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End-to-End Explainable AI: Derived
Theory-of-Mind Fingerprints to Distinguish
Between Autistic and Typically developing

and Social Symptom Severity
Km Bhavna, Romi Banerjee, Dipanjan Roy

Abstract—Theory-of-Mind (ToM) is an evolving ability that significantly impacts human learning and cognition. Early development of
ToM ability allow one to comprehend other people’s aims and ambitions, as well as thinking that differs from one’s own. Autism
Spectrum Disorder (ASD) is the prevalent pervasive neurodevelopmental disorder in which participants’ brains appeared to be marked
by diffuse variations throughout large-scale brain systems made up of functionally connected but physically separated brain areas that
got abnormalities in willed action, self-monitoring and monitoring the intents of others, often known as ToM. Although functional
neuroimaging techniques have been widely used to establish the neural correlates implicated in ToM, the specific mechanisms still
need to be clarified. The availability of current Big data and Artificial Intelligence (AI) frameworks paves the way for systematically
identifying Autistics from typically developing by identifying neural correlates and connectome-based features to generate accurate
classifications and predictions of socio-cognitive impairment. In this work, we develop an Ex-AI model that quantifies the common
sources of variability in ToM brain regions between typically developing and ASD individuals. Our results identify a feature set on which
the classification model can be trained to learn characteristics differences and classify ASD and TD ToM development more distinctly.
This approach can also estimate heterogeneity within ASD ToM subtypes and their association with the symptom severity scores
based on socio-cognitive impairments. Based on our proposed framework, we obtain an average accuracy of more than 90 % using
Explainable ML (Ex-Ml) models and an average of 96 % classification accuracy using Explainable Deep Neural Network (Ex-DNN)
models. Our findings identify three important sub-groups within ASD samples based on the key differences and heterogeneity in
resting state ToM regions’ functional connectivity patterns and predictive of mild to severe atypical social cognition and communication
deficits through early developmental stages.

Index Terms—Theory-of-Mind, Autism Spectrum Disorder (ASD), Variability, Classification, Sub-groups, Neurobiological features, and
Symptom-severity score.
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1 INTRODUCTION

THeory-of-Mind (TOM) is a major component of social
cognition that allows an individual to attribute men-

tal states to others and is also a key determinant of the
quality of social interactions [1], [2]. Previous studies using
functional MRI have found that the frontal-parietal network
included the medial prefrontal cortex, posterior cingulate
cortex, and bilateral temporoparietal junction (LTPJ and
RTPJ) activated during the Theory-of-Mind tasks in typ-
ically developing [3], [4], [5]. One of the core deficits
associated with Autism Spectrum Disorder (ASD) leads to
genuine cognitive impairment in social cognition and com-
munication deficits and mentalizing of concepts, which may
particularly underlie deficits in Theory-of-Mind abilities
[6], [7], [8], [9], [10], [11]. Despite decades of research, the
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neurobiology of ASD and core deficits in social cognition are
still poorly understood. Few neuroimaging findings have
been widely replicated, and no clear picture of the brain
bases of socio-communicative and cognitive impairments in
ASDs has emerged thus far [11]. Heterogeneity within the
ASD Group is a significant challenge; individuals diagnosed
with the same disorder can present with different behavioral
symptoms. However, it is still tough to identify systematic
neurological variation that correlates with the behavioral
symptom that generalizes among neurotypical and Autism.
There is also no clear roadmap to identify reliable and
explainable neurobiological markers or behavioral symptom
predictors, which can be helpful as accurate diagnostic mea-
sures. The availability of ’Big Data’ and explainable artificial
intelligence techniques provide contingency to identify ASD
individuals and neurobiological features associated with
ASD [12].

1.1 Related Work

In the past few years, DNNs have revolutionized the field of
Ex-AI with major successes in applications such as computer
vision, object recognition, natural scene processing, and
natural language processing [12], [13]. DNNs, however,
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Fig. 1. Illustrative overview of End-to-End Explainable Artificial Intelligence framework for identifying the common source of variability that helps
classify ASD samples from typically developing using Theory-of-Mind brain region and identification of heterogeneity or sub-groups within ASD
samples and their symptom severity score prediction. The contribution of the paper is as follows: step 1 is data extraction; steps 2 and 3 are the
calculation of the Functional Connectivity matrix and its low-dimensional representation; step 4 is the identification of the source of variability; step
5 is a classification of ASD group: Steps 5. a and 5. b is the identification of the ASD subgroup and their symptom severity score prediction.

have had limited success in ab initio classification and iden-
tification of neurobiological features that distinguish neu-
rodevlopmental and psychiatric disorders using functional
brain imaging data [14]. This is due to several challenges in
applying DNNs to brain imaging data, most notably dealing
with the high dimensionality of whole-brain data and noisy
measurements with a large degree of individual variability
across data acquisition sites [14], [15]. A particular challenge
here is the application to ASD, a neurodevelopmental disor-
der characterized by a spectrum of impairments and high
levels of heterogeneity in phenotypic clinical symptoms
[16], [17]. Past studies to classify ASD individuals from
typically developing focusing on Theory-of-mind (ToM)
brain regions using static functional connectivity (SFC) and
BOLD time-series signals as feature sets as input to DNN
and ML models did not always report self-consistent and
generalizable findings [16], [17], [18], [19], [20], [21], [22],
[23]. A few recent studies have attempted to use DNNs by
reducing the dimensionality of brain data through explicit
feature engineering [16], [18], [19]. Typically, in these ap-

proaches, precomputed static functional brain connectivities
are provided as input to DNN models consisting of multiple
fully connected networks followed by a sigmoid layer for
classification. This approach has multiple problems. One of
the key problems is that training DNN architectures with
fully connected layers is challenging, particularly in neu-
roimaging applications, because of multiple free parameters
and a limited number of labeled training data. As a result,
these architectures tend to overfit the data and exhibit poor
out-of-sample prediction [24]. Critically, extant approaches
do not sufficiently exploit non-overlapping ToM and DMN
region’s spatiotemporal characteristics with TD individu-
als and connectivity features, which contain more robust
features of ASD phenotypes associated with self-related
socio-cognitive impairments and mentalization. These non-
overlapping ToM and DMN Spatio-temporal connectivity
features after controlling for the variability are thought
to inform on inter-individual anatomical, and phenotypic
differences [?], [16], [25], [26].
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1.2 Overview and Contributions of This Study

