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Single-cell technologies enable high-resolution studies of phenotype-
defining molecular mechanisms. However, data sparsity and cellu-
lar heterogeneity make modeling biological variability across single-
cell samples difficult. We present SCORPION, a tool that uses a
message-passing algorithm to reconstruct comparable gene regula-
tory networks from single cell/nuclei RNA-seq data that are suitable
for population-level comparisons by leveraging the same baseline
priors. Using synthetic data, we found that SCORPION outperforms
12 other gene regulatory network reconstruction techniques. Using
supervised experiments, we show that SCORPION can accurately
identify differences in regulatory networks between wild-type and
transcription factor-perturbed cells. We demonstrate SCORPION’s
scalability to population-level analyses using a single-cell RNA-seq
atlas containing 200,436 cells from colorectal cancer and adjacent
healthy tissues. The differences detected by SCORPION between tu-
mor regions are consistent across population cohorts, as well as with
our understanding of disease progression and elucidate phenotypic
regulators that may impact patient survival.
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Introduction

In eukaryotes, gene expression is tightly controlled by the activ-
ity of transcription factors, proteins that define cell identity and
cellular states by activating or repressing the expression of their
target genes in an abundance-dependent manner (1, 2). It is well
known that changes in regulatory interactions result in abnormal
expression profiles and diseased phenotypes (3—6). Typically,
gene regulatory networks are constructed and compared to iden-
tify mechanistic alterations in the relationship between transcrip-
tion factors and their target genes that result in these abnormal
phenotypes (7). Transcriptomic data can be used to infer gene
regulatory networks by examining the co-expression patterns of
genes that are part of the same regulatory programs (8). Depend-
ing on the level of detail of the transcriptomic data used to recon-
struct the networks, gene regulatory networks can represent the
regulatory programs of a specific cell type or the average mech-
anisms defining the tissue from where the sample was collected

).

Using the gene expression variability found in RNA-seq data
from single cells/nuclei, it is possible to infer the gene regulatory
networks for each cell type or cell state within a single sample
(10). However, when multiple samples are available, tran-
scriptomes from different samples are typically collapsed by an
experimental group before the groups-level comparison is carried
out, much like what is done in differential expression analysis
(11). In differential network analysis, an aggregate network
is built using all of the transcriptomes from each experimental
group to represent each one of them (12). Then, in order to learn
more about the transcription factor-target gene interactions that
support the phenotype of interest, this network is scrutinized or
compared to others (13, 14). Although useful, aggregate network
models are not designed to account for evaluating between
samples’ transcriptional heterogeneity (15).

Pseudo-bulk profiles are frequently calculated in differential
gene expression analysis to take into account biological variation
between samples (16, 17). However, the biological variability
between transcription factors and their target gene interactions
must be accurately modeled across multiple samples to identify
consistent mechanistic patterns causing phenotypic changes
across samples within a population (15, 18, 19). This entails
developing time-efficient techniques for constructing highly
accurate and comparable gene regulatory networks from single-
cell/nuclei RNA-seq data.

Using high-throughput RNA-seq data from single cells or nuclei
to create comparable gene regulatory networks is a difficult
task (9). This type of data is highly sparse and frequently
contains information based on multiple cellular states in a
single experiment, making sample comparison difficult (20).
Furthermore, non-biological factors frequently affect data during
library preparation, reducing our ability to detect biologically
accurate correlation structures (21). To address those challenges
in differential single-cell gene regulatory network analyses, we
present SCORPION (Single-Cell Oriented Reconstruction of
PANDA Individually Optimized Gene Regulatory Networks),
a tool that uses coarse-graining of single-cell/nuclei RNA-seq
data to reduce sparsity and improve the ability to detect the gene
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regulatory network’s underlying correlation structure (22). The
coarse-grained data generated is then used to reconstruct the gene
regulatory network using a network refinement strategy through
the PANDA (Passing Attributes between Networks for Data
Assimilation) message passing algorithm (23). This algorithm
is designed to integrate multiple sources of information such as
protein-protein interaction, gene expression, and sequence motif
data to predict accurate regulatory relationships. Thanks to the
use of the same baseline priors in each instance, this approach
can reconstruct comparable, fully-connected, weighted, and
directed transcriptome-wide gene regulatory networks suitable
for use in population-level studies.

In this paper, we tested the performance of SCORPION’s coarse-
grained input data for network modeling using synthetic data via
BEELINE, a tool for systematically evaluating cutting-edge al-
gorithms for inferring gene regulatory networks from single-cell
transcriptional data (24). We found that networks modeled on
data desparsified with SCORPION outperform 12 other gene reg-
ulatory network reconstruction techniques across seven metrics.
Additionally, using supervised experiments, we show that SCOR-
PION can precisely identify biological differences in regulatory
networks between wild-type cells and cells carrying transcription
factor perturbations. Furthermore, we demonstrate SCORPION’s
scalability to population-level analyses by applying it to a single-
cell RNA-seq atlas constructed using publicly available data that
includes 200,436 cells derived from 47 patients and accounts for
three different regions of colorectal tumors and healthy adjacent
tissue. The differences detected by SCORPION between intra-
and inter-tumoral regions are consistent with our understanding
of disease progression through the chromosomal instability path-
way (CIN) that underlies the majority of all colon cancers (25).
Findings were confirmed in an independent cohort of patient-
derived xenografts from left and right-sided tumors and provide
insight into the regulators associated with the phenotypes and the
differences in their survival rate.

