, EWD, RB

557 Writing - original draft: KEJ

558 Writing - review and editing: KEJ, TH, EFL, LB, MCR, CAG, FWA, EWD, RB

559

560 **Competing interests:**

561 The authors declare no competing interests.

562

563 **Data and materials availability:**

564 Non-identifiable data (RNA-seq quantifications, infant fecal metagenomic abundances, HMO  
565 concentrations, milk eQTL summary statistics, relevant metadata) is available at figshare  
566 ([https://figshare.com/projects/Johnson\\_et\\_al\\_human\\_milk\\_multi-omics/156606](https://figshare.com/projects/Johnson_et_al_human_milk_multi-omics/156606)). Genotype and milk  
567 RNA sequencing data will be deposited at dbGaP, and metagenomic sequencing data at the SRA, prior  
568 to publication.

569

570

571 **List of supplementary materials**

572

573 Materials and Methods

574 Figs. S1 to S11

575 Tables S1 to S16

576 References (62-92)

577

578 **Figure Legends**

579

580 **Figure 1. Overview of gene expression in human milk.** **A)** Principal components analysis of  
581 transcriptomes from a subset of GTEx tissues and milk. PCs were calculated using the 1000 most  
582 variable genes within GTEx, then milk samples were projected onto the GTEx samples. An equivalent  
583 plot including all GTEx tissues is in Fig. S1. **B)** Cumulative TPM (transcripts per million) of the top 10  
584 genes by median TPM for milk and GTEx tissues. Color scheme is the same as in 1A. **C)** Gene  
585 ontology enrichment of genes with expression correlated to maternal and milk traits. The most  
586 significant term for each trait is shown (Methods). The dashed white vertical line denotes a q-value of  
587 10%. **D)** Correlation between milk volume (from a standardized electric breast pump expression during  
588 a study visit, see Methods) and normalized *PER2* gene expression in milk. **E)** Cell type proportion  
589 estimates generated using Bisque<sup>30</sup> for transcriptomes from this study, and reference milk single cell  
590 RNA-seq from Nyquist et al 2022<sup>17</sup>. **F)** Heatmap of Spearman correlations between estimated cell type  
591 proportions (x-axis) and maternal/milk traits (y-axis). \*q-value<10%.

592

593 **Figure 2: Genetic influences on gene expression in human milk.** **A)** Counts of genes that have  
594 milk-specific eQTLs (orange, genes that have an eQTL only in milk or where the milk eQTL did not  
595 colocalize with any GTEx tissue, see Methods) vs. tissue-shared eQTLs (blue, genes with milk eQTLs  
596 that colocalized with at least one other tissue in GTEx). **B)** Fraction of genes in each category that  
597 overlapped with a milk trait QTL in the dairy cattle genome. **C)** Distributions of sequence-level  
598 constraint, measured by the loss-of-function observed/expected upper bound fraction (LOEUF)  
599 statistic<sup>33</sup>. **D)** Enriched gene ontologies for genes with milk-specific (orange) or tissue-shared (blue)  
600 eQTLs. The dashed vertical line denotes a q-value of 10%. **E)** Sharing of eQTLs between milk and a  
601 subset of GTEx tissues, measured through statistical colocalization. Each bar shows each tissue's  
602 similarity to milk, measured by the residual fraction of eQTLs colocalized with milk, after regressing out  
603 tissue sample size. Error bars represent a 95% confidence interval. **F)** LocusZoom genetic associations  
604 in the *LMX1B* region with milk gene expression (top panel) and breast cancer risk (bottom panel). Each  
605 data point represents a SNP, plotted by their chromosomal location (x-axis) and significance of  
606 association (y-axis), with colors corresponding to LD (linkage disequilibrium,  $r^2$ ) to the lead SNP for  
607 each dataset, shown as a purple diamond. **G)** Each point is a variant, plotted by the strength of  
608 association with milk gene expression (y-axis) and breast cancer risk (x-axis). Colors are the same as  
609 the top panel in 2F, with a purple diamond representing the lead milk eQTL SNP. The pattern of  
610 variants in the top right suggests a shared underlying causal variant.

