

1 Title:

2 Selective sweeps identification in distinct groups of cultivated rye (*Secale cereale* L.) germplasm
3 provides potential candidates for crop improvement.

4 Authors

5 Anna Hawliczek¹, Ewa Borzęcka¹, Katarzyna Tofil¹, Nikolaos Alachiotis², Leszek Bolibok³, Piotr
6 Gawroński¹, Dörthe Siekmann⁴, Bernd Hackauf⁵, Roman Dušinský⁶, Miroslav Švec⁶, Hanna Bolibok-
7 Bragoszewska^{1*}

8

9 ¹Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University
10 of Life Sciences-SGGW, Warsaw, Poland

11 ²Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente,
12 Enschede, The Netherlands

13 ³Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences-SGGW,
14 Warsaw, Poland

15 ⁴HYBRO Saatzucht GmbH and Co. KG, Schenkenberg, Germany

16 ⁵Julius Kühn-Institut, Groß Lüsewitz, Germany

17 ⁶Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava,
18 Slovakia

19

20 * Corresponding author: Hanna Bolibok-Bragoszewska: hanna_bolibok_bragoszewska@sggw.edu.pl

21

22

23 Running Title

24

25 Selective sweep detection in cultivated rye

26

27

28

29 Abstract

30 Background:

31 During domestication and subsequent improvement plants were subjected to intensive positive
32 selection for desirable traits. Identification of selection targets is important with respect to the future
33 targeted broadening of diversity in breeding programmes. Rye (*Secale cereale* L.) is a cereal that is
34 closely related to wheat, and it is an important crop in Central, Eastern and Northern Europe. The
35 aim of the study was (i) to identify diverse groups of rye accessions based on high-density, genome-
36 wide analysis of genetic diversity within a set of 478 rye accessions, covering a full spectrum of
37 diversity within the genus, from wild accession to inbred lines used in hybrid breeding, and (ii) to
38 identify selective sweeps in the established groups of cultivated rye germplasm and putative
39 candidate genes targeted by selection.

40 Results:

41 Population structure and genetic diversity analyses based on high-quality SNP (DArTseq) markers
42 revealed the presence of three complexes in the *Secale* genus: *S. sylvestre*, *S. strictum* and *S.*
43 *cereale/vavilovii*, a relatively narrow diversity of *S. sylvestre*, very high diversity of *S. strictum*, and
44 signatures of strong positive selection in *S. vavilovii*. Within cultivated ryces we detected the presence
45 of genetic clusters and the influence of improvement status on the clustering. Rye landraces
46 represent a reservoir of variation for breeding, and especially a distinct group of landraces from
47 Turkey should be of special interest as a source of untapped variation. Selective sweep detection in
48 cultivated accessions identified 133 outlier positions within 13 sweep regions and 170 putative
49 candidate genes related, among others, to response to various environmental stimuli (such as
50 pathogens, drought, cold), plant fertility and reproduction (pollen sperm cell differentiation, pollen
51 maturation, pollen tube growth), and plant growth and biomass production.

52 Conclusions:

53 Our study provides valuable information for efficient management of rye germplasm collections,
54 which can help to ensure proper safeguarding of their genetic potential and provides numerous
55 novel candidate genes targeted by selection in cultivated rye for further functional characterisation
56 and allelic diversity studies.

57 Keywords: rye, *Secale cereale* L, selective sweeps, genetic diversity, population structure, GBS,
58 DArTseq,

59 BACKGROUND

60 During domestication and subsequent diversification and improvement plants were
61 subjected to intensive positive selection. Consequently, several key traits differentiate crop plant
62 from their wild progenitors. In the case of cereal crops, these traits include: larger grain size, loss of
63 natural seed dispersal mechanisms (causing seed retention until harvest), changes in THE plant's
64 architecture (apical dominance), and in plant physiology (changes related to seed dormancy,
65 photoperiodic sensitivity, vernalization requirements) [1, 2]. A number of genes responsible for
66 domestication traits had been already identified and characterized in major crops, such as maize, rice
67 or wheat, for example *Q* (controlling inflorescence structure in wheat), *teosinte branched1* (*tb1*),
68 controlling shoot architecture in maize), *Shattering1* (*Sh1*, causing the loss of seed shattering), *Btr1*
69 and *Btr2* (required for the disarticulation of rachis)[1, 3, 4]. Diversification genes, targeted by
70 selection after domestication, are responsible for intervarietal differences and are typically related to
71 yield, biotic and abiotic stress resistance, grain quality and adaptation [2]. Well known examples of
72 such genes are: maize *Y1* gene, related to high carotenoids levels and yellow kernels [5], wheat *Rht*
73 gene, controlling reduced height, and rice *Hd1*, controlling flowering time [5–7].

74 At first, the QTL approach was predominately used to identify domestication/improvement
75 loci. More recently, various population genetic approaches were developed to detect selective

76 sweeps based on genome-wide scans, including population differentiation and environmental
77 association methods [7–11].

78 In contrast to early studies, suggesting that several, large effect loci underlie the phenotypic
79 switch from a wild progenitor to a domesticate, genome-wide studies revealed hundreds of loci
80 showing signatures of selection [8, 12, 13], providing a new insight into the influence of
81 domestication and breeding on the genome and numerous potential candidate genes for crop
82 improvement programs. Nevertheless, despite extensive research on the subject, the knowledge of
83 the influence of domestication and improvement on the genome is still very incomplete in many
84 crops.

85 Rye (*Secale cereale* L.) is a cereal closely related to wheat, and an important crop in Central,
86 Eastern and Northern Europe. It is mainly used for the production of flour for bread making, as
87 animal feed, and in distilleries to produce whiskey and vodka. Rye has the highest tolerance of
88 abiotic and biotic stresses (including cold temperature, low soil fertility, and high soil acidity) among
89 the small grain temperate cereals and is a widely used source of genetic variation for wheat
90 improvement [14, 15]. Contrary to its closest crop relatives wheat and barley, cultivated rye is
91 outcrossing. Recently genome sequences of two rye accessions were published [16, 17]. Rye genome
92 size ranges from 7.68 to 8.03 Gbp, and the repetitive elements account for 85%-90% of the
93 assemblies.

94

95 According to Germplasm Resource Information Network (GRIN) there are four species
96 recognized in the *Secale* genus: *S. cereale*, *S. strictum*, *S. vavilovii*, *S. sylvestre*. Many molecular studies
97 indicate, however, that *S. vavilovii* is a part of *S. cereale* complex, and postulate a revision of *Secale*
98 classification [18–21]. A possible explanation for the discrepancies regarding classification of *S.*
99 *vavilovii* was provided by Zohary et al. [22], who proposed that the four complexes within *Secale* are
100 *cereale*, *strictum*, *iranicum*, and *sylvestre*. “True” *S. vavilovii* forms belong to *S. cereale* complex,

101 which is supported by extensive molecular data mentioned above. *S. iranicum* (Kolbylansky) is poorly
102 known, and was at a point of time erroneously described as *vavilovii* and sent to several germplasm
103 collection under this description causing confusion, with some researchers working on the 'true'
104 *vavilovii*, and others on *iranicum*, only mistakenly described as *vavilovii*. Thus, the matter of *Secale*
105 classification is not fully resolved yet.

106

107 Rye domestication happened approximately four thousand years ago [22, 23], much later
108 than the domestication of wheat or barley (ca. 10 thousand years ago [24]. Prior to that, rye occurred
109 as a weed in wheat and barley cultures [25]. For these reasons, rye is referred to as a secondary
110 domesticate [23]. There is no consensus regarding the immediate wild progenitor of cultivated rye (*S.*
111 *cereale* subsp. *cereale*), with *S. vavilovii* and *S. strictum*, among others, being suggested as likely
112 candidates [23, 26]. Central and Eastern Turkey and adjacent regions are reported to be the main
113 centre of diversity of rye wild species [25]. Recent genetic diversity scans indicate, that there is
114 considerable diversity within rye genetic resources and that the current breeding pool is genetically
115 relatively narrow and distant from accessions representing genebank collections. Additionally, no
116 clear correspondence of genetic diversity patterns with geographic origins was observed [18, 27–30].

117

118 The aim of this study was to: i) assess the genetic diversity structure in a diverse collection of
119 478 rye accessions representing different geographic origins and improvement status based on
120 genome-wide, high-quality GBS markers, ii) identify selective sweeps in established germplasm
121 clusters and iii) indicate potential candidate genes targeted by selection in rye.

122

123 RESULTS

124

125 **GBS (DArTseq) genotyping**

126 In total 79 877 SNP markers (Dataset-1) differentiating 478 rye accessions (Table S1) were
127 identified and 49 977 (62.65%) of them could be aligned to the Lo7 rye reference genome sequence
128 [16], with the markers fairly evenly distributed among chromosomes - the percentage of SNPs
129 mapped to individual chromosomes ranged from 11.3 for 1R to 15.6 for 2R. After quality filtering, 12
130 846 high quality (HQ) SNP markers (Dataset-2) were identified and used for population structure and
131 phylogenetic analyses (Table S2). Of those, 10 607 (82.6%) aligned to the Lo7 genome sequence and
132 spanned 99.7 % of the assembly (6.72 Gb). Percentage of HQ SNP markers mapped to individual
133 chromosomes varied between 11.6 for 1R to 17.4 for 2R (Table S3). The average MAF and PIC values
134 for both all 12 846 HQ SNPs and 10607 HQ SNPs mapped to genome sequence were 0.15 and 0.17,
135 respectively. Distribution of MAF and PIC values of 12846 HQ SNPs is shown in Figure S1.

136

137 **Population structure**

138 **Assignment tests**

139 K=2 was found to explain best the population structure (Figure S2). Using the cut-off value of
140 $Q \geq 70\%$, 430 and 34 accessions were assigned to populations 1 and 2, respectively, while 13
141 accessions were classified as admixtures (Figure S3, Table S1). Population 1 comprised all accessions
142 representing *S. vavilovii* and *Secale cereale* ssp. included in the study (only one *S. c.* subsp.
143 *dighoricum* accession was assigned to population 2), and 14 accessions described as unknown in
144 genebank records. Five *S. s.* subsp. *strictum* and three *S. s.* subsp. *anatolicum* accessions were also
145 assigned to population 1 - ca. 24% and 38% of accessions representing these taxa included in the
146 study, respectively. Population 2 included all ten *S. sylvestre* accessions and accessions representing
147 *S. strictum* subspecies: most of *S. s.* ssp. *kuprijanovii* accessions (11 accessions, 79 %) and also
148 accessions of *S. s.* ssp. *strictum* (nine accessions, 43%) and *S. s.* ssp. *anatolicum* (three accessions,
149 38%). The remaining three *S. s.* ssp. *kuprijanovii* accessions were classified as admixtures, together
150 with seven *S. s.* ssp. *strictum*, two *S. s.* subsp. *anatolicum*, and two *S. s.* subsp. *africanum* accessions.

