

Type VII secretion system and its effect on Group B

1

Streptococcus virulence

2

Yulia Schindler ^{1,2}, Galia Rahav ^{2,3}, Israel Nissan ^{3,5}, Gal Valenci ⁵, Miriam

3

Ravins⁶, Emanuel Hanski ⁶, Dana Ment ⁷, Dorit Tekes-Manova¹, Yasmin

4

Maor^{2,4}

5

¹ Microbiology laboratory, Mayanei Hayeshua Medical Center, Bney Brak,

6

Israel

7

² The Sackler School of medicine, Tel Aviv University, Tel Aviv, Israel

8

³ Infectious Disease Unit, Sheba Medical Center, Tel Hahomer, Israel

9

⁴ Infectious Disease Unit, Wolfson Medical Center, Holon, Israel

10

⁵ National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel

11

⁶ The Hebrew University of Jerusalem, Jerusalem, Israel

12

⁷ Department of Plant Pathology and Weed Research, Plant Protection

13

Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion,

14

Israel

15

16

Corresponding author: Dr. Yasmin Maor, Head of Infectious Disease Unit,

17

Wolfson Medical Center, Holon 58100, Israel.

18

Tel. 972-3-5028729; Fax 972-3-7984015

19

Email: yasminm@wmc.gov.il ; yasmin.maor@gmail.com

20

21

ABSTRACT	22
GBS may cause a devastating disease in newborns. In early onset disease of	23
the newborn the bacteria are acquired from the colonized mother during	24
delivery. We characterized type VII secretion system (T7SS), exporting small	25
proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates	26
from pregnant colonized women and newborns with early onset disease	27
(EOD) to understand better understand T7SS contribution to virulence in	28
these different clinical scenarios.	29
GBS isolates were obtained from colonized mother prior to delivery and from	30
newborns with EOD. DNA was analyzed for T7SS genes. A mutant EOD	31
strain (ST17) was created by knocking out the <i>essC</i> gene encoding a T7SS	32
protein. <i>Galleria mellonella</i> larvae were used to compare virulence of	33
colonizing, EOD, and mutant EOD isolates.	34
33 GBS genomes were tested, 17 EOD isolates and 16 colonizing isolates.	35
The T7SS locus encoded 8 genes: <i>essC</i> , membrane-embedded proteins	36
(<i>essA</i> ; <i>essB</i>), modulators of T7SS activity (<i>esaA</i> ; <i>esaB</i> ; <i>esaC</i>) and effectors:	37
[<i>esxA</i> (SAG1039); <i>esxB</i> (SAG1030). ST17 isolates encode two copies of the	38
<i>essC</i> gene and <i>esxA</i> gene encoding putative effectors but were present only	39
in 23.5% of isolates. In ST1 isolates three copies of <i>esxA</i> gene were	40
identified, but in ST6 and ST19 isolates all T7SS genes were missing. EOD	41
isolates demonstrated enhanced virulence in <i>G. mellonella</i> model compared	42
to colonizing isolates. The 118659Δ <i>essC</i> strain was attenuated in its killing	43
ability, and the larvae were more effective in eradicating 118659Δ <i>essC</i>	44
infection. <i>essC</i> gene deletion was associated with reduced bacterial growth.	45

We demonstrated that T7SS plays an essential role during infection and contributes to GBS pathogenicity.	46
Key words: <i>Streptococcus agalactiae</i> ; type 7 secretion system; pregnancy, sepsis; neonate; early onset disease	48
	49
	50

Author Summary	51
Type VII secretion system (T7SS) is related to virulence in various bacteria	52
but is not well characterized in Group B Streptococci (GBS). GBS may cause	53
sepsis, meningitis, and death in newborns. The bacteria rarely cause disease	54
in pregnant mothers. Newborns acquire GBS from the colonized mother	55
during delivery. We studied the role of T7SS in GBS isolates obtained from	56
newborns with GBS sepsis in the first week of life and in colonized pregnant	57
mothers. By studying T7SS genes we discovered that the genetic structure of	58
the T7SS differs between isolates causing severe disease and colonizing	59
isolates. To study the virulence of different GBS isolates we injected them into	60
larvae and monitored larvae survival. Isolates causing severe disease in the	61
newborn caused a more severe disease in larvae compared to colonizing	62
isolates. We then deleted T7SS genes in GBS isolates causing severe	63
disease. The killing activity of GBS isolates without T7SS genes was	64
attenuated. The larva responded to these bacteria similarly to the response	65
found when injecting the larva with GBS isolates from colonized mothers.	66
These results support our hypothesis that T7SS is important for causing	67
severe infection in the newborn and that this system contributes to GBS	68
pathogenicity.	69
	70

INTRODUCTION	71
Group B streptococcus (GBS) also known as <i>Streptococcus agalactiae</i> is a	72
commensal bacterium that belongs to the human microbiota colonizing the	73
gastrointestinal and genitourinary tract ¹ . In most cases the colonization in	74
humans is harmless but GBS can also cause severe disease ^{2,3} . An important	75
manifestation of GBS disease is neonatal sepsis and meningitis ³ . Early-onset	76
disease (EOD) in the newborn is a devastating disease that results from the	77
vertical transmission of GBS from colonized mothers through contaminated	78
amniotic or vaginal secretions to her newborn. GBS isolates can be divided	79
into 10 distinct serotypes (Ia; Ib; II-IX) based on a serological reaction directed	80
against the polysaccharide capsule ¹ . Based on multilocus sequence typing	81
(MLST) most human GBS isolates can be clustered into six major sequence	82
types (STs) ¹ .	83
GBS has a variety of putative virulence factors that facilitate its ability to cause	84
disease, some of which have been identified and characterized ^{4,5} .	85
Bacterial pathogens utilize a multitude of methods to invade mammalian	86
hosts, damage tissue sites, and escape the immune system ⁶ . One essential	87
component for many bacterial pathogens is secretion of proteins across	88
phospholipid membranes ⁷ . Type VII secretion system (T7SS) is a specialized	89
secretion system in Gram positive bacteria first discovered in <i>Mycobacterium</i>	90
<i>spp</i> , where it is responsible for the export of small proteins that are members	91
of the WXG100 superfamily ⁸ . In <i>Mycobacterium tuberculosis</i> T7SS plays an	92
important role in bacterial virulence and persistence of infection ⁹⁻¹¹ .	93
Analogous substrates and some components of these systems have also	94
been identified in several other Gram-positive organisms, including	95

<i>Staphylococcus aureus</i> , <i>Streptococcus pyogenes</i> , <i>Streptococcus pneumoniae</i> and <i>Bacillus anthracis</i> ¹²⁻¹⁴ .	96
	97
There are commonalities and differences between the T7SS of <i>Actinobacteria</i> and <i>Firmicutes</i> ^{15,16} . A membrane-embedded ATPase of the FtsK/SpoIIIE family termed EssC is found in all T7SSs. In both systems the protein shares a similar overall topology, with two transmembrane domains that are usually followed by three P-loop ATPase domains at the C-terminus, that energize substrate secretion. The ATPase domain of EssC interacts with conserved WXG100 protein substrates, through a signal sequence ¹⁷ . The second common component is at least one small protein of the WXG100 family, EsxA, which is secreted by the T7SS ¹⁸ . In Mycobacteria, EsxA homologues are secreted as heterodimers with EsxB (LXG-domain containing protein) ^{19,20} , whereas in Firmicutes EsxA is secreted as a homodimer ^{21,22} . The T7SS is encoded by the ess locus. In addition to EsxA and EssC, further integral and peripheral membrane proteins encoded by the locus (such as EsaA, EssA, EssB and Esab). In <i>S. aureus</i> they are also essential components of the secretion machinery ^{12,23} . Additionally, increasing numbers of reports have shown a role for the T7SS and/or EsxA in the pathogenesis of several Gram-positive bacteria ^{18,24,25} ; however, there is insufficient data regarding the structure and distribution of T7SS in clinical GBS strains. Recently the structure of T7SS in GBS strains was characterized and four T7SS subtypes based on the C-terminus of the ATPase EssC were identified ²⁶ . Additionally, the genetic diversity of the T7SS in GBS isolates was also identified ²⁷ , but the clinical significance of this secretion system in GBS is still unknown.	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

We recently demonstrated that in a population of orthodox Jews treated at 120
Maayaney Hayeshua Medical Center (MHMC) serotype III [sequence type 121
(ST)17] was the most common serotype in EOD while serotype VI (ST1) was 122
the prevalent serotype among colonizing isolates²⁸. This prompted us to 123
search for the presence and structure of the T7SS locus among these clinical 124
GBS isolates and to assess the effect of the T7SS on the virulence of isolates 125
causing colonization and isolates causing invasive disease (EOD). 126
127

RESULTS 128

Thirty-three GBS isolates were studied, 17 from neonates with EOD and 16 129
from asymptomatic pregnant women. ST types were: ST17 (n=17) from 130
neonates with EOD, ST1 (n=12), ST19 (n=3) and ST6 (n=1) from 131
asymptomatic pregnant women. 132

Identification of three GBS T7SS subtypes among various ST's 133

We analyzed the structure of the T7SS locus compared to the reference 134
genome *S. agalactiae* 2603 V/R. We observed structures related to T7SS in 135
all isolates except in ST19 and ST6 isolates. Furthermore, we found an 136
extensive amount of genetic diversity in T7SS operons regarding sequence 137
homology of core genes and putative effectors genes (Table 1). T7SS core 138
genes *EsaA*, *EssA*, *EssB*, and *EsaB* were found homologous to those found 139
in *S. aureus* genomes³⁷ and had >96% identity to the reference strain. The 140
difference between the isolates was in the sequence homology of *essC* genes 141
(encodes FtsK/SpoIIIE-type ATPase) and the presence of one or more *esxA* 142
homologs, and the presence of putative LXG toxin/anti-toxin-encoding gene 143

(*esxB*). Based on these results we suggested three modules representing

144

T7SS in GBS from different ST's (Figure 1).

