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Abstract 
 
Three dimensional (3D) geometrical models are not only a powerful tool for quantitatively 
characterizing complex tissues but also useful for probing structure-function relationships in a 
tissue. However, these models are generally incomplete due to experimental limitations in 
acquiring multiple (>4) fluorescent channels simultaneously. Indeed, predictive geometrical 
and functional models of the liver have been restricted to few tissue and cellular components, 
excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells 
(KCs). Here, we performed deep-tissue immunostaining, multiphoton microscopy, deep-
learning techniques, and 3D image processing to computationally expand the number of 
simultaneously reconstructed tissue structures. We then generated a spatio-temporal single-
cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at 
different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) 
hepatic morphodynamics from early post-natal development to adulthood, and 2) the structural 
role of KCs in the murine liver homeostasis. In addition to a complete description of bile 
canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected 
spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number 
of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs alters the 
number and morphology of the HSCs. These findings reveal novel characteristics of liver 
heterogeneity and have important implications for both the structural organization of liver 
tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver 
tissue architecture, under both physiological and pathological conditions. 
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Introduction 
 
The liver fulfils a wide range of functions, including metabolism, detoxification, protein 
synthesis, and production of biochemicals that aid digestion. These diverse functions rely on 
an intricate 3D tissue architecture where different cell types coexist and interact in a 
coordinated fashion, and thus, triangulating the exact spatial location of a cell is key to 
understanding its role. Macroscopically, the liver is composed of functional anatomical units 
called lobules, which include cellular and tissue structures located between the central vein 
(CV) and the portal triad (hepatic artery, portal vein (PV), and bile duct). The blood coming 
from the gut, pancreas, and spleen enters the liver via the PV and mixes with blood from the 
hepatic artery. Blood then flows toward the CV through a highly branched network of blood 
vessels called sinusoids, whereas, bile flows through a second bile canaliculi (BC) network in 
an antiparallel direction. The space between the central and the portal veins is filled 
predominantly by hepatocytes and non-parenchymal cells. Hepatocytes constitute the primary 
cell type at the core of liver function and are responsible for processing blood and secreting 
bile into the BC. They are “sandwiched” between the sinusoidal endothelial cells and share 
the apical surface with multiple neighboring hepatocytes to form a 3D BC network. This 
organization allows the hepatocytes to have numerous contacts with the sinusoid and BC 
networks to maximize the exchange of molecules(1). Non-parenchymal cells also play 
important roles in liver function and growth regulation. They include liver sinusoidal endothelial 
cells, hepatic stellate cells (HSC), and Kupffer cells (KC). HSCs are located in the space of 
Disse between sinusoids and hepatocytes, store Vitamin A, and secrete most of the 
extracellular matrix(2). Indeed, activation of HSCs is a central driver of several liver 
diseases(2). KCs are liver specific self-renewing resident macrophages located inside the 
sinusoidal capillary that play an important role in initiating hepatic immune responses and 
clearing circulating endotoxins(3). Increasing evidence suggests that hepatocytes, HSCs, and 
endothelial cells are in close contact, thereby, forming the so-called ‘hepatic niche’ (4,5). 
Therefore, it is not surprising that changes in the function of any cell integrated within the niche 
could eventually impact their neighborhood.  
 
Classical histology has played a crucial role in understanding liver tissue structure. It is simple, 
versatile, and extremely accessible. However, this technique also presents several 
disadvantages, 1) it is not quantitative, 2) overlooks 3D information, 3) poorly distinguishes 
non-parenchymal cells, and 4) some tissue structures are not visible e.g., the BC network. 
Developments in tissue clearing, high-resolution fluorescence microscopy, and 3D image 
analysis have allowed 3D liver tissue reconstruction in the form of geometrical models (6,7), 
to describe liver tissue architecture with unprecedented detail. Over the last few years, 
geometrical models have proven to be a game-changer and have illuminated basic principles 
of liver tissue organization. Some of the main findings include: i) hepatocytes display a 
pronounced spatial zonation based on their ploidy (6), ii) the first predictive model of biliary 
fluid dynamics(8), iii) hepatocytes polarity exhibit liquid-crystal order(9), iv) liver regeneration 
after partial liver hepatectomy requires biomechanical growth control(10), and v) 3D 
reconstruction of human liver biopsies from non-alcoholic fatty liver disease patients show 
profound topological defects in the 3D BC network that lead to zonated micro-cholestasis(11). 
 