151 **Principal Coordinates Analysis**

152 PCoA and STRUCTURE results were in a very good agreement, however, PCoA revealed a
153 more complex structure in the germplasm set by clustering the accessions into three groups (Figure
154 1). Accessions assigned to population 2 by STRUCTURE were divided into two groups in the PCoA plot
155 – a group containing *S. sylvestre* accessions and a group containing *S. strictum* accessions. The third
156 group indicated by PCoA, occupying a relatively small area of diversity space, corresponded to
157 population 1 indicated by STRUCTURE. As expected, landraces were dispersed across a larger plot
158 area than modern and historical cultivars, and thus turned out to be more diverse.

159 **NJ clustering**

160 Three major clusters could be distinguished in the NJ tree showing phylogenetic relationships
161 between accessions: A1, A2, and A3 (Figure 2, Table S1). Cluster A3 could be further subdivided into
162 four subclusters: A3.1- A3.4. The clustering was in very good agreement with the STRUCTURE and
163 PCoA results. Accessions from population 2 were grouped in clusters A1 and A2 in the NJ tree,
164 corresponding to two smaller groups of accessions visible in the PCoA plot (Figure S4). Accessions
165 assigned to population 1 formed cluster A3. Admixtures were placed in the outer region of cluster
166 A2, adjacent to cluster A3.1 (Figure 2A).

167 Clustering corresponded largely with the taxonomy, too (Figure 2B). The most divergent
168 cluster (A1) was composed of *S. sylvestre* accessions, and cluster A2 contained predominantly *S.*
169 *strictum* accessions, specifically all *S. strictum* subsp. *kuprianovii* analysed. Cluster A3 contained all
170 cultivated rye *S. cereale* subsp. *cereale* and *S. vavilovii* accessions and almost all wild/weedy *S.*
171 *cereale* accessions. Wild/weedy *S. cereale* accessions and *S. vavilovii* accessions were dispersed in all
172 A3 subclusters, with exception of subcluster A3.4.

173 Improvement status of *S. cereale* subsp. *cereale* influenced the clustering (Figure 2C). Inbred
174 lines from a hybrid breeding program formed a separate group (subcluster A3.4), which was divided
175 into two parts corresponding to heterotic pools Carsten and Petkus (A3.4a and A3.4b, respectively).

176 All modern varieties and almost all historical varieties (63 varieties, 87.5 %) were located in cluster
177 A3.2. Historical varieties found in other clusters (A3.1 and A3.3) originated mostly from North
178 America. Apart from varieties, cluster A3.2 contained also 92 landraces (58.2 % of landraces analysed
179 in this study). Landraces occurred also in clusters A3.1 and A.3. (25,3 and 16.5 % of landraces
180 analysed, respectively). The clustering of landraces did not correspond strongly with geographic
181 origin. Cluster A3.2 contained the majority of European (including all landraces from the Balkan
182 region and Southern Europe) and Asian landraces analysed and 31 % of landraces from the Middle
183 East. Landraces from the Middle East were the largest regional germplasm set included in the study
184 (55 accessions from Turkey and Iran, obtained predominantly from the NSGC genebank (36
185 accessions), but also from PGRC, PAS BG and IPK – 9, 6, and 4 accessions, respectively). A subset of
186 these landraces (ca. 62 % of landraces from the Middle East, mostly Turkish, representing all four
187 genebanks mentioned above) was clearly divergent from the rest and constituted the majority of
188 cluster A3.1. Cluster A3.3 included landraces of various geographic origins: Northern Europe (Finnish
189 and Norwegian), Eastern Europe (Russian), Asia (Afghanistan), Western Europe (Germany, Austria and
190 Switzerland) and the Middle East. These landraces originated almost exclusively from IPK and
191 NordGen genebanks.

192 The highest numbers of accessions for this study were obtained from the following four
193 genebanks: IPK (113), NSGC (97), NordGen (56), and PAS BG (52). Accessions obtained from the IPK
194 genebank covered a broad spectrum of diversity within *S. cereale*/*S. vavilovii* group (Cluster A3) and
195 were dispersed in subclusters A3.1, A3.2 and A3.3, similarly to the accessions from NSGC (Figure S5,
196 Table S1). Accessions from PAS BG were not represented in cluster A3.3 (with exception of a single *S.*
197 *c. subsp. ancestrale* accession), while accessions from NordGen were absent from cluster A3.1. Taken
198 together the accessions obtained for the study provided a good representation of diversity within the
199 *Secale* genus.

200 **AMOVA**

201 A very high degree of differentiation was found between the two subpopulations indicated
202 by STRUCTURE ($F_{ST} = 0.468$, 53% percent of total molecular variance attributed to variation within
203 populations, $P < 0.001$). A very high degree of differentiation was also found for the three accessions
204 groups indicated by PCoA and NJ clustering (corresponding to the A1, A2, and A3 clusters in the NJ
205 tree), with the proportion of molecular variance explained by the differences among populations
206 equal 55% and pairwise population F_{ST} values ranging from 0.428 between accessions groups A2 and
207 A3 to 0.734 between accession groups A1 and A3 ($P < 0.001$). AMOVA analysis of the six germplasm
208 groups defined based on NJ clustering: A1, A2, A3.1, A3.2, A3.3, and A3.4 attributed 31 % of the total
209 molecular variance to the differences among populations and 69 % to the differences within
210 populations. There was a very high degree of differentiation between groups A1 and A2 and the
211 remaining germplasm groups, with pairwise F_{ST} values ranging from 0.785 to 0.603 and 0.603 to
212 0.318, respectively. In the remaining germplasm group pairs the degree of differentiation was
213 moderate - pairwise F_{ST} values ranged from 0.054 (between groups A3.1 and A3.2) to 0.205 (between
214 groups A3.2 and A3.4), with the exception of population pair A3.1 and A3.3, where the
215 differentiation was low - pairwise $F_{ST}=0.035$ ($P < 0.001$, Table S4). There was a moderate degree of
216 differentiation $F_{ST}=0.092$, $P < 0.001$) between the two groups of lines from hybrid breeding program
217 (A3.4a and A3.4b).

218 **Diversity indices**

219 Rye accessions were assigned to groups based on improvement status, taxonomy, results of
220 population structure and phylogenetics analyses. Summary of SNP marker numbers, He (expected
221 heterozygosity and Ho (observed heterozygosity) values, and physical map length by germplasm
222 group is given in Table 1, while the information on accessions' membership in the defined groups is
223 given in Table S1. The numbers of mapped HQ SNPs differentiating the defined groups varied from 10
224 364 (97.7 % of the HQ, mapped SNPs polymorphic in the whole set) in the *S. strictum* group to only
225 803 markers (7.6%) in the *S. sylvestre* group. A similar pattern of the chromosomal distribution of

226 SNPs could be observed in most germplasm groups, with the highest proportion of SNPs on
227 chromosomes 2R and 5R and the lowest on chromosomes 1R, 4R and 6R (Figure S6). When
228 accessions were grouped according to taxonomy, a deviation from this pattern was noticeable in the
229 *S. sylvestre* group, where a relatively low proportion of SNPs originated from 5R. In *S. sylvestre* and
230 also in *S. strictum* group a relatively high proportion of SNPs was mapped on 6R. When accession
231 were grouped according to improvement status, a relatively low percentage of SNPs was observed
232 on 5R and relatively high – on 6R in the wild/weedy group.

233 He and Ho values were 0.211 and 0.228 for the whole set. Within established germplasm
234 groups He ranged from 0.196 for the A1 group established based on NJ clustering to 0.333 for the
235 taxonomic group *S. vavilovii* (Table 1). Values of He above 0.3 were also obtained for the group A2
236 (0.308) and in the sweep detection set g2. The highest Ho values occurred in groups of historic
237 cultivars (0.466) and *S. vavilovii* (0.463). The lowest Ho values, in the range 0.145-0.033, occurred in
238 the germplasm groups containing inbred lines from hybrid breeding program. A low Ho value of
239 0.183 was also obtained also for the group of *S. sylvestre*, which is a self-pollinating species.

240 Values of the diversity indices P_s (proportion of polymorphic sites), θ (theta), π (nucleotide
241 diversity), and Tajima D's values computed for the whole set of 478 accessions and for the
242 established germplasm groups are given in Table S5. When the accession were grouped according to
243 improvement status, the values of diversity indices were the highest in the wild/weedy group, and
244 the lowest in modern cultivars. In taxonomical groups the highest values of diversity indices were
245 observed in *S. strictum* and the lowest in *S. sylvestre*. Average Tajima's D values were negative in
246 each germplasm group indicating the occurrence of positive selection. The weakest negative Tajima's
247 D values were recorded in breeding lines. In the cultivated germplasm the strongest negative
248 Tajima's D value was obtained for modern cultivars, followed by historic cultivars, implying a strong
249 selection in this groups. Among taxonomic groups, the strongest negative Tajima's D value was noted
250 for *S. vavilovii*.

251 **Selective sweeps in established groups of cultivated germplasm**

252 Selective sweep detection was performed in groups of cultivated accessions established
253 based on the outcome of NJ clustering (Figure S7, Table S1): g1 (historical and modern cultivars and
254 related landraces from NJ cluster A3.2), g2 (divergent Turkish landraces from cluster A3.1), g3
255 (diverse landraces from cluster A3.3), and g4 (inbred lines from hybrid breeding program from cluster
256 A3.4), and also, separately g4a (inbred lines from Carsten heterotic pool) and g4b (inbred lines from
257 Petkus heterotic pool). At the adopted settings the algorithms used (SweeD, OmegaPlus, and RAiSD)
258 identified 133 outlier positions in the rye genome in common (Table 2, Table S6). The outliers were
259 located within 13 sweep regions ranging in size from 0.84 Mb to 11.76 Mb (Table S6). The number of
260 sweeps per germplasm group ranged from one (in groups g4a and g4b) to four in group g3. The
261 largest number of outliers (55) was identified in group g4. The putative selective sweeps were
262 dispersed across the rye genome, with the largest number of sweeps (four) detected in chromosome
263 7R. No sweeps were detected in chromosome 4R (Table 2).

264 **Candidate genes in the putative selective sweep regions**

265 In total, 170 putative candidate genes were found in the Lo7 genome in the vicinity of the
266 outlier positions within the identified sweeps (Table S7). The number of candidate genes per
267 chromosome ranged from 63 on chromosome 7R to nine on chromosome R2. Within germplasm
268 groups the highest number of candidate genes was identified in g4 (inbred lines from hybrid breeding
269 program) – 51 genes, followed by g3 (divergent Turkish landraces) – 45 genes. Within the candidate
270 genes, we identified the ones located in the vicinity of the outlier/s with the highest values of the
271 statistics computed by the sweep detection algorithms. These candidate genes are listed in Table 3.

