
 

 

Graphical abstract: This study provides mechanistic insights into the interactions 
between the rostral forelimb area (RFA) and the caudal forelimb area (CFA). 
Specifically, we provide evidence for a differential impact of RFA on CFA depending on 
the task phase and the targeted CFA layers. RFA contains at least two spatially 
intermingled subpopulations - one related to movement preparation and one to 
movement execution. Both subpopulations project to CFA. Here we investigated the 
impact of these two subpopulations on the activity of the local CFA circuit as well as on 
the behavior in different contexts. When rats were not involved in a task, the effect of 10 
RFA was mainly excitatory in the deep CFA layers, while the superficial layers remained 
unaffected. This can be interpreted as a non-selective activation of the deep CFA 
neurons enabling a variety of spontaneous movements. During the preparation phase 
before a movement, the RFA had an opposite impact on the superficial and deep layers: 
while the superficial CFA layers were excited by RFA input, the deeper layers were 
mostly inhibited, minimizing movements and enabling continued holding of a lever. 
During the movement phase, the inhibitory effect on neurons in the deep CFA layers 
was counterbalanced by excitation, thus enabling a selected conduction of movements. 
The opposing effects during preparation and movement phase on CFA deep layers 
were correlated with increased firing rates of the RFA preparation and movement 20 
subpopulations, respectively, making it likely that the inhibition resulted from increased 
activities of these subpopulation specifically. With an electron microcopy approach we 
demonstrate that inhibitory and excitatory CFA neurons are directly targeted by RFA, 
thus providing a mechanism for the bidirectional control of CFA activity. Please note that 
the depicted impact of RFA on excitatory or inhibitory CFA neurons refers to net effects 
in this figure, not to the targeting of individual neurons. 
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Abstract 
Deciphering the neural code underlying goal-directed behavior is a long-term mission in 
neuroscience1,2. Neurons exhibiting preparation and movement-related activity are intermingled 
in the premotor and motor cortices3,4, thus concealing the neural code of planned movements. 
We employed a combination of electrophysiology, pathway-specific optogenetics, phototagging, 
and inverse reinforcement learning (RL) to elucidate the role of defined neuronal subpopulations 
in the rat rostral and caudal forelimb areas (RFA and CFA), which correspond to the premotor 40 
and motor cortical areas. The inverse RL enabled the functional dissection of spatially 
intermingled neuronal subpopulations, complementing our pathway-specific optogenetic 
manipulations and unveiling differential functions of the preparation and movement 
subpopulations projecting from RFA to CFA. Our results show that the projecting preparation 
subpopulation suppresses movements, whereas the projecting movement subpopulation 
promotes actions. We found the influence of RFA on CFA to be adaptable, with the projection 
either inhibiting or exciting neurons in the superficial and deep CFA layers, depending on 
context and task phase. These complex interactions between RFA and CFA likely involve the 
differential recruitment of inhibitory interneurons in the CFA, which is supported by our electron 
microscopy analysis of the connectivity between these regions. We provide here unprecedented 50 
mechanistic insights into how the premotor and primary motor cortices are functionally and 
structurally interlinked with the potential to advance neuroprosthetics. 
 
Main  

The control of movement is a central aspect of life, and understanding the neural basis of this 
process can provide insights into a wide range of phenomena related to movement planning 
and execution, including motor learning and skill acquisition, voluntary and involuntary 
movements, decision-making and goal-directed behavior. In rodents, the rostral and caudal 
forelimb areas (RFA and CFA) are thought to play important roles in the control of forelimb 
movements5,6, but the interaction between these areas during movement planning and 60 
execution are far away from being well understood. While the activity of RFA and CFA neurons 
is similar across a range of tasks7–9, it remains unclear which information is conveyed by 
neurons projecting from RFA to CFA during different phases of motor planning and execution, 
and how these projecting neurons shape CFA activity during these different epochs. 

 

Results 
Freely moving rats responded to a vibro-tactile delayed go-cue 
To investigate the role of RFA and CFA in movement preparation and execution, we developed 
a preparation-movement task for freely moving rats10,11. Rats initiated trials by pulling a lever 
with their forepaw. They then had to keep holding the lever until a vibrotactile stimulus (0.3 s), 70 
which served as the go cue, was delivered via the lever (Fig. 1a). To discourage timing, rats 
were pseudo-randomly required to hold the lever for 0.6 s or 1.6 s (short or long delay; Fig. 1b). 
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After the go cue, the rats had to release the lever within a response window of 0.6 s to receive a 
water reward (Fig. 1a). If the rats released the lever before the cue or after the response window 
(0.6 s), the trial was considered an error trial and classified as early or late, respectively. After 
training, rats responded correctly to the go cue in more than 70% of the trials with both short 
and long delays (short delay trials: 78.2 +/- 3.1 %, long delay trials: 88.1 +/- 3.2%, all data are 
presented as the mean�±�standard error of the mean (SEM) in the rest of the manuscript 
unless otherwise noted, p=0.029, two sided paired t-test, n = 11 rats; Fig. 1c). The higher 
performance in long trials emphasized the importance of the hold period for the preparation of 80 
the movement. The reaction times (RT) distributions had a sharp peak after the go cue onset in 
both the short and long delay trials, confirming that the rats responded to the cue (Fig. 1d, 
Extended Data table 1). Taken together, the rats learned our preparation-movement task well. 
Importantly, this task entails distinct epochs for movement preparation (hold) and movement 
execution (release) and is therefore ideally suited to disentangle the contributions of RFA and 
CFA to movement preparation and execution. 

Preparation neurons are more common in RFA than CFA  
To characterize neuronal responses relating to movement preparation and execution across 
motor cortical areas during the task, we implanted 32-electrode laminar silicon probes in the 
RFA or CFA of ten rats split into two groups of five per forelimb area (Fig. 2a, Extended Data 90 
table 2). We recorded 240 neurons in the RFA and 355 neurons in the CFA (3–4 sessions per 
rat). Depending on the electrode depth12, we classified neurons above and below 0.75 mm as 
superficial or deep, respectively. In rats, the superficial layers have the same thickness in 
premotor and primary motor areas, with the premotor areas characterized by a thicker layer 613. 
The vast majority of the neurons were modulated by the task (228/240 (95%) in the RFA, and 
336/355 (95%) in the CFA); minimum of three bins with an absolute z score higher than 1.96, 
corresponding to 95% confidence intervals). 