Results

The SCORPION algorithm. SCORPION is an R package
that generates through five iterative steps comparable, fully
connected, weighted and directed transcriptome-wide gene
regulatory networks from single-cell transcriptomic data that are
suitable for their use in population-level studies (Figure 1A).
To begin, the highly-sparse high-throughput single-cell/nuclei
RNA-seq data is coarse-grained by collapsing a k£ number of
more similar cells identified at the low dimensional representa-
tion of the multidimensional RNA-seq data (26). This approach
reduces sample size while also decreasing data sparsity, allowing
us better to capture the strength of the relationship between
genes’ expression (22).

The second step is to construct three distinct initial unrefined net-
works, as described in the PANDA algorithm: the co-regulatory
network, the cooperative network, and the regulatory network
(23). The co-regulatory network represents the co-expression
patterns between genes. This network is constructed using
correlation analyses over the generated coarse-grained transcrip-
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tomic data. The cooperative network accounts for the known
protein-protein interactions between transcription factors. This
information is downloaded from the STRING database (27). The
third network is the unrefined regulatory network that describes
the relationship between transcription factors and their target
genes through transcription factors footprint motifs found in the
promoter region of each gene (28).

Following the construction of the three networks, a modified
version of the Tanimoto similarity designed to account for
continuous values is used to generate the availability network
(A;j), representing the information flow from a transcription
factor ¢ to a gene j, describing the accumulated evidence for how
strongly the transcription factor influences the expression level
of that gene, taking into account the behavior of other genes
potentially targeted by that transcription factor. In addition,
the responsibility network (R;;) is generated by computing the
similarity between the cooperativity network and the regulatory
network. The responsibility represents the information flowing
from a transcription factor ¢ to a gene j and captures the
accumulated evidence for how strongly the gene j is influenced
by the activity of that specific transcription factor, taking into
account other potential regulators of gene j.

The average of the accessibility and the responsibility networks
is computed in the fourth step, and the regulatory network is
updated to include a user defined proportion (o = 0.1 by default)
of the information provided by the other two original unrefined
networks. The cooperativity and co-regulatory networks are also
updated in the fifth step using the new information contained
in the updated regulatory network. Steps three through five
are repeated iteratively until the hamming distance between the
networks reaches a user-defined threshold (0.001 by default).
When convergence is reached, the refined regulatory network
is returned as a matrix with transcription factors in the rows
and target genes in the columns. The matrix values encode the
strength of the relationship between each transcription factor and
gene.

SCORPION outperforms 12 other algorithms for single—
cell gene regulatory network construction. To provide a
comparison of how data desparsification in SCORPION would
affect downstream network modeling, we tested its performance
to that of other algorithms. To do so, we conducted a system-
atic comparison of network construction algorithms using BEE-
LINE, an evaluation tool designed for this purpose (24). SCOR-
PION was tested and compared to 12 different algorithms (9, 29—
39). Each method’s performance in recovering gene-to-gene re-
lationships was compared to ground-truth interactions between
genes generated using pre-set parameters without other infor-
mation than the expression matrix. According to our findings,
SCORPION generates 18.75% more precise (higher precision)
and sensitive (higher recall) single-cell gene regulatory networks
than other methods. We also found that, on average, SCORPION
ranks first when compared to other methods using seven different
metrics related to network construction (Figure 1B, Supplemen-
tary Table S1).

Osorio etal. | Constructing comparable single-cell gene regulatory networks with SCORPION


https://doi.org/10.1101/2023.01.20.524974
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.524974; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

B
: a SCORPION A

A
SCORPION
00800 R
o ACT GrataTA o i
o Single-Cell
m Expression Matrix
@l |
[ty | =0 EEB O
Network v
Cooperativit Co-
Nztwork Y ‘® RegulatoI:y @
Networ
o-@ S 0Q-6
steps 3 to 5 are repeated until model convergence
v

Refined Regulatory Network

SCTENIFOLDNET 4

PIDC 4

o [ oo [ oo [ove | [ |
oo |07 [ova [0 [ors | 1o0]
49

GRNBOOST2 1
GENIES3 1
SCODE 4
SCINGE

SINCERITIES 4

GRISLI A

GRNVBEM -

SCNS 4

MOTIFeg
MOTIFer 4

Fig. 1. Overview and benchmarking of desparsification with SCORPION . (A) SCORPION uses the PANDA message passing algorithm to integrate data from multiple sources, including
protein-protein interactions, single-cell gene expression, and sequence motif data, to predict accurate regulatory relationships. In five iterative steps, SCORPION generates comparable,
fully-connected, weighted, and directed transcriptome-wide gene regulatory networks from from single-cell transcriptomic data suitable for use in population-level studies. (B) The
performance of 13 single-cell gene regulatory network construction methods was evaluated using BEELINE and the same curated synthetic dataset. Methods are ranked based on their
average performance across seven different metrics. If the metric was not quantifiable, gray squares are displayed. Performance in each metric is color coded from red (best) to blue

(worst). The acronyms of the metrics are explained in Methods.

The curated dataset provided by BEELINE to perform the
benchmark of the different tools is much simpler than the
transcriptome-wide gene regulatory network required in reality to
identify mechanistic changes in gene regulation that support the
observed phenotypes. In fact, it is known that incorporating prior
information on TF binding into regulatory network reconstruc-
tion algorithms improves predictions of regulation (40). For that
reason, after having tested the outperformance of SCORPION’s
desparsification approach on synthetic data, we chose to apply the
complete SCORPION framework (desparsification with Super-
Cells and message passing between prior regulatory, cooperativ-
ity, and co-regulatory networks) directly to curated real datasets
and assess the biological relevance of the generated gene regula-
tory networks.

