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Graphical abstract: This study provides mechanistic insights into the interactions
between the rostral forelimb area (RFA) and the caudal forelimb area (CFA).
Specifically, we provide evidence for a differential impact of RFA on CFA depending on
the task phase and the targeted CFA layers. RFA contains at least two spatially
intermingled subpopulations - one related to movement preparation and one to
movement execution. Both subpopulations project to CFA. Here we investigated the
impact of these two subpopulations on the activity of the local CFA circuit as well as on
the behavior in different contexts. When rats were not involved in a task, the effect of
RFA was mainly excitatory in the deep CFA layers, while the superficial layers remained
unaffected. This can be interpreted as a non-selective activation of the deep CFA
neurons enabling a variety of spontaneous movements. During the preparation phase
before a movement, the RFA had an opposite impact on the superficial and deep layers:
while the superficial CFA layers were excited by RFA input, the deeper layers were
mostly inhibited, minimizing movements and enabling continued holding of a lever.
During the movement phase, the inhibitory effect on neurons in the deep CFA layers
was counterbalanced by excitation, thus enabling a selected conduction of movements.
The opposing effects during preparation and movement phase on CFA deep layers
were correlated with increased firing rates of the RFA preparation and movement
subpopulations, respectively, making it likely that the inhibition resulted from increased
activities of these subpopulation specifically. With an electron microcopy approach we
demonstrate that inhibitory and excitatory CFA neurons are directly targeted by RFA,
thus providing a mechanism for the bidirectional control of CFA activity. Please note that
the depicted impact of RFA on excitatory or inhibitory CFA neurons refers to net effects
in this figure, not to the targeting of individual neurons.
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Abstract

Deciphering the neural code underlying goal-directed behavior is a long-term mission in
neuroscience™?. Neurons exhibiting preparation and movement-related activity are intermingled
in the premotor and motor cortices®*, thus concealing the neural code of planned movements.
We employed a combination of electrophysiology, pathway-specific optogenetics, phototagging,
and inverse reinforcement learning (RL) to elucidate the role of defined neuronal subpopulations
in the rat rostral and caudal forelimb areas (RFA and CFA), which correspond to the premotor
and motor cortical areas. The inverse RL enabled the functional dissection of spatially
intermingled neuronal subpopulations, complementing our pathway-specific optogenetic
manipulations and unveiling differential functions of the preparation and movement
subpopulations projecting from RFA to CFA. Our results show that the projecting preparation
subpopulation suppresses movements, whereas the projecting movement subpopulation
promotes actions. We found the influence of RFA on CFA to be adaptable, with the projection
either inhibiting or exciting neurons in the superficial and deep CFA layers, depending on
context and task phase. These complex interactions between RFA and CFA likely involve the
differential recruitment of inhibitory interneurons in the CFA, which is supported by our electron
microscopy analysis of the connectivity between these regions. We provide here unprecedented
mechanistic insights into how the premotor and primary motor cortices are functionally and
structurally interlinked with the potential to advance neuroprosthetics.

Main

The control of movement is a central aspect of life, and understanding the neural basis of this
process can provide insights into a wide range of phenomena related to movement planning
and execution, including motor learning and skill acquisition, voluntary and involuntary
movements, decision-making and goal-directed behavior. In rodents, the rostral and caudal
forelimb areas (RFA and CFA) are thought to play important roles in the control of forelimb
movements>®, but the interaction between these areas during movement planning and
execution are far away from being well understood. While the activity of RFA and CFA neurons
is similar across a range of tasks’™, it remains unclear which information is conveyed by
neurons projecting from RFA to CFA during different phases of motor planning and execution,
and how these projecting neurons shape CFA activity during these different epochs.

Results

Freely moving rats responded to a vibro-tactile delayed go-cue

To investigate the role of RFA and CFA in movement preparation and execution, we developed
a preparation-movement task for freely moving rats'®*!. Rats initiated trials by pulling a lever
with their forepaw. They then had to keep holding the lever until a vibrotactile stimulus (0.3 s),
which served as the go cue, was delivered via the lever (Fig. 1a). To discourage timing, rats
were pseudo-randomly required to hold the lever for 0.6 s or 1.6 s (short or long delay; Fig. 1b).
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After the go cue, the rats had to release the lever within a response window of 0.6 s to receive a
water reward (Fig. 1a). If the rats released the lever before the cue or after the response window
(0.6 s), the trial was considered an error trial and classified as early or late, respectively. After
training, rats responded correctly to the go cue in more than 70% of the trials with both short
and long delays (short delay trials: 78.2 +/- 3.1 %, long delay trials: 88.1 +/- 3.2%, all data are
presented as the meanl tlIstandard error of the mean (SEM) in the rest of the manuscript
unless otherwise noted, p=0.029, two sided paired t-test, n = 11 rats; Fig. 1c). The higher

80 performance in long trials emphasized the importance of the hold period for the preparation of
the movement. The reaction times (RT) distributions had a sharp peak after the go cue onset in
both the short and long delay trials, confirming that the rats responded to the cue (Fig. 1d,
Extended Data table 1). Taken together, the rats learned our preparation-movement task well.
Importantly, this task entails distinct epochs for movement preparation (hold) and movement
execution (release) and is therefore ideally suited to disentangle the contributions of RFA and
CFA to movement preparation and execution.

Preparation neurons are more common in RFA than CFA
To characterize neuronal responses relating to movement preparation and execution across
motor cortical areas during the task, we implanted 32-electrode laminar silicon probes in the
90 RFA or CFA of ten rats split into two groups of five per forelimb area (Fig. 2a, Extended Data
table 2). We recorded 240 neurons in the RFA and 355 neurons in the CFA (3—4 sessions per
rat). Depending on the electrode depth'?, we classified neurons above and below 0.75 mm as
superficial or deep, respectively. In rats, the superficial layers have the same thickness in
premotor and primary motor areas, with the premotor areas characterized by a thicker layer 6.
The vast majority of the neurons were modulated by the task (228/240 (95%) in the RFA, and
336/355 (95%) in the CFA); minimum of three bins with an absolute z score higher than 1.96,
corresponding to 95% confidence intervals).

Neurons were predominantly active during either the preparation or movement period (Figs.
2b.c). To classify neurons as either preparation or movement neurons, we used a task

100  modulation index (TMI) (TMI = (FRmove — FRprep)/(|JFRmove| + |FRprep|), where FR is the
normalized z-score of the firing rate in the respective period. A positive TMI identified a
movement neuron, while a negative TMI identified a preparation neuron (Eig. 2d). In both
superficial and deep layers, we found a higher proportion of preparation neurons in the RFA
than in the CFA (Eig. 2d). The RFA contained similar proportions of preparation and movement
neurons, in line with a role of RFA in motor preparation'***, and similar to other premotor areas
in rodents®***?°, consolidating the homology of the RFA and primate premotor areas®**. The
TMI distribution for the RFA had no particular bias for preparation or movement (mean RFA
superficial neurons TMI = 0.06 +/- 0.17, mean RFA deep neurons TMI = -0.02 +/- 0.05; Fig. 2d,
Extended Data Fig. 1a). In contrast, most CFA neurons had higher firing rates during the

110  movement period, meaning that the TMI distribution had a clear bias towards activity during the
movement period (mean CFA superficial neurons TMI = 0.65 +/- 0.03, mean CFA deep neurons
TMI = 0.33 +/- 0.06; Fig. 2d, Extended Data Fig. 1b) and suggesting that CFA is primarily
involved in movement execution. Overall, both RFA (Fig. 2e i, ii) and CFA (Fig. 2e iii, iv) were
modulated by the task with similar activity patterns albeit with different proportions.

The temporal hierarchy runs from RFA to CFA
The differential distribution of preparation and movement neurons across RFA and CFA
suggests a functional hierarchy between the two regions. We therefore asked whether this
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hierarchy is reflected in the timing of neuronal activity, with the hypothesis that RFA precedes
CFA, similar to the neuronal activity in a reaching task® and reflecting top-down RFA to CFA

120  connectivity®'*?®, Because of the small number of superficial neurons in the RFA and superficial
preparation neurons in the CFA (Eig. 2d i, ii), we pooled superficial and deep datasets (note that
all results described below also remain valid when only analyzing the deep layers; Fig. 3,
Extended Data Fig. 2, Table 3).

In line with our hypothesis, the activity of the preparation subpopulation peaked significantly
earlier in the RFA than in the CFA relative to movement execution in correct trials (RFApep
correct trials: - 0.30 +/- 0.06 s, CFA ¢, correct trials: - 0.05 +/- 0.10 s; Ngea = 5 rats, Nrraprep = 58
neurons, Ncea = 5 rats, Ncea-prep = 27 Neurons; p = 0.005, two-sample Kolmogorov-Smirnov test;
Fig. 3a i). Activity in the movement subpopulations also peaked earlier in the RFA than in the
CFA, although the distribution of peak firing rates in the RFA was bimodal, with some neurons

130 preceding and some lagging CFA activity (RFAmove1: - 0.06 +/- 0.03 s, CFAqove: 0.29 +/- 0.02 s,
RFAnove2: 0.77 +/- 0.03 s; Ngrra = 5 rats, Nrra-move = 71 neurons, Ncra = 5 rats, Ncramove = 135
neurons; p = 4.9*10*, two-sample Kolmogorov-Smirnov test; Fig. 3a ii). Taken together, the
interareal timing differences of both preparation and movement subpopulations support the view
of a hierarchical information flow from RFA to CFA (Eig. 3a iii). This timing was not conserved in
error trials, with the temporal delay between RFA and CFA depending on the type of error (Figs.
3b, ¢). In early trials, preparation neurons in RFA and CFA were recruited almost simultaneously
(Fig. 3b i). In addition, the movement subpopulations in RFA and CFA both peaked after lever
release (Fig. 3b ii). In contrast, we found the temporal delays between RFA and CFA
subpopulations increased in late trials (Fig. 3c i-iii). These shifts in peak neuronal activity in the

