

1 **Y-complex nucleoporins independently contribute to nuclear pore assembly**
2 **and gene regulation in neuronal progenitors**

3

4 Clarisse Orniacki^{1,2}, Annalisa Verrico¹, Stéphane Pelletier¹, Benoit Souquet^{1,2}, Fanny
5 Coupier³, Laurent Jourdren³, Serena Benetti¹ and Valérie Doye¹

6 ¹ Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France

7 ² Ecole Doctorale BioSPC, Université Paris Cité, Paris, France

8 ³ GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École
9 normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France

10

11 *Corresponding author and lead contact: valerie.doye@ijm.fr

12 # Present address: Ophthalmology Department, A. de Rothschild Foundation Hospital, 75019
13 Paris, France

14

15 **Keywords:**

16 Nucleoporin, Nup133, Seh1, Tpr, Nup153, Nup210L, Lhx1, neuronal progenitors, mouse
17 embryonic stem cells.

18

19

20 **ABSTRACT**

21

22

23 From their essential function in building up the nuclear pore complexes, nucleoporins have
24 expanded roles beyond nuclear transport. Hence, their contribution to chromatin
25 organization and gene expression has set them as critical players in development and
26 pathologies. We previously reported that Nup133 and Seh1, two components of the Y-
27 complex subunit of the nuclear pore scaffold, are dispensable for mouse embryonic stem cell
28 viability but required for their survival during neuroectodermal differentiation. Here, a
29 transcriptomic analysis revealed that Nup133 regulates a subset of genes at early stages of
30 neuroectodermal differentiation, including *Lhx1* and *Nup210L*, encoding a newly validated
31 nucleoporin. These genes were also misregulated in *Nup133ΔMid* neuronal progenitors, in
32 which NPC basket assembly is impaired, as previously observed in pluripotent cells.
33 However, a four-fold reduction of Nup133, despite affecting basket assembly, is not
34 sufficient to alter *Nup210L* and *Lhx1* regulation. Finally, these two genes are also
35 misregulated in *Seh1*-deficient neural progenitors that only show a mild decrease in NPC
36 density. Together these data reveal a shared function of Y-complex nucleoporins in gene
37 regulation during neuroectodermal differentiation, which seem independent of nuclear pore
38 basket assembly.

39

40

41 **INTRODUCTION**

42

43 As channels embedded in the nuclear envelope, the nuclear pore complexes (NPCs)
44 constitute the only gateway for selective transport of macromolecules between the
45 cytoplasm and the nucleus. These impressive structures are composed of proteins called
46 nucleoporins (Nups) that assemble in a highly organized and modular manner (reviewed in
47 Dultz et al., (2022)). The Y-complex - also named Nup107-160 complex - that comprises in
48 vertebrates nine distinct proteins, is a key structural subunit of the NPC scaffold. 16 copies of
49 this complex assemble on the nuclear and cytoplasmic sides of the NPC to build up its outer
50 rings, to which cytoplasmic filaments and the nuclear basket are anchored.

51 In addition to their canonical nuclear transport function, many Nups are also known to have
52 other cellular functions, notably in cell cycle progression or as key regulators of chromatin
53 organization and gene expression (reviewed in Buchwalter et al., 2019; Hezwani and
54 Fahrenkrog, 2017). In line with these multiple functions, mutations in many Nups have been
55 identified as primary causes of rare genetic diseases. Despite the presence of NPCs in all
56 nucleated cells, most of these diseases specifically affect one or a few organs (reviewed in
57 Jühlen and Fahrenkrog, 2018). Such tissue or cell-type specific alterations may reflect
58 variable Nup stoichiometry at NPCs, as notably reported for several integral membrane Nups
59 and peripheral Nups (Ori et al., 2013). For instance, increased levels of the transmembrane
60 protein Nup210 in myoblasts and neuronal progenitors was shown to be critical for their
61 differentiation (D'Angelo et al., 2012). Likewise, depletion of the basket nucleoporin Nup50
62 reduces the differentiation efficiency of C2C12 myoblasts (Buchwalter et al., 2014). In
63 contrast, another basket nucleoporin, Nup153, which is highly expressed in pluripotent cells
64 and neuronal progenitors compared to differentiated cells, is required for the maintenance
65 of their identities, notably by regulating epigenetic gene silencing and transcriptional
66 programs (Jacinto et al., 2015; Toda et al., 2017). More recently, the Y-complex constituent
67 Seh1, which is highly expressed in oligodendrocyte progenitor cells, was shown to be
68 required for oligodendrocyte differentiation and myelination by regulating the assembly of a
69 transcription complex at the nuclear periphery (Liu et al., 2019). However, individual Y-
70 complex Nups also contribute to earlier stages of differentiation, as underscored by the
71 impaired neuroectodermal differentiation of *Nup133*^{-/-}, *Seh1*^{-/-} and *Nup43*^{-/-} mouse
72 embryonic stem cells (mESCs) (Gonzalez-Estevez, Verrico et al., 2021; Lupu et al., 2008).

73 Earlier studies had found that the vertebrate Y-complex is, as an entity, critically required for
74 NPC assembly both at the end of mitosis and during interphase (Doucet and Hetzer, 2010;
75 Harel et al., 2003; Vollmer et al., 2015; Walther et al., 2003). The viability of *Nup133*^{-/-}, *Seh1*^{-/-}
76 and *Nup43*^{-/-} mESCs however indicated that the corresponding Y-complex Nups were
77 individually largely dispensable for nuclear pore assembly in these pluripotent cells.
78 Consistently, we previously showed that mutations of Nups that form the short arm of the Y-
79 complex, namely Nup43, Nup85 and Seh1, only lead to a mild decrease in NPC density in
80 pluripotent mESCs (Gonzalez-Estevez, Verrico et al., 2021). In contrast, pluripotent *Nup133*^{-/-}
81 mESCs feature a normal NPC density, but show specific nuclear basket defects, with half of
82 NPCs lacking Tpr while Nup153 dynamics was increased (Souquet et al., 2018). How Y-
83 complex Nups contribute to NPC assembly in differentiating mESCs was unknown.

84

85 Because of the established implication of the basket nucleoporins Nup153 and Tpr in
86 chromatin organization and gene regulation (Aksenova et al., 2020; Boumendil et al., 2019;
87 Jacinto et al., 2015; Krull et al., 2010; Toda et al., 2017), we decided to investigate potential
88 gene expression defects in *Nup133*^{-/-} mESCs during neuroectodermal differentiation. Here
89 we show that Nup133 regulates a subset of genes, including *Lhx1* and *Nup210L* that are
90 similarly misregulated in the absence of Seh1. However, *Nup133* and *Seh1* deficiencies
91 display distinct NPC assembly phenotypes in neuronal progenitors, thus indicating separate
92 roles for these proteins in NPC architecture and gene regulation in the context of mESC
93 differentiation.

94

95 **RESULTS AND DISCUSSION**

96 **Nup133 is required for the regulation of a subset of genes during neuroectodermal
97 differentiation**

98 The impaired neuroectodermal differentiation of *Nup133*^{-/-} mESCs initially described in Lupu
99 et al. (2008), was also observed in HM1-derived *Nup133*^{-/-} mESCs as revealed by their altered
100 growth and increased cell death (**Figure 1A, B**). To assess the potential effect of Nup133
101 deficiency in gene regulation upon neuroectodermal differentiation, we first determined the
102 mRNA levels of genes expressed in pluripotent cells (*Oct4* and *Nanog*) and in early neuronal
103 progenitors (*Sox1* and *Pax6*) that are considered markers for the respective states. RT-qPCR
104 analyses showed that these genes were properly repressed and activated, respectively, in
105 *Nup133*^{-/-} cells stimulated to differentiate towards neuroectoderm (**Figure 1C**). This
106 indicated that despite their impaired viability at early stages of differentiation (**Figure 1A, B**)
107 the surviving *Nup133*^{-/-} cells are able to exit pluripotency and to commit towards the
108 neuronal lineage, without overt defects in the expression of these markers.

109 To more broadly explore the impact of Nup133 on gene expression, we compared the
110 transcriptome of *WT* and *Nup133*^{-/-} mESCs at the pluripotent state and after 2 or 3 days of
111 differentiation towards neuroectodermal lineage. We therefore used cell lines from two
112 distinct genetic backgrounds, namely the HM1 control cell line and its CRISPR/Cas9-edited
113 *Nup133*^{-/-} derivatives (#14 and #19), and the blastocyst-derived control (#1A4) and *Nup133*^{-/-}
114 (*merm*, #319) mESC lines (Souquet et al., 2018 and Table S1). This analysis revealed that the
115 transcriptomes of pluripotent *WT* and *Nup133*^{-/-} mESCs were overall similar, whereas an
116 increasing number of genes were misregulated at day 3 of differentiation (**Figures 1D and**
117 **S1A**).

118 We assayed by RT-qPCR the altered expression of a subset of these genes, filtered by criteria
119 of differential expression (logFC>2 or <-2), significance (adjusted p-value<0.05) and lastly by
120 average expression level (average number of reads with a log2(CPM)>1, to ensure proper
121 detection by RT-qPCR) (**Figure S1B-E**). In addition to *WT* (HM1) and *Nup133*^{-/-} (#14) used for
122 the initial RNA-seq experiment, these analyses were also conducted on samples from
123 *Nup133* “Rescue” cell lines generated by inserting the GFP-Nup133 transgene in *Nup133*^{-/-}
124 (#14) mESCs at the permissive *Tigre* locus (Zeng et al., 2008). As an additional control, we
125 used an HM1-derived cell line that carries a transgene (*OsTIR*) similarly inserted in the *Tigre*

126 locus (**Figure S2A and Table S1**). In contrast to the impaired viability of *Nup133*^{-/-} mESCs
127 upon neuroectodermal differentiation, the survival of the *Rescue* and *WT* (*OsTIR*) cell lines
128 were similar, confirming the functionality of the GFP-*Nup133* transgene (**Figure 2A-C**).

129

130 For the candidates genes localized on the short arm of the Y chromosome (*Ddx3y* and
131 *Eif2s3y*, also located in close proximity to the loci of *Uty*, *Uba1y*, *Kdm5d* and *Zfy* (Subrini and
132 Turner, 2021)) we observed clone-dependent expression variations (**Figure S1B**). This
133 suggests that their apparent shared misregulations, also reported in *Tet1* and *Tet2* mutant
134 mESCs (Huang et al., 2013), might be in our case caused by partial loss or silencing of this
135 genomic region, independently of *Nup133* deficiency.

