

1
2 **Integration of spatially opposing cues by a single interneuron guides**
3 **decision making in *C. elegans***

4
5
6
7 Asaf Gat^{1,2}, Vladyslava Pechuk^{1,2}, Sonu Peedikayil-Kurien^{1,2}, Gal Goldman¹, Jazz Lubliner²,
8 Shadi Karimi³, Michael Krieg³ and Meital Oren-Suissa^{1,2,*}

9 1. Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel

10 2. Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel

11 3. Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciencies Fot'oniques,
12 Spain

13 *Correspondence: meital.oren@weizmann.ac.il

14

15 **ABSTRACT**

16 The capacity of animals to integrate and respond to multiple hazardous stimuli in the surroundings
17 is crucial for their survival. In mammals, complex evaluations of the environment require large
18 numbers and different subtypes of neurons. The nematode *C. elegans* avoid hazardous chemicals
19 they encounter by reversing their direction of movement. How does the worms' compact nervous
20 system processes the spatial information and directs the change of motion? We show here that a
21 single interneuron, AVA, receives glutamatergic excitatory signals from head sensory neurons and
22 glutamatergic inhibitory signals from the tail sensory neurons. AVA integrates the spatially distinct
23 and opposing cues, whose output instructs the animal's behavioral decision. We further find that
24 the differential activation of AVA from the head and tail stems from distinct anatomical
25 localization of inhibitory and excitatory glutamate-gated receptors along the AVA process, and
26 from different threshold sensitivities of the sensory neurons to aversive stimuli. Our results thus
27 uncover a cellular mechanism that mediates spatial computation of nociceptive cues for efficient
28 decision-making in *C. elegans*.

29

30 **INTRODUCTION**

31 Animals sense their surroundings by integrating multiple sensory cues and then translating them
32 into motor actions. Smell, vision, touch, and proprioception all require that the animal detect,
33 recognize, make a decision and respond to multiple sources of sensory information. The decision
34 making is dependent on the prior processing of the perceived environmental cues¹⁻⁴. For example,
35 in the case of locomotion-related decisions, such as navigation, determining the spatial orientation
36 is crucial for avoiding hazards or approaching a mating partner⁵⁻⁷. The computation of spatial
37 sensorimotor information relies on the capacity of interneurons to integrate sensory inputs from

38 multiple spatially distinct sources^{1,5}. This type of integration can enhance the salience of stimuli
39 and hasten behavioral responses¹. Conceptually, spatial decision-making should be governed by a
40 mechanism that can perform the necessary complex comparison and computation of spatially
41 distinct inputs in order to determine the optimal behavioral output⁸. Previous studies confirmed
42 that the integration of spatial information in mammals is encoded at the neural population level
43 within specific brain structures, such as the superior colliculus^{9,10}. However, can a single neuron
44 integrate and execute spatial decision making? What are the molecular pathways, synaptic
45 properties and neuronal activity patterns that mediate this process?

46 *C. elegans* exhibits a diverse repertoire of orientation behaviors to locate food, mates and preferred
47 habitats¹¹. In the wild, it thrives in complex moist and liquiform environments such as soil and
48 rotten fruits¹². These surroundings present challenges and require quick, energy-efficient decisions
49 to survive and compete for food or mating partners. *C. elegans* belongs to the animal class
50 *Secernentea*, whose members feature sensilla (i.e., sensory apparatuses) in their anterior (head)
51 and posterior (tail) sides (amphids and phasmids, respectively)¹³⁻¹⁷. One cell-type associated with
52 the amphids are the ASH neurons, which are polymodal nociceptive neurons that can detect a wide
53 range of aversive stimuli¹⁸. ASHs play key roles in stimulus-evoked backward locomotion, mostly
54 referred to as escape behavior^{19,20} (Figure 1A). The phasmids feature the ciliated sensory neurons
55 PHA and PHB, located in the tail's sensory organs; these neurons have been shown to act as
56 polymodal sensory neurons that sense harmful chemicals, hyperosmotic solutions and mechanical
57 stimulation²¹ (Figure 1A). These head and tail neurons share many similarities, such as neuronal
58 activity patterns and polymodality for noxious cues^{21,22}. While ablation of ASH neurons causes a
59 significant reduction in avoidance responses, following the additional ablation of PHA and PHB,
60 the behavioral response returns to normal¹⁹. This finding strongly suggests that PHA and PHB

61 negatively modulate the escape response. However, the mechanism underlying such modulation
62 has yet to be elucidated.

63 Electron microscopy reconstructions of the nervous system of *C. elegans* indicate that only two
64 neurons are innervated by both ASH and PHB – interneurons AVA and AVD^{23,24} – implying that
65 they may be hubs of spatial information computation. Both AVA and AVD mediate the initiation
66 of backward locomotion (reversal behavior), with AVA shown to play the major role^{25,26}. AVA
67 is active during reversals and in response to signaling from ASH^{27,28}. The glutamatergic identities
68 of ASH and PHB suggest that AVA receives simultaneous excitatory and inhibitory glutamate-
69 mediated inputs from these spatially distinct neurons (Figure 1A)^{27,29}. Nevertheless, how AVA
70 computes spatial information, integrates the signals and produces beneficial behaviors remains
71 unknown.

72 While glutamate neurotransmission activates AVA through different types of AMPA- and NMDA-
73 like receptors, glutamate-gated chloride channels (GluCls) have been suggested to mediate weak
74 inhibitory currents^{30,31}. Such integration of excitatory and inhibitory signals in single neurons is
75 associated with sensorimotor circuits that are responsible for computation of multisensory
76 cues^{32,33}. In *C. elegans*, different GluCls are active in specific neurons and modify various
77 behaviors such as ivermectin sensitivity, salt chemotaxis, thermotaxis and spontaneous reversal
78 rate³⁴⁻³⁷.

79 Here, we demonstrate that the architecture of a neuronal circuit can serve as the infrastructure for
80 sensing and integrating multidimensional information, such as the location and concentration of
81 stimuli in the environment. We show that activation of tail sensory neurons suppresses *C. elegans*'s
82 avoidance behavior induced by head sensory neuron activation. By recording the neuronal activity
83 of ASH, PHA, PHB and AVA following exposure of the head or tail to noxious stimulus, we reveal

84 that while head stimulations result in both ASH and AVA activation, tail stimulations elicit
85 activation in PHA and PHB but inhibition in AVA, in a concentration-dependent manner. We
86 examined AVA's response to stimulus under mutant glutamate receptor backgrounds and found
87 that head-evoked excitation in AVA depends on the excitatory GLR-1 and NMR-1. In contrast,
88 tail-evoked inhibition requires the inhibitory AVR-14, specifically in AVA. The imaging of GFP-
89 tagged receptors revealed a spatially partitioned localization of the excitatory and inhibitory
90 channels along the AVA process. Finally, using behavioral assays and optogenetics to analyze
91 stimulus-evoked reversal rates in mutant backgrounds, we found that GLR-1/NMR-1-mediated
92 neurotransmission is crucial for normal avoidance responses, and that AVR-14 suppresses the
93 reversal rate in an AVA-specific manner. Taken together, our findings describe the neuronal and
94 molecular mechanisms that converge onto a single interneuron, which then relays the decision
95 whether or not to initiate an avoidance behavior.

96

97 **RESULTS**

98 **Antagonistic functions of head and tail signaling**

99 Previous work indicated that ASH is the main nociceptive neuron, functioning through a compact
100 circuit that controls nociceptive behaviors^{19,28} (Figure 1A). Using a computational model we
101 previously developed, we predicted which connections in the circuit could be inhibitory²⁸. To do
102 so, we added PHA and PHB to our previous circuit simulation and tested all the combinations of
103 excitatory and inhibitory connections, such that each connection can be either inhibitory or
104 excitatory (see Methods section for details). Our model predicted that most connections can be
105 either excitatory or inhibitory and still maintain the proper function of the network (Figure 1B).
106 However, few connections had a much higher tendency for a certain polarity: ASH>AVA was

107 almost exclusively excitatory, whereas PHB>AVA and ASH>AVB almost exclusively inhibitory.

108 Thus, our model is able to predict behavioral outcomes of the integration of excitatory and

109 inhibitory connections.

110 To examine whether PHB>AVA is indeed inhibitory and, more broadly, determine the

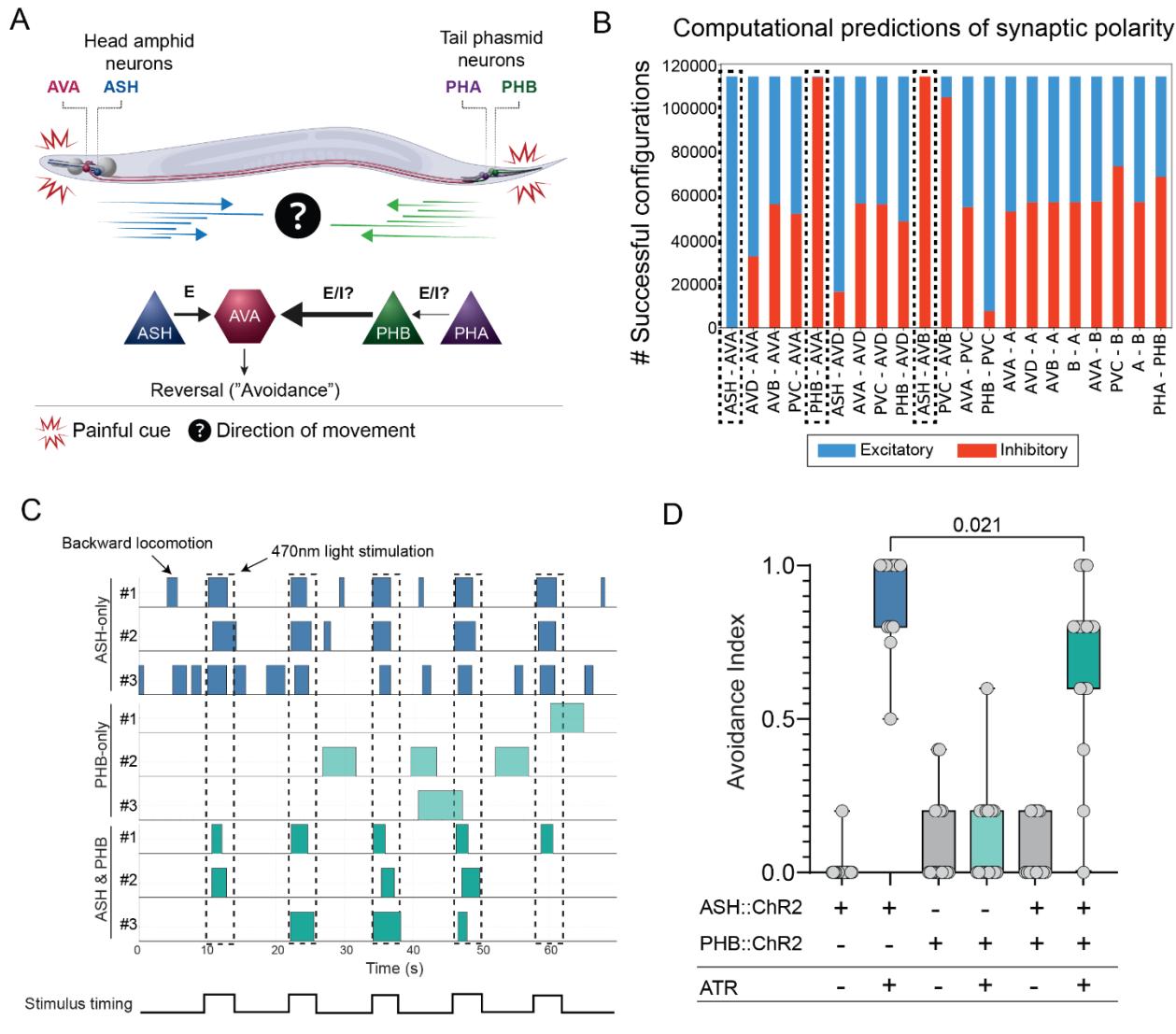
111 contribution of specific sensory neurons in the circuit to avoidance behavior in freely moving