140 RFA and CFA offer a glimpse into the RFA to CFA communication which seemed to break down
in error trials.

Temporal delays in late trials originate in the movement subpopulation of the CFA
To investigate the transition between preparation and movement in both forelimb areas in more
detail, we aligned the firing rates of correct and late trials to the go cue and release time. This
allows testing if neuronal responses were time-locked to the cue or the movement. Here, we
focused on the movement subpopulations because they are the ones with a direct correlation
with the go cue as well as movement. When aligning the RFA movement subpopulation to the
go cue, correct and late trials followed similar trajectories (Fig. 3d i); both trial types were
150 associated with a sharp increase in neuronal activity after the go cue (Extended Data Fig. 3).
The similar neuronal responses in both trial types indicated a correct detection of the go cue in
the RFA even in late trials; therefore, the transfer into a motor command must have been
delayed elsewhere. In contrast, the CFA movement subpopulation did not respond with the
same latency relative to the cue in correct and late trials (Fig. 3d ii). Instead, late trials were
characterized by a drop in neuronal activity after the go cue when aligned to the release time;
the neuronal responses in CFA became time locked for both correct and late trials. However,
late trials were characterized by an overall lower neuronal activity. The decreased neuronal
activity was already apparent before the release, indicating that the CFA’s neuronal state in late
trials might have been suboptimal. Taken together, the go cue was correctly encoded in the
160 RFA in both correct and late trials, but the putatively suboptimal neuronal state in the CFA in
late trials might have delayed the motor command (Fig. 3d iii).
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Neurons projecting from RFA to CFA are involved in movement preparation and
execution
Given that RFA activity precedes CFA activity in correct trials and that the course of delayed
movements might have their origin in the CFA but not in the RFA, we hypothesized that the RFA
predominantly conveys information about the planning of the movement but does not provide
the actual execution signal to the CFA. To test this hypothesis, we asked how identified
subpopulations in the RFA communicate with the CFA, and how they affect behavioral
performance. To identify RFA neurons projecting to the CFA, we employed optogenetics to
170  induce antidromic spikes in the RFA by stimulating RFA axons in the CFA (Fig. 4a). We injected
AAV5-hSyn-ChR2-eYFP into the RFA of three rats, implanted a laminar silicon probe in RFA
and inserted an optical fiber into CFA (Eigs. 4a—c, Extended Data Table 4; Methods). We found
that both preparation and movement neurons project from RFA to CFA (Figs. 4 d, e; Extended
Data Fig. 4). In total, we identified 21 out of 46 neurons (46%) projecting from RFA to CFA. Out
of the 21 identified projecting neurons, 11 (52%) were primarily active during the preparation
period (negative TMI) and the rest of the neurons were mainly active during the movement
period (positive TMI, 10/21, 48%; Fig. 4f). Thus, neurons projecting from RFA to CFA convey
both planning- and movement-related information to the CFA.

Inverse reinforcement learning predicts opposing roles of projecting preparation and
180 movement subpopulations
We were puzzled by the similar percentages of preparation and movement neurons projecting
from RFA to CFA, which did not match our initial hypothesis that the RFA mainly conveys a
planning signal to CFA. Because we do not have the means to individually manipulate one of
these functional subpopulations with optogenetics, we examined whether the projecting
preparation and movement subpopulations might contribute differentially to the task through the
lens of an inverse reinforcement learning algorithm termed NeuRL?*. Reinforcement learning is
a (mathematical) framework that formalizes the optimization of collected reward from an agent
(in this case a rat) which applies actions (e.g. hold or release) in states (here defined by
temporal bins) in an environment upon solving a task. Inverse reinforcement learning (as
190 performed by NeuRL) then turns the optimization procedure upside down in that the intrinsic
immediate reward function of an agent has to be inferred from recorded behavior. By mapping
neuronal activity onto the generated reward, NeuRL can be leveraged to predict the behavioral
effects of selective manipulation of functionally (or arbitrarily) defined subpopulations with
simulated manipulations. Here we used NeuRL to simulate the inhibition of different
subpopulations in RFA.

We used the lever release times (behavior) and the activity of RFA neurons as inputs to NeuRL
(Fig. 5a, Extended Data Fig. 5a). We extracted a reward estimate via inverse reinforcement
learning from the behavioral data and mapped features (i.e., mean FR in 0.2 s time bins)
derived from the activity of recorded RFA neurons onto these rewards. Through this mapping,

200 we obtained reconstructed reward values for each RFA neuron contributing to the reward with
different weights (feature matrix; Fig. 5b, Extended Data Fig. 5b). Using this feature matrix, we
simulated perturbations to different subpopulations in the RFA. With these simulated inhibitions,
we computed perturbed reward values and subsequently used them to predict new actions via
regular, forward reinforcement learning (Fig. 5¢, Extended Data Fig. 5¢; methods).

To investigate the contributions of individual neurons to motor preparation and execution, we
perturbed the neuronal activity at the end of the preparation period (0.5 s before the go cue) or
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the start of the movement period (starts with time of the go cue until 0.5 s after the go cue,
covering most of the RTs distribution; Fig. 1d, Fig. 6a). First, we simulated the selective
inhibition of all neurons projecting from RFA to CFA (Eig. 6b). NeuRL predicted that inhibiting all
210  such neurons during the preparation period would result in significantly less early trials while an
inhibition during the movement period would result in significantly more late trials (blue bar:
16.6% less early trials upon inhibition in the preparation period, unpaired t test, p = 1.3*10™**:
red bar: 9.3 % more late trials upon inhibition in the movement period, unpaired t test, p =
1.2*10™"; Fig. 6b left). In accordance with these changes, inhibition during the preparation
period predicted significantly shorter RTs and inhibition during the movement period resulted in
significantly longer RTs (15 ms shorter after inhibition during the preparation period, unpaired t
test, p = 0.003, 70 ms longer after inhibition during the movement period, unpaired t test, p =

4.6*10™"; Fig. 6b right).

The NeuRL approach allowed further discrimination between the projecting preparation and
220 movement subpopulations. In line with previous findings in motor cortex?®>, we found two
competing subpopulations with counteracting roles. Inhibiting the preparation subpopulation
during the preparation period induced significantly more early trials and significantly shorter RTs
(60% more early trials, unpaired t-test, p = 1.0*10® and 55 ms shorter RTs, p = 3.3*10°; Fig.
6¢). Inhibition of the same subpopulation during the movement period caused 0.7% fewer late
trials (not significant) and 160 ms shorter RTs (p = 3.9*10%%). In contrast, inhibition of the
movement subpopulation during the preparation period resulted in significantly fewer early trials
but no significant effect on RTs (26% fewer early releases, p = 8.3*102%*; 2.5 ms shorter RTs;
Fig. 6d), while the inhibition during the movement period resulted in significantly more late trials
and significantly longer RTs (92% more late trials, p = 0.014; and 336 ms longer RTs p = 4.9*10
230  '®: Fig. 6d). In other words, NeuRL assigned the preparation subpopulation a role in action
suppression while the movement subpopulation was associated with action promotion.

In vivo optogenetic inhibition confirms the role of neurons projecting from RFA to CFA
predicted by NeuRL
We next aimed to confirm that NeuRL provided biologically-plausible hypotheses. Because of
the technical limitations of currently available optogenetic tools, we focus here on the first
hypothesis about the effect of inhibiting all neurons projecting from RFA to CFA. We injected the
cre-dependent viral vector AAV5-hSyn-DIO-NpHR-EYFP and the retrogradely travelling cre-
carrying vector retroAAV-cre into the RFA and CFA, respectively, of four rats to express
inhibitory opsins in neurons projecting from RFA to CFA (Eig. 6e i, Extended Data Table 5;
240 Methods). In line with the NeuRL predictions, inhibiting the neurons projecting from RFA to CFA
during the preparation period significantly affected rat performance by increasing the number of
early trials (early trials increased by 8.2 +/- 0.15 %; N = 4 rats, n = 10 sessions per animal; p =
8.3*10°, ANOVA for repeated measures; Fig. 6e ii left) but had no significant effect on the RTs
of correct trials (Fig. 6e ii right). During the movement period, inhibiting neurons projecting from
RFA to CFA had no effect on performance but significantly increased RTs in correct trials (RT in
no laser trials: 0.36 +/- 0.006 s, RT in trials with laser on during the preparation period: 0.36 +/-
0.009 s, RT in trials with laser on during the movement period: 0.38 +/- 0.007 s; N = 4 rats, n =
10 sessions per animal; no laser versus laser during movement period p = 0.044, ANOVA for
repeated measures; Fig. 6e ii). While the optogenetic experiment showed a less drastic impact
250 on RT and error rate than the theoretical predictions (most likely due to biological variability), the
results of the optogenetic experiments were still in line with the NeuRL predictions, validating
the tool for theoretical predictions about the behavioral role of specific neurons.
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Optogenetic inhibition of neurons projecting from RFA to CFA during rest reveals a
predominantly excitatory connection
So far, we have characterized the fraction of RFA to CFA projecting neurons, their response
properties, and their impact on behavior. The missing piece remains the impact of these
projections on CFA activity. To fill this knowledge gap, we optogenetically inhibited the neurons
projecting from RFA to CFA during rest (i.e., the rats were not involved in a task) and
simultaneously recorded CFA neurons with laminar probes spanning the entire cortical depth
260 (Fig. 7a). Neurons projecting from RFA to CFA specifically modulated neurons in the deep
layers of the CFA (neurons modulated in superficial layers: 0/16 (0%), neurons modulated in
deep layers: 10/48 (21 %), which is consistent with previous anatomical findings?®®. Most
modulated neurons decreased their activity, likely due to lack of excitatory input, and only a
small fraction increased their activity (8/10 decreased activity, 2/10 increased activity; analysis
windows: 0.5 s baseline period before laser compared to 0.5 s laser duration, paired t-test, p <
0.05; Fig. 7b). Interestingly, the two neurons that increased their activity (or were disinhibited)
had narrow waveforms (Fig. 7a, inset), suggesting a role for CFA fast-spiking (FS) interneurons
in this pathway. Overall, these results suggest that the RFA modulation results in an increased
predominantly excitatory activity in CFA.
270
The disinhibitory effect of the projection specific optogenetic inhibition and the putative
involvement of FS interneurons inspired us to test whether the anatomical connections can
confirm the involvement of interneurons. In line with Dale’s principle?’, the involvement of
interneurons could be implemented in two ways: 1) Long-range GABAergic interneurons?®
projecting from RFA to the CFA, or 2) RFA excitatory neurons projecting to CFA interneurons.
To test these hypotheses, we used transmission electron microscopy to investigate the
synapses onto neurons in the CFA (N = 3). Pre-embedding immunogold labeling of EYFP was
used to identify EYFP labeled axonal terminals in contact with the dendritic spines of neurons in
CFA (Fig. 7c). To test the first hypothesis, we classified synapses as symmetric (inhibitory) or
280 asymmetric (excitatory). The vast majority of the synapses were asymmetric, ruling out the first
hypothesis because asymmetric synapses originate from excitatory neurons (asymmetric
synapses: 97/100, symmetric synapses: 3/100, Extended data Fig. 6a). Interestingly, RFA
axons targeted dendrites across layers in the CFA (Extended data Fig. 6b), suggesting complex
dendritic integration that is then transmitted to the soma. To test the second hypothesis, we
stained coronal sections containing CFA with anti-PV antibodies and searched for EYFP-
labelled axons across layers. Indeed, we found labelled axons that formed synapses onto PV+
dendrites (Fig. 7d i). In total, 32% (38/120) of the EYFP-labeled presynapses targeted PV+
interneurons (Fig. 7d ii). Considering that interneurons in the cortex only amount to ~20% of the
population and that ~40% of these are PV+%, the ratio of RFA axons contacting PV+ synapses
290 compared to other synapses implies that the RFA has a bias toward contacting PV+
interneurons in the CFA. In sum, RFA impacts the CFA local circuit by targeting both excitatory
and inhibitory neurons with an unexpected bias towards PV+ interneurons.