145

Table 1: Type VII Secretion System components among different GBS

146

isolates

147

		EsxA SAG0230	EsxB	SAG1032	EssC	EssC	EssB	EsaB	EssA	EsaA	EsxA SAG1039
ST17	a	98.8	34.6					98.8			99.7
	b		34.6		87.8		98.1	98.8	96.4	96.4	
	c		34.6		87.8		98.1				
	d		34.6		87.8		98.1	98.8	96.4	96.4	
	e		34.6		87.8	96.4	98.1	98.8	96.4	96.4	
	f		34.6		87.8		98.1		96.4	96.4	
	g		34.6		87.8	96.4	98.1	98.8	96.4	96.4	
	h		34.6		87.8		98.1	98.8	96.4	96.4	
	i	98.8	34.6		87.8		98.1	98.8	96.4	96.4	
	j		34.6		87.8		98.1	98.8	96.4	96.4	
	k	98.8	34.6		87.8		98.1	98.8	96.4	96.4	87.7
	l					96.4	98.1	98.8	96.4		
	m		34.6		87.8		98.1	98.8	96.4	96.4	
	n	98.8	34.6		87.8	96.4	98.1	98.8	96.4	96.4	87.7
	o		34.6		87.8	96.4	98.1	98.8	96.4	96.4	
	p		34.6		87.8		98.1	98.8	96.4	96.4	
	q	98.8	34.6		98.1		98.1	98.8	96.4	98.1	99.7
ST1	a	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	b	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	c	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	d	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	e	87.8	34.6	61	97.2		98.1	98.8	96.4	96.4	99.7
	f	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	g	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	h	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	i	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
	j	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	99.7
ST19	k	98.8	34.6	61	97.2		98.1	98.8	96.4	98.1	96.4
	a	98.8									87.7
	b	98.8									87.7
ST6	c	98.8									87.7
	a										

148

149

150

Protein percent identity of the T7SS components among various GBS STs. All

ST17 were from neonates with EOD; ST1, ST 19 and ST6 GBS strains were

151

obtained from colonized pregnant women. They were compared to the	152
reference strain genome <i>S. agalactiae</i> 2603 V/R.	153
Module I (ST17, n=17): ST17 isolates encoded two copies of the <i>essC</i> gene	154
(SAG1003 and SAG1034); one copy of <i>esxA</i> encoding the WXG100 protein	155
(present in only 23.5% of isolates) upstream of the T7SS core genes, and	156
additional putative T7SS effector- <i>esxB</i> (including an LXG-domain containing	157
protein) downstream of T7SS core genes.	158
Module II (ST1, n=11): ST1 isolates encode one copy of <i>essC</i> gene	159
(SAG1033); three copies of the WXG100 protein-encoding gene, <i>esxA</i> ,	160
SAG1039 located upstream, SAG1032 located downstream of the T7SS core	161
genes, and another gene not directly linked to the T7SS locus that encoded a	162
putative WXG100 protein (SAG0230). Like ST17 isolates, ST1 isolates	163
encoded the <i>esxB</i> gene (T7SS effector including an LXG-domain containing	164
protein) downstream of the T7SS core genes.	165
Module III (ST19, n=4; ST6 n=1): all structural and regulatory T7SS genes	166
were missing.	167
	168
<i>Expression levels of essC and esxA genes among EOD and colonizing</i>	169
<i>GBS isolates</i>	170
We analyzed the transcription of genes encoding for the integral membrane	171
bound ATPase protein <i>essC</i> (SAG1033) and one of the effectors, <i>esxA</i>	172
(SAG1039), among EOD/ST17 (n=8) and colonizing/ST1 (n=8) GBS isolates.	173
The <i>essC</i> gene was expressed in all tested GBS isolates (data not shown).	174
However, <i>esxA</i> was weakly expressed among colonizing isolates compared to	175
a significant expression in EOD isolates (data not shown).	176

GBS virulence (EOD and colonizing isolates) in <i>G. mellonella</i> model	178
We used <i>Galleria mellonella</i> larvae as an in vivo model of infection for GBS.	179
The susceptibility of larvae to dose dependent killing by the WT GBS strain, <i>S. agalactiae</i> 2603 V/R (ATCC BAA-611), and two clinical EOD isolates was	180
determined. We found that all isolates induced a dose-dependent response	182
that was reproducible for each isolate in three independent experiments (data	183
not shown).	184
We then injected varying doses of GBS isolates (EOD n=2, colonizing n=2)	185
into each larva to compare the virulence of EOD and colonizing isolates by	186
measuring the infecting dose (LD ₅₀). LD ₅₀ values obtained for infection with	187
EOD isolates (2.7x10 ⁶) were significantly lower (p<0.05) than those of	188
colonizing (ST1) isolates (4.1x10 ⁸), indicating that an isolate associated with	189
EOD has increased virulence in <i>G. mellonella</i> compared to colonizing strains.	190
Twenty-four hours after infection with EOD isolates, only 50% of infected	191
larvae survived, compared to 85% survival rate after infection with colonizing	192
strains (Figure 2).	193
	194
Attenuation of 118659 EOD/ST17 isolate by essC knockout	195
To understand the role of EssC in virulence of GBS strains, we generated an	196
isogenic essC mutant in the clinical isolate 118659 EOD/ST17. PCR analysis	197
of the mutant 118659ΔessC produced bands with a different size than those	198
observed for the 118659 WT strain (2900 bp versus 3300 bp), indicating that	199
the essC gene was disrupted by the insertional mutagenesis of the kanamycin	200
cassette (Figure 3a). The insertion of kanamycin resistance gene was	201

validated using primer pairs v-omega-Km1 and v-omega-Km2, in composition 202
with EssC-KO primers located in both ends of original amplicon. The PCR 203
analysis using these primers generated bands only in the mutant strain and 204
were absent in the WT strain (Figure 3b). According to variant analysis of the 205
118659 WT and 118659 Δ essC (mutant) genomes against the reference 206
genome, the difference between them relied only on the deletion of the essC 207
gene and no additional mutations were identified. In standard rich medium the 208
 Δ essC had a similar growth rate as the WT 118659 (Figure 4). Additionally, 209
 Δ essC did not show a growth defect or difference on hemolysis production 210
when cultured in parallel with the WT strain. All tested strains had the same 211
prototypical phenotype and displayed a narrow zone of beta-hemolysis on 212
blood agar plate. 213

214

Expression of core components of T7SS in 118659 Δ essC (mutant) strain 215
We compared the gene expression of esaA, essA, essB, and esaB, located 216
upstream to essC gene to study the influence of essC knock out on their 217
activity. qRT-PCR analysis revealed similar levels of expression of tested 218
genes among mutant and WT strains demonstrating that the activity of whole 219
T7SS locus was not disturbed by knocking out the essC gene. 220

221

**Contribution of essC gene mutation to GBS virulence in G. mellonella in 222
vivo model** 223

To assess the ability of the *G. mellonella* model to discern changes in 224
virulence beyond the 118659 Δ essC (mutant) and 118659 (WT) strain the 225
infecting dose (LD₅₀) for each strain was determined. LD₅₀ values obtained for 226

infection with mutant strain were significantly higher than those of WT strain 227
(4.1×10^9 compared to 2.7×10^7 , $p < 0.01$) indicating that in the *G. mellonella* 228
model the mutant strain is less virulent. Larval mortality appeared 6-8 hours 229
after infection with both WT and the mutant isolates but increased 230
progressively mainly in the WT strain. Larval mortality in the mutant inoculated 231
group was significantly reduced ($p = 0.03$) compared to the WT strain (Figure 232
5). The larval survival rate with WT strain infection was 10%, compared to 233
40% with the mutant strain. In summary, the mutant strain has decreased 234
ability to kill *G. mellonella*, indicating that the *essC* gene may play an essential 235
role in GBS virulence. 236
237

Kinetics of in vivo growth of WT and GBS Δ essC (mutant) strains 238
To monitor growth of GBS in infected larvae, the groups of 10 larvae were 239
infected with 118659 (WT) and 118659 Δ essC (mutant) strains ($\sim 1 \times 10^6$ or 240
 $\sim 1 \times 10^8$ CFU/larvae, respectively), and bacterial burden was measured hourly 241
in pools of larvae. During the first 12 hours, the larval burden of both WT and 242
mutant isolates increased over time and reached to $\sim 1 \times 10^{10}$ CFU (Figure 6). 243
After 12 hours, the burden of the WT strain decreased faster compared to the 244
mutant strain. Larvae that outlived the infection with the mutant strain over 245
hours seemed to clear the GBS [10^7 CFU/mL 24 h p.i.; 10^6 CFU/mL 48 h p.i.]. 246
This is probably due to efficient phagocytosis of larval hemocytes [121,122]. 247
Finally, after 72 hours, the larval burden in the mutant strain was ≈ 3 logs 248
higher compared to the WT strain (10^3 CFU/mL to 10^1 CFU/mL). 249
250