112 animals, we utilized an optogenetic approach. We photostimulated ASH, PHB or both

113 simultaneously in transgenic animals expressing Channelrhodopsin-2 (ChR2) under cell-specific

114 drivers, and then analyzed their avoidance behavior. While ASH-specific photo-activation induced

115 strong avoidance responses, as previously reported^{28,38}, PHB-specific stimulation did not evoke


116 any avoidance behavior (Figure 1C-D). However, the combined activation of both ASH and PHB

117 elicited a significantly reduced avoidance response (Figure 1C-D). Since AVA is the main

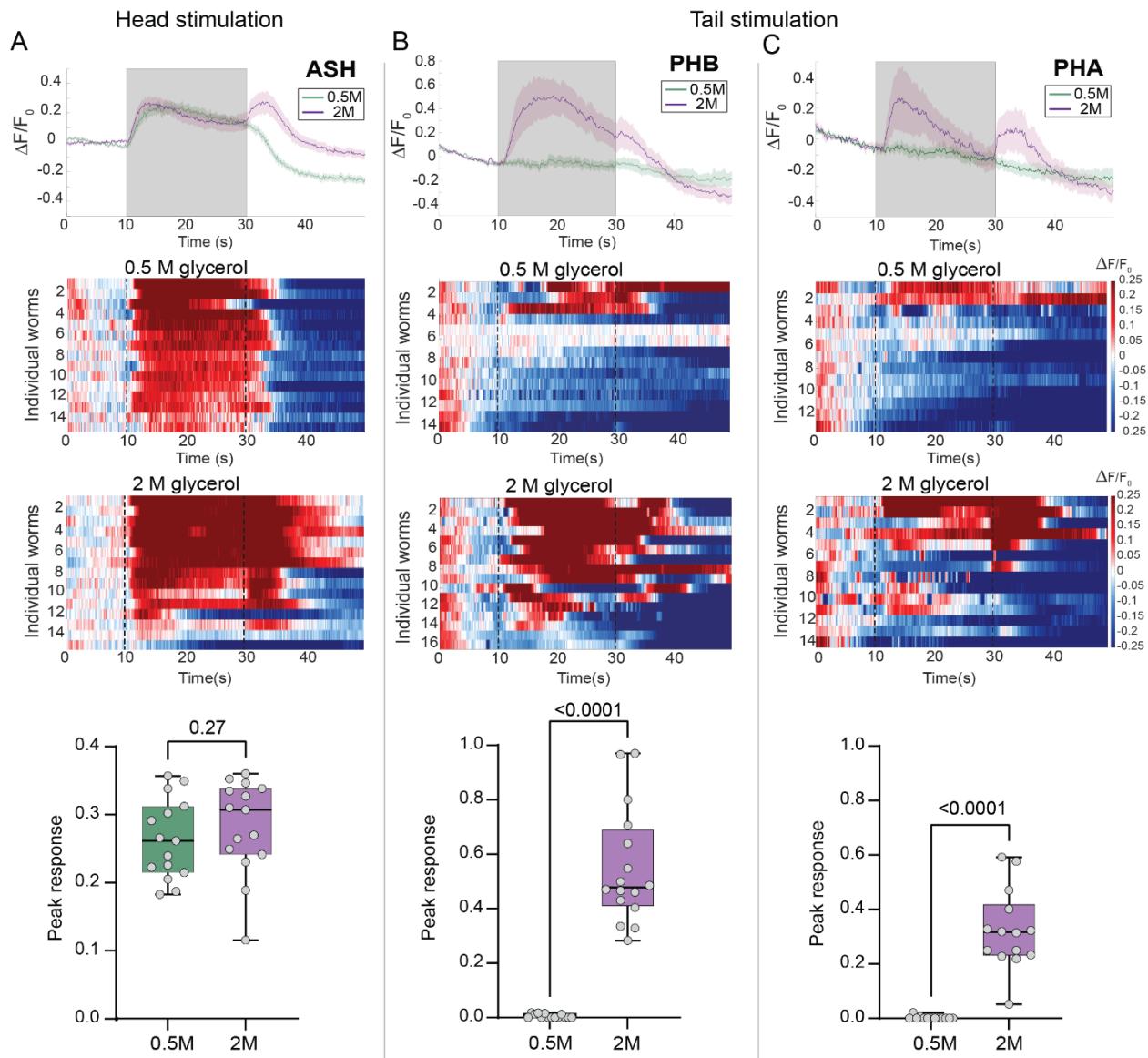
118 backward command interneuron connected to ASH and PHB, these results suggest that the

119 PHB>AVA synapse is inhibitory and attenuates the avoidance response initiated by an excitatory

120 input from the ASH>AVA synapse.

121 **Figure 1. Head and tail stimulations result in antagonistic behaviors**

122


123

124 (A) Schematic illustration of the application of a painful stimulus to the head and tail of *C. elegans*.
125 Arrows depict backward locomotion following head stimulation (blue) and forward locomotion
126 following tail stimulation (green). E, excitation; I, inhibition. (B) Computational predictions of
127 synaptic polarity in the circuit for nociceptive behaviors. All the combinations of synaptic polarity
128 were tested and defined as successful based on several conditions (see Methods), including the
129 suppression of backward locomotion by the activation of tail sensory neurons (PHA, PHB). Most
130 synapses can be either excitatory (blue) or inhibitory (red), whereas only three connections were
131 strictly excitatory (ASH>AVA) or inhibitory (PHB>AVA, ASH>AVB) across over 99% of
132 successful configurations (dashed-line boxes). See Methods for a full description of the model. (C)
133 Representative avoidance responses of individual worms to five consecutive optogenetic
134 activations (blue-light stimuli, dashed lines). *ASHp::ChR2* (ASH-only), *PHBp::ChR2* (PHB-only),

135 *ASHp::ChR2;PHBp::ChR2* (ASH & PHB). Plotted boxes represent reversal events. (D) The
136 avoidance index for sensory neuron activation. Evoked reversal responses to ASH stimulation are
137 suppressed by the simultaneous stimulation of the PHB neuron. The avoidance index was
138 calculated as the fraction of reversal responses from a total of five stimulations of each individual.
139 n=13–20. In D, we performed Mann-Whitney test.
140

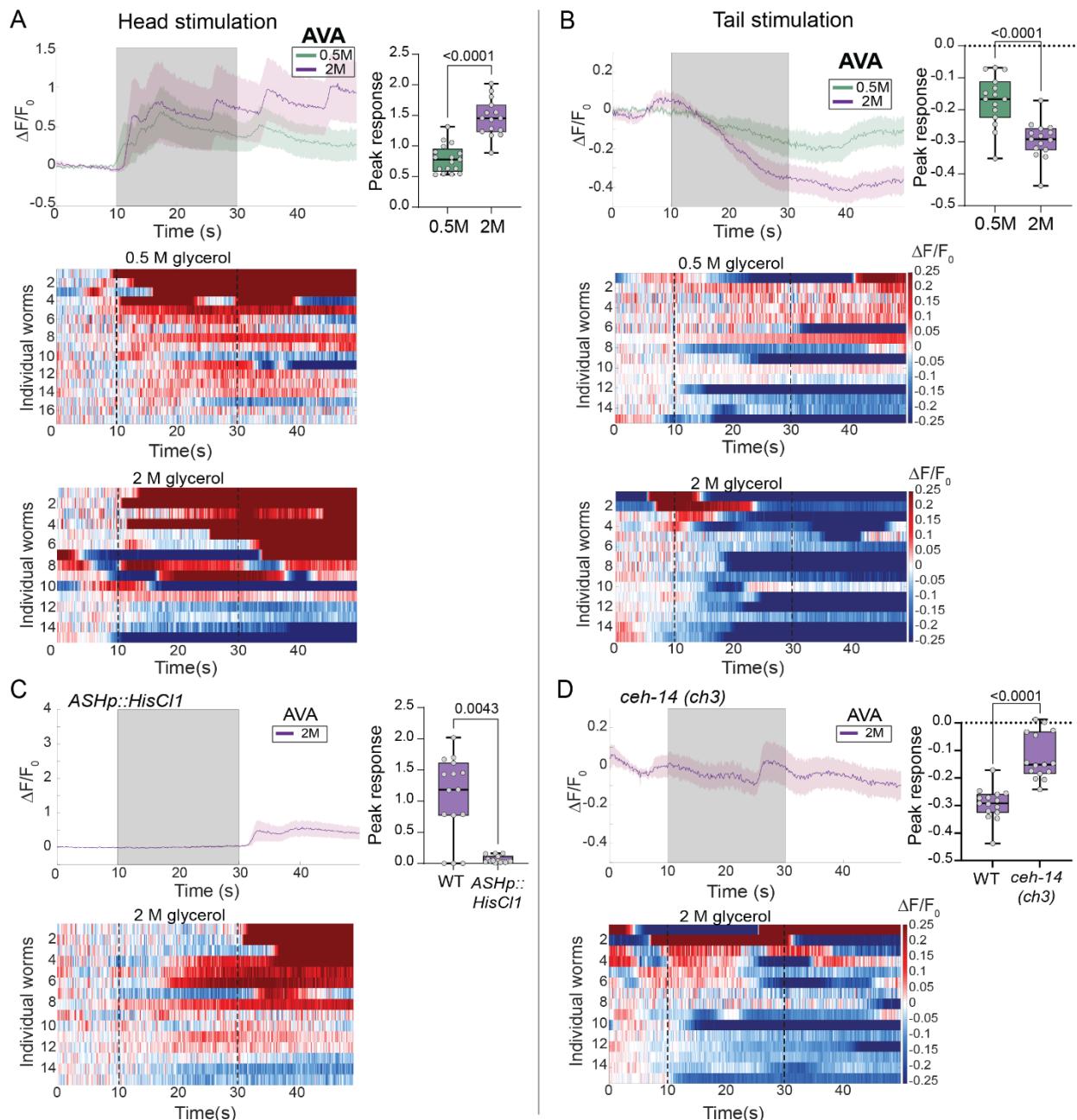
141 **Head or tail exposure to a nociceptive cue induces distinct activity patterns**

