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Abstract 

Complex biological traits and disease often involve patterns of gene expression that can be 

characterised and examined. Here we present ICARUS v2.0, an update to our single cell 

RNA-seq analysis web server with additional tools to investigate gene networks and 

understand core patterns of gene regulation in relation to biological traits. ICARUS v2.0 

enables gene co-expression analysis with MEGENA, transcription factor regulated network 

identification with SCENIC, trajectory analysis with Monocle3, and characterisation of cell-

cell communication with CellChat. Cell cluster gene expression profiles may be examined 

against Genome Wide Association Studies with MAGMA to find significant associations 

with GWAS traits. Additionally, differentially expressed genes may be compared against the 

Drug-Gene Interaction database (DGIdb 4.0) to facilitate drug discovery. ICARUS v2.0 

offers a comprehensive toolbox of the latest single cell RNA-seq analysis methodologies 

packed into an efficient, user friendly, tutorial style web server application (accessible at 

https://launch.icarus-scrnaseq.cloud.edu.au/) that enables single cell RNA-seq analysis 

tailored to the user’s dataset. 
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Introduction 

Many biological networks contain patterns of gene expression that are evolutionary 

conserved. These patterns of networks are comprised of intertwined signalling pathways that 

are fundamentally important for biological functionality including development, 

differentiation, response to stimuli and senescence. During disease, many of these pathways 

become dysregulated and characterisation of these affected cell populations and their 

regulatory networks is vital for understanding disease mechanisms and pathogenesis (1-3). 

Here, we present an update to ICARUS (4), our web server tool to enable users without 

experience in R to undertake single cell RNA-seq analysis and aid hypothesis generation. 

ICARUS v2.0 assembles the latest single cell RNA-seq gene network construction and 

analysis tools to allow interpretation and deconstruction of complex biological traits. 

ICARUS v2.0 supports establishment of gene networks through the implementation of;  

Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) (5), transcription 

factor regulatory network construction through single-cell regulatory network inference and 

clustering (SCENIC) (6), characterisation of gene expression changes through pseudotime 

(cell trajectories) with Monocle3 (7-9) and cell-cell communication signalling classification 

through identification of ligand-receptor pairs with CellChat (10). Furthermore, the gene 

expression profiles of cell populations can be examined for associations with Genome Wide 

Association Study (GWAS) traits using the multi-marker analysis of genomic annotation 

(MAGMA) tool    (11,12) to explore crucial cell populations that may drive the affected 

phenotype. Finally, differentially expressed genes can be queried against the drug-gene 

interactions database, DGIdb 4.0 (13) to facilitate the identification of drug targets for 

therapeutic testing. 
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Further updates to data processing methods are also included in this update. These include, a 

quality control step to identify cell doublets/multiplets using DoubletFinder (14), an 

improved method of data normalisation, SCTransform (15,16), and a new method for cell 

cluster labelling, sctype (17) that congregates cell type specific markers from CellMarker (18) 

and PanglaoDB (19) databases. Summary of R packages used in ICARUS v2.0 including the 

main command are detailed in Table 1. ICARUS v2.0 is accessible through an efficient, user-

friendly web server at https://launch.icarus-scrnaseq.cloud.edu.au/. 

 

Table 1 Summary of R packages used in ICARUS v2.0 

Step in ICARUS Main Command R Packages Reference 

Doublet removal DoubletFinder::doubletFinder_v3 DoubletFinder (14) 

SCTransform Seurat::SCTransform(vst.flavor = "v2") 

 

Seurat (20-24) 

sctype: cell type 
labelling 

sctype::sctype_score sctype (17) 

MEGENA: gene 
co-expression 
modules 

MEGENA::do.MEGENA 

MEGENA::MEGENA.ModuleSummary 

MEGENA::moduleGO 

MEGENA (5) 

