

1 rRNA intermediates coordinate the multilayered nucleolar phase transition in *C.*

2 *elegans*

3

4 Demin Xu^{1†}, Xiangyang Chen^{1†}, Yan Kuang¹, Minjie Hong¹, Ting Xu¹, Ke Wang¹,

5 Chuanhai Fu¹, Ke Ruan¹, Chengming Zhu^{1*}, Xuezhu Feng^{1*} and Shouhong Guang^{1,2*}

6

7 ¹Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The
8 USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless
9 Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences
10 and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province,
11 University of Science and Technology of China, Hefei, Anhui 230027, China

12 ²CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences,
13 Hefei, Anhui 230027, P.R. China

14 [†]These authors contributed equally to this work.

15 ^{*}Correspondence should be addressed to zcm916@ustc.edu.cn, fengxz@ustc.edu.cn,
16 sguang@ustc.edu.cn

17

18

19

20

21

22 **Abstract**

23 The nucleolus is the most prominent membraneless organelle within the nucleus
24 and plays essential roles in rRNA transcription and processing and ribosome assembly.
25 How the structure of the nucleolus is maintained and regulated is poorly understood.
26 Here, we identified two types of nucleoli in *C. elegans*. Type I nucleoli are spherical,
27 and rRNA transcription and processing factors are evenly distributed throughout the
28 nucleolus. In type II nucleoli, rRNA transcription and processing factors exclusively
29 accumulate in the periphery rim, which is named the nucleolar ring. The hollow vacuole
30 inside the nucleolar ring contains proteins that usually localize in the nucleoplasm but
31 are capable of exchanging contents across the ring. The high-order structure of the
32 nucleolus is dynamically regulated in *C. elegans*. Faithful rRNA processing is
33 important to maintain the spherical structure of the nucleoli. The depletion of a class of
34 rRNA processing factors, for example, class I ribosomal proteins of the large subunit
35 (RPL), which are involved in 27SA₂ rRNA processing, reshaped spherical nucleoli to a
36 ring-shaped nucleolar structure. The inhibition of RNAP I transcription and depletion
37 of two conserved nucleolar factors, nucleolin and fibrillarin, prohibits the formation of
38 the nucleolar ring. We concluded that the integrity of nucleoli is highly dependent on
39 rRNA processing and maturation, which may provide a mechanism to coordinate
40 structure maintenance and gene expression.

41

42

43

44 Keywords: nucleolus, vacuole, ring, reshaping, rRNA, RNAP I, phase transition

45

46

47

48

49 **Introduction**

50 The nucleolus is the most prominent membraneless organelle within the nucleus
51 and forms around tandem arrays of ribosomal gene repeats, termed nucleolar organizer
52 regions (1). The nucleolar proteome identified more than 1000 different proteins, most
53 of which are involved in ribosome biogenesis, including rRNA transcription and
54 processing and ribosome assembly (2, 3). An increasing number of studies suggest that
55 the nucleolus is a multilayered biomolecular condensate that assembles via liquid–
56 liquid phase separation (LLPS) (4–7). In vitro reconstitution studies suggested that the
57 key nucleolar proteins, fibrillarin and nucleophosmin, can undergo LLPS (4). In *X.*
58 *laevis* germinal vesicles, nucleoli exhibit liquid-like behavior and spontaneously
59 coalesce and round up upon contact (5). In addition, it was suggested that the
60 organization of nucleolar subcompartments arises through multiphase liquid
61 immiscibility, which is driven by the differential surface tension of substructures (4, 8).

62

63 The nucleoli of mammalian cells display three internal phase-separated
64 subcompartments, the fibrillar center (FC), the dense fibrillar component (DFC), and
65 the granular component (GC) (7). Typically, the FC is surrounded by a shell of DFC;
66 both are enclosed in the GC. Recent work has suggested that *C. elegans* nucleoli also
67 contain two phase-separated subcompartments, GC and FC (9). In addition, there is a
68 highly conserved central region, called the nucleolar cavity or vacuole, present in the
69 nucleoli of various plants and animals, which was first observed in the 19th century (Fig.
70 1A) (9–13). Similar vacuoles have been observed in mammalian cells, such as in MCF-
71 7, COS-7 and Hep-2 cells (14).

72

73 Although nucleolar vacuoles have been discovered for more than a hundred years,
74 their regulatory mechanism, composition and function remain unclear. In *soybean*,
75 different types of cellular stresses and environmental stimuli, for example, cold-warm
76 treatment, led to the formation of nucleolar vacuoles (15, 16). Similarly, nucleolar
77 vacuoles were formed in heat and chilling stress-treated *Arabidopsis thaliana* (17) and
78 5-fluoro-uracil-treated *Jerusalem artichoke tubers* (13). Drugs inhibiting rRNA

79 synthesis, including actinomycin D, 5-fluoro-uracil and 2-thio-uracil, could impede
80 vacuole formation in *tobacco callus* and *Zea mays* cells (18, 19). The vacuoles may
81 contain ribonucleoprotein (RNP) complexes because both small nuclear RNAs
82 (snRNAs) and small nucleolar RNAs (snoRNAs) have been detected (20, 21). It was
83 postulated that nucleolar vacuoles may engage in mRNA surveillance and export,
84 transport of nucleolar substances and temporary storage of certain materials (12, 13, 15,
85 22). In addition, larger vacuoles may be linked to higher nucleolar activity (15).

86

87 Here, we investigated the nucleolar structure of *C. elegans* and identified two types
88 of nucleoli: spherical and ring-shaped nucleoli. We conducted candidate-based RNAi
89 screening and identified a distinct class of RPLs, the knockdown of which reshaped
90 spherical nucleoli to ring-shaped nucleoli and therefore were named class I RPLs.
91 Interestingly, the ring-shaped nucleoli exhibited reentrant phase transition behavior by
92 monotonically increasing 27SA₂ pre-rRNAs. Through circularized reverse-
93 transcription PCR (cRT-PCR), we detected abnormal accumulation of 27SA₂ rRNAs
94 upon the depletion of class I RPLs. The ring-shaped nucleoli had a subcompartment
95 termed the nucleolar vacuole, which contains proteins usually localized in the
96 nucleoplasm. NUCL-1 and FIB-1, two highly conserved nucleolar proteins with
97 internal disordered sequences, were required for the formation of the nucleolar ring.
98 The work suggested that the structure of the nucleolus is highly coordinated with rRNA
99 processing and maturation.

100

101

102 **Results**

103 **Identification of two-shaped nucleoli in *C. elegans*.**

104 During the culture of *C. elegans*, we frequently observed hollow nucleoli with rim
105 and vacuole structures by differential interference contrast (DIC) microscopy (Fig.
106 S1A). To further explore the nucleolar structure, we generated an RRP-8::GFP
107 transgene to label the nucleoli (23). The nucleoli were visualized by DIC and
108 fluorescence microscopy. We identified two types of nucleoli in *C. elegans*. In type I

109 nucleoli, RRP-8::GFP likely evenly occupied the entire nucleoli, and the nucleoli were
110 spherical under a DIC microscope (Fig. 1B). The type II nucleoli were convex in the
111 periphery and concave in the center under DIC (Fig. 1B). RRP-8::GFP was strongly
112 enriched in the periphery of the nucleoli and colocalized with the convex region but did
113 not accumulate in the center. Therefore, we named the convex part the nucleolar ring
114 and the concave part the nucleolar vacuole (Fig. 1A). Both types of nucleoli existed in
115 different tissues (Figs. 1B-C). In epidermal cells and gonadal cells, the nucleoli were
116 mainly spheres, and in intestinal cells, the nucleoli were mainly ring-shaped. The
117 nucleolar structure in the germline is reshaped dynamically during development. The
118 percentage of ring-shaped nucleoli in the germline was increased during germline
119 maturity in young gravid adults and reduced in aged animals, suggesting reshaping
120 processes between spherical and ring-shaped nucleoli (Figs. 1D-E).

121

122 **Class I *rpl* genes are required to maintain nucleolar structural integrity.**

123 To explore the mechanism of nucleolar structure formation, we conducted
124 candidate-based RNAi screening to search for factors that are required to maintain the
125 two-shaped nucleoli. We selected 110 genes that were involved in rRNA processing and
126 ribosome assembly and knocked down these genes by feeding RNAi (Fig. 2A, Table
127 S1). Then, we visualized the nucleolar morphology and localization of RRP-8::GFP. Of
128 48 *rpl* genes, knocking down a group of 19 *rpl* genes significantly increased the
129 proportion of ring-shaped nucleoli (Figs. 2B-D, S1B-E). We divided the 48 *rpl* genes
130 into two classes according to whether knocking down the gene could promote the
131 formation of ring-shaped nucleoli (Fig. 2E). Knocking down class I *rpl* genes
132 significantly increased the size of nucleoli and nucleolar vacuoles (Figs. 2F-H and S1F)
133 and slightly increased the size of nucleolar rings (Figs. 2I-K).

134

135 The nucleolus is likely formed by LLPS, which is modulated by environmental
136 temperature. Many disordered proteins and/or nucleic acids undergo LLPS either upon
137 cooling or heating (24-27). Heat and chilling stress have been shown to induce the
138 formation of nucleolar vacuoles in *Arabidopsis thaliana* (17). Previously, we showed

139 that cold stress induced the production of risiRNA and the accumulation of two
140 nucleoplasmic proteins, NRDE-2 and NRDE-3, in the nucleoli in *C. elegans* (23, 28,
141 29). We then investigated the effect of cold stress on nucleolare reshaping. In wild-type
142 animals, the ring-shaped nucleoli were suppressed by 4°C cold stress and reverted when
143 shifting back to 20°C (Figs. S2A-B). Similarly, the formation of *rpl-14 knockdown*-
144 induced ring-shaped nucleoli was strongly prohibited by cold stress, and this inhibition
145 was released after transferring the worms to 20°C for 24 hours (Figs. S2C-D).

146

147 **rRNA transcription and processing machinery accumulate in the nucleolar ring.**

148 The factors involved in rRNA transcription and processing and ribosome assembly
149 are largely evenly dispersed in the spherical nucleolus (23, 30). To test whether
150 nucleolar reshaping could transform the localization of other rRNA transcription and
151 processing factors in addition to RRP-8, we generated transgenes of a number of
152 nucleolus-localized proteins and examined their localization upon knocking down *rpl-*
153 *14* by RNAi. FIB-1 is a conserved fibrillarin involved in nucleologenesis and is usually
154 used as a nucleolar marker (31, 32). RBD-1 is an ortholog of human RBM19, which is
155 required for 90S pre-ribosome maturation (33). Both FIB-1 and RBD-1 occupied the
156 entire spherical nucleolus in wild-type animals and accumulated in the nucleolar ring
157 upon RNAi *rpl-14* (Figs. 3A-B). RPOA-1, RPOA-2 and RPAC-19 are subunits of the
158 RNA polymerase I complex and are dispersed in the spherical nucleolus and
159 accumulated in the nucleolar ring upon *rpl-14* RNAi (Figs. 3C-D, S3A). DAO-5, an
160 rRNA transcription factor, also translocated to the nucleolar ring upon *rpl-14* RNAi
161 (Fig. S3B). Consistently, DAO-5 has been previously reported to localize in the
162 nucleolar ring in intestine cells in wild-type animals (31). rRNA processing proteins,
163 such as RPL-7 and T06E6.1, were enriched in the nucleolar ring upon *rpl-14* RNAi
164 (Figs. S3C-D). These results are summarized in Fig. 3E and imply that the nucleolar
165 ring may still be capable of conducting rRNA transcription and processing.

166

167 We investigated the localization of nucleic acids after spherical to ring-shaped
168 nucleolar reshaping. Both DAPI staining and GFP::HIS-71 (HIS-3.3) transgene

169 indicated that DNA was enriched in the nucleoplasm in both spherical and ring-shaped
170 nucleoli but likely depleted from the nucleolar vacuole (Figs. 3F-G, S3E-F). An RNA-
171 specific dye, SYTO RNASelect, is usually used to stain abundant rRNAs. In control
172 animals, RNA was evenly distributed in the whole spherical nucleoli (Fig. S3G-H).
173 However, knocking down *rpl-14* enriched RNAs in the nucleolar ring but depleted them
174 from nucleolar vacuoles (17).

175

176 The phase separation ability of nucleoli is essential for their function (7). We
177 performed a FRAP assay to investigate whether nucleolar reshaping alters the mobility
178 of rRNA transcription and processing machinery by comparing the mobility of RRP-8,
179 RPOA-1 and RPOA-2 in spherical and ring-shaped nucleoli. All three proteins did not
180 alter their mobility after bleaching in the spherical nucleoli and the nucleolar ring (Figs.
181 3H-J). These data suggested that nucleolar reshaping may not change the mobility of
182 the components for rRNA transcription and processing and implied that the nucleolar
183 ring is still able to conduct the reactions for rRNA transcription, processing and
184 ribosome assembly.

185

186 **Nucleoplasmic proteins accumulate in nucleolar vacuoles.**

187 To investigate the composition of nucleolar vacuoles, we generated a number of
188 fluorescence-labeled transgenes that usually accumulate in the nucleoplasm and are
189 involved in pre-mRNA transcription and processing. We visualized their subcellular
190 localization with and without *rpl-14* RNAi.

191

192 AMA-1 is the core subunit of RNA polymerase II. TAF-12 is a subunit of the
193 transcription factor TFIID complex. GTF-2H2C is a subunit of the transcription factor
194 TFIIH holo complex. AMA-1, TAF-12 and GTF-2H2C all accumulated in the nucleolar
195 vacuole in wild-type animals (Fig. S4A) and upon *rpl-14* RNAi (Figs. 4A-C). MTR-4
196 and EMB-4 are two pre-mRNA processing factors and are involved in nuclear RNAi
197 (34, 35). NRDE-2 and NRDE-3 are two proteins required for nuclear and nucleolar
198 RNAi (28, 34, 36, 37). We observed vacuolar localization of these factors in both wild-

199 type N2-background animals (Figs. S4B-D) and *rpl-14* RNAi animals (Figs. S4E-I).
200 EXOS-2 is a subunit of the RNA exosome and accumulates in the nucleoplasm,
201 nucleolar ring and vacuole (Fig. S4D). We summarized these data in Fig. 4D.
202

203 The nucleolus is physically separated from the nucleoplasm but rapidly exchanges
204 its content with the surrounding nucleoplasm (7). To test whether the nucleolar ring
205 could block the composition exchange between the nucleolar vacuole and nucleoplasm,
206 we performed FRAP assays of GFP::NRDE-2 and GFP::MTR-4 in the nucleoplasm
207 and nucleolar vacuole. Thirty seconds after bleaching, the GFP::NRDE-2 and
208 GFP::MTR-4 fluorescence intensity in the nucleolar vacuole recovered to
209 approximately 60% of the control fluorescent intensity (Fig. 4E). GFP::NRDE-2
210 exhibited similar mobility by FRAP in the nucleoplasm before and after *rpl-14* RNAi
211 and in the nucleolar vacuole (Fig. 4F). However, GFP::NRDE-2 fluorescence did not
212 recover when the whole nucleus was bleached (Fig. S4J). These data suggested frequent
213 protein exchange between the nucleoplasm and the nucleolar vacuole.
214

215 NXF-1 is an mRNA export factor (38). NXF-1 was highly enriched in the nucleolar
216 vacuole in wild-type N2 animals and upon *rpl-14* RNAi in epidermal cells (Figs. S5A-
217 C). Interestingly, NXF-1 revealed a development-related vacuolar enhancement in
218 germline cells in wild-type animals (Figs. S5D-E). In *A. thaliana*, similar vacuolar
219 localization was reported for mRNA splicing proteins, U1 snRNP-specific proteins and
220 exon-exon junction complex proteins (39). Taken together, these data implied that the
221 nucleolar vacuole is capable of conducting mRNA biogenesis and regulation.
222

223 **Class I *rpl* genes are required for 27SA₂ rRNA processing.**

224 RPLs are proteins of the 60S ribosome subunit that are involved in ribosome
225 assembly as well as pre-rRNA processing (40). To investigate the mechanism of
226 nucleolar reshaping by class I RPL proteins, we adopted a circularized reverse-
227 transcription PCR (cRT-PCR) method to analyze rRNA intermediates upon knocking
228 down *rpl* genes (Fig. 5A) (41, 42). To validate the method, we performed cRT-PCR

229 followed by sequencing the ends of mature 5.8S, 18S and 26S rRNAs (Fig. S6A-C).
230 The results were largely consistent with sequences annotated by Wormbase (29, 43).
231

232 Then, we assayed 26S rRNA intermediates by primer sets targeting the IVS II
233 region upon knocking down *rpl* genes (Fig. 5B) and detected two major bands by the
234 cRT-PCR method (Fig. 5B). We cloned and sequenced the 5' and 3' ends of these two
235 bands and confirmed 27SA₂ and 27SB pre-rRNAs (Fig. 5C). Strikingly, knocking down
236 class I *rpl* but not class II *rpl* consistently led to the accumulation of 27SA₂ pre-rRNA
237 intermediates (Figs. 5D-E), implying that 27SA₂ pre-rRNA or its processing may be
238 involved in the formation of ring-shaped nucleoli.

239
240 RPS proteins are 40S ribosome subunits. We examined 18S rRNA intermediates
241 after knocking down two *rps* genes, *rps-1* and *rps-5*. A number of additional 18S
242 precursors were identified by cRT-PCR followed by sequencing (Figs. S7A-J).
243 According to the identified 18S and 26S rRNA intermediates, a schematic diagram was
244 drawn to reveal pre-rRNA processing steps (Fig. S8A).

245
246 To further confirm that 27SA₂ rRNA is involved in the formation of ring-shaped
247 nucleoli, we knocked down 26 predicted 60S rRNA processing factors by RNAi (Table
248 S2). Feeding RNAi targeting 8 genes led to the formation of ring-shaped nucleoli (Figs.
249 S8B-C). Most of the eight genes have been reported to be involved in 27SA and 27SB
250 pre-rRNA processing (44, 45). Consistently, 27SA₂ rRNAs accumulated upon knocking
251 down these genes, as assayed by cRT-PCR (Figs. S7D-E).

252
253 Taken together, these data suggested that rRNA processing steps or intermediates
254 were involved in the maintenance of nucleolar structure.

255
256 **FIB-1 and NUCL-1 are required for nucleolar reshaping.**

257 Intrinsically disordered regions (IDRs) are likely one of the driving forces of LLPS
258 and have been identified in many phase-separated proteins (4, 46, 47). In addition, the

259 GAR/RGG domain is an RNA binding segment that is frequently present in proteins
260 capable of conducting LLPS (46-48). To further understand the mechanism of nucleolar
261 reshaping, we searched the *C. elegans* genome for proteins that have both IDR and
262 GAR/RGG domains and are predicted to localize in the nucleoli. We identified 8
263 proteins (Figs. 6A, S9A), among which knocking down *nucl-1* and *fib-1* strongly
264 blocked the formation of *rpl-14*-induced ring-shaped nucleoli (Figs. 6B-C).

265

266 FIB-1 is a highly conserved nucleolar protein with a GAR/RGG domain and
267 methyltransferase domain that is involved in the methylation of pre-RNAs and
268 nucleologenesis by LLPS (4, 22). NUCL-1 encodes an evolutionarily conserved protein
269 exhibiting extensive homology to yeast and human nucleolin (9). The N-terminal
270 domain of NUCL-1 is a long IDR containing a GAR/RGG domain, a methyltransferase
271 domain, and an acidic stretch (Fig. 6A). The C-terminus of NUCL-1 harbors an RRM
272 domain. Previous studies have shown that nucleolin associates with nascent pre-rRNA
273 (49). Nucleolin in mammalian cells displays high mobility and is likely involved in
274 phase separation (50). To confirm that NUCL-1 is required for the formation of ring-
275 shaped nucleoli, we generated two additional deletion alleles of NUCL-1 by
276 CRISPR/Cas9 technology (Fig. S9B). Both alleles inhibited the formation of *rpl-14*
277 *knockdown*-induced ring-shaped nucleoli (Figs. S9C-D). The FRAP assay revealed that
278 the spherical nucleoli exhibited similar mobility in *nucl-1;rpl-14* animals to those in
279 control animals (Fig. 6D). cRT-PCR showed that FIB-1 and NUCL-1 did not block the
280 accumulation of 27SA₂ (Figs. 6E-F, S9E-F), which suggested that FIB-1 and NUCL-1
281 functioned downstream of 27SA₂ accumulation.

282

283 In vitro experiments showed that monotonically increasing RNA concentration
284 could induce the formation of dynamic hollow condensates at high RNA-to-RNP ratios,
285 but a disappearance at further higher RNA-to-RNP ratios, through multivalent
286 heterotypic interactions that mediate a reentrant phase transition of RNPs containing
287 arginine-rich IDR (51-53). To test whether nucleoli can undergo a reentrant phase
288 transition *in vivo* during the nucleolar reshaping process, we conducted a time course

289 of *rpl-14* RNAi and examined the nucleolar morphology. Surprisingly, knocking down
290 *rpl-14* induced the formation of nucleolar rings during the early phase of RNAi, yet the
291 ring-shaped nucleoli gradually disappeared after long-term *rpl-14* RNAi (Figs. 6G-H),
292 suggesting an *in vivo* reentrant phase transition of the nucleoli (51). Consistently,
293 27SA₂ rRNA monotonically increased during the time course of *rpl-14* RNAi (Figs. 6I,
294 S9G).

295

296 Taken together, we speculate that NUCL-1 and FIB-1 participate in the regulation
297 of nucleolar morphology through phase transition.

298

299 **Inhibiting rRNA transcription prohibits nucleolar reshaping.**

300 Nucleoli undergo dramatic changes when encountering cellular stresses and
301 environmental stimuli. A previous study revealed that actinomycin D, which inhibits
302 RNA polymerase I activity, could impede vacuole formation (18, 19).