Till date, fluorescence microscopy is usually limited to a maximum of four fluorescent markers. 
Due to this restriction, 3D geometrical models have not been able to describe all the main cell 
types and tissue structures simultaneously, thus overlooking the organization of the hepatic 
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niche. Simultaneous reconstruction of all important tissue networks (BC and sinusoids), 
cellular (hepatocytes, HSCs, and KCs) and sub-cellular components (nuclei) would require at 
least six different markers, making it impossible to observe all the structures of interest at 
once. Here, we combined deep tissue immunostaining, optical clearing, multiphoton 
microscopy, deep learning techniques, and 3D image processing to virtually expand the 
number of markers and generate a spatio-temporal 3D single-cell atlas of the liver tissue, 
Hep3D. We used Hep3D to describe morphological changes established during early 
postnatal development and the structural role of KCs in liver tissue architecture. This atlas 
provides a powerful tool to quantitatively describe each cell type, its spatial organization, and 
its possible cross-interactions. Hep3D will help to identify (sub)structural characteristics of liver 
architecture, providing a quantitative tool to understand both liver biology and pathology with 
unprecedented detail. 
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Results 
 
SeeDB optical clearing shows high compatibility with different staining modalities while 
preserving tissue morphology  
To generate a 3D geometrical tissue model containing all the main cell types and tissue 
components, we first optimized our pipeline of deep tissue imaging. Our standard pipeline 
involved several steps including, fixation, vibratome sectioning, staining, optical clearing, 
imaging at high resolution using multiphoton microscopy, and 3D reconstruction with the 
software Motion Tracking(6). For staining specific structures, we used a CD13 antibody for 
BC, Flk-1 antibody for sinusoids, and the small molecule dyes, DAPI (4,6-diamidino-2-
phenylindole) and phalloidin, for nuclei and cell borders (actin mesh), respectively. There are 
several optical clearing techniques, however, many of them are compatible with only a subset 
of markers or change the tissue morphology (e.g. tissue expansion)(12). Moreover, as most 
of these techniques were developed for the brain, there is scant information about their use in 
liver tissue(13). To find the optical clearing method that best suited our requirements, liver 
slices were stained and optically cleared using different methods including, FOCM(14), 
FRUIT(15), RTF(16), SeeDB(17) and SeeDB2G(18). We focused on well-stablished clearing 
methods that have been shown to preserve tissue morphology and tested them side-by-side 
in terms of staining compatibility and preservation of tissue morphology. Most of the clearing 
methods showed high compatibility with antibody staining, while their performance was 
variable with the small molecule dyes (Supplementary figure 1a). Even though the methods 
evaluated here showed different optical characteristics (Supplementary figure 1b), no major 
differences in tissue transparency were appreciable when 100 µm liver sections were 
compared (Supplementary figure 1a). It is likely that differences in transparency may be 
appreciable in thicker samples. Finally, we compared the effect of the optical clearing on tissue 
morphology both macroscopically (e.g. liver slice expansion) and microscopically (e.g. BC 
radius) (Supplementary figure 1c,d). FRUIT was the only method that resulted in tissue 
expansion both macro and microscopically. We found that SeeDB was the best clearing 
method for 100 µm tissue slices, showing high compatibility with different types of staining 
while maintaining tissue morphology. 
 