142 The sensory neurons ASH, PHB and PHA become active when their cilia are exposed to a variety
143 of aversive chemicals^{21,22,28,38,39}. Although the chemical selectivity of the neurons is well
144 established, their sensitivity to different concentrations of chemicals has not been defined, despite
145 evidence of dose-dependent behavioral responses to some aversive cues²⁸. To compare the
146 sensitivity of the sensory neurons, we recorded the calcium level changes in ASH ('head'), and
147 PHB and PHA ('tail'), following exposure to the osmotic stressor glycerol at two different
148 concentrations (0.5 M and 2 M). We used the 'olfactory chip'⁴⁰, a microfluidic device, to image
149 GCaMP6s-expressing animals with either their head or tail exposed to the stimulus. ASH was
150 activated following head exposure to both glycerol concentrations (Figure 2A). However, in both
151 PHA and PHB, tail exposure to glycerol induced calcium activity only in response to the higher
152 concentration (Fig. 2B, C). Furthermore, ASH and PHA showed an additional OFF response upon
153 stimulus removal (Fig. 2A, C). Thus, head ASH and tail PHA and PHB sensory neurons show
154 distinct activity patterns and activation thresholds.

156 Figure 2. Head or tail exposure to a nociceptive cue induces diverse activity patterns of
157 sensory neurons.

158 (A-C) Calcium traces in the ASH sensory neuron (A) and PHB and PHA neurons (B-C) following
159 head and tail stimulation, respectively, with 0.5 M or 2 M glycerol. Top, average and SEM traces
160 of calcium responses to 0.5 M glycerol (green) and 2 M glycerol (purple). Gray background
161 indicates the time of stimulus delivery. Middle, normalized, color-coded GCaMP6s calcium
162 responses of individual animals exposed to each concentration. Heatmaps represent the calcium
163 levels in individual worms. The stimulus was applied at 10–30 s. Bottom, quantification of peak
164 responses (see Methods). In A-C, we performed Mann-Whitney tests. n=13–16 animals per group.

165


166

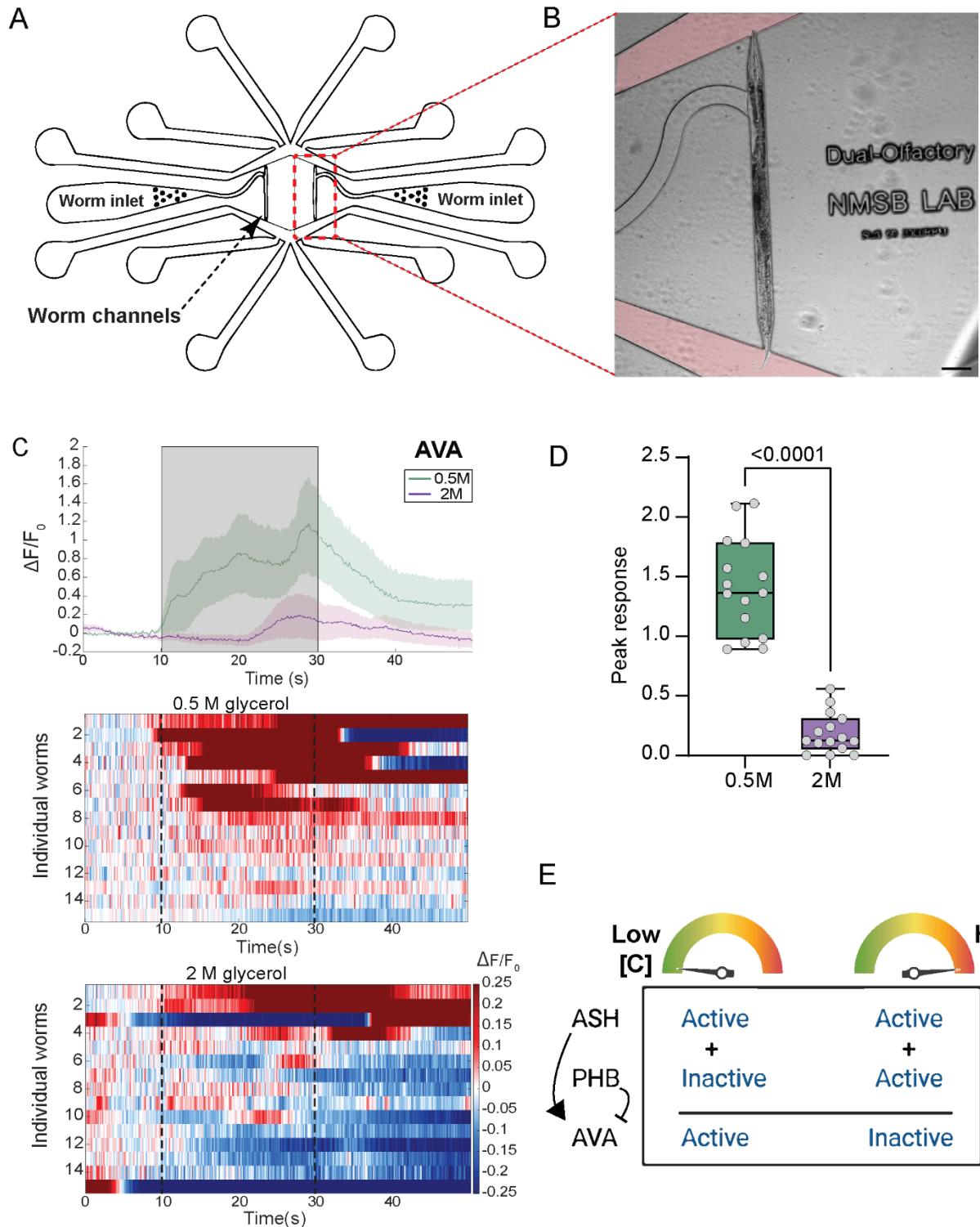
167 **AVA interneuron is activated by head stimulation and inhibited by tail stimulation**

168 Given that AVA is innervated by the sensory neurons, this neuron may be equipped with a
169 mechanism for analyzing the location and concentration of stimuli it receives. For this reason, we
170 next turned to identify the mechanism by which AVA simultaneously integrates spatially
171 conflicting neuronal signals that represent different threshold sensitivities.

172 Although it was previously shown that AVA becomes activated following chemical head
173 stimulation²⁸, its activity patterns following tail stimulation have not been reported so far. We,
174 therefore, assessed the changes in calcium levels in AVA in response to head or tail stimulation
175 with high and low glycerol concentrations. Whereas stimulating the head with both tested
176 concentrations induced activity in AVA (Figure 3A), only the application of the high concentration
177 in the tail induced inhibition in AVA (Figure 3B).

178 To test whether the head and tail sensory neurons are essential for AVA activation, we measured
179 the neuronal activity following strong stimulation (2M glycerol) in animals with impaired head or
180 tail sensory neurons. We silenced ASH using cell-specific expression of the inhibitory *Drosophila*
181 histamine-gated chloride channel (HisCl1)⁴¹, and analyzed mutants of the *ceh-14/Lhx3* LIM
182 homeobox gene, in which glutamate transmission from PHA and PHB is defective²⁹. We found
183 that ASH-silenced animals show significantly weaker activation in AVA following head
184 stimulation in comparison to wildtype animals (Figure 3C). In contrast, *ceh-14* animals showed no
185 inhibition following tail stimulation (Figure 3D). Taken together, our data show that the head and
186 tail sensory neurons mediate excitatory and inhibitory currents in AVA, respectively, in response
187 to noxious stimuli.

188


189 **Figure 3. AVA interneuron is activated following head exposure and inhibited following tail**
190 **exposure to nociceptive stimuli**

191 (A-B) GCaMP6s calcium responses in AVA following head (A) or tail (B) stimulation with 0.5 M
192 or 2 M glycerol. Top, average and SEM traces, and quantification of peak responses. Bottom,
193 heatmaps of the normalized calcium levels (color-coded) of individual animals. Stimulus was
194 applied at 10–30 s. (C) AVA calcium responses in ASH-silenced animals following head
195 stimulation with 0.5 M or 2 M glycerol (see Methods). Top, average and SEM traces, and
196 quantification of peak responses. Bottom, heatmaps of the normalized calcium levels (color-coded)
197 of individual animals. (D) AVA calcium responses in *ceh-14* mutant animals following tail
198 stimulation with 0.5 M or 2 M glycerol. Top, average and SEM traces, and quantification of peak

199 responses. Bottom, heatmaps of the normalized calcium levels (color-coded) of individual animals.
200 n=15 animals per group. In A-D, we performed Mann-Whitney tests.