136 In contrast, we could validate the increased mRNA levels in *Nup133*^{-/-} compared to *WT* of
137 *Nuggc* at day 0, and of *Nup210L* and *Lhx1* at day 3 of differentiation (**Figure S1C**). We also
138 confirmed the reduced mRNA levels in *Nup133*^{-/-} compared to *WT* for *Magohb* and *Wfikkn1*
139 (but not *Acta2*) at day 3 of differentiation (**Figure S1D**). Finally, reduced mRNA levels of the
140 assayed candidate genes at the pluripotent state (day 0) were not significant due to high
141 variability among replicates or between control cell lines (HM1 and *OsTIR*) (**Figure S1E**).
142 Importantly, among the validated candidate genes, *Lhx1*, *Nup210L*, *Nuggc* and *Magohb* were
143 all efficiently restored to wild-type levels by the GFP-*Nup133* transgene.

144

145 *Lhx1* is a transcription factor involved in kidney and brain differentiation (Costello et al.,
146 2015; Delay et al., 2018; McMahon et al., 2019; Shawlot et al., 1999), two organs affected in
147 rare genetic diseases linked to *Nup133* mutations, namely steroid-resistant nephrotic
148 syndrome and Galloway Mowat syndrome (Braun et al., 2018; Fujita et al., 2018). We further
149 focused on this gene because of its complex misregulation in *Nup133*^{-/-} cells. Indeed, while
150 we confirmed by RT-qPCR the upregulation of *Lhx1* expression at day 3 of differentiation
151 (**Figure S1C**), *Lhx1* was subsequently downregulated again at later time-points (days 5 and 7
152 of differentiation) in *Nup133*^{-/-} cells compared to *WT* and *Rescue* cells (**Figure 2D**).

153 The other candidate gene we further characterized, *Nup210L*, is the differentially expressed
154 gene (DEG) with the most significant p-value at day 3 of differentiation (**Figure 1D**). It is also
155 one of the rare DEGs whose expression already increased at day 2 compared to *WT* cells
156 (**Figure S1A**). In mice, *Nup210L* mRNA is mainly detected in the testis and to a lesser extent
157 in the embryonic brain (<https://www.ncbi.nlm.nih.gov/gene/77595>); in humans, besides

158 testis, *Nup210L* expression was also detected in the prefrontal cortex neurons of rare
159 individuals (Gusev et al., 2019). Analyses at later stages (day 5 and 7) of differentiation
160 towards neuroectoderm showed that *Nup210L* was still more expressed in *Nup133*^{-/-}
161 compared to *WT* and *Rescue* cells, although a progressive increase of its expression was also
162 observed in the latter cell lines (**Figure 2E**).

163 As its name implies, *Nup210L* encodes a potential homologue of the transmembrane
164 nucleoporin Nup210/gp210. However, its putative NPC localization had never been
165 established. To address this issue, we generated a GFP-tagged construct encompassing the
166 minimal NPC targeting determinants previously established for gp210/Nup210 (Wozniak et
167 al., 1989), namely Nup210L predicted signal peptide, transmembrane domain and C-terminal
168 domain (**Figure 2F**). This Nup210L-mini construct when expressed in mESCs colocalizes at the
169 NPC with Tpr. This indicates that, like its homolog, Nup210L is indeed a nucleoporin.

170

171 **The middle-domain of Nup133 is required for mESC differentiation, gene regulation and**
172 **nuclear basket assembly in neuronal progenitors**

173 Having established the requirement of Nup133 for cell viability upon differentiation and for
174 the regulation of a subset of genes, we next aimed to determine how Nup133 contributes to
175 these processes. We first focused on the middle domain of Nup133 that is necessary for the
176 proper assembly of the nuclear pore basket in pluripotent mESCs (Souquet et al., 2018). We
177 therefore integrated the pCAG-GFP-Nup133 Δ mid transgene in HM1-derived *Nup133*^{-/-}
178 mESCs at the *Tigre* locus (**Figure S2A**). The GFP-Nup133 Δ mid protein levels in the resulting
179 *Nup133* Δ mid cells were comparable to those of endogenous Nup133 and of GFP-Nup133 in
180 the *Rescue* cell lines throughout differentiation (**Figure 2B**). Cell counts upon monolayer
181 differentiation towards neuroectodermal lineage showed for the *Nup133* Δ mid cell lines a
182 viability phenotype intermediate between *WT* and *Nup133*^{-/-}, indicating that the middle
183 domain of Nup133 is required for some, but not all of the functions of this nucleoporin upon
184 differentiation (**Figure 2C**).

185 In contrast, RT-qPCR analysis showed that *Nup210L* and *Lhx1* were similarly misregulated
186 upon neuronal differentiation in *Nup133* Δ mid and in *Nup133*^{-/-} cells (**Figure 2D and E**).

187 The improved survival upon differentiation of *Nup133* Δ mid compared to *Nup133*^{-/-} cells
188 enabled us to perform immunofluorescence analyses to determine whether the NPC basket
189 assembly defects, previously observed in pluripotent mESCs lacking Nup133 or its middle

190 domain, also occurred at the differentiated stage. Quantitative immunofluorescence
191 analyses, performed after 5 days of differentiation, showed that the intensity of Tpr at the
192 nuclear envelope was comparable between the *WT* and *Rescue* cell lines. In contrast, a two-
193 fold decrease was observed in *Nup133Δmid* neuronal progenitors (**Figure 3A, B**), a defect
194 comparable to the one previously observed at the pluripotent state (Souquet et al., 2018). In
195 addition, we also measured an increased Nup153 intensity at the nuclear envelope in
196 *Nup133Δmid* progenitors compared to neuronal progenitors from *WT* or *Rescue* cell lines
197 (**Figure 3C**). This increased level of Nup153 is unlikely to solely reflect a global increase in
198 NPC number as reported upon Tpr depletion in other cell lines (McCloskey et al., 2018), since
199 similar quantifications revealed a milder increase of Nup98 intensity at the nuclear envelope
200 compared to Nup153 (**Figure 3D**). Likewise, an increased accessibility of the Nup153 epitope
201 when Tpr is absent seems unlikely, as such an effect was not previously observed in *Nup133*-
202 */-* mESCs at the pluripotent stage (Souquet et al., 2018). The high level of Nup153 observed
203 may therefore reflect an increased stoichiometry of Nup153 per NPC in *Nup133Δmid*-
204 compared to control-derived neuronal progenitors, possibly reflecting different stages of
205 differentiation as previously described (Toda et al., 2017).

206

207 **Nup133-dependent gene regulation and nuclear basket assembly can be uncoupled**

208 Having identified a critical function for the middle domain of Nup133 in gene regulation, we
209 next aimed to determine the levels of Nup133 required for this process. We therefore
210 established *Nup133-degron* cell lines that allow auxin-mediated degradation of a GFP-tagged
211 allele of *Nup133* in an OsTIR-expressing mESC line (Gonzalez-Estevez, Verrico et al., (2021),
212 see Materials and Methods and **Figure S2B**).

213 The resulting *Nup133-degron* cell lines maintained normal *Nup133* mRNA expression during
214 differentiation (**Figure S3A**), but actual Nup133 protein levels (without Auxin
215 treatment) were only ~25% of that found in *WT* cells (**Figure 4A and S3B**). This could be due
216 to leaky OsTIR-induced degradation as previously reported (Mendoza-Ochoa et al., 2019;
217 Yesbolatova et al., 2020), decreased stability of the tagged nucleoporin, or impaired export
218 or translation of its mRNA. Nevertheless, these cells properly differentiated in the absence of
219 auxin (**Figures 4C, S3D and S3E**). As anticipated, addition of auxin to the medium throughout
220 differentiation led to a *Nup133**/-*-like phenotype: normal growth at the pluripotent state but
221 massive cell death in neuronal differentiation (**Figures 4C, S3C and S3D**).

222 Importantly, the lower Nup133 levels observed in the degron cell lines in the absence of
223 auxin was not accompanied by the altered expression of *Nup210L* or *Lhx1* during neuronal
224 differentiation (**Figure 4E**). In contrast, more extensive depletion of Nup133 upon
225 continuous auxin treatment mimicked the effect of *Nup133* inactivation on these genes
226 (**Figure 4E**).

227 Quantification of the nuclear basket protein Tpr in the *Nup133-degron* cell lines revealed
228 that, even in the absence of auxin, Tpr levels at the nuclear envelope were already reduced
229 to ~60% of the WT levels both in pluripotent cells and in neuronal progenitors (**Figures 4D**
230 and **S4A**). In contrast, the levels of Nup98 were not reduced in *Nup133-degron* cells (**Figure**
231 **S4C**), consistent with a largely unaltered NPC density and a specific alteration of the nuclear
232 basket. The minor - i.e., less than 10% - increase in Nup98 intensity observed in one of the
233 two cell lines (*Nup133-degron* #1) may reflect modest clonal-dependent variations of NPC
234 density. Finally, the levels of Nup153 were very mildly increased only in the *Nup133-degron*
235 #1 cells, with a similar trend in both undifferentiated and differentiated cells (**Figures S4B**
236 and **S4D**). These results indicate that a 4-fold reduction of Nup133 protein levels in
237 untreated *Nup133-degron* cells is sufficient to severely impair Tpr recruitment or
238 stabilization at nuclear pores, without major additional impact on NPC density.

239 Finally, although most of the GFP-mAID-Nup133 protein was already degraded after 30
240 minutes of auxin treatment in differentiated cells (**Figure 4B**), a 16 to 24h auxin treatment of
241 these cells only led to a modest additional decrease of Tpr levels at the nuclear envelope
242 compared to the untreated *Nup133-degron* cells (**Figures 4D** and **S4A**).

243 Overall, these results thus demonstrated that a correct Nup133 stoichiometry is critical for
244 nuclear basket assembly, yet is not required for cell viability or gene regulation upon
245 neuroectodermal differentiation. Taken together these data also reveal that a properly
246 assembled nuclear basket at all NPCs is not required to regulate the expression of Nup133-
247 target genes.

248

249 ***Nup210L* mRNA levels rapidly increase in response to Nup133 or Seh1 depletion.**

250 We next aimed to determine if the altered expression of *Nup210L* and *Lhx1* was specific for
251 Nup133 or was shared by other Y-complex constituents. In view of the requirement for Seh1
252 in global NPC assembly, distinct from the specific basket assembly defect of *Nup133* mutant
253 cells (Gonzalez-Estevez, Verrico et al., 2021), we chose to assess its implication at early

254 stages of differentiation. Despite a very extensive death of the *Seh1*^{-/-} mutant cells upon
255 differentiation, (Gonzalez-Estevez, Verrico et al., 2021), we could recover some mRNAs from
256 these cells at day 3 of differentiation. As observed for *Nup133*^{-/-} mESCs (**Figure 1A**), *Seh1*^{-/-}
257 cells properly repressed pluripotency markers and were able to induce early differentiation
258 markers (**Figure S5A**). Importantly, mRNA levels of both *Nup210L* and *Lhx1* were aberrantly
259 increased in *Seh1*^{-/-} cells at day 3 of differentiation as also observed in differentiating
260 *Nup133*^{-/-} cells (**Figure 5A**).