611

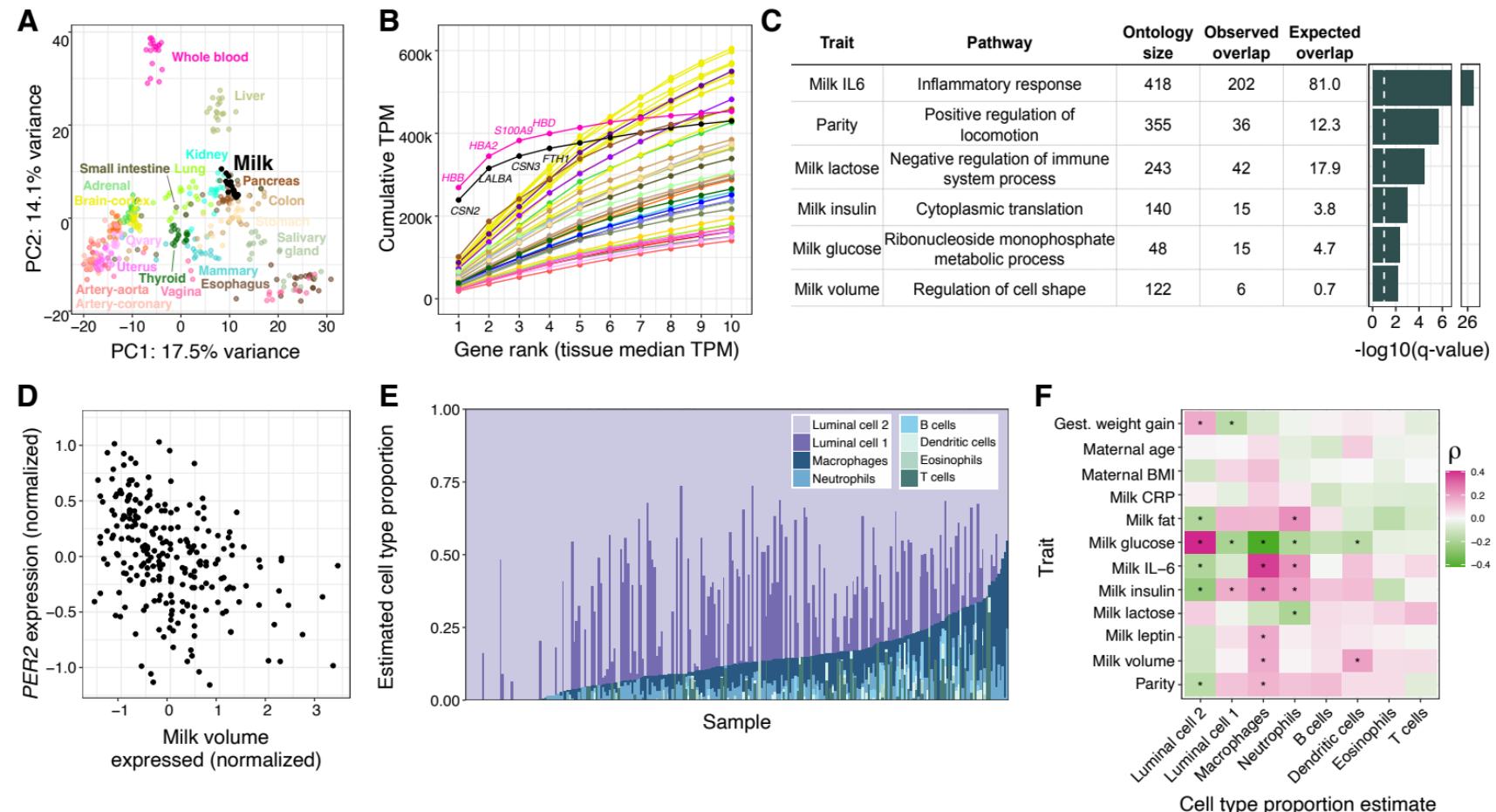
612 **Figure 3. Effects of milk gene expression on HMO composition.** **A)** HMO concentration profiles (y-  
613 axis) for milk samples in our study (x-axis), grouped by secretor status. **B)** Correlation between  
614 *ST6GAL1* gene expression in milk and normalized total HMO concentration, colored by secretor status  
615 ( $\beta = 0.75$ ,  $P = 7.2 \times 10^{-5}$ , q-value = 0.08.). **C)** Gene ontology enrichment of genes with expression  
616 correlated to a single HMO or HMO category. The most significant term for each HMO is plotted. The  
617 dashed vertical line denotes a q-value of 10%. **D)** Relationships between genotype at the lead SNP at  
618 the *FUT2* eQTL and *FUT2* expression in milk (green) or 2'FL abundance (purple). **E)** Relationships  
619 between genotype at the lead SNP at the *GCNT3* eQTL and *GCNT3* expression in milk (green) or  
620 FLNH abundance (purple). **F)** Estimates of the effect of milk gene expression of candidate HMO-  
621 biosynthesis pathway genes on the abundance of HMOs, from a Wald ratio test. Some genes had  
622 significant effects on more than one HMO (Table S11). The most significant HMO for each gene is  
623 plotted here.