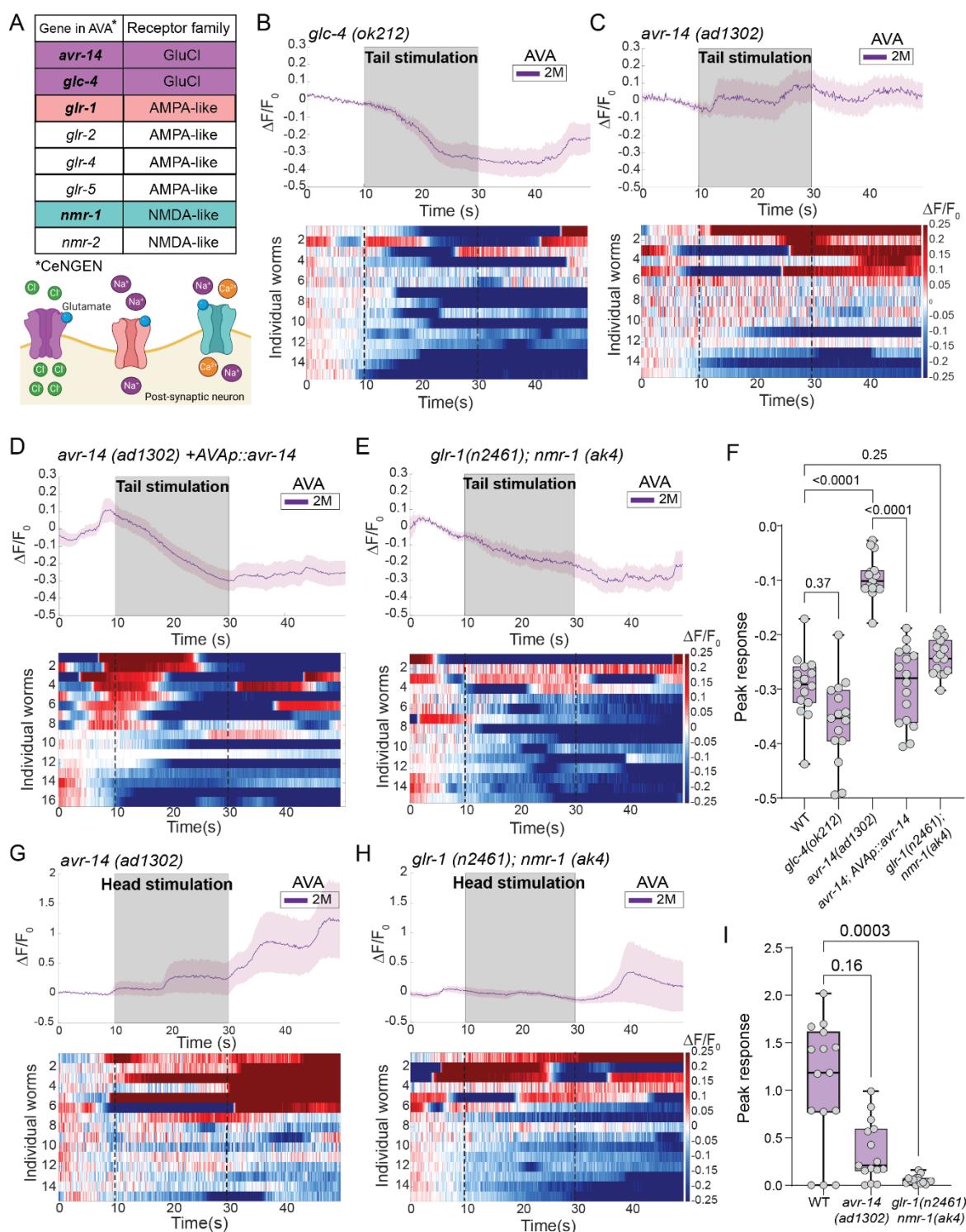
201
202 **Simultaneous head and tail stimulation evoke AVA activity in a concentration-dependent**
203 **manner**

204 In the natural environment of the worm, both its head and tail are exposed to stimuli. Therefore,
205 to decipher the neuronal activity dynamics in AVA in a more naturalistic environment, we
206 designed and fabricated a new microfluidic device, the ‘dual olfactory chip’, which allowed us to
207 stably position worms with both their head and tail exposed to a buffer flow (Figure 4A-B, see
208 Methods). We then used this chip to visualize AVA calcium currents following simultaneous
209 chemical stimulation of the head and tail. Remarkably, concurrent head and tail stimulation of
210 AVA induced a distinct activation pattern (Figure 4C-D) that differed from that induced by either
211 head or tail stimulation alone (Figure 3): AVA became active only following low-concentration
212 chemical stimulation. This finding implies that such a stimulus suffices to induce activity in AVA
213 but not to pass the tail-activation threshold needed to induce its inhibition. Thus, tail sensation
214 antagonizes head-induced activity at the interneuron level, which leads to the production of an
215 integrated dosage-dependent response to an aversive cue (Figure 4E).

217 **Figure 4: Simultaneous head and tail exposure to nociceptive stimuli reveals a concentration-
218 dependent activity pattern in AVA.**

219 (A) Schematics of the 'dual olfactory chip'. Worms are inserted to the chip through the worm inlet
220 and trapped in the worm channel (dashed-line box). The buffer and stimulus flow into the chip

221 through 8 inlets (4 inlets at the top and 4 at the bottom). The stimulus flow direction is controlled
222 using a manual valve. The fluid flows out of the chip through 4 outlets (see Methods for full
223 details). (B) Representative image of a worm trapped in the worm channel of the ‘dual olfactory
224 chip’. Red dye, stimulus flow. Scale bar, 100 μ m. (C) Calcium traces in AVA following the
225 simultaneous stimulation of the head and tail with 0.5 M (green) or 2 M (purple) glycerol. Top,
226 average and SEM traces. Bottom, heatmaps of the normalized calcium levels (color-coded) of
227 individual animals. Stimulus was applied at 10–30 s. (D) Quantification of peak responses. n=15
228 animals per group. We performed a Mann-Whitney test. (E) Schematic model describing how the
229 different activation thresholds of the sensory neurons in the head (ASH) and tail (PHB) can affect
230 the activity pattern of downstream interneuron AVA. The computation of concentration-
231 independent excitation from the head and concentration-dependent inhibition from the tail results
232 in either the activation or inactivation of AVA, probably affecting behavioral responses to aversive
233 cues.


234

235 **Distinct excitatory and inhibitory glutamate-gated receptors mediate AVA activity**

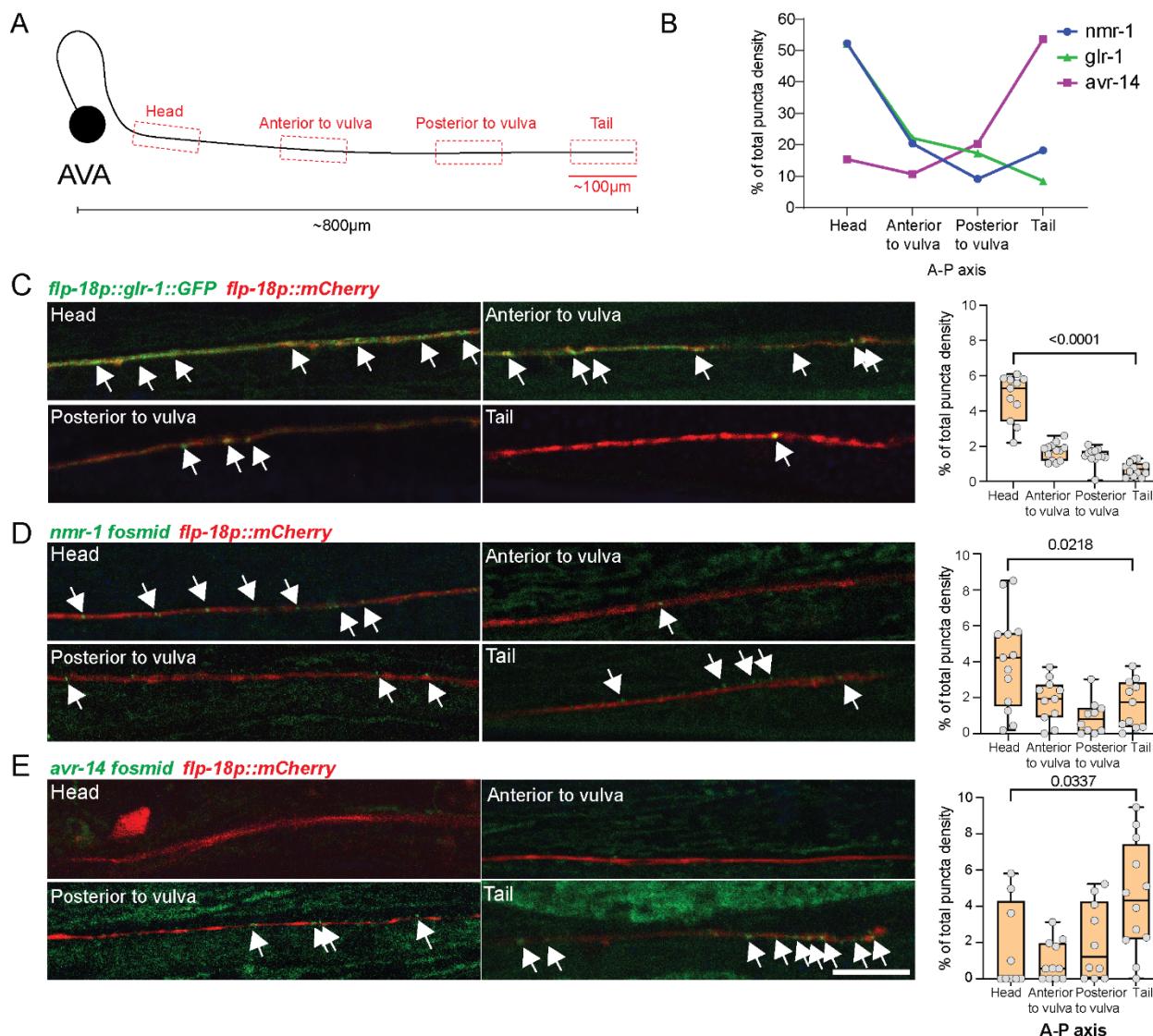
236 Since glutamatergic signals from PHB to AVA are required for AVA inhibition following tail
237 stimulation, we sought to identify the glutamate receptors expressed in AVA that can mediate these
238 inhibitory currents. Two *inhibitory* glutamate-gated chloride channels (GluCls) have been reported
239 to be expressed in AVA: AVR-14 and GLC-4^{31,34,36,42,43}(Figure 5A). We analyzed the calcium
240 levels in AVA following tail stimulation in *avr-14* and *glc-4* mutant animals, and found that while
241 AVA inhibitory currents remained intact in *glc-4* mutants, they were completely abolished in *avr-*
242 *14* mutants (Figure 5B,C,F). In contrast, head stimulation of *avr-14*_mutants did not alter AVA
243 activity (Figure 5G,I). Expressing AVR-14 specifically in AVA under an *avr-14* mutant
244 background sufficed to rescue AVA inhibition following tail stimulation (Figure 5D,F). Thus, *avr-*
245 *14* is required specifically in AVA to mediate inhibitory currents following tail stimulation.

246 Although various *excitatory* glutamate receptors are expressed in AVA (Figure 5A)⁴³, we focused
247 on the GLR-1 AMPA-like and NMR-1 NMDA-like receptors, as they were shown to play a key
248 role in AVA-evoked excitatory currents^{27,31,44}. We analyzed neuronal activity in the AVA of *glr-*
249 *1;nmr-1* double mutants following head or tail high-concentration stimulation. While these double

250 mutants showed almost no AVA activation following head stimulation, AVA inhibition following
 251 tail stimulation was intact (Figure 5E,F,H,I). Taken together, our data might indicate that AVR-
 252 14, GLR-1 and NMR-1 are unevenly localized post-synaptically along the AVA process.