SCENIC: 
transcription factor 
regulatory 
networks 

SCENIC::runGenie3 

SCENIC::runSCENIC_1_coexNetwork2modules 

SCENIC::runSCENIC_2_createRegulons 

SCENIC::runSCENIC_3_scoreCells 

SCENIC (6) 

Monocle3: 
trajectory analysis 

Monocle3::order_cells Monocle3 (8) 

CellChat: Cell-Cell 
ligand receptor 
signalling 

CellChat::computeCommunProb 

CellChat::computeCommunProbPathway 

CellChat::netAnalysis_computeCentrality 

CellChat::computeNetSimilarity 

CellChat::identifyCommunicationPatterns 

 

CellChat (10) 

MAGMA: Cell 
type GWAS trait 
associations 

MAGMA.Celltyping::import_magma_files 

MAGMA.Celltyping::celltype_associations_pipeline 

MAGMA.Celltyping (12) 
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Drug-Gene 
interaction database 

Data mining from Drug-Gene database 4.0 - (13) 

 

Materials and Methods 

Updates to processing methods 

Doublet Removal 

Cell doublets or multiplets may arise during scRNA-seq library preparation when droplet-

based microfluidics methods partition multiple cells into a single droplet. These doublets will 

display mixed transcriptomes and can compromise downstream analysis by creating spurious 

intermediate populations or transition states. ICARUS v2.0 introduces the DoubletFinder R 

package to detect and remove heterotypic doublets (Default settings, refer to 

https://github.com/chris-mcginnis-ucsf/DoubletFinder) (14). DoubletFinder first simulates 

“artificial doublets” using transcriptional profiles from pairs of cells in real data. The artificial 

doublets are merged with real data and dimensionality reduction is performed. Lastly, a k-

nearest neighbour graph is developed, and each cell is scored based on its proximity to 

artificial doublets. The highest scoring cells are assigned as real doublets. The user has the 

option to visualise and remove these doublets from further analysis. 

SCTransform 

Scaling and normalization of raw gene count matrices of single cell RNA-seq data is a 

common practice to account for technical confounders such as differences in sequence depth. 

ICARUS v2.0 now includes the Seurat SCTransform method of data normalisation which 

recovers sharper biological distinctions between formed cell clusters compared to log-

normalisation. The SCTransform methodology computes Pearson residuals from a negative 
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binomial regression of the raw count data and applies dimensionality reduction methods 

(15,16). 

sctype and additional SingleR datasets 

The expression profiles of marker genes for each cell cluster may be compared against 

existing cell marker datasets to assign cell type labels to clusters. ICARUS v2.0 introduces 

cell cluster labelling with sctype (17), an ultra-fast unsupervised method for cell type 

annotation using compiled cell markers from CellMarker (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/) (18) and PanglaoDB (https://panglaodb.se/) (19) 

databases. Sctype is computationally efficient and includes marker gene sets for 11 different 

tissue types including brain, pancreas, immune system, liver, eye, kidney, lung, embryonic, 

gastrointestinal tract, muscle and skin (17). 

ICARUS provides the SingleR supervised cell-type assignment algorithm to annotate cell 

clusters by comparison to previously annotated cell types in single cell datasets (25). 

ICARUS v2.0 extends the utility of SingleR by including additional reference datasets 

including Darmanis human temporal lobe data (26); Zhong human embryonic prefrontal 

cortex data (27); Baron human and mouse pancreas data (28); Lawlor human non-diabetic 

and diabetic pancreas data (29); Muraro human pancreas data (30); Segerstolpe human non-

diabetic and diabetic pancreas data (31) and the He organ atlas, which comprises data from 

15 organs (bladder, blood, common bile duct, oesophagus, heart, liver, lymph node, bone 

marrow, muscle, rectum, skin, small intestine, spleen, stomach and trachea) (32). 