624

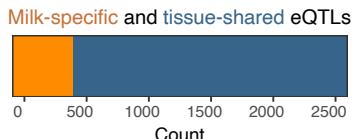
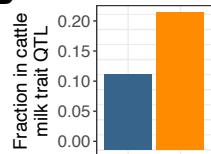
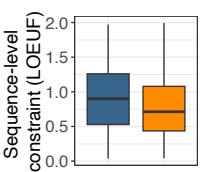
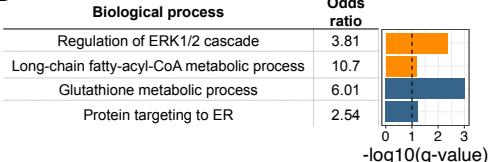
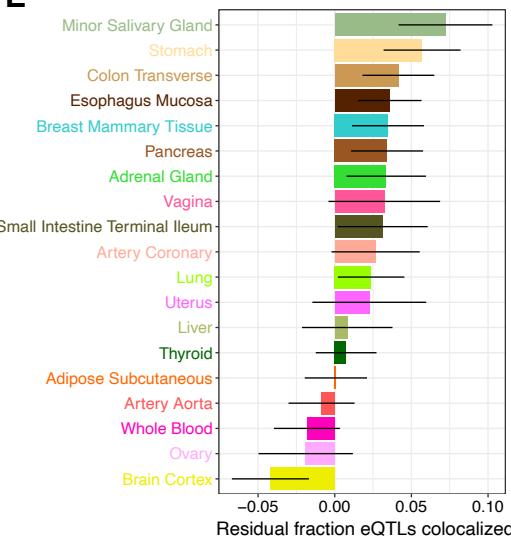
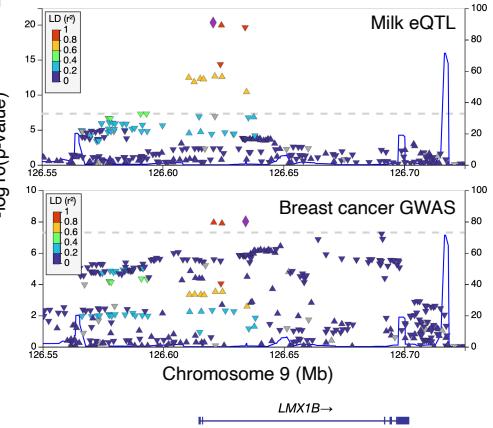
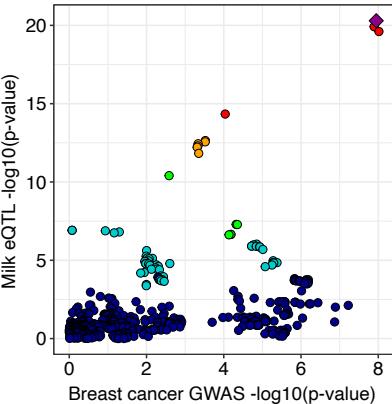
625 **Figure 4. Interactions between milk gene expression and the infant fecal microbiome.** **A)**  
626 Principal components analysis of infant fecal microbiome metagenomic data, summarized at the  
627 taxonomic level, with each point representing a fecal sample and colors representing infant age (light  
628 blue: 1 month; dark blue: 6 months). **B)** Sparse canonical correlation analysis integrating milk host gene  
629 expression and infant fecal microbial species or microbial gene pathway relative abundances (at 1  
630 month of age) identified six significant sparse components (in rows). The heatmap on the left shows

