bioRxiv preprint doi: https://doi.org/10.1101/2023.01.23.525100; this version posted January 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Delineation of complex gene expression patterns in single cell RNA-seq data with

ICARUSV2.0
Andrew Jiang™*, Linya You?, Russell G Snell* and Klaus Lehnert!

! Applied Translational Genetics Group, School of Biological Sciences, The University of

Auckland, Auckland, New Zealand

2 Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences,

Fudan University, Shanghai, China
* To whom correspondence should be addressed. Email: gjial69@aucklanduni.ac.nz
Abstract

Complex biological traits and disease often involve patterns of gene expression that can be
characterised and examined. Here we present ICARUS v2.0, an update to our single cell
RNA-seq analysis web server with additional tools to investigate gene networks and
understand core patterns of gene regulation in relation to biological traits. ICARUS v2.0
enables gene co-expression analysis with MEGENA, transcription factor regulated network
identification with SCENIC, trajectory analysis with Monocle3, and characterisation of cell-
cell communication with CellChat. Cell cluster gene expression profiles may be examined
against Genome Wide Association Studies with MAGMA to find significant associations
with GWAS traits. Additionally, differentially expressed genes may be compared against the
Drug-Gene Interaction database (DGldb 4.0) to facilitate drug discovery. ICARUS v2.0
offers a comprehensive toolbox of the latest single cell RNA-seq analysis methodologies
packed into an efficient, user friendly, tutorial style web server application (accessible at
https://launch.icarus-scrnaseq.cloud.edu.au/) that enables single cell RNA-seq analysis

tailored to the user’ s dataset.
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Many biological networks contain patterns of gene expression that are evolutionary
conserved. These patterns of networks are comprised of intertwined signalling pathways that
are fundamentaly important for biological functionality including development,
differentiation, response to stimuli and senescence. During disease, many of these pathways
become dysregulated and characterisation of these affected cell populations and their
regulatory networks is vital for understanding disease mechanisms and pathogenesis (1-3).
Here, we present an update to ICARUS (4), our web server tool to enable users without
experience in R to undertake single cell RNA-seq analysis and aid hypothesis generation.
ICARUS v2.0 assembles the latest single cell RNA-seq gene network construction and

analysistoolsto allow interpretation and deconstruction of complex biological traits.

ICARUS v2.0 supports establishment of gene networks through the implementation of;
Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) (5), transcription
factor regulatory network construction through single-cell regulatory network inference and
clustering (SCENIC) (6), characterisation of gene expression changes through pseudotime
(cell trgjectories) with Monocle3 (7-9) and cell-cell communication signalling classification
through identification of ligand-receptor pairs with CellChat (10). Furthermore, the gene
expression profiles of cell populations can be examined for associations with Genome Wide
Association Study (GWAYS) traits using the multi-marker analysis of genomic annotation
(MAGMA) tool  (11,12) to explore crucial cell populations that may drive the affected
phenotype. Finaly, differentially expressed genes can be queried against the drug-gene
interactions database, DGIdb 4.0 (13) to facilitate the identification of drug targets for

therapeutic testing.
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Further updates to data processing methods are also included in this update. These include, a
quality control step to identify cell doublets/multiplets using DoubletFinder (14), an
improved method of data normalisation, SCTransform (15,16), and a new method for cell
cluster labelling, sctype (17) that congregates cell type specific markers from CellMarker (18)
and PanglaoDB (19) databases. Summary of R packages used in ICARUS v2.0 including the
main command are detailed in Table 1. ICARUS v2.0 is accessible through an efficient, user-

friendly web server at https://launch.icarus-scrnaseq.cloud.edu.auy.