Neurons were predominantly active during either the preparation or movement period (Figs. 
2b,c). To classify neurons as either preparation or movement neurons, we used a task 
modulation index (TMI) (TMI = (FRmove – FRprep)/(|FRmove| + |FRprep|), where FR is the 100 
normalized z-score of the firing rate in the respective period. A positive TMI identified a 
movement neuron, while a negative TMI identified a preparation neuron (Fig. 2d). In both 
superficial and deep layers, we found a higher proportion of preparation neurons in the RFA 
than in the CFA (Fig. 2d). The RFA contained similar proportions of preparation and movement 
neurons, in line with a role of RFA in motor preparation14,15, and similar to other premotor areas 
in rodents3,16–20, consolidating the homology of the RFA and primate premotor areas6,21. The 
TMI distribution for the RFA had no particular bias for preparation or movement (mean RFA 
superficial neurons TMI = 0.06 +/- 0.17, mean RFA deep neurons TMI = -0.02 +/- 0.05; Fig. 2d, 
Extended Data Fig. 1a). In contrast, most CFA neurons had higher firing rates during the 
movement period, meaning that the TMI distribution had a clear bias towards activity during the 110 
movement period (mean CFA superficial neurons TMI = 0.65 +/- 0.03, mean CFA deep neurons 
TMI = 0.33 +/- 0.06; Fig. 2d, Extended Data Fig. 1b) and suggesting that CFA is primarily 
involved in movement execution. Overall, both RFA (Fig. 2e i, ii) and CFA (Fig. 2e iii, iv) were 
modulated by the task with similar activity patterns albeit with different proportions. 

The temporal hierarchy runs from RFA to CFA  
The differential distribution of preparation and movement neurons across RFA and CFA 
suggests a functional hierarchy between the two regions. We therefore asked whether this 
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hierarchy is reflected in the timing of neuronal activity, with the hypothesis that RFA precedes 
CFA, similar to the neuronal activity in a reaching task22 and reflecting top-down RFA to CFA 
connectivity6,13,23. Because of the small number of superficial neurons in the RFA and superficial 120 
preparation neurons in the CFA (Fig. 2d i, ii), we pooled superficial and deep datasets (note that 
all results described below also remain valid when only analyzing the deep layers; Fig. 3, 
Extended Data Fig. 2, Table 3).  

In line with our hypothesis, the activity of the preparation subpopulation peaked significantly 
earlier in the RFA than in the CFA relative to movement execution in correct trials (RFAprep 
correct trials: - 0.30 +/- 0.06 s, CFAprep correct trials: - 0.05 +/- 0.10 s; NRFA = 5 rats, nRFA-prep = 58 
neurons, NCFA = 5 rats, nCFA-prep = 27 neurons; p = 0.005, two-sample Kolmogorov-Smirnov test; 
Fig. 3a i). Activity in the movement subpopulations also peaked earlier in the RFA than in the 
CFA, although the distribution of peak firing rates in the RFA was bimodal, with some neurons 
preceding and some lagging CFA activity (RFAmove1: - 0.06 +/- 0.03 s, CFAmove: 0.29 +/- 0.02 s, 130 
RFAmove2: 0.77 +/- 0.03 s; NRFA = 5 rats, nRFA-move = 71 neurons, NCFA = 5 rats, nCFA-move = 135 
neurons; p = 4.9*10-4, two-sample Kolmogorov-Smirnov test; Fig. 3a ii). Taken together, the 
interareal timing differences of both preparation and movement subpopulations support the view 
of a hierarchical information flow from RFA to CFA (Fig. 3a iii). This timing was not conserved in 
error trials, with the temporal delay between RFA and CFA depending on the type of error (Figs. 
3b, c). In early trials, preparation neurons in RFA and CFA were recruited almost simultaneously 
(Fig. 3b i). In addition, the movement subpopulations in RFA and CFA both peaked after lever 
release (Fig. 3b ii). In contrast, we found the temporal delays between RFA and CFA 
subpopulations increased in late trials (Fig. 3c i-iii). These shifts in peak neuronal activity in the 
RFA and CFA offer a glimpse into the RFA to CFA communication which seemed to break down 140 
in error trials.  
 
Temporal delays in late trials originate in the movement subpopulation of the CFA  
To investigate the transition between preparation and movement in both forelimb areas in more 
detail, we aligned the firing rates of correct and late trials to the go cue and release time. This 
allows testing if neuronal responses were time-locked to the cue or the movement. Here, we 
focused on the movement subpopulations because they are the ones with a direct correlation 
with the go cue as well as movement. When aligning the RFA movement subpopulation to the 
go cue, correct and late trials followed similar trajectories (Fig. 3d i); both trial types were 
associated with a sharp increase in neuronal activity after the go cue (Extended Data Fig. 3). 150 
The similar neuronal responses in both trial types indicated a correct detection of the go cue in 
the RFA even in late trials; therefore, the transfer into a motor command must have been 
delayed elsewhere. In contrast, the CFA movement subpopulation did not respond with the 
same latency relative to the cue in correct and late trials (Fig. 3d ii). Instead, late trials were 
characterized by a drop in neuronal activity after the go cue when aligned to the release time; 
the neuronal responses in CFA became time locked for both correct and late trials. However, 
late trials were characterized by an overall lower neuronal activity. The decreased neuronal 
activity was already apparent before the release, indicating that the CFA’s neuronal state in late 
trials might have been suboptimal. Taken together, the go cue was correctly encoded in the 
RFA in both correct and late trials, but the putatively suboptimal neuronal state in the CFA in 160 
late trials might have delayed the motor command (Fig. 3d iii). 
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Neurons projecting from RFA to CFA are involved in movement preparation and 
execution 
Given that RFA activity precedes CFA activity in correct trials and that the course of delayed 
movements might have their origin in the CFA but not in the RFA, we hypothesized that the RFA 
predominantly conveys information about the planning of the movement but does not provide 
the actual execution signal to the CFA. To test this hypothesis, we asked how identified 
subpopulations in the RFA communicate with the CFA, and how they affect behavioral 
performance. To identify RFA neurons projecting to the CFA, we employed optogenetics to 
induce antidromic spikes in the RFA by stimulating RFA axons in the CFA (Fig. 4a). We injected 170 
AAV5-hSyn-ChR2-eYFP into the RFA of three rats, implanted a laminar silicon probe in RFA 
and inserted an optical fiber into CFA (Figs. 4a–c, Extended Data Table 4; Methods). We found 
that both preparation and movement neurons project from RFA to CFA (Figs. 4 d, e; Extended 
Data Fig. 4). In total, we identified 21 out of 46 neurons (46%) projecting from RFA to CFA. Out 
of the 21 identified projecting neurons, 11 (52%) were primarily active during the preparation 
period (negative TMI) and the rest of the neurons were mainly active during the movement 
period (positive TMI, 10/21, 48%; Fig. 4f). Thus, neurons projecting from RFA to CFA convey 
both planning- and movement-related information to the CFA. 