SCORPION accurately detects changes in transcription
factor activity and their impact on target genes. We used
two curated real datasets generated using 10x Genomics’
high-throughput single-cell/nuclei RNA-seq technologies to
evaluate SCORPION’s performance in identifying changes in
transcription factor activity and their impact on target genes.
The first dataset was generated to examine the redundant effect
of Hnf4aw and Hnf4~ transcription factors in the intestinal ep-
ithelium of mice through a double knockout (DKO) experiment
(41). The second dataset was designed to investigate the role
of over-expressing the DUX4 transcription factor on human
embrionic stem cells (hESCs) during human zygotic genome
activation-like transcription in-vitro (42).

For the first dataset, two independent single-cell gene regulatory
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networks were built to model the regulatory mechanisms on
Hnf4ayWT (wild-type, n = 4,100) and Hnf4a~yPXO (n = 4,200)
mice intestinal epithelial cells. The Hnf4ayWT network models
the regulation of 4,255 genes by 603 transcription factors,
while the Hnf4ayPXO network account for the regulation
of 3,384 genes by the same amount of transcription factors
as in Hnf4ayWT. We used the subnetwork representing the
regulatory mechanisms of the 2,990 genes that overlapped in
both networks for comparison. We focused on the differences
in the outdegrees (the sum of edge weights from a TF to all
genes) of the Hnf4a and Hnf4~ transcription factors because
they represent the changes on the transcription factor’s activity
over their target genes’ expression after perturbation. In both
cases, we observed a shift in the weights of the links between the
perturbed transcription factors and their target genes (Figures 2A
and 2E). The paired weight differences were found to be highly
significant (t-test, P = 1.1 x 10_85), and the direction of the
shift (fignfaa = —0.24 and [ig, r4 = —0.21) consistent with
the perturbation targeted (downregulation) in the cells during the
experimental design (Figures 2B and 2F).

We found 221 and 211 large changes (out of the 95% confidence
interval, 181 genes shared, Jaccard Index = 0.819) after per-
turbation in Hnf4aw and Hnf4~y outdegrees, respectively. These
changes (Figures 2C and 2G) highlight 84 shared genes with
decreased activation signal (downregulation) from 114 in Hnf4a
and 95 in Hnf4~y (Jaccard Index = 0.672), as well as 97 shared
genes with increased activation signal (upregulation) from 107 in
Hnf4a and 116 in Hnf4~y (Jaccard Index = 0.769). The high over-
lap (81.9%) in the top-most perturbed target genes discovered
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Fig. 2. Evaluation of SCORPION ’s ability to detect changes in transcription factor activity and their impact on target genes. (A) Differences in the distribution of the outdegree weights for
the Hnfda transcription factor in Hnf4ay"WT and Hnf4a°K° mice intestinal epithelium cells. (B) Distribution of the paired differences between the outdegrees of the Hnf4c transcription
factor (/1 and P-value were calculated using a one-sample t-test). (C) Spearman correlation (p) of the outdegrees for the Hnf4« transcription factor in Hnf4ay"'T and an4a'yDK° mice
intestinal epithelium cells. Genes out of the 95% confidence interval are color coded and labeled (in red if up-regulated, and in blue if down-regulated). (D) Gene set enrichment analysis
of Enterocytes marker genes using the paired differences between the outdegrees of the Hnf4a transcription factor. (E) Differences in the distribution of the outdegrees for the Hnf4~y
transcription factor in an4ouywT and an4a'yDKO mice intestinal epithelium cells. (F) Distribution of the paired differences between the outdegrees of the Hnf4~ transcription factor (i
and P-value were calculated using a one-sample t-test). (G) Spearman correlation () of the outdegrees for the Hnf4-~ transcription factor in Hnf4ay"T and Hnf4a°K° mice intestinal
epithelium cells. Genes out of the 95% confidence interval are color coded and labeled (in red if up-regulated, and in blue if down-regulated). (H) Gene set enrichment analysis of the
Enterocytes marker genes using the paired differences between the outdegrees of the Hnf4~ transcription factor. (I) Uniform Manifold Approximation and Projection (UMAP) of hESCs.
8C-cell-like cells are highligthed. (J) Differences in the distribution of the outdegrees for the DUX4 transcription factor in DUX4"" and DUX4°F hESCs. (K) Distribution of the paired
differences between the outdegrees of the DUX4 transcription factor (4 and P-value were calculated using a one-sample t-test). (L) Spearman correlation (p) of the outdegrees for the
DUX4 transcription factor in DUX4"" and DUX4°F hESCs. Genes out of the 95% confidence interval are color coded and labeled (in red if up-regulated, and in blue if down-regulated).
(M) Gene set enrichment analysis of the 8C-like cells marker genes using the paired differences between the outdegrees of the DUX4 transcription factor.

after the double knockout supports the paralog redundant activity factor on them. The resulting two gene regulatory networks
of Hnf4a and Hnf4+ in the intestinal epithelium of mice. Addi- represent the regulatory effect of 622 transcription factors over
tionally, in agreement with what the dataset’s original authors 13,422 genes in 970 DUX4"WT hESCs and a subset of 55
reported (41), when we performed gene set enrichment analysis DUX4°F hESCs exhibiting the canonical marker genes (ZS-
using the paired differences between the weights of the link CAN4, DUXA, CCNA1, and KDMA4E) of 8C-like cells (Figure 21,
between the transcription factors and their target genes, we found Supplementary Table S4). When we compared the transcription
that Hnf4a and Hnf4~y perturbations have a significant (NES factor activity of DUX4 in both networks, we noticed a shift
< 0,and FDR < 0.05) impact on reducing the expression of the in distribution of the weights of the links before and after the
canonical marker genes associated with enterocyte’s identity de- transcription factor was overexpressed (Figure 2J). In agreement
velopment (Figures 2D and 2H, Supplementary Table S2 and S3). with the experimental design targeted in the hESCs, we found