253

254 **Figure 5. Various excitatory and inhibitory glutamate-gated receptors control activity**
255 **dynamics in AVA**


256 (A) Top, glutamate receptors encoding genes predicted to be expressed in AVA⁴³ and their
257 families. The two types of GluCl inhibitory receptors, *glc-4* and *avr-14* (purple), the AMPA-like
258 *glr-1* (red) and the NMDA-like *nmr-1* (turquoise) excitatory receptors, were selected to study
259 neuronal activity dynamics in AVA upon head or tail stimulation. Bottom, schematic illustration
260 of the various types of glutamate receptors and their excitation/inhibition conductance
261 mechanisms. (B-E) AVA calcium responses following tail stimulation with 2 M glycerol in *glc-4*
262 mutants (B), *avr-14* mutants (C), *avr-14* mutants expressing *avr-14* specifically in AVA (D), and
263 *glr-1*, *nmr-1* double mutants (E). Top, average and SEM traces. Bottom, heatmaps of the
264 normalized calcium levels (color-coded) in individual animals. Stimulus was applied at 10–30 s.
265 (F) Quantification of peak responses. (G-H) AVA calcium responses following head stimulation
266 with 2 M glycerol in *avr-14* mutants (G) and *glr-1*, *nmr-1* double mutants (H). Top, average and
267 SEM traces. Bottom, heatmaps of the normalized calcium levels (color-coded) in individual
268 animals. Stimulus was applied at 10–30 s. (I) Quantification of peak responses. n=15–16 animals
269 per group. In F, we performed Kruskal-Wallis test followed by a Dunn's multiple comparison
270 analysis.

271

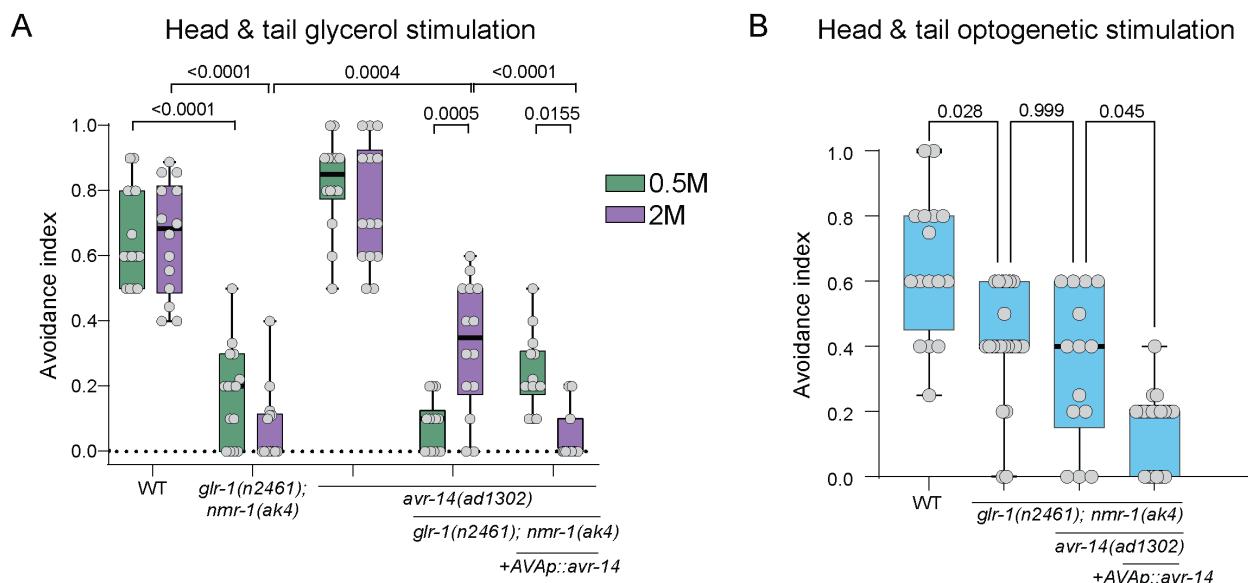
272 **Differential localization of distinct glutamate receptors along the AVA process**

273 Previous work has shown that differential cellular localization of distinct types of glutamate
274 receptors can mediate the integration of excitatory and inhibitory currents, to fine tune
275 behavior^{37,45,46}. To analyze the localization of glutamate receptors along the AVA process, we
276 generated transgenic animals expressing fluorescent-tagged GLR-1, NMR-1 and AVR-14 proteins
277 in AVA (see Methods) and quantified the number of puncta in four distinct regions along its
278 process (Figure 6A). Although puncta of all three receptors were visible in all regions, GLR-1 and
279 NMR-1 were enriched in anterior regions of the AVA process, while AVR-14 was enriched
280 posteriorly (Figure 6B-E). The trafficking of synaptic proteins (including GLR-1) in AVA was
281 previously shown to be mediated by kinesin-3 UNC-104(KIF1A)^{47–50}. To determine whether *unc-*
282 *104* is involved also in AVR-14 trafficking and localization, we analyzed the AVR-14 puncta
283 density and soma expression in AVA in *unc-104* mutant animals (Figure S1A). Although the mean

284 intensity levels in AVA soma were similar in wildtype and *unc-104* animals, we found absolutely
285 no puncta along the AVA process in an *unc-104* mutant background (Figure S1B-D), suggesting
286 that UNC-104 is required for AVR-14 trafficking to the posterior regions of the AVA process.
287 Taken together, our results points to the differential localization of inhibitory and excitatory
288 receptors along the AVA process as one mechanism through which AVA encodes spatially
289 conflicting cues to possibly drive avoidance behavior.

290

291 **Figure 6. Distinct types of glutamate receptors are localized differentially along the AVA**
292 **process**


293 (A) Schematic of the regions in the AVA process that were analyzed (dashed-line red boxes). Each
294 analyzed region along the process is ~100 μm in length. The AVA process's length is roughly
295 ~800 μm . (B) Quantification of NMR-1 (blue), GLR-1 (green) and AVR-14 (purple) puncta
296 localization along the AVA process. Each dot represents the proportion of GFP puncta in each
297 region along the anterior-posterior axis. GLR-1 and NMR-1 localize mostly to the anterior regions
298 (>70%), while AVR-14 localizes mostly to the posterior regions (>70%). (C-E) Representative
299 confocal images and quantifications for all four regions of the AVA process quantified in (B) in
300 animals expressing a red fluorescence marker in AVA (*flp-18p::mCherry*) along with GFP-fused
301 reporters of the glutamate receptors *flp-18p::glr-1::gfp* (C), *nmr-1 fosmid* (D), and *avr-14 fosmid*
302 (E). White arrows denote puncta locations. n=9-13 animals per group. In C-E we performed a
303 Mann-Whitney test.

304 **Avoidance behavior is modulated by the concerted action of GLR-1, NMR-1 and AVR-14**

305 To analyze the contribution of the different glutamate receptors to the avoidance behavior, we used
306 the drop test^{19,20,28} (see Methods). In this test, both the head's and tail's sensory neurons are
307 stimulated by applying a drop of either a high- or low-concentration of glycerol to forward-moving
308 animals and then their reversal rates are scored. We found that while *avr-14* mutants exhibited
309 normal avoidance behavior, the responsiveness of *glr-1;nmr-1* double mutants was almost
310 completely abolished, in a manner independent of stimulus concentration (Figure 7A). These
311 results imply that AVA fails to become active and evoke a behavioral response in the absence of
312 excitatory, but not inhibitory, glutamate receptors. The *glr-1;nmr-1;avr-14* triple mutants only
313 showed a significantly higher avoidance index than the *glr-1;nmr-1* double mutants in response to
314 the high concentration (Figure 7A). This finding suggests there is some residual GLR-1/NMR-1-
315 independent activation mechanism at play in AVA, which could be GLR-2-mediated³¹. The AVA-
316 specific rescue of *avr-14* expression in the triple-mutant background was sufficient to significantly
317 decrease the avoidance behavior in animals that were exposed to the high-concentration stimulus
318 (Figure 7A), indicating that *avr-14* is necessary specifically in AVA to mediate the repression of
319 avoidance behavior.

320 As a complementary approach, we used optogenetics to photo-activate ASH and PHB neurons and
321 measured the evoked avoidance responses in different mutant backgrounds. This approach allowed
322 us to determine ASH- and PHB-specific contributions to behavior, by avoiding the stimulation of
323 other sensory neurons and bypassing the tail-activation threshold. The *glr-1; nmr-1* double mutants
324 and *glr-1; nmr-1; avr-14* triple mutants showed a similar decrease in avoidance response compared
325 to wild-type animals (Figure 7B). Interestingly, the decrease in the *glr-1; nmr-1* avoidance response
326 was only partial, unlike the complete loss we observed in the drop assay, suggesting that the
327 optogenetic stimulation setup does not fully mimic chemical stimulation. One possible reason for
328 this could be the uneven expression of ChR2 in ASH and PHB. As expected, AVA-specific
329 expression of *avr-14* in the *glr-1; nmr-1; avr-14* mutant background was sufficient to completely
330 abolish the avoidance behavior (Figure 7B). Taken together, these results indicate that AVA-
331 specific activity of AVR-14 suppresses GLR-1/NMR-1 mediated avoidance responses, and that
332 ASH>AVA and PHB>AVA are major but not the sole signaling pathways orchestrating this
333 behavior.

334

335

336 **Figure 7: Behavioral decision is regulated by GLR-1, NMR-1 and AVR-14 receptors**

337 (A) Behavioral responses to 0.5 M (green) or 2 M (purple) glycerol using the drop assay (see
338 Methods). The avoidance index represents the fraction of reversal responses in 8-14 trials of each
339 single animal. n=14-15 worms per group. (B) Avoidance behavior in response to the simultaneous
340 optogenetic stimulation of both ASH and PHB. n=14-22 animals per group. In (A), we performed
341 Two-way ANOVA, Tukey's multiple comparisons test. In (B), we performed One-way ANOVA,
342 Kruskal-Wallis test followed by Dunn's multiple comparison analysis.

343

344 **DISCUSSION**

345 Here we show how *C. elegans* utilizes a compact neuronal circuit to recognize hazards in a
346 complex environment, integrate spatial information and make a decision. We find that this process
347 is supervised by at least three properties: (i) the properties of the sensory neurons, i.e., spatial
348 receptive field, sensitivity and anatomical location, (ii) the properties of the environmental
349 stimulus, i.e., location and concentration, and (iii) the localization patterns of excitatory and
350 inhibitory channels along the process of the interneuron. Although not addressed here,
351 neuromodulation might also play a role.

352 Avoidance behavior in worms is an evoked response, characterized by backward locomotion
353 followed by a turn to change the direction of movement⁵¹. We examined the contribution of the
354 major backward command interneuron AVA to the decision-making process of the avoidance
355 behavior and found that it plays a key role in integrating multiple distinct signals in order to
356 generate or abort the initiation of backward locomotion. We found AVA to be inactivated when
357 the head and tail were strongly stimulated, but behaviorally, animals did show high avoidance
358 responses, pointing to a redundant mechanism in which AVA is a key but not the sole mediating
359 neuron of avoidance behavior. Other backward command interneurons such as AVD (which is
360 innervated by both head ASH and tail PHB sensory neurons) and AVE might also act to guide
361 avoidance behavior²⁵. Furthermore, the AIB-RIM disinhibitory motor circuit, which was shown to

362 be stimulated by ASH and affect AVA activity, may contribute to the reversal decision^{27,52}. The
363 AVA interneurons have also been suggested to function as hub neurons which integrate sensory
364 inputs from threat and reward circuits along with motor information and guide decision making⁵³,
365 but whether this occurs in a spatial manner remains to be determined.