There are several novel aspects to this study. First, in
the current study, we propose an end-to-end explainable
and interpretable artificial intelligence-based computational
model (refer Figure 1 and 2). The current study addresses
the following key questions about neurodevelopemental
differences in the heterogeneous profile of ToM abilities in
children with ASD and the association between different
levels of ToM development. To this end, we have developed
an end-to-end explainable AI pipeline to identify a common
source of variability that underlies the heterogeneous profile
of ToM abilities between typically developing and ASD in-
dividuals focusing in particular during early development.
Second, we show that the variability identified through the
Contrastive Variational Autoencoder Model (CVAE) could
be linked with non-clinical variables such as age, gender,
and site-specific protocols. This allowed us to discover a
distinct set of functional connectivity patterns in ToM re-
gions in both groups and provided the best possible feature
sets. Third, we show that ToM-DMN ( understanding of
others and self-related processing brain regions) connectiv-
ity features could be used as a set of biological features to
train the classifiers to classify ASD and TD accurately. This
finding is non-trivial as previous attempts lack explainable
features of brain connectivity patterns in ToM regions and
consistency and reliability to accurately predict their asso-
ciation with social symptom severity. We observed resting
state hyper-connectivity within the brain regions anchored
in ToM networks in the ASD group; in contrast, we found
hypo-connectivity within the ToM regions in TD. Using the
CVAE model, we have further shown that ASD-specific
characteristics were correlated with clinical measures like
ADOS-Total, ADOS-Social, FIQ, and functional connectivity.
To the best of our knowledge, for the first time, proposed Ex-
DNN and Ex-Ml models identified the ASD population from
typically developing s by learning biologically interpretable
connectivity features among ToM and DMN brain regions
and achieved, on average, 95% accuracy with an F1 score
of 0.94. The framework proposed here suggests that func-
tional connectivity between the Left temporoparietal junc-
tion (LTPJ), Right temporoparietal junction (RTPJ), Right su-
perior temporal sulcus(RSTS), Left angular gyrus(LAG), and
precuneus(Prec) brain regions are the most robust feature set
and may underlie the prevalence of heterogeneous profile of
ToM abilities in children with ASD. These findings could be
the first step in the association between brain connectivity
fingerprints that link different ToM development levels.

Our study systematically addresses and overcomes sev-
eral key challenges and previous limitations: a) The first
limitation that we address here is the site-specific hetero-
geneity while using consortium data. The data cannot be
expected to comprise from a single site as that offers only a
limited sample, posing a challenge for developing and train-
ing EAI models. Hence, there is a requirement to acquire
and pool images across multiple sites, which can introduce
significant heterogeneity due to engineering sampling bias
and biological sampling bias. We overcome this challenge
by proposing a Combat harmonization technique based
on empirical Bayes methods. [27]. Our method handles
heterogeneous data from different imaging protocols while

learning robust representations to classify and identify ro-
bust neurobiologically meaningful features that distinguish
individuals with ASD. b) The second major issue is selecting
Brain regions associated with Theory-of-Mind (ToM). We
have selected the Regions-of-Interest (ROI) from the Human
Connectome Project (HCP) available on NeuroVault and
extracted Bold time-series signals from TOM and Default
Mode Network (DMN) areas [5]. The reason behind using
Default-mode Network alongside the ToM network is based
on the existing literature suggesting default-mode network
(DMN) nodes would feature prominently in both classifi-
cation and symptom prediction. Many of these areas show
specific differences between autistic and TD, in that DMN
node would feature prominently in ToM and mentalization
concept in both classification and symptom prediction [5].

c) The third limitation is identifying a common source
of variability in typically developing s and the autistic
using Theory-of-Mind brain regions, which may confound
our findings based on the neuroimaging and connectivity-
derived phenotypes. To identify ASD-Specific variation, we
segregate it from common variation between typically de-
veloping and Autistic using a Contrastive-variational Au-
toencoder model that can distinguish clinically applicable
individual variation. It segregates its internal architecture
into ASD-specific and shared features.

d) The fourth limitation is the classification of ASD from
typically developing s. The proceeding step was able to
identify ASD-specific and shared characteristics. We have
implemented an Explainable AI model that can accurately
classify ASD samples from typically developing s and
identify neurobiological or brain features responsible for
classification without biasing engineering features. We have
used Integrated Gradient, LIME(Local Interpretable Model
Agnostic Explanation), and SHAP(SHapley Additive exPla-
nations) approaches to identify features that underlie the
classification.

e) The fifth limitation is to identify heterogeneity within
the ASD group. To capture variability to identify the sub-
groups of ASD samples, we have implemented a k-means
clustering algorithm, and the no. of clusters is determined
using the elbow approach. Using this approach, we are
getting 3 clusters. We have also calculated functional con-
nectivity differences between all the sub-groups to check
whether there is any overlapping in connectivity.

f)The sixth limitation is identifying symptom severity
score predictions associated with the heterogeneous demon-
stration of ASD. The major issue we address here is identify-
ing neurobiologically interpretable and meaningful features
rather than requiring feature engineering for predicting
ASD social and communication deficits with heterogeneous
manifestations in ASD children arising from atypicality of
TOM and DMN regions functional connectivity patterns. To
the best of our knowledge, no previous deep-learning clas-
sification study has investigated brain features that robustly
predict TOM clinical symptoms without feature engineer-
ing.

We illustrate that our ExAI approach (Refer Figure 1): a)
accurately identifies the source of variability in ASD and TD,
b) Classify ASD samples from TD, and also identifies the
brain features that underlie the classification, c) Identifies
heterogeneity that exists within ASD samples, d) This ap-
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proach also determines ToM brain features that can predict
symptom severity scores of each ASD sub-group.

Section 2 describes the participants’ details, fMRI ac-
quisition protocols, and Preprocessing methods employed,
Next, we describe the selection of ToM brain regions and
estimation of static functional connectivity (SFC) in ToM
brain regions using ASD and TD resting state BOLD fMRI
signals and a low-dimensional representation of SFC. In sec-
tion 3, we disentangle common variations between TD and
ASD participants using a Contrastive-Variational Autoen-
coder model(CVAE) that allowed us to distinguish clinically
associated individual variations; subsequently, In section
4, we implement multiple Explainable DNN/ML models
where we provided resting-state FC matrix from ToM and
DMN brain areas as feature set for classifying ASD and
TD individuals, Finally, we identify a set of neurobiological
features underlying classification performance in our pro-
posed model which allow us to discover subgroups within
ASD participants and relate their ToM-DMN functional
connectivity and prediction of Autistic symptom severity.

2 STUDY COHORT FOR CHARACTERIZING ASD-
SPECIFIC VARIATIONS

2.1 Participants and MRI Preprocessing

In the current study, we analyzed ABIDE I dataset that
underwent preprocessing and quality control. Finally, it
comprised 400 Autism samples and 460 TD samples (Total
No. of samples = 860). All the neuroimaging data were
preprocessed using Configurable Pipeline for the Analysis
of Connectomes (C-PAC), which included slice-time cor-
rection, motion correction, functional normalization, and
smoothing. ABIDE dataset included fMRI data acquired
from multiple sites, which resulted in the problem of het-
erogeneity due to Engineering sampling bias and Biological
sampling bias. We addressed this challenge using the Com-
bat harmonization technique: Assuming that the errors in-
duced in the imaging characteristics may be standardized by
altering the location (means) and scale (variances) across the
batches. We performed harmonization using multivariate
linear mixed-effects regression. This method used empirical
Bayes for the improvement of the estimation of the model.
[27], [28], [29], [30]. It removed unwanted variation associ-
ated with the site and maintained biological association in
the dataset.