Gene network construction 

MEGENA: gene co-expression modules 
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Patterns of biological networks can be grouped into hierarchal co-expression modules which 

infer functionality and dictate biological causality. A method of detecting these gene co-

expression modules is multiscale embedded gene co-expression network analysis 

(MEGENA) which employs a planar maximally filtered graph to extract significant gene 

interactions and constructs co-expression gene modules (5). MEGENA first classifies gene 

co-expression modules through identification of significant gene interactions via planar 

filtered network construction and embedding on a topological sphere. Multi-scale clustering 

is then applied to group similar and dissimilar gene modules. Lastly, multiscale hub analysis 

is used to connect clusters in a hierarchical structure.  

ICARUS v2.0 performs MEGENA on either a set of highly variable genes 

(Seurat::FindVariableFeatures) or user computed differentially expressed genes to generate a 

set of hierarchically ordered co-expression modules, where larger modules progressively 

branch into smaller submodules. A heatmap of significant Gene Ontology terms associated 

with each co-expression module is also provided to aid interpretation and hypothesis 

generation. Additionally, a hierarchical sunburst plot of computed MEGENA co-expression 

modules is produced which highlights the cell cluster/cell type that displays the highest 

activity of the corresponding module. Module activity is computed as a percentage of cluster 

marker gene overlap (Seurat::FindAllMarkers) with co-expression module genes.  

SCENIC: transcription factor regulatory networks 

A cell’s transcriptional state may be characterised by gene regulatory networks (GRNs) that 

are formed by transcription factors and cofactors that regulate each other and their 

downstream gene targets. ICARUS v2.0 utilises the SCENIC R package (6) to characterise 

cell cluster/cell type specific GRNs using either a set of highly variable genes 

(Seurat::FindVariableFeatures) or user computed differentially expressed genes. SCENIC 
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performs cis-regulatory transcription factor binding motif analysis on a set of co-expressed 

transcription factors and variable genes. Transcription factor motifs in the promoter region of 

genes (up to 500bp upstream of the transcription start site) and 20kb around the transcription 

start site (+/- 10kb) are scored.  ICARUS v2.0 currently supports SCENIC v1.2.4 which 

includes species specific transcription motif database for human, mouse, and fly. The activity 

of these transcription factor regulated gene modules is scored across cell populations using 

the AUCell algorithm (6). ICARUS v2.0 visualises regulated gene module activity across cell 

populations in 2D/3D UMAP and t-SNE plots. Heatmap and dotplot visualisations are also 

provided. 

Monocle3: trajectory analysis 

The expression profiles of cells change during development, in response to stimuli and 

throughout life. Trajectory analysis aims to determine the sequence of gene expression 

changes in single cell RNA-seq datasets. ICARUS v2.0 employs the Monocle3 algorithm (8) 

to graph cells according to their progress in pseudotime, a measure of the amount of 

transcriptional change a cell undergoes from its beginning to end states. Calculation of 

pseudotime requires the user to select a population of cells where the beginning of the 

biological process is likely located (known as root cells). Root cells may be selected from a 

specific cell population/cell type or interactively using a lasso select function. A table of 

genes that exhibit changes across pseudotime is also provided. 

CellChat: Cell-Cell ligand receptor signalling 

Cells interact and communicate with each other through ligand-receptor pairs that coordinate 

many biological processes in both healthy and diseased conditions. The characterisation of 

cell-cell signalling crosstalk through soluble agonists/antagonists and membrane bound 

cofactors may help us interpret and understand complex networks of systems biology. 
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ICARUS v2.0 employs the CellChat (10) tool to quantitatively infer and analyse intercellular 

communication networks from single cell RNA-seq data. CellChat incorporates a manually 

curated comprehensive database of ligand-receptor pairs, soluble agonists/antagonists and 

stimulatory/inhibitory membrane bound co-receptors to infer cell-cell communication 

interactions based on social network analysis tools, pattern recognition methods and manifold 

learning approaches. ICARUS v2.0 currently supports CellChat v1.4.0 incorporating 

signalling molecule interaction databases for human and mouse. The option to analyse a 

single dataset or comparison between two datasets is available.  