Virtual tissue labeling enables simultaneous 3D reconstruction of liver tissue 
components 
Fluorescence microscopy is usually limited to 4–5 markers to avoid bleed-through of the 
fluorescence emission. We overcome these experimental constraints by generating virtual 3D 
images of the BC and sinusoidal networks based on the phalloidin staining using deep 
convolutional neural networks (CNNs) (Figure 1a-c and Supplementary figure 2). We then 
used the remaining channels to visualize KCs and HSCs, using the markers F4/80 and 
desmin, respectively (Figure 1b,c). We expanded our 2D CNN-based toolbox for the prediction 
of BC and sinusoids from phalloidin -stained images (19) to a fully 3D model. Our method 
showed remarkable accuracy when comparing the virtual with the real BC and sinusoidal 
networks (Supplementary figure 2a-d). The virtual BC and sinusoidal networks showed a high 
signal-to-background ratio (Supplementary figure 2b,d) and their morphometric properties 
were very similar to the original networks (Supplementary figure 2e,f). This approach allowed 
us to image and reconstruct all the main components of the liver tissue microarchitecture 
simultaneously, thus generating a multi-parametric 3D single-cell atlas of the liver which we 
named Hep3D (Figure 1d and Supplementary movie 1).  
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3D single-cell atlas reveals morpho-spatial differences in liver tissue architecture from 
early post-natal development to adulthood  
Next, we determined morphological changes in liver tissue from postnatal day 1 (P1), postnatal 
day 16 (P16), and adult mice. These temporal stages were selected as they encompass key 
phases in early postnatal development during which the liver undergoes several morphological 
changes. In P1 mice, the hepatocytes are mostly diploid and remnants of embryonic 
development such as hematopoietic cells can be detected(20,21). In P16 mice, the liver tissue 
architecture was partially mature, as mice were weaned, triggering an increase in hepatocyte 
ploidy. Adult mice displayed a mature and well-established liver tissue architecture. 
Quantification of several morphological features including tissue (BC and sinusoidal networks) 
and cellular (hepatocytes, KCs, and HSCs) components is summarized in Supplementary 
tables 1–3.  
 
Both BC and sinusoidal networks were fully connected at all stages. Whereas BC radius 
decreased, the sinusoidal radius increased over time. The BC network corresponds to ~5% of 
tissue volume at all ages analyzed, however, the sinusoidal network increased from 14% in 
P1 to 25% in adults (Supplementary table 1). Hepatocytes occupied around 58% of the tissue 
volume in all mouse stages analyzed. Their morphology was homogenous in P1 and gradually 
became more heterogenous in terms of nuclearity, ploidy, and cell volume as the mice aged. 
Hepatocyte cell volume changed from 2152 ± 160 µm3 in P1 mice to 4470 ± 525 µm3 in adults. 
The increase in cell volume correlated with an increase in the number of polyploid cells (41% 
in P1, 48% in P16 and 73% in adults). Other morphological properties, such as the percentage 
net contribution of apical, lateral and basal membranes, and the number of neighbors, showed 
only modest changes (Supplementary table 02). HSCs were highly elongated at all ages 
groups investigated. While the volume of individual HSCs increased with age, the nuclear 
volume decreased. Surprisingly, the number of HSCs reduced by ~42% from P1 to adult while 
they occupied a relatively constant proportion of the tissue (7-9%) (Supplementary table 3). 
F4/80 positive cells were very elongated, and their number reduced as the mice aged (99307 
cells/mm3 in P1, 25810 cells/mm3 in P16 and 13345 cells/mm3 in adults). We also detected a 
significant reduction in the volume occupied by KCs during neonatal development (8.75% in 
P1, 6.95% in P16 and 3.57 % in adults) (Supplementary table 3). It is probable that a large 
fraction of the F4/80 positive cells in P1 represents not only KCs but also macrophages located 
within erythroblastic islets, which disappear from the liver about one week after birth in 
mice(22,23).  
 
Even though analyzing the cells in the liver as a population provided an extremely informative 
overview of the tissue, a detailed description of liver tissue structure has to take into account 
possible changes in morphology along the CV–PV axis(6,8,24,25). Therefore, we 
computationally divided the CV–PV axis into ten equidistant regions and quantified the 
different morphological properties within each sub-region. While the spatial distribution of the 
sinusoidal radius appears homogeneous at all stages, the BC showed a modest increase 
towards the veins only in  adults (Figure 2a). Mono-nucleated diploid (1x2n) and bi-nucleated 
tetraploid (2x2n) hepatocytes were enriched toward the CV and PV, while hepatocytes with 
higher ploidies tend to be concentrated in the middle zone of adult livers (Figure 2b), in 
agreement with previous reports (6,26). Our data suggested that the spatial arrangement of 
hepatocytes according to their ploidy is an event that occurs after weaning (Figure 2b). The 
spatial distribution of KCs and HSCs showed a clear anti-correlated pattern along the liver 
lobule for all ages. While KCs were enriched in the middle zone, HSCs were concentrated 
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around the big veins (Figure 2c). Our data supports previous findings where it has been shown 
that the average values, although important, hide important aspects of tissue architecture. 
 