G. mellonella health index following infection with 118659 Δ essC strain 251

To measure more subtle differences in larvae health status post-infection with 252
118659 (WT) and 118659 Δ essC (mutant) strains, *G. mellonella* larvae were 253
monitored daily for the following attributes: activity, extent of silk production 254
(cocoon formation) and melanization (Table S4). Higher activity and increased 255
cocoon formation corresponded to healthier larva. In our experiments, the 256
activity of the *G. mellonella* larvae was similar for both strains WT and mutant 257
isolates. Melanin production occurred as fast as 6 hours after infection with 258
the mutant strain and proceeded until the end of the experiments (72 hours) 259
(Table S5). Melanin production was not fully correlated with mortality of the 260
larvae. We found live larvae with full melanization even after 72 hours. Larvae 261
infected with mutant GBS strain were able to produce more cocoon compared 262
to larvae infected with the WT strain, even when the melanization process 263
already started. Healthy larva received a score of 7-8 points, while very sick 264
larvae received a low score (<5). WT strains caused increased melanization, 265
lower activity and cocoon formation, and were associated with a low health 266
index – score 0 (72 h after inoculation) of *G. mellonella*. In contrast, the 267
mutant strain caused an intermediate infectious process (72 hours after 268
inoculation) with a health score of approximately 2. 269
Thus, larvae infected with mutant GBS strains received higher health scores. 270
These larvae successfully produced cocoons, even during progressive 271
melanization and overcame the infection. 272

273

Decreased fitness of mutant in the *G. mellonella* model 274
To determine relative differences in strain fitness of 118659 Δ essC (mutant) 275
compared to 118659 (WT) GBS strains, we performed a competition assay 276

using *G. mellonella*, which could be more sensitive in detecting changes in bacterial fitness, than the survival assay³². To distinguish between WT and mutant GBS strain, we induced resistance to streptomycin (Sm) in the WT strain by culturing and passaging it several times under high streptomycin concentrations. The mutant strain showed decreased fitness in *G. mellonella* model with 36.2% (SD 2.215) of the recovered CFU belonging to the mutant strains compared to 63.8% of WT (SD 2.375), $p < 0.0001$. As a control, to make sure that homogenization did not impact relative bacterial survival, we plated a portion of the initial mixed culture prior to injection into the larva and saw no difference in relative survival between the wild-type and the mutant strains (data not shown). According to our results, there are relative differences in strain fitness of WT and mutant strain, which could confirm the decreasing virulence of the mutant strain.

290

Bacterial clearance by G. mellonella

To study the difference in bacterial clearance by *G. mellonella* after infection with sublethal doses of the mutant and WT strains larvae were injected with a sublethal inoculum $\approx 1 \times 10^5$ CFU of 118659 (WT) strain and $\approx 1 \times 10^6$ CFU 118659 Δ essC of the mutant strain. The larvae were monitored every hour for 7 hours and after 12 hours. During the first 8 hours post infection, the bacterial burden of the WT in the larvae rapidly increased to three logs compared to the initial inoculum (Figure S1), but then decreased back to the initial levels. In contrast, the bacterial burden of the mutant strain in the larvae failed to multiply in the same rate and the eventually, the bacterial burden increased by only one log. Overall, the bacterial burden of the mutant strain was relatively

291

292

293

294

295

296

297

298

299

300

301

stable over time. To conclude, we demonstrated by the competition assay 302
differences in bacteria fitness of the WT and mutant isolates. 303

304

DISCUSSION 305

In this study we performed a genomic survey of T7SS in clinical GBS isolates, 306
obtained from blood cultures of neonates with EOD and collected from vaginal 307
screening of asymptomatic pregnant women. T7SS has been well 308
characterized in *Mycobacterium* species, in terms of its structure, functions, 309
and transport models¹¹. Recent advances have also facilitated our 310
understanding of T7SS in GBS^{26,27}. Here, we compared the structure of T7SS 311
locus among EOD/ST17 and colonizing/ST1 GBS isolates. We identified 312
significant differences in the structure of T7SS between EOD and colonizing 313
GBS strains. Notably in 76.5% % of EOD/ST17 strains putative effectors were 314
absent: *esxA* (WXG100 protein-encoding gene) and *esxB* (LXG-domain 315
containing protein), while in colonizing/ST1 isolates three copies of the 316
WXG100 protein-encoding gene (*esxA*) and one copy of the *essC* gene 317
(SAG1033) were observed. In contrast to the type-specific capsular 318
polysaccharides which are well-defined virulence determinants⁴, the role of 319
WXG100 proteins and LXG-domain containing protein as a virulence factor is 320
not yet clearly understood. These proteins may enhance the human immune 321
response to GBS infection. Absence of *esxA* and *esxB* genes in most ST17 322
isolates, may protect them from opsonization and killing by humoral and cell- 323
mediated processes in the host. In several colonizing isolates (ST6 and ST19) 324
structural and regulatory genes encoded by T7SS locus were missing. The 325
ST-dependent T7SS diversity in GBS was recently described by Zhou et al²⁷. 326

In our study we highlight the diversity of T7SS in relation to clinical 327 syndromes. We compared the virulence of EOD and colonizing isolates using 328 *G. mellonella* larvae, an in vivo model of GBS infection. The use of *G. 329 mellonella* larvae as bacterial infection model was developed as an alternative 330 to murine or other vertebrate infection models to contribute to the 3Rs 331 (reduction, replacement, and refinement) of animal use in scientific 332 research³⁸. In vivo larval experiments demonstrated a difference in the 333 pathogenicity of various clinical GBS strains. GBS strains associated with 334 EOD demonstrated enhanced virulence in *G. mellonella* compared to 335 colonizing strains. These results are consistent with previous study, where 336 GBS disease associated isolates were able to establish systemic infection of 337 *G. mellonella* larvae with extensive bacterial replication and dose-dependent 338 larval survival³². 339

We further demonstrated the role of T7SS in virulence of ST17 strains and 340 showed that it depends on the proper activity of EssC, a membrane- 341 embedded ATPase of the FtsK/SpoIIIE family. We generated an EOD/ST17 342 mutans by knocking out the *essC* gene and compared the virulence of the 343 mutant and WT strains in *G. melonella* larvae in vivo model. According to our 344 results, the knocked-out mutant 118659Δ*essC* has reduced ability to kill *G. 345 mellonella*. Furthermore, LD₅₀ values obtained with the 118659Δ*essC* strain 346 were significantly higher than those obtained with the WT 118659 strain. Our 347 results are in line with a recently published study²⁶, which demonstrated that 348 deletion of the ATPase-encoding gene, *essC*, mitigates virulence and GBS- 349 induced inflammation in the brain, as well as cell death in brain endothelial 350 cells in murine model of hematogenous meningitis. 351

Consistent with this, our data indicates that *EssC* deletion affected bacterial growth during infection, as well as bacterial fitness and the response of larvae to GBS infection. We show that larvae were more effective in eradicating 118659 Δ *essC* strain infection and this is probably related to different immune responses³⁹. The competition model for *G. mellonella* was found as more sensitive in discerning relative differences in *Bacillus anthracis* strain fitness than the survival assay³⁶. In our competition assay, the mutant strain showed decreased fitness, which could confirm the decreasing virulence of the mutant strain. The possible explanation is that T7SS in GBS secrete various effectors which induce immune tolerance against GBS infection. In the mutant strain (118659 Δ *essC*) lacking the functional secretion system, the larvae's immune system is more effective in eradication of the mutant strain³⁹. Finally, we show that *EssC* deletion was associated with an increase in the health index of *G. mellonella* during infection, regarding activity, cocoon formation and melaninization. The health index scoring system evaluates the health status of the larva during an infectious process. This parameter is also used to measure differences in virulence of other bacterial pathogens in *G. mellonella*^{40,41}. We show that melanin production by the larvae infected with the mutant strain occurred very quickly (after 6 hours p.i.). Although melaninization is usually associated with imminent death of the larva, larva remained viable, and even succeeded to produce a cocoon. We think this indicates that the mutant strain cannot succeed in causing massive dissemination of infection. This indicates that the mutant strain is attenuated compared to the WT as other parameters such as the larva's immune function and the infective dose were similar between experiments.