MAGMA: Cell type GWAS trait associations 

Genome wide association studies have identified several loci and genes that are associated 

with a trait of interest. The expression profiles of cell populations in single cell RNA-seq data 

can be compared against these GWAS loci to identify potentially affected cell types 

underlying complex traits. ICARUS employs the multi-marker analysis of genomic 

annotation (MAGMA) methodology to identify increased linear association between cell 

population derived gene sets and gene-level GWAS summary statistics, with the hypothesis 

that in affected cell types, expressed genes should be more associated with the GWAS trait 

(11,12). The user may either upload their own GWAS summary statistics or select biological 

traits from over 700 public GWAS datasets from the IEU open GWAS project 

(https://gwas.mrcieu.ac.uk/), UK biobank (http://www.nealelab.is/uk-biobank) and FinnGen 

(https://www.finngen.fi/fi). Public GWAS datasets were curated by 

neurogenomics/MAGMA_Files_Public 

(https://github.com/neurogenomics/MAGMA_Files_Public) and includes gene level GWAS 

statistics for 10b upstream and 1.5kb downstream of each associated loci. ICARUS v2.0 

utilises the MAGMA.Celltyping v.2.0.6 R package to identify cell types that may explain the 

heritability signal from GWAS summary statistics. 
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Drug-Gene Interaction Database 

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) (13,33,34) curates 

information on druggable genes from publications (35,36), known affected pathways (Gene 

Ontology, Human Protein Atlas, IDG) and publicly available databases (DrugBank, 

PharmGKB, Chembl, Drug Target Commons and TTD). ICARUS v2.0 offers an option to 

query differentially expressed genes against DGIdb v4.0 (13) and return a list of potential 

drug targets with information of interaction type (i.e., inhibitor, agonist, blocker), interaction 

claim source (i.e., PharmGKB, ChemblInteractions, etc), interaction group score (score takes 

into account number of drug and gene partners and number of supporting publications) and 

the relevant pubmed reference if available. Suitable drugs may be tested in a laboratory 

setting and contribute to discovery of repurposed drugs for clinical benefit. 

 

Results 

To demonstrate the utility of ICARUS v2.0, we have examined a single-nuclei RNA-seq data 

of the substantia nigra from 5 human individuals with absence of neurological clinical disease. 

Data is available from human cell atlas 

(https://data.humancellatlas.org/explore/projects/996120f9-e84f-409f-a01e-

732ab58ca8b9)(37). Using this dataset, a quality control filter was first applied removing low 

quality cells with unique gene counts less than 200 and cells with high mitochondrial 

reads >5%.  Dimensionality reduction with SCTransform was then performed, prioritising 

3,000 highly variable genes. Substantia nigra nuclei from the 5 individuals were integrated 

using harmony(38) and cell clustering was performed with the first 25 dimensions, a k-

nearest neighbour value of 20 and the Louvain community detection algorithm. Cluster 

labelling with sctype(17) identified 6 different brain cell types including oligodendrocytes 

(based on expression of OLIG1, OLIG2, MBP, MOG cell markers), astrocytes (based on 
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expression of GFAP, SLC1A3, SLC1A2, AQP4 cell markers), GABAergic neurons (based 

on expression of GABBR1, GABBR2, GAD2, GAD1 cell markers), oligodendrocyte 

precursor cells (based on expression of LHFPL3, MEGF11, PCDH15, PDGFRA cell 

markers), endothelial cells (based on expression of CD34, EGFL7, FLT1, KDR cell markers) 

and microglia (based on expression of P2RY12, ITGAM, CD40, CX3CR1 cell markers) 