Table1l Summary of R packages used in | CARUS v2.0

Stepin ICARUS Main Command R Packages Reference
Doublet removal DoubletFinder::doubletFinder_v3 DoubletFinder 14
SCTransform Seurat::SCTransform(vst.flavor = "v2") Seurat (20-24)
sctype: cell type sctype::sctype_score sctype a7
labelling

MEGENA: gene MEGENA::do.MEGENA MEGENA (5)
co-expression

modules MEGENA::MEGENA.ModuleSummary

MEGENA::moduleGO

SCENIC: SCENIC::runGenie3 SCENIC (6)
transcription factor .

regulatory SCENIC::runSCENIC_1_coexNetwork2modules

networks SCENIC::runSCENIC_2_createRegulons

SCENIC::runSCENIC_3 scoreCells

Monocle3: Monaocle3::order_cells Monocle3 8
trajectory analysis

CellChat: Cell-Cell  CellChat::computeCommunProb CellChat (20)
ligand receptor

signalling CellChat::computeCommunProbPathway

CellChat::netAnalysis_computeCentrality
CellChat::computeNetSimilarity
CellChat::identifyCommunicati onPatterns

MAGMA: Cell MAGMA .Celltyping::import_magma._files MAGMA.Celltyping (12)

type GWAS trait ) o o
associations MAGMA .Celltyping::celltype_associations _pipeline
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Drug-Gene Data mining from Drug-Gene database 4.0 - (13)
interaction database

Materials and M ethods

Updates to processing methods

Doublet Removal

Cell doublets or multiplets may arise during scRNA-seq library preparation when droplet-
based microfluidics methods partition multiple cells into asingle droplet. These doublets will
display mixed transcriptomes and can compromise downstream analysis by creating spurious
intermediate populations or transition states. ICARUS v2.0 introduces the DoubletFinder R
package to detect and remove heterotypic doublets (Default settings, refer to

https://github.com/chris-mcginnis-ucsf/DoubletFinder) (14). DoubletFinder first simulates

“artificial doublets’ using transcriptional profiles from pairs of cellsin real data. The artificial
doublets are merged with real data and dimensionality reduction is performed. Lastly, a k-
nearest neighbour graph is developed, and each cell is scored based on its proximity to
artificial doublets. The highest scoring cells are assigned as real doublets. The user has the

option to visualise and remove these doublets from further analysis.

SCTransform

Scaling and normalization of raw gene count matrices of single cell RNA-seq data is a
common practice to account for technical confounders such as differences in sequence depth.
ICARUS v2.0 now includes the Seurat SCTransform method of data normalisation which
recovers sharper biological distinctions between formed cell clusters compared to log-

normalisation. The SCTransform methodology computes Pearson residuals from a negative
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binomial regression of the raw count data and applies dimensionality reduction methods

(15,16).

sctype and additional SngleR datasets

The expression profiles of marker genes for each cell cluster may be compared against
existing cell marker datasets to assign cell type labels to clusters. ICARUS v2.0 introduces
cell cluster labelling with sctype (17), an ultra-fast unsupervised method for cell type
annotation  using  compiled  cell markers  from  CelMarker  (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/) (18) and PanglaoDB (https://panglaodb.se/) (19)

databases. Sctype is computationally efficient and includes marker gene sets for 11 different
tissue types including brain, pancreas, immune system, liver, eye, kidney, lung, embryonic,

gastrointestinal tract, muscle and skin (17).

ICARUS provides the SingleR supervised cell-type assignment algorithm to annotate cell
clusters by comparison to previoudy annotated cell types in single cell datasets (25).
ICARUS v2.0 extends the utility of SingleR by including additional reference datasets
including Darmanis human tempora lobe data (26); Zhong human embryonic prefrontal
cortex data (27); Baron human and mouse pancreas data (28); Lawlor human non-diabetic
and diabetic pancreas data (29); Muraro human pancreas data (30); Segerstolpe human non-
diabetic and diabetic pancreas data (31) and the He organ atlas, which comprises data from
15 organs (bladder, blood, common bile duct, oesophagus, heart, liver, lymph node, bone

marrow, muscle, rectum, skin, small intestine, spleen, stomach and trachea) (32).