303

304 To investigate the mechanism of the spherical-to-ring transition, we knocked down
305 *rpl-14* by RNAi in the presence of actinomycin D. A 10 µg/ml actinomycin D treatment
306 did not noticeably change the localization of RRP-8 or the size of nucleoli in wild-type
307 N2 animals (Fig. 7A) but inhibited the formation of *rpl-14* knockdown-induced
308 nucleolar rings (Figs. 7B-C). At a higher concentration of actinomycin D (20 µg/ml),
309 the *rpl-14*-induced nucleolar ring was completely inhibited, and RRP-8 likely
310 accumulated as a nucleolar cap structure (54). Consistently, actinomycin D treatment
311 inhibited the accumulation of *rpl-14*-induced 27SA₂ rRNA intermediates by cRT-PCR
312 assay (Figs. 7D).

313

314 **Discussion**

315 The nucleolus is the most important membraneless organelle in the cell. Here, we
316 observed two types of nucleoli, spherical and ring-shaped. The knockdown of class I
317 RPL proteins, which are involved in 27SA₂ rRNA processing, reshaped the spherical
318 nucleoli to ring-shaped nucleoli (Fig. 7E). In ring-shaped nucleoli, rRNA transcription

319 and processing factors accumulate in the nucleolar ring, and a large number of
320 nucleoplasmic proteins accumulate in the nucleolar vacuole. The inhibition of RNAP I
321 transcription by actinomycin D and depletion of two conserved nucleolar factors,
322 nucleolin and fibrillarin, prohibit the formation of nucleolar rings.

323

324 **Regulation of nucleolar morphology by 27SA₂ rRNA.**

325 The formation of multiphasic nucleolar structures may be due to the interaction of
326 nucleolar proteins and rRNAs (4). Here, we found that the factors inhibiting the
327 formation of ring-shaped nucleoli are all involved in 27SA₂ rRNA processing,
328 suggesting that the 27SA₂ rRNA intermediates may play an important role in nucleolar
329 morphology regulation. Similar to the ring-shaped nucleolus, [RGRGG]₅ polypeptides
330 and cellular RNAs can form hollow condensates in vitro (53). An in vitro experiment
331 indicated that monotonically increasing the RNA concentration in mixtures of synthetic
332 peptides containing multivalent arginine-rich linear motifs can induce dynamic droplet
333 substructure formation and disappearance (51). Poly-L-lysine and single-stranded
334 oligodeoxynucleotide droplets were shown to undergo repeated cycles of vacuole
335 nucleation, growth and expulsion in applied electric fields (55). The RNA binding
336 protein TDP-43 can also form hollow condensates in cells by LLPS if its RNA-binding
337 capacity is disrupted (56). Here, we found that in *C. elegans*, the nucleoli exhibited
338 similar reentrant phase transition behavior upon *rpl-14* RNAi, which can be inhibited
339 by knocking down two conserved RNA binding proteins, NUCL-1 and FIB-1, both of
340 which contain arginine-rich IDR. Further experiments are required to test the causal
341 relationship between 27SA₂ rRNAs and the formation of NUCL-1 or FIB-1 hollow
342 condensates. Additionally, rRNA processing and maturation steps are highly conserved
343 among eukaryotes. It will be very interesting to test whether 27SA₂ rRNAs are involved
344 in the maintenance of the hollow structure in plants or DFC/GC regions in mammalian
345 cells.

346

347 It is unclear how and why 27SA₂ rRNAs are involved in the formation and
348 disappearance of ring-shaped nucleoli. We failed to observe nucleolar reshaping by

349 injecting in vitro transcribed 27SA2 rRNAs into the *C. elegans* germline. It is unclear
350 whether the in vitro transcribed rRNAs could diffuse into the nucleus or require certain
351 nucleotide modifications. Previous work showed that N6-methyladenosine (m6A)
352 modification of mRNAs can also induce m6A-binding proteins to undergo LLPS (57).
353 Further investigations are required to investigate the role of 27SA2 rRNA in driving
354 nucleolar reshaping in *C. elegans*.

355

356 **Phase transition of multilayered nucleolar condensates.**

357 According to the reentrant phase transition model, condensation is driven by
358 electrostatic attraction between the negatively charged RNAs and the positively charged
359 R/G-rich IDR polypeptide (51). However, excess negatively charged RNAs lead to the
360 accumulation of a large number of counterions on the surface of the positively charged
361 polypeptide, which triggers long-range electrostatic repulsion to prevent protein
362 condensation (51, 53). An interplay between short-range cation–π attraction and long-
363 range electrostatic repulsion may tune the reentrant phase transition (52). The charge
364 balance of electrostatic interactions may be crucial for retaining transcriptional
365 condensate *in vivo* (58). Based on these studies, we speculated that knocking down
366 class I RPL may accumulate 27SA2 rRNAs and invert charges of nucleolar
367 ribonucleoproteins, resulting in nucleolar reshaping.

368

369 Alternatively, nucleolar subcompartments may be formed by distinct protein
370 droplets with different surface tensions (4, 8). For instance, HSP70 family proteins are
371 enriched in the center of hollow condensation and retain the morphology of TDP43
372 spherical shells (56). The nucleolar vacuole of *C. elegans* was enriched with many
373 nucleoplasmic proteins. Whether these nucleoplasmic proteins are involved in
374 nucleolar reshaping is unclear. It will be very interesting to test whether the morphology
375 of the ring-shaped nucleoli ring is maintained by certain specific proteins in the
376 nucleolar vacuole or some disordered proteins on the nucleolar ring.

377

378 Previous reports have shown that the inhibition of nucleolar function can

379 dramatically alter its structure (54, 59). Here, the inhibition of RNAP I by actinomycin
380 D prohibited the formation of ring-shaped nucleoli, yet the mechanism is unclear. *C.*
381 *elegans* exhibits different proportions of nucleolar ring structures in distinct tissues.
382 Whether and how development and environmental stimuli reshape nucleolar structure
383 require further investigation.

384

385 **The function of nucleolar vacuoles**

386 The nucleolar vacuole is an evolutionarily conserved nucleolar subcompartment,
387 but its function remains unclear. It has been speculated that the size of the vacuole
388 represents nucleolar activities in plants (15, 16). We found that a certain proportion of
389 nucleoli in various tissues in wild-type *C. elegans* were ring-shaped with nucleolar
390 vacuoles inside. In intestinal cells, approximately 90% of the nucleoli have vacuole
391 structures from larva to gravid adult. Of note, the nucleolar vacuole in the germline
392 nucleoli revealed dynamic changes during aging. Interestingly, during germline
393 development, an mRNA transporter, NXF-1, was specifically enriched in the nucleolar
394 vacuole of the germline in gravid adult worms. Furthermore, the nucleolar vacuole was
395 enriched with many nucleoplasmic proteins. Although the nucleolar ring barriers the
396 vacuole with the nucleoplasm, there is rapid component exchange between these two
397 compartments. These data suggested that nucleolar vacuoles may have important roles
398 in germline development or mRNA metabolism. Consistently, previous studies have
399 shown that nucleolar vacuoles may be involved in the transport of nucleolar substances
400 from the nucleolus to the nucleoplasm and temporary storage of certain materials (12,
401 13, 22). In tobacco BY-2 cells, time-lapse photography revealed that the nucleolar
402 vacuole slowly disappears over time (22). We also observed a dynamic change in
403 nucleolar vacuoles over time in the oocyte nucleoli of *C. elegans*, suggesting that the
404 vacuole is not a simple place for material storage but rather plays important regulatory
405 roles.

406

407

408

409

410 Materials and Methods

411 Strains.

412 Bristol strain N2 was used as the standard wild-type strain. All strains were grown
413 at 20°C unless otherwise specified. The strains used in this study are listed in
414 Supplementary Table S3.

415

416 Candidate-based RNAi screening.

417 RNAi experiments were performed at 20°C by placing synchronized embryos on
418 feeding RNAi plates as previously described (60). HT115 bacteria expressing the empty
419 vector L4440 (a gift from A. Fire) were used as controls. Bacterial clones expressing
420 double-stranded RNAs (dsRNAs) were obtained from the Ahringer RNAi library (61)
421 and sequenced to verify their identity. Some bacterial clones were constructed in this
422 work, which are listed in Supplementary Table S4. All RNAi feeding experiments were
423 performed for two generations except for larval arrest or sterile worms.

424

425 Imaging

426 Images were collected using a Leica DM4 microscope.

427

428 Construction of plasmids and transgenic strains.

429 For ectopic transgenes, the promoter and CDS region and UTR were amplified
430 from N2 genomic DNA. The mCherry coding sequence was amplified from PFCJ90.
431 The vector fragment was PCR amplified from plasmid pSG274. These fragments were
432 joined together by Gibson assembly to form the repair plasmid with the ClonExpress
433 MultiS One Step Cloning Kit (Vazyme Biotech, Nanjing, China, Cat. No. C113-01/02).
434 The transgene was integrated into *C. elegans* chromosome II via a modified
435 counterselection (cs)-CRISPR method. The sequences of the primers are listed in
436 Supplementary Table S5.

437

438 For in situ knock-in transgenes, the 3xFLAG::GFP coding region was PCR

439 amplified from shg1248 genomic DNA. The GFP::3xFLAG coding region was PCR
440 amplified from shg2123 genomic DNA. The mCherry coding region was PCR
441 amplified from shg1660 genomic DNA. The tagRFP coding region was PCR amplified
442 from YY1446 genomic DNA. Homologous left and right arms (1.5 kb) were PCR
443 amplified from N2 genomic DNA. The backbone was PCR amplified from the plasmid
444 pCFJ151. All these fragments were joined together by Gibson assembly to form the
445 repair plasmid with the ClonExpress MultiS One Step Cloning Kit (Vazyme Biotech,
446 Nanjing, China, Cat. No. C113-01/02). This plasmid was coinjected into N2 animals
447 with three sgRNA expression vectors, 5 ng/μl pCFJ90 and the Cas9 II-expressing
448 plasmid. The sequences of the primers are listed in Supplementary Table S6.

449

450 **CRISPR/Cas9-mediated gene editing**

451 For the *nucl-1(ust313)* in-frame mutant, a 1.5 kb homologous left arm was PCR
452 amplified with the primers 5'-
453 GGGTAACGCCAGCACGTGTGGCCAAAGTTAACATCACCTCGCTCGC-3' and 5'-
454 TCGCTAAAACCAACTCGGCTTGAGTCGAAACCCATTGATTGTACC-3'. A 1
455 kb homologous right arm was PCR amplified with the primers 5'-
456 AGCCGAGTTGGTTAGCGATAAGAGAAAACAGTATGATAG-3' and 5'-
457 CAGCGGATAACAATTACATCATCTTCATCCTCATCGTC-3'. The backbone
458 was PCR amplified from the plasmid pCFJ151 with the primers 5'-
459 CACACGTGCTGGCGTTACCC-3' and 5'-TGTGAAATTGTTATCCGCTGG-3'. All
460 these fragments were joined together by Gibson assembly to form the *nucl-1* plasmid
461 with the ClonExpress MultiS One Step Cloning Kit (Vazyme Biotech, Nanjing, China,
462 Cat. No. C113-01/02). This plasmid was coinjected into N2 animals with three sgRNA
463 expression vectors, *nucl-1* sgRNA#1/#2/#3, 5 ng/μl pCFJ90 and Cas9 II expressing
464 plasmid.

465

466 The sgRNAs used in this study for transgene construction are listed in
467 Supplementary Table S7.

468

469 **Actinomycin D treatment**

470 Actinomycin D (MedChemExpress no. HY-17559, CAS:50-76-0) was prepared at
471 20 mg/ml in DMSO as a stock solution. Each 3.5 μ l actinomycin D stock solution was
472 diluted with 300 μ l Luria-Bertani liquid medium and layered onto NGM and RNAi
473 plates. NGM and RNAi plates were prepared and placed at 37°C overnight before use.
474 Synchronized L1 worms were placed onto the seeded plates and grown for 48 h before
475 imaging and collection for cRT-PCR.

476

477 **Fluorescence recovery after photobleaching (FRAP).**

478 FRAP experiments were performed using a Zeiss LSM980 laser scanning confocal
479 microscope at room temperature. Worms were anesthetized with 2 mM levamisole. A
480 region of interest was bleached with 100% laser power for 3-4 seconds, and the
481 fluorescence intensities in these regions were collected every 5 s and normalized to the
482 initial intensity before bleaching. For analysis, image intensity was measured by Mean
483 and further analyzed by Origin software.

484

485 **DAPI staining**

486 DNA was stained with DAPI Staining Solution (10 μ g/ml) (Biosharp, BL105A) at
487 room temperature. Worms were fixed with 1% formaldehyde before staining and
488 soaked in DAPI solution for 3-5 minutes. After washing with phosphate-buffered saline
489 (PBS) 2-3 times, worms were imaged under a fluorescence microscope.

490

491 **RNA staining**

492 RNA was stained with SYTOTM RNASelectTM Green Fluorescent Cell Stain
493 (SYTOTM RNASelectTM Green Fluorescent Cell Stain-5 mM Solution in DMSO,
494 S32703, Thermo). Worms were fixed in prechilled methanol at -20°C for 10 minutes
495 before staining and then washed twice for 5 minutes each in PBS. The labeling solution
496 consisted of 500 nM RNA Select Green fluorescent cell stain in phosphate-buffered

497 saline (PBS). Worms were soaked in the 500 nM labeling solution for 20 min at room
498 temperature, washed twice in PBS for 5 min each, and then imaged.

499

500 **cRT-PCR**

501 Total RNA was isolated from L3 stage worms using a Dounce homogenizer (pestle
502 B) in TRIzol solution (Invitrogen). Two micrograms of total RNA was circularized by
503 a T4 RNA Ligase 1 Kit (M0204. NEB) and then purified by TRIzol reagent followed
504 by isopropanol precipitation. The circularized RNA was reverse transcribed via the
505 GoScript™ Reverse Transcription System (Promega #A5001). PCR was performed
506 using 2 × Rapid Taq Master Mix (Vazyme, P222-01) for 25 cycles. The primer sets used
507 in this work are listed in Supplementary Table S8.

508

509 **Quantitative real-time PCR**

510 All quantitative real-time PCR (qPCR) experiments were performed using a
511 MyIQ2 machine (Bio-Rad). DNA or cDNA was quantified with SYBR Green Master
512 Mix (Vazyme, Q111-02), and qPCR was performed according to the vendor's
513 instructions. RNA was first circularized by a T4 RNA Ligase 1 Kit (M0204. NEB) and
514 then purified by TRIzol reagent followed by isopropanol precipitation, and then reverse
515 transcribed via GoScript™ Reverse Transcription System (Promega #A5001) with
516 indicated primers. The primer sets used in this work are listed in Supplementary Table
517 S8.

518

519 **Statistics**

520 Boxplots are presented with median and minimum and maximum. All of the
521 experiments were conducted with independent *C. elegans* animals for the indicated N
522 times. Statistical analysis was performed with the two-tailed Student's t test.

523

524

525 **ACKNOWLEDGMENTS.**

526 We are grateful to the members of the Guang laboratory for their comments and to

527 Ruining Cai from the Institute of Oceanology, Chinese Academy of Sciences, Qingdao,
528 China. We are grateful to the International *C. elegans* Gene Knockout Consortium and
529 the National Bioresource Project for providing the strains. Some strains were provided
530 by the Caenorhabditis Genetics Center (CGC), which is funded by the NIH Office of
531 Research Infrastructure Programs (Grant P40 OD010440). This work was supported by
532 grants from the National Key R&D Program of China (2022YFA1302700,
533 2019YFA0802600), the National Natural Science Foundation of China (32230016,
534 91940303, 32270583, 32070619, 31870812, 31871300 and 31900434), and the
535 Strategic Priority Research Program of the Chinese Academy of Sciences
536 (XDB39010600). This study was supported in part by the Fundamental Research Funds
537 for the Central Universities.

538

539

540

541

542

543

544 **References**

- 545 1. B. McStay, Nucleolar organizer regions: genomic 'dark matter' requiring illumination.
546 *Genes Dev* **30**, 1598-1610 (2016).
- 547 2. P. J. Thul *et al.*, A subcellular map of the human proteome. *Science* **356** (2017).
- 548 3. L. Stenstrom *et al.*, Mapping the nucleolar proteome reveals a spatiotemporal
549 organization related to intrinsic protein disorder. *Mol Syst Biol* **16**, e9469 (2020).
- 550 4. M. Feric *et al.*, Coexisting Liquid Phases Underlie Nucleolar Subcompartments. *Cell* **165**,
551 1686-1697 (2016).
- 552 5. C. P. Brangwynne, T. J. Mitchison, A. A. Hyman, Active liquid-like behavior of nucleoli
553 determines their size and shape in *Xenopus laevis* oocytes. *Proceedings of the National
554 Academy of Sciences of the United States of America* **108**, 4334-4339 (2011).
- 555 6. S. C. Weber, C. P. Brangwynne, Inverse Size Scaling of the Nucleolus by a Concentration-
556 Dependent Phase Transition. *Current Biology* **25**, 641-646 (2015).
- 557 7. D. L. J. Lafontaine, J. A. Riback, R. Bascetin, C. P. Brangwynne, The nucleolus as a
558 multiphase liquid condensate. *Nature Reviews Molecular Cell Biology* **22**, 165-182 (2021).
- 559 8. T. Kaur *et al.*, Sequence-encoded and composition-dependent protein-RNA interactions
560 control multiphasic condensate morphologies. *Nature Communications* **12** (2021).
- 561 9. E. L. Spaulding, A. M. Feidler, L. A. Cook, D. L. Updike, RG/RGG repeats in the *C. elegans*

562 homologs of Nucleolin and GAR1 contribute to sub-nucleolar phase separation. *Nat*
563 *Commun* **13**, 6585 (2022).

564 10. P. J. Shaw, J. W. Brown, Plant nuclear bodies. *Curr Opin Plant Biol* **7**, 614-620 (2004).

565 11. T. H. Montgomery, *Comparative cytological studies with especial regard to the*
566 *morphology of the nucleolus*, Added t -p , Publications of the University of Pennsylvania
567 Contributions from the Zoo"logical Laboratory for the year 1899 (Ginn & Company,
568 Boston,, 1898), pp. 2 p. I, 256 -582 p.

569 12. J. M. Johnson, L. E. Jones, Behavior of Nucleoli and Contracting Nucleolar Vacuoles in
570 Tobacco Cells Growing in Microculture. *American Journal of Botany* **54**, 189-& (1967).

571 13. R. J. Rose, G. Setterfield, L. C. Fowke, Activation of nucleoli in tuber slices and the function
572 of nucleolar vacuoles. *Exp Cell Res* **71**, 1-16 (1972).

573 14. T. Kruger, U. Scheer, p53 localizes to intranucleolar regions distinct from the ribosome
574 production compartments. *J Cell Sci* **123**, 1203-1208 (2010).

575 15. D. Stepinski, Functional ultrastructure of the plant nucleolus. *Protoplasma* **251**, 1285-1306
576 (2014).

577 16. D. Stepinski, Nucleolar vacuolation in soybean root meristematic cells during recovery
578 after chilling. *Biologia Plantarum* **52**, 507-512 (2008).

579 17. K. Hayashi, S. Matsunaga, Heat and chilling stress induce nucleolus morphological
580 changes. *Journal of Plant Research* **132**, 395-403 (2019).

581 18. J. M. Johnson, A Study of Nucleolar Vacuoles in Cultured Tobacco Cells Using
582 Radioautography, Actinomycin D, and Electron Microscopy. *Journal of Cell Biology* **43**,
583 197-& (1969).

584 19. T. Debarsy, R. Deltour, R. Bronchart, Study of Nucleolar Vacuolation and Rna-Synthesis in
585 Embryonic Root Cells of Zea-Mays. *Journal of Cell Science* **16**, 95-112 (1974).

586 20. A. F. Beven, G. G. Simpson, J. W. Brown, P. J. Shaw, The organization of spliceosomal
587 components in the nuclei of higher plants. *J Cell Sci* **108 (Pt 2)**, 509-518 (1995).

588 21. A. F. Beven *et al.*, The organization of ribosomal RNA processing correlates with the
589 distribution of nucleolar snRNAs. *Journal of Cell Science* **109**, 1241-1251 (1996).

590 22. S. L. Reichow, T. Hamma, A. R. Ferre-D'Amare, G. Varani, The structure and function of
591 small nucleolar ribonucleoproteins. *Nucleic Acids Research* **35**, 1452-1464 (2007).

592 23. C. Zhu *et al.*, Erroneous ribosomal RNAs promote the generation of antisense ribosomal
593 siRNA. *Proc Natl Acad Sci U S A* **115**, 10082-10087 (2018).

594 24. K. M. Ruff, S. Roberts, A. Chilkoti, R. V. Pappu, Advances in Understanding Stimulus
595 Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. *Journal of*
596 *Molecular Biology* **430**, 4619-4635 (2018).

597 25. A. Bremer *et al.*, Deciphering how naturally occurring sequence features impact the phase
598 behaviours of disordered prion-like domains. *Nature Chemistry* **14**, 196-+ (2022).

599 26. E. W. Martin *et al.*, Valence and patterning of aromatic residues determine the phase
600 behavior of prion-like domains. *Science* **367**, 694-+ (2020).

601 27. P. Pullara, I. Alshareedah, P. R. Banerjee, Temperature-dependent reentrant phase
602 transition of RNA-polycation mixtures. *Soft Matter* **18**, 1342-1349 (2022).

603 28. S. Liao *et al.*, Antisense ribosomal siRNAs inhibit RNA polymerase I-directed transcription
604 in C. elegans. *Nucleic Acids Res* **49**, 9194-9210 (2021).

605 29. X. Zhou *et al.*, RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the

606 nuclear RNAi pathway. *Nat Struct Mol Biol* **24**, 258-269 (2017).

607 30. W. Yokoyama *et al.*, rRNA adenine methylation requires T07A9.8 gene as rram-1 in
608 *Caenorhabditis elegans*. *Journal of Biochemistry* **163**, 465-474 (2018).