RFA to CFA projection modulates the CFA in a context- and layer-specific manner
Our electrophysiological findings so far point to a predominantly excitatory impact of RFA on
CFA deep layers in rats not engaged in a task. However, it has been shown that the premotor
cortex modulates motor cortex superficial layers in a context dependent manner®*®®. Further,
we found that the CFA receives information across layers (Extended data Fig. 6). Both
movement and preparation neurons in RFA project to CFA and are preferentially active during
300 different task epochs which might lead to spatiotemporally complex effects on CFA activity
during the task. Hence, we asked whether the RFA would have an impact on the superficial
layers of the CFA while the rats were engaged in the task and whether the RFA impact on the
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deep layers of the CFA would remain predominantly excitatory during the preparation-
movement task. To address these questions, we employed the same optogenetic dual virus
strategy with separate injections into the RFA and CFA (Eig. 8a). We found that 11/27 (41%)
and 66/137(48%) of the recorded CFA preparation and movement neurons were modulated
upon yellow laser light during the task, respectively (Eig. 8b). The inhibition periods were
identical to the ones used before (i.e., 0.5 s before the go cue and 0.5 s after the go cue, see
Fig. 6a). Due to the low number of modulated preparation neurons (Fig. 8b) and the fact that

310 there were no systematic differences between the two populations (Extended Data Fig. 7), we
pooled the two populations here after. Out of the modulated neurons, 30/77 (39%) were
modulated by the laser exclusively in the preparation period, 34/77 (44%) by the laser during the
movement period, and a minority of the neurons were modulated by the laser in both periods
(23/77, 17%, Fig. 8c). In line with the observation that the projection from RFA to CFA targeted
both excitatory and inhibitory neurons in the CFA®**? (Eig. 7c.d), we found that a subpopulation
of the modulated neurons decreased its activity while another subpopulation increased its
activity upon optogenetic inhibition. Contrary to the effects of optogenetic inhibition during rest,
both deep and superficial neurons were modulated when inhibiting the projection from the RFA
during the task. The majority of the neurons which decreased their activity by the laser during

320 the preparation period were located in the superficial layers, while the majority of the neurons
that increased their activity were hosted in the deep layers (superficial modulated neurons:
14/30 (47%), deep modulated neurons 16/30 (53%), increased activity superficial: 3/14 (21%),
decreased activity superficial: 11/14 (79%), increased activity deep: 10/16 (62%), decreased
activity deep: 6/16 (38%); Fig. 8d). Upon optogenetic inhibition during the movement period,
neurons that decreased their activity were predominantly present in the superficial layers, while
neurons in deep layers showed a balanced proportion of increase and decreased activities
(superficial modulated neurons: 13/34 (38%), deep modulated neurons 21/34 (62%); increased
activity superficial: 1/13 (8%), decreased activity superficial: 12/13 (92%), increased activity
deep: 9/21 (43%), decreased activity deep: 12/21 (57%); Fig. 8e).

330 In contrast to the dominant excitatory effect on the CFA outside the preparation-movement task,
we found diverse effects during the task (Eig. 8f i, ii). For instance, a CFA neuron that increased
its activity by optogenetic inhibition of the RFA projection outside the task decreased its activity
by optogenetic inhibition of the same RFA neurons during both the preparation and movement
period (neuron #2; Fig. 8f i), while another neuron responded similarly outside and within the
task (neuron #3; Fig. 8f ii). The manipulation during the preparation period also led to a
significant decrease in firing rate during the movement period (neurons #2 and #3; Fig. 8f i and
ii, middle panels), indicating complex neuronal interactions during the task. Investigating this
delayed impact of the optogenetic manipulation on a population level revealed that this was a
common effect happening also in 76 neurons with no significantly modulated responses during

340 laser light (Extended Data Fig.7). Outside the task, we observed this delayed effect in only one
neuron which was also significantly modulated during the laser (see example neuron in Fig. 7b).
These diverse effects suggest a more complex role for neurons projecting from RFA to CFA
during the preparation-movement task than during rest (Fig. 8q).

To summarize, RFA projections to CFA reorganized subpopulations in the CFA in a dynamic
and context-dependent manner, likely utilizing local inhibitory interneurons in CFA deep layers
(Fig. 9). Please note that optogenetic inhibition removed the excitatory RFA input into CFA.
Thus, the effects of the optogenetic inhibition have to be reversed to obtain the impact of the
RFA input under physiological conditions. By doing so, we see that RFA inputs to the CFA had
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no impact on neurons in its superficial layers and were predominantly excitatory in the deep

350 layers when the animal was not involved in a specific movement task. Conversely, when the
animal engaged in a goal-directed task, with rich temporal patterns emerging during different
task phases in the different subpopulations in the RFA, the impact of the RFA on neurons in
CFA superficial layers was predominantly excitatory, and the impact on deep layers depended
on the task phase. During movement preparation, RFA input to CFA neurons in deep layers was
predominantly inhibitory, suppressing unwanted motor output. When the animal executed the
movement, the RFA impact on CFA deep layers resulted in balanced excitation and inhibition,
allowing the selection of the proper movement program.

Discussion

In this study, we characterized the neuronal activity in the RFA and CFA and the impact of RFA
360 input on the CFA during different behavioral phases of a task to dissect the roles and

interactions between these areas during preparation and movement execution. The work

described here makes four distinct contributions to the field of motor neuroscience.

First, we confirmed that both RFA and CFA are involved in movement planning and execution
and that the hierarchy flows from RFA to CFA as previously suggested®31:2122:26.303437 = |
detail, we demonstrate here that the RFA contained a much higher number of preparation
neurons than the CFA and that the activity of movement neurons in the RFA preceded their
counterparts in the CFA. Importantly, we showed that this hierarchy was only present in correct
trials, suggesting that the hierarchy is essential for performing a planned movement. Further,
RFA neurons encoded the go cue in late trials, indicating that the signal to execute a movement

370 was issued, but the motor command was delayed in the local CFA circuit. The movement
subpopulation in the CFA was characterized by a lower firing rate in late trials, similar to its
activity during the preparation period. The lower activity in CFA prior to movement in late trials
could be a sign that the movement subpopulation was in a subspace that was suboptimal for
generating movements®®%,

Second, with a phototagging approach, we revealed that the neuronal subpopulation from RFA
to CFA contributes equally to planning and execution of movements. To go beyond this
experimentally possible dissection, we developed an innovative machine learning-based tool
(NeuRL) which allows the generation of predictions about neuronal subpopulations that are
otherwise hard to assess due to their invariant responses to movement®. This novel machine-
380 learning algorithm enables the functional dissociation of spatiotemporally-concurrent neuronal
ensembles. To disentangle behavioral functions of the preparation and movement
subpopulations, we combined NeuRL with electrophysiology and optogenetics. We identified
neurons projecting from RFA to CFA with a phototagging technique and used reinforcement
learning** to assign functional roles to the preparation and movement subpopulations®.
Analogous to the reward system in animals*?, NeuRL finds an optimal strategy based on a
feedback signal. While common decoding methods rely on supervised learning without
accounting for the long-term consequences of the actions, NeuRL can explicitly assign a policy
which maximizes reward over time. Reinforcement learning has recently been used to better
understand neuronal activity and how it influences behavior***®, However, the feedback signal
390 is generally unknown. In contrast to previous approaches, we thus employed inverse
reinforcement learning, which extracted reward values from the rat behavior instead of regular
forward reinforcement learning, which assumes the feedback signal to be known a priori. This
approach allowed us to assign functional meaning to neuronal subpopulations by conducting
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simulated inhibition studies based on a modified reward function inferred from the perturbed
features. Thereby, we identified opposing roles of the preparation and movement
subpopulations projecting from RFA to CFA with the first holding back movements and the
second promoting actions.

Third, using immunohistochemistry and electron microscopy we identified a surprisingly strong
role of inhibitory interneurons in the connection between premotor and motor cortex.