that the paired differences in the weights of the links between

For the second dataset, as before, we constructed two inde- DUX4 and its target genes are significantly (s-test, P < 0.0001)
pendent gene regulatory networks to model the regulatory shifted to the positive side (Figure 2K), inducing upregulation
mechanisms on wild-type human embryonic stem cells (hESCs) of its target genes. We found 999 extreme link weight changes

and the effect of over-expressing (OE) the DUX4 transcription out of the 95% confidence interval, that represent 624 and
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Fig. 3. Low-dimensional representation of transcriptomes and gene regulatory networks from colorectal cancer and adjacent healthy tissue. (A) UMAP of cells from healthy adjacent
tissue. (B) UMAP of cells from tumor border tissue. (C) UMAP of cells from tumor core tissue. (D) UMAP of cells from liver metastasic tissue. (E) t-SNE of gene regulatory networks

from colorectal cancer and adjacent healthy tissue generated by SCORPION.

375 target genes down- and up-regulations associated with the
overexpression of DUX4 on hESCs respectively (Figure 2L).
When we performed gene set enrichment analysis using the
paired differences between the weights of the links between
DUX4 and its target genes, we found that these are positively
associated (NES > 0, P < 0.05) with the overexpression of
highly expressed genes in 8C-like cells such as ADD3, ALPG,
BCATI, DPPA3, EXOSCI0, HIPK3, NEATI, ODCI, RBBP6,
RBM25, SAMDS, SLC2A3, WDR47, and ZNF217 (Figure 2M,
Supplementary Table S5).

These findings confirm that SCORPION can detect experimen-
tally targeted changes in transcription factor activity and rep-
resent the impact of those changes on the resulting gene reg-
ulatory networks. This holds true when comparing two net-
works. However, since SCORPION networks are refined using
a message-passing algorithm, the only difference between the re-
sulting networks is given by the correlation structure provided
by the RNA-seq data from single cells/nuclei used to generate
the co-regulatory network. This feature, in conjunction with the
short time of construction (Figure 1B), makes SCORPION suit-
able for the generation of comparable gene regulatory networks
in a pipeline scalable to population-level studies targeting the
identification of differences in gene regulation. In order to show-
case this feature, we chose to use SCORPION to reconstruct gene
regulatory networks for each cell type within each sample in a
multi-sample single-cell atlas of colorectal cancer that includes
cells from both nearby normal tissue and three distinct tumor re-
gions.

Osorio etal. | Constructing comparable single-cell gene regulatory networks with SCORPION

SCORPION gene regulatory networks recapitulate cellu-
lar identity and disease status. We generated a multisample
single-cell RNA-seq atlas containing the transcriptomes of
cells from adjacent healthy tissue and three different regions of
colorectal tumors, including metastasic, core, and border tissue
aiming to characterize the regulatory mechanisms driving the
development and progression of colorectal cancer. To begin, we
gathered single-cell RNA-seq data from five publicly available
datasets comprising 303,221 cells derived from 47 donors. After
quality control, 200,439 were kept on the study (Figure 3, Panels
A-D; Supplementary Table S6). SCORPION was then used to
generate a gene regulatory network for each cell type (with at
least 30 cells) within each sample included in the atlas after
cells were annotated using canonical markers (Supplementary
Figure S1). At the end, we generated 560 transcriptome-wide
gene regulatory networks that account for the regulatory effect
of 622 transcription factors over 17,425 target genes (a total of
10,838,350 links) in each network.

We used the network’s indegrees (the sum of the weights from all
transcription factors to a gene) to generate a t-distributed stochas-
tic neighbor embedding (t-SNE) low-dimensional representation
of the information contained in the networks. We found that
networks of cells of the same type cluster together regardless of
tissue of origin (Figure 3E). This reaffirms SCORPION’s ability
to accurately identify the differences in regulatory mechanisms
defining cell type identity across multiple samples.

We chose cells from the core tissue, border tissue, and adjacent
healthy tissue from four different donors to compare their simi-
larities in order to assess the reproducibility of the built gene reg-
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found in the gene regulatory network illustrating the progression of colorectal cancer. (D) Downregulated hallmarks found in the gene regulatory network illustrating the progression of

colorectal cancer.

ulatory networks (Supplementary Figure S2). We found that, on
average, the similarity between the cancer tissue (core and bor-
der) is significantly (z-test, P = 3.5 x 10~3) higher (fip = 0.945,
Supplementary Figure S2A) than the one observed when com-
pared the cancer tissue with the healthy adjacent one ({1, = 0.821,
Supplementary Figure S2B). This outcome confirms our previ-
ous findings, in which we were able to reconstruct two gene reg-
ulatory networks that represented the control of 15,493 genes
through 622 transcription factors in T-cells derived from two
samples taken from the same benign polyp in a female donor with
adenomatous polyposis. Those networks exhibited a highly pos-
itive and significant Spearman correlation coefficient (p = 0.931,
P =22x10716) (43, 44).