In conclusion, our findings indicate that the T7SS plays an essential role 377
during infection and contributes to GBS pathogenicity. The proper function of 378
T7SS, by efficient secretion of various effectors could be considered as a 379
virulence factor of invasive GBS isolates. In most of our ST17 isolates the 380
genes encoding to classical T7SS effector (*esxA*, *esxB*) were absent. This 381
may be related to their ability to escape from the immune system. Our results 382
establish a link between T7SS and EOD in the newborn and may partially 383
explain, why in most colonized women colonization does not proceed to 384
infection in the newborn. Further studies are warranted to identify other 385
effectors, their effect on substrate recognition and specificity, the 386
inflammasome and immune response. 387
388

MATERIALS AND METHODS 389

Bacterial strains and growth conditions 390
A total of 33 GBS clinical isolates obtained from blood cultures of neonates 391
with EOD (n=17) and GBS isolates collected from the vagina of asymptomatic 392
pregnant women (n=16) were studied (Table S1). GBS strains were grown in 393
BHI medium (Hylabs, Israel) at 37°C with 5% CO₂ under shaking conditions. 394
Escherichia coli was grown aerobically in Luria–Bertani (LB) (Hylabs, Israel) 395
at 37°C. Antibiotics were added: for GBS 250 µg/ml kanamycin (Km), 396
and 1 µg/ml erythromycin (Em); for *E. coli*: 100 µg/ml ampicillin (Amp), 397
500 µg/ u ml Em and 50 µg/ml Km. All antibiotics were purchased from 398
Sigma-Aldrich (St Louis, MO, USA). 399

<i>Bioinformatic analysis of T7SS genes in GBS clinical isolates</i>	401
Genomic libraries of clinical GBS isolates were prepared using Nextera XT	402
kits (Illumina, San Diego, CA) and sequenced using the Illumina MiSeq	403
Reagent Kit v3 (600-cycle). The reads obtained for each sample were	404
trimmed and the quality of the Fastq reads was examined using the Fastq	405
Utilities Service, and finally assembled by SPAdes using the PATRIC	406
website ²⁹ . The presence of T7SS genes was identified using web-resources:	407
the bacterial bioinformatics database and analysis resource of PATRIC	408
website (https://www.patricbrc.org/) and NCBI BLASTp (available	409
at www.ncbi.nlm.nih.gov/blast/). A high-quality representative genome of	410
<i>Streptococcus agalactiae</i> 2603V/R ATCC BAA611 (serotype V, ST19) was	411
used as reference ³⁰ . We characterized the structure and membrane topology	412
of genes using the HHpred interactive server. We identified genes that	413
encode WXG100 proteins, that are presumably secreted by T7SS, by	414
detection the presence of signal peptides using Phobius and SignalP tools.	415
We compared the structure and the presence of T7SS effectors among ST17	416
and ST1 GBS isolates.	417
	418
<i>Generation of knockout GBS strain</i>	419
Deletion mutant was created using the temperature sensitive plasmid	420
pJRS233 with a kanamycin resistance gene, Km in the knockout construct, as	421
previously described ³¹ . Briefly, the flanking region of <i>essC</i> gene of	422
GBS118659 were amplified using EssC-KO-F and EssC-KO-R primer pairs	423
(Table S2). The 3809-bp PCR product was purified and cloned into pGEM-T-	424
Easy (Promega, Medison WI, USA) to yield pGEM: <i>essC</i> . The plasmid was	425

transformed to *E. coli* DH5α by electroporation, plated on LB plates containing 426 ampicillin 100 µg/mL with x-gal and IPTG, and allowed to grow for one day at 427 37°C. Positive transformants (white colonies) were confirmed by PCR and 428 sequencing. Restriction of pGEM: *essC* plasmid with HpaI and KpnI, releases 429 a 2934 fragment of *essC* leaving 411bp and 465bp of *essC* on each side- for 430 homologous recombination to GBS chromosome. Next, the digested plasmid 431 was treated with Klenow enzyme and ligated with a 2043bp fragment of *Sma*I 432 digested Ωkm cassette (kanamycin resistance cassette flanked by Ω 433 elements). The pGΔEssCΩKm plasmid was transformed to *E. coli* DH5α by 434 electroporation, plated on LB plates containing kanamycin (Km)- 50 µg/mL. 435 Positive transformants were confirmed by PCR and sequencing. The plasmid 436 was restricted with NotI (releasing a 2954 bp fragment of ΔEssCΩKm flanked 437 by *essC* sequences) and ligated into NotI digested pJRS233 plasmid (a 438 temperature-sensitive shuttle vector). The pJΔ: EssC: ΩKm plasmid was 439 transformed to *E. coli* DH5α by electroporation, plated on LB plates containing 440 Km50/Em500. Positive transformants were confirmed by PCR. 3-7µg of pJΔ: 441 *EssC*: ΩKm plasmid was transformed into competent GBS cells (strain 442 118659) by electroporation (25 µF, 400ohms, 1.75 KV) and bacteria were 443 plated on THY plates containing erythromycin 1 µg/mL. Erythromycin-resistant 444 transconjugants were then cultured under non-permissive temperature to 445 select for single cross-over recombinants, followed by serial passage in 446 antibiotic-free BHI and screening for double cross-over deletion mutants by 447 PCR. Deletion was confirmed by PCR amplification of the regions spanning 448 the deleted fragment using the EssC-KO-F and EssC-KO-R primers, primers 449 for kanamycin resistance, and pair of primers from inner part of *essC* gene 450

(Conf-KO-essC), which should be replaced by omega kanamycin cassette 451
(Table S2). The absence of any secondary site mutations was confirmed by 452
whole genome sequencing. 453
454

In vitro phenotypes of 118659 ΔessC mutant and 118659 Wild type (WT) strains 455
456

The 118659 Wild type (WT) and 118659ΔessC (mutant) strains were grown 457
overnight in BHI medium, 1:20 diluted in fresh BHI medium at the zero-time 458
point and incubated at 37°C + 5% CO2 under shaking conditions. The optical 459
density (OD) at wavelength 600 nm of each group, was measured for 8 hours 460
(achieving the stationary phase). Each experiment was repeated three times. 461
The WT and mutant strains were cultured on blood agar (Hylabs, Israel) and 462
incubated at 37°C + 5% CO2 for 24 hours to observe hemolytic activity. 463
464

Galleria mellonella in vivo model 465

G. mellonella larvae were obtained from Volcani center (Dr. Dana Ment 466
laboratory, Entomology department), kept in darkness at room temperature, 467
and discarded after one week following arrival. Healthy larvae measuring from 468
2-2.5 cm were used for all experiments. Injections were done using INSUMED 469
29G insulin syringes (Pic solution)³². For each experiment groups of 10 larvae 470
were injected with 10 µl of serial dilutions of bacterial suspension. A control 471
group including five larvae were inoculated with PBS for control of motility 472
change caused by physical injury or infection by a contaminant. Experiments 473
were repeated twice. After injection, larvae were observed at room 474
temperature for 15–30 min to ensure recovery and were stored in Petri dishes 475

in the dark at 37 °C. Survival of infected larvae was monitored for 72 hours 476
post infection (p.i.). The larvae were considered dead when non-responsive to 477
touch. 478

Survival assay 479

GBS isolates were grown to an OD 0.4-0.6 in BHI ($\sim 1 \times 10^9$ colony forming 480
units [cfu] per ml), washed and resuspended in PBS (Hylabs, Israel), and then 481
diluted prior to injection. Cells were washed twice in sterile PBS and diluted to 482
the desired inoculum. The starting inoculum was confirmed through serial 483
dilution, plating on blood agar plates (Hylabs, Israel) just before administration 484
for CFU counting. For the determination of the infecting dose (LD_{50}), four 485
groups of 10 larvae were injected with 20 μ l of serial dilutions of bacterial 486
suspension as described above. Survival curves were plotted using Kaplan– 487
Meier method and differences in survival were calculated using the log-rank 488
test (SPSS). LD_{50} was calculated using the Probit method and differences in 489
 LD_{50} between different isolates were assessed using the Mann-Whitney test. 490

In vivo GBS growth curve 491

Groups of 10 larvae were infected with 118659 (WT) and 118659 Δ essC 492
(mutant) strains and monitored for 72 hours. At fixed time points (8, 24, 48, 493
and 72 h p.i.), larvae were kept at -20°C for 10 min before being transferred 494
to Eppendorf containing 100 μ L of sterile PBS, homogenized by mechanical 495
disruption, serially diluted. CFU counts from homogenized infected larvae 496
were determined by viable plate count method using selective Chromo Strep 497
B plates (Hylabs, Israel). 498

Competition assay 499

To distinguish between WT and mutant GBS strain, we induced resistance to streptomycin (Sm) in the WT strain by culturing and passing it several times under high streptomycin concentrations. The GBS strains were grown to log phase ($OD_{600}=0.4$) for 3-4 hours, washed and resuspended in PBS. Mutant strains were mixed with the parental (WT) at a 1:1 ratio. Ten microliters of the mixed culture ($\sim 1 \times 10^7$ total CFU) were injected into each larva and larvae were then incubated for 24 h at 37°C. We chose 24 hours as this was long enough for the infection to become established but short enough to preclude total larval mortality. The larvae were then rinsed in 70% ethanol followed by sterile water to help minimize contamination by surface bacteria before being homogenized in PBS by mechanical disruption. Homogenates were plated on BHI and BHI-antibiotic plates (Hylabs, Israel) (streptomycin (SM500) for WT and kanamycin (Kan250) for mutant strain) and the CFU recovered for each strain was calculated.

Monitoring of *G. mellonella* larvae

Each *G. mellonella* larvae were monitored daily for activity, silk production (cocoon formation) and melanization (Table S4). Loh et al ³³ developed these criteria to evaluate the health status of the larva during an infectious process. This parameter is used to measure more subtle differences in virulence of different bacterial pathogens in *G. mellonella* ³³⁻³⁶. An uninfected group and a group inoculated with saline were used as negative controls. A score was assigned to each observation, and an overall health index score was calculated for each larva.