631 correlation coefficients between each mother/infant pairs' score for a given sparse component and  
632 clinical data (in columns). The table lists the top most highly weighted microbial taxon or genetic  
633 pathway, and most significantly enriched host gene set in milk gene expression. (+) or (-) indicates if  
634 these features were positively or negatively weighted in the sparse component. **C-D)** Network diagrams  
635 generated using the correlation matrix of infant fecal microbial species/pathways and milk-expressed  
636 host genes within an enriched pathway for two of the sparse components in (B). Line size corresponds  
637 to the absolute value of correlation coefficient, line type correspond to negative (dashed) or positive  
638 (solid) correlations. Node color signifies milk-expressed host genes (green), infant fecal microbial  
639 pathways/taxa (green), or milk traits (yellow). **E)** Network diagram displaying correlations between milk  
640 IL-6 concentration, JAK/STAT pathway genes expressed in milk, and *Bifidobacterium infantis* relative  
641 abundance and estimated growth rate in the infant gut at 1 month. JAK/STAT pathway genes were  
642 selected that had a significant correlation with either *B. infantis* trait after multiple test correction (q-  
643 value<10%). **F)** Q-Q plot showing expected (x-axis) vs. observed (y-axis) p-values from association  
644 tests between maternal genotype at milk-specific eQTLs and relative abundances of infant fecal  
645 microbial taxa/pathways. Top associations are labeled with the gene name. **G)** Details on 8  
646 associations (rows) between milk eQTL and infant fecal microbe abundance that passed q-value<25%.  
647 **H-I)** Associations between maternal genotype at a milk-specific eQTL with the expression of that gene  
648 in milk (green, left), and with the relative abundance of an infant microbiome feature (blue, right).  
649

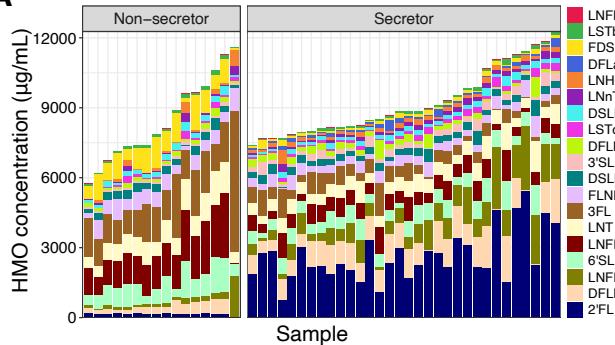
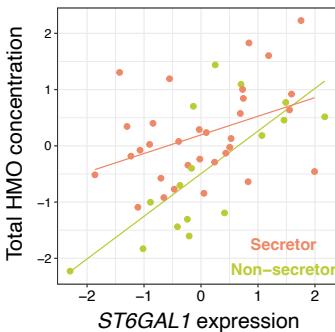
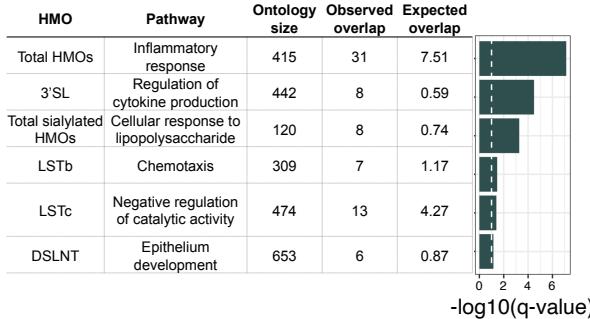
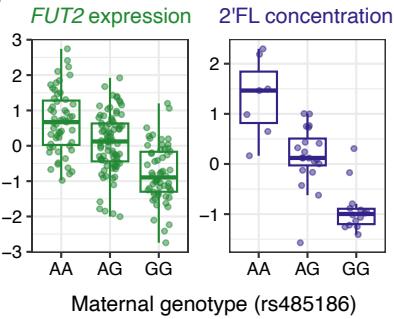
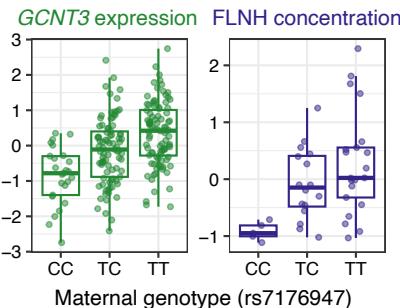
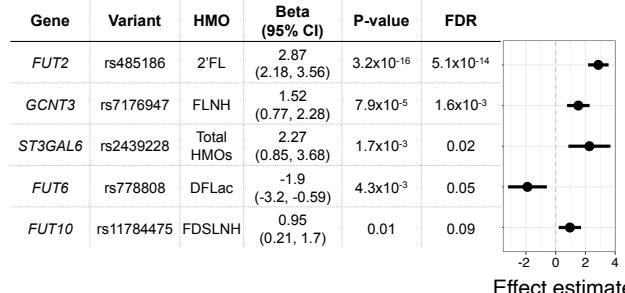
# Figure 1. Overview of gene expression in human milk