261

262 The low viability of *Seh1*^{-/-} cells upon differentiation (Gonzalez-Estevez, Verrico et al., 2021)
263 did not allow us to perform quantitative immunofluorescence studies at the differentiated
264 stage. We therefore established and validated new *Seh1-degron* cell lines (see Materials and
265 Methods **and Figure S2C**), in which the C-terminally-tagged form of *Seh1* was properly and
266 homogeneously expressed upon differentiation (**Figures 5B, S5B and S5C**). In the resulting
267 *Seh1-degron* cells, 24h addition of auxin at day 2 or 4 of differentiation led to impaired
268 viability of the cells (**Figure 5C**). This indicates that *Seh1* is not solely required at the early
269 onset of neuronal progenitor differentiation, but also for the proper growth or viability of
270 the progenitors themselves. Analyses of nuclear pore assembly in *Seh1-degron*-derived
271 neuronal progenitors (at day 5 of differentiation) did not reveal major defects in the absence
272 of auxin (**Figure 5D**). In contrast, a 16h-treatment with auxin led to a ~30% decrease of both
273 Tpr and Nup98 intensities at the nuclear envelope of neuronal progenitors compared to the
274 control cells (**Figures 5D and S4E**). This suggests a global decrease in pore number upon *Seh1*
275 depletion, comparable to the observations previously made in pluripotent *Seh1*^{-/-} and *GFP-*
276 *mAID-Seh1* mESCs (Gonzalez-Estevez, Verrico et al., 2021). Note that unlike Tpr and Nup98,
277 Nup153 levels were not altered in auxin-treated *Seh1-degron* cells, suggesting, as also
278 observed in *Nup133Δmid* cells, an increased stoichiometry of Nup153 per NPC (**Figure S4F**).
279 We also note that a 24h auxin treatment, applied to *Seh1-mAID-GFP* cells at day 2 of
280 neuronal differentiation was sufficient to cause an important increase in *Nup210L* mRNA
281 levels (**Figure 5E**). Likewise, a 24h auxin treatment of *Nup133-degron* cells induced *Nup210L*
282 expression (**Figure 5E**). In contrast, 24h of auxin treatment did not lead to an altered
283 regulation of *Lhx1* in *Seh1-degron* or *Nup133-degron* cells at day 3 (**Figure 5F**). Together,
284 these data indicate that *Nup210L* and *Lhx1* are shared downstream targets of *Nup133* and
285 *Seh1*, with *Nup210L* appearing to be a gene induced early upon loss of these Y-complex

286 Nups. On the other hand, *Lhx1* seems to need a prolonged depletion of these Y-complex
287 Nups to become misregulated, indicating that it is likely an indirect target of Y-complex Nup-
288 dependent regulations.

289

290

291 CONCLUSION

292 In this study, we have shown in differentiating mESCs that a subset of genes is deregulated
293 in the absence of Nup133. Although neuronal progenitors lacking either Nup133 or just its
294 middle domain share a defect in nuclear basket assembly and altered regulation of *Nup210L*
295 and *Lhx1*, these two phenotypes can be uncoupled. Indeed, these two genes were not
296 misregulated in our *Nup133-degron* cell lines that display a constitutive nuclear basket
297 assembly defect, and conversely, they were both similarly misregulated in *Seh1-deficient*
298 cells in which nuclear basket assembly is not specifically altered. As the untreated *Nup133-*
299 *degron* cell lines exhibit lower Nup133 protein levels than the control cell lines, our data
300 further argue that a limited amount of Nup133 is sufficient to keep *Nup210L* repressed in
301 differentiating mESCs and to induce the proper and timely expression of *Lhx1*. Because this
302 function in gene regulation is shared by Nup133 and Seh1, two physically distant members
303 of the Y-complex, it likely involves the whole Y-complex rather than each of these two
304 individual subunits.

305 The rather short lag time (below 24h) between auxin-induced degradation of Nup133 or
306 *Seh1* and *Nup210L* activation suggests that there could be a direct contact between the Y-
307 complex and the *Nup210L* genomic locus. Although the Y-complex is mainly visualized at
308 NPCs to which it is stably anchored (Rabut et al., 2004), a diffuse fraction is also likely
309 present in the nucleus, as previously described in HeLa cells (Morchoisne-Bolhy et al., 2015).
310 Hence, Y-complex dependent gene regulation may take place either at NPCs or “off-pore”.
311 Browsing available data of LaminB1-Dam-ID tracks (Peric-Hupkes et al., 2010), we noticed
312 that the *Nup210L* locus is adjacent to a lamin-associated domain (LAD) in mESCs and neural
313 progenitor cells. A location near the nuclear periphery would be consistent with a regulation
314 of *Nup210L* taking place at NPCs. In line with this hypothesis, Seh1 was shown to recruit to
315 the NPC the transcription factor Olig2 and the chromatin remodeler Brd7 to promote the
316 expression of differentiation genes in oligodendrocytes (Liu et al., 2019). Additionally,

317 Nup133 was proposed to promote the expression of *Myc* in cancer cells by anchoring its
318 superenhancer to the NPCs (Scholz et al., 2019).

319 This Y-complex-mediated gene regulation may also involve epigenetic mechanisms, as
320 reported for Nup153, which interacts with PRC1 to repress developmental genes (Jacinto et
321 al., 2015). Along these lines, it is noteworthy that human *NUP210L*, initially thought to be a
322 testis-specific gene, was found to be expressed in prefrontal cortex neurons of some
323 individuals. This regulation was linked to the epigenetic, allele-specific activation of
324 *NUP210L*, namely the deposition of the permissive histone mark H3K4me3 at its promoter
325 (Gusev et al., 2019). In addition, another epigenetic mechanism, the DNA methylation state
326 of *Nup210L*, has been linked to psychologic development disorders in patients carrying a
327 hemizygous 22q11.2 microdeletion (Starnawska et al., 2017). Considering its possible link
328 with normal or pathological cognitive abilities, the mechanisms and consequences of
329 Nup133- and Seh1-dependent *Nup210L* activation warrant further investigations.

330

331 **MATERIALS AND METHODS**

332

333 **mESCs culture and neuroectodermal differentiation**

334 Cell lines used in this study are listed in **Table S1** and were grown as previously described
335 (Gonzalez-Estevez, Verrico et al., 2021). Briefly, mESCs were grown at 37°C and 5% CO₂ on
336 Mitomycin-C inactivated feeder cells (DR4-mouse embryonic fibroblast) plated on 0.1%
337 gelatin (Sigma-Aldrich) in serum/leukemia inhibitory factor (LIF, ESGRO, Millipore)-
338 containing stem cell medium.

339 The neuroectodermal differentiation protocol used in this study was adapted from
340 (Abranches et al., 2009; Ying et al., 2003), as previously described (Gonzalez-Estevez, Verrico
341 et al., 2021). Briefly, following trypsinization and feeder removal, mESCs were resuspended
342 in N2B27 medium [Neurobasal, DMEM-F12, 7.5% BSA, N2 supplement, B27 supplement,
343 Pen/Strep, L-glutamin, β -mercaptoethanol] and plated at a density of $\sim 0.85 \times 10^4$ or 3×10^4
344 cells/cm² on gelatin-coated dishes (day 0). Medium was changed every day from day 2 on. To
345 stimulate neuronal differentiation, 1 μ M RA (all-trans-Retinoic acid, Sigma) was added to the
346 medium for 24h on day 2.

347 For annexin V/propidium iodide (PI) apoptosis/viability assays, cells were trypsinized,
348 counted, and 10^5 cells were centrifuged at 400 $\times g$ for 3 minutes. Cells were resuspended in
349 500 μ L of Annexin V binding buffer (ab14084, Abcam) and incubated with 1 μ L annexin V-Cy5
350 (ab14147, Abcam) and 10 μ g/mL propidium iodide for 5min at room temperature in the
351 dark. Cells were then analyzed by flow cytometry using a CyanADP Cytomation
352 (Beckman-Coulter), using SS (side-scatter) and FS (forward scatter) to remove debris and
353 exclude cell doublets, and 488 nm and 635 nm excitation lasers. At least 10.000 cells were
354 acquired and data were then processed using the Summit software.

355 To induce degradation of the GFP-mAID-Nup133 (in *Nup133-degron* cells) and Seh1-mAID-
356 GFP (in *Seh1-degron* cells), 500 μ M auxin (Sigma-Aldrich) was added to the medium (from a
357 280 mM stock in EtOH). The same final concentration of EtOH was added for control
358 experiments.

359

360 **RNA-sequencing**

361 RNAs were extracted from 3 independent *Nup133*^{-/-} clones (KO#1, HM1-derived *Nup133*^{-/-}
362 #14; KO#2, HM1-derived *Nup133*^{-/-} #19; KO#3, blastocyst-derived #319 *Nup133*^{merm/merm}

363 mESCs), and from 3 isogenic control samples (WT#1; HM1; WT#2, HM1; WT#3, blastocyst-
364 derived #1AA *Nup133^{+/+}*) (See **Table S1**). Library preparation and Illumina sequencing were
365 performed at the Ecole normale supérieure genomics core facility (Paris, France). Messenger
366 (polyA+) RNAs were purified from 1 µg of total RNA using oligo(dT). Libraries were prepared
367 using the strand specific RNA-Seq library preparation TruSeq Stranded mRNA kit (Illumina).
368 Libraries were multiplexed by 9 on 2 flowcells. Two 75 bp single read sequencing runs were
369 performed on a NextSeq 500 device (Illumina). A mean of 53.14 ± 14.72 million passing
370 Illumina quality filter reads was obtained for each of the 18 samples.
371 The analyses were performed using the Eoulsan pipeline version 2.0-alpha7 (Jourdren et al.,
372 2012), including read filtering, mapping, alignment filtering, read quantification,
373 normalization and differential analysis: Before mapping, poly N read tails were trimmed,
374 reads ≤ 40 bases were removed, and reads with quality mean ≤ 30 were discarded. Reads
375 were then aligned against the *Mus musculus* genome from Ensembl version 81 using STAR
376 (version 2.4.0k)(Dobin et al., 2013). Alignments from reads matching more than once on the
377 reference genome were removed using Java version of samtools (Li et al., 2009). To compute
378 gene expression, *Mus musculus* GFF genome annotation version 81 from Ensembl database
379 was used. All overlapping regions between alignments and referenced exons were counted
380 and aggregated by genes using the HTSeq-count algorithm (Anders et al., 2015). A first
381 analysis revealed that one of the samples (KO#2 day2) featured an abnormally high level of
382 ribosomal transcripts; this dataset was therefore excluded from subsequent analyses.
383 The rest of the analysis was carried out using the bioinformatics software R (R v4.1.2
384 (2021.11.01)), and open access packages, using the publicly available bioinformatics course
385 DIYtranscriptomics.com (Berry et al., 2021). Mapped raw counts were transformed in counts
386 per million (cpm) using the cpm function from the EdgeR package (v3.34.1). We filtered the
387 genes that had a $\log_2(\text{cpm})$ above 1 for more than 3 samples, and then normalized their cpm
388 using the TMM method (Robinson and Oshlack, 2010). The mean-variance relationship of
389 the filtered normalized data was modeled by voom transformation, and a linear model was
390 fitted to the data using the lmfit function from the limma package (v3.48.3). Bayesian
391 statistics for the chosen pair-wise comparisons (average KO expression compared to average
392 WT expression for each time point) were then calculated using the eBayes function from
393 limma, and adjusted with the BH correction. An exhaustive list of differentially expressed

394 genes (p. value<0.05 and $|logFC|>1.5$) was pulled-out using the decideTests function. Plots
395 in **Figures 1D and S1A** were generated in R using ggplot2 (v.3.3.5).