Clearance of mutant and WT strains by <i>G. mellonella</i>	525
<i>G. mellonella</i> larvae were injected with a sublethal inoculum (the closest dose to killing 15% of the larvae) $\approx 1 \times 10^5$ CFU of 118659 (WT) strain and $\approx 1 \times 10^6$ CFU 118659 Δ essC (mutant) strain, monitored every hour for 7 hours and after 12 hours. At each fixed time point, three surviving larvae were randomly selected, kept for 15 min on ice and bathed in 70% ethanol and sterile water. The selected larvae were homogenized in 2 ml. For bacterial count serial dilution were performed and the homogenate was plated in blood agar (Hy-Labs, Israel) and selective Chromo Strep B plates (Hy-Labs, Israel).	526 527 528 529 530 531 532 533 534
Transcriptional analyses	535
Quantitative RT-PCR analysis of <i>esxA</i> , <i>essA</i> , <i>essB</i> , <i>esaB</i> and <i>essC</i> genes expression was performed as described previously ²⁷ . Primers were designed using Primer3 Plus and Clone manager 9 professional edition, ver 9.4 software. Primers were used at a final concentration of 0.4 μ mol/L (Table S3). RNA was extracted from GBS cultures grown at 37°C to an exponential growth phase in BHI medium. RNA was purified using the Rneasy Mini kit (Qiagen) according to manufacturer instructions. Purified RNA was treated with the DNase kit (HY-labs, Israel) according to manufacturer instructions. The RNA quality and concentration was assessed by NanodropTM and visually on a 2 % E-Gel with SYBR safe (Invitrogen, Thermo) and visualized by E-Gel Power Snap Electrophoresis device (Invitrogen, Thermo Fisher). cDNA was synthesized using the Hy-RT-PCR kit (HY-labs, Israel), according to manufacturer instructions. cDNA was diluted 1:150 to further reduce bacterial DNA contamination and qPCR was performed using Hy-SYBR	536 537 538 539 540 541 542 543 544 545 546 547 548 549

power mix (HY-labs, Israel) and CFX96 Real-Time System (Biorad). RNA 550
from three independent biological triplicates were analyzed and final cycle 551
threshold for each strain was calculated (mean value of three experiments). 552
Relative quantification of gene expression was performed using comparative 553
 $2^{-\Delta\Delta CT}$. Results were normalized using *rpoB* gene as the housekeeping gene. 554
555

Statistical analyses 556

Statistical analysis was performed using SPSS version 27.0 (SPSS Inc., 557
Chicago, IL, USA). Statistical details of experiments, such as statistical test 558
used, experimental *n*, can be found in each figure legend. Significance was 559
defined as *p* < 0.05. 560

561

ACKNOWLEDGEMENTS 562

The authors report there are no competing interests to declare. 563

The study was funded by internal funds of the Microbiology laboratory, 564
Mayaney Hayeshua, Bney Brak, Israel and the Infectious Disease Unit, Sheba 565
Medical Center. 566

567

REFERENCES	568
1. Shabayek, S. & Spellerberg, B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. <i>Front Microbiol</i> 9 , (2018).	569 570
2. Filkins, L. <i>et al.</i> American Society for Microbiology Provides 2020 Guidelines for Detection and Identification of Group B Streptococcus. <i>J Clin Microbiol</i> 59 , (2021).	571 572 573
3. Dermer, P., Lee, C., Eggert, J. & Few, B. A history of neonatal group B streptococcus with its related morbidity and mortality rates in the United States. <i>J Pediatr Nurs</i> 19 , 357–363 (2004).	574 575 576
4. Nizet, V. & Rubens, C. E. Pathogenic Mechanisms and Virulence Factors of Group B Streptococci. in <i>Gram-Positive Pathogens</i> 152–168 (ASM Press, 2014). doi:10.1128/9781555816513.ch13.	577 578 579
5. Herbert, M. A., Beveridge, C. J. & Saunders, N. J. Bacterial virulence factors in neonatal sepsis: group B streptococcus. <i>Curr Opin Infect Dis</i> 17 , 225–229 (2004).	580 581 582
6. Vornhagen, J., Adams Waldorf, K. M. & Rajagopal, L. Perinatal Group B Streptococcal Infections: Virulence Factors, Immunity, and Prevention Strategies. <i>Trends in Microbiology</i> vol. 25 919–931 Preprint at https://doi.org/10.1016/j.tim.2017.05.013 (2017).	583 584 585 586
7. Green, E. R. & Mecsas, J. Bacterial Secretion Systems: An Overview. <i>Microbiol Spectr</i> 4 , (2016).	587 588
8. Rivera-Calzada, A., Famelis, N., Llorca, O. & Geibel, S. Type VII secretion systems: structure, functions and transport models. <i>Nature</i>	589 590

Reviews Microbiology vol. 19 567–584 Preprint at 591
<https://doi.org/10.1038/s41579-021-00560-5> (2021). 592

9. Gray, T. A. *et al.* Intercellular communication and conjugation are 593
mediated by ESX secretion systems in mycobacteria HHS Public 594
Access. *Science* (1979) **354**, 347–350 (2016). 595

10. Aly, K. A., Anderson, M., Ohr, R. J. & Missiakas, D. Isolation of a 596
membrane protein complex for type VII secretion in *Staphylococcus* 597
aureus. *J Bacteriol* **199**, (2017). 598

11. Famelis, N. *et al.* Architecture of the mycobacterial type VII secretion 599
system. *Nature* | **576**, (2019). 600

12. Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. 601
The type VII secretion system of *Staphylococcus aureus* secretes a 602
nuclease toxin that targets competitor bacteria. *Nat Microbiol* **2**, 16183 603
(2017). 604

13. Garufi, G., Butler, E. & Missiakas, D. ESAT-6-like protein secretion in 605
Bacillus anthracis. *J Bacteriol* **190**, 7004–7011 (2008). 606

14. Way, S. S. & Wilson, C. B. The *Mycobacterium tuberculosis* ESAT-6 607
homologue in *Listeria monocytogenes* is dispensable for growth in vitro 608
and in vivo. *Infect Immun* **73**, 6151–6153 (2005). 609

15. Rosenberg, O. S. *et al.* Substrates control multimerization and 610
activation of the multi-domain ATPase motor of type VII secretion. *Cell* 611
161, 501–512 (2015). 612

16. Costa, T. R. D. *et al.* Secretion systems in Gram-negative bacteria: 613
structural and mechanistic insights. *Nat Rev Microbiol* **13**, 343 (2015). 614

17. Pallen, M. J. The ESAT-6/WXG100 superfamily – and a new Gram- 615
positive secretion system? *Trends Microbiol* **10**, 209–212 (2002). 616

18. Tran, H. K. R., Grebenc, D. W., Klein, T. A. & Whitney, J. C. Bacterial 617
type VII secretion: An important player in host-microbe and microbe- 618
microbe interactions. *Molecular Microbiology* vol. 115 478–489 Preprint 619
at <https://doi.org/10.1111/mmi.14680> (2021). 620

19. Renshaw, P. S. *et al.* Structure and function of the complex formed by 621
the tuberculosis virulence factors CFP-10 and ESAT-6. *EMBO J* **24**, 622
2491–2498 (2005). 623

20. Poulsen, C., Panjikar, S., Holton, S. J., Wilmanns, M. & Song, Y. H. 624
WXG100 protein superfamily consists of three subfamilies and exhibits 625
an α -helical C-terminal conserved residue pattern. *PLoS One* **9**, (2014). 626

21. Simeone, R., Bottai, D., Frigui, W., Majlessi, L. & Brosch, R. ESX/type 627
VII secretion systems of mycobacteria: Insights into evolution, 628
pathogenicity and protection. *Tuberculosis* **95**, S150–S154 (2015). 629

22. Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. 630
The type VII secretion system of *Staphylococcus aureus* secretes a 631
nuclease toxin that targets competitor bacteria. *Nat Microbiol* **2**, (2016). 632

23. Lai, L. *et al.* *Streptococcus suis* serotype 9 strain GZ0565 contains a 633
type VII secretion system putative substrate EsxA that contributes to 634
bacterial virulence and a vanZ- like gene that confers resistance to 635

teicoplanin and dalbavancin in *Streptococcus agalactiae*. *Vet Microbiol* 636
205, 26–33 (2017). 637

24. Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. 638
The type VII secretion system of *Staphylococcus aureus* secretes a 639
nuclease toxin that targets competitor bacteria. *Nat Microbiol* 2, (2016). 640

25. Taylor, J. C. *et al.* A type VII secretion system of *Streptococcus* 641
gallolyticus subsp. *gallolyticus* contributes to gut colonization and the 642
development of colon tumors. *PLoS Pathog* 17, (2021). 643

26. Spencer, B. L. *et al.* A type VII secretion system in Group B 644
Streptococcus mediates cytotoxicity and virulence. *PLoS Pathog* 17, 645
(2021). 646

27. Zhou, K. *et al.* Comparative Genomic Analysis of Type VII Secretion 647
System in *Streptococcus agalactiae* Indicates Its Possible Sequence 648
Type-Dependent Diversity Comparative Genomic Analysis of Type VII 649
Secretion System in *Streptococcus agalactiae* Indicates Its Possible 650
Sequence Type-Dependent Diversity. *Front. Article 880943 1. Cell.* 651
Infect. Microbiol 12, 880943 (2022). 652