400  Specifically, we found that RFA neurons project to both excitatory neurons as well as PV+
interneurons. Previously, it has been shown that RFA neurons project to fast-spiking PV+
interneurons in CFA*, and that these interneurons are activated prior to the forelimb reaching a
target*, playing a role in shaping motor command®. Inputs to PV+ interneurons can be quite
powerful as a single unitary excitatory postsynaptic potentials can evoke precisely timed action
potentials in this cell type*®. Here we added to this knowledge that RFA neurons are one of the
sources that increase the activity of PV+ interneurons in CFA. In combination with the high
activity of the preparation subpopulation projecting from RFA to CFA (Fig. 4e), the relatively low
firing rate in the CFA movement subpopulation during the preparation period (Fig. 2¢), and the
narrow waveforms of the disinhibited neurons upon RFA inhibition (Fig. 7a), the EM results

410 suggest that PV+ interneurons may cancel incoming excitation in the CFA during the
preparation period. This assigns the RFA a major role in inhibiting involuntary movements by
modifying CFA local circuits.

Fourth, we provided new insights into the mechanisms and circuit dynamics between the RFA
and CFA for gating movements. Previously, it has been shown that the information from the
RFA is important for adapting CFA activity appropriately to task demands during locomotion on
differently spaced ladder rungs®*. The activity in the RFA also displays high specificity to either
internally generated or externally triggered movements®*’. In line with our results, this context-
dependent information is not conveyed consistently to the CFA but can vary over behavioral
sessions, and correlates with behavioral performance, at least in axons targeting superficial
420 layers*’. With our data set we close the knowledge gap about which kind of information is
conveyed by neurons projecting from RFA to CFA during the distinct phases of motor planning
and movement execution and how these neurons affect CFA activity during these different
epochs. Specifically, we found differential impacts of RFA inputs on the CFA depending on the
cortical layer as well as the context (i.e., activity outside the task compared to the task phases
preparation and movement). During rest, RFA input to the CFA exclusively affected the deep
layers in a predominantly excitatory manner. During the preparation period of the task, neurons
projecting from RFA to CFA exhibited sustained activity that predominantly increased the
activity of the neurons in the superficial layers and decreased the activity of the neurons in the
deep layers of the CFA. During the movement period, neurons projecting from RFA to CFA
430 showed transient activity that was linked to an increase in activity in the superficial layers,
potentially via indirect pathways®®, and bidirectionally modulated neurons in the deep layers of
the CFA. Previously, it has been suggested that PV+ interneurons in the CFA play a vital role in
the execution of movement* and are activated before pyramidal cells during reaching®. Here,
we propose that, depending on the task phase and the subpopulations that are active in RFA,
RFA inputs engage inhibitory and excitatory neurons in the CFA to different extents to modulate
local recurrent circuits. In line with a study combining optogenetics and fMRI*®, the excitation of
superficial layers argues for the upper layers having a role in local motor cortex computations by
selectively activating ensembles in deep layers, generating the desired motor output® (Fig. 9).
Recurrent circuits may selectively amplify certain patterns in the feedforward input, enhancing
440 the signal-to-noise ratio of the selected patterns®>'. Thereby, small patterned fluctuations in the
difference between excitation and inhibition will drive large patterned fluctuations in the sum of
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excitation and inhibition®2. This might partly explain the context dependent and delayed effects:
depending on the state of CFA, incoming RFA inputs are amplified differentially depending on
the ongoing local circuit activity and the balance between local excitation and inhibition. Through
the lens of dynamical systems?, this could be phrased as follows: The pathway specific
manipulations cause changes in the CFA population along a behaviorally relevant manifold as
the RFA to CFA connection is physiologically linked to motor behavior. Depending on the task
phase, the behaviorally relevant manifolds in CFA and their relation to the RFA inputs differ,
thus impacting the effect of the optogenetic manipulations.
450

Our study allows addressing the longstanding challenge of interpreting mixed brain activities
within brain areas where subpopulations dedicated to specific tasks are intermingled. The newly
developed NeuRL tool enables the deciphering of the neural code of specific subpopulations
and is amendable to humans, allowing a direct translation of our results to clinical applications.
It solely requires extracellular neuronal measurements—a technique which was established in
the 1950s and developed continuously in human patients up to modern high-density probes>*.
Thus, our newly gained knowledge about the role of specific neuronal ensembles can be
incorporated into the design principles of modern brain-computer interfaces®* to allow even
460  better control of external devices.
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Online Methods

660 Animals
Female adult CD® IGS rats (Sprague Dawley; 11 rats; 8 weeks of age; 250-300 g) were used
in this study. They were group-housed (2 to 4 per group) in large double-decker cages under a
reversed 12 h light-dark cycle (light off from 8 a.m. to 8 p.m., for the duration of the training and
experiments). One week before the first behavioral training, rats were handled daily. Food
(standard lab chow) and water were provided ad libitum. During the course of the experiment,
free access to food was maintained but water was restricted while keeping the rats at > 85% of
their weight before water restriction. For 2 days per week, ad libitum food and water access
were ensured. All animal procedures (surgeries, behavioral training, optogenetics,
electrophysiological recordings, and perfusions) were approved by the Regierungspralisidium

670  Freiburg, Germany.

Behavioral setup
We developed a delayed Go/No-Go task and setup for freely moving rats'. In this study we
focused on the Go part of the task Early training utilized 4 custom-built setups for simultaneous
training controlled individually by Med-PC software (Med Associates, Fairfax, VT). Each training
box included a 30 x 25 x 30 cm Plexiglas box with a grounded metal floor. A 2 x 12 mm infusion
cannula (1464LL, Acufirm, Dreieich, Germany) covered with a 7 mm (diameter) metal ball
served as a lever. The lever was clamped to a holder 1 cm above the cage ground and between
two 65 x 35 mm retractable Plexiglas walls. The holder was centered by two pairs of magnets
680 (adhesive force 2.5 kg, model S-08-08-N, Supermagnete, Gottmadingen, Germany). We
controlled the distance between magnets, and thus their force, by attaching them to M12
screws. The axis of the holder was connected to a 10-bit magnetic angle encoder (AEAT-6010,
Avago Technologies, San Jose, CA) reporting the left-right position. The metal holder was
connected to a 5V source, thus forming a conductive touch sensor. To deliver vibrotactile
stimuli, we glued a small vibrating motor (3V ERM motor, Digikey no. 1597-1244-ND, Seeed
Technology Co., Shenzhen, China) to the lever. The vibrator, touch sensor, and angle encoder
were controlled by an Arduino Uno (Arduino, Turin, Italy) connected via transistor-transistor-
logic (TTL) to the Med Associates control cabinet. We controlled the red cage light, reward
delivery infusion syringe pump (PHM-107, Med Associates), and cage speaker (ENV-224AM,
690 Med Associates) directly with the Med Associates cabinet.

Behavioral training
We initially trained the rats to hold the lever steadily. First, we acclimated the rats to the
behavioral setup for one 30 min session. Then, we rewarded the rats with 3% sucrose water
accompanied by a 12 kHz tone clicker upon touching and/or moving the lever. After associating
touching the lever with the reward, we used Plexiglas walls to restrict the rats from using body
parts other than the forepaw. In gradual steps, we narrowed the gap between the restriction
walls to 2 cm and automatically increased the holding duration in steps of 10 ms after each
successful hold. If a rat used its mouth or both forepaws, we manually decreased the reward
size, otherwise, we increased the reward size following successful trials. We inspected the
700 preferred holding direction and paw of each rat. A hold was defined as moving and keeping the
lever beyond a 1 mm threshold. Typically, the rats pulled the lever in the preferred horizontal
direction to ~5 mm until reaching a mechanical limit.

Next, we introduced the vibrotactile stimulus. To discourage timing, we randomized the holding
duration until stimulus presentation between 600 and 1,600 ms with a 1:1 ratio (Fig. 1), and the
allowed reaction time (RT) window was automatically decreased from 2,000 to 600 ms. The
stimulus frequency was set to ~200 Hz. Throughout the behavioral task, we used the 12 kHz
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tone clicker to indicate correct trials to the rats and white noise to indicate errors (early/late
releases). After an error, at least 1 s had to pass with the lever at center until a new trial could
begin (time-out).

710 Stereotaxic injections and implantation sites
The animals were initially anesthetized with isoflurane inhalation, followed by intraperitoneal
injection of 75 mg/kg ketamine (Medistar, Holzwickede, Germany) and 50 mg/kg medetomidine
(Orion Pharma, Espoo, Finland). The animals were put into a transportation container covered
with an opaque cloth to facilitate the anesthetization. Once the animals were anesthetized, they
were positioned in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA), and their
body temperature was maintained at 36—37 °C using a rectal thermometer and a heated blanket
(FHC, Bowdoin, USA). The animals were kept anesthetized using ~1.0% isoflurane and 1.0
I/min O,. For pre-surgery analgesia, we subcutaneously administered 0.05 mg/kg buprenorphine
(Selectavet, Dr Otto Fischer GmbH, Weyarn/Holzolling, Germany). Every hour, we injected 2 ml

720  of isotonic saline subcutaneously. We applied a moisturizing ointment to the eyes to prevent
them from drying out (Bepanthen, Bayer HealthCare, Leverkusen, Germany). Their skin was
disinfected with Braunol (B. Braun Melsungen AG, Melsungen, Germany) and Kodan (Schilke,
Norderstedt, Germany) using sterile cotton tips. To perform the craniotomy, a 2 cm-long incision
of the skin on the head was opened using a scalpel. The exposed bone was cleaned using a
3% peroxide solution. Craniotomies were drilled bilaterally extending from -2 to +4.5 mm in the
anterior-posterior direction and +1 to +4 mm in the lateral-medial direction relative to Bregma.
For phototagging experiments (N = 3 rats; table 4), we injected a 1 yl viral vector (rAAV5/hSyn-
hChR2(H134R)-eYFP, UNC Vector Core, Chapel Hill, North Carolina) into the RFA at two
different depths (0.6 and 1.2 mm, 0.5 ul each). For experiments on the inhibition of neurons

730  projecting from RFA to CFA, we injected 1.4 pl of viral vector (rAAV2-Retro/CAG-Cre, UNC
Vector Core, North Carolina, Chapel Hill) at four different sites in both hemispheres of the CFA
(two points separated by ~0.5 mm in the anterior-posterior axes at depths of 0.6 and 1.2 mm,
0.35 pl at each point). We injected two sites in the RFA with 0.75 ul of viral vector in both
hemispheres (rAAV5/EFla-DIO-eNpHR3.0-eYFP, UNC Vector Core) at depths of 0.6 and 1.2
mm (0.35 ul at each point; table 5). We injected the respective areas at a rate of 100 nl/min
using a 10 pl gas-tight Hamilton syringe (World Precision Instruments, Sarasota, Florida). To
minimize reflux of the injected volume, we left the injection needle in the tissue for 10 additional
minutes before slowly extracting it from the brain.