396 The RNASeq gene expression data and raw fastq files are available on the GEO repository
397 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218080>) under accession
398 number: GSE218080.

399

400 **Transfection and CRISPR/Cas9 genome editing**

401 mESCs were transfected as previously described (Souquet et al., 2018) using Lipofectamin
402 2000 (Invitrogen) according to manufacturer instructions. To establish the *Nup133-Rescue*,
403 *Nup133-Δmid*, *Nup133-degron* and *Seh1-degron* cell lines, $5\cdot10^5$ mESCs were co-transfected
404 with 3 μ g of a plasmid directing the expression of a gRNA and high fidelity (HF) Cas9 fused to
405 mCherry and with 3 μ g of DNA sequences of interest flanked by homology directed repair
406 arms (PCR product or linearized plasmid, see **Figure S2**). Plasmids are listed in **Table S2**,
407 gRNAs designed using the Benchling website (<https://benchling.com>) are listed in **Table S3**,
408 and PCR primers used to generate homology-directed repair templates are listed in **Table S4**.
409 3 days after transfection, GFP-positive cells were FACS-sorted to select for cells expressing
410 the tagged nucleoporin and plated on culture dishes. Individual clones were picked 6-7 days
411 after sorting and characterized using immunofluorescence, western blot, PCR on genomic
412 DNA and sequencing. Ploidy was assessed using chromosome spreads. DAPI staining was
413 used to ensure lack of major contamination by mycoplasma. Cell line characteristics are
414 summarized in **Table S1**.

415

416 **RT-qPCR**

417 RNA extraction was performed using NucleoSpin RNAII isolation kit (Mascherey-Nagel)
418 according to the manufacturer's instructions. Reverse-transcription (RT) was done with the
419 transcriptase inverse Superscript II (Invitrogen) and random hexamers (Amersham
420 Pharmacia), using at least 150 ng of RNA per sample. Real-time quantitative PCR was
421 performed with SybrGreen reagents (Applied Biosystems) on a LightCycler 480 instrument
422 (Roche Life Sciences). All mRNA level results are presented as relative to the TATA-binding
423 protein (TBP) mRNA levels. qPCR primers used in this study are listed in supplementary
424 **Table S5**.

425

426 **Western blots analyses**

427 Whole cell lysate preparations and western blot analyses were performed as previously
428 described (Gonzalez-Estevez, Verrico et al., 2021), using 4-10% SDS-PAGE gels (Mini-Protean
429 TGX Stain free precast gels, Bio-rad) and nitrocellulose membranes (GE healthcare).
430 Incubations with primary antibodies were carried overnight at 4°C. Signals from HRP-
431 conjugated secondary antibodies were detected by enhanced chemiluminescence
432 (SuperSignal® Pico or Femto, ThermoScientific) using ChemiDoc (Biorad). Antibodies used in
433 this study are listed in **Table S6**.

434

435 **Immunofluorescence and quantification of nucleoporin intensity at the nuclear envelope.**

436 Cells grown on glass coverslips coated with 0.1% gelatin were fixed for 20 minutes in 3%
437 paraformaldehyde (VWR, Radnor, PA) (resuspended in PBS and brought to pH 8.0 with
438 NaOH), permeabilized 30 minutes in H-Buffer (PBS, BSA 1%, Triton 0.2%, SDS 0.02%) and
439 incubated with the primary and secondary antibodies for 1h at room temperature in H-
440 Buffer, with washes in H-Buffer in-between. Antibodies used in this study are listed in
441 supplementary **Table S5**. Coverslips were then incubated 5 min with DAPI (Sigma, 280nM in
442 PBS) and mounted using Vectashield (Vector, Maravai Life Sciences, San Diego, CA). Images
443 were acquired on a DMI8 microscope (Leica), equipped with a CSU-W1 spinning-diskhead
444 (Yokogawa, Japan) and 2 Orca-Flash 4 V2+ sCMOS cameras (Hamamatsu), using 100x/1.4 oil
445 objectives

446 Quantification of nucleoporin intensities at the nuclear envelope (NE) was performed
447 essentially as described (Souquet et al., 2018), by mixing the cell line of interest with a
448 reference cell line, either the *WT* (*OsTIR*) cell line or the *Nup133-Rescue* line, as indicated.
449 For each field, we measured the mean intensity of 8-pixel-thick lines drawn on the nuclear
450 rims and of a background area. After subtraction of the background, the NE intensity value
451 obtained for each cell was normalized to the mean value obtained for the reference cells
452 acquired in the same field. Box plots were generated using GraphPad Software: each box
453 encloses 50% of the normalized values obtained, centered on the median value. The bars
454 extend from the 5th to 95th percentiles. Values falling outside of this range are displayed as
455 individual points. Statistical analyses were performed using unpaired nonparametric Mann-
456 Whitney tests. p<0.0001=****, p<0.001=***, p<0.01=**, p<0.05=*.
457

458 **Acknowledgements:**

459 We are grateful to Vedrana Andric, Alessandro Berto, Marta Boira and Salomé Neuvendel for
460 help in mESCs culture, differentiation, cell line establishment, or western blot analyses. We
461 thank Charlène Boumendil and Pierre Therizols for helpful discussions, and Benoit
462 Palancade, Roger Karess, Charlène Boumendil and the Doye lab members for critical reading
463 of the manuscript. We also acknowledge the ImagoSeine core facility of the Institut Jacques
464 Monod, for help with cell sorting, FACS analyses, and spinning disk imaging.

465 **Competing interests**

466 No competing interests declared.

467

468 **Funding**

469 Work in the laboratory of VD was supported by the Centre national de la recherche
470 scientifique (CNRS), the "Fondation pour la Recherche Médicale" (FRM, Foundation for
471 Medical Research) under grants No DEQ20150734355, "Equipe FRM 2015" and
472 EQU202003010205, "Equipe FRM 2020" to VD, and by the Labex Who Am I? (ANR-11-LABX-
473 0071; Idex ANR-11-IDEX-0005-02). CO received PhD fellowships from Ecole Doctorale
474 BioSPC, Université Paris Cité and from the "Fondation pour la Recherche Médicale" (fourth
475 year), AV received a post-doc grant from the Labex Who Am I? (2019 post-doc call) and B.S.
476 was supported by "la Fondation ARC pour la Recherche sur le Cancer" (PDF 20130606747).
477 The ImagoSeine core facility was supported by funds from IBISA and the France-Bioimaging
478 (ANR-10-INBS-04) infrastructures. The GénomiqueENS core facility was supported by the
479 France Génomique national infrastructure, funded as part of the "Investissements d'Avenir"
480 program managed by the Agence Nationale de la Recherche (contract ANR-10-INBS-0009).

481

482 **AUTHOR CONTRIBUTIONS**

483 C.O., A.V., B.S., and V.D. conceived and designed the experiments.

484 C.O., A.V., S.P., B.S., F.C. and S.B. performed the experiments.

485 C.O., A.V., S.P., L.J. and V.D. analyzed the data

486 C.O., A.V., and V.D. wrote the manuscript with contribution of L. J. for the method section.

487

488

489 **REFERENCES**

490 Abrançhes, E., Silva, M., Pradier, L., Schulz, H., Hummel, O., Henrique, D., and Bekman, E. (2009).
491 Neural differentiation of embryonic stem cells in vitro: A road map to neurogenesis in the
492 embryo. *PLoS One* **4**, e6286.

493 Aksenova, V., Smith, A., Lee, H., Bhat, P., Esnault, C., Chen, S., Iben, J., Kaufhold, R., Yau, K.C.,
494 Echeverria, C., et al. (2020). Nucleoporin TPR is an integral component of the TREX-2 mRNA
495 export pathway. *Nat. Commun.* **11**, 1–13.

496 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-A Python framework to work with high-
497 throughput sequencing data. *Bioinformatics* **31**, 166–169.

498 Berry, A.S.F., Amorim, C.F., Berry, C.L., Syrett, C.M., English, E.D., and Beiting, D.P. (2021). An
499 open-source toolkit to expand bioinformatics training in infectious diseases. *MBio* **12**, 1–6.

500 Berto, A., Yu, J., Morchoisne-Bolhy, S., Bertipaglia, C., Vallee, R., Dumont, J., Ochsenbein, F.,
501 Guerois, R., and Doye, V. (2018). Disentangling the molecular determinants for Cenp-F
502 localization to nuclear pores and kinetochores. *EMBO Rep.* **19**, e44742.

503 Boumendil, C., Hari, P., Olsen, K.C.F., Acosta, J.C., and Bickmore, W.A. (2019). Nuclear pore
504 density controls heterochromatin reorganization during senescence. *Genes Dev.* **33**, 144–149.

505 Braun, D.A., Lovric, S., Schapiro, D., Schneider, R., Marquez, J., Asif, M., Hussain, M.S., Daga, A.,
506 Widmeier, E., Rao, J., et al. (2018). Mutations in multiple components of the nuclear pore
507 complex cause nephrotic syndrome. *J. Clin. Invest.* **128**, 4313–4328.

508 Buchwalter, A., Kaneshiro, J.M., and Hetzer, M.W. (2019). Coaching from the sidelines: the
509 nuclear periphery in genome regulation. *Nat. Rev. Genet.* **20**, 39–50.

510 Buchwalter, A.L., Liang, Y., and Hetzer, M.W. (2014). Nup50 is required for cell differentiation
511 and exhibits transcription-dependent dynamics. *Mol. Biol. Cell* **25**, 2472–2484.

512 Costello, I., Nowotschin, S., Sun, X., Mould, A.W., Hadjantonakis, A.K., Bikoff, E.K., and
513 Robertson, E.J. (2015). Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior
514 mesendoderm, node, and midline development. *Genes Dev.* **29**, 2108–2122.

515 D'Angelo, M.A., Gomez-Cavazos, J.S., Mei, A., Lackner, D.H., and Hetzer, M.W. (2012). A Change
516 in Nuclear Pore Complex Composition Regulates Cell Differentiation. *Dev. Cell* **22**, 446–458.