2.2 Resting-State Functional Connectivity

As individuals with ASD display extensive and robust
deficits in ToM, we extracted BOLD time series signals
from Theory-of-Mind and other large-scale brain networks
associated with social cognition, i.e., Default Mode Net-
work(DMN). The Regions-of-Interest(ROI) for this purpose
was derived from Human Connectome Project(HCP) avail-
able on Neuro Vault [5]. We used the Harvard-oxford atlas
and created ROIs (that included the Medial prefrontal Cor-
tex (MPFC), Posterior Cingulate cortex (PCC), Left superior
temporal sulcus (LSTS), Right superior temporal sulcus
(RSTS), Left Temporoparietal Junction (LTPJ), Right Tem-
poroparietal Junction (RTPJ), Left Inferior Frontal Gyrus

(LIFG), Right Inferior Frontal Gyrus (RIFG), Left Angu-
lar Gyrus (LANG), Right Angular Gyrus (RANG), Left
Cerebellum (LCEREB), Right Cerebellum (RCEREB), Pre-
cuneous (PREC), Left Inferior Parietal Cortex(LIPC), Right
Inferior Parietal Cortex(RIPC), and Ventrolateral Prefrontal
cortex(VLPFC))using a spherical binary mask with a 10 mm
radius (see Table 2 of supplementary material). The average
time series BOLD signals for each participant were extracted
for Pearson’s correlation analysis using the following for-
mula [31]:

Wij =
(xi − xi)T (xj − xj)√

(xi − xi)T (xi − xi)
√

(xj − xj)T (xj − xj)
(1)

Where xi ∈ Rt is the time series associated with defined
brain regions. t is time node, i = 1,2,.......,n, where n is
number of ROIs. After that, using an inverse hyperbolic
inverse function, correlation coefficients were Fisher’s z-
transformed. We also applied false discovery rate (FDR)
correction for each connectivity analysis (see Supplementary
material section 1 for details).

2.3 Low-Dimensional Representation of Functional
Connectivity
We calculated the static functional connectivity (FC) matrix
from resting-state fMRI data. We finally generated a low-
dimensional representation of the FC matrix based on the
Eigen Decomposition method. We implemented the Princi-
pal component dimensionality reduction technique in which
each eigenvector was aligned with the template manifold
and measured using group-averaged functional connec-
tivity. We selected two principal eigenvector components
that capture the variability of data without losing essential
biological features and explained approximately 68 % of
the information of the template FC matrix. Using PCA, we
identify eigenvectors that can be provided as input to the
next step to check whether resting-state SFC is associated
with ASD or TD characteristics.

2.4 Identification of Shared and Specific Variability
To characterize ASD-Specific variation, we disentangle it
from common variation between typically developing and
Autistic individuals using a Contrastive-Variational Autoen-
coder model(CVAE) that allowed us to distinguish clinically
applicable individual variation [26]. It dissociated its inter-
nal architecture into ASD-specific and shared characteristics.
CVAE contained of an encoder and decoder, in which the
encoder included 2 consecutive convolutional layers with
stride: 2, kernel size: 3, and convolutional filters: 64 and
128 for shared characteristics and 2 convolutional layers
with the same parameters for ASD-specific characteristics
[26]. Instead of projecting data into one latent space, this
encoder projected data into two separate 16-dimensional
latent distributions: qφs(s|x) and qφz (z|x) [32], where s and
z were latent variables. We used the following lower bound
likelihood for shared characteristics [32]:

Lx(xi) ≥ Eqφs (s)qφz (z)[fθ(xi|s, z)]
−KL(qφs(s|xi)||p(s))−KL(qφz (z|xi)||p(z))

(2)

For lower bound likelihood for ASD-specific characteristics:

Lb(bi) ≥ Eqφz (z)[fθ(xi|0, z)]−KL(qφz (z|bi)||p(z)) (3)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.21.525016doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.21.525016
http://creativecommons.org/licenses/by-nc/4.0/


5

where qφs and qφz are two encoder network and fθ(.) is sin-
gle decoder network. The decoder used 2 de-convolutional
layers with convolutional filters: 64 and 128, that con-
catenated the two latent distributions into a single 32-
dimensional vector and accepted it as input to produce
output.

We applied Principal Component Analysis (PCA) to the
FC matrix to get a low-dimensional matrix representation
and extracted 2 eigenvectors. We provided eigenvectors
belonging to other clinical and non-clinical parameters to
the CVAE model as input to check whether it is associated
with a shared or ASD-specific variation. We used Repre-
sentational Similarity Analysis(RSA) approach to compare
CVAE’s ASD-specific and shared characteristics for each in-
dividual (see Supplementary material section 1 for details).
As a result, shared characteristics were associated with non-
clinical measures, whereas ASD-specific characteristics were
associated with clinical measures and resting-state Func-
tional Connectivity.

3 CROSS-VALIDATION AND CLASSIFICATION
ANALYSIS OF ABIDE COHORT DATA

3.1 Classification Using Explainable AI and Analysis
Using Five-Fold Cross Validation
After getting ASD-specific characteristics, we implemented
multiple Explainable DNN/ML models where we provided
resting-state FC matrix from ToM and DMN brain areas as
a feature set for classifying ASD and typically developing
individuals. The main idea behind using Explainable AI
models was to know which brain region’s connectivity
acted as predictors in machine learning models and their
comparative importance (Refer to Figure 2). We developed
an interpretable Explainable AI architecture, in which we
applied multiple machine learning and deep learning mod-
els with explanatory support of LIME(Local Interpretable
Model Agnostic Explanation), SHAP(SHapley Additive ex-
Planations), and Integrated Gradient (IG). For classification
using Deep Neural network (DNN), we used the Adam
algorithm to train and test the DNN model with three layers
in which we provided ASD-specific features to first layer
and shared features to the second layer that contained 300
neurons in each layer (i.e., Patience = 3, Metric = validation
loss) and applied the Relu activation function and finally
the final output layer comprised of a conventional softmax
function for classification. The purpose behind using the
Adam algorithm was that it was able to combine the best
features of the Adaptive Gradient Descent (AdaGrad) and
Root Mean Square (RMS) Prop algorithm to provide an
optimization algorithm. Instead of accommodating learning
rates based on the mean (i.e., first moment), it also consid-
ered the gradient’s uncentred variance (second moment).
We implemented Adam algorithm using the following for-
mula;

mt = β1mt−1 + (1− β1)[δL/δwt]
2vt = β2vt−1

+(1− β2)[δL/δwt]
2 (4)

Where β1 and β2 are decay rates of an average gradient.
For classification using the machine learning algorithm,

we implemented multiple ML algorithms. We trained and

tested the models on the same ASD-specific and shared
features. The essential advantage of our approach was that
it did not require any spatiotemporal dynamics features;
it could give the best performance in classifying ASD and
typically developing only using SFC between Theory-of-
Mind, and Default-mode-network brain areas and provid-
ing parsimonious brain features underlying classification.
To reduce the chance of bias and report low variance, we
implemented five-fold cross-validation and a Leave-one-out
method to evaluate the model’s performance (precision, re-
call, accuracy, F1-score) (see Supplementary material section
1 for details).

3.2 Identification of neurobiological features underly-
ing classification

We used LIME(Local Interpretable Model Agnostic Expla-
nation) and SHAP(SHapley Additive exPlanations), and
an Integrated Gradient-based feature diagnostic approach
to identify neurological features that were responsible for
classification.

To identify the features responsible for the classification,
we implemented an Integrated Gradient(IG) for the inter-
pretability of the DNN model, which computed the gradient
for the output predicted by the model to its input feature. IG
selected a baseline to produce a high entropy prediction that
described uncertainty, then calculated feature attribution
associated with an ambiguous baseline. Finally, IG interpo-
lated the baseline with the prediction from uncertainty to
certainty towards actual input. We implemented IG using
the following formula:

IntegratedGradientapproxi (x) = (xi − x
′

i)

∗
m∑
k=1

∂F (x
′
+ (k/m) ∗ (x− x

′
))/(∂xi) ∗ 1/m

(5)

Where: Input features = (∂F (x
′

+ k/m ∗ (x − x′
)))/(∂xi),

Average gradients =
∑m
k=1 gradients ∗ 1/m

Because of the limitations of IG toward machine learn-
ing, we implemented a) LIME(Local Interpretable Model
Agnostic Explanation) based on learning an explainable or
interpretable model locally throughout the prediction using
the following formula:

E(x) = L(f, g, πx) + Ω(g) (6)

Where: Ω(g) is the complexity of the explanation of the
model, πx is locality. b) SHAP(SHapley Additive exPlana-
tions) that decomposed the final output prediction to iden-
tify the contribution of each attribute for the explainability
of machine learning models using the following equation:

φi(v) =
∑
S⊆N/i

(|S|!(n− |S| − 1)!/n!)