740  For electrophysiological recordings, we inserted 2-shank, 32-channel laminar probes (E32+R-
150-S2-L6-200-NT, ATLAS Neuroengineering, Leuven, Belgium) into the contralateral
hemisphere relative to the forepaw used in the experiment (N = 5 rats each with probes in the
RFA or CFA, N = 10 rats overall; Extended Data Table 5). The probe was slowly inserted into
the brain while the rat was held with a vacuum holder (ATLAS Neuroengineering, Leuven,
Belgium).

We applied a sealant (Kwik-Cast, World Precision Instruments) over the craniotomy and fixed
the probe and/or optical fibers to the skull with UV-cured dental cement (RelyX, 3M, Saint Paul,
MN). Self-tapping skull screws (J.l. Morris Company, Southbridge, Massachusetts) acting as a
reference for extracellular recordings were placed above the cerebellum. For increased stability

750 and reduced noise, we also cemented the custom-made electrode interface board. Rats were

given >7 days of recovery before the continuation of experiments.

Data acquisition
We performed electrophysiological recordings during 3—4 sessions (minimum 15 correct trials)
per rat with at least one week break in between sessions. We sampled the broadband signal at
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~25 kHz using a digital head stage (ZD32, Tucker-Davis Technologies (TDT), Alachua, Florida).
Spiking activity was bandpass filtered between 300 and 5,000 Hz. The Med Associates system
registered behavior at 100 Hz and synchronized with the electrophysiological signal via TTL
communication.

760 Phototagging experiments were conducted eight weeks after the viral injection. Laser
stimulation was conducted at 473 nm with a power of 1, 2, 4 or 8 mW out of a 200 um optical
fiber with at least 30 trials for each power setting at the end of the behavioral sessions during
continued neuronal recordings (N = 3 rats, 1 session per rat).

For inhibition experiments, we inhibited the RFA during either the preparation or movement
periods. We used light with a wavelength of 590 nm at 15-20 mW for 0.5 s or until movement
initiation (50% of trials). After the behavioral session, we inhibited for 0.5 s with an interstimulus
period of 10 s.

Data Analysis

Behavior

770 RTs were computed from the stimulus onset until the rat released the lever. Lever release was
defined as the movement of the lever laterally to an amplitude of at least 2 mm. In the RT
distributions plot (Fig. 1d), RTs were grouped in 10 ms bins for visual display. Lever position
was quantified during the preparation period in an analysis window from 0.3 s before release up
to release onset.

Electrophysiology

We sorted the broadband signal into units using KiloSort ', inspected each cluster, and defined

units based on wave shape. The binary spike-time array (1 for spike, O otherwise) of each unit

was smoothed into FR with a Gaussian kernel with a standard deviation of 50 ms and then
780 normalized (z score, baseline = 3 to 2 s before trial start). We defined units as modulated if the

absolute z value of the FR in correct trials crossed a threshold of 1.96.

To classify neurons, we used a metric that compares the mean firing rate during the preparation

and movement periods:

FRmove - FRpre
TMI = Prep

|[FRmove| + |FRprep|

with FRmove referring to the firing rate during the movement period from the go cue to 1 s after
the go cue and FRprep referring to the firing rate during the preparation period from trial
initiation to the go cue. If TMI > 0, a neuron was classified as a movement neuron; otherwise, it
was classified as a preparation neuron.

790 In phototagging experiments, a neuron was considered as ‘tagged’ if it fulfilled three criteria: (1)
a light pulse of 1 ms caused an action potential in the recorded single unit for at least 60% of the
laser pulses (Fig. 4d top); (2) the light-induced action potential waveform was similar to the
mean of the spontaneously occurring waveforms with a Pearson correlation coefficient higher
than 0.7 (Fig. 4d inset), and (3) the induced action potential occurred within a latency window of
15 ms, which was in line with the timing of antidromically-evoked action potentials ® (Extended
data Fig. 5).

For inhibition experiments, we evaluated the performance (i.e., the difference in error rate) as
well as the effect on RT when inhibiting during the preparation or movement periods. We only
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800 considered early releases to be those occurring 0.5s before the go cue to produce data
comparable to those from early trials with a laser, which started 0.5 s before the go cue. We
conducted the RT analysis for 10 consecutive sessions per rat.

Histology
For the histological verification of eNpHR3.0, we euthanized the animals by administering 400
mg/kg sodium pentobarbital (Release®500, WDT, Garbsen, Germany) and transcardial
perfusion with PBS followed by ice-cold 4 % paraformaldehyde. After removing the brains, we
post-fixed the tissue for 2 additional days before transferring it into a solution of 30 % wi/v
sucrose (Merck KGaA, Darmstadt, Germany) in water at 4 °C for equilibration. Brains
810 transferred from a sucrose solution were attached to the cooling block of a microtome with
Tissue Tek (Sakura Finetek, Fisher Scientific, Germany) and were sectioned into 50 pum thin
slices. The slices were transferred to phosphate-buffered saline (PBS) with 0.01% sodium
azide. For antibody staining, selected slices were washed for 3 x 10 minutes in PBS on a rotary
shaker at room temperature. The slices were blocked and permeabilized for 1 hour (PBS 0.01
M/Triton 0.4%/BSA 5%, Sigma Aldrich, St. Louis, MO, USA) on the rotary shaker. The first
antibody (dilution 1:1,000, monoclonal anti-Parvalbumin, P3088, Merck, Taufkirchen, Germany)
was applied overnight at 4 °C (PBS 0.01 M/Triton 0.2%). The slices were washed for 3 x 10 min
in PBS on the rotary shaker at room temperature. The second antibody (dilution 1:250, Cy3 goat
anti-mouse, M30010, Thermofisher, Waltham, MA, USA) was applied for 3 h (PBS 0.01 M/Triton
820 0.2%). Finally, the slices were washed for 3 x 10 min in PBS on the rotary shaker at room
temperature and mounted. The slices were imaged with a Zeiss (Oberkochen, Germany)
LSMB880 confocal microscope using a 40x objective.

Electron Microscopy
The protocol for EM imaging has been described previously®. Briefly, slices were fixed in 4%
PFA (w/v in 0.1 M PB; Polysciences Europe GmbH, Hirschberg a.d. Bergstral3e, Germany) and
2.5% glutaraldehyde (w/v in 0.1 PB; Carl Roth GmbH, Karlsruhe, Germany) overnight. After
fixation, slices were washed for 4 hours in 0.1 M PB. Subsequently, slices were incubated with
1% osmium tetroxide (Carl Roth) for 45 minutes, washed in graded ethanol (up to 50% [v/v]) for
5 minutes each, and incubated with uranyl acetate (1% [w/v] in 70% [v/v] ethanol; Science
830 Services, Munich, Germany) overnight. Each slice was then dehydrated in graded ethanol
individually (80%, 90%, 98% for 5 minutes, 2 100% for 10 minutes). Subsequently, the slices
were washed in propylene oxide (Polysciences Europe GmbH) twice for 10 minutes before
incubation with durcupan/propylene oxide (1:1 for 1 hr; Sigma-Aldrich, Taufkirchen, Germany)
and transferred to durcupan (overnight at room temperature). Slices were embedded in
durcupan and cut into ultra-thin sections (55 nm) using a Leica UC6 Ultracut (Wetzlar,
Germany). Sections were mounted onto copper grids (Plano, Wetzlar, Germany), and an
additional Pb-citrate (Carl Roth, Karlsruhe, Germany) contrasting step was performed (3
minutes). Electron microscopy was performed using a Philips CM100 microscope equipped with
a Gatan Orius SC600 camera (Gatan, Pleasanton, CA, USA) at 3,900 magnification. Acquired
840 images were saved as TIF files and analyzed by an investigator blinded to experimental
conditions.

Q-learning and hypothesis generation

Inverse reinforcement learning

We modeled the task of neuronal decoding in the reinforcement learning framework as a
Markov Decision Process (MDP), where an agent (a rat) acted in an environment (preparation-
movement task). Following policy = by applying action a, ~ 7 from n-dimensional action-space
A in state s;, the subject reaches a state s,.; ~ M according to the stochastic transition model
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M and receives scalar reward r; in each discrete time step t. The agent has to adjust its policy
850 to maximize the expectation of long-term return R(s,) = Xy ' 1, Where y €[0,1] is a
discount factor which can be used to give more recent rewards a higher weight and to prevent
the long-term value from running infinite in non-terminal problems (in our experiments, we use y
=1, i.e. no discount). The action-value function represents the expected long-term value of an
action when following policy m (i.e., Q" (s, a,) = Eq,,. ,~m,s5,5,~m[R(s:) V @;]). From the optimal
action-value function Q* one can derive a corresponding optimal policy m* by maximization.
Inverse reinforcement learning recovers a reward function from observed trajectories from
expert policy n® under the assumption that the agent was softly maximizing the induced
expected long-term return (i.e., according to a probability distribution). This problem has been
solved previously using different approaches such as Max Entropy IRL", which could be costly
860 and lead to approximation errors when estimating the scalar immediate reward.