517 Delay, B.D., Corkins, M.E., Hanania, H.L., Salanga, M., Deng, J.M., Sudou, N., Taira, M., Horb,
518 M.E., and Miller, R.K. (2018). Tissue-specific gene inactivation in *xenopus laevis*: Knockout of lhx1
519 in the kidney with CRISPR/Cas9. *Genetics* **208**, 673–686.

520 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
521 Gingeras, T.R. (2013). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21.

522 Doucet, C.M., and Hetzer, M.W. (2010). Nuclear pore biogenesis into an intact nuclear envelope.
523 *Chromosoma* **119**, 469–477.

524 Dultz, E., Wojtynek, M., Medalia, O., and Onischenko, E. (2022). The Nuclear Pore Complex:
525 Birth, Life, and Death of a Cellular Behemoth. *Cells* **11**, 1–28.

526 Festuccia, N., Owens, N., Papadopoulou, T., Gonzalez, I., Tachtsidi, A., Vandoermel-Pournin, S.,
527 Gallego, E., Gutierrez, N., Dubois, A., Cohen-Tannoudji, M., et al. (2019). Transcription factor
528 activity and nucleosome organization in mitosis. *Genome Res.* **29**, 250–260.

529 Fujita, A., Tsukaguchi, H., and Koshimizu, E. (2018). Homozygous Splicing Mutation in NUP133
530 Causes Galloway–Mowat Syndrome Atsushi. *Ann. Neurol.* **84**, 814–828.

531 Gonzalez-Estevez, A., Verrico, A., Orniacki, C., Reina-San-Martin, B., and Doye, V. (2021).
532 Integrity of the short arm of the nuclear pore Y-complex is required for mouse embryonic stem
533 cell growth and differentiation. *J. Cell Sci.* **134**, jcs258340.

534 Gusev, F.E., Reshetov, D.A., Mitchell, A.C., Andreeva, T. V., Dincer, A., Grigorenko, A.P., Fedonin,
535 G., Halene, T., Aliseychik, M., Goltsov, A.Y., et al. (2019). Epigenetic-genetic chromatin
536 footprinting identifies novel and subject-specific genes active in prefrontal cortex neurons.
537 *FASEB J.* **33**, 8161–8173.

538 Harel, A., Orjalo, A. V., Vincent, T., Lachish-Zalait, A., Vasu, S., Shah, S., Zimmerman, E., Elbaum,
539 M., and Forbes, D.J. (2003). Removal of a single pore subcomplex results in vertebrate nuclei
540 devoid of nuclear pores. *Mol. Cell* **11**, 853–864.

541 Hezwani, M., and Fahrenkrog, B. (2017). The functional versatility of the nuclear pore complex
542 proteins. *Semin. Cell Dev. Biol.* **68**, 2–9.

543 Huang, Y., Chavez, L., Chang, X., Wang, X., Pastor, W.A., Kang, J., Zepeda-Martínez, J.A., Pape,
544 U.J., Jacobsen, S.E., Peters, B., and Rao, A. (2014). Distinct roles of the methylcytosine oxidases
545 Tet1 and Tet2 in mouse embryonic stem cells. *Proc. Natl. Acad. Sci. U.S.A.* **111**:1361–1366.

546 Jacinto, F. V., Benner, C., and Hetzer, M.W. (2015). The nucleoporin Nup153 regulates embryonic
547 stem cell pluripotency through gene silencing. *Genes Dev.* **29**, 1224–1238.

548 Jourdren, L., Bernard, M., Dillies, M.A., and Le Crom, S. (2012). Eoulsan: A cloud computing-
549 based framework facilitating high throughput sequencing analyses. *Bioinformatics* **28**, 1542–
550 1543.

551 Jühlen, R., and Fahrenkrog, B. (2018). Moonlighting nuclear pore proteins: tissue-specific
552 nucleoporin function in health and disease. *Histochem. Cell Biol.* **150**, 593–605.

553 Krull, S., Dörries, J., Boysen, B., Reidenbach, S., Magnus, L., Norder, H., Thyberg, J., and Cordes,
554 V.C. (2010). Protein Tpr is required for establishing nuclear pore-associated zones of
555 heterochromatin exclusion. *EMBO J.* **29**, 1659–1673.

556 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and
557 Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
558 2079.

559 Liu, Z., Yan, M., Liang, Y., Liu, M., Zhang, K., Shao, D., Jiang, R., Li, L., Wang, C., Nussenzveig, D.R.,
560 et al. (2019). Nucleoporin Seh1 Interacts with Olig2/Brd7 to Promote Oligodendrocyte
561 Differentiation and Myelination. *Neuron* **102**, 587–601.

562 Lupu, F., Alves, A., Anderson, K., Doye, V., and Lacy, E. (2008). Nuclear Pore Composition
563 Regulates Neural Stem/Progenitor Cell Differentiation in the Mouse Embryo -Supplemental-
564 *Dev. Cell* **14**, 831–842.

565 McCloskey, A., Ibarra, A., and Hetzer, M.W. (2018). Tpr regulates the total number of nuclear
566 pore complexes per cell nucleus. *Genes Dev.* **32**, 1321–1331.

567 McMahon, R., Sibbritt, T., Salehin, N., Osteil, P., and Tam, P.P.L. (2019). Mechanistic insights
568 from the LHX1-driven molecular network in building the embryonic head. *Dev. Growth Differ.* **61**,
569 327–336.

570 Mendoza-Ochoa, G.I., Barrass, J.D., Terlouw, B.R., Maudlin, I.E., de Lucas, S., Sani, E., Aslanzadeh, V., Reid, J.A.E., and Beggs, J.D. (2019). A fast and tuneable auxin-inducible degron for depletion
571 of target proteins in budding yeast. *Yeast* 36, 75–81.

573 Morchoisne-Bolhy, S., Geoffroy, M.C., Bouhlel, I.B., Alves, A., Audugé, N., Baudin, X., Van Bortle, K., Powers, M.A., and Doye, V. (2015). Intranuclear dynamics of the Nup107-160 complex. *Mol. Biol. Cell* 26, 2343–2356.

576 Ori, A., Banterle, N., Iskar, M., Andrés-Pons, A., Escher, C., Khanh Bui, H., Sparks, L., Solis-Mezarino, V., Rinner, O., Bork, P., et al. (2013). Cell type-specific nuclear pores: A case in point
577 for context-dependent stoichiometry of molecular machines. *Mol. Syst. Biol.* 9, 648.

579 Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S.W.M., Solovei, I., Brugman, W., Gräf, S.,
580 Flicek, P., Kerkhoven, R.M., van Lohuizen, M., et al. (2010). Molecular Maps of the
581 Reorganization of Genome-Nuclear Lamina Interactions during Differentiation. *Mol. Cell* 38,
582 603–613.

583 Rabut, G., Doye, V., and Ellenberg, J. (2004). Mapping the dynamic organization of the nuclear
584 pore complex inside single living cells. *Nat. Cell Biol.* 6, 1114–1121.

585 Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential
586 expression analysis of RNA-seq data. *Genome Biol.* 11, 1–9.

587 Scholz, B.A., Sumida, N., de Lima, C.D.M., Chachoua, I., Martino, M., Tzelepis, I., Nikoshkov, A.,
588 Zhao, H., Mehmood, R., Sifakis, E.G., et al. (2019). WNT signaling and AHCTF1 promote
589 oncogenic MYC expression through super-enhancer-mediated gene gating. *Nat. Genet.* 51,
590 1723–1731.

591 Shawlot, W., Wakamiya, M., Kwan, K.M., Kania, A., Jessell, T.M., and Behringer, R.R. (1999). Lim1
592 is required in both primitive streak-derived tissues and visceral endoderm for head formation in
593 the mouse. *Development* 126, 4925–4932.

594 Souquet, B., Freed, E., Berto, A., Andric, V., Audugé, N., Reina-San-Martin, B., Lacy, E., and Doye,
595 V. (2018). Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in
596 Embryonic Stem Cells. *Cell Rep.* 23, 2443–2454.

597 Starnawska, A., Hansen, C.S., Sparsø, T., Mazin, W., Olsen, L., Bertalan, M., Buil, A., Bybjerg-
598 Grauholm, J., Bækvad-Hansen, M., Hougaard, D.M., et al. (2017). Differential DNA methylation at
599 birth associated with mental disorder in individuals with 22q11.2 deletion syndrome. *Transl. Psychiatry* 7, e1221.

601 Subrini, J., and Turner, J. (2021). Y chromosome functions in mammalian spermatogenesis. *Elife*
602 10, 1–20.

603 Toda, T., Hsu, J.Y., Linker, S.B., Hu, L., Schafer, S.T., Mertens, J., Jacinto, F. V., Hetzer, M.W., and
604 Gage, F.H. (2017). Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and
605 Maintenance of Neural Progenitor Cells. *Cell Stem Cell* 21, 618–634.

606 Vollmer, B., Lorenz, M., Moreno-Andrés, D., Bodenhofer, M., De Magistris, P., Astrinidis, S.A.,
607 Schooley, A., Flötenmeyer, M., Leptihn, S., and Antonin, W. (2015). Nup153 Recruits the Nup107-
608 160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly.
609 *Dev. Cell* 33, 717–728.

610 Walther, T.C., Alves, A., Pickersgill, H., Loiodice, I., Hetzer, M., Galy, V., Hülsmann, B.B., Köcher,
611 T., Wilm, M., Allen, T., et al. (2003). The conserved Nup107-160 complex is critical for nuclear

612 pore complex assembly. *Cell* **113**, 195–206.

613 Wozniak, R.W., Bartnik, E., and Blobel, G. (1989). Primary structure analysis of an integral
614 membrane glycoprotein of the nuclear pore. *J. Cell Biol.* **108**, 2083–2092.

615 Yesbolatova, A., Saito, Y., Kitamoto, N., Makino-Itou, H., Ajima, R., Nakano, R., Nakaoka, H.,
616 Fukui, K., Gamo, K., Tominari, Y., et al. (2020). The auxin-inducible degron 2 technology provides
617 sharp degradation control in yeast, mammalian cells, and mice. *Nat. Commun.* **11**, 5701.

618 Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003). Conversion of embryonic stem
619 cells into neuroectodermal precursors in adherent monoculture. *Nat. Biotechnol.* **21**, 183–186.

620 Zeng, H., Horie, K., Madisen, L., Pavlova, M.N., Gragerova, G., Rohde, A.D., Schimpf, B.A., Liang,
621 Y., Ojala, E., Kramer, F., et al. (2008). An inducible and reversible mouse genetic rescue system.
622 *PLoS Genet.* **4**, e1000069.