Inverse reinforcement learning predicts opposing roles of projecting preparation and 
movement subpopulations  180 
We were puzzled by the similar percentages of preparation and movement neurons projecting 
from RFA to CFA, which did not match our initial hypothesis that the RFA mainly conveys a 
planning signal to CFA. Because we do not have the means to individually manipulate one of 
these functional subpopulations with optogenetics, we examined whether the projecting 
preparation and movement subpopulations might contribute differentially to the task through the 
lens of an inverse reinforcement learning algorithm termed NeuRL24

. Reinforcement learning is 
a (mathematical) framework that formalizes the optimization of collected reward from an agent 
(in this case a rat) which applies actions (e.g. hold or release) in states (here defined by 
temporal bins) in an environment upon solving a task. Inverse reinforcement learning (as 
performed by NeuRL) then turns the optimization procedure upside down in that the intrinsic 190 
immediate reward function of an agent has to be inferred from recorded behavior.  By mapping 
neuronal activity onto the generated reward, NeuRL can be leveraged to predict the behavioral 
effects of selective manipulation of functionally (or arbitrarily) defined subpopulations with 
simulated manipulations. Here we used NeuRL to simulate the inhibition of different 
subpopulations in RFA.  

We used the lever release times (behavior) and the activity of RFA neurons as inputs to NeuRL 
(Fig. 5a, Extended Data Fig. 5a). We extracted a reward estimate via inverse reinforcement 
learning from the behavioral data and mapped features (i.e., mean FR in 0.2 s time bins) 
derived from the activity of recorded RFA neurons onto these rewards. Through this mapping, 
we obtained reconstructed reward values for each RFA neuron contributing to the reward with 200 
different weights (feature matrix; Fig. 5b, Extended Data Fig. 5b). Using this feature matrix, we 
simulated perturbations to different subpopulations in the RFA. With these simulated inhibitions, 
we computed perturbed reward values and subsequently used them to predict new actions via 
regular, forward reinforcement learning (Fig. 5c, Extended Data Fig. 5c; methods).   

To investigate the contributions of individual neurons to motor preparation and execution, we 
perturbed the neuronal activity at the end of the preparation period (0.5 s before the go cue) or 
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the start of the movement period (starts with time of the go cue until 0.5 s after the go cue, 
covering most of the RTs distribution; Fig. 1d, Fig. 6a). First, we simulated the selective 
inhibition of all neurons projecting from RFA to CFA (Fig. 6b). NeuRL predicted that inhibiting all 
such neurons during the preparation period would result in significantly less early trials while an 210 
inhibition during the movement period would result in significantly more late trials (blue bar: 
16.6% less early trials upon inhibition in the preparation period, unpaired t test, p = 1.3*10-111; 
red bar: 9.3 % more late trials upon inhibition in the movement period, unpaired t test, p = 
1.2*10-47; Fig. 6b left). In accordance with these changes, inhibition during the preparation 
period predicted significantly shorter RTs and inhibition during the movement period resulted in 
significantly longer RTs (15 ms shorter after inhibition during the preparation period, unpaired t 
test, p = 0.003, 70 ms longer after inhibition during the movement period, unpaired t test, p = 
4.6*10-51; Fig. 6b right).  

The NeuRL approach allowed further discrimination between the projecting preparation and 
movement subpopulations. In line with previous findings in motor cortex25, we found two 220 
competing subpopulations with counteracting roles. Inhibiting the preparation subpopulation 
during the preparation period induced significantly more early trials and significantly shorter RTs 
(60% more early trials, unpaired t-test, p = 1.0*10-85 and 55 ms shorter RTs, p = 3.3*10-6; Fig. 
6c). Inhibition of the same subpopulation during the movement period caused 0.7% fewer late 
trials (not significant) and 160 ms shorter RTs (p = 3.9*10-270). In contrast, inhibition of the 
movement subpopulation during the preparation period resulted in significantly fewer early trials 
but no significant effect on RTs (26% fewer early releases, p = 8.3*10-264; 2.5 ms shorter RTs; 
Fig. 6d), while the inhibition during the movement period resulted in significantly more late trials 
and significantly longer RTs (92% more late trials, p = 0.014; and 336 ms longer RTs p = 4.9*10-

186; Fig. 6d). In other words, NeuRL assigned the preparation subpopulation a role in action 230 
suppression while the movement subpopulation was associated with action promotion.  

In vivo optogenetic inhibition confirms the role of neurons projecting from RFA to CFA 
predicted by NeuRL  
We next aimed to confirm that NeuRL provided biologically-plausible hypotheses. Because of 
the technical limitations of currently available optogenetic tools, we focus here on the first 
hypothesis about the effect of inhibiting all neurons projecting from RFA to CFA. We injected the 
cre-dependent viral vector AAV5-hSyn-DIO-NpHR-EYFP and the retrogradely travelling cre-
carrying vector retroAAV-cre into the RFA and CFA, respectively, of four rats to express 
inhibitory opsins in neurons projecting from RFA to CFA (Fig. 6e i, Extended Data Table 5; 
Methods). In line with the NeuRL predictions, inhibiting the neurons projecting from RFA to CFA 240 
during the preparation period significantly affected rat performance by increasing the number of 
early trials (early trials increased by 8.2 +/- 0.15 %; N = 4 rats, n = 10 sessions per animal; p = 
8.3*10-5, ANOVA for repeated measures; Fig. 6e ii left) but had no significant effect on the RTs 
of correct trials (Fig. 6e ii right). During the movement period, inhibiting neurons projecting from 
RFA to CFA had no effect on performance but significantly increased RTs in correct trials (RT in 
no laser trials: 0.36 +/- 0.006 s, RT in trials with laser on during the preparation period: 0.36 +/- 
0.009 s, RT in trials with laser on during the movement period: 0.38 +/- 0.007 s; N = 4 rats, n = 
10 sessions per animal; no laser versus laser during movement period p = 0.044, ANOVA for 
repeated measures; Fig. 6e ii). While the optogenetic experiment showed a less drastic impact 
on RT and error rate than the theoretical predictions (most likely due to biological variability), the 250 
results of the optogenetic experiments were still in line with the NeuRL predictions, validating 
the tool for theoretical predictions about the behavioral role of specific neurons.  
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Optogenetic inhibition of neurons projecting from RFA to CFA during rest reveals a 
predominantly excitatory connection 
So far, we have characterized the fraction of RFA to CFA projecting neurons, their response 
properties, and their impact on behavior. The missing piece remains the impact of these 
projections on CFA activity. To fill this knowledge gap, we optogenetically inhibited the neurons 
projecting from RFA to CFA during rest (i.e., the rats were not involved in a task) and 
simultaneously recorded CFA neurons with laminar probes spanning the entire cortical depth 
(Fig. 7a). Neurons projecting from RFA to CFA specifically modulated neurons in the deep 260 
layers of the CFA (neurons modulated in superficial layers: 0/16 (0%), neurons modulated in 
deep layers: 10/48 (21 %), which is consistent with previous anatomical findings26. Most 
modulated neurons decreased their activity, likely due to lack of excitatory input, and only a 
small fraction increased their activity (8/10 decreased activity, 2/10 increased activity; analysis 
windows: 0.5 s baseline period before laser compared to 0.5 s laser duration, paired t-test, p < 
0.05; Fig. 7b). Interestingly, the two neurons that increased their activity (or were disinhibited) 
had narrow waveforms (Fig. 7a, inset), suggesting a role for CFA fast-spiking (FS) interneurons 
in this pathway. Overall, these results suggest that the RFA modulation results in an increased 
predominantly excitatory activity in CFA.  
 270 
The disinhibitory effect of the projection specific optogenetic inhibition and the putative 
involvement of FS interneurons inspired us to test whether the anatomical connections can 
confirm the involvement of interneurons. In line with Dale’s principle27, the involvement of 
interneurons could be implemented in two ways: 1) Long-range GABAergic interneurons28 
projecting from RFA to the CFA, or 2) RFA excitatory neurons projecting to CFA interneurons. 
To test these hypotheses, we used transmission electron microscopy to investigate the 
synapses onto neurons in the CFA (N = 3). Pre-embedding immunogold labeling of EYFP was 
used to identify EYFP labeled axonal terminals in contact with the dendritic spines of neurons in 
CFA (Fig. 7c). To test the first hypothesis, we classified synapses as symmetric (inhibitory) or 
asymmetric (excitatory). The vast majority of the synapses were asymmetric, ruling out the first 280 
hypothesis because asymmetric synapses originate from excitatory neurons (asymmetric 
synapses: 97/100, symmetric synapses: 3/100, Extended data Fig. 6a). Interestingly, RFA 
axons targeted dendrites across layers in the CFA (Extended data Fig. 6b), suggesting complex 
dendritic integration that is then transmitted to the soma. To test the second hypothesis, we 
stained coronal sections containing CFA with anti-PV antibodies and searched for EYFP-
labelled axons across layers. Indeed, we found labelled axons that formed synapses onto PV+ 
dendrites (Fig. 7d i). In total, 32% (38/120) of the EYFP-labeled presynapses targeted PV+ 
interneurons (Fig. 7d ii). Considering that interneurons in the cortex only amount to ~20% of the 
population and that ~40% of these are PV+29, the ratio of RFA axons contacting PV+ synapses 
compared to other synapses implies that the RFA has a bias toward contacting PV+ 290 
interneurons in the CFA. In sum, RFA impacts the CFA local circuit by targeting both excitatory 
and inhibitory neurons with an unexpected bias towards PV+ interneurons.  
 