Action-value lteration

Here, we focus on finding an optimal policy via model-based action-value iteration. The Q-
function, represented by a table with entries for every state and action, gets updated in every
iteration k based on the Bellman optimality equation with a given transition model M:

Qi(se,ap) <1 + Vm3XEst+1~M [Qk—1(Se41,a))].

Formalization

In this section, we describe how to infer the scalar underlying reward function of a rat's

behavior, the supervised approximation of this scalar reward as a weighted combination of
870 neuronal signals, and the neuronal decoding mechanism using the intrinsic reward function.

Estimation of Intrinsic Reward

Our main assumption is that the rodent is softly (i.e., according to a probability distribution)
maximizing its measure of optimality, which we define to be the expected cumulative sum of an
unknown immediate reward function, also known as the Q-value. The Q-value likely
corresponds to activity in brain regions responsible for planning and movement’'. The
assumption of soft maximization of the measure of optimality is known as the Boltzmann
assumption and it has already been applied to model the behavior of humans and animals in a
plethora of prior studies’> . In other words, the actions taken by the animal are samples from a

880  Boltzmann distribution over its optimal action-values Q*(s,-):

Q' (5@ i
PTCECT R

We assume the rodent to softly maximize its measure of optimality which we define to be the
expected cumulative sum of an unknown immediate reward function; that is, the actions taken

by the rat were sampled from a Boltzmann distribution over its optimal action-values Q*(s,):

eQ'(s2) X
Taenetem ~ 1A
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for all actions a € A, and concomitantly:

R
mals) o

e — 1R(qls Z 0@ (54) —

A€A

for all actions b € A, where A4 = A{a}. Following the derivations as proposed previously ":

Q*(s,a) = Q*(s,b) + log (nR(a|s)) —log (T[R(b|5)).
890

Using the Bellman optimality equation, the immediate reward of action a in state s could thus be
expressed by the immediate reward of some other action b € A; . The respective log-
probabilities and future action-values are:

r(s,a) =log (nﬁ(als)) — yn}f’les,NM(s,a,S,) [Q*(s",a")]
+7(s,b) — (log (nR (b|s)) — yrr}):iles,,NM(s'b’S,,) [Q*(s", b')]).

Substituting the difference between the log-probability and the discounted action-value of the
future state s’ as:

ng = log (T[R(als)) - yn}gXEst(s,a,sr) [Q*(s",a")],

We could put the reward of action a in state s in relation to the reward of all other actions:

1
r(s,a) =ng +T1 z r(s,b) —nk.
T,

The resulting system of linear equations could be solved with least squares. We started by
estimating the immediate reward for all terminal states and then went through the MDP in
reverse topological order based on the model M. The Boltzmann distribution induced by the

900 optimal action-value function on this learned reward was equivalent to the demonstrated
arbitrary behavior distribution ™. Inverse action-value iteration (IAVI) thus returned a scalar
intrinsic reward function which precisely encoded the recorded behavior of the rats as an
intermediate result that served as a supervised signal to learn new features from neuronal
spiking.

Note that while we exploit the stochastic behavior assumption based on the Bellman optimality
equation and while there is a connection between the response of dopamine neurons and
temporal-difference learning “®, we only leveraged the defined computational model to estimate
the expected long-term reward without assuming a similar mechanism in the rodent’s brain.

Mapping of Neuronal Spiking to Intrinsic Reward

910 As a second step, we mapped the neurons projecting from RFA to CFA to intrinsic reward
function in a regression step to draw conclusions about the behavior based on neuronal activity.
We hence assumed the immediate reward function to be a projection:
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P(@(s),a) = p((s) v 67),

where p is a parameterized function of features with parameters 8° (e.g., a linear combination

or a neural network). The vector @(s) = ((Pl(s), ...,¢m(s))T contained m features based on

the recordings of m neurons, such as the mean activity over all trials. We can fit parameters 6°
according to the class of function approximator (e.g., either by least squares or gradient
descent) on the difference between reward 7 (s, a) and prediction #(®(s), a). The mapping can
then be used to predict the resulting behavior based on neuronal spiking in different trial
outcomes.

920 Neuronal Decoding from Intrinsic Reward
The parameters 6° of #(®(s), a) were fitted to represent immediate reward r(s,a) and hence
the underlying behavior of the rats as closely as possible. The resulting parameters could

contribute to the generalization to any arbitrary neuronal spiking ¥(s) = (lzul(S),...,lem(S))T
which yields adjusted reward and action-values in each time step ¢:

F(W(se) an) = P(W(St)wp) and

Q*(W(St), a,) = m;lXEn [z yot (W (se,), atl)] .

tr=t

From the optimal Q-function Q*(¥(s),a) based on features ¥(s), we infer the respective
predicted action-probabilities by:

e Q@ (s).a)
PLMCIGPIN

ﬁ(a|'{’(s)) =

LaeA

To identify neurons with particular relevance for a specific type of response, we can modulate
their neuronal activity by modifying the respective features ®;(s)|,<i<m,» and keeping all other
features fixed. Thus, we can simulate the inhibition of certain neurons within the model and
930 make predictions about the trial outcome and RTs. The change in behavior between the ground
truth based on the recorded spiking and the predicted behavior based on the modulated
features provided insight into the possible individual impact of these neurons on behavior.

MDP Formulation

We modelled the preparation-movement task as a Markovian decision process (MDP). The
MDP was defined as a four-tuple (S, 4, M,r), where the set of states was defined by S =
{0.0s,0.2s, ...,1.28} U {Before Cue, Cue, After Cue, After Cuel, After Cue2, .., Time to Release,
Late Release} U {Success,Failure}, discretizing the time into chunks of 0.2 s. In every state, the
rat could pick an action from the action space A = {stay,release} (Fig. 5). We defined the MDP
to have deterministic transitions. In these experiments, we considered the reward function

940 r:S X A~ R to be unknown.

We used NeuRL to make predictions about the rats’ behavior when inhibiting different sets of
neurons: 1) the neurons projecting from RFA to CFA, including both preparation and movement
subpopulations; 2) the preparation subpopulation projecting from RFA to CFA, and 3) the
movement subpopulation projecting from RFA to CFA. For each set, we ran 3,000 simulations
for control trials (no inhibition; 1,000 trials), inhibition during the preparation period (1,000 trials),
and inhibition during the movement period (1,000 trials). We determined whether the simulated
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trial was early, correct, or late according to the discretized simulated release times. If the trial
was correct or late, we used the release time to compute simulated RTs.

Statistical tests

950 Data are represented as mean +/- SEM. All statistical analyses were computed in MATLAB
(Mathworks, version R2018b). In NeuRL simulations, we used a two-sample t-test and applied
the post hoc Holm-Bonferroni method for multiple comparisons by adjusting the P-value
correspondingly. The respective exact P-value is given in the Results section. For the
comparison of distributions in error trial analysis, we used a two-sample Kolmogorov-Smirnov
test. For optogenetics experiments and comparing firing rates across conditions, we used a
repeated measure two-way ANOVA. A significant difference between two data sets was
assumed when the Holm—Bonferroni-corrected P-value <0.05 (indicated by one asterisk in the
figures).

960
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Fig. 1. Preparation-movement task. a. Simplified illustration of the task. To initiate a trial, the
freely moving rat had to move a lever horizontally and hold it. After a preparation period of 0.6 or
1.6 s, the lever vibrated, which was the go cue. Following the go cue, the rat had to release the
lever within a response window of 0.6 s to receive a reward; otherwise, the trial was considered
a late trial. Releases during the preparation period were considered early trials. Correct trials

970 were signaled with a click tone and the late trials were followed by a 1 s timeout and white
noise. b. Rats learned to steadily hold the lever during the preparation period and to release the
lever after the go cue. c. Behavioral performance in the last training session of each animal (n =
11 rats, n = 114 sessions; correct responses in all trials: 82.6%, correct responses in trials with
short delay: 78.0%, correct responses in trials with long delay: 89%). d. Reaction time
distributions display a prominent peak after the go cue in both short (top) (N = 11 rats, n = 114
sessions, n = 4,159 trials) and long (bottom) delay trials (N = 11 rats, Nghorr = 4,159 trials, Nigng =
3,825 trials), indicating that the rats attended to the cue. ***p<0.001, paired t-test; error bars:
SEM. See also Extended Data Table 1.
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Fig. 2: Activities of neuronal subpopulations in RFA and CFA. a. Reconstructed laminar silicon
probes implantation sites in the RFA and CFA (N = 5 rats for each area). b. Raster and
peristimulus time histogram (PSTH) of example neurons in RFA superficial (top) and deep
layers (bottom). Neurons modulated during preparation (magenta) and movement (cyan)
periods were observed in both superficial and deep layers. c. Same as b but in the CFA. d.
Neurons were classified based on their mean firing rates during the preparation and movement
periods. If a neuron had a positive task modulation index (TMI), it was classified as a movement
neuron, otherwise, it was classified as a preparation neuron. The RFA contained similar
proportions of preparation and movement neurons (i and ii). In contrast, the CFA had a strong

990 bias towards movement neurons (iii and iv). e. Normalized firing rates (Z-score; methods) of all
modulated neurons in RFA superficial layers (i), RFA deep layers (ii), CFA superficial layers (iii),
and CFA deep layers (iv). dashed lines: go cue; magenta: preparation neurons, cyan:
movement neurons; The shaded background shows SEM. Coronal sections in b and ¢ adapted
from’’. See also Extended Data Fig. 1 and table 2.
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Fig. 3: Firing rate peaks indicate a temporal hierarchy from RFA to CFA subpopulations. a.
Normalized firing rates (z-score) and population distribution of peak activity during RFA and
CFA preparation (i) and movement (ii) subpopulations in correct trials aligned to lever release.
The activity of RFA subpopulations precedes those in the CFA in correct trials (iii). b and c.