SCORPION gene regulatory networks reveal patterns of
colorectal cancer progression and sidedness. One of the
most significant advantages of using single-cell/nuclei RNA-seq
data is the ability to characterize the molecular mechanisms
underlying disease at the cell-type specific level (2). Because
colorectal cancer is an epithelial cancer, we decided to focus
on the molecular mechanisms that drive disease progression in
epithelial cells. We selected the 149 single-cell gene regulatory
networks generated for this cell type among the four tissues
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(healthy n = 42, border n = 9, core n = 94, and metastasis
n = 4), and used linear regression to investigate each of the
9,532,150 links between 622 transcription factors and 15,325
target genes aiming to identify linear patterns of up- or down-
regulation across these links. Our reasoning was that healthy
adjacent tissue (encoded as 1) is transitionally transformed into
malignant tissue along the border (encoded as 2), and disease
signals will be increased in the tumor’s core (encoded as 3), and
metastasic tissue (encoded as 4). We calculated a § coefficient
and associated adjusted for multiple testing P-value for each link
(Figure 4A). We found 5,202,588 links with a absolute value
of [ greater than O and a false discovery rate less than 0.05
(45). We treated these 3 coefficients as weights in the generated
network representing colorectal cancer progression (Figure 5,
Supplementary Table S7).

We found that some of the identified interactions have directions
that are consistent with previously reported oncogenic transfor-
mation patterns necessary for the growth and development of col-
orectal tumors (Figure 4A). For example, upregulation of EGR2
is required for colon cancer stem cells survival and tumor growth
(46), upregulation of HDAC5 promotes colorectal cancer cell pro-
liferation (47), upregulation of SP/ activate the Wnt-beta catenin
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Fig. 5. Gene regulatory network illustrating the progression of colorectal cancer. Transcription factors with the highest activities up- or down-regulated are displayed in bold letters. The
graph’s edges are color-coded in red for up-regulated and blue for down-regulated interactions. The width of the displayed edge encodes the magnitude of the computed beta coefficient.

pathway in colorectal cancer (48), upregulation of CCND?2 in
conjunction with JAK2 and STAT3 promotes colorectal cancer
stem cell persistence (49), upregulation of NANOG modulates
stemness in human colorectal cancer (50), upregulation of AD-
GRG1 promotes proliferation of colorectal cancer cells and en-
hances metastasis via epithelial to mesenchymal transition (51).
Examples, where edge weights are reduced through tumor pro-
gression, include the inhibition of the epithelial to mesenchy-
mal transition during cancer metastasis by HDAC2 (52), and the
tumor-suppressing role in colorectal cancer by HOXDS that act

as an apoptotic inducer (53).

To identify the major drivers of colorectal cancer progression,
we calculated transcription factor overall association as the
(outdegree) sum of all the beta coefficients for each transcription
factor and their target genes. We found that the top ten most
associated transcription factors across colorectal cancer develop-
ment are ZNF770, SP1, SP2, SP3, PATZ1, MAZ, PAX5, KLF15,
WTI, and KLF3. Among these, SP1, WT1, PAX5 and KLF3
are known to be associated with transcriptional misregulation
in cancer (Hyper-geometric test, KEGG database, OR = 70.22,
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FDR < 0.0001). On the other hand, the top ten associated
transcription factors with reduced outdegrees throughout tumor
progression are ZNF146, ZNF490, BCL6B, SOXI11, ZBEDI,
ZNF250, GLIS1, ZNF586, HOMEZ, and VSX2 (Figure 4B).

We also calculated the network’s indegrees by aggregating the
regulation of all transcription factors over a target gene. We used
this vector of aggregated weights representing the rate of change
of each edge during disease progression after performing linear
regression of the indegrees to evaluate gene set enrichment using
the hallmarks of cancer as reference (54, 55). Out of the 50
hallmarks, we found 11 significantly (F'DR < 0.05) perturbed.
Mitotic spindle, Hedgehog signaling, and Wnt-beta catenin
signaling were among the six hallmarks found to be upregulated
(NES > 0). These three characteristics are part of a well-known
colorectal cancer pathway known as the chromosomal instability
(CIN) pathway (25). The CIN pathway is linked to an increase
in genomic instability, which is critical for the development
of colorectal cancer. CIN is also the most common cause of
colorectal cancer (56). Additionally, we found that the c-Myc
pathway in the epithelial cells of the tumor’s core and metastasis
regions was significantly downregulated (NES < 0). This is in
line with earlier reports suggesting that low c-MYC levels enable
cancer cells to survive in the presence of low levels of oxygen
and glucose, which are characteristic of the tumor’s core (57).

Overall, we found that the regulatory patterns represented in
the gene regulatory networks generated by SCORPION to
characterize the progression of colorectal cancer in epithelial
cells strongly agree with our understanding of the disease’s pro-
gression. These high-quality data with unparalleled resolution
due to the use of single-cell RNA-seq show that SCORPION
is suited for the construction of comparable gene regulatory
networks to support population-level comparisons aimed at
identifying differences in gene regulation.

We next wanted to demonstrate the potential of SCORPION
to identify differences in gene regulatory networks between
conditions.  There are four accepted consensus molecular
categories for colorectal cancer, CMS1 (microsatellite instability
immune), CMS2 (canonical), CMS3 (metabolic), and CMS4
(mesenchymal), which were determined based on the tumor’s
composition and mutational status (58, 59). A genetic cascade
of changes causes the normal colonic epithelium to first become
an adenoma and subsequently an adenocarcinoma as colorectal
cancer progresses (60). For this reason, it is essential to first
comprehend and give priority to the regulatory mechanisms of
malignant epithelial cells in order to develop pharmacological
options for patients. It is well recognized that the origin,
phenotype, and prognosis of cancer arising from different sides
of patients’ intestines vary (61). Whereas differences in tumor
composition and differential gene expression at the single-cell
atlas level have been reported before (62), a differential gene
regulatory network analysis aiming to identify regulatory drivers
of the differences has never been conducted at this level of
resolution. We therefore chose to contrast the regulatory pro-
cesses defining colorectal tumors arising on the left (splenic
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flexure, sigmoid colon, descending colon and rectum) and right
(cecum, apendix, ascending colon and hepatic flexure) sides of
the patients’ intestines.