RFA to CFA projection modulates the CFA in a context- and layer-specific manner 
Our electrophysiological findings so far point to a predominantly excitatory impact of RFA on 
CFA deep layers in rats not engaged in a task. However, it has been shown that the premotor 
cortex modulates motor cortex superficial layers in a  context dependent manner30,31. Further, 
we found that the CFA receives information across layers (Extended data Fig. 6). Both 
movement and preparation neurons in RFA project to CFA and are preferentially active during 
different task epochs which might lead to spatiotemporally complex effects on CFA activity 300 
during the task. Hence, we asked whether the RFA would have an impact on the superficial 
layers of the CFA while the rats were engaged in the task and whether the RFA impact on the 
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deep layers of the CFA would remain predominantly excitatory during the preparation-
movement task. To address these questions, we employed the same optogenetic dual virus 
strategy with separate injections into the RFA and CFA (Fig. 8a). We found that 11/27 (41%) 
and 66/137(48%) of the recorded CFA preparation and movement neurons were modulated 
upon yellow laser light during the task, respectively (Fig. 8b). The inhibition periods were 
identical to the ones used before (i.e., 0.5 s before the go cue and 0.5 s after the go cue, see 
Fig. 6a). Due to the low number of modulated preparation neurons (Fig. 8b) and the fact that 
there were no systematic differences between the two populations (Extended Data Fig. 7), we 310 
pooled the two populations here after. Out of the modulated neurons, 30/77 (39%) were 
modulated by the laser exclusively in the preparation period, 34/77 (44%) by the laser during the 
movement period, and a minority of the neurons were modulated by the laser in both periods 
(13/77, 17%, Fig. 8c). In line with the observation that the projection from RFA to CFA targeted 
both excitatory and inhibitory neurons in the CFA32,33 (Fig. 7c,d), we found that a subpopulation 
of the modulated neurons decreased its activity while another subpopulation increased its 
activity upon optogenetic inhibition. Contrary to the effects of optogenetic inhibition during rest, 
both deep and superficial neurons were modulated when inhibiting the projection from the RFA 
during the task. The majority of the neurons which decreased their activity by the laser during 
the preparation period were located in the superficial layers, while the majority of the neurons 320 
that increased their activity were hosted in the deep layers (superficial modulated neurons: 
14/30 (47%), deep modulated neurons 16/30 (53%), increased activity superficial: 3/14 (21%), 
decreased activity superficial: 11/14 (79%), increased activity deep: 10/16 (62%), decreased 
activity deep: 6/16 (38%); Fig. 8d). Upon optogenetic inhibition during the movement period, 
neurons that decreased their activity were predominantly present in the superficial layers, while 
neurons in deep layers showed a balanced proportion of increase and decreased activities 
(superficial modulated neurons: 13/34 (38%), deep modulated neurons 21/34 (62%); increased 
activity superficial: 1/13 (8%), decreased activity superficial: 12/13 (92%), increased activity 
deep: 9/21 (43%), decreased activity deep: 12/21 (57%); Fig. 8e).  

In contrast to the dominant excitatory effect on the CFA outside the preparation-movement task, 330 
we found diverse effects during the task (Fig. 8f i, ii). For instance, a CFA neuron that increased 
its activity by optogenetic inhibition of the RFA projection outside the task decreased its activity 
by optogenetic inhibition of the same RFA neurons during both the preparation and movement 
period (neuron #2; Fig. 8f i), while another neuron responded similarly outside and within the 
task (neuron #3; Fig. 8f ii). The manipulation during the preparation period also led to a 
significant decrease in firing rate during the movement period (neurons #2 and #3; Fig. 8f i and 
ii, middle panels), indicating complex neuronal interactions during the task. Investigating this 
delayed impact of the optogenetic manipulation on a population level revealed that this was a 
common effect happening also in 76 neurons with no significantly modulated responses during 
laser light (Extended Data Fig.7). Outside the task, we observed this delayed effect in only one 340 
neuron which was also significantly modulated during the laser (see example neuron in Fig. 7b). 
These diverse effects suggest a more complex role for neurons projecting from RFA to CFA 
during the preparation-movement task than during rest (Fig. 8g).  

To summarize, RFA projections to CFA reorganized subpopulations in the CFA in a dynamic 
and context-dependent manner, likely utilizing local inhibitory interneurons in CFA deep layers 
(Fig. 9). Please note that optogenetic inhibition removed the excitatory RFA input into CFA. 
Thus, the effects of the optogenetic inhibition have to be reversed to obtain the impact of the 
RFA input under physiological conditions. By doing so, we see that RFA inputs to the CFA had 
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no impact on neurons in its superficial layers and were predominantly excitatory in the deep 
layers when the animal was not involved in a specific movement task. Conversely, when the 350 
animal engaged in a goal-directed task, with rich temporal patterns emerging during different 
task phases in the different subpopulations in the RFA, the impact of the RFA on neurons in 
CFA superficial layers was predominantly excitatory, and the impact on deep layers depended 
on the task phase. During movement preparation, RFA input to CFA neurons in deep layers was 
predominantly inhibitory, suppressing unwanted motor output. When the animal executed the 
movement, the RFA impact on CFA deep layers resulted in balanced excitation and inhibition, 
allowing the selection of the proper movement program. 