272 Gene ontology (GO) enrichment analysis, performed on the identified putative candidate
273 genes, revealed, that 34 GO terms were significantly overrepresented (Table S8), including
274 glycerolipid biosynthetic process, diacylglycerol O-acyltransferase activity, phosphorelay signal

275 transduction system, polygalacturonase activity, embryo sac morphogenesis, and pollen sperm cell
276 differentiation.

277 **Correspondence to previously identified domestication genes**

278 Based on the literature we compiled a list of several cereal domestication/improvement
279 genes and using BLAST [31] determined the location of their putative homologues in the Lo7 genome
280 (Table S9). We found that those genes were located outside of selective sweeps identified in this
281 study. Previously, selective sweep detection was performed in rye based on the Weining genome
282 sequence by [17]. We located in the genome sequence of Lo7 sequences homologous to putative
283 candidate genes identified by Li et al. and found, that several of them were located in the vicinity
284 (less than 5 Mb) of outliers indicated in this study. This coinciding location was found for the
285 following five candidate genes identified by Li et al.: ScWN1R01G158700_LOC_Os01g08320 (auxin
286 and brassinosteroid hormone responses and plant morphogenesis),
287 ScWN2R01G091200_LOC_Os07g47670 (hypoxia signalling, Pi uptake and accumulation),
288 ScWN2R01G169300_LOC_Os10g25130 (regulation of starch storage in endosperm, internode
289 elongation, domestication traits), ScWN5R01G313900_LOC_Os08g41880 (phosphate deficiency
290 adaptations), ScWN7R01G263700_LOC_Os08g44400 (disease resistance, stress response). On the
291 other hands, while many of the putative candidate genes identified in this study represented the
292 same gene families as the recently described putative candidate genes targeted by selection in rye
293 [32] - for example lipase, gibberellin receptor GID1a, pentatricopeptide repeat-containing protein,
294 leucine-rich repeat protein kinase family protein - their genomic locations did not overlap.

295 DISCUSSION

296 **Genetic diversity within *Secale* genus and within cultivated ryes**

297 The first aim of this study was a detailed analysis of genetic diversity structure in a broad
298 collection of diverse rye germplasm and the identification of germplasm groups suitable for detection
299 of selective sweeps. Several studies on rye genetic diversity were carried out to date, using SSR,

300 array-based (DArT), GBS, and, recently, whole genome resequencing data [18, 19, 21, 28, 32, 33]. In
301 the previous genome-wide studies deploying high-density genotyping to analyse rye genetic diversity
302 [16, 19, 21, 32] up to 143 accessions were used. The present study involved the largest number of rye
303 accessions to date (478) and possibly the most diverse, yet balanced germplasm set, ranging from
304 wild species, random mating populations, and hybrids to inbred lines used in hybrid breeding, with
305 wild accessions, landraces, and cultivars/breeding lines each representing ca. one third of the set. To
306 ensure the best possible representation of genetic diversity the accessions were obtained from
307 multiple genebanks and breeding companies and selected to cover a broad spectrum of geographic
308 origins (Table S1). The accessions derived from genebanks IPK and NSGC turned out to largely overlap
309 with respect to their diversity, while some areas of rye diversity space were not represented by
310 accessions derived from PAS BG and NordGen. However, the number of accessions derived from
311 these genebanks and sampled in this study is too small to justify a suggestion that there are gaps in
312 their rye germplasm collections.

313 For the detection of SNP variation, the DArTseq genotyping-by-sequencing method was used.
314 This method was previously shown to efficiently target low copy regions of the very large - ca. 8 Gb
315 [16], and highly repetitive (> 90 % [17]) rye genome [34]. Similarly, most of DArTseq were found to
316 align to intragenic regions in wheat [35]. DArTseq genotyping proved to be a suitable tool for high-
317 density genome-wide genetic diversity studies and for the detection of selection signals [35–37].

318 The HQ SNPs identified in this study for the analysis of genetic diversity and population
319 structure provided good coverage of the rye genome, spanning ca. 99.7% of the reference genome
320 assembly, with similar proportion of markers originating from individual chromosomes (between ca.
321 11 and 17 %, Table S3). Similarly like in other cereal species, such us barley [38], and wheat [35], a
322 larger proportion of HQ SNP markers segregated in the wild thn in cultivated rye (*S. cereale* subsp.
323 *cereale*) accessions (over 99.9% vs. 75.7%, Table 1), in consistence with the assumption that

324 domestication and improvement resulted in a decrease in diversity, and that crop wild relatives are a
325 treasure trove of untapped and potentially valuable variation for crop improvement [39, 40].

326 STRUCTURE analysis suggested the presence of two subpopulation in the analysed collection
327 (K=2), dividing the set in to two groups - the first consisting of *S. sylvestre* and *S. strictum* accessions
328 and the second containing *S. vavilovii* and *S. cereale* (both cultivated and weedy) accessions.
329 However, the implementation of Delta K method to the identification of the number cluster explain
330 best the structure within the analysed germplasm set often indicates K=2 as the highest level of
331 hierarchical structure, even if the structure is more complex. Hence, the use of other methods in
332 conjunction with Delta K is recommended [41–43]. Therefore, we further examined relationships
333 between accessions using PCoA and NJ clustering. The results of both analyses were in very good
334 agreement and indicated a more complex structure within *Secale* genus – three main complexes
335 corresponding to the taxonomy: the most divergent *S. sylvestre* complex, the *S. strictum* complex,
336 and the *S. vavilovii/S. cereale* complex. This outcome agrees with results of previous studies on rye
337 genetic diversity [18, 19, 21], and is also well supported by the outcome of AMOVA analysis and
338 pairwise F_{ST} values indicating a very high degree of differentiation between these three germplasm
339 groups.

340 A large number of *S. strictum* subsp. samples included in the study (45 accessions, which
341 originated from different genebanks) allowed us to gather novel information concerning its genetic
342 diversity. We revealed a considerable genetic diversity of this genus, as demonstrated by high values
343 of genetic diversity indices and the results of STRUCTURE analysis, with its representatives present in
344 both populations indicated and also classified as admixtures. NJ clustering indicated differences
345 between *S. strictum* subspecies analysed. *S. strictum* subsp. *kuprianovii* (14 accessions) turned out to
346 be the most homogenous group, located exclusively in cluster A2, while accessions of *S. strictum*
347 subsp. *anatolicum* and *S. strictum* subsp. *strictum* (eight and 21 accessions, respectively) occurred,
348 besides cluster A2, also in clusters A3.1 and A3.2, intermixed with cultivated and weedy accessions of

349 *Secale cereale*. However, it cannot be excluded, that some of this *S. strictum* samples placed within *S.*
350 *cereale* complex are only erroneously described as *S. strictum*, since a morphological description was
351 not performed within this study. We find that evaluation of morphological characters would be
352 advisable as a part of future molecular studies on rye taxonomy and phylogeny to exclude possible
353 misclassification of some accessions. On the other hand, the diversity of ten *S. sylvestre* accessions
354 analysed in this turned out to be very small, indicating a need for a follow-up, more detailed
355 examination, to ensure proper safeguarding of the genetic potential of this wild relative of cultivated
356 rye. In consistence with the earlier molecular reports examining taxonomic relationships within the
357 genus *Secale* [18, 21, 32], all the 14 *S. vavilovii* accessions analysed were intermixed with the *S.*
358 *cereale* accessions in clusters A3.1, A3.2 and A3.3 of the NJ tree. Referring to the explanation of
359 Zohary et al. [22] on the controversies regarding the taxonomic position of *S. vavilovii*, this result
360 would suggest that the samples analysed in this study were “true” *S. vavilovii* forms. Surprisingly, we
361 observed a strong negative Tajima’s D value in this germplasm group which could be a result of an
362 unintentional selection during genebank conservation, for example caused by a low germination rate
363 during regeneration. A coanalysis with *S. vavilovii* samples from a recent collection would be needed
364 to verify this hypothesis. Based on the analysis of our large germplasm set, comprising 58 wild/weedy
365 *Secale cereale* accessions (*S. c. subsp. afghanicum*, *S. c. subsp. ancestrale*, *S. c. subsp. dighoricum*, *S.*
366 *c. subsp. rigidum*, and *S. c. subsp. segetale*) we were able to confirm the lack of separation between
367 weedy and cultivated forms of *Secale cereale*, indicated by earlier studies [19, 21, 32] and suggesting
368 a strong gene flow between these two groups.

369 We detected the presence of genetic clusters within cultivated ryees and the influence of
370 improvement status on the clustering. NJ clustering indicated a genetic distinctiveness of inbreds
371 used in rye hybrid breeding from the remaining cultivated rye accessions, with the two heterotic
372 pools forming separate clusters in the NJ tree. However, the degree of genetic differentiation
373 between heterotic pools, measured by F_{ST} value was moderate. Further, the remaining cultivated
374 accessions formed three major clusters, one containing the majority of cultivars and related

375 landraces, and two additional clusters comprising mostly rye landraces. Thus, the study confirmed
376 the indication from earlier works [18, 27, 28], that a large portion of the genetic diversity of rye
377 landraces is not represented in rye cultivars, especially in the modern ones. Similar patterns of
378 genetic diversity distribution between landraces and cultivars, reflecting strong selection for several
379 key traits, which occurs during breeding/and or initial, historic choices of germplasm for breeding
380 programs, were reported also for other crops [35, 44]. In this study we identified a very distinct
381 group of rye landraces (cluster A3.1) mostly from Turkey. This geographic region is important for rye
382 evolution as the probable area of origin of cultivated rye and the main centre of diversity [22, 25].
383 Therefore, we postulate that this germplasm group should be of special interest in conservation
384 efforts, and also future allele-mining projects aimed at identification of novel variation for rye
385 improvement [27].