(v(S ∪ (i))− v(S))

(7)

Where: n is total no. of regions, N contains all possible sub-
sets, |S| no. of features in S, and v(s) calculated contribution
of S.
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Fig. 2. Architecture of Explainable AI model. The characteristics (resting state Functional Connectivity) identified by the CVAE model are provided
to DNN and ML models for classifying ASD from typically developing. The integrated Gradient, LIME, and SHAP layers are applied to determine
black box brain features that are associated with ASD and underlie classification

3.3 Identification of Sub-Group Within ASD Group
The ASD sample’s resting-state FC was subjected to an
unsupervised K-means algorithm to identify heterogeneity
or subgroups within ASD samples. We implemented the
K-means clustering algorithm and got three clusters using
the elbow approach (see Supplementary material section 1
for details) [33]. We also implemented a variational auto-
encoder model to validate the results and provided resting-
state FC as input. We used latent space as a feature set
and applied the K-means clustering algorithm to find sub-
groups.

3.4 Functional Connectivity Differences in each Sub-
Group
To identify Functional Connectivity differences, We ex-
tracted average time series BOLD signals from Theory-
of-Mind and Default-Mode Network brain areas for each
individual in every cluster and performed Pearson’s corre-
lation analysis. We calculated the Functional connectivity
matrix for each cluster and performed multiple t-tests with
a p-value<0.01. We have finally performed false discovery
Rate (FDR) correction for every connectivity. We also con-
ducted a matrix similarity analysis to check if connectivity
was overlapping among the three clusters. For that, firstly,
we extracted the top or upper triangle of the functional
connectivity matrix as it provided more consistency with
the matrix function and performed spearman correlation

for each combination of the upper matrix. To validate the
results, we performed permutation for test significance. For
each iteration, we stumbled over the sequence of rows and
columns from one of the correlation matrices and again
calculated the similarity between the two matrices. Here,
the amount of time for permutation was equal to 5000 times.
Finally, we checked how many values survived after this test
to obtain a p-value<0.05.

3.5 Symptom Severity Score Predictions in ASD Using
Multiple Approaches
We investigated the association between neurobiological
features identified by Explainable AI models and symptom
severity scores (see Supplementary material section 1 for
details). We investigated whether resting state functional
connectivity could identify ASD-symptom severity scores
for each individual. We implemented multiple approaches
for symptom severity scores prediction like Binary predic-
tion, Multiclass prediction, and Connectome-Based mod-
elling Prediction(CPM) [34]. We implemented Binary predic-
tion using machine learning models like regression, which
was a very basic approach and very limited (it applied
to identify whether the participant is severe ASD or not).
Because of the limitation of binary prediction, we moved
towards multi-class prediction, in which we created four
classes of severity (low, moderate, high, and very high).
We performed this using a Deep learning model with a se-
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quential optimizer with three layers (loss function = Binary
cross-entropy) and applied the sigmoid activation function;
we also used SHAP to interpret this model. We also imple-
mented multiple machine learning algorithms and an en-
semble learning approach with explainability for multi-class
prediction. To predict each individual’s ADOS-Total and
ADOS-social scores, we implemented Connectome-based
prediction modeling, which used a functional connectivity
matrix extracted earlier and fitted a linear model for the
brain-behavior relationship. This model was able to predict
scores for each individual.

4 RESULTS
4.1 Extraction of Time-Series Signals Specific to
Theory-of-Mind Areas and Low-Dimensional Represen-
tation of Functional Connectivity

We extracted time-series signals from Theory-of-Mind, and
Default-mode Network brain areas and constructed a 16*16
static functional connectivity matrix by calculating Pear-
son’s correlation. To validate the results, we performed mul-
tiple one-sample t-tests with a p-value < 0.01 and applied
FDR correction. For low-dimension representation, we used
the principal component analysis method for extracting the
top two principal components that contained approximately
68 % of the information.

4.2 Identification of Shared And ASD-Specific Features
or Source of Variability

To identify the variability between ASD and TD, we first im-
plemented the Variational Autoencoder model(VAE), which
allowed us to check whether VAE could identify an associ-
ation between ASD and TD without disassociating ASD-
specific and shared variation; for that purpose, we used
Representational Similarity Analysis(RSA), in which we first
calculated a pair-wise dissimilarity between participants for
VAE typically developing features and acquired a dissimi-
larity matrix. We repeated this process for each clinical and
non-clinical characteristic. Finally, using the Kendall corre-
lation coefficient, we compared the VAE dissimilarity matrix
with the matrix for every individual (Refer Figure 3A). As
a result, result from VAE showed Kendall correlation with
some non-clinical characteristics (ScannerID ( τ = 0.01,
t(9)=0.74, p-value < 0.042), Gender ( τ = 0.01, t(9)=1.94, p-
value < 0.04)) and also correlated with DSM-IV(Diagnostic
Statistical Manual IV)( τ = 0.02, t(9)=0.54, p-value < 0.03)
but did not get any correlation with ADOS Total, ADOS
Social, FIQ, and functional Connectivity. Hence, the VAE
model failed to encapsulate variation in characteristics (see
Supplementary material section 2 for details).

To overcome the limitation of VAE, we implemented the
Contrastive Variational Autoencoder model(CVAE), which
segregated its interior characterization into ASD-specific
and shared variations, which allowed us to identify clin-
ically related individual variations. To compare CVAE’s
ASD-specific and neuro-typical characteristics with every
individual variation, we again used RSA (Refer Figure
3A). As a result, we found that shared characteristics were
correlated with non-clinical characteristics (i.e., ScannerId (
τ = 0.01, t(9)=0.85, p-value < 0.0.39), Age ( τ = 0.03,

t(9)=1.41, p-value < 0.04), Gender ( τ = 0.02, t(9)=0.51,
p-value < 0.045)); in contrast, ASD-specific characteristics
were associated with clinical characteristics (i.e., ADOS Total
( τ = 0.04, t(9)=2.65, p-value < 0.03), ADOS Social (
τ = 0.04, t(9)=1.88, p-value < 0.01), FIQ ( τ = 0.02,
t(9)=1.95, p-value < 0.04)), as well as resting-state Func-
tional Connectivity ( τ = 0.04, t(9)=1.32, p-value < 0.02).

4.3 Classification of ASD and TD Individuals Using Ex-
plainable AI

To classify ASD individuals from typically developing in-
dividuals, we implemented multiple explainable machine
learning models and explainable deep learning models. The
results from the CVAE model suggested that resting-state
FC was associated with ASD-specific characteristics. First,
we trained our explainable ML/DNN models using resting-
state functional connectivity on ABIDE dataset with a ratio
of 70:30. ExML models achieved an average accuracy of 90 %
with an F1 score of 0.91, with a sensitivity of 0.87 and speci-
ficity of 0.85. In contrast, the ExDNN model achieved an
average accuracy of 96 % with an F1 score of 0.95, sensitivity
of 0.95, and specificity of 0.93. We implemented Five-fold
cross-validation and the Leave-one-out approach to validate
the model’s performance and achieved an average accuracy
of 96 % across all five-fold cross-validation and leave-one-
out methods (see Tables 3 and 4 from supplementary ma-
terial). The essential advantage of this approach was that
it used only static functional connectivity from the brain re-
gions anchored in only two major brain networks implicated
in ToM processing namely Theory-of-Mind, and Default-
mode Networks (see Supplementary material section 2 for
details).