Discussion 
In this study, we characterized the neuronal activity in the RFA and CFA and the impact of RFA 
input on the CFA during different behavioral phases of a task to dissect the roles and 360 
interactions between these areas during preparation and movement execution. The work 
described here makes four distinct contributions to the field of motor neuroscience.  

First, we confirmed that both RFA and CFA are involved in movement planning and execution 
and that the hierarchy flows from RFA to CFA as previously suggested5–9,13–15,21,22,26,30,34–37.   In 
detail, we demonstrate here that the RFA contained a much higher number of preparation 
neurons than the CFA and that the activity of movement neurons in the RFA preceded their 
counterparts in the CFA. Importantly, we showed that this hierarchy was only present in correct 
trials, suggesting that the hierarchy is essential for performing a planned movement. Further, 
RFA neurons encoded the go cue in late trials, indicating that the signal to execute a movement 
was issued, but the motor command was delayed in the local CFA circuit. The movement 370 
subpopulation in the CFA was characterized by a lower firing rate in late trials, similar to its 
activity during the preparation period. The lower activity in CFA prior to movement in late trials 
could be a sign that the movement subpopulation was in a subspace that was suboptimal for 
generating movements38,39

. 

Second, with a phototagging approach, we revealed that the neuronal subpopulation from RFA 
to CFA contributes equally to planning and execution of movements. To go beyond this 
experimentally possible dissection, we developed an innovative machine learning-based tool 
(NeuRL) which allows the generation of predictions about neuronal subpopulations that are 
otherwise hard to assess due to their invariant responses to movement40. This novel machine-
learning algorithm enables the functional dissociation of spatiotemporally-concurrent neuronal 380 
ensembles. To disentangle behavioral functions of the preparation and movement 
subpopulations, we combined NeuRL with electrophysiology and optogenetics. We identified 
neurons projecting from RFA to CFA with a phototagging technique and used reinforcement 
learning41 to assign functional roles to the preparation and movement subpopulations24. 
Analogous to the reward system in animals42, NeuRL finds an optimal strategy based on a 
feedback signal. While common decoding methods rely on supervised learning without 
accounting for the long-term consequences of the actions, NeuRL can explicitly assign a policy 
which maximizes reward over time. Reinforcement learning has recently been used to better 
understand neuronal activity and how it influences behavior41,43. However, the feedback signal  
is generally unknown. In contrast to previous approaches, we thus employed inverse 390 
reinforcement learning, which extracted reward values from the rat behavior instead of regular 
forward reinforcement learning, which assumes the feedback signal to be known a priori. This 
approach allowed us to assign functional meaning to neuronal subpopulations by conducting 
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simulated inhibition studies based on a modified reward function inferred from the perturbed 
features. Thereby, we identified opposing roles of the preparation and movement 
subpopulations projecting from RFA to CFA with the first holding back movements and the 
second promoting actions. 

Third, using immunohistochemistry and electron microscopy we identified a surprisingly strong 
role of inhibitory interneurons in the connection between premotor and motor cortex. 
Specifically, we found that RFA neurons project to both excitatory neurons as well as PV+ 400 
interneurons. Previously, it has been shown that RFA neurons project to fast-spiking PV+ 
interneurons in CFA32, and that these interneurons are activated prior to the forelimb reaching a 
target44, playing  a role in shaping motor command45. Inputs to PV+ interneurons can be quite 
powerful as a single unitary excitatory postsynaptic potentials can evoke precisely timed action 
potentials in this cell type46. Here we added to this knowledge that RFA neurons are one of the 
sources that increase the activity of PV+ interneurons in CFA. In combination with the high 
activity of the preparation subpopulation projecting from RFA to CFA (Fig. 4e), the relatively low 
firing rate in the CFA movement subpopulation during the preparation period (Fig. 2c), and the 
narrow waveforms of the disinhibited neurons upon RFA inhibition (Fig. 7a), the EM results 
suggest that PV+ interneurons may cancel incoming excitation in the CFA during the 410 
preparation period. This assigns the RFA a major role in inhibiting involuntary movements by 
modifying CFA local circuits. 

Fourth, we provided new insights into the mechanisms and circuit dynamics between the RFA 
and CFA for gating movements. Previously, it has been shown that the information from the 
RFA is important for adapting CFA activity appropriately to task demands during locomotion on 
differently spaced ladder rungs30. The activity in the RFA also displays high specificity to either 
internally generated or externally triggered movements8,47. In line with our results, this context-
dependent information is not conveyed consistently to the CFA but can vary over behavioral 
sessions, and correlates with behavioral performance, at least in axons targeting superficial 
layers47. With our data set we close the knowledge gap about which kind of information is 420 
conveyed by neurons projecting from RFA to CFA during the distinct phases of motor planning 
and movement execution and how these neurons affect CFA activity during these different 
epochs. Specifically, we found differential impacts of RFA inputs on the CFA depending on the 
cortical layer as well as the context (i.e., activity outside the task compared to the task phases 
preparation and movement). During rest, RFA input to the CFA exclusively affected the deep 
layers in a predominantly excitatory manner. During the preparation period of the task, neurons 
projecting from RFA to CFA exhibited sustained activity that predominantly increased the 
activity of the neurons in the superficial layers and decreased the activity of the neurons in the 
deep layers of the CFA. During the movement period, neurons projecting from RFA to CFA 
showed transient activity that was linked to an increase in activity in the superficial layers, 430 
potentially via indirect pathways13, and bidirectionally modulated neurons in the deep layers of 
the CFA. Previously, it has been suggested that PV+ interneurons in the CFA play a vital role in 
the execution of movement48 and are activated before pyramidal cells during reaching44. Here, 
we propose that, depending on the task phase and the subpopulations that are active in RFA, 
RFA inputs engage inhibitory and excitatory neurons in the CFA to different extents to modulate 
local recurrent circuits. In line with a study combining optogenetics and fMRI49, the excitation of 
superficial layers argues for the upper layers having a role in local motor cortex computations by 
selectively activating ensembles in deep layers, generating the desired motor output25 (Fig. 9). 
Recurrent circuits may selectively amplify certain patterns in the feedforward input, enhancing 
the signal-to-noise ratio of the selected patterns50,51. Thereby, small patterned fluctuations in the 440 
difference between excitation and inhibition will drive large patterned fluctuations in the sum of 
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excitation and inhibition52. This might partly explain the context dependent and delayed effects: 
depending on the state of CFA, incoming RFA inputs are amplified differentially depending on 
the ongoing local circuit activity and the balance between local excitation and inhibition. Through 
the lens of dynamical systems2, this could be phrased as follows: The pathway specific 
manipulations cause changes in the CFA population along a behaviorally relevant manifold as 
the RFA to CFA connection is physiologically linked to motor behavior. Depending on the task 
phase, the behaviorally relevant manifolds in CFA and their relation to the RFA inputs differ, 
thus impacting the effect of the optogenetic manipulations.  
 450 
 