366 We further describe the molecular mechanism that is utilized to integrate spatially opposing stimuli
367 within a single neuron. We show that glutamate signaling can cause excitation or inhibition in
368 AVA, leading to an increase or a decrease in the probability of reversal, respectively, and that these
369 neuronal responses depend on the receptor type. We also demonstrate how differential localization
370 of excitatory (i.e., AMPA- and NMDA-like) and inhibitory (GluCl) receptors along the interneuron
371 process dictate the opposing neuronal responses following head and tail stimulations. Although
372 we tested the role of significant glutamate receptors, such as the excitatory GLR-1 and NMR-1 or
373 the inhibitory GLC-4 and AVR-14, other receptors may play a role. Possible candidates include
374 GLR-2, known to participate in AVA activation, and GLR-4/5 and NMR-2, which are expressed
375 in AVA^{31,43}. Evidence suggests that at least some of these glutamate receptors, such as GLC-4 and
376 AVR-14 or GLR-1 and NMR-1, work in concert to modulate their activity^{21,31}. Whether the
377 singular effect of each receptor or the combinatorial summation are important for avoidance
378 decisions remains an open question.

379 Since glutamate secretion from the head ASH and tail PHB sensory cells can be evoked by various
380 stimuli, we predict that different modalities other than osmo-sensation, such as response to touch,
381 toxins and other repellents, will show similar neuronal dynamics and behavioral modulation
382 following exposure to spatially opposing cues^{19,21,22,28,52,54,55}.

383 GluCls are found only in protostome invertebrate phyla, but are closely related to mammalian
384 glycine receptors⁵⁶. In mammals, Glycine receptor Cl- channels (GlyRs) play an important role in

385 rapid synaptic inhibition in the spinal cord, brainstem and higher brain centers, and are involved
386 in the transmission of nociceptive signals⁵⁷. Recently, alpha3-subunit-containing GlyRs have been
387 implicated in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons,
388 marking them as novel molecular targets in pain therapy^{58,59}. Taken together, these findings
389 highlight the importance of understanding the mechanisms of action of these channels for future
390 pain-related therapeutic approaches.

391 ASH, PHA and PHB sensory neurons show diverse activity patterns following exposure to noxious
392 stimuli at different concentrations. We uncovered a differential activation threshold: while the head
393 ASH neurons are activated in response to low and high concentrations, the tail PHA and PHB
394 neurons respond only to high concentrations. The different sensitivity may result from an
395 asymmetry in the expression of molecular elements that govern neuronal sensation, such as TRPV
396 channels OSM-9/OCR-2, various types of GPCRs or OSM-10^{19,43,60,61}. Additionally, ASH neurons
397 show an OFF response only at a high concentration, implying that it may mediate some
398 concentration-dependent behaviors. Finally, we discovered that the PHA neuron, which innervates
399 PHB and AVG, but not AVA (in hermaphrodites), displays concentration-dependent ON and OFF
400 responses, which correspond to neuronal responses in AVG following tail exposure to touch and
401 high-concentration osmotic shock^{62,63}. This finding suggests an additional parallel pathway,
402 mediated by PHA>AVG, that respond to osmotic shock applied to the tail, but its contribution to
403 behavioral decisions remain unclear. The significance of slight differences in the location of
404 stimuli in the surroundings is well demonstrated by the tendency of *C. elegans* to suppress
405 exploratory head movements only following light anterior touch, as opposed to nose and posterior
406 touch, in a mechanism thought to enable escape from traps of predatory fungi⁶¹. Taken together,
407 our results demonstrate how a relatively simple neural network can encode multidimensional

408 information, including the spatial location and concentration of stimuli. Despite the small number
409 of neurons and the single neurotransmitter (glutamate), the circuit utilizes distinct types of
410 receptors, which are differentially localized, to integrate information and quickly direct behavioral
411 decisions.

412

413 **METHODS**

414 **Experimental Model and Subject Details**

415 All *Caenorhabditis elegans* strains that were used in this study are listed in supplementary table 1.
416 Worms were maintained according to standard conditions, at 20°C on nematode growth medium
417 (NGM) plates that were seeded with *E. coli* OP50 bacteria⁶⁴. The Bristol N2 strain was used as
418 wild-type control. *him-5*(e1490) were treated as wild-type controls for strains carrying this allele
419 in their genetic background.

420

421 **Method details**

422 **Molecular biology**

423 To generate the *avr-14* rescue construct, pAG1, and capture all the *avr-14* isoforms, we fused a
424 cDNA fragment encoding the first 6 common exons with a genomic fragment containing the rest
425 of the gene, as previously described²⁷. This fragment was cloned under the *flp-18* promoter for
426 AVA-specific expression.

427 To generate the specific expression of GLR-1::GFP in AVA, we attached the GLR-1::GFP
428 construct⁶⁵ to the *flp-18* promoter, to generate pAG4.

429 To express ChR2 in PHB neurons, we cloned a *ChR2::mCherry* fusion under the PHB-specific
430 *gpa-6* promoter, to generate pHS9.

431 **Confocal microscopy**

432 Animals were mounted on a 5 % agarose pad on a glass slide, on a drop of M9 containing 100–
433 200 mM sodium azide (NaN₃). A Zeiss LSM 880 confocal microscope was used with 63x
434 magnification. For *nmr-1/avr-14* fosmids, AVA was identified using *flp-18p::mCherry*, and the z-
435 plane with the strongest signal was chosen. Puncta densities were calculated by normalizing the
436 number of puncta to the length of the relevant part of the AVA process (regions from anterior to
437 posterior: head, anterior to vulva, posterior to vulva, tail). For the *GLR-1::GFP* analysis, the signal
438 was mostly very strong and puncta were difficult to separate. We measured the length of an average
439 puncta using a sample of 3–5 puncta from each animal, and analyzed puncta density by dividing
440 the length of the relevant process by the average length of the puncta. The fluorescence intensity
441 in the soma was analyzed using ImageJ version 1.52p. The relevant Z-slices were sub-stacked,
442 “Sum slices” was applied, and Regions of interest (ROIs) were selected before the measurement
443 and export of the mean intensity.

444 **Histamine-induced silencing**

445 Histamine plates were prepared as previously described⁴¹. NGM-histamine (10 mM) and control
446 plates were stored at 4°C for no longer than 2 months. Histamine plates were tested using worms
447 that carry a transgene with a pan-neuronal HisC11 (*tag-168::HisC11::SL2::GFP*)⁴¹. After a few
448 minutes on histamine plates, these worms were paralyzed completely, validating the potency of
449 the histamine plates.

450 **Microfluidic chip fabrication and calcium imaging**

451 *Olfactory chip fabrication:* The olfactory chip was fabricated according to⁴⁰ with the help of the
452 Nanofabrication Unit at the Weizmann Institute of Science. A polydimethylsiloxane (PDMS)
453 mixture was cast into premade 0.5-cm-high chip molds and allowed to solidify at 65°C for 3 h.

454 Individual chips were cut by hand with a scalpel and then punctured to create fluidic inlets with a
455 diameter of 0.5 mm, using a PDMS biopsy punch (Elveflow). The chips were attached to glass
456 coverslips by exposing them to plasma for 30 s, and then manually attaching them together and
457 drying them on a hot plate at 65°C for 1 h. The tunnel's height was 28 μ M and its width at the
458 worm's nose space was 24 μ M.

459 *Dual-olfactory chip fabrication:* The dual-olfactory chips were designed in AutoCAD 2022 and
460 converted to CleWin to create the digital mask for fabrication with Mask-less Aligner (Heidelberg
461 MLA150). First, we cleaned the silicon wafer with propanol and acetone, and then rinsed it with
462 MQ-water, dehydrated it on a hot plate at 120°C for 10 min and let it to cool down to room
463 temperature. Second, we spun-coated 3 ml SU-8 50 photoresist (MicroChem) on the 10-cm wafer.
464 To create a 50-micron layer, we set the spinning rate to 2000 RPM. Third, we soft-baked it at 65°C
465 for 6 min and then gradually increased the temperature to 95°C and left it at that temperature for
466 20 min. Fourth, we patterned the design with MLA and then post-baked it at 65°C for 1 min and
467 then at 95°C for 5 min. Fifth, after letting the wafer cool down at room temperature, we developed
468 it for 6 min and then rinsed it with propanol. Lastly, we dried the mold with nitrogen and hard-
469 baked it at 120°C for 2 h.

470 *PDMS preparation:* We mixed Sylgard-184 and reagent at a ratio of 15:1 to obtain PDMS
471 (polydimethylsiloxane, Dow Corning). Next, we degassed it with a desiccator for 1 h to create a
472 fully transparent mixture. Before casting PDMS, we coated the surface of the mold with the gas
473 of Chlorotrimethylsilane (puriss., \geq 99.0% (GC) SIGMA-ALDRICH) inside a hood to facilitate the
474 peeling process. We poured PDMS into a 1-cm-thick mold and then cured it in an oven at 85°C
475 for 90 min. Next, we created inlets and outlets in the PDMS with a 0.75 mm round punch (0.035
476 x 0.025 x 1.5 304 SS TiN Coated, SYNEO EUROPE LTD.).

477 *Chip fabrication:* We activated the surfaces of a glass cover slip (#1.5) and the PDMS with O2-
478 plasma for 30 sec at 30W and then bonded them together with a gentle touch and then left the chip
479 on a at 120°C hot plate for 10 min to strengthen the bonding. Ultimately, we connected the tubes
480 to the inlets and outlets of the chip with hollow stainless-steel pins.

481 *Experimental set-up and operation:* The microfluidic chips were operated using two pumps that
482 control the flow of buffer and stimulus into the microfluidic chips. The solutions were pushed
483 through PVC tubes and stainless-steel connectors into the tunnels of the chip. We determined the
484 arrival of the stimulus to the worm with a manual switch (or two switches when the dual-olfactory
485 chip was used). Tubes were replaced between experiments and the connectors were cleaned with
486 ethanol. The flow rate during the experiments was ~0.005 ml/min. Loading the worm into the chip
487 was done by placing the worm in a drop of S-basal buffer, sucking the drop with a 1 ml syringe
488 and inserting it into the relevant inlet of the chip. To prevent movement, 10 mM Levamisole was
489 added to all solutions. To visualize the proper delivery of a stimulus to the worm, 50 μ M rhodamine
490 B was added only to the stimulus. If the worm moved or the flow was incorrect, the file was
491 discarded, and a second trial was performed with the same worm. No more than two trials were
492 done with the same worm. Imaging was done with a Zeiss LSM 880 confocal microscope using a
493 40x magnification water objective. The imaging rate was 6.667 Hz, the total imaging duration was
494 1 min, and the stimulus duration was 20 sec. A stimulus was given at 20–40 sec from imaging
495 initiation. For analysis, the GCaMP6s fluorescence intensity was measured using FIJI. All the files
496 were exported as tiff files, ROIs of the somas were drawn manually to best represent the signal
497 and their mean gray values were exported. The data analysis was performed using MATLAB. For
498 each worm, the baseline fluorescent level (F0) was calculated by averaging the mean gray values
499 of 66 frames (10 sec) before stimulus delivery. Then, for each frame, the ΔF was calculated by

500 subtracting F0 from the value of that time point, and the result was divided by F0, to normalize the
501 differences in the fluorescence baseline levels between individuals ($\Delta F/F_0$). The first 66 frames in
502 each recording, i.e., those prior to the frames used for normalization, were discarded from the data.
503 Thus, in the finalized dataset, there are 50 sec of recording and the stimulus appears as given
504 between 10–30 seconds.