609 31. D. Korcekova, A. Gombitova, I. Raska, D. Cmarko, C. Lanctot, Nucleologenesis in the
610 *Caenorhabditis elegans* embryo. *PLoS One* **7**, e40290 (2012).

611 32. O. Zatsepina, C. Baly, M. Chebrout, P. Debey, The step-wise assembly of a functional
612 nucleolus in preimplantation mouse embryos involves the Cajal (coiled) body.
613 *Developmental Biology* **253**, 66-83 (2003).

614 33. E. Sajjou, T. Fujiwara, T. Suzuki, K. Inoue, H. Sakamoto, RBD-1, a nucleolar RNA-binding
615 protein, is essential for *Caenorhabditis elegans* early development through 18S ribosomal
616 RNA processing. *Nucleic Acids Research* **32**, 1028-1036 (2004).

617 34. G. Wan, J. Yan, Y. H. Fei, D. J. Pagano, S. Kennedy, A Conserved NRDE-2/MTR-4 Complex
618 Mediates Nuclear RNAi in *Caenorhabditis elegans*. *Genetics* **216**, 1071-1085 (2020).

619 35. A. Akay *et al.*, The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to
620 Allow Nuclear RNAi Pathways to Heritably Silence Transcription. *Developmental Cell* **42**,
621 241-+ (2017).

622 36. S. Guang *et al.*, An Argonaute transports siRNAs from the cytoplasm to the nucleus.
623 *Science* **321**, 537-541 (2008).

624 37. S. H. Guang *et al.*, Small regulatory RNAs inhibit RNA polymerase II during the elongation
625 phase of transcription. *Nature* **465**, 1097-U1165 (2010).

626 38. U. Sheth, J. Pitt, S. Dennis, J. R. Priess, Perinuclear P granules are the principal sites of
627 mRNA export in adult *C. elegans* germ cells. *Development* **137**, 1305-1314 (2010).

628 39. A. F. Pendle *et al.*, Proteomic analysis of the *Arabidopsis* nucleolus suggests novel
629 nucleolar functions. *Molecular Biology of the Cell* **16**, 260-269 (2005).

630 40. M. Gamalinda *et al.*, A hierarchical model for assembly of eukaryotic 60S ribosomal
631 subunit domains. *Genes & Development* **28**, 198-210 (2014).

632 41. R. L. Hang *et al.*, Ribosomal RNA Biogenesis and Its Response to Chilling Stress in *Oryza*
633 *sativa*. *Plant Physiology* **177**, 381-397 (2018).

634 42. M. Zakrzewska-Placzek, F. F. Souret, G. J. Sobczyk, P. J. Green, J. Kufel, *Arabidopsis thaliana*
635 XRN2 is required for primary cleavage in the pre-ribosomal RNA. *Nucleic Acids Research*
636 **38**, 4487-4502 (2010).

637 43. H. W. Gabel, G. Ruvkun, The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA
638 processing and RNAi. *Nat Struct Mol Biol* **15**, 531-533 (2008).

639 44. N. Hiraishi, Y. Ishida, H. Sudo, M. Nagahama, WDR74 participates in an early cleavage of
640 the pre-rRNA processing pathway in cooperation with the nucleolar AAA-ATPase NVL2.
641 *Biochemical and Biophysical Research Communications* **495**, 116-123 (2018).

642 45. E. W. Horsey, E. Jakovljevic, T. D. Miles, P. Harnpicharnchai, J. L. Woolford, Role of yeast
643 Rrp1 protein in the dynamics of pre-ribosome maturation. *Rna* **10**, 813-827 (2004).

644 46. P. G. Yang *et al.*, G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble
645 Stress Granules. *Cell* **181**, 325-+ (2020).

646 47. S. Elbaum-Garfinkle *et al.*, The disordered P granule protein LAF-1 drives phase
647 separation into droplets with tunable viscosity and dynamics. *Proceedings of the National
648 Academy of Sciences of the United States of America* **112**, 7189-7194 (2015).

649 48. P. A. Chong, R. M. Vernon, J. D. Forman-Kay, RGG/RG Motif Regions in RNA Binding and

650 Phase Separation. *J Mol Biol* **430**, 4650-4665 (2018).

651 49. H. Ginisty, H. Sicard, B. Roger, P. Bouvet, Structure and functions of nucleolin. *J Cell Sci* **112** (Pt 6), 761-772 (1999).

652 50. F. Frottin *et al.*, The nucleolus functions as a phase-separated protein quality control compartment. *Science* **365**, 342-347 (2019).

653 51. P. R. Banerjee, A. N. Milin, M. M. Moosa, P. L. Onuchic, A. A. Deniz, Reentrant Phase

654 Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets. *Angewandte Chemie-International Edition* **56**, 11354-11359 (2017).

655 52. I. Alshareedah *et al.*, Interplay between Short-Range Attraction and Long-Range

656 Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein-RNA Complexes. *Journal of the American Chemical Society* **141**, 14593-14602 (2019).

657 53. I. Alshareedah, M. M. Moosa, M. Raju, D. A. Potoyan, P. R. Banerjee, Phase transition of

658 RNA-protein complexes into ordered hollow condensates. *Proceedings of the National*

659 *Academy of Sciences of the United States of America* **117**, 15650-15658 (2020).

660 54. Y. Shav-Tal *et al.*, Dynamic sorting of nuclear components into distinct nucleolar caps

661 during transcriptional inhibition. *Molecular Biology of the Cell* **16**, 2395-2413 (2005).

662 55. Y. D. Yin *et al.*, Non-equilibrium behaviour in coacervate-based protocells under electric-

663 field-induced excitation. *Nature Communications* **7** (2016).

664 56. H. Y. Yu *et al.*, HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid

665 spherical shells. *Science* **371**, 585-+ (2021).

666 57. R. J. Ries *et al.*, m(6)A enhances the phase separation potential of mRNA. *Nature* **571**,

667 424-+ (2019).

668 58. J. E. Henninger *et al.*, RNA-Mediated Feedback Control of Transcriptional Condensates. *Cell* **184**, 207-+ (2021).

669 59. S. Boulon, B. J. Westman, S. Hutten, F. M. Boisvert, A. I. Lamond, The nucleolus under

670 stress. *Mol Cell* **40**, 216-227 (2010).

671 60. L. Timmons, D. L. Court, A. Fire, Ingestion of bacterially expressed dsRNAs can produce

672 specific and potent genetic interference in *Caenorhabditis elegans*. *Gene* **263**, 103-112

673 (2001).

674 61. R. S. Kamath *et al.*, Systematic functional analysis of the *Caenorhabditis elegans* genome

675 using RNAi. *Nature* **421**, 231-237 (2003).

676

677

678

679

680

681

682

683 **Figure legends**

684 **Figure 1. Identification of two-shaped nucleoli in *C. elegans*.** (A) Schematic
685 diagram of nucleolar structure in mammals, plants and *C. elegans*. (B) Differential
686 interference contrast (DIC) and fluorescence microscopy images of *C. elegans* nucleoli
687 in the indicated tissues. (C) Quantification of ring-shaped nucleoli at the indicated
688 developmental stages. n>20 animals. (D) DIC and fluorescence microscopy images
689 of pachytene cells. (E) Quantification of ring-shaped nucleoli in the germline
690 pachytene stage. n>20 animals.

691

692 **Figure 2. Class I RPLs are required for the maintenance of nucleolar structural
693 integrity.** (A) Schematic diagram of the candidate RNAi-based genetic screening
694 for the formation of ring-shaped nucleoli in the *C. elegans* epidermis. (B-C) Images
695 of *C. elegans* nucleoli after knockdown of the indicated genes by RNAi in distinct
696 tissues. (D) Quantification of the ring-shaped nucleoli after RNAi knockdown of the
697 indicated genes. n>11 animals. (E) Summary of the formation of ring-shaped
698 nucleoli after knocking down Class I and II *rpl* genes. (F-K) The size of the
699 nucleolar vacuole (F-H) and nucleolar ring (I-K) after RNAi knockdown of the
700 indicated genes. n>60 nucleoli from 10 animals.

701

702 **Figure 3. rRNA transcription and processing factors accumulate at the
703 nucleolar ring.** (A-D) DIC and fluorescence microscopy images of the indicated
704 transgenes after knocking down *rpl-14*. (E) Summary of the localization of the
705 indicated proteins after *rpl-14* RNAi. (F) DAPI staining of epidermal cells after *rpl-*
706 *14* RNAi. (G) Fluorescent density scan of GFP:: RRP-8 and DAPI staining by
707 ImageJ. (H-J) (top) FRAP assay of transgenes in the indicated regions before and after
708 *rpl-14* RNAi. (bottom) Quantification of FRAP data. mean ± SD, n = 3.

709

710 **Figure 4. The nucleolar vacuole contains nucleoplasmic proteins.** (A-C) DIC and
711 fluorescence microscopy images of the indicated transgenes after knocking down
712 *rpl-14*. (D) Summary of the localization of the indicated proteins after *rpl-14* RNAi.
713 (E, F) (top) FRAP assay of GFP::NRDE-2 and GFP::MTR-4 in the indicated regions.
714 (bottom) Quantification of FRAP data. mean ± SD, n = 3.

715

716 **Figure 5. Class I *rpl* genes are required for 27SA₂ rRNA processing.** (A)

717 Schematic diagram of circularized reverse-transcription PCR (cRT-PCR) method.
718 (B) cRT-PCR assay of 26S pre-rRNA intermediates. (C) Sanger sequencing of the
719 ends of 27SA₂ and 27SB rRNAs. N represents the number of clones sequenced. (D-
720 E) cRT-PCR assay (D) and quantification (E) of 27SA₂ and 27SB pre-rRNA
721 intermediates after knocking down the indicated *rpl* genes by RNAi.

722

723 **Figure 6. FIB-1 and NUCL-1 are required for the formation of ring-shaped**
724 **nucleoli.** (A) Schematic diagram of the domain structure and predicted intrinsically
725 disordered regions of NUCL-1 and FIB-1. (B) DIC and fluorescence microscopy
726 images of the indicated epidermal cells upon RNAi targeting of the indicated genes.
727 (C) Quantification of ring-shaped nucleoli in epidermal cells. n=20 animals. (D) FRAP
728 assay of GFP::RRP-8 in *nucl-1* mutants. mean \pm SD, n = 3. (E) cRT-PCR assay of
729 27SA₂ and 27SB pre-rRNA intermediates after knocking down the indicated genes
730 by RNAi. (F) cRT-PCR assay of 27SA₂ and 27SB pre-rRNA intermediates of the
731 *nucl-1* mutant after knocking down *rpl-14* by RNAi. (G) DIC and fluorescence
732 microscopy images of the indicated epidermal cells upon *rpl-14* RNAi over time. (H)
733 Quantification of ring-shaped nucleoli in epidermal cells. n=20 animals. (I)
734 Expression levels of 27SA₂ pre-rRNAs quantified by real-time PCR.

735

736 **Figure 7. rRNA transcription and maturation are required for nucleolar reshaping.**
737 (A, B) DIC and fluorescence microscopy images of the indicated epidermal cells
738 after actinomycin D (Act. D) treatment, without (A) or with (B) *rpl-14* RNAi. (C)
739 Quantification of ring-shaped nucleoli after actinomycin D treatment in the presence of
740 *rpl-14* RNAi. n = 20. (D) (top) cRT-PCR assay and (bottom) quantification of 27SA₂
741 pre-rRNA intermediates after actinomycin D treatment in the presence of *rpl-14* RNAi.
742 (J) A working model of rRNA intermediate-directed nucleolar reshaping.

743

744

745 **Supplemental figure legends**

746 **Figure S1. RNAi screening identified class I RPLs inhibiting the formation of ring-**
747 **shaped nucleoli.** (A) Differential interference contrast (DIC) of *C. elegans* nucleoli in
748 the indicated cells. (B-D) DIC images of *C. elegans* nucleoli after knockdown of the
749 indicated genes by RNAi. (E) Differential interference contrast (DIC) and
750 fluorescence microscopy images of *C. elegans* nucleoli after knockdown of the

751 indicated genes by RNAi in oocytes. (F) The size of nucleoli after RNAi knockdown
752 of the indicated genes. n>60 nucleoli from 10 animals.

753

754 **Figure S2. Cold stress inhibited the formation of ring-shaped nucleoli.** (A-B) DIC
755 and fluorescence microscopy images (A) and quantification (B) of ring-shaped
756 nucleoli in intestine cells after 4°C cold stress for 12 h and recovery at 20°C for 24 h
757 in wild-type worms. n = 20 animals. (C) DIC and fluorescence microscopy images of
758 epidermal cells after 4°C cold stress for 12 h and recovery at 20°C for 24 h with and
759 without *rpl-14* RNAi. (D) Quantification of ring-shaped nucleoli in epidermal cells
760 after 4°C cold stress for 12 h and recovery at 20°C for 24 h. n = 20 animals.

761

762 **Figure S3. rRNA transcription and processing factors accumulate at the**
763 **nucleolar ring.** (A-F) DIC and fluorescence microscopy images of the indicated
764 transgenes after knocking down *rpl-14*. (G) SYTO RNA select staining of epidermal
765 cells after *rpl-14* RNAi. (H) Fluorescent density scan of GFP::RRP-8 and SYTO
766 RNA select staining by ImageJ.

767

768 **Figure S4. Nucleolar vacuoles contained nucleoplasmic proteins.** (A-D) DIC and
769 fluorescence microscopy images of the indicated transgenes at the ring-shaped
770 nucleoli in wild-type animals. (E-I) DIC and fluorescence microscopy images of the
771 indicated transgenes after knocking down *rpl-14*. (J) (left) FRAP assay of
772 GFP::NRDE-2. (right) Quantification of FRAP data. mean ± SD, n = 3.

773

774 **Figure S5. The mRNA export factor NXF-1 is enriched in the nucleolar vacuole.**
775 (A) DIC and fluorescence microscopy images of NXF-1 in ring-shaped nucleoli in
776 wild-type animals. (B) DIC and fluorescence microscopy images of the indicated
777 transgenes after knocking down *rpl-14*. (C) Fluorescent density scan of RRP-8::GFP
778 and NXF-1::mCherry by ImageJ. (D) DIC and fluorescence microscopy images of
779 the pachytene cell nucleoli in the germline. (E) (top) Relative intensity of NXF-
780 1::mCherry in the nucleolar vacuole vs at the nucleolar ring. mean ± SD, n = 3. (bottom)
781 Percentage of ring-shaped nucleoli at the pachytene stage. n>20 animals.

782

783 **Figure S6. cRT-PCR assay of rRNAs.** (A-C) cRT-PCR assay of mature rRNAs.
784 Ends of the mature 18S (A), 26S (B) and 5.8S (C) rRNA were PCR amplified,

785 followed by Sanger sequencing. Ends of mature 18S, 26S and 5.8S rRNA annotated
786 by Wormbase are shown. N represents the number of clones sequenced.

787

788 **Figure S7. Identification of 18S rRNA intermediates by cRT-PCR.** (A-B) cRT-
789 PCR assay of 18S rRNA rRNA intermediates upon knocking down *rps-1* and *rps-5*
790 by RNAi. (C-D) The relative positions of 18S rRNA intermediates are shown. (E-J)
791 Sanger sequencing of the ends of six 18S rRNA intermediates. The number of clones
792 sequenced is shown at the left of each panel.

793

794 **Figure S8. The accumulation of 27SA₂ rRNA may disrupt nucleolar integrity.**
795 (A) Schematic diagram of rRNA processing in *C. elegans*. (B) Images of *C. elegans*
796 nucleoli after knockdown of the indicated genes by RNAi in the epidermis. (C)
797 Summary of the functions of the indicated genes in pre-rRNA processing. (D-E)
798 cRT-PCR assay of 26S rRNA intermediates.

799

800 **Figure S9. *nucl-1* and *fib-1* are required for the formation of ring-shaped nucleoli.**
801 (A) Predicated nucleolar proteins containing IDR and RNA binding motifs. (B)
802 Schematic diagram of NUCL-1. The deletion alleles *ust313* and *ust323* were
803 constructed by CRISPR/Cas9 technology. *ust313* was an in-frame deletion. *ust323*
804 was likely a null allele. (C) Images of *C. elegans* nucleoli after knockdown of the
805 indicated genes by RNAi in *nucl-1* mutants. (D) Quantification of the ring-shaped
806 nucleoli after RNAi knockdown of the indicated genes. n>20 animals. (E) (top) cRT-
807 PCR assay of 27SA₂ rRNA intermediates upon knockdown of the indicated genes
808 by RNAi. (bottom) Levels of 27SA₂ pre-rRNAs quantified by real-time PCR. mean ±
809 SD, n = 3. (F) (top) cRT-PCR assay of 27SA₂ rRNA intermediates of the *nucl-1*
810 mutant upon knockdown of the indicated genes by RNAi. (bottom) Levels of 27SA₂
811 pre-rRNAs quantified by real-time PCR. (G) cRT-PCR assay of 27SA₂ rRNA
812 intermediates by knocking down *rpl-14*.

813

814 **Table S1. List of genes used in the candidate-based RNAi screening.**

815

816 **Table S2. List of genes involved in 26S rRNA processing.**

817

818 **Table S3: List of strains used in this study.**

819

820 **Table S4. Sequences of double-stranded RNA for RNAi screening**

821

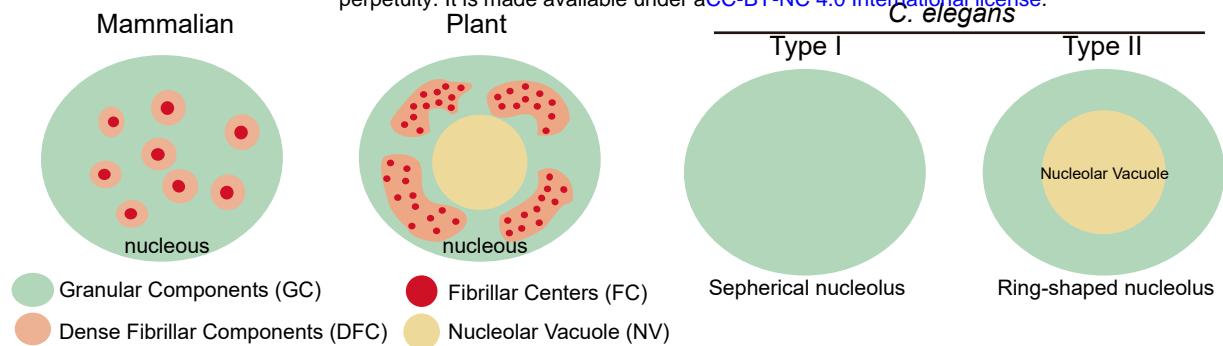
822 **Table S5. Sequence of repair plasmid primers used in ectopic transgenic strain**
823 **construction**

824

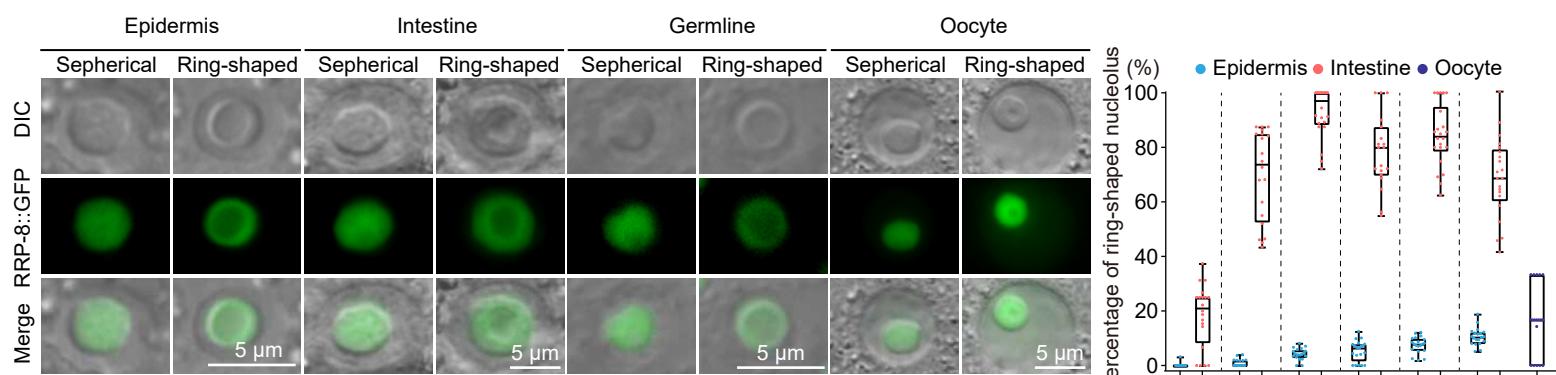
825 **Table S6. Sequence of repair plasmid primers used in in situ transgenic strain**
826 **construction**