Our study allows addressing the longstanding challenge of interpreting mixed brain activities 
within brain areas where subpopulations dedicated to specific tasks are intermingled. The newly 
developed NeuRL tool enables the deciphering of the neural code of specific subpopulations 
and is amendable to humans, allowing a direct translation of our results to clinical applications. 
It solely requires extracellular neuronal measurements—a technique which was established in 
the 1950s and developed continuously in human patients up to modern high-density probes53–58. 
Thus, our newly gained knowledge about the role of specific neuronal ensembles can be 
incorporated into the design principles of modern brain-computer interfaces59–66 to allow even 
better control of external devices. 460 
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Online Methods 
Animals 660 
Female adult CD® IGS rats (Sprague Dawley; 11 rats; 8 weeks of age; 250–300 g) were used 
in this study. They were group-housed (2 to 4 per group) in large double-decker cages under a 
reversed 12 h light-dark cycle (light off from 8 a.m. to 8 p.m., for the duration of the training and 
experiments). One week before the first behavioral training, rats were handled daily. Food 
(standard lab chow) and water were provided ad libitum. During the course of the experiment, 
free access to food was maintained but water was restricted while keeping the rats at > 85% of 
their weight before water restriction. For 2 days per week, ad libitum food and water access 
were ensured. All animal procedures (surgeries, behavioral training, optogenetics, 
electrophysiological recordings, and perfusions) were approved by the Regierungspra�sidium 
Freiburg, Germany. 670 
 

Behavioral setup 
We developed a delayed Go/No-Go task and setup for freely moving rats10. In this study we 
focused on the Go part of the task. Early training utilized 4 custom-built setups for simultaneous 
training controlled individually by Med-PC software (Med Associates, Fairfax, VT). Each training 
box included a 30 x 25 x 30 cm Plexiglas box with a grounded metal floor. A 2 × 12 mm infusion 
cannula (1464LL, Acufirm, Dreieich, Germany) covered with a 7 mm (diameter) metal ball 
served as a lever. The lever was clamped to a holder 1 cm above the cage ground and between 
two 65 x 35 mm retractable Plexiglas walls. The holder was centered by two pairs of magnets 
(adhesive force 2.5 kg, model S-08-08-N, Supermagnete, Gottmadingen, Germany). We 680 
controlled the distance between magnets, and thus their force, by attaching them to M12 
screws. The axis of the holder was connected to a 10-bit magnetic angle encoder (AEAT-6010, 
Avago Technologies, San Jose, CA) reporting the left-right position. The metal holder was 
connected to a 5V source, thus forming a conductive touch sensor. To deliver vibrotactile 
stimuli, we glued a small vibrating motor (3V ERM motor, Digikey no. 1597-1244-ND, Seeed 
Technology Co., Shenzhen, China) to the lever. The vibrator, touch sensor, and angle encoder 
were controlled by an Arduino Uno (Arduino, Turin, Italy) connected via transistor-transistor-
logic (TTL) to the Med Associates control cabinet. We controlled the red cage light, reward 
delivery infusion syringe pump (PHM-107, Med Associates), and cage speaker (ENV-224AM, 
Med Associates) directly with the Med Associates cabinet. 690 

Behavioral training 
We initially trained the rats to hold the lever steadily. First, we acclimated the rats to the 
behavioral setup for one 30 min session. Then, we rewarded the rats with 3% sucrose water 
accompanied by a 12 kHz tone clicker upon touching and/or moving the lever. After associating 
touching the lever with the reward, we used Plexiglas walls to restrict the rats from using body 
parts other than the forepaw. In gradual steps, we narrowed the gap between the restriction 
walls to 2 cm and automatically increased the holding duration in steps of 10 ms after each 
successful hold. If a rat used its mouth or both forepaws, we manually decreased the reward 
size, otherwise, we increased the reward size following successful trials. We inspected the 
preferred holding direction and paw of each rat. A hold was defined as moving and keeping the 700 
lever beyond a 1 mm threshold. Typically, the rats pulled the lever in the preferred horizontal 
direction to ~5 mm until reaching a mechanical limit.  

Next, we introduced the vibrotactile stimulus. To discourage timing, we randomized the holding 
duration until stimulus presentation between 600 and 1,600 ms with a 1:1 ratio (Fig. 1), and the 
allowed reaction time (RT) window was automatically decreased from 2,000 to 600 ms. The 
stimulus frequency was set to ~200 Hz. Throughout the behavioral task, we used the 12 kHz 
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tone clicker to indicate correct trials to the rats and white noise to indicate errors (early/late 
releases). After an error, at least 1 s had to pass with the lever at center until a new trial could 
begin (time-out). 

Stereotaxic injections and implantation sites 710 
The animals were initially anesthetized with isoflurane inhalation, followed by intraperitoneal 
injection of 75 mg/kg ketamine (Medistar, Holzwickede, Germany) and 50 mg/kg medetomidine 
(Orion Pharma, Espoo, Finland). The animals were put into a transportation container covered 
with an opaque cloth to facilitate the anesthetization. Once the animals were anesthetized, they 
were positioned in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA), and their 
body temperature was maintained at 36–37 °C using a rectal thermometer and a heated blanket 
(FHC, Bowdoin, USA). The animals were kept anesthetized using ~1.0% isoflurane and 1.0 
l/min O2. For pre-surgery analgesia, we subcutaneously administered 0.05 mg/kg buprenorphine 
(Selectavet, Dr Otto Fischer GmbH, Weyarn/Holzolling, Germany). Every hour, we injected 2 ml 
of isotonic saline subcutaneously. We applied a moisturizing ointment to the eyes to prevent 720 
them from drying out (Bepanthen, Bayer HealthCare, Leverkusen, Germany). Their skin was 
disinfected with Braunol (B. Braun Melsungen AG, Melsungen, Germany) and Kodan (Schülke, 
Norderstedt, Germany) using sterile cotton tips. To perform the craniotomy, a 2 cm-long incision 
of the skin on the head was opened using a scalpel. The exposed bone was cleaned using a 
3% peroxide solution. Craniotomies were drilled bilaterally extending from −2 to +4.5 mm in the 
anterior-posterior direction and +1 to +4 mm in the lateral-medial direction relative to Bregma.  
For phototagging experiments (N = 3 rats; table 4), we injected a 1 μl viral vector (rAAV5/hSyn-
hChR2(H134R)-eYFP, UNC Vector Core, Chapel Hill, North Carolina) into the RFA at two 
different depths (0.6 and 1.2 mm, 0.5 μl each). For experiments on the inhibition of neurons 
projecting from RFA to CFA, we injected 1.4 μl of viral vector (rAAV2-Retro/CAG-Cre, UNC 730 
Vector Core, North Carolina, Chapel Hill) at four different sites in both hemispheres of the CFA 
(two points separated by ~0.5 mm in the anterior-posterior axes at depths of 0.6 and 1.2 mm, 
0.35 μl at each point). We injected two sites in the RFA with 0.75 μl of viral vector in both 
hemispheres (rAAV5/EF1a-DIO-eNpHR3.0-eYFP, UNC Vector Core) at depths of 0.6 and 1.2 
mm (0.35 μl at each point; table 5). We injected the respective areas at a rate of 100 nl/min 
using a 10 μl gas-tight Hamilton syringe (World Precision Instruments, Sarasota, Florida). To 
minimize reflux of the injected volume, we left the injection needle in the tissue for 10 additional 
minutes before slowly extracting it from the brain.  
 