505 All statistical comparisons were done on the normalized data. The moving mean of each animal's
506 recording data was computed across 7 frames (~1 sec). Peak responses were calculated as the
507 difference between the maximal values for excitation or minimal values for inhibition (during 20
508 sec of stimulus) and the starting value when the stimulus was given.

509 **DiD Staining**

510 Worms were washed with M9 buffer and then incubated in 1 ml M9 and 5 μ l DiD dye at ~25 RPM
511 and tilted for 1 h. The worms were then transferred to a fresh plate and let to crawl on a bacterial
512 lawn prior to imaging. The PHA neuron was identified as the more anterior cell and the PHB
513 neuron as the more posterior cell filled with dye.

514 **Behavioral repulsion assay: Tail drop**

515 The tail drop avoidance assay was done as described previously^{19,20}. All the assays were performed
516 on 1-day adult hermaphrodites. Briefly, worms were given 10 min to habituate on a foodless NGM
517 experiment plate, and then underwent 8–10 repellent stimulations with 2 min intervals between
518 stimuli. A small drop of the repellent (glycerol in S basal was placed on the agar near the tail of a
519 forward-moving animal, using a 10 μ l glass-calibrated pipette (VWR International) was pulled by
520 hand on a flame to create two needles with a reduced diameter. The pipette was mounted onto a
521 holder with a rubber tube, operated by mouth. A day before the experiment, unseeded NGM plates
522 were taken out of 4°C storage, dried at 37°C for 2 h, and then left on the bench. Scoring for each

523 trial was binary (1 for reversal, 0 for no reversal). The average score of all trials is the avoidance
524 index for each animal.

525 **Behavioral – optogenetics**

526 For optogenetic activation, we used worms expressing ChR2, only in ASH (*gpa-13p::FLPase*,
527 *sra-6p::FTF::ChR2::YFP* (*ljIs114*)³⁸ and/or PHB (pHS9 - *gpa-6p::Chr2::mCherry*), with a
528 genetic background of *lite-1(ce314)*). L4 hermaphrodites were picked a day before the experiment
529 and separated into control and experiment groups. They were transferred to newly seeded plates
530 with 300 µl OP50 that was concentrated 1:10. ATR (all-trans-retinal) was added only to the
531 experimental groups' plates, to a final concentration of 100 µM. As ATR is sensitive to light, all
532 plates were handled in the dark. Tracking and optogenetic stimulations were done on freshly
533 seeded NGM test plates: on the day of the experiment, the plates were seeded with 30 µl OP50.
534 ATR was added to the experimental group's plates. A group of up to 10 worms was transferred to
535 the test plates. After 10 min of habituation, the worms were tracked for 69 sec with five 2-sec 470
536 nm LED (1.6 mW/mm²) activations each, and 10 sec ISI. Each recording started with 10 sec
537 without LED. Analysis was performed manually. If the worm reversed during a 3 sec window (2
538 sec LED duration + one additional second), it received a score of one, otherwise a score of zero.
539 The five results of each worm were averaged to a number between zero and one. Worms that left
540 the FOV of the camera were excluded. Speed measurements were extracted from WormLab.

541 **Computational model**

542 We adapted the model used in Pechuk et al.²⁸ and simulated the response of the nociceptive circuit
543 in the hermaphrodites to sensory stimulation. To the cells that were previously used (ASH, AVA,
544 AVB, AVD, PVC, A, and B), we added the sensory cells in the tail, PHA and PHB. A movement's
545 direction was determined by the difference in the activation of the two motor neuron groups^{28,66}.

546 Connectivity data (taking into consideration the connections' strength) was taken from Cook et
547 al²⁴.

548 To find possible polarity configurations of this circuit, we explored all the combinations of
549 inhibition and excitation in its 21 chemical synapses, resulting in 2^{21} configurations. To account
550 for possible variability in the biophysical parameters^{28,67}, we tested all the polarity configurations
551 on 50 different parameter sets ($50 \cdot 2^{21} \approx 10^8$ combinations overall). The parameter sets were
552 randomly sampled from sets that met all the behavioral and physiological conditions in
553 hermaphrodites, as previously defined²⁸. Briefly, the behavioral conditions included backward
554 movement after a strong sensory stimulus and forward movement otherwise, a reasonable range
555 of membrane potentials and time constant, and the ability of neurons to return to rest after the
556 sensory stimulus ended (see "behavioral conditions" in²⁸ for additional details). The physiological
557 conditions included anticorrelated activity between cells promoting backward movement (A and
558 AVA) and cells promoting forward movement (B and AVB), in agreement with the expected
559 behavior (see "physiological conditions" in²⁸ for additional details).

560 We simulated the membrane potential of the neurons for 15 sec, while the sensory stimulus was
561 delivered for 5 sec, starting from the fifth sec. Basal inputs to the interneurons were simulated
562 throughout the simulation. We used two sensory stimuli: one delivered only to ASH, and another
563 delivered to all 3 sensory neurons (simulated separately). Noise was not simulated in the inputs or
564 in the synaptic strength values. In both sensory stimuli, the sets had to meet all the behavioral and
565 physiological conditions specified above²⁸. On top on those conditions, we added a demand for
566 tail antagonism¹⁹, i.e., the difference in activation between the motor neurons had to be smaller
567 after a sensory stimulus to all sensory neurons, compared to stimulation of ASH alone. This
568 condition reflects the antagonistic effect of the tail sensory neurons on the head sensory neuron.

569 For each synapse, we summed over the results in sets of parameters and polarity that met all the
570 conditions, checking the proportion in which it was inhibitory vs. excitatory.

571 **DATA AVAILABILITY**

572 The authors declare that all the data generated or analyzed during this study are included in this
573 published article (and its supplementary information files). Source data are provided with this
574 paper.

575 **ACKNOWLEDGEMENTS**

576 We thank members of the Oren-Suissa lab for their critical insights regarding the manuscript. Some
577 strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure
578 Programs (P40 OD010440).

579 MOS acknowledges financial support from the European Research Council ERC-2019-STG
580 850784, Israel Science Foundation grant 961/21, Dr. Barry Sherman Institute for Medicinal
581 Chemistry, Sagol Weizmann-MIT Bridge Program and the Azrieli Foundation. MOS is the
582 incumbent of the Jenna and Julia Birnbach Family Career Development Chair. MK acknowledges
583 financial support from the ERC (MechanoSystems, 715243), HFSP (CDA00023/2018), Spanish
584 Ministry of Economy and Competitiveness through the Plan Nacional (PGC2018-097882-A-I00),
585 FEDER (EQC2018-005048-P), “Severo Ochoa” program for Centres of Excellence in R&D
586 (CEX2019-000910-S; RYC-2016-21062), Fundació Privada Cellex, Fundació Mir-Puig, and from
587 Generalitat de Catalunya through the CERCA and Research program (2017 SGR 1012).

588 **AUTHOR CONTRIBUTIONS**

589 AG, VP and SPK conducted and analyzed the experiments. GG built the computational model.
590 AG, SK and MK designed and fabricated the dual-olfactory chip. AG and JL analyzed the puncta's
591 localization. MOS supervised and designed the experiments. AG and MOS wrote the paper.

592 **DECLARATION OF INTERESTS**

593 The authors declare no competing interests.

594

595

596

597

598

599

600 **References**

601

602

603 1. Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single
604 neuron. *Nat Rev Neurosci* 9, 255–266 (2008).

605 2. van Atteveldt, N., Murray, M. M., Thut, G. & Schroeder, C. E. Multisensory Integration: Flexible Use of
606 General Operations. *Neuron* 81, 1240–1253 (2014).

607 3. Bizley, J. K., Jones, G. P. & Town, S. M. Where are multisensory signals combined for perceptual
608 decision-making? *Curr Opin Neurobiol* 40, 31–37 (2016).

609 4. Gemma, C., Charles, S. & E., S., Barry. *The handbook of multisensory processes* . (MIT Press). doi:152.1
610 HAN.

611 5. Pouget, A., Deneve, S. & Duhamel, J.-R. A computational perspective on the neural basis of
612 multisensory spatial representations. *Nat Rev Neurosci* 3, 741–747 (2002).

613 6. Isa, T., Marquez-Legorreta, E., Grillner, S. & Scott, E. K. The tectum/superior colliculus as the
614 vertebrate solution for spatial sensory integration and action. *Curr Biol* 31, R741–R762 (2021).

615 7. Clark-Cotton, M. R. *et al.* Exploratory polarization facilitates mating partner selection in
616 *Saccharomyces cerevisiae*. *Mol Biol Cell* 32, 1048–1063 (2021).

617 8. Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. *Nat
618 Rev Neurosci* 21, 277–295 (2020).

619 9. Felsen, G. & Mainen, Z. F. Neural Substrates of Sensory-Guided Locomotor Decisions in the Rat
620 Superior Colliculus. *Neuron* 60, 137–148 (2008).

621 10. Masullo, L. *et al.* Genetically Defined Functional Modules for Spatial Orienting in the Mouse Superior
622 Colliculus. *Curr Biol* 29, 2892–2904.e8 (2019).

623 11. Lockery, S. R. The computational worm: spatial orientation and its neuronal basis in *C. elegans*. *Curr*
624 *Opin Neurobiol* 21, 782–790 (2011).

625 12. France, I. de B. du D. de M.-L., CNRS, & Barrière, A. Isolation of *C. elegans* and related nematodes.
626 *Wormbook* 1–19 (2014) doi:10.1895/wormbook.1.115.2.

627 13. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode
628 *Caenorhabditis elegans*. *Dev Biol* 117, 456–487 (1986).

629 14. Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of
630 *Caenorhabditis elegans* identified by filling sensory neurons with fluorescein dyes. *Developmental*
631 *Biology* 111, 158–170 (1985).

632 15. Hall, D. & Russell, R. The posterior nervous system of the nematode *Caenorhabditis elegans*: serial
633 reconstruction of identified neurons and complete pattern of synaptic interactions. *J Neurosci* 11, 1–22
634 (1991).