386 **Detection of genome regions targeted by selection**

387 Detection of selection targets was attempted in rye for the first time by Bauer et al. [45] who
388 used the F_{ST} outlier approach and the X^TX statistic in pairwise comparisons between three germplasm
389 groups: 38 and 46 inbred lines representing the seed and pollen parent pools used in rye hybrid
390 breeding, respectively, and 46 individuals representing rye genetic resources. The analyses were
391 done based on genotypic data obtained with the use of Rye600k array. In each comparison
392 numerous outlier markers were identified, which clustered in a few distinct genome regions, and in
393 total 27 putative selection targets – rye orthologues of cloned and functionally characterised rice
394 genes – were found in these regions. Functions of these putative orthologues were related, among
395 others, to plant height, grain size and number, pollen germination ability, other plant development
396 and morphology functions, abiotic and biotic stress, and regulation of various physiological
397 processes. Subsequently, Li et al. [17] identified loci potentially involved in the domestication of rye
398 based on GBS data of 101 accessions reported by Schreiber et al. [19]. Specifically, SNPs
399 differentiating 81 cultivated rye and five *S. vavilovii* accessions and three selective sweep detection

400 methods (reduction of diversity (ROD), genome-wide scan of fixation index (F_{ST}) and cross-population
401 composite likelihood ratio (CP-CLR)) were used. As a result, 11 selective sweeps with the total of
402 three candidate rye genes, related to brassinosteroid signalling, the transition from vegetative to
403 floral development, and also to tillering and grain yield regulation, were detected in common by the
404 three approaches. The number of candidate genes detected by at least one tool ranged from 10 to
405 21. Recently, based on resequencing data, Sun et al. [32] performed identification of genes targeted
406 by selection during domestication using F_{ST} , XP CLR and ROD approaches on cultivated and weedy
407 ryes from a worldwide set of 116 accessions. As a result selective sweeps with 279 candidate genes
408 were identified by at least two methods, among them, genes related to plant height, disease
409 resistance, tiller number and grain yield, and also genes with shattering-related functions.

410 In this study, we used a different approach to detect genome regions targeted by positive
411 selection in rye. Each of the defined rye germplasm groups was analysed separately with three
412 algorithms detecting various distinct signatures of selective pressure: SweeD [46], OmegaPlus [47],
413 and RAiSD [48]. Previously, these algorithms were used successfully to identify selective sweeps
414 signals in various plant germplasm sets, such as African rice, maize inbred lines adapted to African
415 highlands, Canadian spring wheat cultivars, and wild strawberries [36, 41, 49, 50]. We performed
416 sweep detection in cultivated accessions from each of the identified clusters within *S. cereale*
417 complex. To reduce the length of the manuscript and to focus on the most probable selection
418 targets, we reported only the sweeps that were identified in common by the three algorithms used
419 and listed the potential candidate genes located in the vicinity of the detected outliers.

420 Genome-wide studies on the influence of selection on the crop plant genome demonstrated
421 that numerous loci, scattered across the genome, are targeted by selection pressure [8, 12]. In
422 accordance with those findings, we detected a total of 133 outliers that were located in 13 putative
423 sweeps, dispersed in the rye genome. The lengths of selective sweeps regions identified in this study

424 ranged from 0.84 to 11.76 Mb and were comparable to those reported in rye by [17] (2 – 37 Mb) and
425 [32] (0.11-11 Mb).

426 We were not able to find a clear correspondence between positions of outliers located in this
427 study and the location of known cereal domestication genes orthologs in the rye genome. However,
428 this result is not altogether surprising since the methods used in this study are dedicated to detection
429 of recent and strong positive selection [9]. The overlap between candidate genes for selection
430 reported previously in rye [17, 32] and those identified in this study was very small. Lack of
431 consistency in the results of selective sweep detection studies is frequently encountered in literature
432 [36, 50], and is associated with various factors, including differences in the type of molecular markers
433 used, marker density and genome coverage, size and the diversity of the germplasm set analysed,
434 and the sweep detection method applied [50, 51]. To circumvent some of these limitations and to
435 improve the reliability of sweep detection, it has been suggested to use different sweep detection
436 methods in parallel [52]. We followed this route and used three tools detecting different signatures
437 of selective pressure and reported the overlap of the results from the three tools, providing
438 numerous novel candidate genes targeted by selection in cultivated rye for further studies.

439 **Potential functions of identified candidate genes**

440 Candidate genes under selection identified so far in crop plants often represent functions
441 related to response to environmental stimuli, such as biotic and abiotic stress resistance, plant
442 architecture, seed size and composition [8, 17, 32, 49, 50]. Similarly, many of the putative candidate
443 genes identified in this study are related to the aforementioned traits.

444 To prioritise the candidates we used the values of the statistics computed by the algorithms
445 SweeD, OmegaPlus and RAiSD, and we also performed GO term enrichment analysis. One of the
446 significantly enriched GO terms was phosphorelay signal transduction system, which is involved in
447 turning on and off cellular responses to environmental stimuli [53, 54], such as light, cold, or drought.
448 GO enrichment analysis also indicated the GO terms glycerolipid biosynthetic process and

449 diacylglycerol O-acyltransferase activity. Among candidate genes, these two GO terms were
450 represented by several O-acyltransferases WSD1. Three of them were located in the vicinity of an
451 outlier with the highest statistic score, which was identified in group g4a (Carsten heterotic pool). O-
452 acyltransferases WSD1 are involved in cuticular wax biosynthesis, which acts in plants as a protective
453 barrier against biotic and abiotic stresses, including drought [55–57]. Genes representing GO term
454 polygalacturonase activity, were also found to be significantly enriched among putative candidates
455 for selection. This group consisted of several pectin lyase-like genes. Multiple biological functions are
456 being attributed to pectin lyases, such as roles as extracellular virulence agents and roles in plant
457 growth and development, including pollen maturation and pollen tube growth [58]. We also
458 observed significant enrichment of GO terms related to plant fertility and reproduction: embryo sac
459 morphogenesis, and pollen sperm cell differentiation. The candidate genes located in the vicinity of
460 most statistically significant outliers included further genes with obvious connections to traits
461 relevant for plant breeding, such as, among others, genes encoding gibberellin-receptor GID1a, GDSDL
462 esterases/lipases, pentatricopeptide repeat-containing proteins, TIR-NBS-LRR class disease resistance
463 protein. Gibberellin-receptors GID1 are key elements in gibberellin signal transduction in plants, and
464 therefore play a role in the control of various aspects of plant growth and fertility, including seed
465 germination and biomass production [59, 60]. GDSDL esterases/lipases are active during seed
466 germination and play important roles in plant metabolism, growth and development, including seed
467 development. Pentatricopeptide repeat containing proteins are a large family of proteins regulating
468 gene expression at the RNA level [61]. Most of the known *Restorer of Fertility* (*Rf*) genes are
469 members of this family [62]. TIR-NBS-LRR genes constitute one of two groups of the nucleotide-
470 binding leucine-rich repeat (NB-LRR) family, comprising most of the plant pathogen resistance genes
471 [63].

472 **Conclusions**

473 Based on a genome-wide detailed analysis of genetic diversity structure in a broad collection
474 of diverse rye germplasm, we identified three complexes within the *Secale* genus: *S. sylvestre*, *S.*
475 *strictum* and *S. cereale/vavilovii*. We revealed a relatively narrow diversity of *S. sylvestre*, very high
476 diversity of *S. strictum*, and signatures of strong positive selection in *S. vavilovii*. Within cultivated
477 ryes we detected the presence of genetic clusters and the influence of improvement status on the
478 clustering. Rye landraces represent a reservoir of variation for breeding, since a large portion of their
479 diversity is not represented in rye cultivars, and especially a distinct group of landraces from Turkey
480 should be of special interest as a source of untapped variation. Using three sweep detection
481 algorithms we found that signatures of selection are dispersed in the rye genome and identified 170
482 putative candidate genes targeted by selection in cultivated rye related, among others, to response
483 to various environmental stimuli (such as pathogens, drought, cold), plant fertility and reproduction
484 (pollen sperm cell differentiation, pollen maturation, pollen tube growth), plant growth and biomass
485 production. Our study provides useful information for efficient management of rye germplasm
486 collections, that can help to ensure proper safeguarding of their genetic potential and provides
487 numerous novel candidate genes targeted by selection in cultivated rye for further functional
488 characterisation and allelic diversity studies.

489 METHODS

490 **Plant material**

491 In total of 478 rye (*Secale* sp.) accessions representing different geographic origins and
492 improvement status belonging to 17 taxonomic units were analysed: 134 wild or weedy accessions,
493 161 landraces, 75 historic cultivars, 36 modern cultivars, 58 breeding lines and 14 accessions of an
494 unknown improvement status. The germplasm collection used was composed of three sets: (i)
495 germplasm set 1 consisted of 340 accessions obtained as seed samples from several genebanks and
496 breeding companies, (ii) germplasm set 2 consisted of 54 rye inbred lines representing heterotic

497 pools used in rye hybrid breeding at HYBRO Saatzucht [64], (iii) germplasm set 3 consisted of 84
498 accessions described in [21]. Information on accessions used in the study is listed in Table S1.

499 **DNA isolation and genotyping**

500 For accessions from germplasm set 1 tissue was collected and DNA isolated as described in
501 [27]. Information on DNA isolation for samples from germplasm sets 2 and 3 can be found,
502 respectively, in [64] and [21]. GBS genotyping (DArTseq) was performed at Diversity Array
503 Technology Pty Ltd., Bruce ACT, Australia (<http://diversityarrays.com>) as described in [65]. For
504 selection of high quality (HQ) SNPs for population structure and genetic diversity analyses the
505 following thresholds were adopted: reproducibility >95%, minor allele frequency (MAF) >0,01), and
506 maximum missing data <10%. SNP filtering was done with R package dartR [66]. PIC values were
507 calculated using the formula by [67].

508 **Population structure and genetic diversity analyses**

509 The number of clusters (K) capturing the major structure in data was identified with
510 STRUCTURE 2.3.4 software [68] using the admixture model and correlated allele frequencies and the
511 following settings: length of the burn-in period 100,000, number of MCMC replications after burn-in:
512 10,000. For each number of K tested, ranging from 1 to 14, five independent iterations were
513 performed. The Evanno method [43] implemented in the Structure Harvester [69] was used to
514 identify the number of subpopulations (K) explaining best the population structure in the set.
515 Computation of distance matrices was conducted using R packages adegenet [70, 71], stats and dartR
516 [66]. MEGA11 software [72] was used to construct a Neighbor Joining dendrogram. Principal
517 Coordinate Analysis was done using NTSYSpc 2.2 [73]. AMOVA was performed with GenAIEx 6.503
518 [74, 75]. He and Ho values were calculated for defined germplasm groups using dartR. A variant call
519 format (vcf) file with markers, which aligned to the reference genome and fulfilled the above
520 specified quality criteria, and the corresponding marker scores was converted using TASSEL v5.2.86
521 [76] to PHILIP interleaved format and used as input for MEGA11 [72] to calculate the number of

522 segregating sites (S), the proportion of polymorphic sites (Ps), Theta (θ), nucleotide diversity (π), and
523 Tajima's D [77] for each defined germplasm group.