For electrophysiological recordings, we inserted 2-shank, 32-channel laminar probes (E32+R-740 
150-S2-L6-200-NT, ATLAS Neuroengineering, Leuven, Belgium) into the contralateral 
hemisphere relative to the forepaw used in the experiment (N = 5 rats each with probes in the 
RFA or CFA, N = 10 rats overall; Extended Data Table 5). The probe was slowly inserted into 
the brain while the rat was held with a vacuum holder (ATLAS Neuroengineering, Leuven, 
Belgium).  
We applied a sealant (Kwik-Cast, World Precision Instruments) over the craniotomy and fixed 
the probe and/or optical fibers to the skull with UV-cured dental cement (RelyX, 3M, Saint Paul, 
MN). Self-tapping skull screws (J.I. Morris Company, Southbridge, Massachusetts) acting as a 
reference for extracellular recordings were placed above the cerebellum. For increased stability 
and reduced noise, we also cemented the custom-made electrode interface board. Rats were 750 
given >7 days of recovery before the continuation of experiments.  
 

Data acquisition 
We performed electrophysiological recordings during 3–4 sessions (minimum 15 correct trials) 
per rat with at least one week break in between sessions. We sampled the broadband signal at 
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~25 kHz using a digital head stage (ZD32, Tucker-Davis Technologies (TDT), Alachua, Florida). 
Spiking activity was bandpass filtered between 300 and 5,000 Hz. The Med Associates system 
registered behavior at 100 Hz and synchronized with the electrophysiological signal via TTL 
communication.  

Phototagging experiments were conducted eight weeks after the viral injection. Laser 760 
stimulation was conducted at 473 nm with a power of 1, 2, 4 or 8 mW out of a 200 µm optical 
fiber with at least 30 trials for each power setting at the end of the behavioral sessions during 
continued neuronal recordings (N = 3 rats, 1 session per rat). 

For inhibition experiments, we inhibited the RFA during either the preparation or movement 
periods. We used light with a wavelength of 590 nm at 15–20 mW for 0.5 s or until movement 
initiation (50% of trials). After the behavioral session, we inhibited for 0.5 s with an interstimulus 
period of 10 s. 

Data Analysis 
Behavior 
RTs were computed from the stimulus onset until the rat released the lever. Lever release was 770 
defined as the movement of the lever laterally to an amplitude of at least 2 mm. In the RT 
distributions plot (Fig. 1d), RTs were grouped in 10 ms bins for visual display. Lever position 
was quantified during the preparation period in an analysis window from 0.3 s before release up 
to release onset.  
 

Electrophysiology 
We sorted the broadband signal into units using KiloSort 67, inspected each cluster, and defined 
units based on wave shape. The binary spike-time array (1 for spike, 0 otherwise) of each unit 
was smoothed into FR with a Gaussian kernel with a standard deviation of 50 ms and then 
normalized (z score, baseline = 3 to 2 s before trial start). We defined units as modulated if the 780 
absolute z value of the FR in correct trials crossed a threshold of 1.96.  
To classify neurons, we used a metric that compares the mean firing rate during the preparation 
and movement periods: 

 

 

with FRmove referring to the firing rate during the movement period from the go cue to 1 s after 
the go cue and FRprep referring to the firing rate during the preparation period from trial 
initiation to the go cue. If TMI > 0, a neuron was classified as a movement neuron; otherwise, it 
was classified as a preparation neuron. 

In phototagging experiments, a neuron was considered as ‘tagged’ if it fulfilled three criteria: (1) 790 
a light pulse of 1 ms caused an action potential in the recorded single unit for at least 60% of the 
laser pulses (Fig. 4d top); (2) the light-induced action potential waveform was similar to the 
mean of the spontaneously occurring waveforms with a Pearson correlation coefficient higher 
than 0.7 (Fig. 4d inset), and (3) the induced action potential occurred within a latency window of 
15 ms, which was in line with the timing of antidromically-evoked action potentials 68 (Extended 
data Fig. 5).  
 
For inhibition experiments, we evaluated the performance (i.e., the difference in error rate) as 
well as the effect on RT when inhibiting during the preparation or movement periods. We only 
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considered early releases to be those occurring 0.5 s before the go cue to produce data 800 
comparable to those from early trials with a laser, which started 0.5 s before the go cue. We 
conducted the RT analysis for 10 consecutive sessions per rat.   
 
Histology 
For the histological verification of eNpHR3.0, we euthanized the animals by administering 400 
mg/kg sodium pentobarbital (Release®500, WDT, Garbsen, Germany) and transcardial 
perfusion with PBS followed by ice-cold 4 % paraformaldehyde. After removing the brains, we 
post-fixed the tissue for 2 additional days before transferring it into a solution of 30 % w/v 
sucrose (Merck KGaA, Darmstadt, Germany) in water at 4 °C for equilibration. Brains 
transferred from a sucrose solution were attached to the cooling block of a microtome with 810 
Tissue Tek (Sakura Finetek, Fisher Scientific, Germany) and were sectioned into 50 μm thin 
slices. The slices were transferred to phosphate-buffered saline (PBS) with 0.01% sodium 
azide. For antibody staining, selected slices were washed for 3 × 10 minutes in PBS on a rotary 
shaker at room temperature. The slices were blocked and permeabilized for 1 hour (PBS 0.01 
M/Triton 0.4%/BSA 5%, Sigma Aldrich, St. Louis, MO, USA) on the rotary shaker. The first 
antibody (dilution 1:1,000, monoclonal anti-Parvalbumin, P3088, Merck, Taufkirchen, Germany) 
was applied overnight at 4 °C (PBS 0.01 M/Triton 0.2%). The slices were washed for 3 × 10 min 
in PBS on the rotary shaker at room temperature. The second antibody (dilution 1:250, Cy3 goat 
anti-mouse, M30010, Thermofisher, Waltham, MA, USA) was applied for 3 h (PBS 0.01 M/Triton 
0.2%). Finally, the slices were washed for 3 × 10 min in PBS on the rotary shaker at room 820 
temperature and mounted. The slices were imaged with a Zeiss (Oberkochen, Germany) 
LSM880 confocal microscope using a 40x objective.  