Hep3D unveils unexpected spatial interaction between HSCs and KCs  
Having different cell types and tissue components simultaneously in our 3D reconstruction 
allowed us to do a systems level analysis of hepatic structure. First, we computed the 
percentage of hepatocyte surface in contact with other tissue structures. While some areas of 
contact remained constant as the mice aged (HSCs, BC), the contact with other tissue 
components either increased (sinusoids) or decreased (neighboring hepatocytes, KCs) 
(Figure 3a). Next, we explored the possibility of physical contact between HSCs and KCs and 
observed that they were in close proximity (Figure 3b). We quantitatively corroborated this 
observation by measuring the number of cell-cell contact sites between the HSCs and KCs. 
We found that each KC, on average, had 2–3 contact sites with HSCs. The number of contact 
sites did not change as the mice aged (Figure 3c). We then wondered if the contacts were 
made via the long protrusions emanating from HSCs or the body of the cells (i.e., close to their 
nuclei). To address this question, we measured the distance between nuclei of different cell 
types (Figure 3d). Analysis of inter-nuclear distance distribution showed that the vast majority 
of KC nuclei were remarkably close to HSC nuclei (Figure 3d). Indeed, we found that a large 
fraction (40 ± 5%) of KCs have nuclei close to the HSC nuclei (inter-nuclear distance smaller 
than 2 µm) (Figure 3e). This is not the case for hepatocyte nuclei, which are separated by at 
least 7–8 µm, on average, from the HSC and KC nuclei. These results imply that the proximity 
of HSC-KC nuclei is non-random, suggesting the existence of a strong direct interaction 
between KCs and HSCs. 
 
KC depletion alters the liver tissue architecture  
To test if the physical proximity and contact between cells are linked to functional cell-cell 
interactions, we ablated the KC population and evaluated the effects of this perturbation on 
the general tissue architecture and the spatio-temporal organization of all cell types. Briefly, 
KCs were depleted from the liver by intravenous injection of liposome-encapsulated 
clodronate(27,28). To allow the KC-depleted liver tissue enough time to develop hepatic tissue 
architecture, while causing minimal distress to the mice, we first estimated the frequency of 
injections. Mice were retro-orbitally injected with clodronate and tissue samples were analyzed 
on days 1, 3, 5 and 7 post-injection (Supplementary figure 3). We observed that KCs started 
repopulating the liver on day 7, and therefore we injected the mice with clodronate every 5 
days for long-term depletion experiments. Next, mice received one injection every 5 days from 
P16 to P30 (Figure 4a-b). Clodronate treatment achieved a 91% reduction in the number of 
KCs/mm2 (Figure 4c-d). At the structural level, the absence of KCs for 15 days (P16 to P30) 
did not cause detectable alterations on the BC and sinusoidal networks (Supplementary table 
04). Even though we only performed a short-term depletion, it was enough to observe 
morphological changes in hepatocytes and HSCs. In the case of hepatocytes, most of their 
characteristics were unaffected except nuclearity and ploidy, both of which showed an 
increase upon KC depletion (Supplementary table 05 and figure 4e-g). This effect may be 
attributed to the previously described role of KCs on hepatocyte proliferation(29,30) and the 
correlation between cell division and hepatocyte ploidy(31). Interestingly, the tissue volume 
occupied by HSCs increased dramatically upon KC depletion (Figure 4h and Supplementary 
table 06). This was observed along the entire liver lobule (Figure 4h) and was accompanied 
by a massive increase in the number of HSC (Figure 4i). The HSC shape was also affected 
(Supplementary table 06). The number and shape of HSCs may indicate HSC activation in 
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the absence of KCs (32). In concordance with previous reports, our morphological analysis of 
liver tissue suggests the existence of a direct crosstalk between KCs and HSCs (33,34).  
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Discussion 
 