1000 Same as a but for early and late trials, respectively. In contrast to correct trials, the temporal
hierarchy is altered in error trials with no temporal difference in early trials and a more
pronounced temporal separation in late trials. d. Average population activity of the movement
subpopulations in the RFA and CFA in correct and late trials. Mean normalized firing rate (z-
score) of RFA movement subpopulation aligned to go cue (i, left) and release (i, right). Mean
normalized firing rate (z-score) of CFA movement subpopulation (ii). The go cue is encoded in
the RFA movement subpopulation, and the motor command is encoded in the CFA movement
subpopulation (iii). Blue: early trials, black: correct trials, red: late trials; the dashed black line
refers to the go cue or release onset. Two-sample Kolmogorov-Smirnov tests were used for
peak distributions in a—c. Two-way ANOVAs were used in d for repeated measures; the top

1010 gray bar indicates significant differences (p<0.05). The shaded background shows SEM. See
also Extended Data Fig. 2,3 and table 3.
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Fig. 4: RFA to CFA projection conveys both preparation and movement information. A.
Schematic of the phototagging experiment. The RFAs of rats (N = 3) were injected with AAV5-
hSyn-ChR2-eYFP. A laminar silicon probe was also implanted in RFA and an optical fiber was
emplaced in their CFAs. At the end of the session, each rat was stimulated with 1 ms light
pulses delivered to their CFA via the optical fiber. The light pulses induced antidromic spikes by

1050 activating ChR2 in RFA axonal terminals in CFA (light blue waveforms). B. Coronal section
through the RFA with cells expressing AAV5-hSyn-ChR2-eYFP; white circles: estimated
electrode positions in RFA; scale bar = 500 um (left). Examples of RFA neurons expressing
AAV5-hSyn-ChR2-eYFP; scale bar 20 = um (right). ¢c. Coronal section of the CFA with RFA
axons expressing eYFP in CFA; dashed white rectangle, optical fiber position in CFA; scale bar
= 500 um (left). Examples of CFA neurons labelled with DAPI (blue) close to RFA axons; scale
bar = 5 um (right). d. Raster and PSTH of a tagged neuron projecting from RFA to CFA (top).
Inset: mean waveform of simultaneous spikes (black) and antidromically-induced spikes (light
blue). Latency of the first spike after the light pulse (Bottom). e. Raster and PSTH of an example
preparation (top) and movement neuron (bottom) projecting from RFA to CFA. f. Task

1060 modulation index (TMI) for RFA neurons projecting to the CFA (top). F. Normalized firing rates
(z-score) of all preparation (bottom left, N = 3 rats, n = 11 neurons) and movement neurons
(bottom right, N = 3 rats, n = 10 neurons) projecting from RFA to CFA. The shaded background
shows SEM. See also Extended Data Fig. 4 and table 4.
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Fig. 5: Q-learning workflow. a. The inverse Q-learning framework used the rats’ behavior (lever
release times) and neuronal activity (1), consisting of the mean firing rates of RFA neurons in
single trials, to assign functions to different neuronal subpopulations (N = 3 rats). Recordings

1070 from neurons identified as projecting from RFA to CFA were used to predict the trial outcomes
and RTs. b. Training the network: a reward value was estimated from actions (hold referring to
action b and release referring to action a) and states (success or failure) over 0.2 s bins for each
trial. During the preparation period (0 to 1.6 s; blue circles), a state was termed ‘success’ if the
action was hold and ‘failure’ when the action was release (2). In the movement period, a state
was termed ‘success’ if the action was release, and after the movement period, a state was
termed ‘failure’ regardless of the action. Based on the actions and states, a reward value was
extracted via inverse Q-learning. This reward value was mapped onto a feature matrix
reconstructed from the mean firing rate for each RFA neuron in 200 ms bins, giving each neuron
a weight that contributed to the computed reward. c. Testing the network: based on the

1080 extracted rewards, different weights were assigned to the neurons in the behavioral task (3).
Perturbation of different neurons in the feature matrix (4) produced a new perturbed reward
value that was computed via forward Q-learning and then used to predict the perturbed behavior
(5). For detailed mathematical equations see Methods and Extended Data Fig. 5.
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Fig. 6: RFA to CFA-projecting neurons promote action but the two projecting subpopulations
play opposing roles. a. Schematic for the inhibition experiments. We inhibited RFA to CFA-
projecting neurons during either the preparation or movement periods in silico (N = 3 rats, 1,000
simulations for each rat), using NeuRL, or in vivo (N = 4 rats) (i). Schematic illustration of the
different subpopulations (ii). b. Effect of inhibiting all RFA to CFA-projecting neurons in silico (n

1110 = 21 neurons) during the preparation period on error rate and RT. Neuronal inhibition
significantly decreased early trials (left) and significantly shortened RT while inhibition during the
movement period significantly increased late trials and increased RT (right). c. Same metrics as
in b but relating to inhibition of the RFA to CFA preparation subpopulation (n = 10 neurons) in
silico. We predicted significantly more early trials upon inhibition during the preparation periods
(left). Further, we predicted shorter RT when inhibiting during the preparation or the movement
period (right). d. We predicted that inhibiting the RFA to CFA-projecting movement
subpopulation (n = 10 neurons) in silico during the preparation period would cause significantly
fewer early trials and more late trials when inhibited during the movement period (left). Further,
we predicted longer RTs when inhibiting during the movement period (right). e. Validating Q-

1120 learning with optogenetics. AAV-D-eNpHr-eYPF was injected bilaterally into the RFA and a
retrograde viral vector carrying cre recombinase was injected into the CFA (i). Optical fibers
were implanted bilaterally into the RFA. Inhibiting all RFA to CFA-projecting neurons
significantly decreased early trials when inhibiting during the preparation period and significantly
increased RT during the movement period (ii). Separated lines represent individual animals; *
p<0.05, **p<0.01, *** p<0.001, unpaired t-test for NeuRL simulations (b—d), repeated measure
two-way ANOVA for optogenetics (e). Coronal sections in e (i) adapted from’’. See also
Extended Data table 5.
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Fig. 7: Neurons projecting from RFA to CFA modulate CFA neurons bidirectionally involving
inhibitory interneurons. a. Schematic of injection and illumination scheme (upper panel). A

1140  subpopulation of neurons in the CFA (N = 3 rats, n = 10 neurons) was activated (light blue)
while another was suppressed (light red) upon the inhibition of the RFA to CFA projection
neurons outside the task (bottom left). Normalized firing rate (z-score) of all neurons modulated
by the inhibition of neurons projecting from RFA to CFA (bottom right, one session each). b. The
proportion of neurons in the superficial and deep layers activated and suppressed by inhibiting
neurons projecting from RFA to CFA (top). Raster and PSTH example of a neuron activated and
suppressed by inhibiting RFA to CFA projection neurons outside the task (bottom). c. RFA
projects to excitatory as well as inhibitory neurons in CFA. Confocal image of coronal section
through the CFA with AAV-DIO-eNpHr-eYFP expressing EYFP in RFA axons (i, left panel).
Electron microscopy (EM) image in the CFA showing an RFA axonal terminal contacting a

1150  dendritic spine in CFA (i, right panel). Example of a PV interneuron in the CFA targeted by
axons from RFA. Confocal image of a coronal section through the CFA expressing EYFP in
RFA axons projecting to CFA. Neurons were labelled with an antibody against parvalbumin
(PV). Confocal image example of coronal section (ii, left). EM image in the CFA showing an
RFA axonal terminal contacting a spine of a PV+ interneuron in the CFA (ii, right). d. Counts of
synapses with EYFP and synapses with EYFP and PV (i; N = 1 rat, n = 6 arbitrary lines). Ratio
of RFA pre-synapses targeting PV+ interneuron post-synapses to total RFA EYFP+ pre-
synapses in the CFA for different arbitrary lines (ii), note that line 1 and 2 have the same ratio.
Scale bar in confocal images = 20 um, scale bar in EM images = 100 nm; white arrow: PV+
interneurons; green arrows in EM: Immunogold staining against EYFP particles in RFA pre-

1160 synaptic terminal, red arrows: Immunogold staining against PV in CFA post-synapse, black
asterisk: pre-synapse, black arrow: synaptic cleft, white circle: post-synapse; the shaded
background shows SEM; * p < 0.05, *** p < 0.001, paired t test compared to 0.5 s baseline
before laser onset. See also Extended Data Table. 5.
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Fig. 8: RFA to CFA projections affect CFA neuronal activity in a task phase and cortical layer
dependent manner. a. Schematic of experimental strategy. AAV-Dio-eNpHr-eYFP was injected
bilaterally into the RFA and a retrograde viral vector carrying cre recombinase (retroAAV-cre)

1170  was injected into the CFA. Optical fibers were implanted bilaterally into the RFA and a laminar
silicon probe was implanted into the CFA (n= 3 rats). b. The proportion of CFA neurons
significantly modulated by inhibiting RFA to CFA-projecting neurons. c. Fractions of CFA
neurons modulated by optogenetic inhibition of RFA projection neurons during the different task
periods. The task period refers to the laser on time. Neuronal modulation was tested during
laser on. d. Effect of inhibiting RFA to CFA projection on CFA neurons. Example of modulated
neurons that increased activity (left panel) and decreased activity (right panel) during the
preparation period, respectively. The proportion of neurons that increased and decreased
activity during the preparation period and their distribution in superficial and deep layers (middle
panel). e. Same as d but when inhibiting the RFA to CFA projection during the movement

1180 period. Most modulated neurons decreased their activity during the movement period when
inhibiting RFA to CFA projection. f. Neurons react differentially to the inhibition of RFA to CFA
projection depending on whether the inhibition happened outside the task or during the
preparation period or movement periods of the task. For instance, the activity of neuron #2
decreased by the manipulation outside the task (i, left panel), increased by the manipulation
during the preparation period (I, middle panel), and remained unaffected by the manipulation
during the movement period (I, right panel). In contrast, the activity of neuron #3 consistently
decreased by the manipulation outside the preparation-movement task (i, left panel), as well as
during the task (ii, middle and right panels). g. Summary of all neurons modulated outside the
task and their response within the task (neurons # 1 to 10) (light blue bar: increased activity,