827

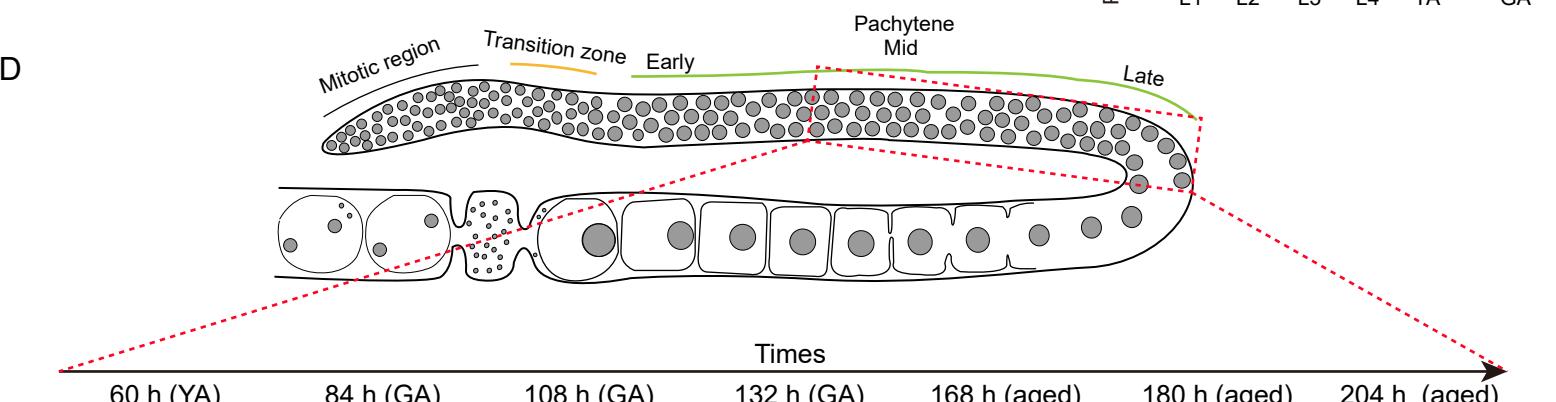
828 **Table S7. Sequences of sgRNAs for CRISPR/Cas9-mediated gene editing.**

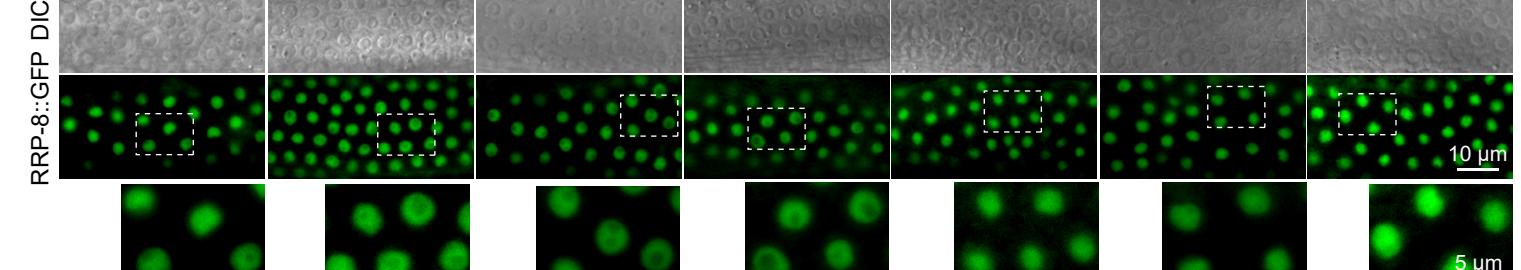

829

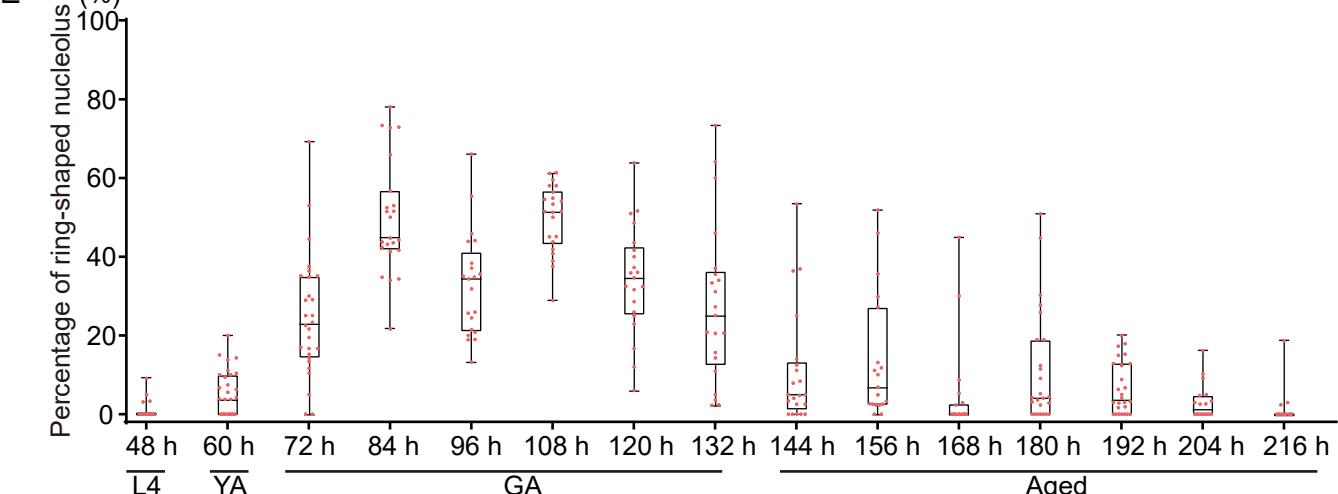
830 **Table S8. Sequence of cRT-PCR and qPCR primers**

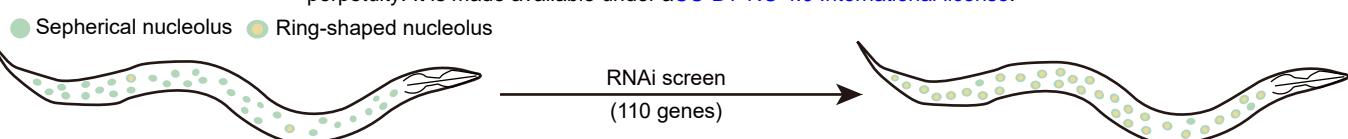

831

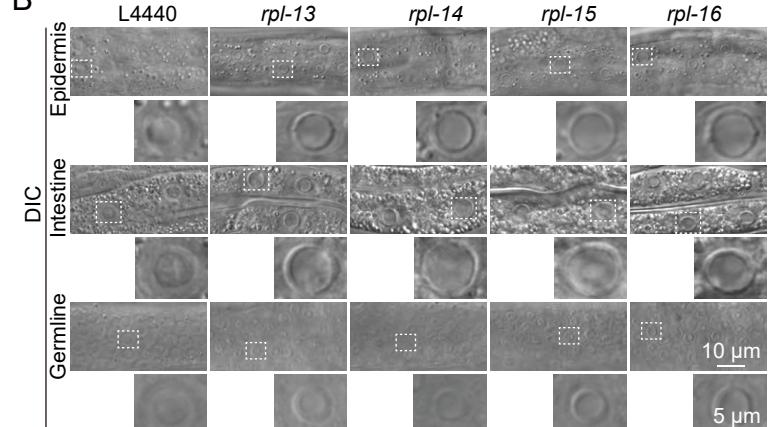
832

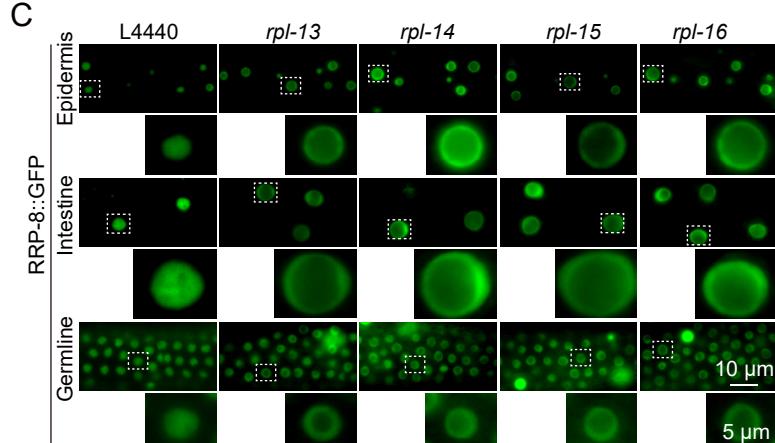

A

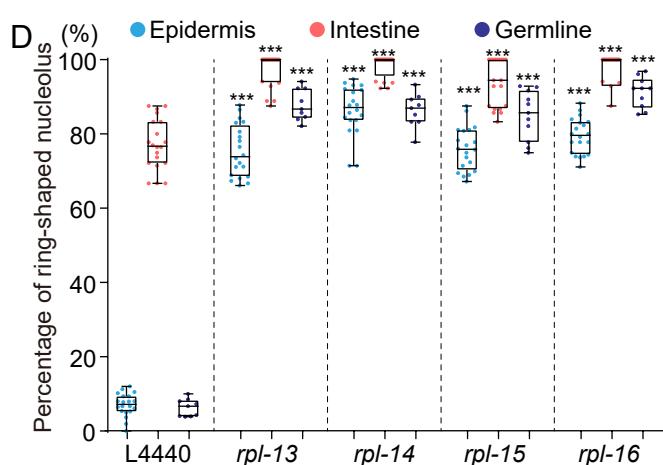

B


C

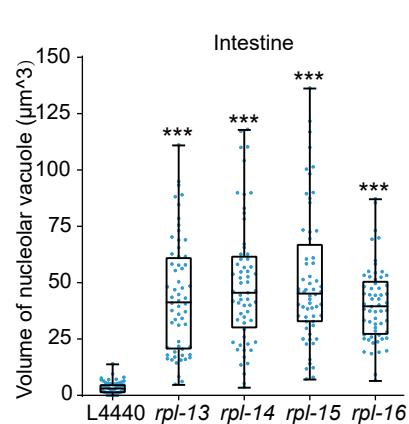

D

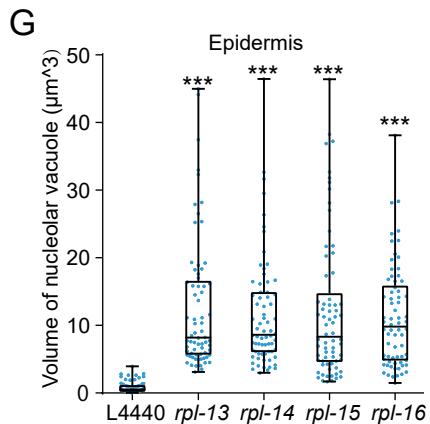

E


A

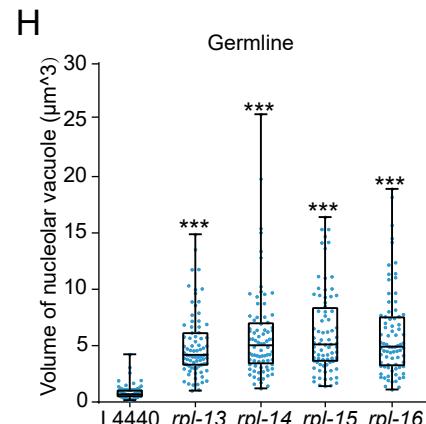

B

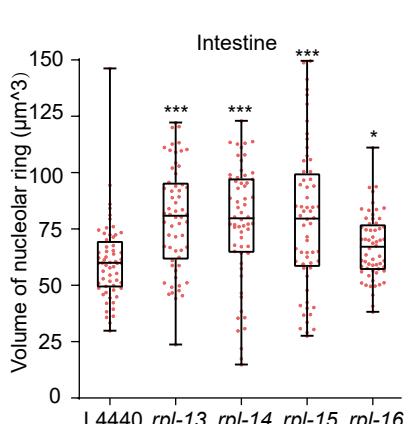
C

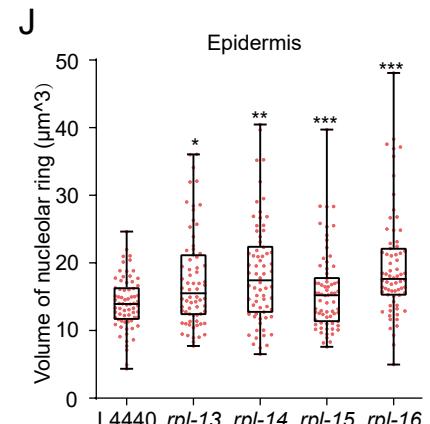

D


E

Type	Genes	Nucleolar Morphology
Class I	<i>rpl-3, rpl-4, rpl-6, rpl-7, rpl-7A, rpl-13, rpl-14, rpl-15, rpl-16, rpl-17, rpl-18, rpl-20, rpl-23, rpl-24.2, rpl-26, rpl-32, rpl-33, rpl-35, rpl-36</i>	ring-shaped nucleolus
Class II	<i>rpl-1, rpl-2, rpl-5, rpl-9, rpl-10, rpl-11.1, rpl-11.2, rpl-12, rpl-19, rpl-21, rpl-22, rpl-24.1, rpl-25.1, rpl-25.2, rpl-27, rpl-28, rpl-29, rpl-30, rpl-31, rpl-34, rpl-36.4, rpl-37, rpl-38, rpl-39, rpl-40, rpl-41.1, rpl-41.2, rpl-42, rpl-43</i>	spherical nucleolus


F


G


H

I

J

K

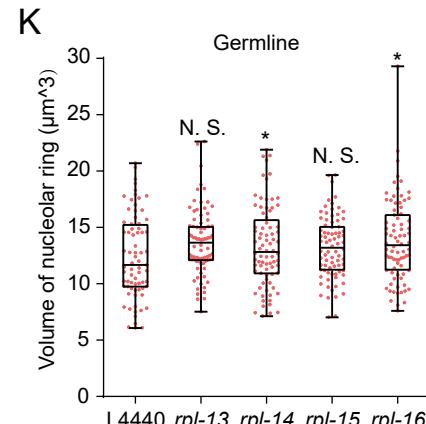


Figure 2

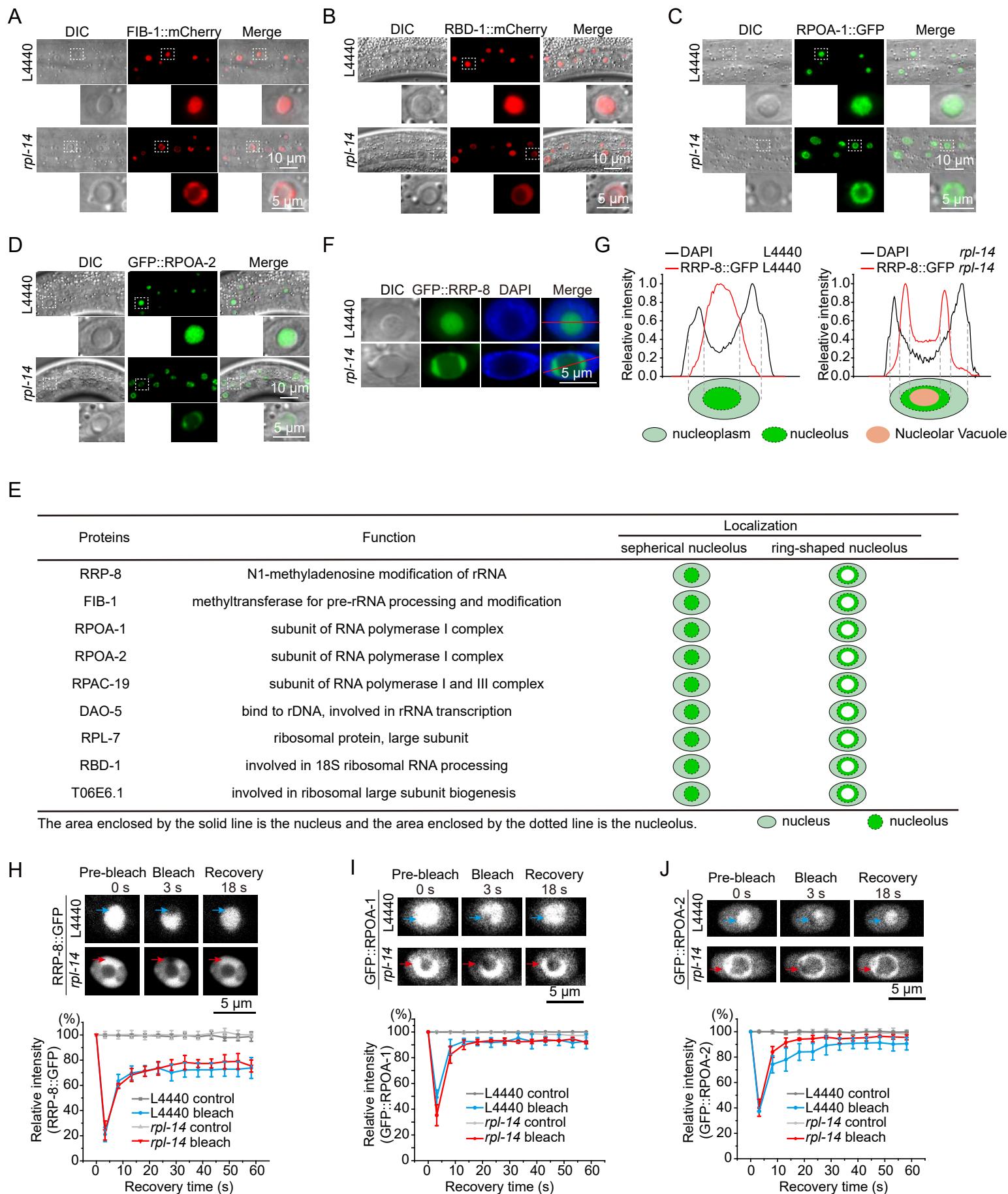


Figure 3

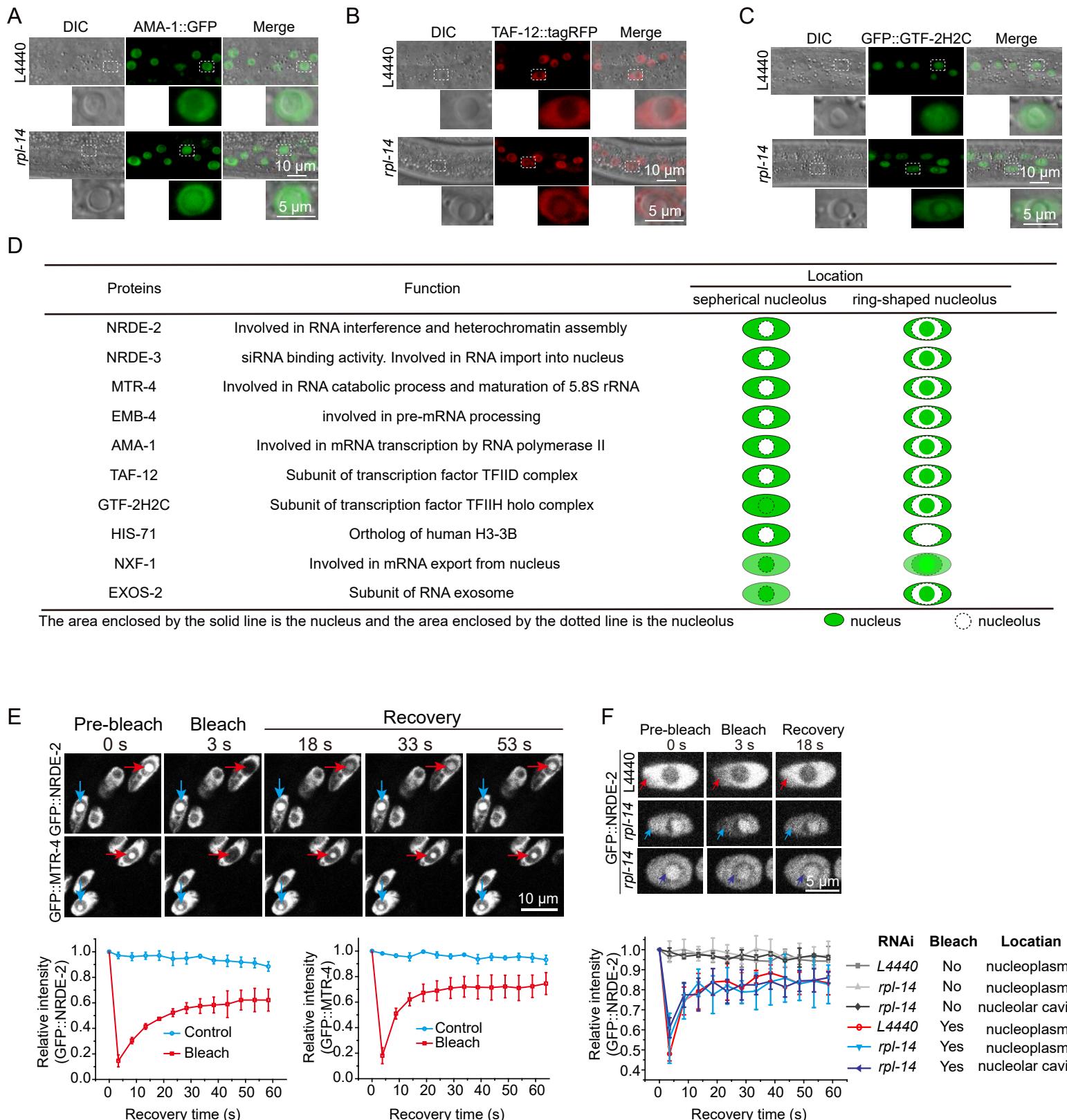
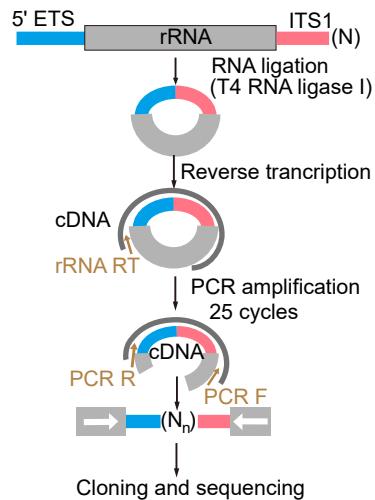
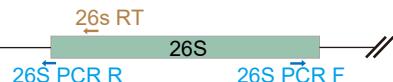
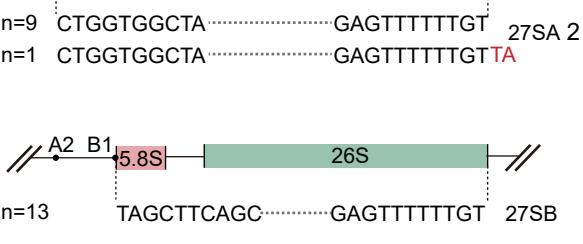
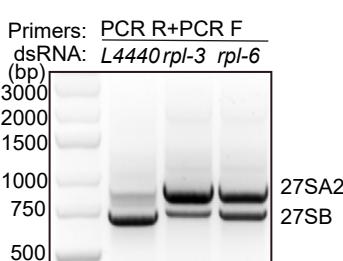
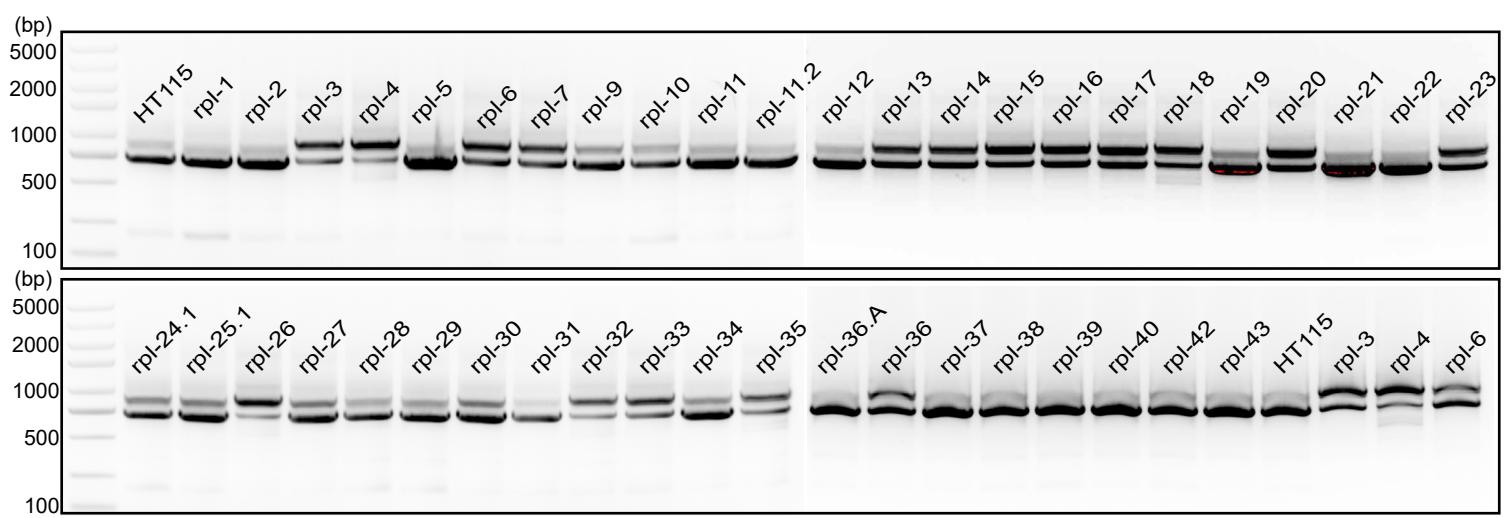