Geometrical models have proven to be powerful and versatile tools to quantitatively describe 
the morphology of liver micro-architecture (BC and sinusoids)(8,35,36) and its cells 
(hepatocytes, KCs, and HSCs)(6,37). Unfortunately, it has not been possible to image and 
reconstruct all these structures simultaneously due to technological limitations. In this study, 
we showed that a combination of deep tissue imaging, deep learning and traditional 3D image 
analysis techniques enables the 3D reconstruction of the main structural components of liver 
tissue architecture simultaneously. Our 3D single-cell digital atlas of the liver single-cell, 
Hep3D, includes hepatocytes, HSCs, KCs (both nuclei and cell surfaces), BC, and sinusoidal 
networks. Hep3D enabled us to extract the spatio-temporal evolution of morphological tissue 
characteristics during different post-natal stages. Since different metabolic and morphological 
features change along the developing liver lobule(6,8,24,25), our 3D atlas allows a deeper 
understanding of the spatially heterogeneous phenomena (e.g. liver zonation). As a proof of 
concept, we described how liver tissue structure changes during the physiological transition 
from post-natal early development to adulthood and the structural role of KCs in this process. 
In concordance with previous reports, we found that hepatocyte ploidy increased as the mice 
aged and occupied different regions of the liver lobule based on this characteristic(26,38,39). 
We also observed an unexpected anti-correlated spatial distribution of HSCs and KCs. The 
crosstalk between these cells became even more evident following KCs ablation from the liver 
which had a profound impact on the number and morphology of the HSCs. Hep3D provides a 
holistic yet in-depth overview of liver tissue organization, with the potential for detecting even 
subtle changes in liver microarchitecture. 
 
The combination of experimental data with computational models of tissues has proven 
successful in revealing how different tissues and organs function(8,40). Volumetric imaging 
and optical clearing techniques play crucial roles in this process(41). In this scenario, tissue 
preservation is paramount, as data extracted from the 3D reconstructions can not only be used 
to get a quantitative understanding of tissue morphology but also, as an input for mathematical 
models. In this study, we evaluated different optical clearing techniques to achieve volumetric 
imaging and tissue preservation. SeeDB showed the highest compatibility with our staining 
method and the lowest impact on tissue morphology. Indeed, 3D reconstruction of BC showed 
morphometric parameters indistinguishable from samples without optical clearing. 
Unfortunately, SeeDB is not the best technique in terms of transparency so if a specific 
application requires the user to image deeper into the tissue, the development of new 
methodologies or the use of new microscopy techniques (i.e. 2-photon and light-sheet 
microscopy) will be necessary(41).  
 
Another important component of the pipeline is accurate 3D reconstruction of the tissue. Even 
though they are a powerful and versatile tool, their efficient generation still poses some 
difficulties. The main challenges that we faced were related to the accurate segmentation of 
densely packed irregular shaped nuclei, and the segmentation of cells with complex shapes 
e.g. HSCs. The field of artificial intelligence is revolutionizing bioimage analysis and is actively 
providing new tools to overcome these problems(42). In the future, it will be interesting to 
explore methods such as Stardist to improve our 3D reconstructions (43), Cellpose(44), 
Plantseg(45) etc. 
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Recently, a lot of effort has been devoted to understanding tissues at the cellular level(46), 
even integrating spatial information(47), e.g. single-cell spatial transcriptomics. While these 
technologies are a breakthrough in cell biology at the tissue scale, they usually overlook tissue 
morphology and niche organization, and consequently, their role in tissue biology and 
pathology. One example is our finding about the spatially anti-correlated organization of the 
KC and HSCs, wherein regions with a high density of HSCs showed a lack of KCs, and 
conversely in the regions with low density of HSC, KCs are more abundant and located in 
close proximity of the HSCs. Strikingly, we observed a clear pattern of spatial distribution of 
the nuclei of these cells in 40% of the cases, where HSC and KC nuclei are within close 
proximity (less than 2 µm). The biological implications of this observation are unknown, 
showcasing the potential of Hep3D in the generation of biological questions based on 
morphological observations. We expect that changes in the functional activity of the cells 
constituting the hepatic niche, could eventually impact the other cell members. Considering 
the crucial role that KCs and HSCs play in liver diseases (48,49), Hep3D will provide a key 
tool to survey the principles of liver tissue organization under diverse conditions. 
 