1190 light red bar: decreased activity, dashed bar: modulated after laser offset, black bar: not
affected). Yellow bar: laser illumination. Gray shaded area: p<0.05, two-way ANOVA for
repeated measure. Black: Trials without laser illumination, light red: neurons significantly
decreased their activity by inhibiting RFA to CFA-projecting neurons, light blue, neurons
significantly increased their activity by inhibiting RFA to CFA-projecting neurons, orange bar:
time of laser illumination, grey bar: time bins significantly different than control; statistical tests
were ANOVA for repeated measures for two curves comparison, gray shaded areas: p<0.05,
paired t test for comparison to baseline outside the task, * p < 0.05; the shaded backgrounds
shows SEM. See also Extended Data Fig. 7 and Table. 5.
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Fig. 9: Schematic interpretation of the context- and layer-dependent impact of RFA on CFA.
RFA (green circles) projection to CFA (green lines) impacts at least two different subpopulations
in the CFA. The RFA targets both excitatory (blue circles) and inhibitory neurons (red circles) in
the CFA. Depending on the layer and context, RFA input had different impacts on the CFA. The
RFA did not impact CFA superficial layer activity during rest. During the preparation and

1220 movement periods, RFA input led to a net excitation in the CFA, amplifying CFA local circuits in
the superficial layers. The RFA input to the CFA was mainly excitatory in its deep layers during
rest, allowing a wide range of spontaneous movements. During the preparation period, the RFA
input was predominantly inhibitory in the deep layers of CFA via the preferential activation of
inhibitory neurons, and hence suppressed movements. During the movement period, the RFA
bidirectionally modulated the CFA in the deep layers, leading to activation of one neuronal
subpopulation and the suppression of another. Please note that the impact of RFA on excitatory
or inhibitory CFA neurons refer to net effects, not to the targeting of individual neurons.
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Extended Data Fig. 1. Raster and PSTH of neuron examples with extreme Task
Modulation Indices (TMI). Related to Fig.2 a. Example of an RFA preparation neuron with a
TMI = -1. b. Example of an RFA neuron with a TMI close to zero. c. Example of a CFA
movement neuron with a TMI = +1. The shaded background shows SEM.
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Extended Data Fig. 2: Similar FR patterns in deep-layer subpopulations compared to an

1240
shaded background shows SEM.

analysis of pooled superficial and deep subpopulations (Fig. 3). Related to Fig. 3. The
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Extended Data Fig. 3: Similar Peak FR latency in RFA in correct and late trials. Related to

Fig. 3. a. Probability of the peak firing rate of RFA neurons in correct trials. b. Same as a but in
late trials.
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Extended Data Fig. 4: First spike latency of tagged neurons is not affected by laser
1250 intensity. Related to Fig. 4. a. Population latency response with a laser intensity of 1 mW. b, c,
and d same as a but for intensities at 2, r, and 8 mW respectively.
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Extended Data Fig. 5: Equations and their relation to the Q-learning flow. Related to Fig. 5
a. The inverse Q-learning framework used the rats’ behavior (lever release times) and neuronal
activity, consisting of the mean firing rates of RFA neurons in single trials, to assign functions to
different neuronal subpopulations (N = 3 rats). Recordings from neurons identified as projecting
from RFA to CFA were used to predict the trial outcomes and RTs. b. Training the network: a
reward value was estimated from actions (hold referring to action b and release referring to

1260 action a) and states (success or failure) over 0.2 s bins for each trial. During the preparation
period (0 to 1.6 s; blue circles), a state was termed ‘success’ if the action was hold and ‘failure’
when the action was release. In the movement period, a state was termed ‘success’ if the action
was release, and after the movement period, a state was termed ‘failure’ regardless of the
action. Based on the actions and states, a reward value was extracted via inverse Q-learning.
An inverse Action-value iteration (IAVI) is used to compute the immediate reward of action a in
state S can be expressed by the immediate reward of some other action b (1), returning an
intrinsic reward function that encoded the behavior of the rats as an intermediate result that
serve as a supervised signal to learn a mapping from the neuronal signals. Here we used these
reward values to map onto a feature matrix reconstructed from the mean firing rate for each

1270  RFA neuron in 200 ms bins, giving each neuron a weight that contributed to the computed
reward (2). c. Testing the network: based on the extracted rewards, different weights were
assigned to the neurons in the behavioral task. Perturbation of different neurons in the feature
matrix produced a new perturbed reward value that was computed via forward Q-learning (3)
and then used to predict the perturbed behavior.
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Synapse in superficial layers Synapse in deep layers

Extended Data Fig. 6: The RFA predominantly forms asymmetric synapses in both
superficial and deep layers of the CFA. Related to Fig. 7. a. Examples of asymmetric (i) and
symmetric synapses (ii). The vast majority of RFA axons form asymmetric synapses in the CFA
(97/100, 97%), suggesting that the input from the RFA was dominantly excitatory. b. RFA axons

1280 target CFA spines in both the superficial (i) and (ii) deep layers. Scale bar in a = 100 nm, scale
bar in b = 200 nm, black asterisk: pre-synapse, black arrow: synaptic cleft, white circle: post-
synapse.
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Extended Data Fig. 7: Delayed optogenetic effect on CFA neurons. Related to Fig. 8. a.

Proportions of preparation neurons (left) and movement neurons (right) modulated by inhibiting
neurons projecting from RFA to CFA in different task periods along with fractions of neurons
modulated during laser on time, after laser offset, or both. b. Raster and PSTH of example
neurons with significantly increased activity after the laser offset. Laser was on during
preparation period (left) or movement period (right). c. Same as b but for neurons with

1290 significantly decreased activity after laser offset.
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Last training session

Experiment sessions

p values
unpaired t test

RT in short delay trials 315 +/-11 ms 350 +/-5ms p = 0.058
RT in long delay trials 309 +/- 5 ms 338 +/-6 ms p=0.113
Response to stimulus 82.3 +/-0.8 % 86.5+/-1.2% p =028

Extended Data Table 1: RTs and performance were similar in short- and long-delay trials.

Rat Recording area AP (mm) ML (mm) DV of shanks
tip (mm)
10 RFA +3.8 -1.7 2.4
12 RFA +3.7 -1.5 24
504 RFA +3.2 -1.9 24
533 RFA +3.5 -2.0 2.4
546 RFA +3.5 -2.0 24
1 CFA +0.2 -2.2 24
3 CFA +0.6 -2.5 24
13 CFA -0.1 -2.1 24
16 CFA +0.3 -2.8 24
506 CFA -0.5 -2.4 24

Extended Data Table 2: Coordinates of silicon probe implantation sites in the RFA and CFA.
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Superficial subpopulation Deep subpopulation p value
peak FR (s) peak FR (s) unpaired t test
RFA early preparation -0.24 +/- 0.02 -0.43 +/- 0.07 0.63
CFA early preparation -0.75 +/- 0.28 -0.14+/-0.12 0.06
RFA correct preparation -0.64 +/-0.2 -0.27 +/- 0.06 0.24
CFA correct preparation 0.43 +/-0.1 -0.12+/-0.1 0.07
RFA late preparation -0.01 +/- 0.67 -0.41+/-0.06 0.33
CFA late preparation -0.01 +/- 0.67 -0.03 +/-0.12 0.49
RFA early move 0.33 +/- 0.21 0.14 +/- 0.06 0.52
CFA early move 0.17 +/- 0.06 0.18 +/- 0.04 0.88
RFA correct move 0.01 +/- 0.31 0.31 +/-0.05 0.26
CFA correct move 0.36 +/- 0.04 0.27 +/-0.03 0.10
RFA late move -0.12 +/- 0.22 -0.04 +/- 0.06 0.78
CFA late move 0.18 +/-0.10 0.16 +/-0.05 0.87

Extended Data Table 3: Similar peak firing rates in superficial and deep subpopulations.

Injection - Laser Recording
Rat area Viral vector AP {mm) ML (mm) DV (mm) area area
10 RFA |AAV-hSyn-ChR2 35 15 0.6/1.2 CFA aEA
12 RFA | AAV-hSyn-ChR2 34 -16 0.6/1.2 CFA RFA
546 RFA | AAV-hSyn-ChR2 35 4R 0.6/1.2 CFA RFA
1300 — . . : .
Extended Data Table 4: Injection coordinates in phototagging experiments.
Rat | Injectionarea | Viralvector | AP 1eft |APright| ML left ML right| DV left |DV right| Laser | Recording
(mm) | (mm) [ (mm) | (mm) | (mm) | (mm) | area area
RFA AAV-DIO-eNpHr| 3.7 3.6 15 1.7 | 06M1.2| 06/1.2
3 RFA | cFA
CFA retroAAV-cre | 05/00| 0.7/01] 2.2/2.3| 2.5/2.5|0.6/1.2 | 06/1.2
RFA AAV-DIO-eNpHr| 3.8 3.5 1.6 15 [06M1.2]0.6/1.2
13 RFA CFA
CFA retroAAV-cre |0.37/0.3| 0.5/0.0| 2.8/2.7| 24/23|06/1.2| 06/1.2
RFA AAV-DIO-eNpHr| 3.3 3.4 12 14 106/1.2|0.6/1.2
15 RFA N/A
CFA retroAAV-cre |0.2/-0.4|0.7/-0.1| 2.6/2.4 | 2.8/2.6(0.6/1.2| 0.6/1.2
RFA _DIO- 36 0.6/1.2
16 AAV-DIO-eNpHr| 34 17 16 06112 rea | cra
CFA retroAAV-cre 10.4/-0.2| 1.0/0.6 | 2.2/2.3| 2.6/2.5(0.6/1.2| 0.6/1.2

Extended Data Table 5: Injection coordinates, silicon probes, and optical fiber implantation
areas for inhibition experiments.
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