For explainability, we applied LIME(Local Interpretable
Model Agnostic Explanation), SHAP(Shapley Additive ex-
Planations), and Integrated Gradient-based approaches,
which provided the information on which extent each input
feature contributed to the classification (Refer Figure 3B,
and 3C). We computed the median of feature scores and
identified ROIs that contributed 5% in classification. We
observed that connectivity between the Left temporopari-
etal junction, Right temporoparietal junction, Right superior
temporal sulcus, Left angular gyrus, Posterior cingulate
cortex, and precuneus contributed most to classification.
These biological features can distinctly demarcate ASD from
typically developing individuals.

4.4 Identification of Sub-Groups Within ASD samples
and Functional Connectivity Differences in Each Sub-
Group

After getting the ASD samples, we applied K-means clus-
tering to find sub-groups within ASD samples. Using the
elbow approach, we obtained three clusters of different sizes
(Cluster 1 contained 185 participants, cluster 2 had 98, and
cluster 3 contained 117) (see supplementary material section
1 for details). For validating results, we implemented the
variational autoencoder model and K-means on results com-
ing out from the variational autoencoder model and again
got 3 clusters. To identify functional connectivity differences
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Fig. 3. Comparison of Variational and Contrastive-variational Autoencoder model’s matrices. CVAE features best capture the common variation
between ASD and TD groups, and parameters associated with ASD are best obtained by clinically ASD-specific measures and resting-state
functional connectivity. VAE model is performing worst in all conditions.

Fig. 4. (A) Importance of Features that underlie classification for ASD and TD group in Explainable Machine learning model using LIME and SHAP.
(B) Importance of Features that underlie classification for ASD and TD group using Explainable Deep Neural Networks using Integrated gradient.

between all clusters, we extracted time-series BOLD sig-
nals from Theory-of-Mind and Default-mode Network brain
areas (Refer Figure 4). Finally, we calculated the Pearson
correlation coefficient to obtain a functional connectivity
matrix. We implemented multiple one-sample t-tests with
p-value <0.01 and FDR correction on each connectivity for
validation. Cluster 1 was close to the typically developing

group, i.e., with the lowest ASD symptom severity scores,
whereas clusters 2 and 3 were strongly associated with ASD-
symptom.

We also conducted a matrix similarity analysis to check if
connectivity is overlapping among the three clusters (Refer
Figure 4). First, we extracted the upper triangle of the
functional connectivity matrix and performed a spearman
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correlation for each combination of the upper triangular
matrix. To validate the results, we performed permutation
in which, for each iteration, we shuffled the sequence of
rows and columns from one of the correlation matrices and
again calculated the similarity between the two matrices.
Here, we performed permutation 5000 times. Finally, we
checked how many values survived after this test to obtain
a p-value <0.05.

4.5 Symptom-Severity Score Prediction

After the steps described in sections 4.1-4.4, we investigated
whether resting-state functional connectivity of ToM and
DMN areas could identify ASD-symptom severity scores
for each individual. We applied multiple approaches, i.e.,
Binary prediction, Multiclass prediction, and Connectome-
Based prediction modelling. In Binary prediction, we ap-
plied multiple Explainable DNN/ML models to predict the
severity of individuals (see supplementary material section
2 for details). In Multiclass prediction, we divided ASD-
specific severity into four severity classes: Low, moderate,
high, and very high. Then we applied multiple Explainable
Machine learning and deep learning algorithms (Refer Fig-
ure 6). We got the best accuracy of 78 % with an F1-score
of 0.78 from the Explainable Ensemble learning approach
and 75 % with an F1-score of 0.73 accuracies using DNN
(see Tables 5 and 6 in the supplementary material). After
that, we applied CPM based on linear-regression models for
extracting and encapsulating the most appropriate features
from fMRI time series signals to predict the behavioral
scores of each individual. We found that the CPM approach
could predict ADOS-Social scores but not ADOS total scores
using ToM and DMN brain areas functional connectivity.
We found CPM a convenient and suitable technique for
behavioral score prediction and fingerprinting, which could
predict ADOS-Social scores accurately for each individual
(refer to Supplementary material section 2 for more details).

5 DISCUSSION
The main objective behind this work was to determine a
common source of variability between ASD and typically
developing to identify heterogeneity within ASD samples
that shows different ToM functional connectivity. We iden-
tified ToM functional connectivity brain features that distin-
guish individuals with ASD from TD control subjects and
accurately predict social cognition impairment, predicting
clinical symptom severity using a novel end-to-end Ex-AI
model. Further to this we hypothesized that after control-
ling for a common source of variability in ASD and TD
samples, the distinguishable SFC ToM features could be
used to train the model to learn the connectivity patterns
among distributed brain areas primarily anchored in ToM
and Default Mode brain regions without ad hoc feature en-
gineering, achieving high classification accuracies in cross-
validation analysis of data from the multisite ABIDE cohort.
This approach overcomes the classification limitation using
SFC previously employed by many researchers. Crucially,
our results demonstrate that resting-state FC from Theory-
of-Mind and DMN brain regions can distinguish between
ASD and typically developing and address several existing

challenges. Feature identification using an IG, LIME, and
Shap approach revealed that brain features associated with
the key nodes of the ToM, DMN, and cognitive control sys-
tems (ref) most clearly distinguished ASD from TD control
subjects in the ABIDE cohorts and the ToM nodes predicted
core social and communication deficits, but not restricted
and repetitive behavior (RRB), phenotypic features associ-
ated with ASD.

This study’s first challenge was identifying Theory-of-
Mind brain regions so that functional connectivity between
them could be used as the best feature set for classifica-
tion. We extracted a total of 16 (12 ToM regions and 4
other regions associated with ToM) brain regions associ-
ated with the Theory-of-Mind and Default-mode network
and extracted Bold time-series signals [5]. After calculat-
ing Pearson’s correlation analysis, we generated a static
functional connectivity(SFC) matrix and represented it in a
Low-dimensional embedding. We found hyper-connectivity
within the TOM network in the ASD group (Left TPJ,
Right TPJ, Posterior cingulate cortex (PCC), Precuneus, Left
angular gyrus, Right angular gyrus, and Right superior tem-
poral sulcus), whereas hypo-connectivity within the TOM
region in the TD control group in the resting state. In the
previous study, the author also reported hyperactivity in
autism compared to typically developing in activity and
resting state [35]. This study’s second challenge was finding
a common source of variability that may find overlapping
connectivity patterns across distributed brain regions. To
this end, we used the CVAE model containing encoding
and decoding processes to generate latent space and RSA
methods to calculate the dissimilarity matrix; Subsequently,
the Kendall correlation coefficient showed that ASD-specific
characteristics were consistently correlated with clinical
measures like ADOS-Total scores, ADOS-Social scores, FIQ,
and resting-state functional connectivity. In contrast, shared
variation was associated with non-clinical measures like
Age, Gender, and Scanner Id. Results of the CVAE model
demonstrated that segregating ASD-specific variations from
shared variations revealed individual differences and dis-
covered new feature sets for training the classification
model. The previous study [26] reported that the CVAE
model could not find any sub-groups within ASD samples
using structural brain images. The current study extended
the previous approach by employing a similar methodology
on resting-state functional scans based on selecting specific
ToM and DMN brain regions. Our results based on the
CVAE model could not identify specific hidden subgroups
within ASD samples; however, the model could robustly
identify non-overlapping features between ASD and TD.