Gene networ k constr uction

MEGENA: gene co-expression modules
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Patterns of biological networks can be grouped into hierarchal co-expression modules which
infer functionality and dictate biological causality. A method of detecting these gene co-
expresson modules is multiscale embedded gene co-expression network analysis
(MEGENA) which employs a planar maximally filtered graph to extract significant gene
interactions and constructs co-expression gene modules (5). MEGENA first classifies gene
co-expression modules through identification of significant gene interactions via planar
filtered network construction and embedding on a topological sphere. Multi-scale clustering
is then applied to group similar and dissimilar gene modules. Lastly, multiscale hub analysis

is used to connect clustersin a hierarchical structure.

ICARUS v2.0 peforms MEGENA on ether a set of highly variable genes
(Seurat::FindVariableFeatures) or user computed differentially expressed genes to generate a
set of hierarchically ordered co-expresson modules, where larger modules progressively
branch into smaller submodules. A heatmap of significant Gene Ontology terms associated
with each co-expression module is also provided to aid interpretation and hypothesis
generation. Additionally, a hierarchical sunburst plot of computed MEGENA co-expression
modules is produced which highlights the cell cluster/cell type that displays the highest
activity of the corresponding module. Module activity is computed as a percentage of cluster

marker gene overlap (Seurat::FindAlIMarkers) with co-expression module genes.

SCENIC: transcription factor regulatory networks

A cdll’s transcriptional state may be characterised by gene regulatory networks (GRNSs) that
are formed by transcription factors and cofactors that regulate each other and their
downstream gene targets. ICARUS v2.0 utilises the SCENIC R package (6) to characterise
cell cluster/cell type specific GRNs using either a set of highly variable genes

(Seurat::FindVariableFeatures) or user computed differentially expressed genes. SCENIC
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performs cis-regulatory transcription factor binding motif analysis on a set of co-expressed
transcription factors and variable genes. Transcription factor motifs in the promoter region of
genes (up to 500bp upstream of the transcription start site) and 20kb around the transcription
start site (+/- 10kb) are scored. ICARUS v2.0 currently supports SCENIC v1.2.4 which
includes species specific transcription motif database for human, mouse, and fly. The activity
of these transcription factor regulated gene modules is scored across cell populations using
the AUCel| algorithm (6). ICARUS v2.0 visualises regulated gene module activity across cell
populations in 2D/3D UMAP and t-SNE plots. Heatmap and dotplot visualisations are also

provided.

Monocle3: trajectory analysis

The expression profiles of cells change during development, in response to stimuli and
throughout life. Trgjectory analysis ams to determine the sequence of gene expression
changes in single cell RNA-seq datasets. ICARUS v2.0 employs the Monocle3 algorithm (8)
to graph cells according to their progress in pseudotime, a measure of the amount of
transcriptional change a cell undergoes from its beginning to end states. Calculation of
pseudotime requires the user to select a population of cells where the beginning of the
biological process is likely located (known as root cells). Root cells may be selected from a
specific cell population/cell type or interactively using a lasso select function. A table of

genes that exhibit changes across pseudotime is also provided.

CellChat: Céell-Cdll ligand receptor signalling

Cells interact and communicate with each other through ligand-receptor pairs that coordinate
many biological processes in both healthy and diseased conditions. The characterisation of
cell-cell signalling crosstalk through soluble agonists/antagonists and membrane bound

cofactors may help us interpret and understand complex networks of systems biology.
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ICARUS v2.0 employs the CellChat (10) tool to quantitatively infer and analyse intercellular
communication networks from single cell RNA-seq data. CellChat incorporates a manually
curated comprehensive database of ligand-receptor pairs, soluble agonists/antagonists and
stimulatory/inhibitory membrane bound co-receptors to infer cell-cell communication
interactions based on social network analysis tools, pattern recognition methods and manifold
learning approaches. ICARUS v2.0 currently supports CellChat v1.4.0 incorporating
signalling molecule interaction databases for human and mouse. The option to analyse a

single dataset or comparison between two datasetsis available.