Figure 4



A


B

C

D

E

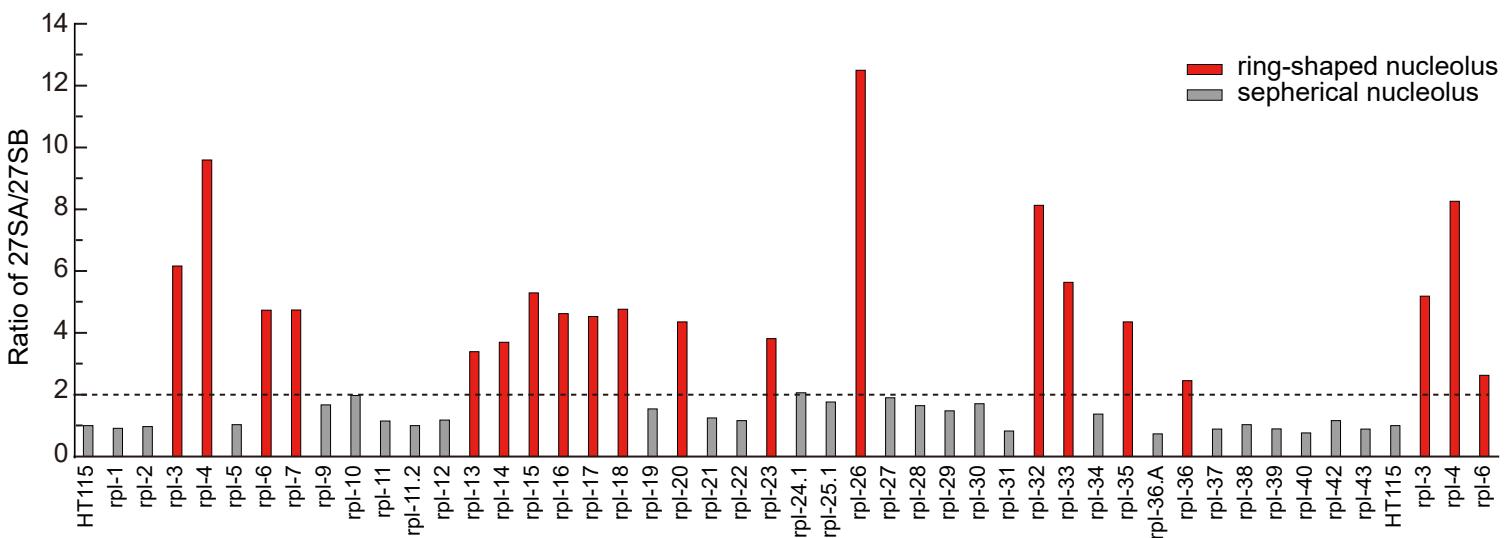
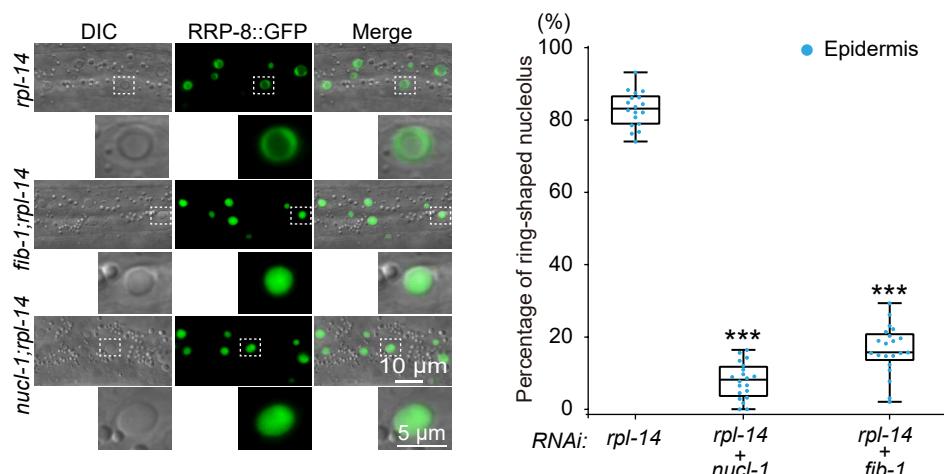
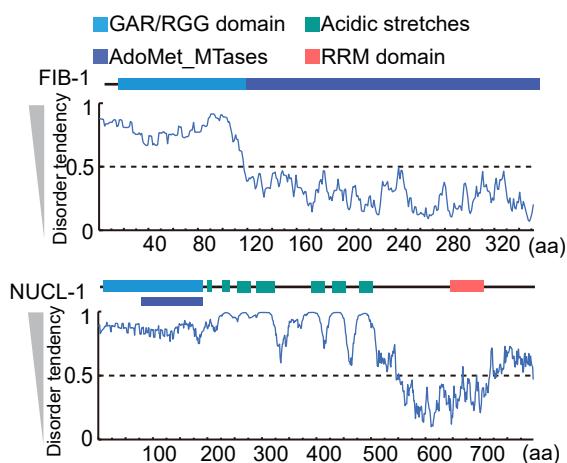
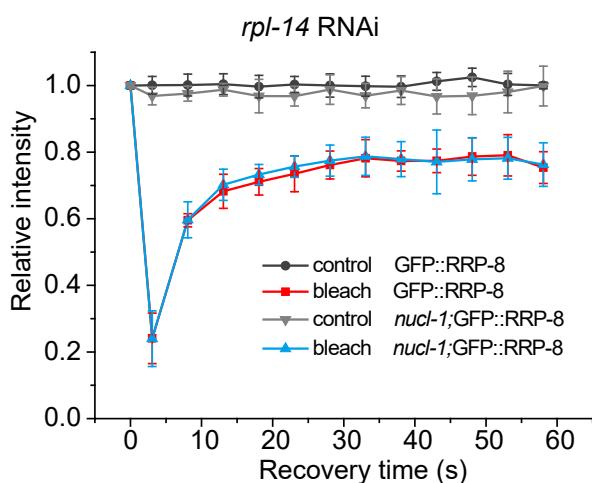
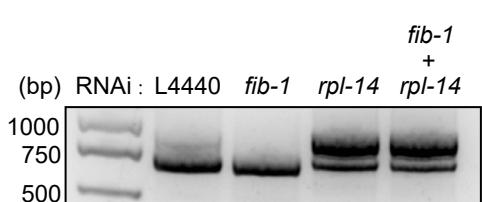
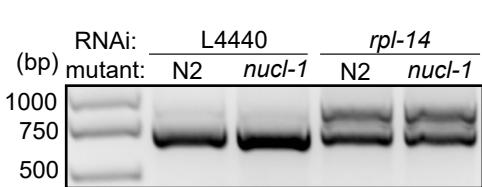
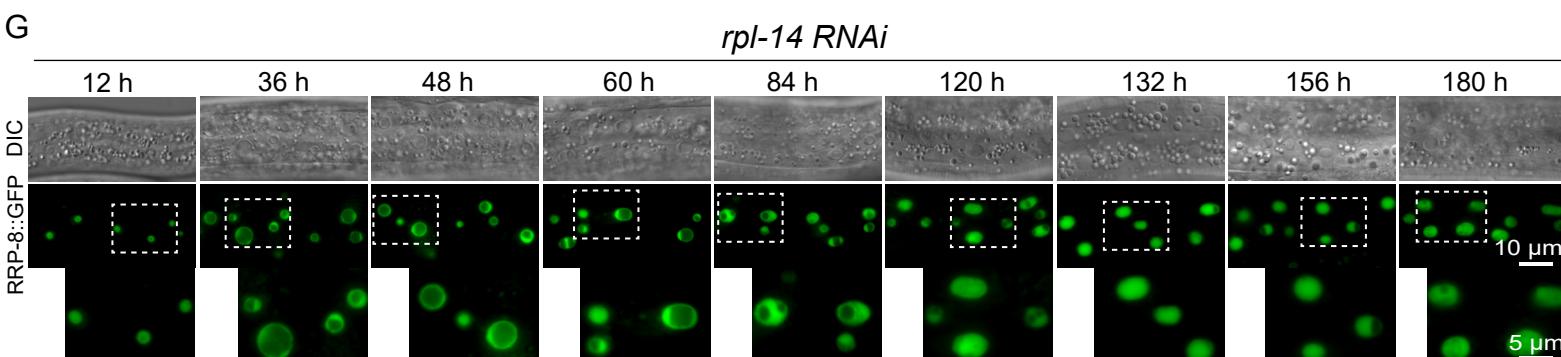
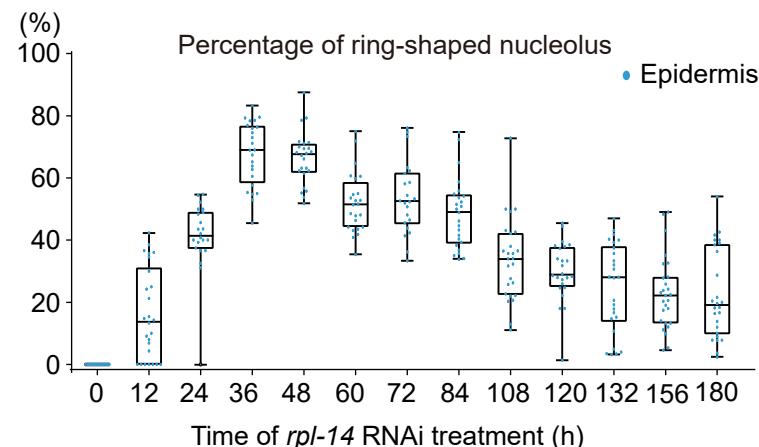





Figure 5


A


D


E


F

G

H

I

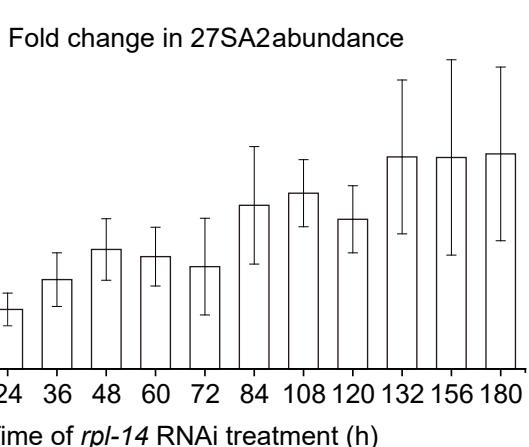
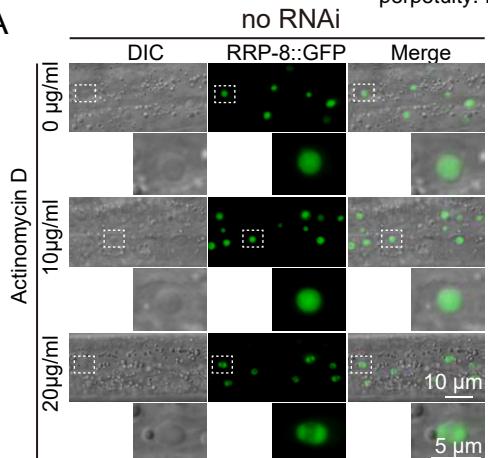
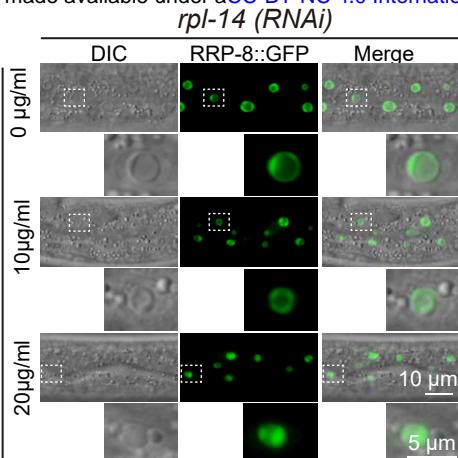
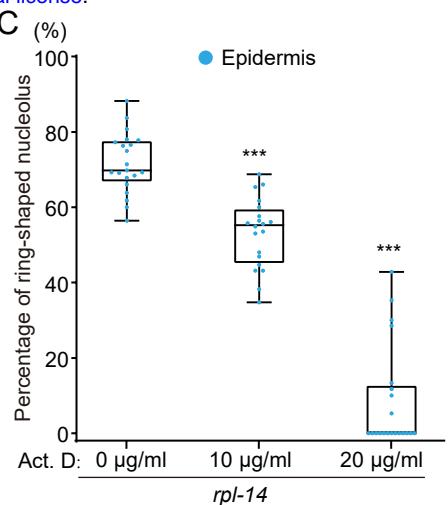
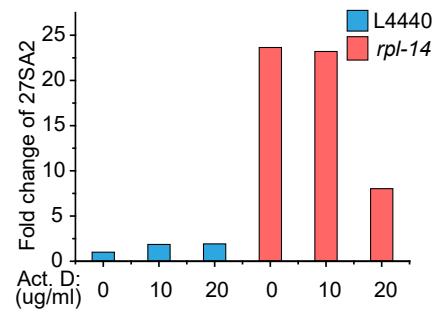
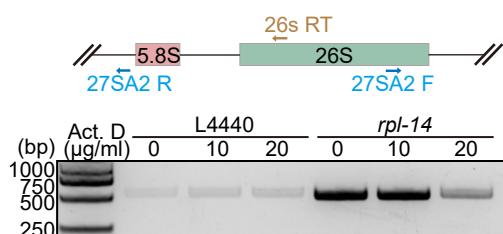
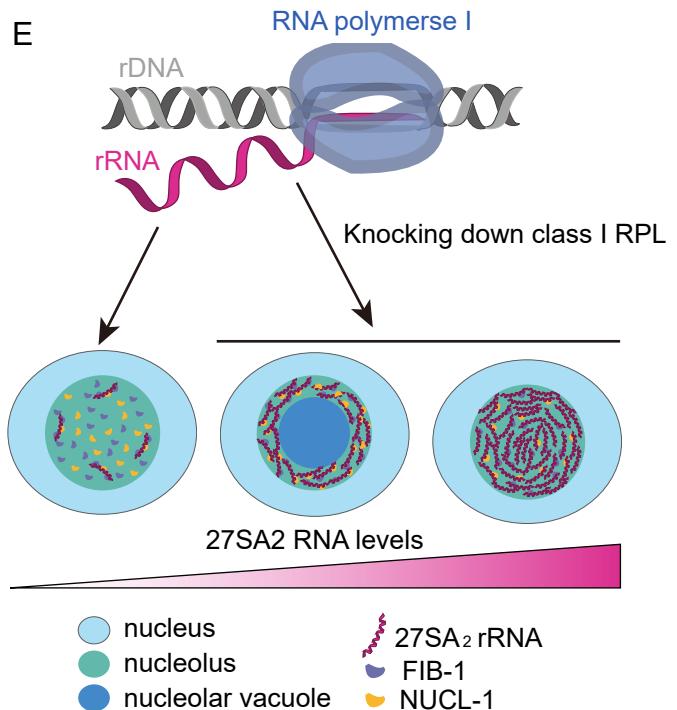
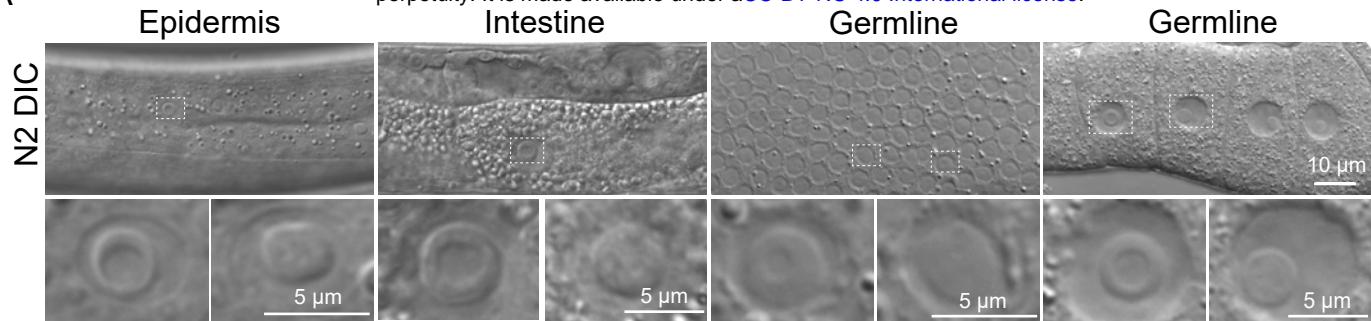