This versatile tool also has vast potential for advancing our understanding of liver diseases. A 
previous version of our 3D reconstruction, which did not include non-parenchymal cells, 
helped discover a set of cellular and tissue parameters correlated with non-alcoholic liver 
disease progression. Moreover, we previously 1) discovered profound defects in the BC 
network that only became apparent by 3D analysis, and 2) integrated the morphometric 
analysis of the BC network with mathematical models to create personalized biliary fluid 
dynamic simulations(11). In this context, a multiparametric image that includes a quantitative 
tissue perspective and the crosstalk with key cellular constituents represents a promising 
future technology to study liver pathology i.e. progression from steatosis to hepatocellular 
carcinoma. Hep3D is a valuable and versatile tool for future investigations on the quantitative 
description of liver tissue microarchitecture in a wide variety of physiological and pathological 
conditions. 
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Methods 
 
Animals 
Postnatal day 1, 16, and adult C57BL/6J mice were obtained from the animal facility (Centro 
Regional de Estudios Avanzados para la Vida (CREAV)) at the Universidad de Concepción. 
The animals were maintained in strict pathogen-free conditions and received ad libitum 
feeding. All procedures performed were approved by the vice rectory of ethics and biosecurity 
committee from the investigation and development of Universidad de Concepción. 
 
Sample collection and immunostaining 
Mice livers were fixed through intracardiac perfusion with 4% paraformaldehyde 0.1% Tween-
20/PBS and post-fixed overnight with the same solution at room temperature. In the case of 
P1 mice, the livers were collected and fixed by immersion in 4% paraformaldehyde 0.1% 
Tween-20/PBS over 5 days at room temperature. 100 µm thick liver sections were obtained 
with a vibratome. Immunolabeling (Supplementary table 07) and optical clearing were 
performed as described previously (9).  
 
Evaluation of optical clearing methods 
Once the immunolabeling was performed, liver tissue sections were cleared by different 
methods. The protocols used included SeeDB2G(18), SeeDB(9,17), FRUIT{Hou.2015 } and 
FOCM{ Zhu.2019}. Samples in PBS (uncleared) were used as a control. To estimate the 
macroscopic changes in the size of the tissue, the overall area was measured by drawing the 
contour of the liver slice before and after the clearing using the software Fiji(50). Additionally, 
to measure microscopic changes, BC were stained and segmented and their radius was 
quantified using the software Motion Tracking(6). The difference in both areas and the BC 
radius were compared to the control condition to determine if the tissue shrunk or expanded. 
 
Imaging 
Liver samples were imaged (0.3 µm voxel size) in an inverted multiphoton laser-scanning 
microscope (Zeiss LSM 780) using a 40x1.2 numerical aperture multi-Immersion objective 
(Zeiss). DAPI was excited at 780 nm using a Chameleon Ti-Sapphire 2-photon laser. Alexa 
Fluor 488, 555 and 647 were excited with 488, 561 and 633 laser lines and detected with 
Gallium arsenide phosphide (GaAsp) detectors. 
 
Image processing 
The different components of liver tissues (BC, sinusoids, nuclei, HSCs , KCs and Hepatocytes) 
were reconstructed from high-resolution (voxel size 0.3 x 0.3 x 0.3 µm) fluorescent image 
stacks (≈ 100µm depth). To cover the entire CV-PV axes, 2x1 tiles were stitched using the 
image stitching plug-in of Fiji(51). All images were reconstructed using the software Motion 
Tracking (http://motiontracking.mpi-cbg.de) as described in (6). Briefly, for the pre-processing 
of the 3D images were first denoised using the PURE-LET algorithm(52) with the maximum 
number of cycles. Then, a background and shading correction was performed using the tool 
BaSiC(53) along the stack. Finally, all channels were aligned to a reference one using the 
function Correct 3D Drift from Fiji. To generate virtual images of BC and sinusoidal networks 
from, the images of phalloidin, we used a 3D extension of the deep convolutional neural 
network toolbox described in (19). The structures were segmented using a maximum entropy 
local thresholding algorithm. Artifacts generated by the segmentation (holes and tiny isolated 
objects) were removed by standard morphological operations (opening/closing). The 
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triangulation mesh of the segmented surfaces was generated by the cube marching algorithm 
and tuned using an active mesh approach. To separate nuclei we used interactive watershed 
plug-in in Fiji(51) and a splitting algorithm in Motion Tracking(6). In the case of tubular 
structures, representations of the “medial axis” or “skeleton”, also called central lines, of the 
networks were generated. Central lines were generated as 3D graphs. HSCs and KCs were 
reconstructed based on the desmin and F4/80 staining. Finally, the shape of the cell surface 
(hepatocytes) was determined using an active mesh expansion from the reconstructed nuclei. 
For details, refer to (6). 
 