Next, we developed a novel, explainable and inter-
pretable ML/DNN (ExML/DNN) model to distinguish be-
tween ASD and typically developing. The proposed ExDNN
and ExMl models identified the ASD samples and achieved,
on average, 95 % accuracy with an F1 score of 0.94. These
models surpass the conventional approaches that use SFC
and Bold time-series data from complete brain parcels
[28], [36], [37], [38]. Our approach suggests that resting-
state functional connectivity from Theory-of-mind brain
and associated DMN brain regions could be useful feature
sets that can distinguish ASD from typically developing
accurately. To validate the results, we performed five-fold
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Fig. 5. Cluster 1: First sub-group and its functional connectivity matrix within Theory-of-Mind and default-mode Network brain areas that is present
within ASD Group. It showed that this cluster is not that severe to ASD. Cluster 2: Second sub-group and its functional connectivity matrix within
Theory-of-Mind and Default-mode Network brain areas. This sub-group is associated with ASD severity. Cluster 3: Third sub-group and its functional
connectivity matrix within theory-of-Mind and Default-mode Network brain areas. This sub-group is also associated with ASD severity.
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Fig. 6. Prediction of severity to ASD using Multiclass Prediction. A) Identification of features that are responsible for the prediction of classes of
severity which is showing that ADOS-Total and ADOS-Social contributed the most to prediction. B) Precision-Recall curve for prediction of severity
classes. C) ROC curve for prediction of symptom severity. D) SHAP score of each feature.

cross-validation and a leave-one-out approach. From five-
fold cross-validation, We were able to get, on average, 97 %
accuracy with an F1-score of 0.96, and from leave-one-out,
we got 96 % accuracy.

The fourth limitation of the study was to Identify neuro-
biological features that were associated with ASD samples
and that underlie classification. Conventionally, deep learn-
ing and machine learning models are trained by contriving
machine-generated intermediary feature sets, which can not
be explainable by humans [39], [40], [41]. In such a case,
there is a need to know human-interpretable features that
underlie classification and their associative importance [42],
[43], [44]. Here, we used Integrated Gradient (IG) for deep
learning; we applied SHAP and LIME for machine learning
models that developed an automated AI method for iden-
tifying neuro-biological features and hyper-parameters and
ranked them in order of importance [45], [46], [47], [48]. The
framework we have proposed here suggests that functional
connectivity between Left temporoparietal junction, Right
temporoparietal junction, Right superior temporal sulcus,
Left angular gyrus, Posterior cingulate cortex, and pre-
cuneus brain regions are the most robust feature set and
could be potential biomarkers during early development
that distinguish ASD from typically developing.

Given the heterogeneity and extent associated with ToM
in ASD, the fifth challenge we addressed was to uncover
neurobiologically interpretable ToM connectivity subtypes
and features associated with the severity of social and com-
munication deficits, a core defining characteristic of the dis-
order. This study addressed the above challenge by identify-
ing sub-groups within the ASD samples using resting-state
SFC. We used the K-means clustering algorithm, identifying
three hidden sub-groups that showed inter-cluster differ-
ences. Moreover, we identified the same three clusters using
a variational autoencoder model with K-means. Thereafter,
we estimated SFC between ToM and DMN regions for all
sub-groups and found that the functional connectivity in the
first sub-group resembled typically developing controls, i.e.,
displaying hypo connectivity. In contrast, we found hyper-
connectivity in the other two subgroups. Subsequently, We
calculated the difference in functional connectivity patterns
for each group and discovered that all sub-groups were
distinct.

This study’s final and sixth challenge was identifying
neurobiological features associated with ASD social and
communication deficits and predicting ADOS-Total and
ADOS-Social symptom severity scores. The results obtained
from the previous challenge indicated that the first sub-
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group was closely associated with TD. To contextualize
the above result, using resting-state functional connectivity,
here we defined four classes of severity: low, moderate,
high, and very high, and applied Explainable machine
learning and deep learning algorithms to predict the sever-
ity of each individual. We obtained 76 % accuracy using
Ex-DNN. Next, we applied Connectome-based prediction
modeling (CPM) to predict the ADOS-Total and ADOS-
Social scores of each individual from the ASD samples [34],
[49]. We extracted time-series signals from Theory-of-Mind
and Default-mode networks, calculated each individual’s
functional connectivity (FC) matrix, and fitted behavioral
scores and FC to a linear model to predict scores. The CPM
model could predict ADOS-Social scores accurately but
not ADOS-Total crucially, suggesting the specificity of the
ToM brain connectivity features. This further suggests that
whole brain SFC among distributed brain regions encom-
passing sensory, subcortical, and heteromodal higher-order
cortical brain regions may be necessary to predict ADOS-
Total symptom severity scores accurately. Overall, the brain
inspired framework proposed here accurately distinguished
ASD from control subjects and uncovered distinguishing
neurobiological features of ToM and DMN functional brain
patterns. Our discovery also provides unique predictive
fingerprint in each individual subjects in ASD group that
robustly predicted their severity of social and communica-
tion deficit.

6 CONCLUSION
Our End-to-End AI approach was able to distinguish the
ASD samples from typically developing on multisite ABIDE
cohorts using Theory-of-Mind brain regions with high accu-
racy. The idea behind disentangling ASD-specific variation
from shared variation revealed correlations between indi-
vidual differences without the need for any additional train-
ing. Our proposed Ex-AI approach using Theory-of-Mind
brain regions for understanding Social cognition deficits in
ASD subtypes overcomes key methodological challenges in
classification. It addresses an even deeper problem concern-
ing explainable and interpretable biological features offered
by existing AI models of ASD social symptom severity.
Our approach not only classifies ASD samples but also
identifies brain features associated with ASD that underlie
the classification. It also identifies heterogeneity or sub-
groups within ASD samples and accurately predicts each
individual’s mild to severe social symptom severity and
open up future possibilities of individual fingerprinting.
There are two major limitations of our study. First, we
did not carry out any out of the sample generalization as
we focus exclusively on ABIDE cohort for developing our
framework and secondly, our methods were not tested with
cognitive task associated with ToM data from ASD and TD
individuals. However, some work along this line is already
underway in our lab and will be reported elsewhere. Taking
together our discovery of robust individualized functional
brain connectivity biomarkers of relevant ToM regions in
ASD could transform our understanding of the etiology,
diagnosis, and trait specific modulation of connectivity in
pervasive neurodevelopmental disorder. More generally,
our approach provides new Ex-AI-based tools for probing

the robust and interpretable neurobiological bases of other
neurodevelopmental and psychiatric disorders and the un-
derlying clinical symptoms, with the potential to inform
precision neuroimaging in brain disorders.
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Supplementary Methods:  

ABIDE Dataset: 

In the current study, we used neuroimaging and phenotypic data from ABIDE I dataset 

comprised of 400 Autism and 460 neuro-typicals samples from 20 sites (Total no. of 

samples per site: Mean = 43, range: 39-71).  