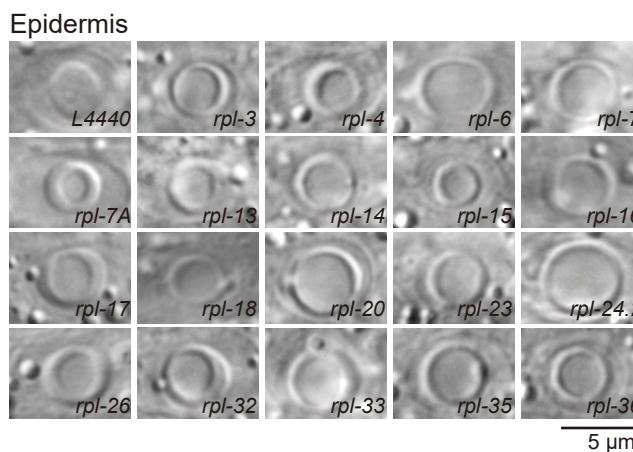
Figure 6

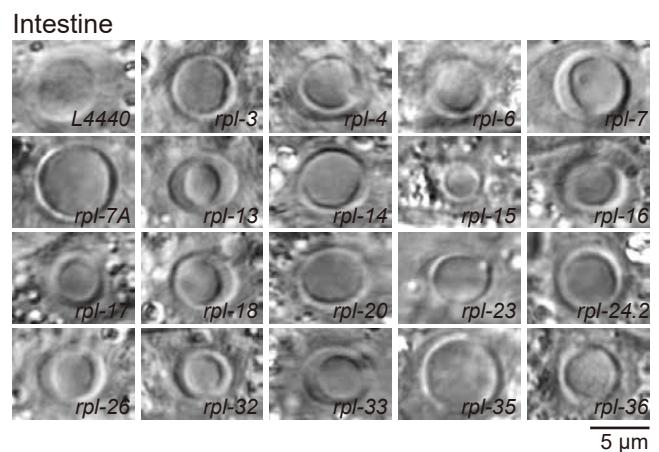

A

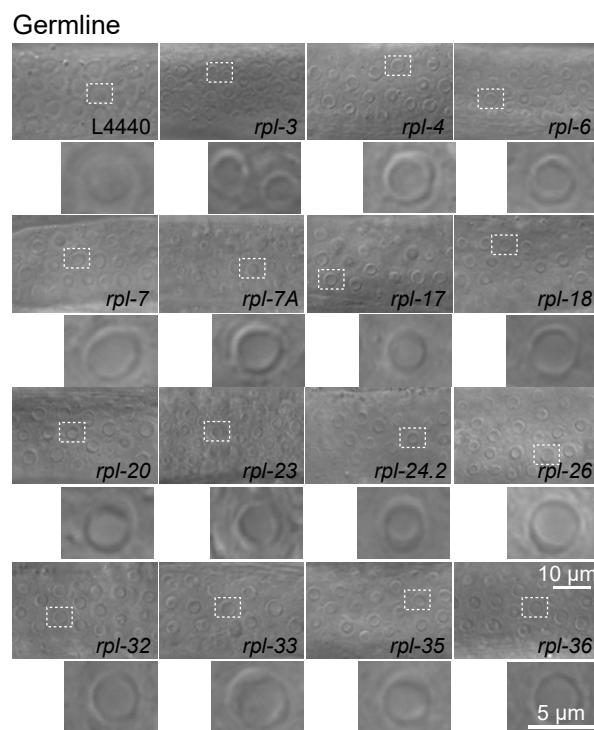


B

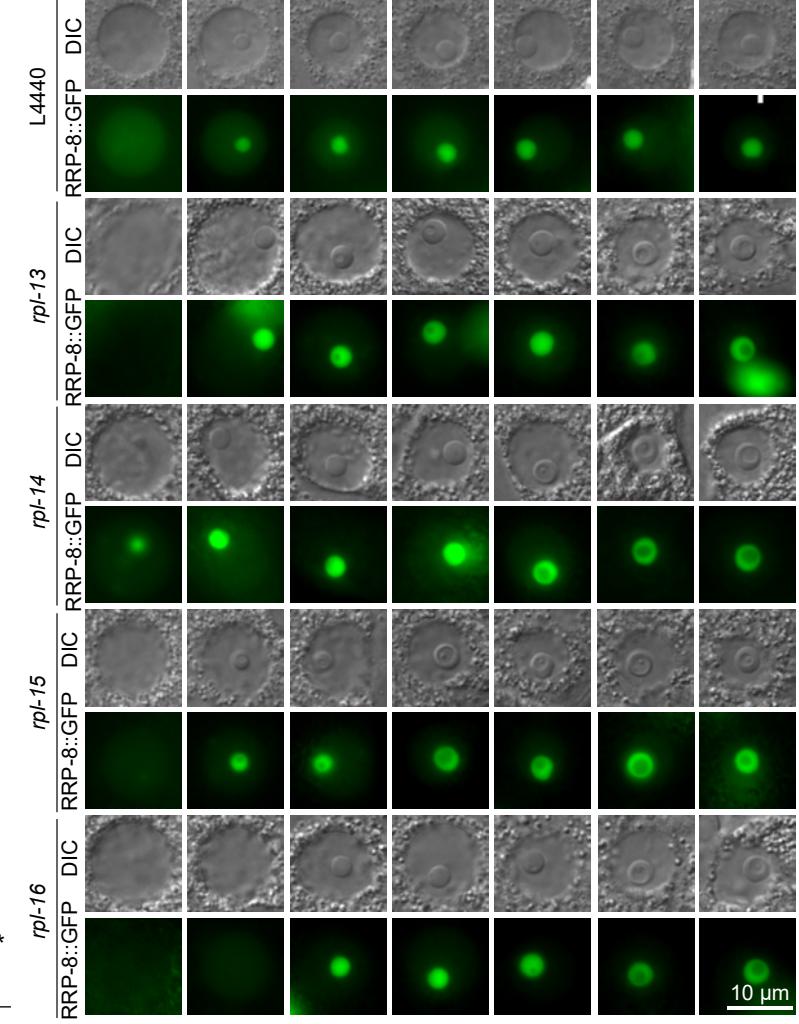
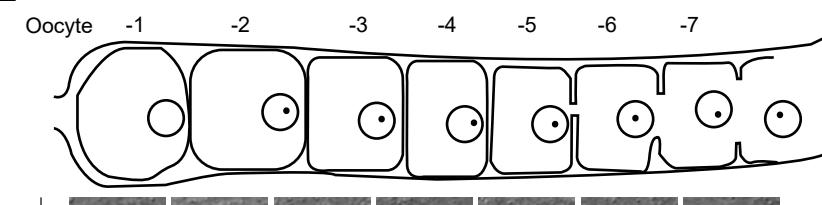

C (%)


D


E


A


B



C

D

E

F

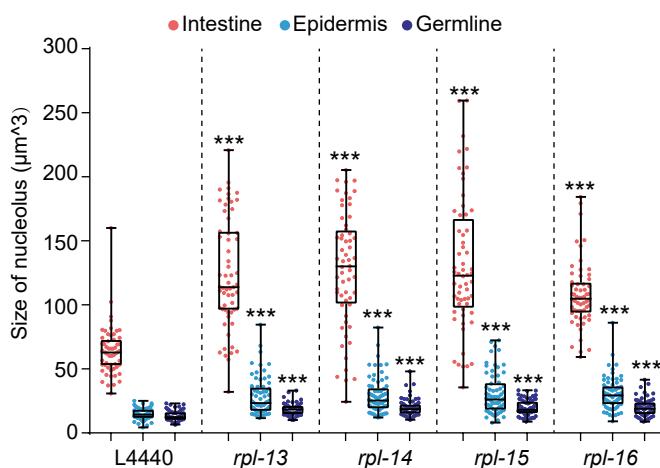


Figure S1

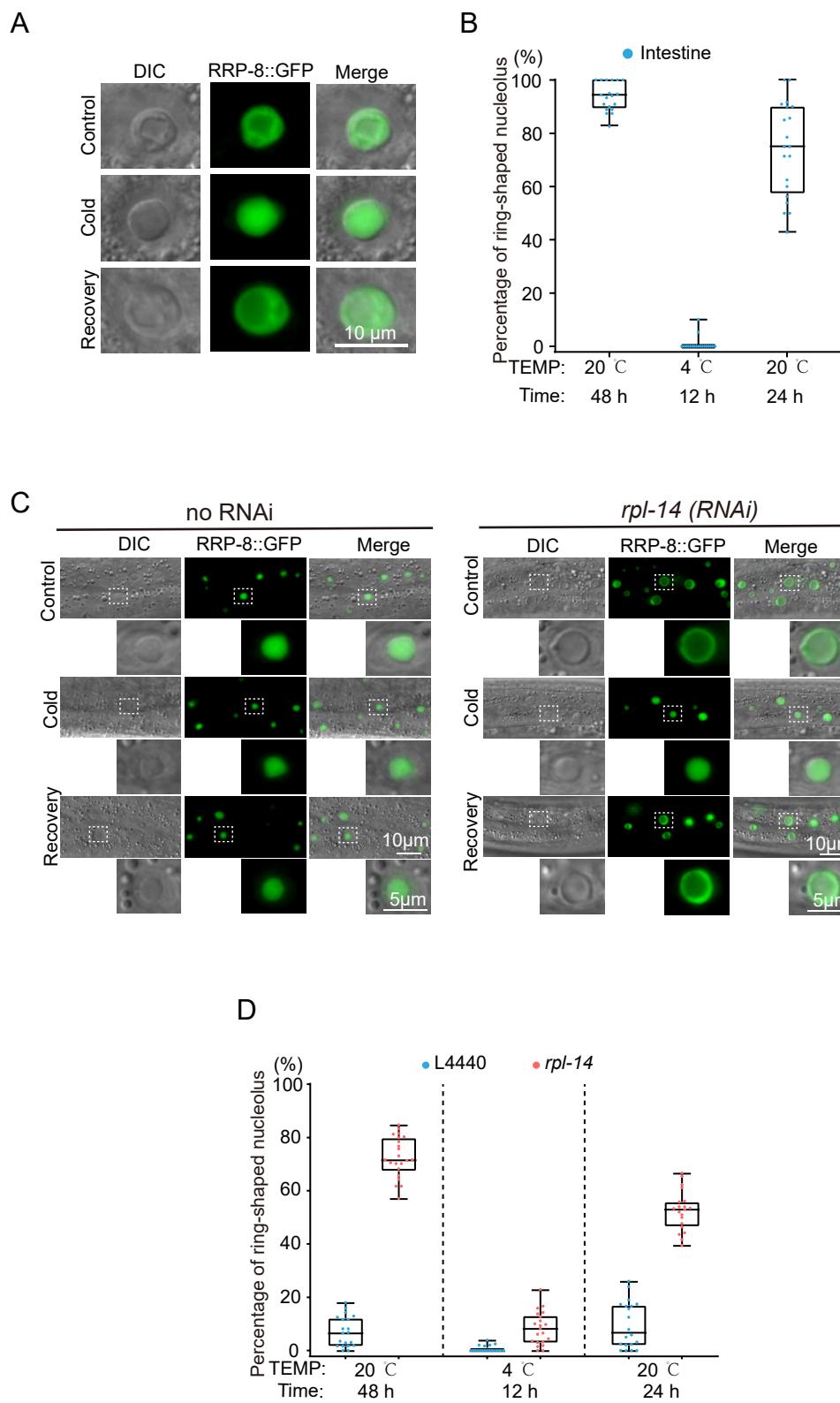
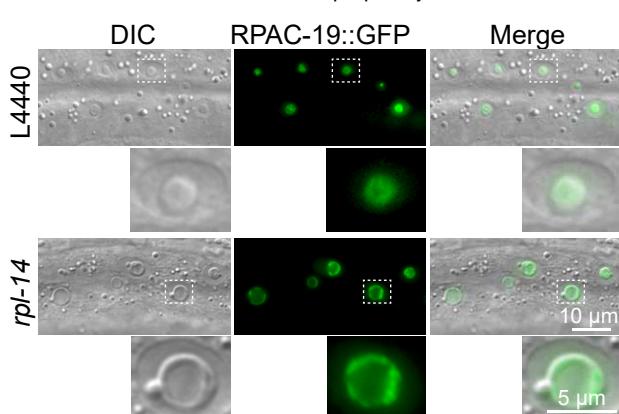
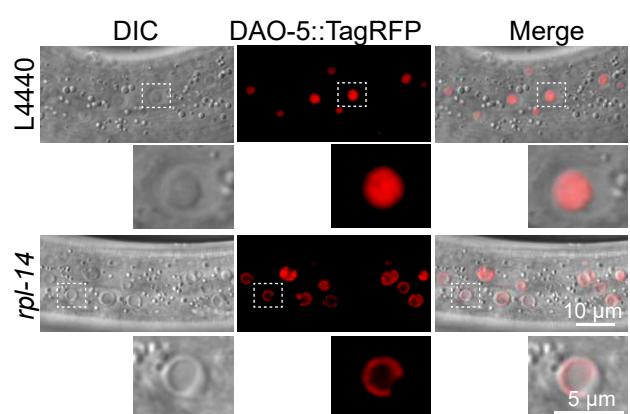
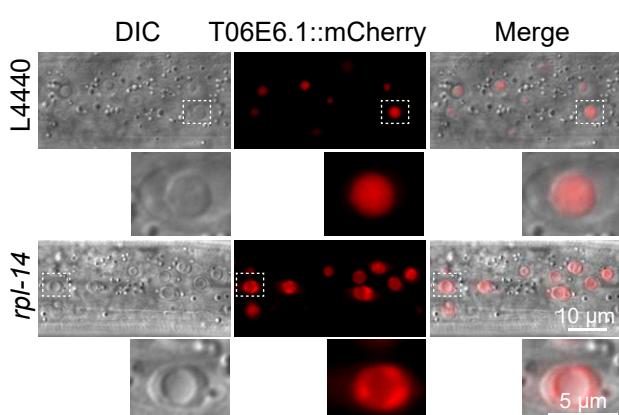
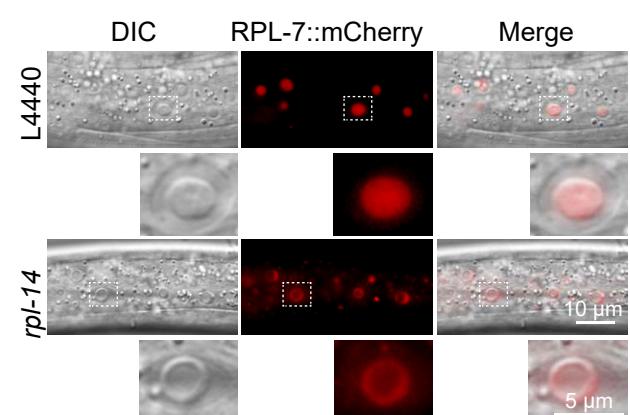
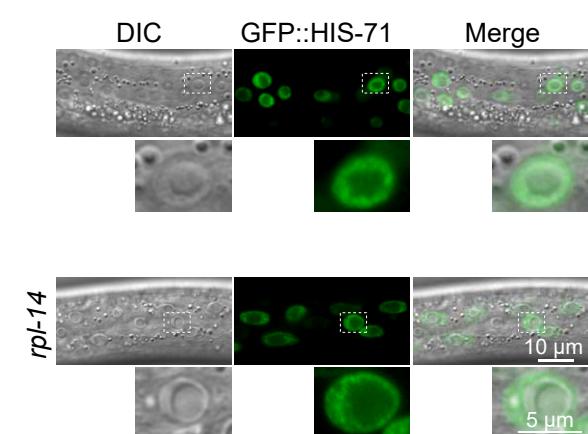
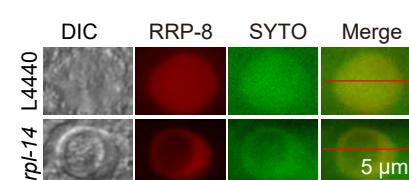




Figure S2


A


B


C


D

E

G

H

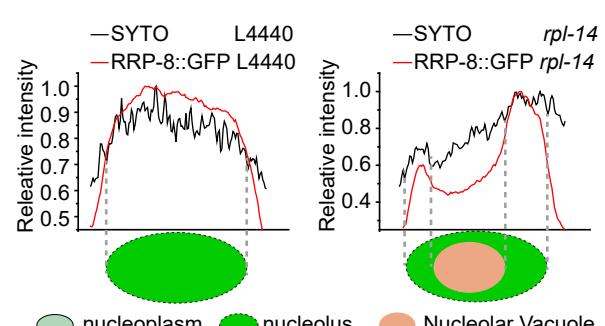
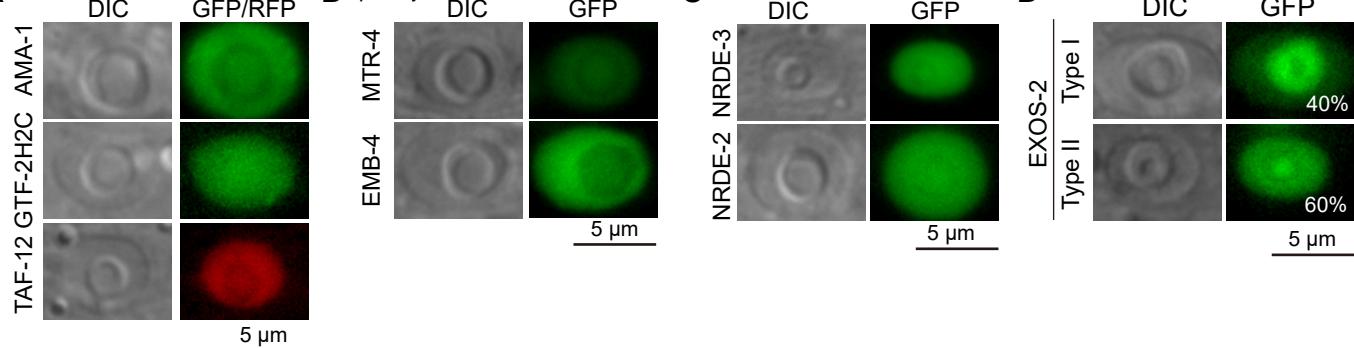
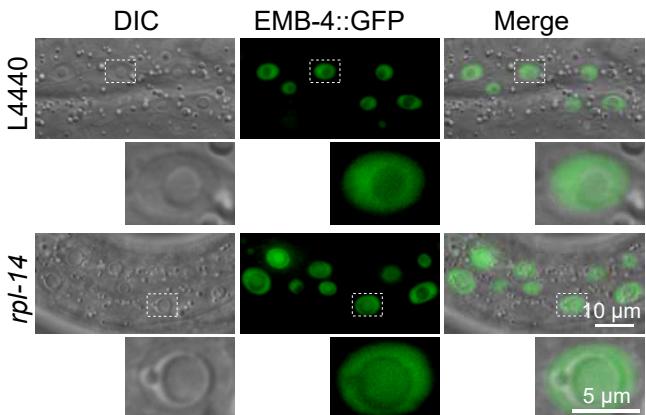
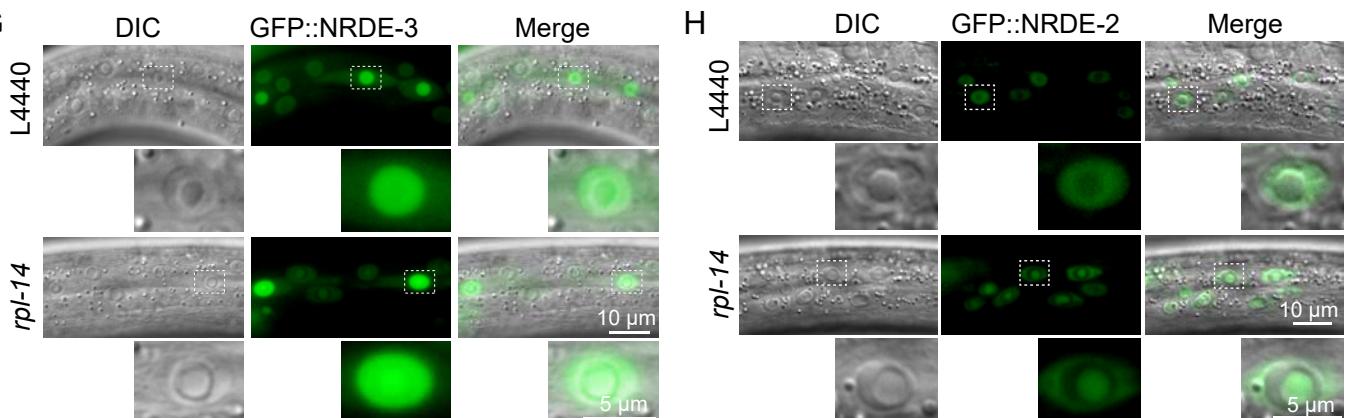
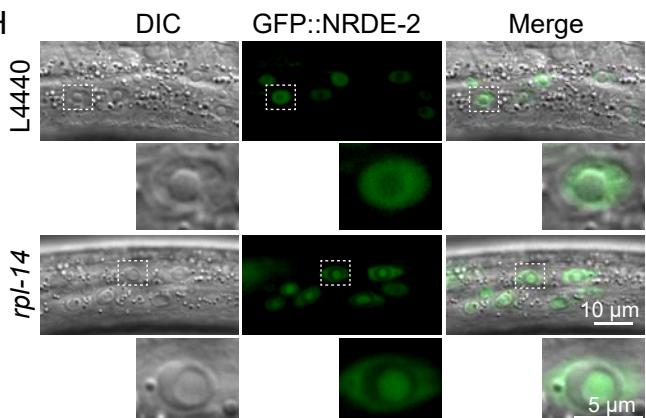
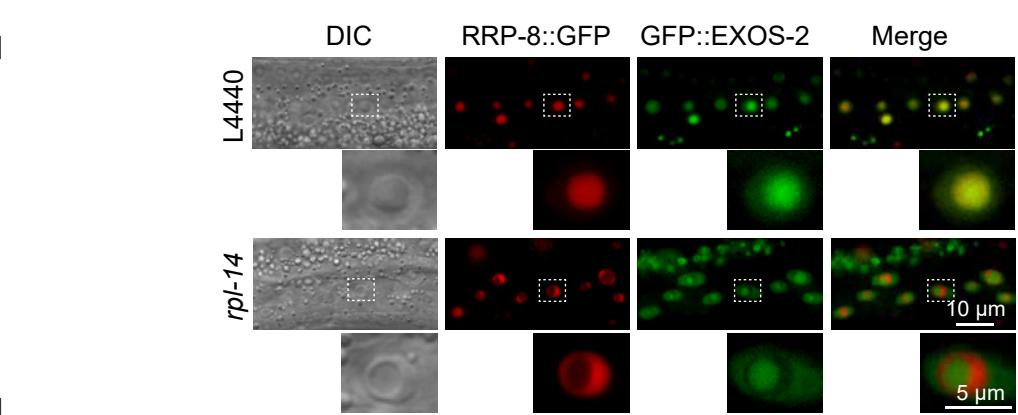