28. Schindler, Y. *et al.* Group B *Streptococcus* serotypes associated with 653
different clinical syndromes: Asymptomatic carriage in pregnant women, 654
intrauterine fetal death, and early onset disease in the newborn. *PLoS* 655
One 15, (2020). 656

29. Wattam, A. R. *et al.* Improvements to PATRIC, the all-bacterial 657
Bioinformatics Database and Analysis Resource Center. *Nucleic Acids* 658
Res 45, D535–D542 (2017). 659

30. Tettelin, H. *et al.* Complete genome sequence and comparative 660
genomic analysis of an emerging human pathogen, serotype V 661
Streptococcus agalactiae. *Proc Natl Acad Sci U S A* **99**, 12391–12396 662
(2002). 663

31. Jiang, S. M. *et al.* Variation in the group B Streptococcus CsrRS regulon 664
and effects on pathogenicity. *J Bacteriol* **190**, 1956–1965 (2008). 665

32. Six, A., Krajangwong, S., Crumlish, M., Zadoks, R. N. & Walker, D. 666
Galleria mellonella as an infection model for the multi-host pathogen 667
Streptococcus agalactiae reflects hypervirulence of strains associated 668
with human invasive disease. *Virulence* **10**, 600–609 (2019). 669

33. Tsai, C. J. Y., Loh, J. M. S. & Proft, T. Galleria mellonella infection 670
models for the study of bacterial diseases and for antimicrobial drug 671
testing. *Virulence* vol. 7 214–229 Preprint at 672
<https://doi.org/10.1080/21505594.2015.1135289> (2016). 673

34. Loh, J. M., Adenwalla, N., Wiles, S. & Proft, T. Galleria mellonella larvae 674
as an infection model for group A streptococcus. *Virulence* **4**, 419–428 675
(2013). 676

35. Vertyporokh, L. & Wojda, I. Immune response of Galleria mellonella 677
after injection with non-lethal and lethal dosages of Candida albicans. *J* 678
Invertebr Pathol **170**, 107327 (2020). 679

36. Ghigo, E., Rossoni, R. D., McGillivray, S. M., Malmquist, J. A. & Rogan, 680
M. R. Galleria mellonella as an Infection Model for *Bacillus anthracis* 681
Sterne. *Frontiers in Cellular and Infection Microbiology* | 682
www.frontiersin.org **9**, 360 (2019). 683

37. Warne, B. *et al.* The Ess/Type VII secretion system of *Staphylococcus aureus* shows unexpected genetic diversity. *BMC Genomics* **17**, (2016). 684 685

38. Cutuli, M. A. *et al.* *Galleria mellonella* as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. *Virulence* **10**, 527–541 (2019). 686 687 688

39. Trevijano-Contador, N. & Zaragoza, O. Immune response of *Galleria mellonella* against human fungal pathogens. *Journal of Fungi* vol. 5 Preprint at <https://doi.org/10.3390/jof5010003> (2019). 689 690 691

40. Berríos, P. *et al.* Inhibitory effect of biofilm-forming *Lactobacillus kunkeei* strains against virulent *Pseudomonas aeruginosa* in vitro and in honeycomb moth (*Galleria mellonella*) infection model. *Benef Microbes* **9**, 257–268 (2018). 692 693 694 695

41. Vertyporokh, L. & Wojda, I. Immune response of *Galleria mellonella* after injection with non-lethal and lethal dosages of *Candida albicans*. *J Invertebr Pathol* **170**, 107327 (2020). 696 697 698 699 700 701 702 703 704 705 706 707

Legends to figures	708
Figure 1. Comparison of the schematic structure of the T7SS system between different GBS ST types.	709
	710
	711
Figure 2. Kaplan-Meier survival curves of larvae challenged with EOD and colonizing isolates.	712
	713
A Kaplan–Meier survival plot of survival after infection with either EOD or colonizing strain. Data were collected from eight distinct experiments (four experiments with EOD strains and four experiments with colonizing strains) with 10 larvae per group for each experiment. Survival curves show one representative experiment, with use of 10 larvae per group. PBS-injected larvae were used as a negative control, and all survived until the endpoint of the experiment.	714
	715
	716
	717
	718
	719
	720
	721
Figure 3 118659 Δ essC mutant knockout	722
a. Knock out confirmation of essC gene by PCR method, using EssC-KO -F and EssC-KO -R primers flanking the essC gene. Lane 3 -118659 WT strain (~ 3300 bp.); Lane 4 - 118659 Δ essC (2900 bp.); Lane 6 – 1 kb DNA Ladder.	723
	724
	725
	726
b. Knock out confirmation of essC gene by PCR method. Lane 1– 100 bp DNA adder; Lane (2,4): 118659 Δ essC mutant, with primers EssC-KO- F flanking the essC gene and v-omegaKm1 flanking the kanamycin resistance cassette (~ 621 bp.); Lane (6,8): 118659 Δ essC strain, with primers EssC-KO- R flanking the essC gene and v-omegaKm2	727
	728
	729
	730
	731

flanking the kanamycin resistance cassette (~ 574 bp.). For comparison, 732
the absence of band was identified with 118659 WT strain (Lane 3 and 7). 733

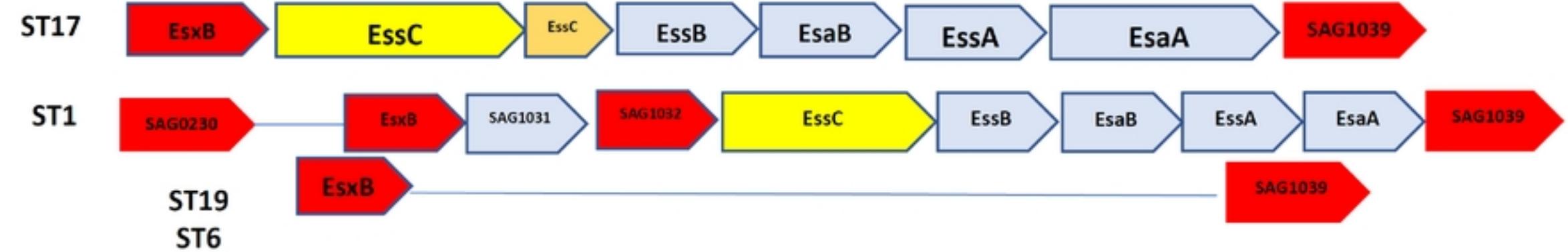
734

Figure 4. Growth rate of the wild-type 118659 (WT) and the mutant 735
118659 Δ essC isolates 736

Growth rate of the wild-type 118659 (WT) (blue line) and mutamt 737
118659 Δ essC (red line) strains in BHI medium for 8 hours. Assays were 738
repeated three times and are presented as mean \pm SD. 739

740

Figure 4. EOD strains showed increased virulence in *G.mellonella*. LD₅₀ 741
values determined by Probit analysis following infection of larvae by (A) EOD 742
strains (blue) and colonizing strains (red). Each datapoint represents the LD₅₀ 743
of each experiment in which groups of 10 larvae were infected with four 744
different inoculums. 745


746

747

Figure 5. Kaplan-Meier survival curves of larvae challenged with 118659 748
(WT) and mutant strain (118659 Δ EssC) 749

Kaplan-Meier survival curves of larvae challenged with an inoculum of 10⁷ 750
CFU of 118659 (WT) and mutant strain (118659 Δ EssC), and PBS (control). 751
Each infection was repeated three times with 10 larvae for each experiment, 752
(p < 0.05; log-rank test). 753

Figure 1. Comparison of schematic strictures of T7SS between different GBS ST types

Figure 2. Kaplan-Meier survival curves of larvae challenged with EOD and colonizing isolates