To determine the drivers of regulatory differences across ep-
ithelial cells from the core of 11 right-sided and 22 left-sided
colorectal tumors (see Methods), we computed transcription fac-
tor targeting (outdegree) for each of the 622 transcription factors
in each network independently (Figure 6A). After comparing the
two groups, we found 118 transcription factors with enhanced
activity in right-sided colorectal cancer in contrast with the 287
found with enhanced targeting in left-sided colorectal cancer
(Figure 6B). Among the top ten more active transcription factors
in left-sided colorectal cancer (Figure 6C) we found a significant
enrichment of transcription factors associated with unfolded
protein response (NFYA and CEBPG, Hypergeometric test,
FDR < 0.01). In right-sided ones (Figure 6D), we found an
enrichment of transcription factors associated with TNF-alpha
signaling via NF-kB (KLF9, NFKBI and NFKB2, Hypergeomet-
ric test, FDR < 0.001). A thorough examination of the unfolded
protein response and the NF-kB signaling pathways in colorectal
cancer has previously been reported (63, 64). We found that the
most significant drivers of the differences between left-sided and
right-sided colorectal cancer found in our analysis are ZNF350
(t-test, FDR = 0.024) and NFKB2 (t-test, FDR = 0.032)
respectively.

When these two patterns are combined, they are consistent
with the significantly worse survival rate of patients with
right-sided colorectal malignancies (65). The methylation of the
ZNF350 transcription factor’s promoter region, which causes
its downregulation, is known to stimulate colon cancer cell
migration (66). Additionally, over-expression of NFKB2 is a
known prognostic marker of poor survival in colorectal cancer
(67). To cross-validate these relationships, we first compared the
averaged survival rates based on NFKB2 expression in patients
with primary tumors in the cecum, apendix, ascending colon,
hepatic flexure, splenic flexure, sigmoid colon, descending
colon, and rectum from the TCGA-COAD and TCGA-READ
projects (68). We confirmed the association between the level of
NFKB?2 expression and the average survival rate of the patients
(Log-rank test, P = 0.042, Figure 6E). Following that, we
compared the levels of expression of the two transcription factors
in primary colorectal tumors on the left and right sides of the
intestine. We found that, in both cases, the patterns identified
by SCORPION and represented in the gene regulatory networks
are consistent in directionality and significance with the level of
expression observed in the primary tumors from the TCGA data
(Left panels in Figures 6F and 6G).

To further cross-validate our findings and assess the reliability of
this pattern in a smaller population, we compared the expression
levels of both transcription factors in a new dataset of 15 patient-
derived xenograft models (PDXs, see Methods) generated by us
(Supplementary Table S8). Nine samples were from right-sided
and six from left-sided colorectal tumors. Here, as before with
the TCGA data, we demonstrated that the patterns identified by
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Fig. 6. Regulatory differences between right-sided and left-sided colorectal cancer epithelial cells. (A) A diagram depicting the left and right side of the intestines. The number of
samples for each group is also shown. (B) Volcano plot displaying the differences in transcription factor activity between right-sided and left-sided colorectal cancer epithelial cells.
(C) Top 10 most active transcription factors in epithelial cells from left-sided colorectal cancer. (D) Top 10 most active transcription factors in epithelial cells from right-sided colorectal
cancer. (E) Differences in patient survival rates according to NFKB2 expression in patients with primary colorectal cancer. (F) Consistent differences in gene expression for the ZND350
transcription factor in the TCGA data and our own dataset. (G) Consistent differences in gene expression for the NFKB2 transcription factor in two independent patient cohorts. t-test

P-value significance codes: * < 0.05, ** < 0.01, *** < 0.001, ***< 0.0001

SCORPION and represented in the gene regulatory networks are
consistent in both directionality and significance with the level
of expression observed (Right panels in Figures 6F and 6G).
These consistent findings in three independent datasets support
the ability of SCORPION to identify reliable transcription factor
differential activities driving observed phenotypes in a cell-type
specific manner and highlight potential targets for developing
pharmacological options for patients with right-sided colorectal
cancer aiming to improve their poor survival rate.

Osorio etal. |

Constructing comparable single-cell gene regulatory networks with SCORPION

These findings highlight SCORPION’s ability to identify not only
intra-tumoral characteristics affecting patient survival but also
novel biomarkers and appropriate targets for developing pharma-
cological options for patients.

Discussion

We present SCORPION, a tool for constructing fully connected,
weighted, and directed transcriptome-wide gene regulatory
networks from single-cell transcriptomic data that can be used in
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population-level studies. Despite the fact that there are numerous
methods for constructing gene regulatory networks from single-
cell transcriptomes, these do not allow for comparative analysis
while accounting for the heterogeneity between samples of the
regulatory mechanisms defining a phenotype at the population
level.

SCORPION represents a breakthrough in gene regulatory
network construction using single-cell transcriptomics. SCOR-
PION integrates multiple sources of regulatory information as
a baseline and refines this knowledge using an optimization
algorithm to produce gene regulatory networks that account
not only for the activity of the transcription factors but also for
their cooperativity with high accuracy. The use of data other
than gene expression distinguishes SCORPION from most other
methodologies (9, 29-39). Compared with other algorithms that
do incorporate prior information on transcrition factors, such as
SCENIC (8) and SCIRA (69), SCORPION uses the information
about the motif footprints during the construction of the network
and not only to characterize the activity of the transcription
factors. Furthermore, unlike SCENIC, SCORPION employs
an association metric (Z-scores) with a defined underlying
distribution () that make possible the comparison of weights
across experiments and allowed us to identify edges associated
with colorectal cancer progression, and, like SCIRA, SCOR-
PION allows for the quantification of the activity of undetected
transcription factors, which is common in high-throughput
single-cell transcriptomic data but to our knowledge not possible
with SCENIC.