Figure S3


A


E


F


G

H

I

J

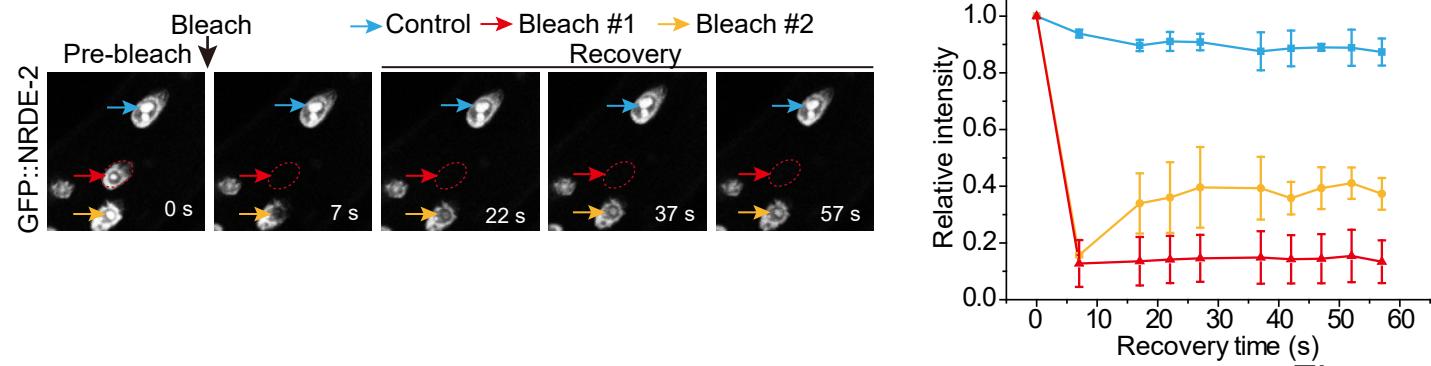


Figure S4

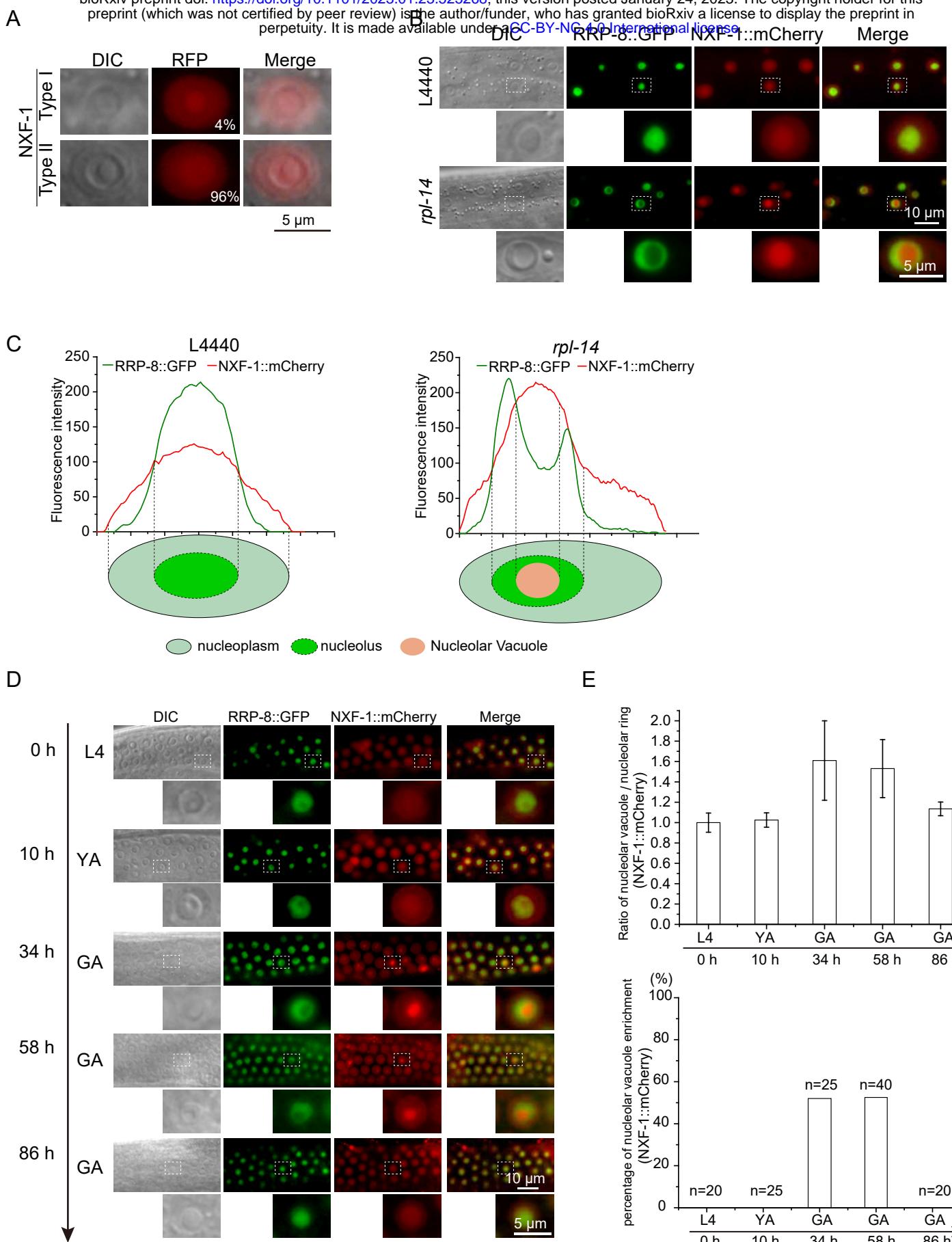


Figure S5

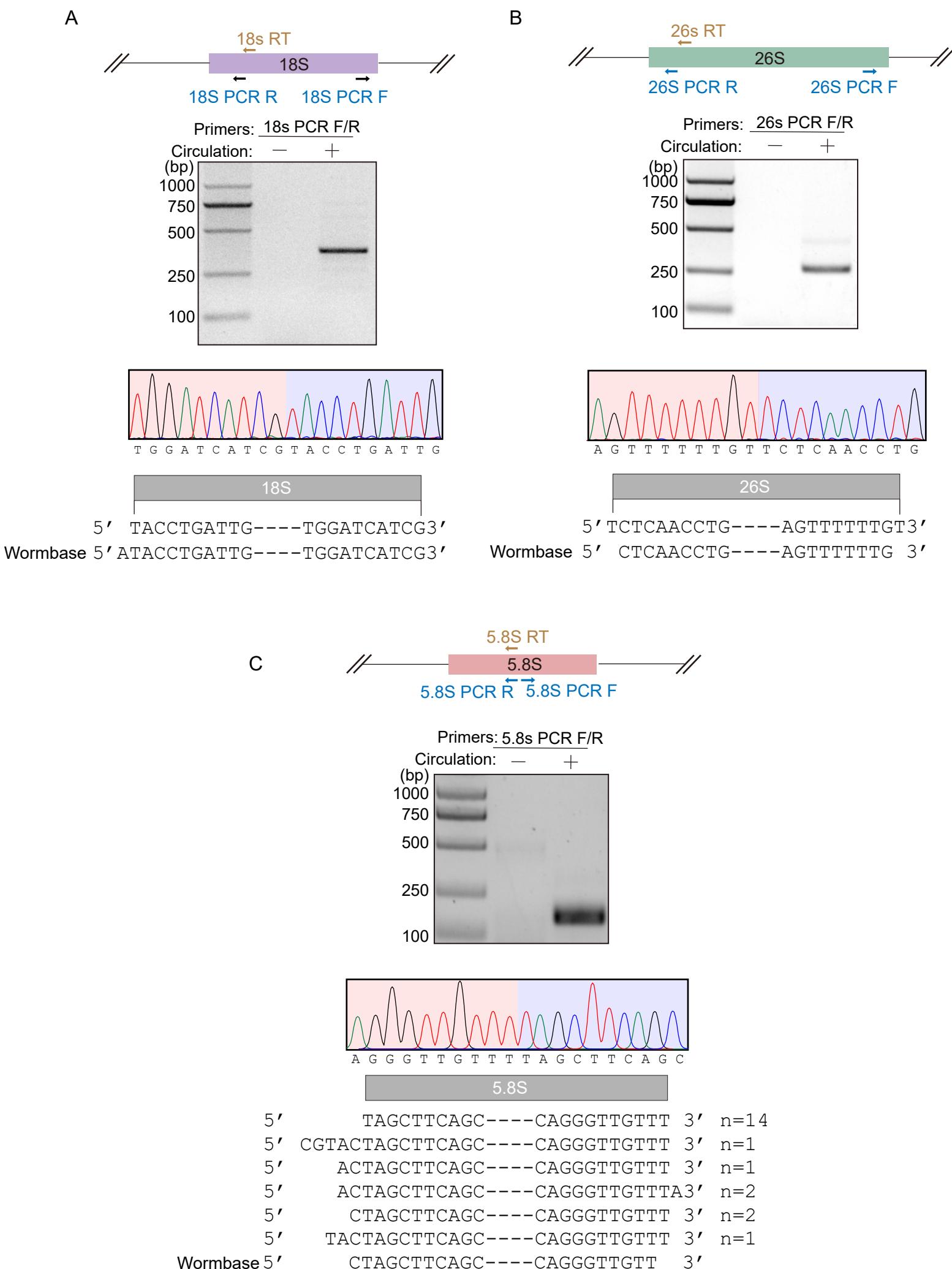
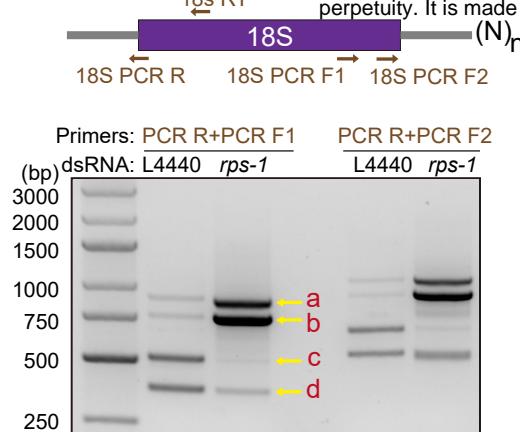
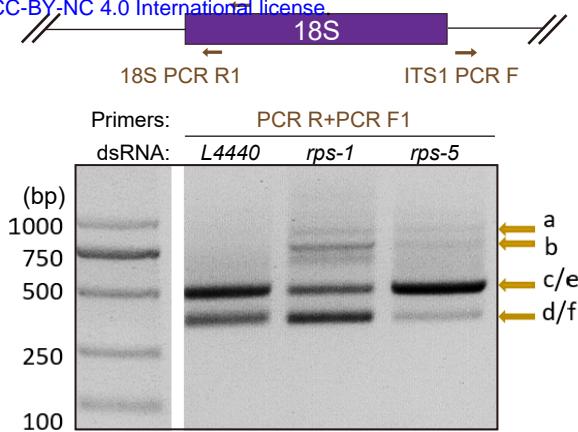
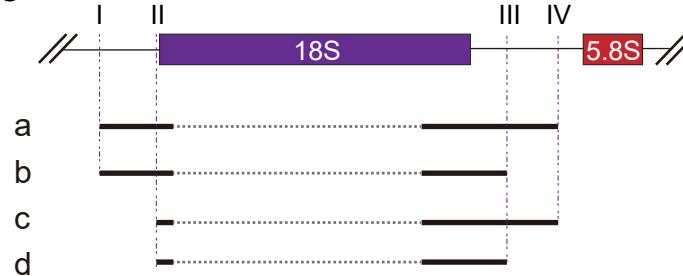
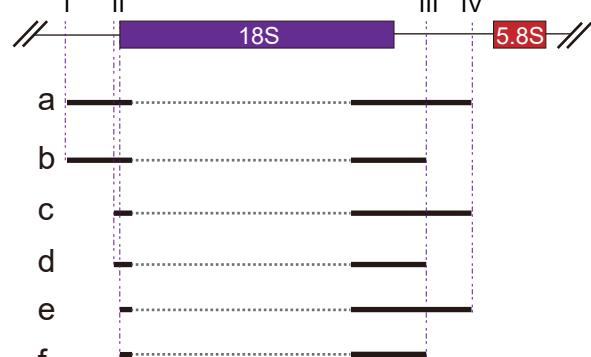
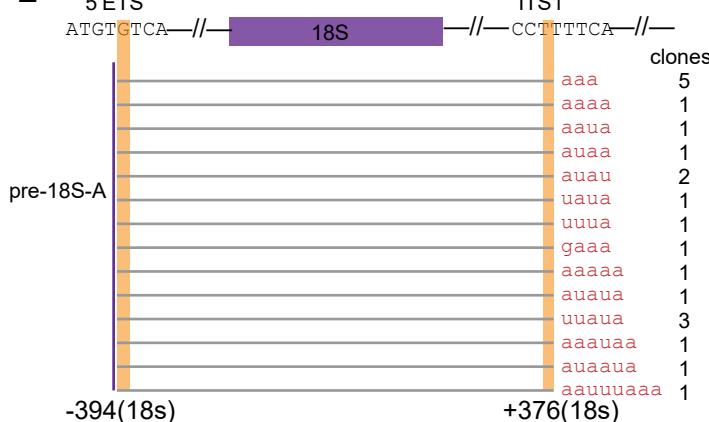
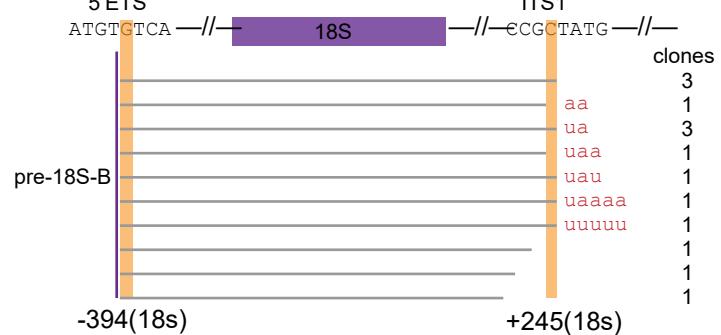