623

624 **FIGURE AND FIGURE LEGENDS**

625 **Figure 1. Transcriptomic analysis of *Nup133*^{-/-} mESCs and early neuronal progenitors**

626 **A.** Growth curve in neuroectodermal differentiation of *WT* (HM1) and isogenic *Nup133*^{-/-}
627 mESCs. The graph (logarithmic scale) represents the average of cell counts from 3
628 independent experiments, each represented by a distinct label. Values were normalized to
629 the number of cells seeded at day 0 (3.10^4 cells/cm²). **B.** Quantification of apoptosis
630 initiation (defined by annexin V positive (+) and propidium iodide negative (PI -) cells) and
631 cell death (propidium iodide positive cells, PI+) in *WT* and *Nup133*^{-/-} cells at day 3 of
632 differentiation. Error bars represent standard deviation of 3 independent experiments, each
633 represented by a distinct label. In A and B, significance was assessed between *WT* and
634 *Nup133*^{-/-} using paired T. test (*p<0.5; **p<0.01). **C.** mRNA levels of pluripotency (*Nanog*,
635 *Oct4*) and neuronal progenitor (*Sox1*, *Pax6*) markers during neuroectodermal differentiation
636 were quantified by RT-qPCR and normalized to *Tbp* mRNA levels. Each dot represents an
637 individual experiment. **D.** Volcano plots of the RNA-seq analysis carried out in pluripotent
638 mESCs and in cells at day 3 of neuroectodermal differentiation, showing differentially
639 expressed genes (DEGs), by fold change (log2FC of *Nup133*^{-/-} compared to *WT* cells) and
640 significance (adj. p.Val presented on a -log10 scale). Significantly upregulated DEGs (adj. p-
641 value<0.05, logFC>2) and downregulated DEGs (adj. p-value<0.05, logFC<-2) are represented
642 by red and blue dots, respectively, if their average normalized expression in log2(CPM) is
643 above 1. Their number is indicated at the top of each colored square. Among them, the
644 names of DEGs assessed by RT-qPCR are indicated in blue or red. The names of other
645 relevant DEGs are indicated in grey. The other genes are represented as grey dots when
646 their average expression is below 1 and otherwise as black dots.

647

648 **Figure 2. Altered expression of *Lhx1* and *Nup210L* in *Nup133* mutant cell lines**

649 **A.** Schematics of the GFP-Nup133 (*Rescue*) and GFP-Nup133 Δ mid fusion proteins (see also
650 Table S1 and Figure S2A). **B.** Western blot showing the expression of endogenous Nup133 or
651 its GFP-tagged forms in *WT*, *Nup133*^{-/-}, *Nup133-Rescue* and *Nup133 Δ mid* cells at day 7 of
652 differentiation. γ -tubulin is used as loading control. Molecular weights are indicated
653 (kilodaltons). **C.** Growth curve obtained from cell counts in neuroectodermal differentiation
654 (two independent experiments) presented in a logarithmic scale. Cells were seeded at a
655 density of $\sim 3.10^4$ cells/cm² (10^5 cells in p12 wells). Error bars correspond to standard

656 deviations. **D, E.** *Lhx1* and *Nup210L* mRNA levels were analyzed by RT-qPCR at the indicated
657 time points of neuroectodermal differentiation in *WT (OsTIR)*, *Nup133^{-/-}*, *Rescue* and
658 *Nup133Δmid* cell lines. Each cell line is represented by a distinct label. **F.** Left: Schematics of
659 *Nup210L* and of the GFP*-mini-*Nup210L* construct that comprises: *Nup210L* predicted signal
660 peptide (SP) and part of the luminal domain [aa 1-40], GFP* (see details about GFP* in the
661 legend to Figure S2) and aa 1791-1884 of *Nup210L*, encompassing part of its predicted
662 luminal domain and its transmembrane TM and cytosolic (Cyt) domains. Numbers below the
663 schematics correspond to amino acid residues. Right: *WT (HM1)* mESCs transiently
664 expressing the GFP*-mini-*Nup210L* construct were fixed and processed for
665 immunofluorescence with anti-Tpr antibodies. A single confocal section is shown. Scale bar,
666 5μm.

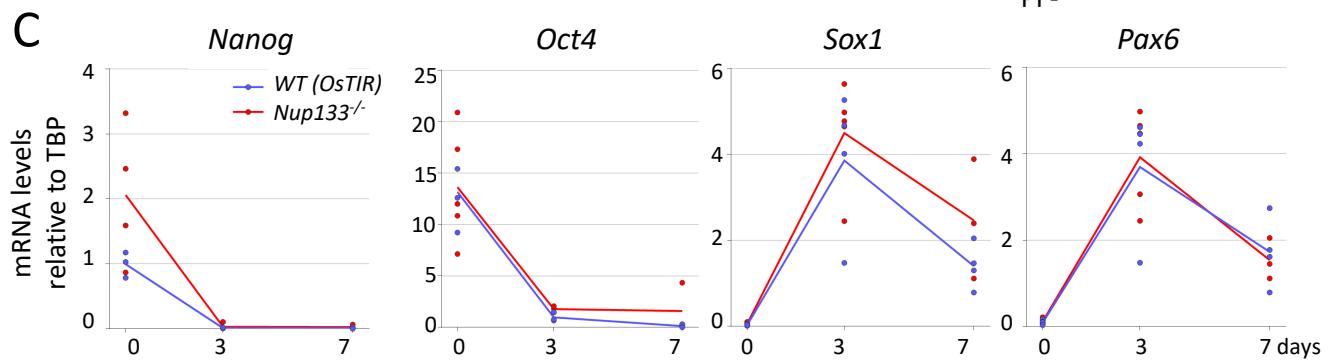
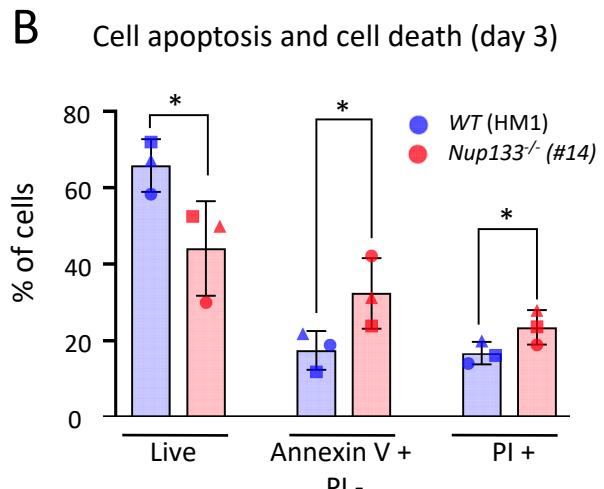
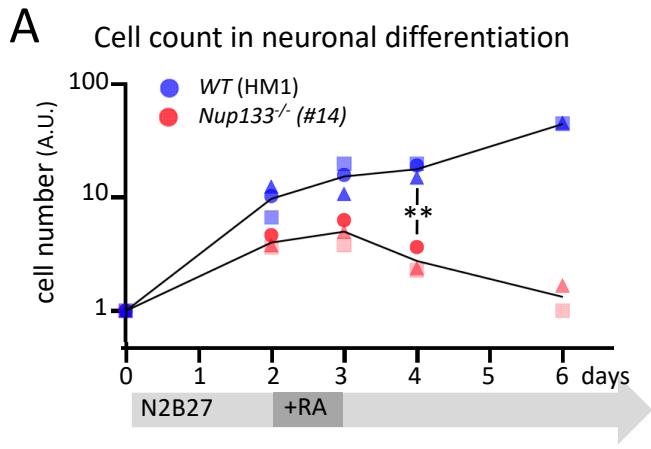
667

668 **Figure 3. *Nup133Δmid* cells display a nuclear basket assembly defect at the neuronal
669 progenitor stage**

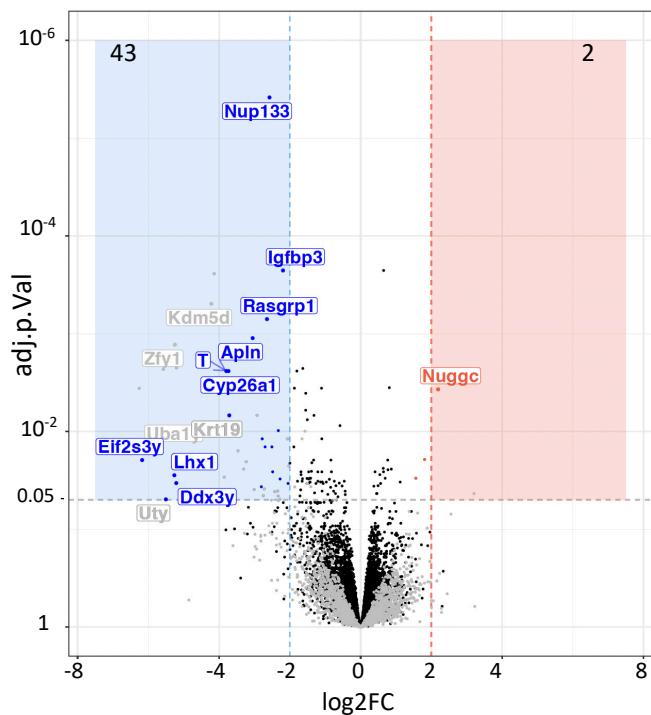
670 **A.** Representative image (single Z-section) of Tpr and Nup153 immunofluorescence of *WT*
671 (*OsTIR*) mixed with *Nup133Δmid* cells (indicated by a *) at day 5 of differentiation. Scale bar,
672 10μm. **B, C, D.** Quantification of Tpr (B), Nup153 (C) and Nup98 (D) fluorescence intensity at
673 the nuclear envelope, presented as box-plots. Values were normalized to the *WT (OsTIR)* in
674 each field. Standard deviation (SD), number of analyzed cells (n) and of experiments (N) are
675 indicated. ****: p-value<0.0001, n.s.: non-significant in Mann-Whitney test.