 

Sr.  Age (In 
Years) 

Gender( 
Male/Female

) 

IQ ADI-R 
Social 

ADI-R 
Verbal 

ASD- group 
(400 Samples) 

13.9 ±6.6 
(range: 6 to 

42) 

360\40 105 ± 17 18.8 ± 5.5 15.4 ± 4 .5  

TD-Group (460 
Samples) 

14.9±5.9 
(range: 6 to 

40) 

370\90 112 ± 14   

 

Table 1: Demographic Information of ASD and TD groups From ABIDE dataset 

fMRI Preprocessing: 

The neuroimaging functional images were preprocessed using Configurable Pipeline for 

the Analysis of Connectomes (C-PAC) based on AFNI, ANTs, FSL, and python code. 

Subjects with poor-quality data were excluded from the final analysis (Total no. of images 

= 952, After preprocessing: total no. of images = 860). Prior to data contribution to ABIDE 

I all the sites (including data used in this study) were required to confirm clearance from 

their local institute review board (IRB) or ethics committee. The local ethics committee 

has approved both the initial data collection and the retrospective sharing of a fully de-
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identified version of the datasets (i.e., after removal of the 18 protected health information 

identifiers including facial information from structural images as identified by the Health 

Insurance Portable and Accountability Act [HIPAA]). All study participants provided 

written informed assent or consent prior to study participation with parental or legal 

guardian consent required of all study participants under the age of 18. All the fMRI 

images were reorganized for head motion correction to the average time frame using 

AFNI’s 3dvolreg, and slice time correction was performed using AFNI’s 3dTshift. The 

global mean intensity was normalized to 10000. We applied nuisance signal regression 

that included motion parameters and linear and quadratic trends and also applied band-

pass filtering from 0.01-0.1Hz, which helped to remove low-frequency artifacts. But band-

pass filtering was not able to remove time-varying means and covariances artifacts. To 

address this issue, registered the functional images in anatomical space using a linear 

transformation (see Supplementary material section 1 for details). 

As we were dealing with data from multiple sites, there was the issue of heterogeneity. 

To address this issue, we applied the combat harmonization technique, that harmonized 

age, gender, and scanner id-related heterogeneity. It took all these parameters as input 

in .csv file format and performed harmonization using multivariate linear mixed-effects 

regression. This method used empirical Bayes for the improvement of estimation of the 

model. 

Resting-State Functional Connectivity: 

Theory-of-mind (ToM) is the concept of understanding others' beliefs, desires, intentions, 

and emotions that influences social interaction. Previous studies have shown that the 
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frontal posterior network has been activated during the Theory-of-Mind task that included 

medial prefrontal cortex (MPFC), Posterior cingulate cortex (PCC), and Bilateral 

temporoparietal junction (LTPJ and RTPJ). These core brain areas deal with theory-of-

mind, but some other brain regions like right anterior superior temporal sulcus medial 

precuneus are also activated during TOM-related processing. On the other side, 

individuals with Autism mainly face the problem of social and communication deficits and 

repetitive behavior, i.e., a deficit in ToM.  

In the current study, we extracted activation time series BOLD signals from Theory-

of-Mind and other brain networks associated with social cognition, i.e., Default Mode 

Network(DMN) as listed in Table 2 below. The Regions-of-Interest(ROI) for this study was 

derived from the Human Connectome Project(HCP) available on Neuro Vault. We used 

the Harvard-oxford atlas and created ROIs using a spherical binary mask with a 10 mm 

radius. To validate the results, we performed multiple one-sample t-tests with a p-

value<0.01 and applied FDR correction.  

To check within network and between network connectivity from growing age, we 

also stratified age into 3 groups: 6-12 yrs, 13-18 yrs, and 19-25 yrs. We calculated the 

functional connectivity matrix for all the groups using ToM and DMN areas. We found that 

in 6-12 yrs group ToM areas (i.e., LTPJ, RTPJ, MPFC, PCC) were highly connected in 

ASD group, but this condition was not true in TD group, whereas we were not getting 

hyper-connectivity in DMN areas for the same group. For the second group i.e., 13-18 

yrs, we found hyper-connectivity within ToM network in ASD group, whereas hypo-

connectivity in TD group. When we included third group 19-25 yrs, we observed hyper-

connectivity in TD group and hypo-connectivity in ASD group.  
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Figure 1: Functional connectivity matrices for different age group for ASD and neuro-typical population 
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Sr. No.  Region-of-Interest MNI-Coordinates(X,Y,Z) 

1 Medial prefrontal Cortex (MPFC) 0, 48, -18 

2 Posterior Cingulate cortex (PCC) 0, -52, 22 

3 Left superior temporal sulcus (LSTS) -58, -48, 7 

4 Right superior temporal sulcus (RSTS) 58, -44, 8 

5 Left Temporoparietal Junction (LTPJ) -58, -58, 22 

6 Right Temporoparietal Junction (RTPJ) 58, -52, 20 

7 Left Inferior Frontal Gyrus (LIFG) -48, 14, 26 

8 Right Inferior Frontal Gyrus (RIFG) 48, 14, 26 

9 Left Angular Gyrus (LANG) -46, -72, 31 

10 Right Angular Gyrus (RANG) 48, -69, 31 

11 Left Cerebellum (LCEREB -20, -72, -36 

12 Right Cerebellum (RCEREB) 20, -72, -36 

13 Precuneous 0, -49, 40 

14 Left Inferior Parietal Cortex -45, -46, 53 

15 Right Inferior Parietal Cortex 52, -42, 50 

16 Ventrolateral Prefrontal cortex 42, 46, 0 
 

Table 2: Brain region with MNI coordinates that are associated with Theory-of-Mind concept 

Identification of Shared and Specific Variability: 

We hypothesized that common source of variability between neuro-typicals and ASD 

individuals could be identified using what was common b/w TD & ASD groups, Whereas 

what was not common in both the groups that differences could be the best possible 

characteristics to identify features on which the classification model could be trained to 
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learn characteristics difference and be able to classify ASD & TD given some test dataset 

& also able to predict their association with the symptom severity scores on behavior. To 

identify ASD-Specific variation, we disassociated ASD-specific variation from common 

variation between Neuro-typical & Autistic using a Contrastive- Variational Autoencoder 

model (CVAE) that allowed us to distinguish clinically applicable individual variationWe 

found that shared variation was associated with non-clinical characteristics (i.e, Scanner 

Id, Age, Gender), whereas ASD-specific variation was related to clinical 

measures(ADOS-Total, ADOS-Social, DSM-IV, FIQ) as well as resting-state functional 

connectivity. 

Classification Analysis Using Five-Fold Cross Validation: 

To reduce the chance of bias and report low variance, we implemented five-fold cross-

validation to evaluate model’s performance (precision, recall, accuracy, F1-score). We 

divided the complete dataset into five parts, which used four parts for training and 

validation purposes and five-part for testing. We repeated this process five times for each 

iteration. We then calculated the average accuracy and F1 score. We also implemented 

a leave-one-out approach, in which we divided the dataset into two parts training and 

testing, trained the model on the complete training set except for the leave-out 

observation, and performed testing on the leave-one-out observation. We repeated this 

process n-times for each iteration and reported the average accuracy. 
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Identification of Sub-Group Within ASD Group and their Functional 

Connectivity Differences: 

After performing classification, we were able to identify the ASD samples. Resting-state 

functional connectivity from ToM and DMN areas were provided to an unsupervised k-

means algorithm based on Euclidean distance to identify heterogeneity or subgroups 

within ASD population. Using the elbow approach, we obtained three sub-groups of 

different sizes. We also performed validation of results using variational autoencoder 

model, in which applied K-means on latent space and again got 3 clusters.  
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Figure 2: K-means clustering approach to identify sub-groups within ASD Population. A) Elbow 

approach to identify no. of clusters, b) Visualization of each cluster. 