MAGMA: Cell type GWAS trait associations

Genome wide association studies have identified several loci and genes that are associated
with atrait of interest. The expression profiles of cell populations in single cell RNA-seq data
can be compared against these GWAS loci to identify potentially affected cell types
underlying complex traits. ICARUS employs the multi-marker analysis of genomic
annotation (MAGMA) methodology to identify increased linear association between cell
population derived gene sets and gene-level GWAS summary statistics, with the hypothesis
that in affected cell types, expressed genes should be more associated with the GWAS trait
(11,12). The user may either upload their own GWAS summary statistics or select biological
traits from over 700 public GWAS datasets from the IEU open GWAS project

(https://gwas.mrcieu.ac.uk/), UK biobank (http://www.nealelab.is/uk-biobank) and FinnGen

(https://www.finngen.fi/fi). Public GWAS datasets were curated by
neurogenomicssMAGMA _Files Public

(https://github.com/neurogenomicssy MAGMA_Files Public) and includes gene level GWAS

statistics for 10b upstream and 1.5kb downstream of each associated loci. ICARUS v2.0
utilises the MAGMA .Celltyping v.2.0.6 R package to identify cell types that may explain the

heritability signal from GWAS summary statistics.
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Drug-Gene Interaction Database

The Drug-Gene Interaction Database (DGldb, www.dgidb.org) (13,33,34) curates

information on druggable genes from publications (35,36), known affected pathways (Gene
Ontology, Human Protein Atlas, IDG) and publicly available databases (DrugBank,
PharmGKB, Chembl, Drug Target Commons and TTD). ICARUS v2.0 offers an option to
query differentially expressed genes against DGIdb v4.0 (13) and return a list of potential
drug targets with information of interaction type (i.e., inhibitor, agonist, blocker), interaction
claim source (i.e., PharmGKB, ChemblInteractions, etc), interaction group score (score takes
into account number of drug and gene partners and number of supporting publications) and
the relevant pubmed reference if available. Suitable drugs may be tested in a laboratory

setting and contribute to discovery of repurposed drugs for clinical benefit.

Results

To demonstrate the utility of ICARUS v2.0, we have examined a single-nuclei RNA-seq data
of the substantia nigrafrom 5 human individuals with absence of neurological clinical disease.
Data is available from human cell atlas

(https://data.humancell atlas.org/explore/projects/996120f9-e84f-409f-a0le-

732ab58ca8h9)(37). Using this dataset, a quality control filter was first applied removing low
quality cells with unique gene counts less than 200 and cells with high mitochondrial
reads >5%. Dimensionality reduction with SCTransform was then performed, prioritising
3,000 highly variable genes. Substantia nigra nuclei from the 5 individuals were integrated
using harmony(38) and cell clustering was performed with the first 25 dimensions, a k-
nearest neighbour value of 20 and the Louvain community detection agorithm. Cluster
labelling with sctype(17) identified 6 different brain cell types including oligodendrocytes

(based on expression of OLIG1, OLIG2, MBP, MOG cell markers), astrocytes (based on
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expression of GFAP, SLC1A3, SLC1A2, AQP4 cell markers), GABAergic neurons (based
on expression of GABBR1, GABBR2, GAD2, GAD1 cel markers), oligodendrocyte
precursor cells (based on expression of LHFPL3, MEGF11, PCDH15, PDGFRA cell
markers), endothelial cells (based on expression of CD34, EGFL7, FLT1, KDR cell markers)
and microglia (based on expression of P2RY12, ITGAM, CD40, CX3CR1 cell markers)

(Figure 1).
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SCTransform and sctype cell type labelling