524 **Selective sweep detection and GO term enrichment analysis**

525 Three algorithms: i) SweeD [46], ii) OmegaPlus [47], and iii) RAiSD [48] were used to detect
526 selective sweeps in defined groups of cultivated rye germplasm. SweeD is based on the Site
527 Frequency Spectrum (SFS), since an increase of high- and low-frequency derived variants is expected
528 in the proximity of a beneficial mutation. OmegaPlus algorithm relies on Linkage Disequilibrium (LS)
529 patterns, where it is assumed that the LD levels remain high at each side of the beneficial mutation,
530 and drop dramatically for loci across the beneficial mutation. RAiSD detects selective sweeps using
531 multiple signatures of selection: changes in the amount of genetic diversity, SFS, and LD, while
532 relying on SNP vectors. The analyses were run as described earlier [36, 49, 78] on the vcf input file of
533 Dataset-1. Only physically mapped SNPs located outside centromere regions were included in the
534 analyses. The top 2% of the highest scores detected by all three algorithms were declared putative
535 selective sweeps. Two or more adjacent, partially overlapping sweep regions were assumed to be
536 one selective sweep. The identified outlier positions within each putative sweep (plus/ minus 500 kb)
537 were used to search for candidate genes in the reference genome of the rye inbred line Lo7 and the
538 accompanying annotation file [16]. To determine if any functional classes were over-represented
539 among the candidate genes GO enrichment analysis was performed using FUNC-E
540 h(<https://github.com/SystemsGenetics/FUNC-E>) with the *P*-value criterion of <0.01.

541 **Additional files**

542 **Additional file 1:**

543 **Figure S1.** Summary of information on 12 846 HQ SNPs polymorphic in 478 diverse rye accessions. **A.**
544 Histogram of polymorphic information content (PIC) values. **B.** Histogram of minor allele frequency
545 (MAF) values.

546 **Figure S2.** Plot of Delta K values for number of assumed subpopulations (K) ranging from 2 to 14.

547 **Figure S3.** Population structure of 478 rye accessions at K=2 based on 12 846 SNPs. Each accession is
548 represented by a vertical stripe partitioned into coloured segments with lengths representing the
549 membership fractions in the inferred clusters. The order of accessions in the plot is the same as in
550 the Table S1.

551 **Figure S4.** Principal Coordinates Analysis plot showing relationships between 478 rye accessions
552 genotyped with 12846 SNPs with accessions labelled according to the outcome of NJ clustering.

553 **Figure S5.** Neighbor-joining tree based on 12 846 SNP markers showing relationships between 478
554 rye accessions with accession labelled according to source.

555 **Figure S6.** Chromosomal distribution of polymorphic SNPs by germplasm group. **A.** Accessions
556 grouped according to improvement status. **B.** Accessions grouped according to taxonomy. **C.**
557 Accessions grouped according to the outcome of NJ clustering. **D.** Accessions grouped according to
558 their membership in sweep detection sets.

559 **Figure S7.** Neighbor-joining tree based on 12 846 SNP markers showing relationships between 478
560 rye accessions with branch colour indicating cultivated rye accessions belonging to the respective
561 sweep detection set.

562 **Additional file 2:**

563 **Table S1.** Information on rye accessions used in the study, including genebank accession number,
564 name, source, taxon, improvement status, country of origin, geographic region, group memberships
565 based on STRUCTURE analysis and NJ clustering, and sweep detection set membership.

566 **Table S2.** List of 12486 HQ DArTseq markers used in this study, including their sequences and
567 position in the Lo7 reference genome.

568 **Table S3.** Chromosomal distribution of SNPs by germplasm group.

569 **Table S4.** Pairwise population F_{ST} values for accessions groups based on NJ clustering.

570 **Table S5.** Values of genetic diversity indices for the collection of 478 rye accessions and each
571 established germplasm group.

572 **Table S6** Information on common outliers and sweeps detected by all three methods (SweeD,
573 OmegaPlus, and RAiSD) in groups of cultivated rye accessions.

574 **Table S7.** List of putative candidate genes targeted by selection in cultivated rye

575 **Table S8.** Enriched GO terms for putative candidate genes from the selective sweep regions.

576 **Table S9.** Literature based list of known cereal domestication/improvement genes and locations of
577 their putative homologues in the Lo7 genome.

578

579 **DECLARATIONS**

580

581 **Ethics approval and consent to participate**

582 Not applicable

583

584 **Consent for publication**

585 Not applicable

586

587 **Availability of data and materials**

588 Data generated or analysed during this study are included in this published article and its
589 supplementary information files or are available from the corresponding author on reasonable
590 request.

591

592 **Competing interests**

593 The authors declare that they have no competing interests.

594

595 **Funding**

596 This research was funded by the Polish National Science Centre grant No. DEC-
597 2014/14/E/NZ9/00285, by Slovak Research and Development Agency (No. APVV-20-0246), and by
598 Slovak Grant Agency VEGA (No. 1/0180/22). The genotyping of rye inbred lines was funded by the
599 German Federal Ministry of Food and Agriculture based on the decision of the Parliament of the
600 Federal Republic of Germany through the Federal Office of Agriculture and Food (Grant No.
601 2814IP001). The funding bodies played no role in the design of the study and collection, analysis, and
602 interpretation of data and in writing the manuscript.

603

604 **Authors' contributions**

605 AH, EB, KT, HBB performed the experiments. AH, EB, NA, LB, PG, HBB analysed the data. NA, LB, BH,
606 DS, RD, MS contributed data/analysis tools. HBB conceived, designed and supervised the
607 experiments, wrote the manuscript. AH, NA, BH, DS, RD, MS, HBB reviewed and edited the
608 manuscript. All authors read and approved the final manuscript.

609

610 **References**

611 1. Doebley JF, Gaut BS, Smith BD. The Molecular Genetics of Crop Domestication. *Cell*.
612 2006;127:1309–21.

613 2. Abbo S, Pinhasi R, Gopher A, Saranga Y, Ofner I, Peleg Z. Plant domestication versus crop
614 evolution: a conceptual framework for cereals and grain legumes. *Trends Plant Sci*. 2014;19:351–60.

615 3. Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, et al. Parallel domestication of the Shattering1
616 genes in cereals. *Nat Genet*. 2012;44:720–4.

617 4. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, et al. Evolution of the grain

618 dispersal system in barley. *Cell*. 2015;162:527–39.

619 5. Palaisa K, Morgante M, Tingey S, Rafalski A. Long-range patterns of diversity and linkage
620 disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. *Proc
621 Natl Acad Sci U S A*. 2004;101:9885–90.

622 6. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, et al. *Hd1*, a major photoperiod
623 sensitivity quantitative trait locus in rice, is closely related to the *Arabidopsis* flowering time gene
624 *CONSTANS*. *Plant Cell*. 2000;12:2473–83.

625 7. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, et al. Molecular
626 characterization of *Rht-1* dwarfing genes in hexaploid wheat. *Plant Physiol*. 2011;157:1820–31.

627 8. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, et al. Durum wheat
628 genome highlights past domestication signatures and future improvement targets. *Nat Genet*.
629 2019;51:885–95.

630 9. Pavlidis P, Alachiotis N. A survey of methods and tools to detect recent and strong positive
631 selection. *J Biol Res*. 2017;:1–17.

632 10. De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, Ronfort J, et al. Detecting selection along
633 environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and
634 selfing populations. *Mol Ecol*. 2013;22:1383–99.

635 11. Ayalew H, Sorrells ME, Carver BF, Baenziger PS, Ma XF. Selection signatures across seven decades
636 of hard winter wheat breeding in the Great Plains of the United States. *Plant Genome*. 2020;13:1–10.

637 12. Stetter MG, Gates DJ, Mei W, Ross-Ibarra J. How to make a domesticate. *Current Biology*.
638 2017;27:R896–900.

639 13. Purugganan MD, Fuller DQ. The nature of selection during plant domestication. *Nature*. 2009;457
640 February:843–8.

641 14. Rakoczy-Trojanowska M, Bolibok-Brągoszewska H, Myśkow B, Dziegielewska M, Stojalowski S,
642 Grądzielewska A, et al. Genetics and genomics of stress tolerance. In: Rabanus-Wallace MT, Stein N,
643 editors. *The Rye Genome, Compendium of Plant Genomes*. Springer, Cham; 2021. p. 213–36.

644 15. Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I. A systematic review of rye (*Secale cereale* L.)
645 as a source of resistance to pathogens and pests in wheat (*Triticum aestivum* L.). *Hereditas*.
646 2017;154:14.

647 16. Rabanus-Wallace TM, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, et al. Chromosome-
648 scale genome assembly provides insights into rye biology, evolution and agronomic potential. *Nat*
649 *Genet*. 2021;53:564–73.

650 17. Li G, Wang L, Yang J, He H, Jin H, Li X, et al. A high-quality genome assembly highlights rye
651 genomic characteristics and agronomically important genes. *Nat Genet*. 2021;53:574–84.

652 18. Bolibok-Brągoszewska H, Targonska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M. Genome-
653 wide characterization of genetic diversity and population structure in *Secale*. *BMC Plant Biol*.
654 2014;14:184.

655 19. Schreiber M, Himmelbach A, Börner A, Mascher M. Genetic diversity and relationship between
656 domesticated rye and its wild relatives as revealed through genotyping-by-sequencing. *Evol Appl*.
657 2018; February:1–12.

658 20. Targońska-Karasek M, Bolibok-Brągoszewska H, Oleniecki T, Sharifova S, Kopania M, Rakoczy-
659 Trojanowska M. Verification of taxonomic relationships within the genus *Secale* (Poaceae: Pooideae:
660 Triticeae) based on multiple molecular methods. *Phytotaxa*. 2018;383:128.

661 21. Al-Beyroutiova M, Sabo M, Slezak P, Dusinsky R, Bircak E, Hauptvogel P, et al. Evolutionary
662 relationships in the genus *Secale* revealed by DArTseq DNA polymorphism. *Plant Syst Evol*.
663 2016;302:1083–91.

664 22. Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World: The origin and spread of

665 domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University
666 Press; 2012.

667 23. Preece C, Livarda A, Christin PA, Wallace M, Martin G, Charles M, et al. How did the
668 domestication of Fertile Crescent grain crops increase their yields? *Funct Ecol.* 2017;31:387–97.

669 24. Fuller DQ. Contrasting patterns in crop domestication and domestication rates: Recent
670 archaeobotanical insights from the old world. *Ann Bot.* 2007;100:903–24.

671 25. Behre KE. The history of rye cultivation in Europe. *Veg Hist Archaeobot.* 1992;1:141–56.

672 26. Tang ZX, Ross K, Ren ZL, Yang ZJ, Zhang HY, T C, et al. Secale. In: C K, editor. *Wild Crop Relatives:*
673 *Genomic and Breeding Resources, Cereals.* Berlin Heidelberg: Springer; 2011. p. 367–96.

674 27. Hawliczek A, Bolibok L, Tofil K, Borzęcka E, Jankowicz-Cieślak J, Gąwroński P, et al. Deep sampling
675 and pooled amplicon sequencing reveals hidden genic variation in heterogeneous rye accessions.
676 *BMC Genomics.* 2020;21:845.