635 16. Heyneman, D. Introduction to Nematology. B. G. Chitwood, M. B. Chitwood. *Q Rev Biology* 51, 146–
636 146 (1976).

637 17. Lewbart, G. A. Invertebrate Medicine. (2022) doi:10.1002/9781119569831.

638 18. Ferkey, D. M., Sengupta, P. & L'Etoile, N. D. Chemosensory signal transduction in *Caenorhabditis*
639 *elegans*. *Genetics* 217, iyab004 (2021).

640 19. Hilliard, M. A., Bargmann, C. I. & Bazzicalupo, P. C. *elegans* responds to chemical repellents by
641 integrating sensory inputs from the head and the tail. *Current Biology* 12, 730–734 (2002).

642 20. Oren-Suissa, M., Bayer, E. A. & Hobert, O. Sex-specific pruning of neuronal synapses in
643 *Caenorhabditis elegans*. *Nature* 533, 206–211 (2016).

644 21. Zou, W. *et al.* Polymodal Responses in *C. elegans* Phasmid Neurons Rely on Multiple Intracellular and
645 Intercellular Signaling Pathways. *Nature Publishing Group* 1–8 (2017) doi:10.1038/srep42295.

646 22. Hilliard, M. A. *et al.* In vivo imaging of *C. elegans* ASH neurons: cellular response and adaptation to
647 chemical repellents. *The EMBO Journal* 24, 63–72 (2005).

648 23. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of
649 *Caenorhabditis elegans*. *Philos. Trans. R. Soc. Lond. B Biol. Sci* 314, 1–340 (1986).

650 24. Cook, S. J. *et al.* Whole-animal connectomes of both *Caenorhabditis elegans* sexes. *Nature* 571, 63–
651 71 (2019).

652 25. Chalfie, M. *et al.* The neural circuit for touch sensitivity in *Caenorhabditis elegans*. *J Neurosci* 5, 956–
653 964 (1985).

654 26. Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in *Caenorhabditis elegans*. *Proc
655 National Acad Sci* 102, 3184–3191 (2005).

656 27. Piggott, B. J., Liu, J., Feng, Z., Wescott, S. A. & Xu, X. Z. S. The Neural Circuits and Synaptic
657 Mechanisms Underlying Motor Initiation in *C. elegans*. *Cell* 147, 922–933 (2011).

658 28. Pechuk, V. *et al.* Reprogramming the topology of the nociceptive circuit in *C. elegans* reshapes sexual
659 behavior. *Curr Biol* (2022) doi:10.1016/j.cub.2022.08.038.

660 29. Serrano-Saiz, E. *et al.* Modular control of glutamatergic neuronal identity in *C. elegans* by distinct
661 homeodomain proteins. *Cell* 155, 659–673 (2013).

662 30. Bono, M. de & Maricq, A. V. Neuronal substrates of complex behaviors in *C. elegans*. *Annu Rev
663 Neurosci* 28, 451–501 (2005).

664 31. Mellem, J. E., Brockie, P. J., Zheng, Y., Madsen, D. M. & Maricq, A. V. Decoding of Polymodal Sensory
665 Stimuli by Postsynaptic Glutamate Receptors in *C. elegans*. *Neuron* 36, 933–944 (2002).

666 32. Hughes, S. & Celikel, T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An
667 Invertebrate Perspective. *Bioessays* 41, 1900088 (2019).

668 33. Groschner, L. N., Malis, J. G., Zuidinga, B. & Borst, A. A biophysical account of multiplication by a
669 single neuron. *Nature* 603, 119–123 (2022).

670 34. Dent, J. A., Smith, M. M., Vassilatis, D. K. & Avery, L. The genetics of ivermectin resistance in
671 *Caenorhabditis elegans*. *Proc National Acad Sci* 97, 2674–2679 (2000).

672 35. Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y. & Mori, I. Bidirectional regulation of thermotaxis by
673 glutamate transmissions in *Caenorhabditis elegans*. *Embo J* 30, 1376–1388 (2011).

674 36. Li, Z. *et al.* A *C. elegans* neuron both promotes and suppresses motor behavior to fine tune motor
675 output. *Biorxiv* 2020.11.02.354472 (2020) doi:10.1101/2020.11.02.354472.

676 37. Sato, H., Kunitomo, H., Fei, X., Hashimoto, K. & Iino, Y. Glutamate signaling from a single sensory
677 neuron mediates experience-dependent bidirectional behavior in *Caenorhabditis elegans*. *Cell Reports*
678 35, 109177 (2021).

679 38. Chew, Y. L. *et al.* An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering
680 Sensitization and Arousal in *C. elegans*. *Neuron* 99, 1233-1246.e6 (2018).

681 39. Wang, X., Li, G., Liu, J., Liu, J. & Xu, X. Z. S. TMC-1 Mediates Alkaline Sensation in *C. elegans* through
682 Nociceptive Neurons. *Neuron* 91, 146–154 (2016).

683 40. Chronis, N., Zimmer, M. & Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and
684 behavioral activity in *Caenorhabditis elegans*. *Nature Methods* 4, 727–731 (2007).

685 41. Pokala, N., Liu, Q., Gordus, A. & Bargmann, C. I. Inducible and titratable silencing of *Caenorhabditis*
686 *elegans* neurons in vivo with histamine-gated chloride channels. *Proc Natl Acad Sci U S A* 111, 2770–
687 2775 (2014).

688 42. Brockie, P. J. & Maricq, A. V. Ionotropic glutamate receptors: genetics, behavior and
689 electrophysiology. *Wormbook* 1–16 (2006) doi:10.1895/wormbook.1.61.1.

690 43. Taylor, S. R. *et al.* Molecular topography of an entire nervous system. *Cell* (2021)
691 doi:10.1016/j.cell.2021.06.023.

692 44. Brockie, P. J., Mellem, J. E., Hills, T., Madsen, D. M. & Maricq, A. V. The *C. elegans* Glutamate
693 Receptor Subunit NMR-1 Is Required for Slow NMDA-Activated Currents that Regulate Reversal
694 Frequency during Locomotion. *Neuron* 31, 617–630 (2001).

695 45. Kuramochi, M. & Doi, M. An Excitatory/Inhibitory Switch From Asymmetric Sensory Neurons Defines
696 Postsynaptic Tuning for a Rapid Response to NaCl in *Caenorhabditis elegans*. *Front Mol Neurosci* 11, 484
697 (2019).

698 46. Hiroki, S. *et al.* Molecular encoding and synaptic decoding of context during salt chemotaxis in *C.*
699 *elegans*. *Nat Commun* 13, 2928 (2022).

700 47. Lickteig, K. M. *et al.* Regulation of Neurotransmitter Vesicles by the Homeodomain Protein UNC-4
701 and Its Transcriptional Corepressor UNC-37/Groucho in *Caenorhabditis elegans* Cholinergic Motor
702 Neurons. *J Neurosci* 21, 2001–2014 (2001).

703 48. Asakura, T., Waga, N., Ogura, K. & Goshima, Y. Genes Required for Cellular UNC-6/Netrin Localization
704 in *Caenorhabditis elegans*. *Genetics* 185, 573–585 (2010).

705 49. Park, J. *et al.* A conserved juxtarcline signal regulates synaptic partner recognition in *Caenorhabditis*
706 *elegans*. *Neural Development* 6, 28 (2011).

707 50. Hoerndl, F. J. *et al.* Kinesin-1 Regulates Synaptic Strength by Mediating the Delivery, Removal, and
708 Redistribution of AMPA Receptors. *Neuron* 80, 1421–1437 (2013).

709 51. Bargmann, C. I. Chemosensation in *C. elegans*. *WormBook* 1–29 (2006)
710 doi:10.1895/wormbook.1.123.1.

711 52. Li, W., Kang, L., Piggott, B. J., Feng, Z. & Xu, X. Z. S. The neural circuits and sensory channels
712 mediating harsh touch sensation in *Caenorhabditis elegans*. *Nature Communications* 2, 315–9 (2011).

713 53. Liu, P., Chen, B. & Wang, Z.-W. GABAergic motor neurons bias locomotor decision-making in *C.*
714 *elegans*. *Nat Commun* 11, 5076 (2020).

715 54. Tran, A. *et al.* *C. elegans* avoids toxin-producing *Streptomyces* using a seven transmembrane domain
716 chemosensory receptor. *Elife* 6, (2017).

717 55. Bruggeman, C. W., Haasnoot, G. H., Danné, N., Krugten, J. van & Peterman, E. J. G. Differentiated
718 dynamic response in *C. elegans* chemosensory cilia. *Cell Reports* 41, 111471 (2022).

719 56. Wolstenholme, A. J. Glutamate-gated Chloride Channels*. *J Biol Chem* 287, 40232–40238 (2012).

720 57. Hussein, R. A., Ahmed, M., Breitinger, H.-G. & Breitinger, U. Modulation of Glycine Receptor-
721 Mediated Pain Signaling in vitro and in vivo by Glucose. *Front Mol Neurosci* 12, 280 (2019).

722 58. Harvey, R. J. *et al.* GlyR α 3: An Essential Target for Spinal PGE2-Mediated Inflammatory Pain
723 Sensitization. *Science* 304, 884–887 (2004).

724 59. Harvey, V. L., Caley, A., Müller, U. C., Harvey, R. J. & Dickenson, A. H. A Selective Role for α 3 Subunit
725 Glycine Receptors in Inflammatory Pain. *Front Mol Neurosci* 2, 14 (2009).

726 60. Tobin, D. M. *et al.* Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory
727 Functions and Subcellular Localization in *C. elegans* Neurons. *Neuron* 35, 307–318 (2002).

728 61. Hart, A. C., Kass, J., Shapiro, J. E. & Kaplan, J. M. Distinct Signaling Pathways Mediate Touch and
729 Osmosensory Responses in a Polymodal Sensory Neuron. *J Neurosci* 19, 1952–1958 (1999).

730 62. Salzberg, Y. *et al.* Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through
731 Regulation of DCC/UNC-40. *Curr Biol* 30, 4128-4141.e5 (2020).

732 63. Setty, H. *et al.* Sexually dimorphic architecture and function of a mechanosensory circuit in *C.*
733 *elegans*. *Nat Commun* 13, 6825 (2022).

734 64. Brenner, S. The genetics of *Caenorhabditis elegans*. *Genetics* 77, 71–94 (1974).

735 65. Rongo, C., Whitfield, C. W., Rodal, A., Kim, S. K. & Kaplan, J. M. LIN-10 Is a Shared Component of the
736 Polarized Protein Localization Pathways in Neurons and Epithelia. *Cell* 94, 751–759 (1998).

737 66. Kawano, T. *et al.* An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to
738 Bias *C. elegans* for Forward Locomotion. *72*, 572–586 (2011).

739 67. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters.
740 *Nature Neuroscience* 7, 1345–1352 (2004).

741