MEGENA Gene Co-expression Network Construction
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Figure 1 Gene network analysis of single cell RNA-seq datasets in ICARUS v2.0. Dataset analysed was
from the substantia nigra of 5 healthy human individuals with an absence of neurological disease. Cell clustering
with SCTransform and cell type labelling produced 7 different brain cell types (A) with their ditributions
shown in (B). MEGENA co-expression module construction showcased a module centred around the LHFPL3-
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PTPRZ1-TNR gene cluster (C) that is predominately expressed in oligodendrocyte precursor cells (D). SCENIC
transcription factor regulatory network analysis (E) indicated increased JUN regulated gene module activity in
the agtrocytes and microglia cell clusters (F).
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Trajectory Analysis MAGMA: Cell type GWAS trait associations
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Figure 2 Additional gene network analysis tools available in ICARUS v2.0. Single nuclei from the
substantia nigra of 5 human individuals with an absence of neurologica disease were analysed with ICARUS
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v2.0. (A) Trajectory analysis performed with Monocle3 used the oligodendrocyte precursor cells as the root
cells (beginning state). Trajectory showcased a gradual pseudotime transition from OPC to astrocytes and
microglia. (B) MAGMA cell type GWAS trait associations against several traits spanning immune disease,
neurological disorders and psychiatric disease showed an association between GABAergic neurons, OPC and
oligodendrocytes with Schizophrenia and bipolar disorder. (C) CellChat cell-cell communication through
ligand-receptor pairs showed extensive communication between OPC and astrocytes. Incoming and outgoing
signalling pathways are shown as a heatmap (E) with the PTN signalling pathway detailed in the chord plot (D).

To showcase the gene network analysis capabilities of ICARUS v2.0, we focused on the
oligodendrocyte precursor cell (OPC) cluster. MEGENA co-expression module analysis
using 2,000 variable genes as input, highlighted a functional module involved in the
regulation of extracellular organisation, synapse signalling and developmental morphogenesis
(gene module GO analysis, supplementary figure 1) that is centred around the LHFPL3-
PTPRZ1-TNR gene cluster (Figure 1C). Trajectory analysis selecting the OPCs cluster as the
root cells, showcased a gradual change in pseudotime (changes in cell transcriptional state)
starting from oligodendrocyte precursor cells and ending in microglia and astrocytes (Figure
2A). Top genes that change as a function of pseudotime included MEG3, DSCAM, LRRCAC
(full list of genes can be found in supplementary table 1). The transition from OPC to
astrocytes and microglia appears to be controlled by the cell differentiation and development
related transcription factors, FOS, JUN and JUNB as determined by SCENIC transcription
factor regulatory network analysis (Figure 1E). Regulated gene module activity of the JUN
family of transcription factors is detailed in Figure 1F. Cell-cell communication through
ligand-receptor pairs showed a greater number of interactions between OPCs and astrocytes
and fewer interactions with all other cell types (Figure 2C). OPC outgoing signalling
pathways included NGL, PTN, CNTN, APP and TENASCIN pathways and incoming signals
from NRXN, NCAM, CNTN, PTN, NGL, PSAP and CALCR were detected (Figure 2D and

Figure 2E).


https://doi.org/10.1101/2023.01.23.525100
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.23.525100; this version posted January 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

To identify cell populations associated with GWAS traits, a MAGMA anaysis against

several traits spanning immune disease, neurological disorders and psychiatric disease was

undertaken (list of GWAS datasets used in analysis listed in Table 2). We have confirmed the

association between GABAergic neurons, oligodendrocytes and OPC with the genetic risk of

Schizophrenia (Peasaegc = 1.34x10°, Pojigadendrocytes = 2.90x10°, Popc = 3.40x10“, FDR

FDR adjusted) (Figure 2B); first described by Webber and colleagues (37). Finally, an

examination of potential drug-gene interactions, we observe a potential effect for Phorbol 12-

myristate 13-acetate (PMA) against the LHFPL3-PTPRZ1-TNR gene cluster described

earlier (39,40).