677 28. Targońska M, Bolibok-Brągoszewska H, Rakoczy-Trojanowska M. Assessment of genetic diversity
678 in Secale cereale based on SSR markers. *Plant Mol Biol Report.* 2016;34:37–51.

679 29. Monteiro F, Vidigal P, Barros AB, Monteiro A, Oliveira HR, Viegas W. Genetic Distinctiveness of
680 Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources. *Front
681 Plant Sci.* 2016;7.

682 30. Sidhu JS, Ramakrishnan SM, Ali S, Bernardo A, Bai G, Abdullah S, et al. Assessing the genetic
683 diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. *PLoS
684 One.* 2019;14:1–22.

685 31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol.*
686 1990;215:403–10.

687 32. Sun Y, Shen E, Hu Y, Wu D, Feng Y, Lao S, et al. Population genomic analysis reveals domestication

688 of cultivated rye from weedy rye. *Mol Plant*. 2022;15:552–61.

689 33. Hagenblad J, Oliveira HR, Forsberg NEG, Leino MW. Geographical distribution of genetic diversity
690 in *Secale* landrace and wild accessions. *BMC Plant Biol*. 2016;16:1–20.

691 34. Borzęcka E, Hawliczek-Strulak A, Bolibok L, Gawroński P, Tofil K, Milczarski P, et al. Effective BAC
692 clone anchoring with genotyping-by-sequencing and Diversity Arrays Technology in a large genome
693 cereal rye. *Sci Rep*. 2018;8:8428.

694 35. Sansaloni C, Franco J, Santos B, Percival-Alwyn L, Singh S, Petroli C, et al. Diversity analysis of
695 80,000 wheat accessions reveals consequences and opportunities of selection footprints. *Nat
696 Commun*. 2020;11:1–12.

697 36. Ndjiondjop MN, Alachiotis N, Pavlidis P, Goungoulou A, Kpeki SB, Zhao D, et al. Comparisons of
698 molecular diversity indices, selective sweeps and population structure of African rice with its wild
699 progenitor and Asian rice. *Theor Appl Genet*. 2019;132:1145–58.

700 37. Allan V, Vetriventhan M, Senthil R, Geetha S, Deshpande S, Rathore A, et al. Genome-Wide
701 DArTSeq Genotyping and Phenotypic Based Assessment of Within and Among Accessions Diversity
702 and Effective Sample Size in the Diverse Sorghum, Pearl Millet, and Pigeonpea Landraces. *Front Plant
703 Sci*. 2020;11 December:1–20.

704 38. Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, et al. Genebank genomics
705 highlights the diversity of a global barley collection. *Nat Genet*. 2019;51:319–26.

706 39. Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH. Back into the wild—Apply untapped genetic
707 diversity of wild relatives for crop improvement. *Evol Appl*. 2017;10:5–24.

708 40. Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: Expanding the gene pool for
709 crop improvement. *Plant Biotechnol J*. 2016;14:1070–85.

710 41. Hu Y, Feng C, Yang L, Edger PP, Kang M. Genomic population structure and local adaptation of the

711 wild strawberry *Fragaria nilgerrensis*. *Hortic Res.* 2022;9 October 2021.

712 42. Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, et al. The K = 2
713 conundrum. *Mol Ecol.* 2017;26:3594–602.

714 43. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software
715 STRUCTURE: a simulation study. *Mol Ecol.* 2005;14:2611–20.

716 44. Müller T, Schierscher-Viret B, Fossati D, Brabant C, Schori A, Keller B, et al. Unlocking the diversity
717 of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt. *Theor Appl Genet.*
718 2018;131:407–16.

719 45. Bauer E, Schmutz T, Barilar I, Mascher M, Gundlach H, Martis MM, et al. Towards a whole-
720 genome sequence for rye (*Secale cereale* L.). *Plant J.* 2017;89:853–69.

721 46. Pavlidis P, Živković D, Stamatakis A, Alachiotis N. SweeD: Likelihood-based detection of selective
722 sweeps in thousands of genomes. *Mol Biol Evol.* 2013;30:2224–34.

723 47. Alachiotis N, Stamatakis A, Pavlidis P. OmegaPlus: a scalable tool for rapid detection of selective
724 sweeps in whole-genome datasets. *Bioinformatics.* 2012;28:2274–5.

725 48. Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a
726 selective sweep and SNP vectors. *Commun Biol.* 2018;1.

727 49. Wegary D, Teklewold A, Prasanna BM, Ertiro BT, Alachiotis N, Negera D, et al. Molecular diversity
728 and selective sweeps in maize inbred lines adapted to African highlands. *Sci Rep.* 2019; April:1–15.

729 50. Semagn K, Iqbal M, Alachiotis N, N'Diaye A, Pozniak C, Spaner D. Genetic diversity and selective
730 sweeps in historical and modern Canadian spring wheat cultivars using the 90K SNP array. *Sci Rep.*
731 2021;11:1–16.

732 51. Narum SR, Hess JE. Comparison of FST outlier tests for SNP loci under selection. *Mol Ecol Resour.*
733 2011;11 SUPPL. 1:184–94.

734 52. Vasemägi A, Nilsson J, Primmer CR. Expressed sequence tag-linked microsatellites as a source of
735 gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon
736 (*Salmo salar* L.). *Mol Biol Evol.* 2005;22:1067–76.

737 53. Mira-Rodado V. New insights into multistep-phosphorelay (Msp)/ two-component system (tcs)
738 regulation: Are plants and bacteria that different? *Plants.* 2019;8:1–21.

739 54. Oka A, Sakai H, Iwakoshi S. His-Asp phosphorelay signal transduction in higher plants: Receptors
740 and response regulators for cytokinin signaling in *Arabidopsis thaliana*. *Genes Genet Syst.*
741 2002;77:383–91.

742 55. Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, et al. Identification of the wax ester synthase/acyl-
743 coenzyme a:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in
744 *Arabidopsis*. *Plant Physiol.* 2008;148:97–107.

745 56. Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, et al. OsWS1 involved in cuticular wax biosynthesis is
746 regulated by osa-miR1848. *Plant Cell Environ.* 2015;38:2662–73.

747 57. Laskoś K, Myśkow B, Dziurka M, Warchał M, Dziurka K, Juzoń K, et al. Variation between glaucous
748 and non- glaucous near- isogenic lines of rye (*Secale cereale* L.) under drought stress. *Sci Rep.*
749 2022;:1–17.

750 58. Cao J. The Pectin Lyases in *Arabidopsis thaliana*: Evolution, Selection and Expression Profiles. *PLoS*
751 *One.* 2012;7.

752 59. Ge W, Steber CM. Positive and negative regulation of seed germination by the *Arabidopsis* GA
753 hormone receptors, GID1a, b, and c. *Plant Direct.* 2018;2.

754 60. Wang X, Li J, Ban L, Wu Y, Wu X, Wang Y, et al. Functional characterization of a gibberellin
755 receptor and its application in alfalfa biomass improvement. *Sci Rep.* 2017;7 August 2016:1–12.

756 61. Manna S. An overview of pentatricopeptide repeat proteins and their applications. *Biochimie.*

757 2015;113:93–9.

758 62. Melonek J, Stone JD, Small I. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. *Sci
759 Rep.* 2016;6 October:1–12.

760 63. Lee HA, Yeom SI. Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. *Brief
761 Funct Genomics.* 2015;14:233–42.

762 64. Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B. A Genome-Wide Association Study
763 Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye
764 (*Secale cereale* L.). *Front Plant Sci.* 2021;12 October:1–23.

765 65. Targońska-Karasek M, Bolibok-Brągoszewska H, Rakoczy-Trojanowska M. DArTseq genotyping
766 reveals high genetic diversity of polish rye inbred lines. *Crop Sci.* 2017;57:1906–15.

767 66. Gruber B, Unmack PJ, Berry OF, Georges A. *dartR: An R package to facilitate analysis of SNP data
768 generated from reduced representation genome sequencing.* *Mol Ecol Resour.* 2018;18:691–9.

769 67. Botstein D, White RL, Skolnick M, Davis RW. Construction of a Genetic Linkage Map in Man Using
770 Restriction Fragment Length Polymorphisms. *Am J Hum Gen.* 1980;32:314–31.

771 68. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus
772 genotype data. *Genetics.* 2000;155:945–59.

773 69. Earl D a., vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing
774 STRUCTURE output and implementing the Evanno method. *Conserv Genet Resour.* 2011;4:359–61.

775 70. Jombart T. Adegenet: A R package for the multivariate analysis of genetic markers.
776 *Bioinformatics.* 2008;24:1403–5.

777 71. Jombart T, Ahmed I. *adegenet 1.3-1: New tools for the analysis of genome-wide SNP data.*
778 *Bioinformatics.* 2011;27:3070–1.

779 72. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11.

780 Mol Biol Evol. 2021;38:3022–7.

781 73. Rohlf FJ. NTSYSpc: Numerical Taxonomy System, ver. 2.2. 2008.

782 74. Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for
783 teaching and research. Mol Ecol Notes. 2006;6:288–95.

784 75. Peakall R, Smouse PE. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for
785 teaching and research--an update. Bioinformatics. 2012;28:2537–9.

786 76. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: Software for
787 association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

788 77. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
789 Genetics. 1989;585–95.

790 78. Ji F, Ma Q, Zhang W, Liu J, Feng Y, Zhao P, et al. A genome variation map provides insights into the
791 genetics of walnut adaptation and agronomic traits. Genome Biol. 2021;22:1–22.

792

793 **Figure legends:**

794 **Figure 1.** Principal Coordinates Analysis plot showing relationships between 478 rye accessions
795 genotyped with 12 846 SNPs. **A** Accessions labelled according to STRUCTURE-based population
796 assignments. **B** accessions labelled according to taxonomy.

797 **Figure 2.** Neighbor-joining tree based on 12 846 SNP markers showing relationships between 478 rye
798 accessions. **A** Accessions labelled according to STRUCTURE-based population assignments NJ trees. **B**
799 accessions labelled according to taxonomy. **C** Accessions labelled according to improvement status.