Supplementary Results:  

Identification of Shared And ASD-Specific Features or Source of 

Variability: 

To recognize the source of variability between ASD and neuro-typicals, we first implemented 

the Variational Autoencoder model(VAE) as a base model with a single latent space that 

showed correlation with some non-clinicalcharacteristics (ScannerID ( τ = 0.01, t(9)=0.74, p-

value < 0.042), Gender ( τ = 0.01, t(9)=1.94, p-value < 0.04)) and also correlated with DSM-

IV(Diagnostic Statistical Manual IV)( τ = 0.02, t(9)=0.54, p-value < 0.03) but did not get any 

correlation with ADOS Total ( τ = -0.01, t(9)= -2.96, p-value < 0.031), ADOS Social ( τ = -0.01, 

t(9)=-2.66, p-value < 0.026), FIQ ( τ = 0.00, t(9)= -1.37, p-value < 0.027), and functional 

Connectivity ( τ = 0.00, t(9)=-5.56, p-value < 0.04). Hence, the VAE model failed to 
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encapsulate variation in ASD and TD. To overcome the limitation of VAE, we implemented 

the Contrastive Variational Autoencoder model(CVAE). As a result, we found that shared 

characteristics were correlated with non-clinical characteristics (i.e., ScannerId ( τ = 0.01, 

t(9)=0.85, p-value < 0.0.39), Age ( τ = 0.03, t(9)=1.41, p-value < 0.04), Gender ( τ = 0.02, 

t(9)=0.51, p-value < 0.045)); in contrast, ASD-specific characteristics were associated with 

clinical measures (i.e., ADOS Total ( τ = 0.04, t(9)=2.65, p-value < 0.03), ADOS Social ( τ = 

0.04, t(9)=1.88, p-value < 0.01), FIQ ( τ = 0.02, t(9)=1.95, p-value < 0.04)), as well as  

Functional Connectivity ( τ = 0.04, t(9)=1.32, p-value < 0.02). 

Classification of ASD and Neuro-typical Individuals Using Explainable 

AI: 

Our ExAI model outperformed the traditional approaches that use a) Functional connectivity 

matrix as a feature set, which achieved an average accuracy of 55% with an F1 score of 0.52. 

In this work, we randomly selected samples with a ratio of 70:30 for training and testing sets. 

Then we trained our models in various scenarios: a) We trained our model on shared 

characteristics set that achieved an average accuracy of 60% from ExDNN with an F1 score 

of 0.58 and 80% from ExML with average F1 score of 0.81. b) then, the models were trained 

using shared and ASD-specific characteristics that achieved an average accuracy of 85% 

using ExDNN with an average F1 score of 0.79 and average accuracy of 90% with an F1 

score of 0.88 using ExML. c) Finally, we trained our models with resting state FC of Tom and 

DMN areas as feature set and achieved average accuracy of 96% with F1 score of 0.95, 

sensitivity of 0.95, and specificity of 0.93 using ExDNN model, and average accuracy of 90% 

with average F1 score of 0.91 and sensitivity of 0.87 and specificity of 0.85 using ExML. To 

validate the results, we also performed five-fold cross-validation and a leave-one-out 
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approach and achieved average accuracy of 96% using ExDNN and average accuracy of 

97% using ExML.  

 We performed classification on different age groups (i.e., 6-12, 13-18, and 19-25 yrs age 

group): we trained our model on different age groups and test it on different age groups. We 

repeated this process for all age groups. We were getting average accuracy of 93 % using 

ExDNN with F1 score of 0.91 and average accuracy of 89 % using ExML with F1 score of 

0.87. We observed that connectivity between Left temporoparietal junction, Right 

temporoparietal junction, Right superior temporal sulcus, Left angular gyrus, Posterior 

cingulate cortex, and precuneus brain regions contributed the most in classifying ASD 

samples. 

 

 

Figure 3: Previous studies and their performance using whole brain on ABIDE cohort 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.21.525016doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.21.525016
http://creativecommons.org/licenses/by-nc/4.0/


 

14 
 

 

Figure 4: SHAP values for each features that underlie classification between ASD and 
Neuro-topicals 

 

Sr. 
No. 

Classifier Accuracy F1-Score 

1. Quadratic Discriminant Analysis 0.5213 
 

0.5012 

2. K-Nearest-Neighbors (KNN) 0.8482 0.8901 
 

3. Linear Discriminant Analysis 0.9429 0.9787 
 

4. Decision Tree 0.9823 
 

0.9836 

5. Logistic Regression 0.9859 0.9889 
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6. Random Forest 0.9887 0.9823 

7. SVM 0.9819 0.9919 
 

8. Deep Neural Network 0.9899 0.9834 

 

Table 3: ASD vs. TD classification accuracies on ABIDE Cohort using ASD-Specific feature set 

 

Sr. No. Classifier Accuracy F1-Score 

1. Quadratic Discriminant Analysis 0.5912 
 

0.5012 

2. K-Nearest-Neighbors (KNN) 0.8567 0.8901 
 

3. Linear Discriminant Analysis 0.9624 0.9787 
 

4. Decision Tree 0.9831 
 

0.9836 
 

5. Logistic Regression 0.9913 0.9889 
 

6. Random Forest 0.9865 0.9823 

7. SVM 0.9876 0.9919 

8. Deep Neural Network 0.9901 0.9934 

 

Table 4: ASD vs. TD classification accuracies using five-fold cross-validation on ABIDE cohort 
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Symptom-Severity Score Prediction: 

To check the severity of each individual, we implemented binary prediction using multiple 

Explainable AI algorithms (ExAI) on ASD-population and achieved an average accuracy of 

96.5% with F1 score of 0.97. After that, to predict classes of severity, we implemented multi-

class prediction in which we divided classes into four parts: Low, Moderate, High, and Very 

High, and achieved an average accuracy of 67% with F1 score of 0.66. We implemented 

Connectome-Based Prediction modeling (CPM) to predict individual behavior scores. We 

were getting better results in ADOS-Social score prediction. To validate the results, we 

performed five-fold cross-validation that achieved an average accuracy of 90% with F1 score 

of 0.92.  

 

Sr. No. Classifier Accuracy F1-Score 

1. Xgboost 0.9594 0.9401 
 

2. Neural Network 0.9864 0.9753 
 

3. Decision Tree 0.9459 
 

0.9631 
 

4. Logistic Regression 0.9661 0.9563 

5. Random Forest 0.9729 0.9842 

6. Ensemble Learning 0.9913 0.9941 

 

Table 5: Accuracies of multiple models for Predicting severity of individual using Binary Prediction  
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Sr. No. Classifier Accuracy F1-Score 

1. Xgboost 0.7586 0.7364 

2. Neural Network 0.7613 0.7745 
 

3. Decision Tree 0.5517 0.5067 
 

4. Logistic Regression 0.5287 0.5265 

5. Random Forest 0.5919 0.6037 

6. Ensemble Learning 0.7873 0.7902 

 

Table 6: Accuracies of multiple models for predicting classes of severity using Multiclass prediction 
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