SCORPION enables the use of the same statistical techniques
that account for population heterogeneity and are widely used in
other areas of genomics data analysis by constructing very pre-
cise and highly comparable gene regulatory networks for each
sample. We anticipate that SCORPION will be used not only to
characterize molecular mechanisms driving phenotypes, but also
to investigate a wide range of important questions in precision
medicine, health, and biomedical research now that gene regu-
latory network perturbations have been shown to be effective at
reproducing experimental results (70-72).

Methods

Generation of prior networks. To generate the unrefined regu-
latory networks that serve as prior for the message passing algo-
rithm, we downloaded the promoter region coordinates for each
gene from ENSEMBL. We then used TABIX (73) to retrieve the
motif footprints and associated MOODS match scores located
within 1000 bp prior to the transcription start site of each gene
from Vierstra et al. (28). When multiple matches of the same
transcription factor footprints were found, the highest value was
retained for the study. The data on transcription factor protein-
protein interactions and their associated scores were obtained
from the STRING database version 11.5 (27).

Benchmarking using synthetic data. BEELINE was used to

conduct a systematic evaluation of cutting-edge algorithms for
inferring single-cell gene regulatory networks (24). We used
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SCORPION and twelve other single-cell gene regulatory net-
work inference algorithms on the GSD dataset, which is the
largest dataset included in BEELINE and was generated from
a curated Boolean model (74). These techniques include: GE-
NIE3 (29), GRISLI (30), GRNBOOST?2 (31), GRNVBEM (32),
LEAP (33), PIDC (34), PPCOR (35), SCINGE (36), SCNS (37),
SCODE (38), SCTENIFOLDNET (9), and SINCERITIES (39),
SCRIBE (75) was excluded from the comparison due to compat-
ibility issues. We processed the dataset using BEELINE’s uni-
form pipeline, which includes four steps: (1) data pre-processing,
(2) docker container generation for SCORPION and the other
12 algorithms mentioned above, (3) parameter estimation, and
(4) post-processing and evaluation. No information on TF-
target relationships was provided to any of the algorithms we
benchmarked SCORPION against throughout the analysis. We
compared algorithms based on their average performance across
seven different metrics: AUROC, AUPRC, computing time, level
bias due to expression level, FBL, FFL, and MI motif structures
identification. AUROC portrays a tested algorithm’s performance
by presenting the trade-off between true positive rate TPZ—%

and false positive rate % across different decision thresh-
olds. AUPRC represents the area under the precision Tpﬂ% -

recall ijl% curve computed for different decision thresholds
between 1 and 0 using, where P; and R; are the precision and
recall at the i threshold. TP denotes true positive, TN denotes
true negative, F'P denotes false positive, and F'/N denotes false
negative. The absolute value of the correlation between the aver-
age gene expression for each gene and its corresponding degree
in the network was used to calculate the level bias due to expres-
sion level. FBL denotes feedback loops, while FFL denotes the
feed-forward loop, a three-gene pattern composed of two input
transcription factors, one of which regulates the other, both of
which jointly regulate a target gene. Finally, MI stands for mu-
tual interactions.

Benchmarking using curated single-cell RNA-seq data.
Count matrices for both experiments and conditions were
downloaded from the GEO database with accession numbers
GSM3477499, GSM347750, GSM5694433 and GSM5694434.
Data was loaded into R using the build-in functions included in
Seurat for this purpose (21). Two networks (one for the wild-
type sample and one for the double knockout) were built for the
Hnf4ay experiment using SCORPION (under default parame-
ters). The study was restricted to genes expressed in at least 5%
of the cells in each sample. For the DUX4 experiment, datasets
were subject to quality control and integrated using Harmony
(76, 77). Low dimensional representations and clustering of the
data were generated using the top five dimensions returned by
Harmony. 8 cell-like cells were annotated based on the expres-
sion of ZSCAN4, DUXA, CCNAI and KDMA4E genes using the
Nebulosa package (78). All cells from the wild-type sample
were used to build a gene regulatory network that represented
this group. Cells exhibiting the 8 cell-like markers in the DUX4
overexpression group were used to generate a gene regulatory
network representing them. The study was restricted to genes
expressed in at least 5% of the cells in both samples. The in-
formation in the rows of the network representing the transcrip-
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tion factor of interest for each sample was contrasted to compare
transcription factor activities among samples. The residuals of
the linear model trained over the data in each case were used
to assess the differences in the activity of the transcription fac-
tor over each gene. The residuals of the linear model and the
marker genes provided by the PanglaoDB database were used to
perform gene set enrichment analysis (79). Additional markers of
the 8 cell-like cells were defined by differential expression using
MAST after comparing the cluster expressing the known marker
genes against all other cells (11).

Colorectal cancer single-cell RNA-seq atlas construction.
We collected multiple publicly available single-cell RNA-seq
count matrices for human healthy adjacent tissue and different
regions of colorectal tumors (see Data Availability). Datasets
were loaded into R and combined into a single ‘Seurat’ object
(21). Following that, data were subjected to quality control, with
only cells with a library size of at least 1,000 counts and falling
within the 95 percent confidence interval of the prediction of the
mitochondrial content ratio and detected genes in proportion to
the cell’s library size being kept. We also removed all cells with
mitochondrial proportions greater than 10% (76). We then used
Seurat’s default functions and parameters to normalize, scale, and
reduce the dimensionality of the data using Principal Component
Analysis (PCA). Harmony was used for data integration (77).
The top 50 dimensions returned by Harmony were used to gener-
ate the UMAP projections of the data. Cell clustering was carried
out using Seurat’s built-in functions, default resolution, and Har-
mony embedding as the source for the nearest neighbor network
construction. Clusters were annotated using Nebulosa (78) and
the canonical markers provided by Qi et al. (80).