(Figure 1).   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.23.525100doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525100
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1 Gene network analysis of single cell RNA-seq datasets in ICARUS v2.0. Dataset analysed was 
from the substantia nigra of 5 healthy human individuals with an absence of neurological disease. Cell clustering 
with SCTransform and cell type labelling produced 7 different brain cell types (A) with their distributions 
shown in (B). MEGENA co-expression module construction showcased a module centred around the LHFPL3-
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PTPRZ1-TNR gene cluster (C) that is predominately expressed in oligodendrocyte precursor cells (D). SCENIC 
transcription factor regulatory network analysis (E) indicated increased JUN regulated gene module activity in 
the astrocytes and microglia cell clusters (F). 
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Figure 2 Additional gene network analysis tools available in ICARUS v2.0. Single nuclei from the 
substantia nigra of 5 human individuals with an absence of neurological disease were analysed with ICARUS 
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v2.0. (A) Trajectory analysis performed with Monocle3 used the oligodendrocyte precursor cells as the root 
cells (beginning state). Trajectory showcased a gradual pseudotime transition from OPC to astrocytes and 
microglia. (B) MAGMA cell type GWAS trait associations against several traits spanning immune disease, 
neurological disorders and psychiatric disease showed an association between GABAergic neurons, OPC and 
oligodendrocytes with Schizophrenia and bipolar disorder. (C) CellChat cell-cell communication through 
ligand-receptor pairs showed extensive communication between OPC and astrocytes. Incoming and outgoing 
signalling pathways are shown as a heatmap (E) with the PTN signalling pathway detailed in the chord plot (D). 

 

To showcase the gene network analysis capabilities of ICARUS v2.0, we focused on the 

oligodendrocyte precursor cell (OPC) cluster. MEGENA co-expression module analysis 

using 2,000 variable genes as input, highlighted a functional module involved in the 

regulation of extracellular organisation, synapse signalling and developmental morphogenesis 

(gene module GO analysis, supplementary figure 1) that is centred around the LHFPL3-

PTPRZ1-TNR gene cluster (Figure 1C). Trajectory analysis selecting the OPCs cluster as the 

root cells, showcased a gradual change in pseudotime (changes in cell transcriptional state) 

starting from oligodendrocyte precursor cells and ending in microglia and astrocytes (Figure 

2A). Top genes that change as a function of pseudotime included MEG3, DSCAM, LRRC4C 

(full list of genes can be found in supplementary table 1). The transition from OPC to 

astrocytes and microglia appears to be controlled by the cell differentiation and development 

related transcription factors, FOS, JUN and JUNB as determined by SCENIC transcription 

factor regulatory network analysis (Figure 1E). Regulated gene module activity of the JUN 

family of transcription factors is detailed in Figure 1F. Cell-cell communication through 

ligand-receptor pairs showed a greater number of interactions between OPCs and astrocytes 

and fewer interactions with all other cell types (Figure 2C). OPC outgoing signalling 

pathways included NGL, PTN, CNTN, APP and TENASCIN pathways and incoming signals 

from NRXN, NCAM, CNTN, PTN, NGL, PSAP and CALCR were detected (Figure 2D and 

Figure 2E).  
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To identify cell populations associated with GWAS traits, a MAGMA analysis against 

several traits spanning immune disease, neurological disorders and psychiatric disease was 

undertaken (list of GWAS datasets used in analysis listed in Table 2). We have confirmed the 

association between GABAergic neurons, oligodendrocytes and OPC with the genetic risk of 

Schizophrenia (PGABAergic = 1.34x10-5, POligodendrocytes = 2.90x10-3, POPC = 3.40x10-4, FDR 

adjusted) and bipolar disorder (PGABAergic = 0.035, POligodendrocytes = 0.071, POPC = 4.77x10-5, 

FDR adjusted) (Figure 2B); first described by Webber and colleagues (37). Finally, an 

examination of potential drug-gene interactions, we observe a potential effect for Phorbol 12-

myristate 13-acetate (PMA) against the LHFPL3-PTPRZ1-TNR gene cluster described 

earlier (39,40). 