800

801 Tables:

802 **Table 1. Summary of SNP marker numbers, He and Ho values, and physical map length by**
 803 **germplasm group.**

Germplasm group	N	No. of HQ SNPs	No. of mapped HQ SNPs	Proportion of mapped HQ SNPs (%)	mean He	mean Ho	Map length (Mbp)
All	478	12846	10607	100	0.211	0.228	6723.25
Improvement status							
wild_weedy	132	12837	10599	99.9	0.282	0.225	6723.25
landrace	158	9181	7544	71.1	0.255	0.366	6719.24
historic_cultivar	75	7645	6194	58.4	0.279	0.466	6719.05
modern_cultivar	36	6006	4832	45.6	0.298	0.431	6713.26
breeding	53	6794	5515	52.0	0.210	0.086	6716.18
Petkus_pool	26	4280	3420	32.2	0.266	0.036	6703.50
Carsten_pool	27	4638	3698	34.9	0.269	0.127	6711.25
Taxonomy							
<i>S. cereale</i>	403	10450	8642	81.5	0.209	0.270	6719.24
<i>S. c. subsp. cereale</i>	344	9755	8031	75.7	0.220	0.287	6719.24
<i>S. c. subsp. "noncereale"</i>	59	9446	7820	73.7	0.251	0.318	6719.05
<i>S. strictum</i>	45	12562	10364	97.7	0.272	0.237	6723.25
<i>S. sylvestre</i>	10	1045	803	7.6	0.234	0.183	6622.07
<i>S. vavilovii</i>	14	6829	5536	52.2	0.333	0.463	6713.68
NJ clusters							
A1	11	1602	1243	11.7	0.196	0.158	6645.31
A2	37	10181	7498	70.7	0.308	0.318	6718.51
A3	430	10482	8675	81.8	0.209	0.271	6719.70
A3.1	59	9067	7443	70.2	0.285	0.402	6719.24
A3.2	264	9884	8160	76.9	0.223	0.328	6719.05
A3.3	53	8088	6611	62.3	0.238	0.271	6719.51
A3.4	54	5466	4390	41.4	0.244	0.070	6715.01
A3.4a	24	4425	3537	33.3	0.272	0.145	6710.18
A3.4b	30	4603	3682	34.7	0.263	0.033	6704.52
Sweep detection sets							
g1	198	8952	7345	69.2	0.241	0.360	6719.05
g2	46	8594	7031	66.3	0.305	0.452	6719.24
g3	37	7640	6212	58.6	0.249	0.280	6719.51
g4	53	5447	4373	41.2	0.252	0.070	6715.01
g4a	25	4524	3615	34.1	0.270	0.139	6710.18
g4b	28	4511	3606	34.0	0.266	0.033	6704.52

804

805

806

807 **Table 2. Chromosomal location of putative sweep regions and numbers of outliers and candidate**
808 **genes identified in groups of cultivated rye accessions.**

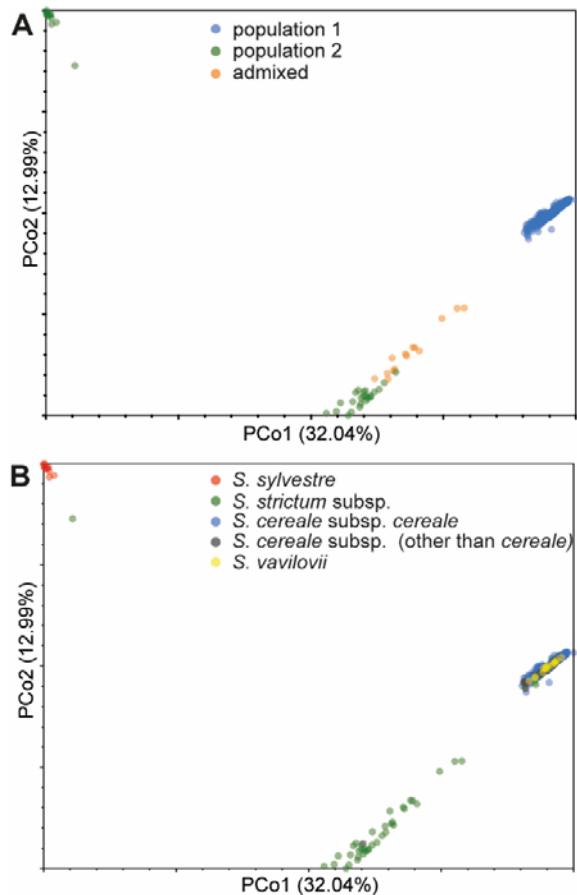
Germplasm group/parameter	Chromosome							Total
	1R	2R	3R	4R	5R	6R	7R	
g1	no. of sweeps				1	2		3
	no. of outliers				1	2 (1+1) ^a		3
	no. of candidate genes				4	21 (10+11) ^a		25
g2	no. of sweeps	1				1		2
	no. of outliers	8				1		9
	no. of candidate genes	6				14		20
g3	no. of sweeps	1	1		1			1 4
	no. of outliers	1	8		2			1 12
	no. of candidate genes	9	10		26			0 45
g4	no. of sweeps				1	1		2
	no. of outliers				23	29		52
	no. of candidate genes				23	28		51
g4a	no. of sweeps				1			1
	no. of outliers				13			13
	no. of candidate genes				15			15
g4b	no. of sweeps	1						1
	no. of outliers	44						44
	no. of candidate genes	14						14
Total	no. of sweeps	2	1	1	0	3	1	4 13
	no. of outliers	52	1	8	0	16	23	32 133
	no. of candidate genes	20	9	10	0	45	23	63 170

809

810 ^a numbers in brackets indicate the number of outliers/candidate genes in each of the respective
811 sweeps.

812

813

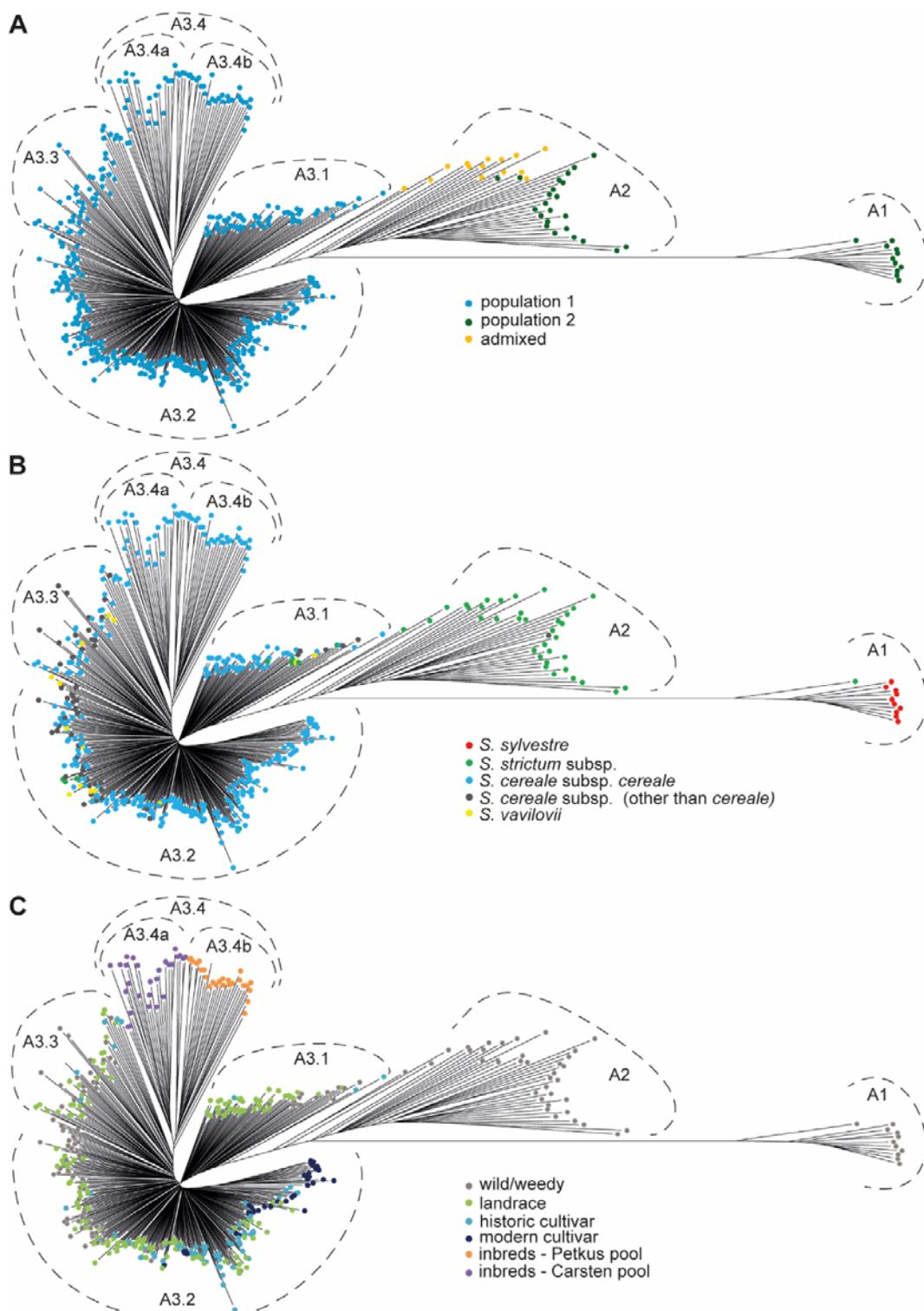

814 **Table 3. Candidate genes located in the vicinity of the outliers with the highest values of the**
 815 **statistics computed by the sweep detection algorithms.**

Group	Candidate gene	Description
g1	SECCE5Rv1G0337150	midasin-like protein
	SECCE5Rv1G0337160	BED zinc finger, hAT family dimerization domain
	SECCE5Rv1G0337170	disease resistance protein TIR-NBS-LRR class) family
	SECCE5Rv1G0337180	pfkB-like carbohydrate kinase family protein).
g2	SECCE1Rv1G0017740	calcium-transporting ATPase
	SECCE1Rv1G0017710	auxin-responsive protein
	SECCE1Rv1G0017720	proteasome subunit beta type
	SECCE1Rv1G0017730	spliceosome RNA helicase DDX39B
	SECCE1Rv1G0017750	transcription elongation factor Spt5
	SECCE1Rv1G0017760	phosphotransferase
	SECCE7Rv1G0505440	mitochondrial carrier protein, putative
g3	SECCE2Rv1G0084650	ATP binding cassette subfamily B4
	SECCE2Rv1G0084600	gag polyprotein
	SECCE2Rv1G0084610	tRNA guanosine-2'-O-methyltransferase
	SECCE2Rv1G0084630	RNA-binding RRM/RBD/RNP motifs) family protein
	SECCE2Rv1G0084640	photosystem II D2 protein
	SECCE2Rv1G0084660	basic blue copper family protein
	SECCE2Rv1G0084670	receptor kinase
g4	SECCE2Rv1G0084680	saccharopine dehydrogenase
	SECCE6Rv1G0388940	kinase family protein
	SECCE6Rv1G0388910	RING/U-box superfamily protein
	SECCE6Rv1G0388920	pyrimidine-specific ribonucleoside hydrolase RihB
	SECCE6Rv1G0388930	branched-chain-amino-acid aminotransferase-like protein
	SECCE6Rv1G0388950	double-stranded RNA-binding protein 3
	SECCE6Rv1G0388960	branched-chain amino acid aminotransferase
	SECCE6Rv1G0388970	GDSL esterase/lipase
	SECCE6Rv1G0388980	GDSL esterase/lipase
	SECCE7Rv1G0505180	pectin lyase-like superfamily protein
g4a	SECCE7Rv1G0505170	two-component response regulator
	SECCE7Rv1G0505220	pentatricopeptide repeat-containing protein
	SECCE5Rv1G0341870	O-acyltransferase WSD1
	SECCE5Rv1G0341890	O-acyltransferase WSD1
g4b	SECCE5Rv1G0341900	O-acyltransferase WSD1
	SECCE5Rv1G0341840	protein kinase
	SECCE5Rv1G0341850	Lon protease homolog
	SECCE5Rv1G0341860	NAM-like protein
	SECCE5Rv1G0341880	Replicase polyprotein 1a
	SECCE1Rv1G0037030	leucine-rich repeat receptor-like kinase
	SECCE1Rv1G0037040	transducin/WD-like repeat-protein
g5	SECCE1Rv1G0037050	zinc finger MYM-type-like protein
	SECCE1Rv1G0037060	ubiquinone/menaquinone biosynthesis C-methyltransferase UbiE
	SECCE1Rv1G0037070	gibberellin receptor GID1a
	SECCE1Rv1G0037080	pentatricopeptide repeat-containing protein
	SECCE1Rv1G0037090	squamosa promoter-binding-like protein
	SECCE1Rv1G0037100	lipase
	SECCE1Rv1G0037110	RING/U-box superfamily protein