676

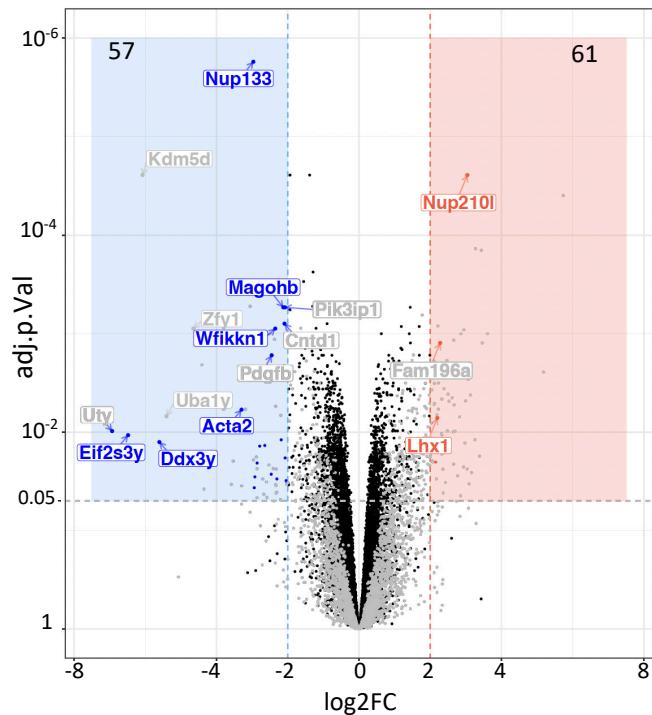
677 **Figure 4. Nuclear basket integrity and gene regulation are uncoupled in *Nup133-degron*
678 cells.**




679 **A, B.** Western blot showing the levels of endogenous *Nup133* or its GFP-mAID- (*degron*) or
680 GFP- (*Rescue*) tagged forms in the indicated cell lines at day 5 of differentiation. In **B**,
681 *Nup133-degron* cells at day 5 of differentiation were either treated with ethanol (used as
682 solvent for auxin; -) or with auxin for the indicated time. 1/2 and 1/4 dilutions of the non-
683 treated *Nup133-degron* extract were also loaded. γ-tubulin is used as loading control.
684 Molecular weights are indicated (kilodaltons). **C.** Cell counts at day 7 of neuroectodermal
685 differentiation (n=3). Cells were seeded at 0.85×10^4 cells/cm². The graph represents the
686 average of 3 independent experiments, each represented by a distinct label. **D.**
687 Quantification of Tpr fluorescence intensity at the nuclear envelope in *Nup133-degron* cells

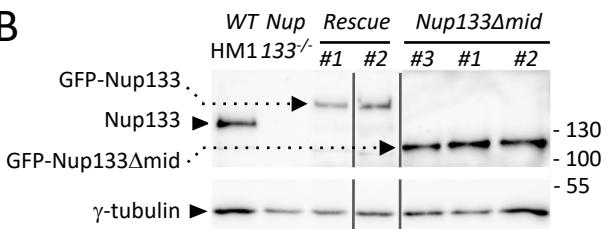
688 treated (+) or not (-) for 16 h with auxin at day 5 of differentiation, presented as box-plots.
689 Values were normalized to the *Nup133-Rescue* in each field. Standard deviation (SD),
690 number of analyzed cells (n) and of experiments (N) are indicated. ****: p-value<0.0001; **:
691 p-value<0.01; *: p-value<0.05; n.s.: non-significant in Mann-Whitney test. **E.** mRNA levels of
692 *Lhx1* and *Nup210L* were quantified by RT-qPCR in *Nup133-degron* cells treated (dotted lines)
693 or not (continuous lines) with auxin from day 0 on. The graph corresponds to 2-7
694 independent experiments for each cell line (represented by distinct labels).

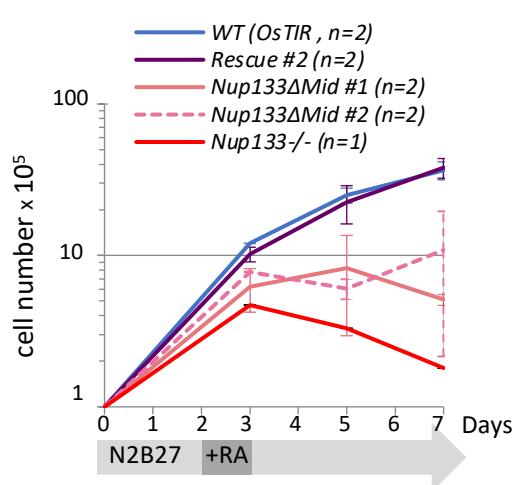

695

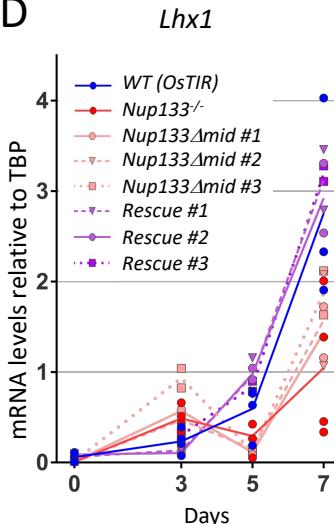
696 **Figure 5. Seh1 depletion leads to *Lhx1* and *Nup210L* misregulation and altered NPC density**
697 **in neuronal progenitors.**

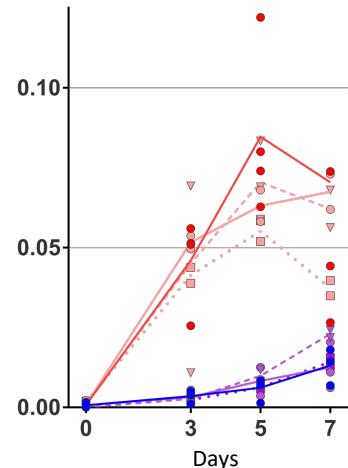

698 **A.** Expression levels of *Lhx1* and *Nup210L* was assessed by RT-qPCR at day 3 of
699 neuroectodermal differentiation in *WT* (HM1), *Seh1*^{-/-} (#1) and *Nup133*^{-/-} (#14) cells (n=3).
700 The graph represents the average and standard deviation of 3 independent experiments,
701 each represented by a dot. **B.** Immunofluorescence analysis of *Seh1-mAID-GFP* expressing
702 cells (*Seh1-degron* #2) at day 5 of differentiation. Cells treated with EtOH or auxin for the last
703 16h were fixed and stained with DAPI. Scale bar, 20µm. **C.** Growth curve obtained from cell
704 counts (n=3) in neuroectodermal differentiation of *Seh1-degron* cells treated when indicated
705 with auxin from day 2 or day 4 on. Cells were seeded at 0.85×10^4 cells/cm². Mean and
706 standard deviations are shown. **D.** Quantification of Tpr intensity at the NE at day 5 of
707 differentiation, in the indicated cell lines. Cells were treated (+) or not (-) with auxin during
708 the previous 16h. Values are normalized to *WT (OsTIR)* and presented as box-plots. Standard
709 deviation (SD), number of analyzed cells (n) and of experiments (N) are indicated. ****: p-
710 value<0.0001; n.s.: non-significant in Mann-Whitney test. **E, F.** Expression of *Lhx1* and
711 *Nup210L* was assessed by RT-qPCR at day 3 of differentiation in cells treated with auxin (+)
712 or EtOH (-) for the last 24 h.

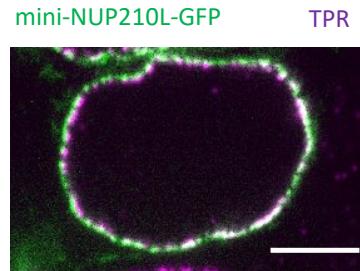
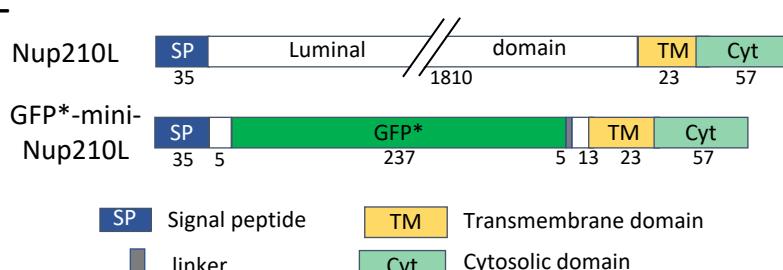