# Figure 2. Genetic influences on gene expression in human milk

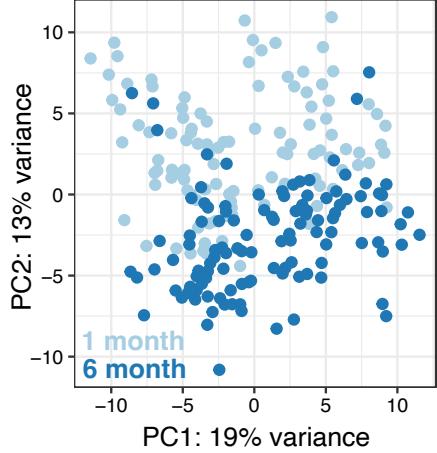
**A**

**B**

**C**

**D**

**E**

**F**

**G**


# Figure 3. Effects of milk gene expression on HMO composition

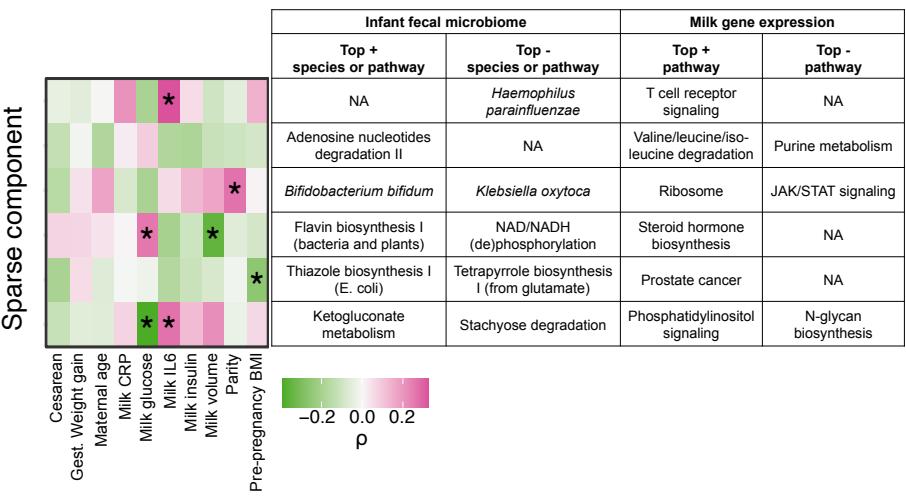
**A**

**B**

**C**

**D**

**E**

**F**


## Figure 4. Interactions between milk gene expression and the infant fecal microbiome

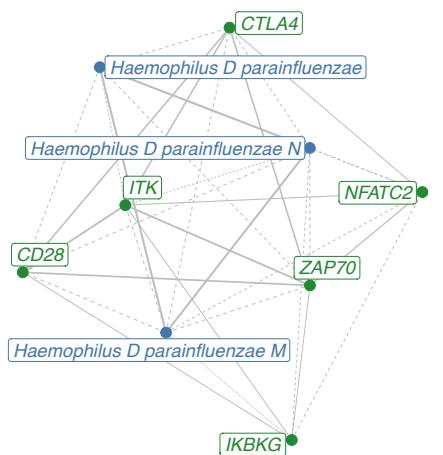
**A**



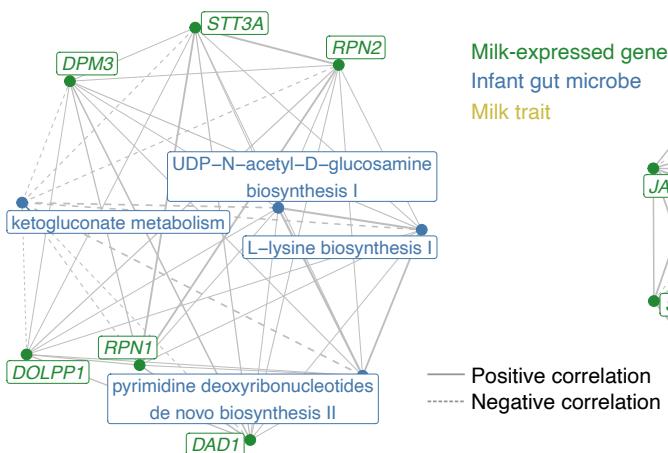
**B**



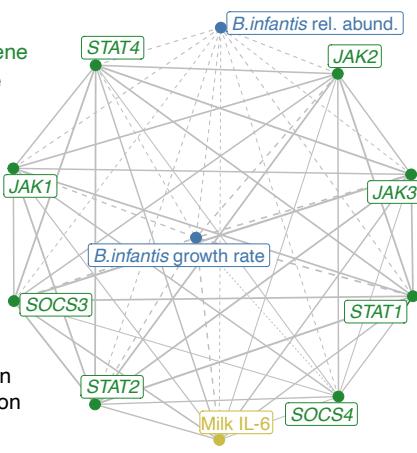
### C T-cell receptor signaling



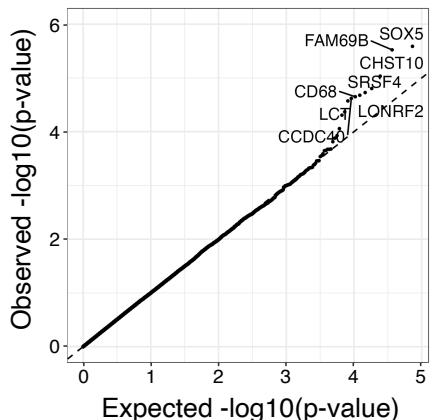
### D N-glycan biosynthesis



### E JAK/STAT signaling



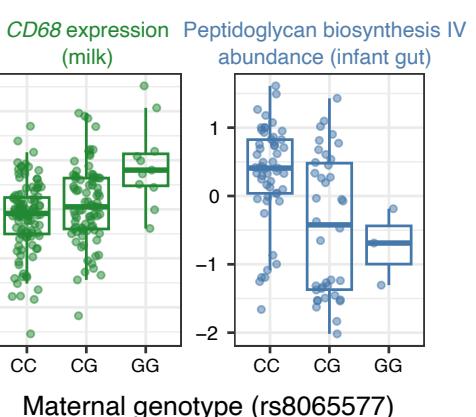
**F**



**G**

| Gene   | eQTL SNP    | Microbial taxon or pathway                                    | Timepoint (months) | Beta (95% CI)       | P-value               | FDR  |
|--------|-------------|---------------------------------------------------------------|--------------------|---------------------|-----------------------|------|
| SOX5   | rs10771048  | <i>Klebsiella variicola</i>                                   | 6                  | 0.68 (0.41, 0.95)   | 2.59x10 <sup>-6</sup> | 0.11 |