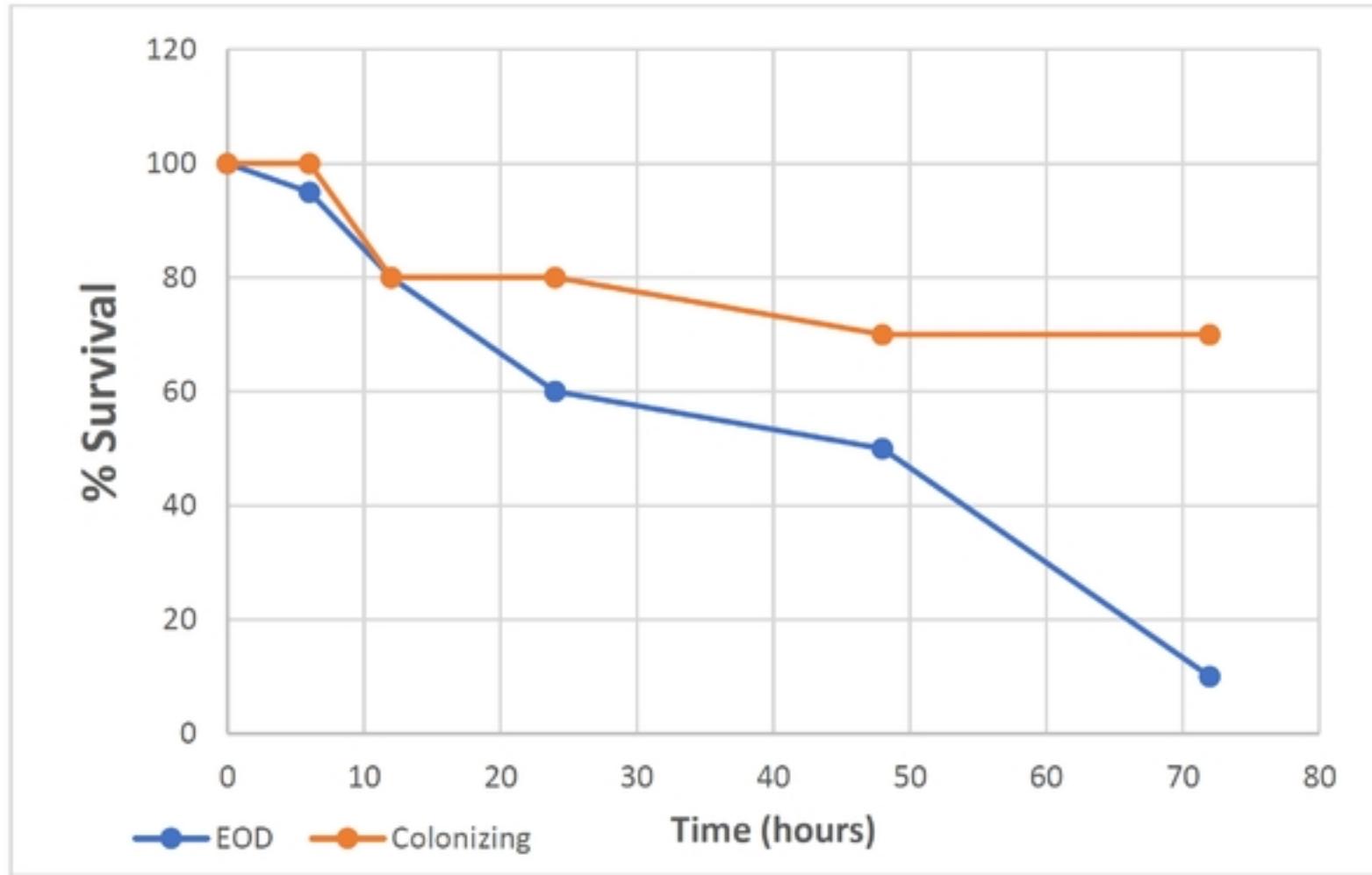
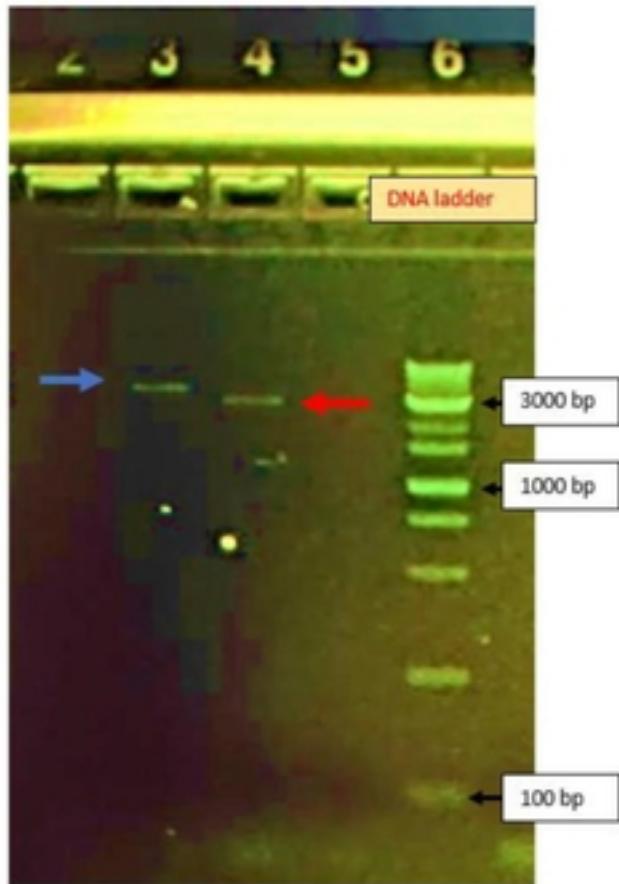
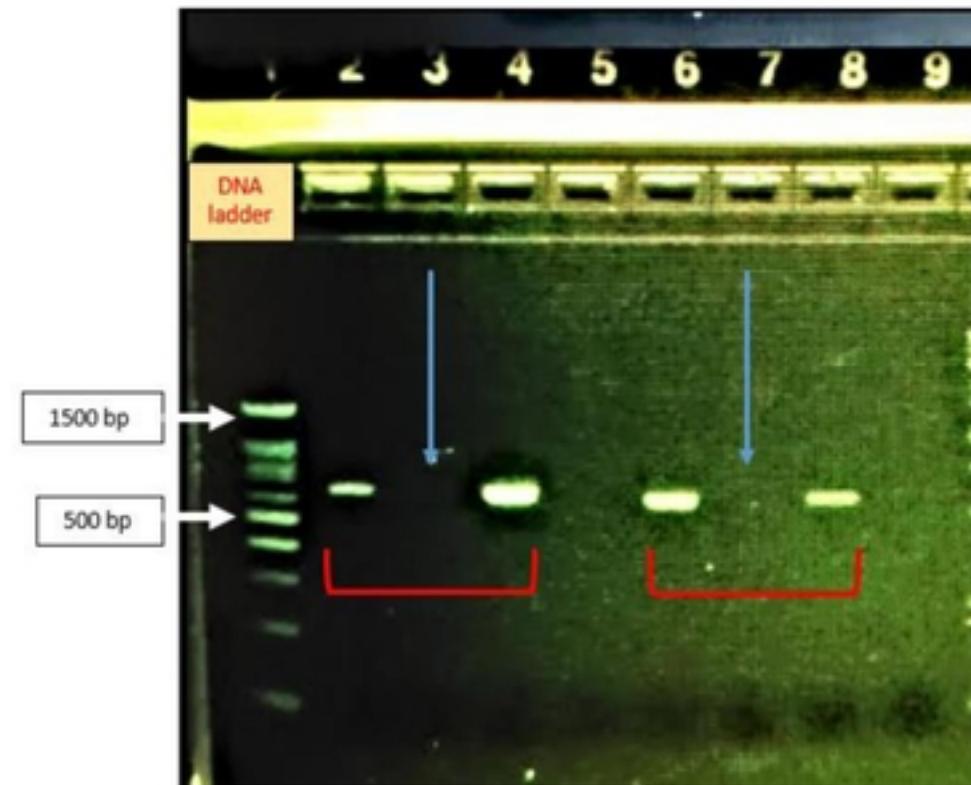
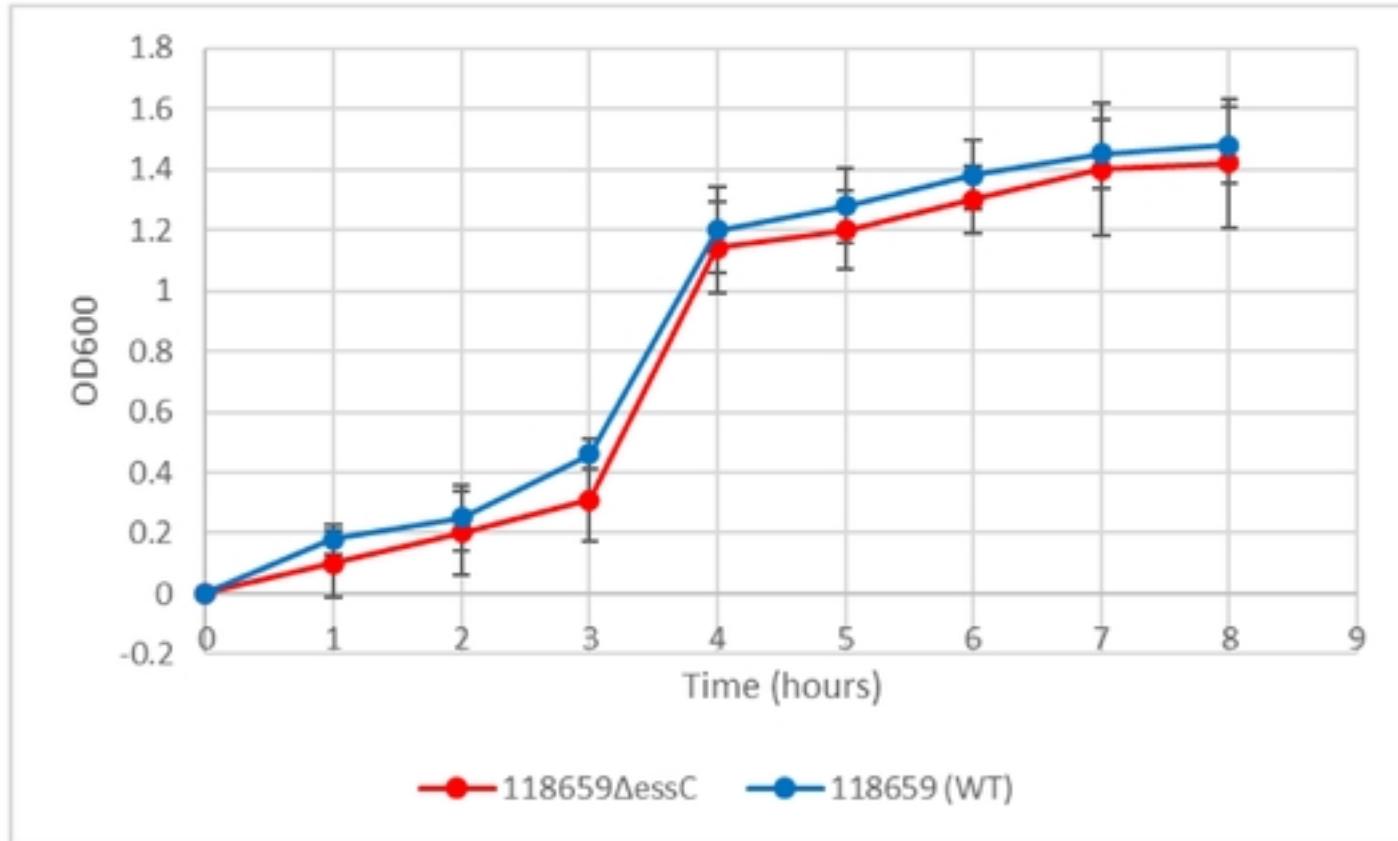
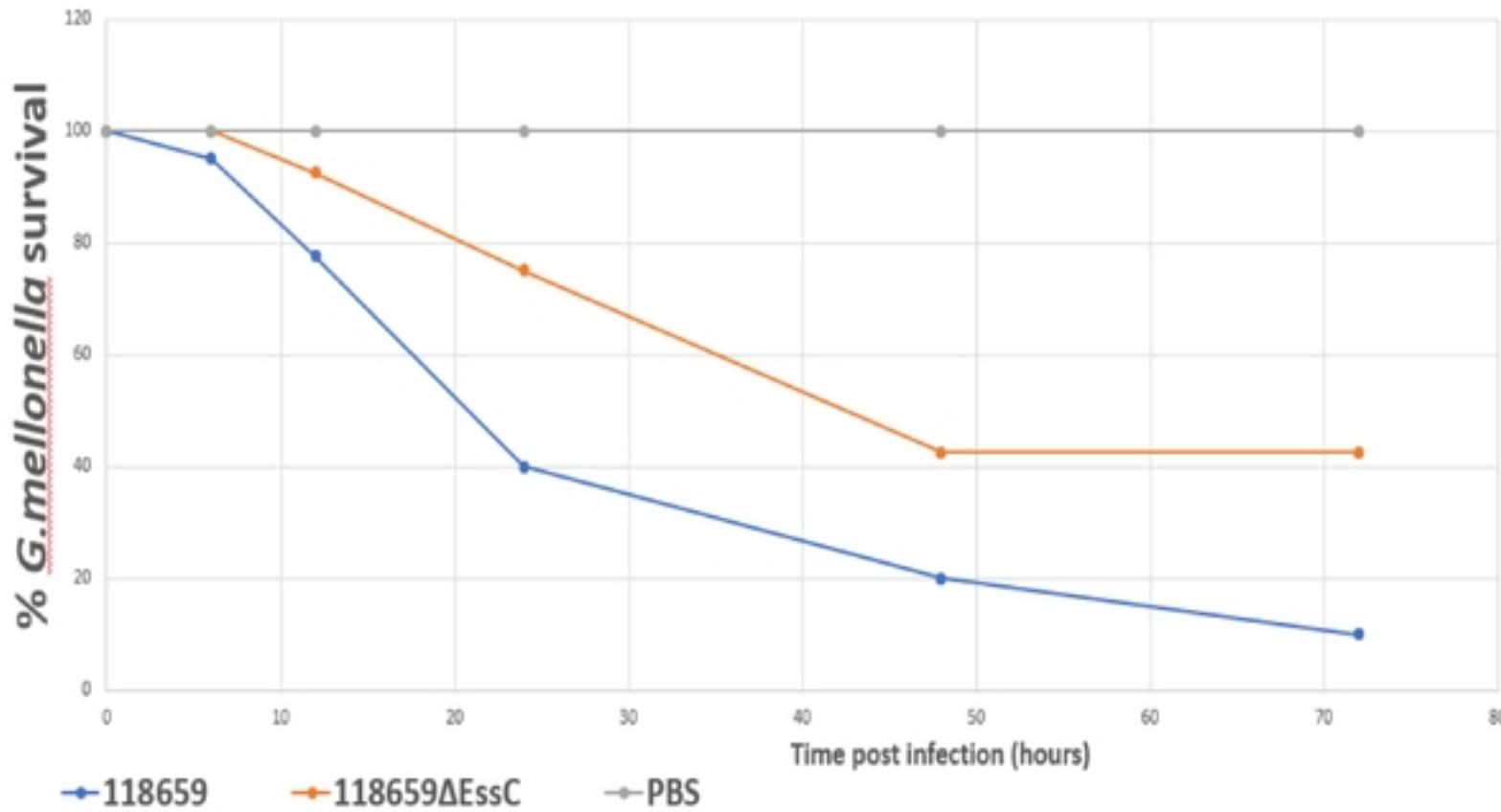