D Differentially expressed genes:
- in mESCs

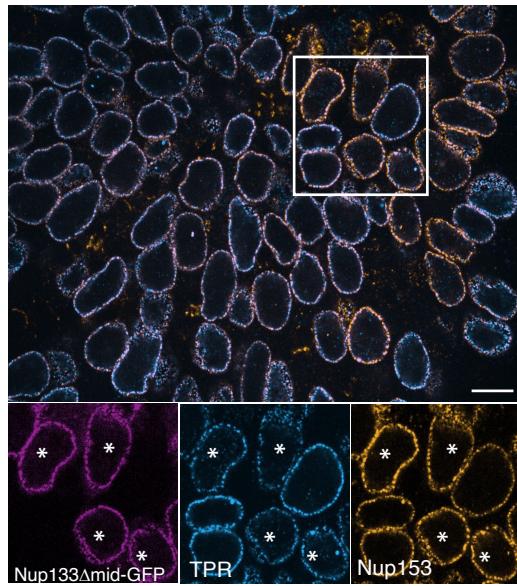

- at day 3 of differentiation

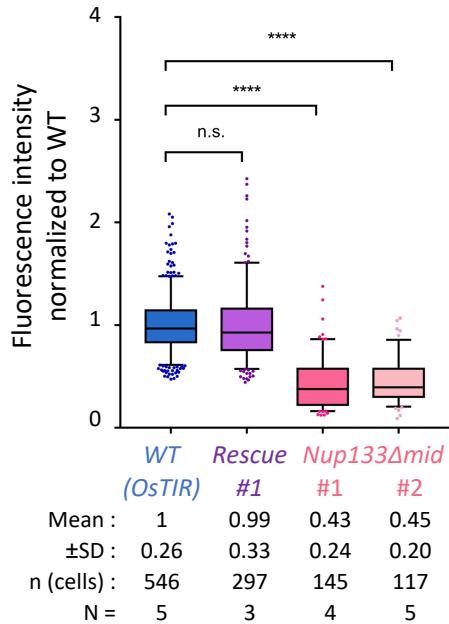

A


B

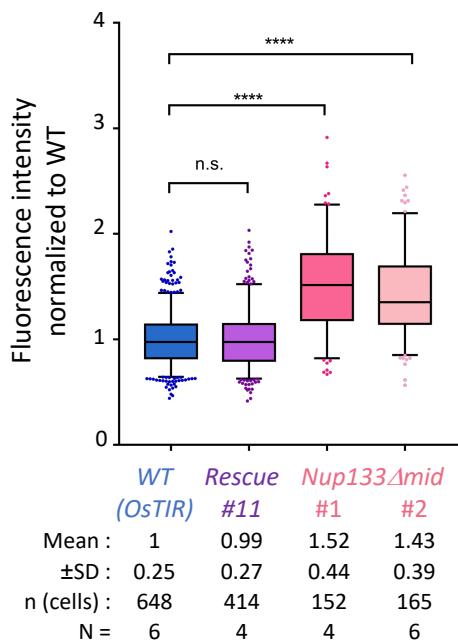

C Cell count in neuronal differentiation

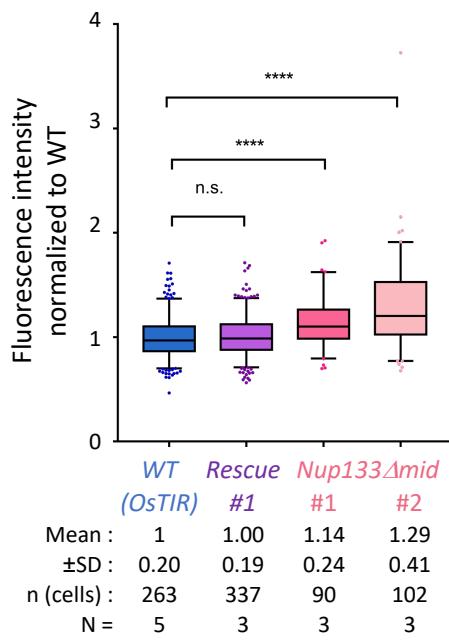


D

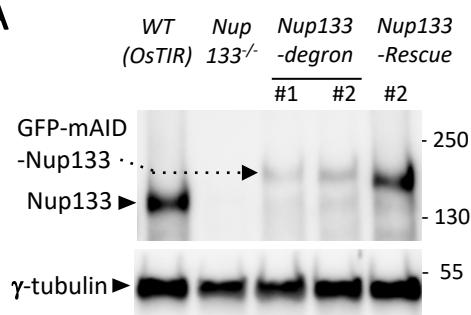
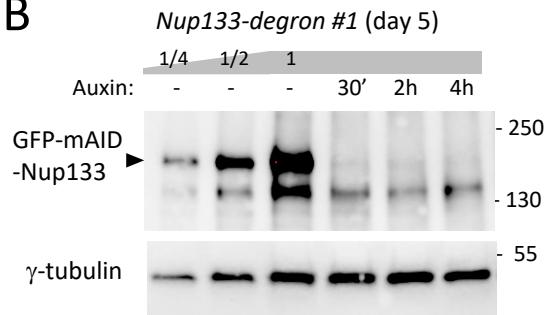
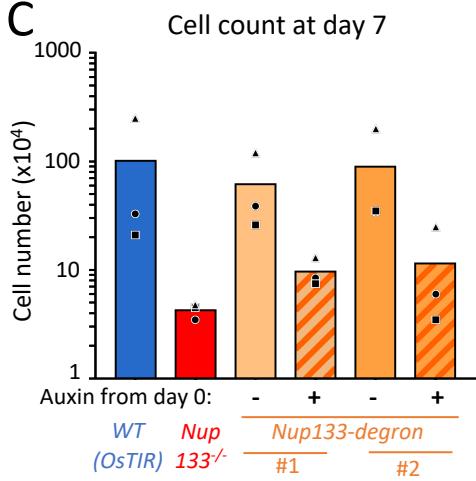
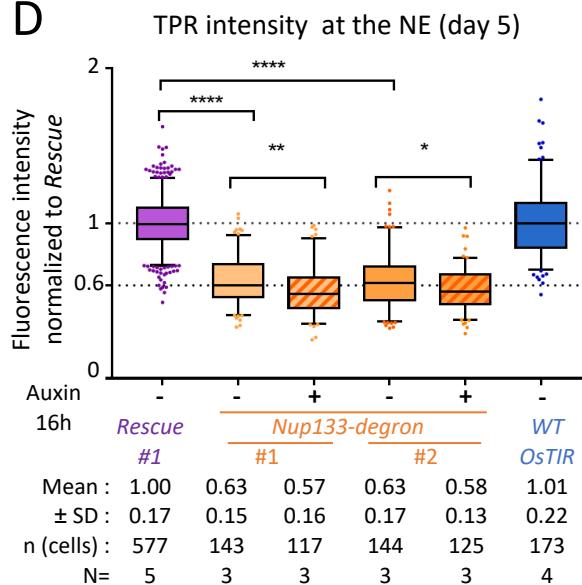
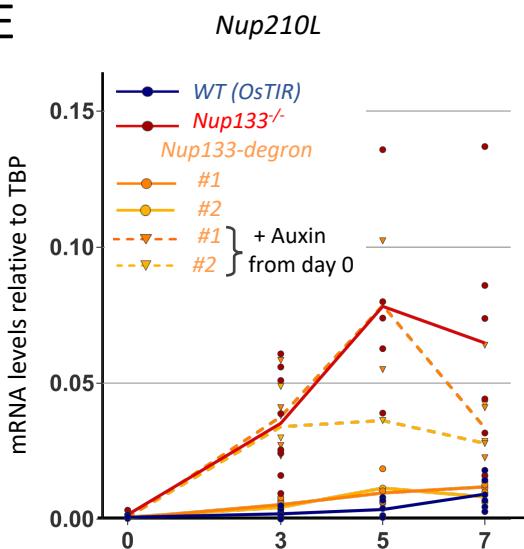
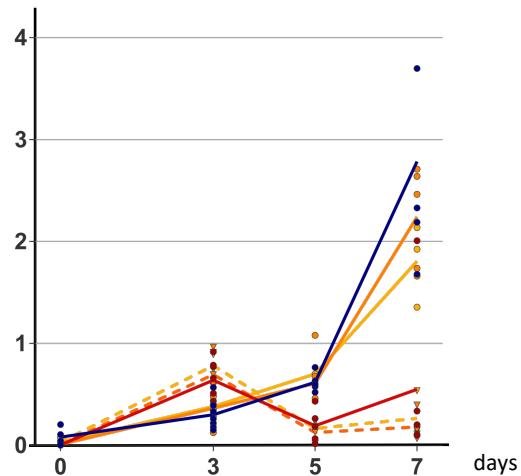

E Nup210L

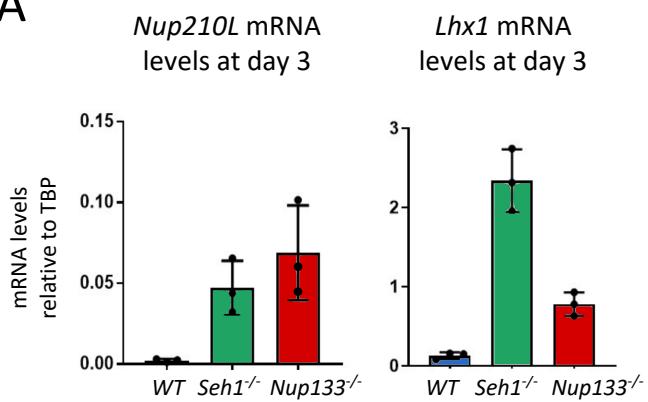
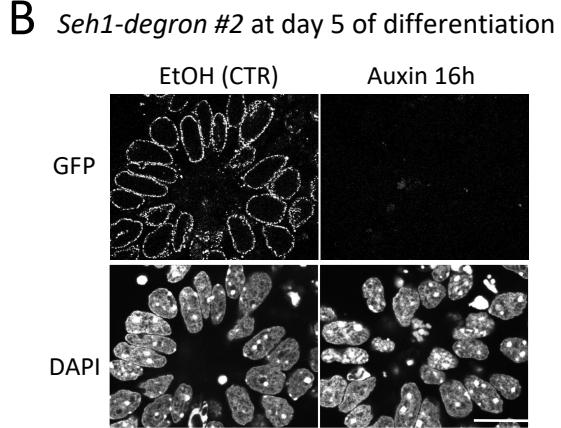

F

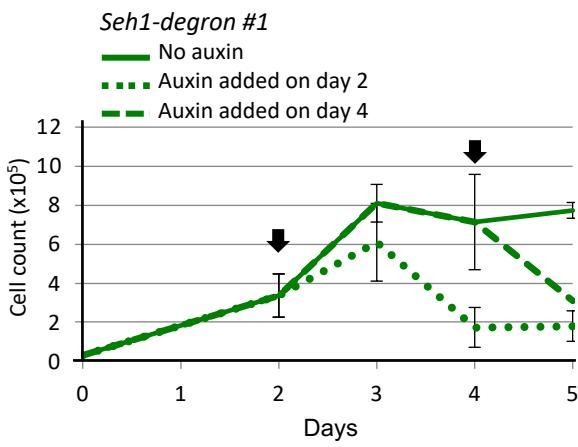
Orniacki *et al.*, Figure 2

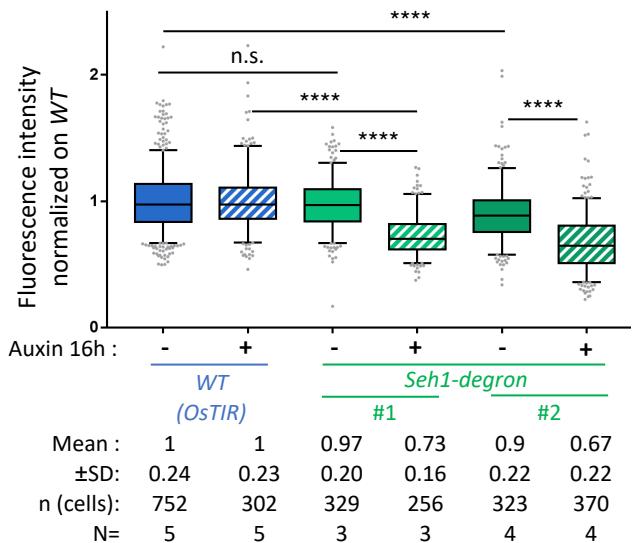
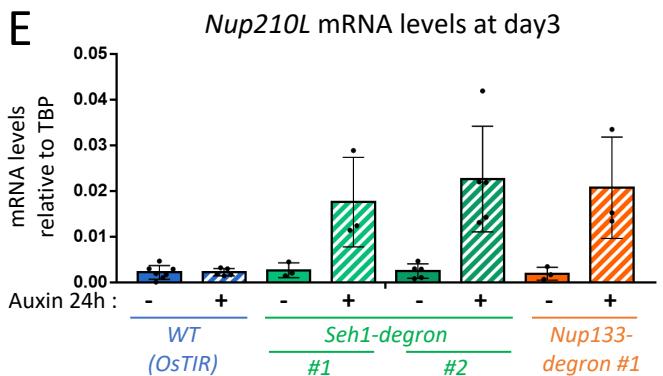
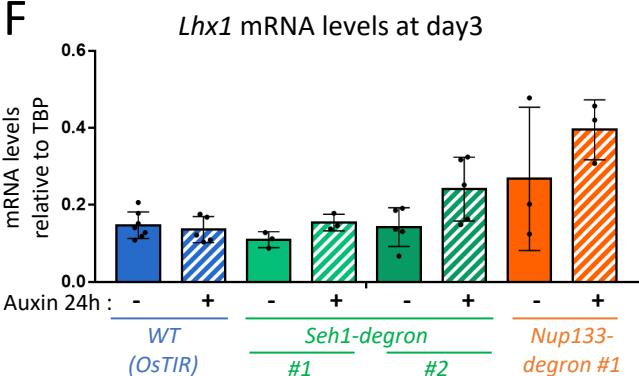

A IF at day 5 of differentiation


B TPR intensity at the NE (day 5)



C Nup153 intensity at the NE (day 5)


D Nup98 intensity at the NE (day 5)




A**B****C****D****E***Lhx1***Orniacki *et al.*, Figure 4**

A**B****C**

Growth in differentiation

D

TPR intensity at the NE (day 5)

E**F**