| FAM69B | rs3124607   | Enterobactin biosynthesis                                     | 1                  | -0.66 (-0.92, -0.4) | 3.00x10 <sup>-6</sup> | 0.11 |
| CHST10 | rs2309823   | <i>Streptococcus peroris</i>                                  | 6                  | 0.61 (0.35, 0.86)   | 9.26x10 <sup>-6</sup> | 0.21 |
| DOCK1  | rs10794126  | <i>Clostridium paraputreficum</i>                             | 6                  | 0.53 (0.3, 0.76)    | 1.58x10 <sup>-5</sup> | 0.21 |
| SRSF4  | rs2819608   | <i>Clostridium neonatale</i>                                  | 6                  | 0.73 (0.41, 1.04)   | 1.87x10 <sup>-5</sup> | 0.21 |
| CD68   | rs8065577   | Peptidoglycan biosynthesis IV ( <i>Enterococcus faecium</i> ) | 1                  | -0.7 (-1.01, -0.39) | 2.24x10 <sup>-5</sup> | 0.21 |
| CCDC40 | rs111831101 | <i>Klebsiella variicola</i>                                   | 6                  | 0.53 (0.3, 0.76)    | 2.41x10 <sup>-5</sup> | 0.21 |
| LCT    | rs3820794   | <i>Collinsella</i>                                            | 6                  | 0.57 (0.31, 0.82)   | 2.68x10 <sup>-5</sup> | 0.21 |

**H**



**I**



**J**