Figure 3. 118659ΔessC mutant knockout


a. 118659ΔessC mutant


b. Knock out confirmation of essC gene by PCR method

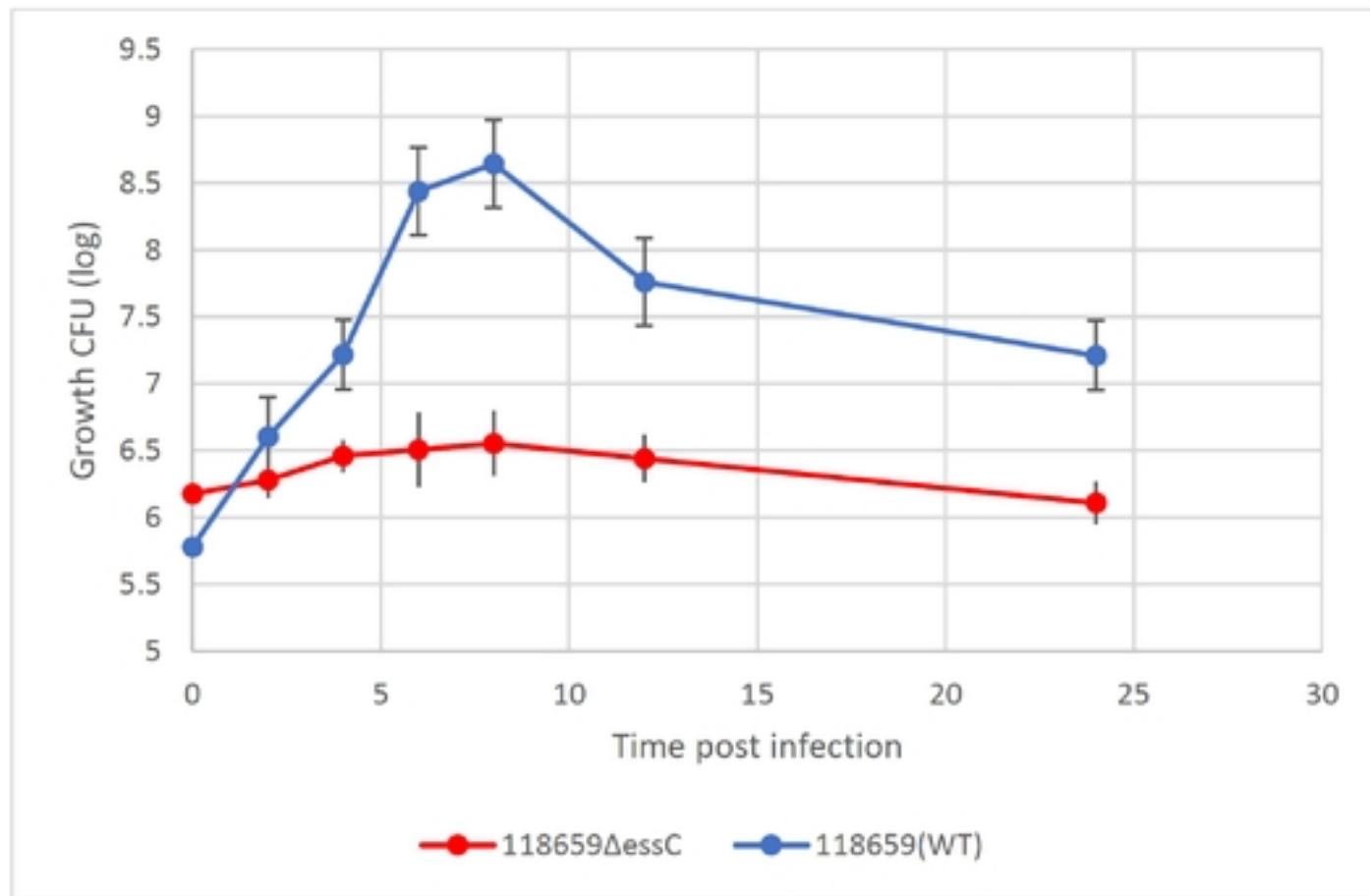

Figure 4: Growth rate of the wild-type 118659 (WT) and the mutant 118659 Δ essC isolates

Figure 5. Kaplan-Meier survival curves of larvae challenged with 118659 (WT) and mutant (118659 Δ EssC) isolates

Figure S1: Kinetics of 118659 (WT) and 118659 Δ EssC bacterial growth in vivo