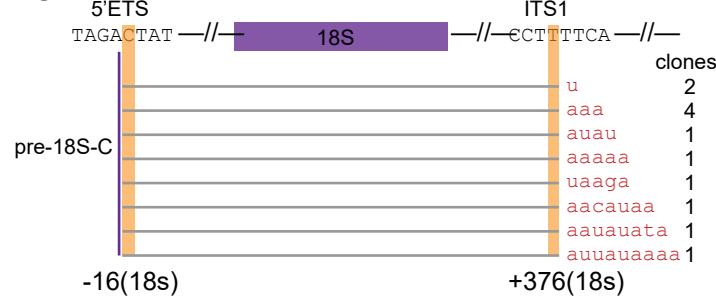
Figure S6

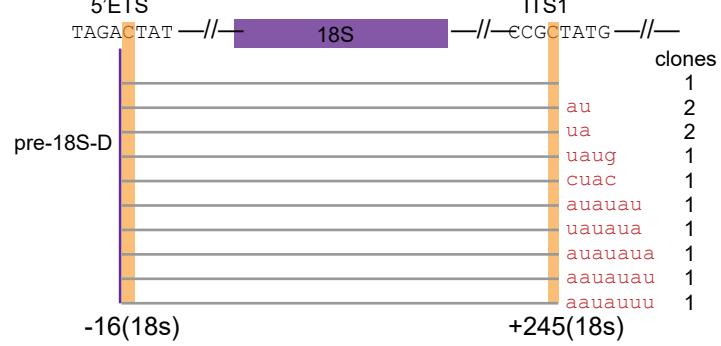

A

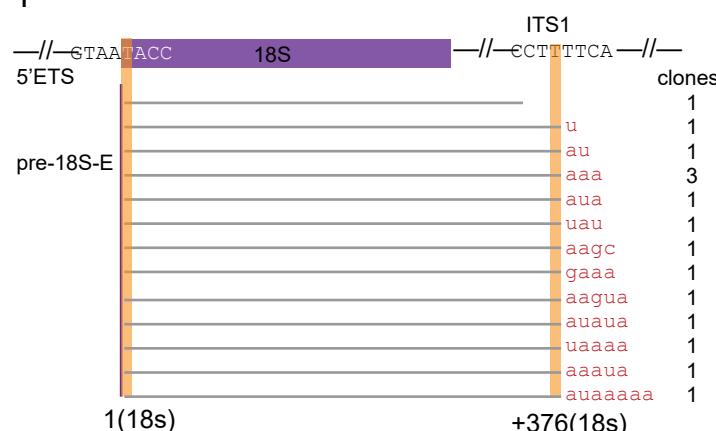

B

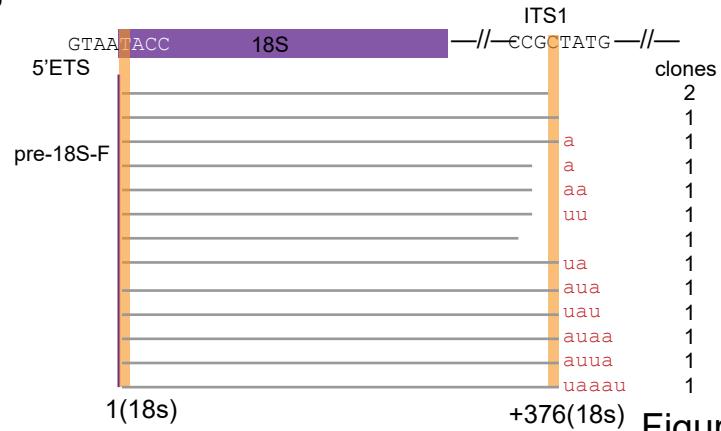

C

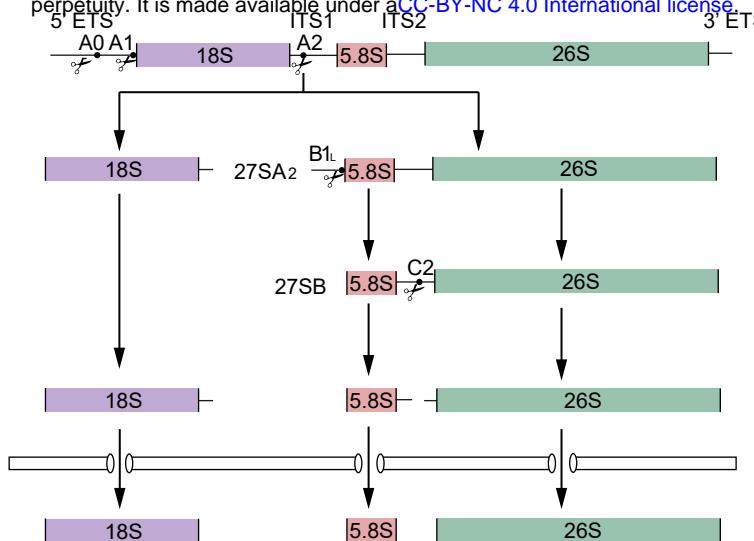

D

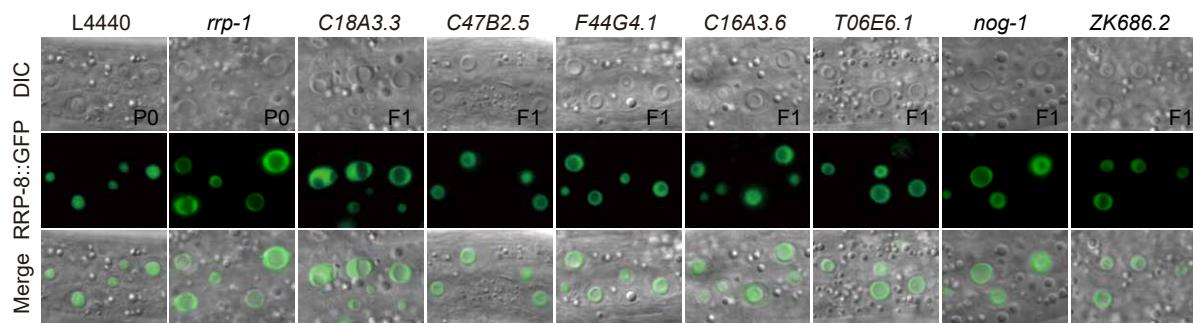

E


F

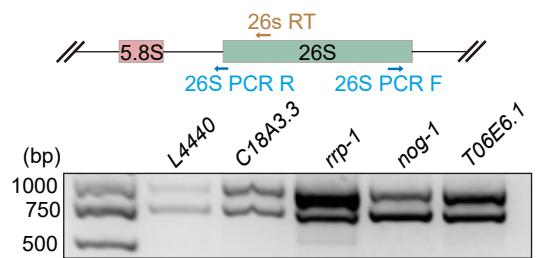

G

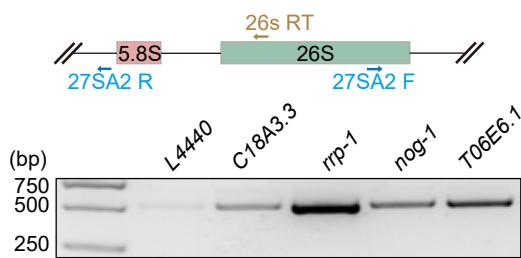

H


I


J

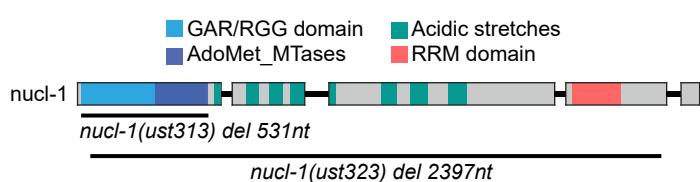
A

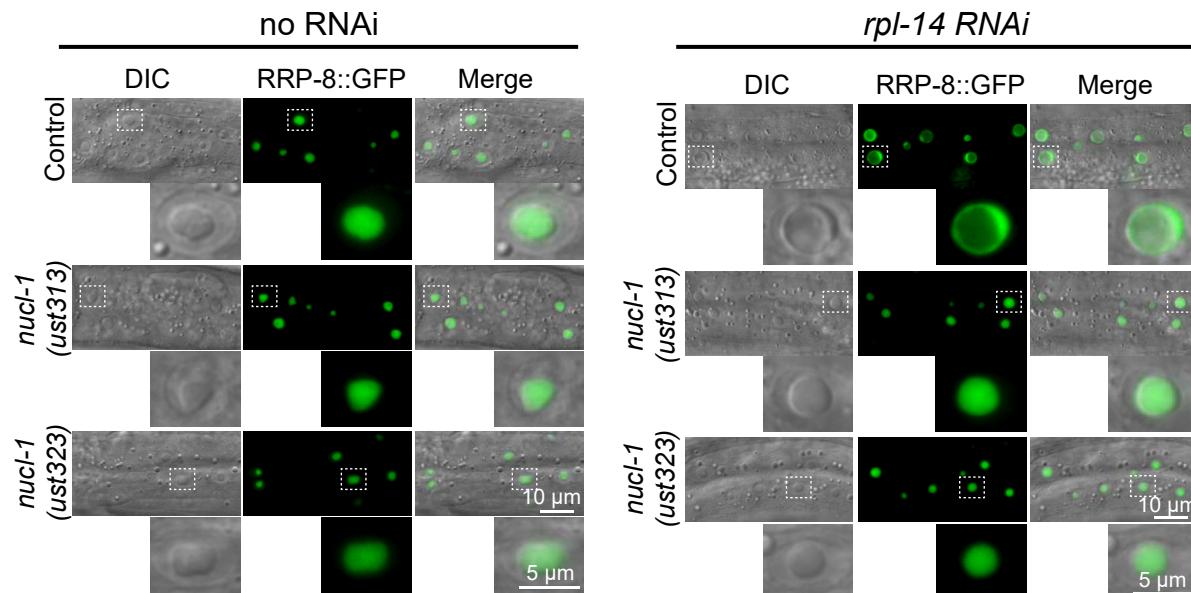

B


C

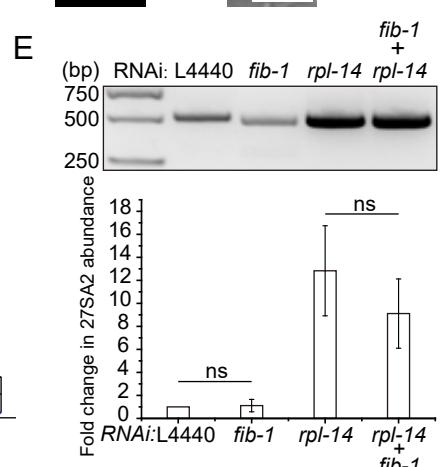
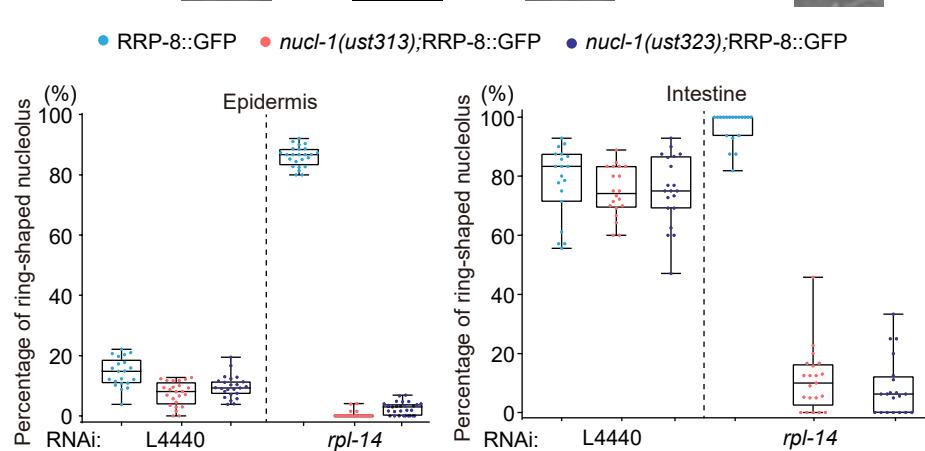
Genes	Homolog		Pre-RNA processing	Reference
	H. sapiens	S. cerevisiae		
C18A3.3	EBNA1BP2	EBP2	35S and 27SA↑	HUBER et al. 2000
C47B2.5	EIF6	TIF6	35S and 27SB↑	BASU et al. 2001
F44G4.1	RPF1	RPF1	27SA3↑	HARNPICHARNCHAI et al. 2001
C16A3.6	MAK16	mak16	27SB stability	PELLETT AND TRACY 2006
T06E6.1	WDR74	NSA1	27SA2↑	HIRAISHI et al. 2018
rrp-1	RRP1	RRP1	27SA↑	HORSEY et al. 2004
nog-1	GTPBP4	NOG1	35S↑	KALLSTROM et al. 2003
ZK686.2	DDX51	DBP6	27S↓	KRESSLER et al. 1998

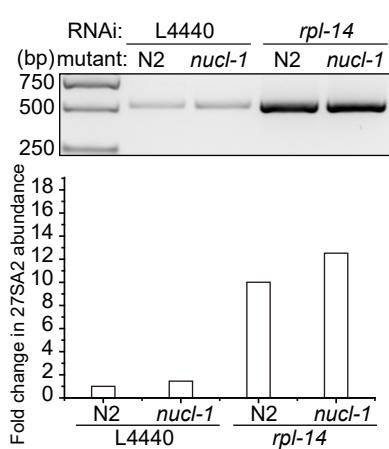
D


E


A

Protein	RRM domain	RGG motif	Homolog in human	Function
FIB-1	—	+	FBL	nucleogenesis
NUCL-1	+	+	NCL	RNA binding activity
NIFK-1	+	—	NIFK	maturity of LSU-rRNA
RBD-1	+	—	RBM19	rRNA processing
C18A3.3	—	+	EBNA1BP2	rRNA processing
F57B10.8	+	—	ABT1	ribosomal small subunit biogenesis
GARR-1	—	+	GAR1	rRNA pseudouridine synthesis
Y94H6A.5	—	+	DDX54	rRNA processing



B


C

D

F

G

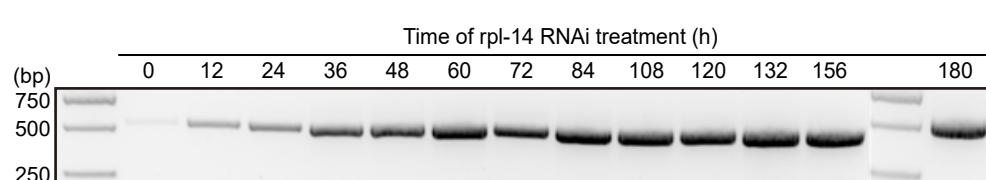


Figure S9

Table S1: Selected rRNA processing and ribosome assembly factors tested by RNAi screening.

Gene ID	Gene ID	Gene ID	Gene ID	Gene ID
Y39A1A.14	F55F8.5	rpl-13	rpl-33	rps-9
F18C5.3	C15H11.9	rpl-14	rpl-34	rps-10
ZK1127.5	W09C5.1	rpl-15	rpl-35	rps-11
T22H9.1	T19A6.2	rpl-16	rpl-36	rps-12
ZC434.4	K01C8.9	rpl-17	rpl-36A	rps-13
T22H6.1	W07E6.2	rpl-18	rpl-37	rps-14
Y54E5B.2	T25G3.3	rpl-19	rpl-38	rps-15
Y75B8A.7	Y56A3A.18	rpl-20	rpl-39	rps-16
C48B6.2	crn-3	rpl-21	rpl-40	rps-17
F58B3.4	rpl-1	rpl-22	rpl-41.1	rps-18
F57B10.8	rpl-2	rpl-23	rpl-41.2	rps-19
ZK430.7	rpl-3	rpl-24.1	rpl-42	rps-20
T20B12.3	rpl-4	rpl-24.2	rpl-43	rps-21
F57B9.5	rpl-5	rpl-25.1	rps-0	rps-22
Y48B6A.3	rpl-6	rpl-25.2	rps-1	rps-23
T01C3.7	rpl-7	rpl-26	rps-2	rps-24
K07C5.4	rpl-7A	rpl-27	rps-3	rps-25
Y6B3B.9	rpl-9	rpl-28	rps-4	rps-26
F54C1.2	rpl-10	rpl-29	rps-5	rps-27
rrp-8	rpl-11.1	rpl-30	rps-6	rps-28
R13A5.12	rpl-11.2	rpl-31	rps-7	rps-29
F23B12.7	rpl-12	rpl-32	rps-8	rps-30

Table S2. List of genes involved in 26S rRNA processing.

Gene ID	Gene ID	Gene ID	Gene ID
rrp-1	C43E11.9	mac-1	F55F8.2
K12H4.3	pro-2	F44G4.1	ddx-15
ddx-17	C37H5.5	ZK546.14	C47B2.5
ZK686.2	T07A9.9	F53E10.6	T06E6.1
C24H12.4	nsun-1	let-716	F23B12.7
C18A3.3	rbm-28	H06I04.3	
C16A3.6	T05H4.10	K09H9.6	

Table S3: List of strains used in this study.

Strains	Genotype
N2	
shg2123	rrp-8::gfp::3xflag (ustIS76)
shg2287	fib-1P::fib-1::mCherry::rps-1 3' UTR (ustIS293)
shg1248	3xflag::gfp::rpoa-2 (ustIS116)
shg2285	rpl-7::mCherry (ustIS291)
shg1092	rrp-8::mCherry (ustIS128)
shg1268	3xflag::gfp::rpoa-1 (ustIS137)
shg1229	3xflag::gfp::rpac-19
shg1889	tagRFP::dao-5 (ustIS242)
shg1660	rbd-1::mCherry (ustIS207)
shg2286	T06E6.1::mCherry (ustIS292)
shg852	3xflag::gfp::nrde-2 (ustIS117)
shg664	mtr-4p::gfp::mtr-4::mtr-4 UTR
shg2288	ama-1::gfp::3xflag (ust423)
YY174	3xflag::gfp::nrde-3 (ggIS1)
shg011	<i>eri-1(mg366)</i> ; ggIS1;susi-1(ust001)
shg1890	3xflag::gfp::his-71 (ustIS254)
shg2160	3xflag::gfp::gtf-2H2C (ust384)
shg1696	taf-12::tagRFP (ustIS227)
shg2289	emb-4::gfp::3xflag (ust424)
shg2141	nxf-1::mCherry (ustIS281)
shg2142	nxf-1::mCherry(ustIS281);rrp-8::gfp(ustIS76)
shg2104	3xflag::gfp::exos-2(ustIS113);rrp-8::mCherry (ustIS128)
shg1914	<i>nucl-1</i> (ust313)
shg2090	<i>nucl-1</i> (ust323)
shg2098	<i>nucl-1</i> (ust313); susi-2::gfp(ustIS76)
shg2143	<i>nucl-1</i> (ust323); susi-2::gfp(ustIS76)

Table S4. Sequences of double-strand RNA for RNAi Screening

Genes	Left Oligo	Right Oligo
rpl-1	GGTAAAATGTCGAAGGTTTC	GTAAATAAACTTTGTGGCT
rpl-4	ATGGCGGCCAGACCGCTCGT	ACAGAATACTTATTCTTCA
rpl-7A	CCTAGCAAGAAGGTTATCAA	TTAGAGCTTCCAAGATCAC
rpl-9	ATGAAGCTGATCGAGTCTAA	TTAGTCAGTGGGACGATGG
rpl-12	GATACGGAGTCAATTGCCG	CAAGTGACAGATCATTGAGC
rpl-15	CATGGGTGCATACAAGTATA	GGTTTGATAACAACCATTTC
rpl-16	ATGGGTCTGTCGAACAGAGC	TTAATTGTATCCAAGAGCCT
rpl-17	GTAATCTCCTTGTGAAAT	TTGTGTAACGGAAACACTT
rpl-18	GGTATTGATATCAACCACAA	CGGCATGATTGAAAACAAT
rpl-19	CAGCAATCTCCGTCTGCAGA	TTACTTCCAGCGATAACCT
rpl-21	ATGACTAACTCCAAGGGTCT	TCACGCAACAATCTGAAAC
rpl-24.1	CAGATTGTCAGCGAGGGC	GAACGTTATCGCTTCCTC
rpl-26	CAAGCATGTAATTGTCTCA	ACACTGACGAGACCGTCAAC
rpl-27	ATGGGCAAGATTATGAAGCC	TTAGAATCGCAATTGGTGA
rpl-28	GTAAAATGTCCGACGCTCTC	CGTGTGATAAGCTGTAACA
rpl-30	CAGGTAAATCATCATGGCTC	CTGTTTCAACAATTATTG
rpl-31	GTAATCCAGTCAAGTCGCGA	CTCGAAAATCAAAACCTTT
rpl-32	GTAAAATGGTGCACGTTCC	CGTTTCAAAACAAGTTA
rpl-34	ATGTCCTCCCGCGTTACCTA	GTGGCTCGATTAAACTAG
rpl-36	GTAAAATGGTCAACGTGCCA	AACAACATGGTCTTTATAA
rpl-38	CAGGTAATCCACCATGCGA	GATAAGACAGGGATGTAACG
rpl-39	CAGGTAATGTCTGCCTGAA	GAAAATTGAACAACAGATAA
rpl-41.1	CCTTCAATGAATACTGCAAC	CTTAACCAGAATCTGGACG
rpl-41.2	AACGCTACGCGAACATCGATGA	CATTGTAACAGATGGAGTAG
rpl-42	TCGTTAAACTTACAAATCG	CACAAGTACCATTTATTCAA
fib-1	CTCATACGGCTCCAGGGTTA	TATCGTTTGATGGCGAACAA
nucl-1	TGCAGCTTGAGCGTCTTCTA	CTGGAGTTTAGCGACAGGC

Table S5. Sequence of repair plasmids primers used in ectopic transgenic strains construction

Strains	Primer name	Sequence
Shg2287	mCherry-F	GGAGGTGGAGGTGGAGCTATGGTCTCAAAGGGTGAAGAAGA
	mCherry-F	CTTATACAATTCCATCCATGC
	vector-F	TATCTGGATCCACGAAGCTT
	vector-R	TCCTGCAGGAATTCCCTCGAG
Shg2287	Promoter & CDS-F	CTCGAGGAATTCCCTGCAGGAGTCATGAATTGACAGCTC
Shg2287	Promoter & CDS-R	TAGCTCCACCTCCACCTCCGACCTCTTCCCTTGACTGG
Shg2287	UTR-F	GCATGGATGAATTGTATAAGTAAGTCTTATAATTTCATTG
Shg2287	UTR-R	AAGCTTGTGGATCCAGATAACAGGTGGTGCCTCATTCTT
Shg2285	Promoter & CDS-F	CTCGAGGAATTCCCTGCAGGACCCATCTTACTGCTGAGCTG
Shg2285	Promoter & CDS-R	ATAGCTCCACCTCCACCTCCGACCATTTCGGAGAACGTTGTT
Shg2285	UTR-F	GCATGGATGAATTGTATAAGTAAGTCTTATAATTTCATTG
Shg2285	UTR-R	AAGCTTGTGGATCCAGATAACAGGTGGTGCCTCATTCTT
Shg2286	Promoter & CDS-F	CTCGAGGAATTCCCTGCAGGAGAACATGGCGACACATGCAAGC
Shg2286	Promoter & CDS-R	ATAGCTCCACCTCCACCTCCAACCCTTCTTCTTTTCAGCAC
Shg2286	UTR-F	GCATGGATGAATTGTATAAGTAGGATTTGTTGATTGTTCGT
Shg2286	UTR-R	AAGCTTGTGGATCCAGATAACCCAATTGTGTACTCTCTAGAA

Table S6. Sequence of repair plasmids primers used in in-situ transgenic strains construction

Strains	Primer name	Sequence
	vector-F	CACACGTGCTGGCGTTACCC
	vector-R	TGTGAAATTGTTATCCGCTGG
3xFLAG::GFP-F		GACTACAAAGACCATGACGG
3xFLAG::GFP-R		AGCTCCACCTCCACCTCCTTG
GFP:: 3xFLAG-F		GGAGGTGGAGGTGGAGCTATGAGTAAAGG
GFP:: 3xFLAG-R		CTTGTACCGTCATCCTGTAATCG
mCherry-F		GGAGGTGGAGGTGGAGCTATGGTCTCAAAGGGTGAAGAAG
mCherry-R		GTTGAGCTTGTGCCCGAGC
tagRFP-F		GGAGGTGGAGGTGGAGCTATGGTCTCAAGGGAGAAGAACTGA
tagRFP-R		GTTGAGCTTGTGCCCGAGC
shg1890	left arm-F	GGGTAACGCCAGCACGTGTGCTGCCATTAGATATCAGCCAC
shg1890	left arm-R	CCGTCATGGTCTTGAGTCCTGGTACGCCATTCAATTCTG
shg1890	right arm-F	AAGGAGGTGGAGGTGGAGCTATGGCTCGTACCAAGCAAACC
shg1890	right arm-R	CAGCGGATAACAATTTCACAGTTGATGTTCTGACAACGTGAG
shg2289	left arm-F	GGGTAACGCCAGCACGTGTGCAGGACACACTTCACATGAC
shg2289	left arm-R	ATAGCTCCACCTCCACCTCCTTCGGTGGCTTCAAC
shg2289	right arm-F	ACAAGGATGACGATGACAAGTAGATGGAAAATTCAAATTGGCCC
shg2289	right arm-R	CAGCGGATAACAATTTCACACAGTGTGTGCTGGAAATTCTG
shg2141	left arm-F	GTTGGGTAACGCCAGCACGTGTGCAATCGTAAGTCGTTATGG
shg2141	left arm-R	AGCTCCACCTCCACCTCCATGAGCAAACGCTCTGCTGGAAC
shg2141	right arm-F	TAATAACTGTTCTATCGACATCTCAGTATGCTTAGTTCTC
shg2141	right arm-R	CCAGCGGATAACAATTTCACAGACCATCTTCTATATTCC
shg1889	left arm-F	GGGTAACGCCAGCACGTGTGGTGTCCAGATCTTAC
shg1889	left arm-R	TCTCTCCCTGGACACCATAGCGATCAGGGTACCCCTAA
shg1889	right arm-F	GGAGGTGGAGGTGGAGCTATGAGTCCGACTTGTATGC
shg1889	right arm-R	CAGCGGATAACAATTTCACAACACAGGCTTGGAGTAGG
shg2288	left arm-F	GGGTAACGCCAGCACGTGTGCAGGACACACTTCACATGAC
shg2288	left arm-R	ATAGCTCCACCTCCACCTCCTGAATTGGATCATAAAGTCGGCG
shg2288	right arm-F	ACAAGGATGACGATGACAAGTAAGATTTCGGTTTTGGGC
shg2288	right arm-R	CAGCGGATAACAATTTCACAGCACAAATTACACCGAATGG
shg2160	left arm-F	GGGTAACGCCAGCACGTGTGTCGAGCATATGCAGGAA
shg2160	left arm-R	CCGTCATGGTCTTGAGTCCTCATCATCATCCATATTAA
shg2160	right arm-F	AAGGAGGTGGAGGTGGAGCTATGGATGATGAGCAGAA
shg2160	right arm-R	CAGCGGATAACAATTTCACAGAACATTTCAGCAGACAGTC
shg1696	left arm-F	GGGTAACGCCAGCACGTGTGCGAACTCTGCATACACTAGTTTG
shg1696	left arm-R	ATAGCTCCACCTCCACCTCAAGTTCTGATTGTTCTGAGTAGAG
shg1696	right arm-F	TCGGGCACAAGCTCAACTAAAAATTAAATTTTTTGTTTAATTAAAT
shg1696	right arm-R	CAGCGGATAACAATTTCACACTCCTCATCAACAAACAATATCGG

Table S7. Sequences of sgRNAs for CRISPR/Cas9-mediated gene editing.

name	sequence
his-71 sgRNA#1	CAAGATTCCATATTCACTGG
his-71 sgRNA#2	TTTACTTTCTAATTTCAACA
his-71 sgRNA#3	GGTACGAGCCATTCAATT
emb-4 sgRNA#1	TCTTCAACTGCTGGAGCTCC
emb-4 sgRNA#2	GCTGAATTTCATCTATT
emb-4 sgRNA#3	AGAGCCACCACCGAAATAGA
dao-5 sgRNA#1	GTCGGAACTCATAGCGATCA
dao-5 sgRNA#2	GTTGCAGATAACAATCGTGG
dao-5 sgRNA#3	GCGCGTGGTTGTCGAATGG
ama-1 sgRNA#1	AATTCAACAATTAGAGG
ama-1 sgRNA#2	TATGAATTGGATCATAAGT
ama-1 sgRNA#3	GGAGAGAAATCTCAAATCAG
gtf-2H2C sgRNA#1	TCAAGGTGAAAAGTATTACT
gtf-2H2C sgRNA#2	ATGAGCAGAAGGGTTACACC
gtf-2H2C sgRNA#3	TAATAAAAGCCACTTCCAGA
taf-12 sgRNA#1	GAAGGAAAAGTTGTTCAA
taf-12 sgRNA#2	GCACAATTGGGTCTCAAA
taf-12 sgRNA#3	AACGGAAGCACACAAGCAAC
nxf-1 sgRNA#1	TAATGAGCAAACGCTCTGC
nxf-1 sgRNA#2	TATTCGTTGAACTTCTGAC
nxf-1 sgRNA#3	AATGTCTTGCAGACTGCGCT
nucl-1 sgRNA#1	GGCAGTGGCTTCACCCACG
nucl-1 sgRNA#2	CGTTCATCAAGCGGATTCCG
nucl-1 sgRNA#3	GATAGAGGACGTTCTCAGG
nucl-1 sgRNA#4	AGAGGAAACTTCCAATCTCG
nucl-1 sgRNA#5	GAGGTGGCGTCAAGTGATGA
nucl-1 sgRNA#6	GTCAAGTGATGAAGGAATT

Table S8. Sequence of cRT-PCR and qPCR primers

Name	Sequence (5' to 3')
5.8s PCR F	AATTGCAGACGCTTAGAGTGG
5.8s RT/5.8s PCR R	CGTGGTAAGTAACGCAGCAAG
26s RT R	CACCTATACGCCACATTGAGAAGC
26s PCR R	GAGTCAGGTTGAGATTAGCAAGACA
26s PCR F	GGCGTCGTAGTGAATTCTGCG
26s PCR R1	CGTTTCACTGCCGTTACTAAGG
27SA2-R	CTCAACAAACAAATCACCGCATG
27SA2-F	CAGATCAATGGTCTGAAGCTACC
18s RT	GTATAGTTGCATGTATTAGCTCCAG
18S PCR R1	CTGCTCTAATGAGCCGTACGC
18S PCR F1	GGTATTGTAATTATTGCCCTTAAACG
18S PCR F2	GACTTCGTTGTTGCGGAAACC
18s PCR R	CAATCAGGTATTACCGCAGACAT
ITS1 PCR F	CATGGAACGTGGCAGTTATT
27-qRT-F1	GGTGTGTTGTTTCAGTAGAGCAG
27-qRT-R	CTTTTGGCAATCAGTGTACTGATTC