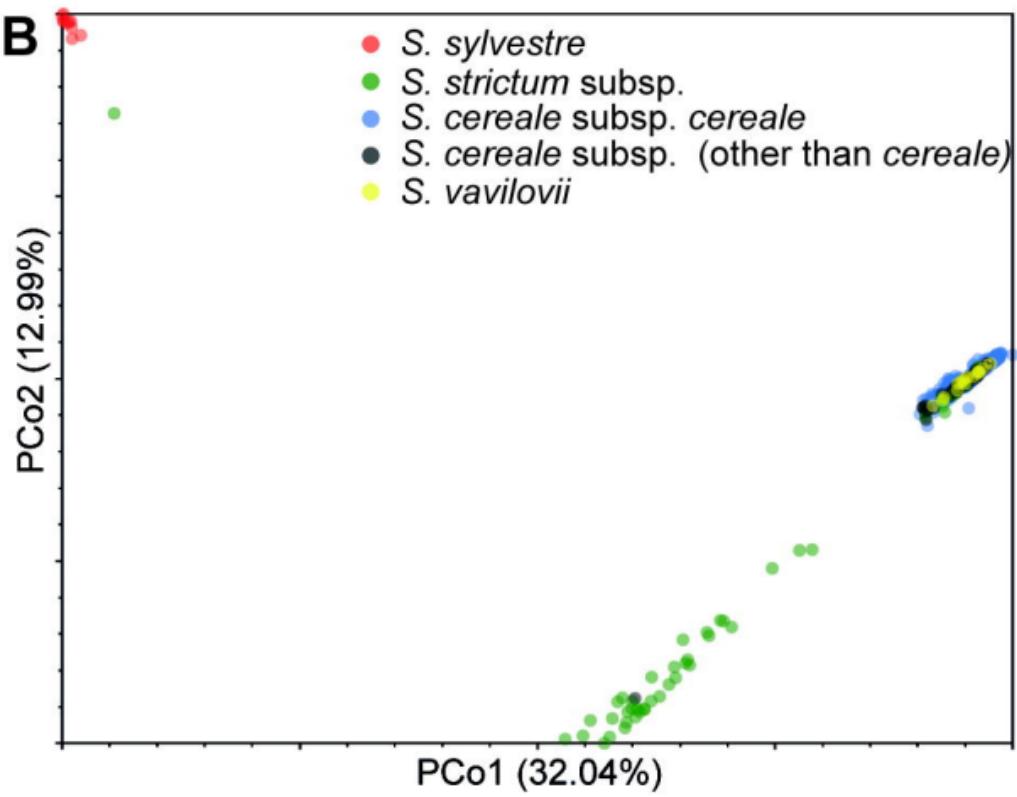
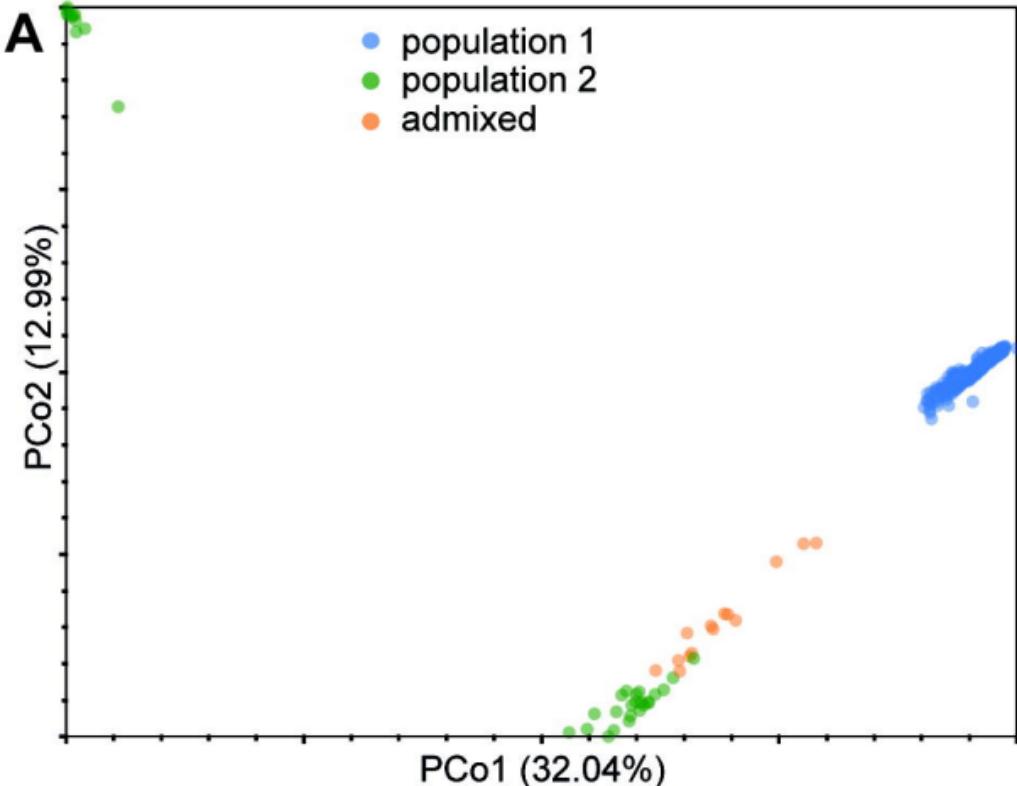
SECCE1Rv1G0037120 GMP synthase [glutamine-hydrolysing]

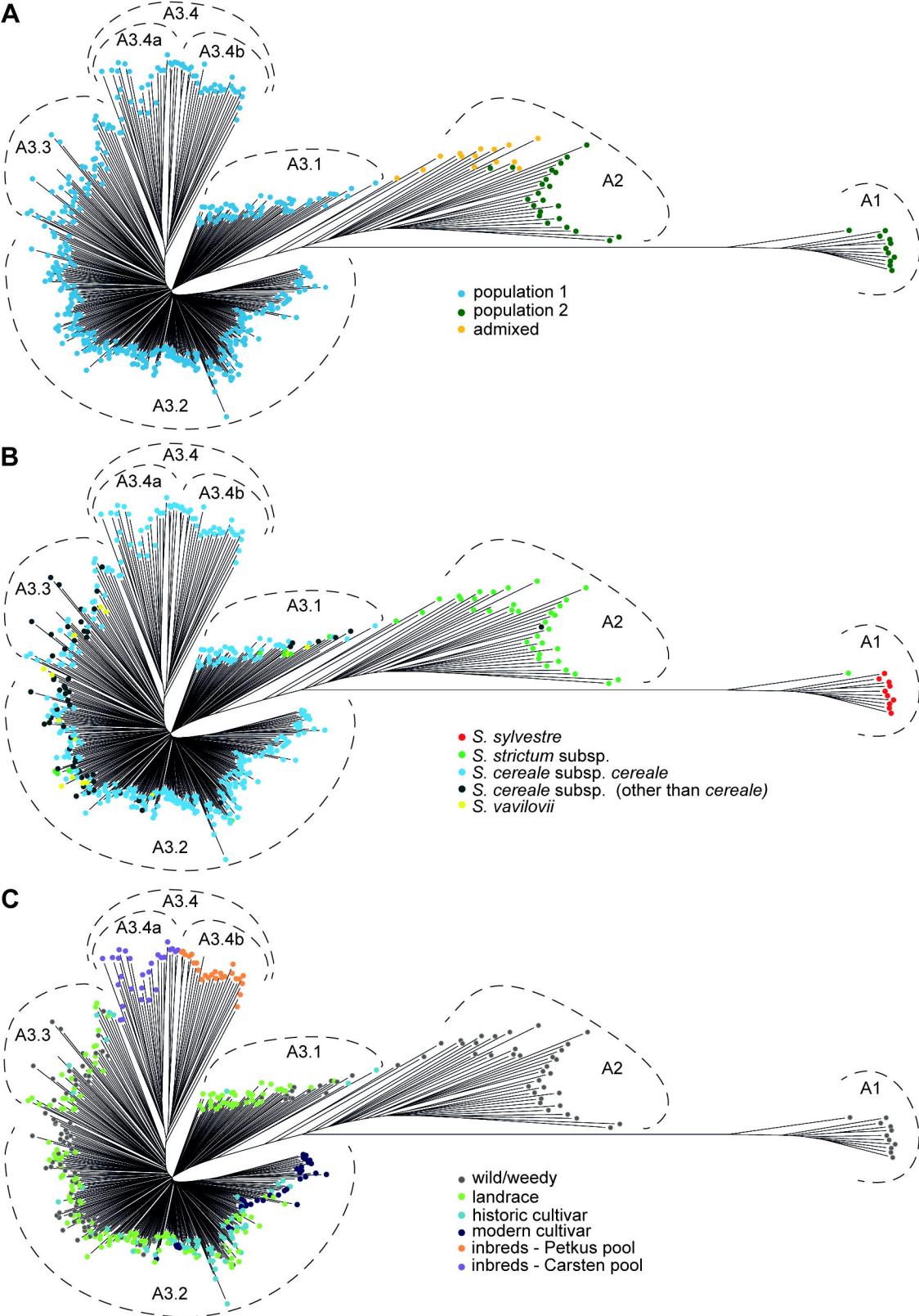
816

817 Figure 1



818



819


820

821 Figure 2

822