Table2 List of GWAS datasets used for MAGMA analysis

ID Trait Reference
Immune disease

ieu-a-32 Ulcerative colitis (41)
ieu-a-10 Crohn disease (42)
ieu-a-832 Rheumatoid arthritis (43)
Neurological disorders

ebi-a-GCST002245 Alzheimer’s disease (44)
ebi-a-GCST004692 Amyotrophic lateral sclerosis (45)
ieu-b-10 Focal epilepsy (46)
ieu-b-9 Generalized epilepsy (46)
ieu-a-812 Parkinson’s disease (47)
Psychiatric disorders

ieu-a-1183 ADHD -
ieu-a-1186 Anorexia (48)
ieu-a-802 Autism (49)
ieu-a-800 Bipolar (50)
ieu-a-1000 Depressive symptoms (51)
ieu-a-1187 Magjor depressive disorder (52)
ieu-a-118 Neuroticism (53)
ieu-a-22 Schizophrenia (54)
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Discussion

One of the main reasons for single-cell RNA-seq is to aid in the generation of hypotheses that
can be further validated by other experimental techniques. This update to our web server,
ICARUS introduces extended tools for data interpretation with a focus on hypothesis
generation. ICARUS v2.0 enables users to examine complex gene networks at the single cell
level utilising well-established methodologies. We have demonstrated the capabilities of
ICARUS v2.0 on a publicly available dataset of the substantia nigra of 5 human individuals
with absence of neurological disease (37). Analysis of the oligodendrocyte precursor cell
cluster demonstrated the cellular pathway control of cell differentiation and synapse
organisation that is likely centred around the co-expression of LHFPL3-PTPRZ1-TNR gene
cluster. A clearly defined tragjectory from OPCs to astrocytes and microglia mediated by FOS,
JUN and JUNB transcription factors was observed that is further supported by increased
number of cell-cell signalling from OPCs to astrocytes. Signalling pathways involved include
NGL, CNTN and PTN. These observations further contribute to our understanding of the

oligodendrocyte progenitor cell lineage and demonstrate the utility of this analysis (55).

Another source of hypothesis generation can be achieved through investigation of potential
GWAS trait associated cell populations. Using this dataset of human substantia nigra, we
confirm the observation first described by Webber and colleagues (37) of a cell type
association between oligodendrocytes, OPCs and GABAergic neurona gene expression with
genetic risk of Schizophrenia and bipolar disorder using the MAGMA methodology. This
potentially points to a risk susceptibility for certain cell types underlying these diseases.
Finally, the identification of drug-gene targets can facilitate targeted perturbations of key
molecular pathways. In the context of dysregulation or disease, this could provide an avenue

towards a therapeutic opportunity through repurposed drugs. We identified a possible drug
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target for the LHFPL3-PTPRZ1-TNR gene cluster expressed in OPCs with a signal

transduction activator, Phorbol 12-myristate 13-acetate (39,40).

The updates to ICARUS v2.0 described in this manuscript will provide users with
unparalleled resolution into gene networks and understanding of gene regulation in relation to
biological traits. The single cell RNA-seq research field is one of the fastest growing fields
with over 4,000 research articles published in 2021 alone (Scopus database). ICARUS will
continue to see updates as new methodol ogies are developed to provide the user with a state-

of-the-art resource for novel discoveries.

Data availability

The functionality of ICARUS was demonstrated on a single nuclei RNA-seq dataset of the
human substantia nigra from 5 individuals with absence of neurological disease. Data is

available from human cell atlas (https://data.humancellatlas.ora/explore/proj ects/996120f9-

€84f-409f-a01e-732ab58ca3h9).

Code availability

ICARUS is available at https://launch.icarus-scrnaseg.cloud.edu.au/. The application is free

and open to all users with no login requirement.

R source code of the ICARUS v20 shiny app is avalable at

https.//github.com/Enjewl/ICARUS. Alternatively, a docker version is accessible through the

Docker Hub under the name *icarusscrnaseg/icarus’.
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