Morphological spatial analysis of cells and networks (BC and sinusoids) 
The cell and nucleus elongation were defined as one minus the ratio of the mayor to minor 
elongation axis of the 3D object 
 
Elongation = 1 - (A1/A3), where A1 and A3 correspond to the length of the maximum and 
minimum elongation axis of the 3D object 
 
For details about other morphological quantifications, refer to (6,11). 
 
Clodronate treatment 
KC depletion was achieved by macrophagic suicide(54,55). Briefly, 100 µl of clodronate 
liposome suspension (LIPOSOMA, CP-010-010, 5mg/ml) per 10 gr of the animal was retro-
orbitally injected(56). As a control, mice were injected with a solution of liposomes and PBS. 
For long-term depletion experiments, mice were injected every 5 days. 
 
Statistical analysis  
Data were analyzed using Prism 9 software. 
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Fig. 1: Deep tissue imaging and convolutional network allow complete reconstruction 
of liver tissue structure.  
(a) Images from 100 µm liver section stained with Phalloidin (cell border), Flk-1 (sinusoids) 
and CD13 (bile canaliculi). White and magenta arrows indicate the BC and sinusoidal networks 
respectively. (b) Real and virtual markers used for each cell type and structure. (c) Maximum 
projection of a 30 µm z-stack covering an entire CV-PV axis. Scale bar 30 µm. (d) 3D 
reconstruction of the main structures of the liver tissue.  Central vein (light blue), portal vein 
(orange), nuclei (random colors), hepatocytes (random colors), KCs (random colors), HSCs 
(random colors), sinusoids (magenta) and bile canaliculus (green). 
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Fig. 2: Morphological changes occurring during early postnatal development revealed 
by spatial analysis. 
(a) Spatial distribution of sinusoid and BC networks radius. (b) Quantification of the percentage 
of tissue volume occupied by hepatocytes with different ploidy along the CV–PV axis. (c) 
Quantification of the percentage of tissue volume occupied by F4/80+ cells and HSCs. In (a) 
and (c) the “y” axes are in log-scale. The measurements were taken from the CV to the PV, 
subdividing the space into 10 equal parts. P1 = 3 samples, P16 = 3 samples, Adults = 3 
samples. Quantification represented by mean ± s.e.m.  
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Fig. 3: Interplay between cell types and tissue components. 
(a) Surface percentage of the hepatocytes in contact with the different structures (BC and 
sinusoids) and cells (HSCs, F4/80+ cells and other hepatocytes) present in the liver. (b) A 
maximum projection of 30 µm from the tissue showing the staining of desmin (red), F4/80 
(green), Flk-1 (blue) and DAPI (magenta). (c) Average number of KC contact sites on the 
HSCs. (d) Normalized distribution of nucleus-nucleus distance between hepatocytes, KCs and 
HSCs. (e) Percentage of nuclei from different cell types which are closer than 2µm. P1 = 3 
samples, P16 = 3 samples, Adults = 3 samples. Quantification represented by mean ± s.e.m.  
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Fig. 4: Structural defects of liver tissue architecture upon KC depletion.  
(a) Scheme showing the KC depletion experiment. Mice were injected with liposomes 
containing clodronate or PBS (control), every 5 days, starting at P16 until P30. (b) Mice were 
weighted every 3 days from the start to the end of the experiment. (c-d) 100 µm slices were 
stained with anti F4/80 and KC were quantified. Percentage of (e) mononuclear and binuclear, 
(f) diploid and polyploid and hepatocytes in PBS and clodronate conditions. (g) Percentage of 
hepatocyte surface contacting with other cell types and tissue structures. (h) Spatial 
distribution of HSCs volume fraction from PBS and clodronate. (i) Comparison of total number 
of HSCs/mm³ in PBS and clodronate. PBS = 3 samples, Clodronate = 3 samples. 
Quantification represented by mean ± s.e.m. Two-tailed t-test (*P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001).  
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