Table 2 List of GWAS datasets used for MAGMA analysis 

ID Trait Reference 
Immune disease 
ieu-a-32 Ulcerative colitis (41) 
ieu-a-10 Crohn disease (42) 
ieu-a-832 Rheumatoid arthritis (43) 
Neurological disorders 
ebi-a-GCST002245 Alzheimer’s disease (44) 
ebi-a-GCST004692 Amyotrophic lateral sclerosis (45) 
ieu-b-10 Focal epilepsy (46) 
ieu-b-9 Generalized epilepsy (46) 
ieu-a-812 Parkinson’s disease (47) 
Psychiatric disorders 
ieu-a-1183 ADHD - 
ieu-a-1186 Anorexia (48) 
ieu-a-802 Autism (49) 
ieu-a-800 Bipolar (50) 
ieu-a-1000 Depressive symptoms (51) 
ieu-a-1187 Major depressive disorder (52) 
ieu-a-118 Neuroticism (53) 
ieu-a-22 Schizophrenia (54) 
 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.23.525100doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525100
http://creativecommons.org/licenses/by-nd/4.0/


Discussion 

One of the main reasons for single-cell RNA-seq is to aid in the generation of hypotheses that 

can be further validated by other experimental techniques. This update to our web server, 

ICARUS introduces extended tools for data interpretation with a focus on hypothesis 

generation. ICARUS v2.0 enables users to examine complex gene networks at the single cell 

level utilising well-established methodologies. We have demonstrated the capabilities of 

ICARUS v2.0 on a publicly available dataset of the substantia nigra of 5 human individuals 

with absence of neurological disease (37). Analysis of the oligodendrocyte precursor cell 

cluster demonstrated the cellular pathway control of cell differentiation and synapse 

organisation that is likely centred around the co-expression of LHFPL3-PTPRZ1-TNR gene 

cluster. A clearly defined trajectory from OPCs to astrocytes and microglia mediated by FOS, 

JUN and JUNB transcription factors was observed that is further supported by increased 

number of cell-cell signalling from OPCs to astrocytes. Signalling pathways involved include 

NGL, CNTN and PTN. These observations further contribute to our understanding of the 

oligodendrocyte progenitor cell lineage and demonstrate the utility of this analysis (55).  

Another source of hypothesis generation can be achieved through investigation of potential 

GWAS trait associated cell populations. Using this dataset of human substantia nigra, we 

confirm the observation first described by Webber and colleagues (37) of a cell type 

association between oligodendrocytes, OPCs and GABAergic neuronal gene expression with 

genetic risk of Schizophrenia and bipolar disorder using the MAGMA methodology. This 

potentially points to a risk susceptibility for certain cell types underlying these diseases. 

Finally, the identification of drug-gene targets can facilitate targeted perturbations of key 

molecular pathways. In the context of dysregulation or disease, this could provide an avenue 

towards a therapeutic opportunity through repurposed drugs. We identified a possible drug 
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target for the LHFPL3-PTPRZ1-TNR gene cluster expressed in OPCs with a signal 

transduction activator, Phorbol 12-myristate 13-acetate (39,40).  

The updates to ICARUS v2.0 described in this manuscript will provide users with 

unparalleled resolution into gene networks and understanding of gene regulation in relation to 

biological traits. The single cell RNA-seq research field is one of the fastest growing fields 

with over 4,000 research articles published in 2021 alone (Scopus database). ICARUS will 

continue to see updates as new methodologies are developed to provide the user with a state-

of-the-art resource for novel discoveries. 

 

Data availability 

The functionality of ICARUS was demonstrated on a single nuclei RNA-seq dataset of the 

human substantia nigra from 5 individuals with absence of neurological disease. Data is 

available from human cell atlas (https://data.humancellatlas.org/explore/projects/996120f9-

e84f-409f-a01e-732ab58ca8b9). 

Code availability 

ICARUS is available at https://launch.icarus-scrnaseq.cloud.edu.au/. The application is free 

and open to all users with no login requirement. 

R source code of the ICARUS v2.0 shiny app is available at 

https://github.com/Enjewl/ICARUS. Alternatively, a docker version is accessible through the 

Docker Hub under the name ‘icarusscrnaseq/icarus’. 
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