Colorectal cancer gene regulatory network atlas con-
struction. Using SCORPION under default parameters, we built
a gene regulatory network for each cell type within each sam-
ple having at least 30 cells in the constructed colorectal cancer
single-cell RNA-seq atlas. We only included genes that were
expressed in more than five cells in each subsample. For each
network, the sum of the activity of all transcription factors over
each gene (in-degrees) was computed and assembled in a matrix.
We used Principal Component Analysis to reduce the dimension-
ality of the data to the top 50 principal components. We used
this data as input for the generation of the t-distributed Stochas-
tic Neighbor Embedding (t-SNE) projection (81). Networks are
color coded as their respective cell-type in the single-cell RNA-
seq atlas.

Modeling the regulatory differences that drive colorectal
cancer progression. We selected the gene regulatory networks
representing the epithelial cells (EPCAM™) of the different tu-
mor regions (border, core and metastatic) and the healthy adja-
cent tissue. We modeled each edge weight representing the tran-
scription factor - target gene interaction across the four different
stages. We computed a 3 coefficient representing the average rate
of change across each stage for each edge. The significance of the
[ coefficient was assigned using the F-distribution. Adjustment
of the P-values for multiple testing was performed using False
Discovery Rate (45).
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Comparison between right- and left- sided tumors gene
regulatory networks. We selected the generated gene regula-
tory networks representing the epithelial cells from right- and
left-sided tumors. For each network, we computed the (outde-
grees) sum of all the activities for each transcription factor over
all the genes. We then compared the outdegrees using the ttests
function included in the Rfast package (82). P-values were ad-
justed for multiple testing using False Discovery Rate (45).

Establishment of patient-derived tumor xenografts. The
PDX models were derived in the same manner as described previ-
ously (83). The University of Texas at Austin and The University
of Colorado Institutional Animal Care and Use Committee ap-
proved all animal procedures. Briefly, two to three mm pieces of
colorectal tumor sample collected under IRB-approved protocol
at the University of Texas Dell Medical School and the Univer-
sity of Colorado Cancer Center were engrafted onto the right and
left hind flanks of 5 to 6-week-old Nu/Nu Mice (Envigo). Tumor
volumes were measured by digital calipers every 3 to 4 days and
were calculated by V = 0.52 x (length x width?). Mice were
sacrificed when tumors reached 1.5 cm? to further propagate the
PDX model to the next generation or frozen as a viable tumor
(RPMI media containing 10% FBS and 10% DMSO as a freez-
ing media) in LNy for long term storage. At the time of tumor
harvest, a portion of the tumor was flash frozen in LN» for RNA
isolation and sequencing. RNA was isolated using PureLink kit
(Thermo Fisher) following the manufacturer’s protocol. When
the tumor specimen was abundant enough, a portion of the tis-
sue sample was flash frozen, and RNA was isolated directly from
that tissue. The RNA sample was outsourced to Novogene. US
subsidiary and UC Davis Sequencing Center, Sacramento, CA
for RNA QC, library preparation, and sequencing. Data obtained
from Novogene as FASTQ files were subjected to further analy-
sis.

RNA-seq gene expression quantification. Gene expression
from FASTQ files was quantified using STAR (84). The com-
puted values for each PDX were loaded into R to generate the
expression matrix. The t.test function was used to compare the
expression levels of both (ZNF350 and NFKB2) transcription fac-
tors.

Data Availability

All of the data and code required to replicate the anal-
ysis as well as the figures and tables are available at
https://github.com/dosorio/SCORPION.  The = SCORPION
multi-platform stable package is available at https://CRAN.R-
project.org/package=SCORPION. Versions under development
are available at https://github.com/kuijjerlab/SCORPION.
Patient-derived xenografts associated raw fastq files generated
for this study are available upon request to Dr. S. Gail Eckhardt.

The following datasets were used to construct the colorectal can-
cer single-cell RNA-seq atlas used in this study: Lee et al. (85)
accessible through GEO: GSE132465, and GSE144735. Qi et al.
(80) accessible through GSA: HRA000979, Qian et al. (86) ac-
cessible through ArrayExpress: E-MTAB-8107, and Che et al.
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(87) accessible through GEO: GSE178318.
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Fig. S1. Distribution of canonical markers used to annotate cell types in the colorectal cancer single-cell RNA-seq atlas through the Nebulosa package
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Fig. S2. Similarity (Spearman correlation coefficient) between gene regulatory networks generated from the same donor for different tumor regions. (A) Similarity between gene
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and healthy adjacent tissue.

Supplementary Tables:

Table S1. (CSV file) Numerical results from the BEELINE benchmark.

Table S2. (CSV file) Gene set enrichment analysis results for the Hnf4« knockout.

Table S4. (CSV file) Identified marker genes and their associated fold-change and P-value for the 8-cells-like cells

( )

( )

Table S3. (CSV file) Gene set enrichment analysis results for the Hnf4~ knockout.
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Table S5. (CSV file) Gene set enrichment analysis results for the DUX4 knockout.
)

Table S6. (CSV file) Metadata associated with the constructed single-cell RNA-seq atlas accounting for 200, 439 cells from different regions of colorectal cancer tumors and healthy
adjacent tissue.

Table S7. (CSV file) Computed 3 coefficients and their associated P-value for each edge across the progression of colorectal cancer.

Table S8. (CSV file) Quantified gene expression levels from the generated PDX’s.
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