Electron Microscopy 
The protocol for EM imaging has been described previously69. Briefly, slices were fixed in 4% 
PFA (w/v in 0.1 M PB; Polysciences Europe GmbH, Hirschberg a.d. Bergstraße, Germany) and 
2.5% glutaraldehyde (w/v in 0.1 PB; Carl Roth GmbH, Karlsruhe, Germany) overnight. After 
fixation, slices were washed for 4 hours in 0.1 M PB. Subsequently, slices were incubated with 
1% osmium tetroxide (Carl Roth) for 45 minutes, washed in graded ethanol (up to 50% [v/v]) for 
5 minutes each, and incubated with uranyl acetate (1% [w/v] in 70% [v/v] ethanol; Science 
Services, Munich, Germany) overnight. Each slice was then dehydrated in graded ethanol 830 
individually (80%, 90%, 98% for 5 minutes, 2 100% for 10 minutes). Subsequently, the slices 
were washed in propylene oxide (Polysciences Europe GmbH) twice for 10 minutes before 
incubation with durcupan/propylene oxide (1:1 for 1 hr; Sigma-Aldrich, Taufkirchen, Germany) 
and transferred to durcupan (overnight at room temperature). Slices were embedded in 
durcupan and cut into ultra-thin sections (55 nm) using a Leica UC6 Ultracut (Wetzlar, 
Germany). Sections were mounted onto copper grids (Plano, Wetzlar, Germany), and an 
additional Pb-citrate (Carl Roth, Karlsruhe, Germany) contrasting step was performed (3 
minutes). Electron microscopy was performed using a Philips CM100 microscope equipped with 
a Gatan Orius SC600 camera (Gatan, Pleasanton, CA, USA) at 3,900 magnification. Acquired 
images were saved as TIF files and analyzed by an investigator blinded to experimental 840 
conditions. 
 
Q-learning and hypothesis generation 
Inverse reinforcement learning 
We modeled the task of neuronal decoding in the reinforcement learning framework as a 
Markov Decision Process (MDP), where an agent (a rat) acted in an environment (preparation-
movement task). Following policy � by applying action �� � � from �-dimensional action-space � in state ��, the subject reaches a state ���� � � according to the stochastic transition model 
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� and receives scalar reward �� in each discrete time step 	. The agent has to adjust its policy � 
to maximize the expectation of long-term return 
���� 
 ∑ ��������� ��� , where � � �0,1�  is a 850 
discount factor which can be used to give more recent rewards a higher weight and to prevent 
the long-term value from running infinite in non-terminal problems (in our experiments, we use � 
=1, i.e. no discount). The action-value function represents the expected long-term value of an 
action when following policy �  (i.e., ����� , ��� 
 ������	�,�����	��
���� � ���). From the optimal 
action-value function �
  one can derive a corresponding optimal policy �
  by maximization. 
Inverse reinforcement learning recovers a reward function from observed trajectories from 
expert policy ��  under the assumption that the agent was softly maximizing the induced 
expected long-term return (i.e., according to a probability distribution). This problem has been 
solved previously using different approaches such as Max Entropy IRL70, which could be costly 
and lead to approximation errors when estimating the scalar immediate reward. 860 
Action-value Iteration 
Here, we focus on finding an optimal policy via model-based action-value iteration. The Q-
function, represented by a table with entries for every state and action, gets updated in every 
iteration � based on the Bellman optimality equation with a given transition model �: 

 

����� , ��� � �� � �max
�

�����	����������� , ����. 
 

Formalization 
In this section, we describe how to infer the scalar underlying reward function of a rat’s 
behavior, the supervised approximation of this scalar reward as a weighted combination of 
neuronal signals, and the neuronal decoding mechanism using the intrinsic reward function. 870 
 
Estimation of Intrinsic Reward 
Our main assumption is that the rodent is softly (i.e., according to a probability distribution) 
maximizing its measure of optimality, which we define to be the expected cumulative sum of an 
unknown immediate reward function, also known as the Q-value. The Q-value likely 
corresponds to activity in brain regions responsible for planning and movement71. The 
assumption of soft maximization of the measure of optimality is known as the Boltzmann 
assumption and it has already been applied to model the behavior of humans and animals in a 
plethora of prior studies72–74. In other words, the actions taken by the animal are samples from a 
Boltzmann distribution over its optimal action-values �
��,!�: 880 

#����,��∑ #����,�����

$ ����|��, 
We assume the rodent to softly maximize its measure of optimality which we define to be the 
expected cumulative sum of an unknown immediate reward function; that is, the actions taken 
by the rat were sampled from a Boltzmann distribution over its optimal action-values ����,��: 

 

#����,��∑ #����,�����

$ ����|��, 
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for all actions � 	 
, and concomitantly: 

�����,�� � ����|�� 	 �����,��

�	


� ����|��
���
|�� �

����,��, 

 

for all actions � 	 
�́ where 
�́ � 

��. Following the derivations as proposed previously 75: 

 

�
��, �� 
 �
��, &� � log *����|��+ , log *���&|��+ . 
 890 

Using the Bellman optimality equation, the immediate reward of action � in state � could thus be 
expressed by the immediate reward of some other action � 	 
�́ . The respective log-
probabilities and future action-values are: 

���, �� 
 log *����|��+ , �max
��

���	���,�,�����
��-, �-��
  ����, &� , *log *���&|��+ , �max

��
���	���,�,�����
��/, &-��+ . 

Substituting the difference between the log-probability and the discounted action-value of the 
future state �� as: 

0�� $ log *����|��+ , �max
��

���	���,�,�����
��-, �-��, 
We could put the reward of action � in state � in relation to the reward of all other actions: 

���, �� 
 0�� � 1� , 1 1 �
����

��, &� , 0�� . 
The resulting system of linear equations could be solved with least squares. We started by 
estimating the immediate reward for all terminal states and then went through the MDP in 
reverse topological order based on the model �. The Boltzmann distribution induced by the 
optimal action-value function on this learned reward was equivalent to the demonstrated 900 
arbitrary behavior distribution 75. Inverse action-value iteration (IAVI) thus returned a scalar 
intrinsic reward function which precisely encoded the recorded behavior of the rats as an 
intermediate result that served as a supervised signal to learn new features from neuronal 
spiking. 

Note that while we exploit the stochastic behavior assumption based on the Bellman optimality 
equation and while there is a connection between the response of dopamine neurons and 
temporal-difference learning 76, we only leveraged the defined computational model to estimate 
the expected long-term reward without assuming a similar mechanism in the rodent’s brain. 

Mapping of Neuronal Spiking to Intrinsic Reward 
As a second step, we mapped the neurons projecting from RFA to CFA to intrinsic reward 910 
function in a regression step to draw conclusions about the behavior based on neuronal activity. 
We hence assumed the immediate reward function to be a projection: 
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�̂�����, �� � ������ � ���, 

where � is a parameterized function of features with parameters �� (e.g., a linear combination 

or a neural network). The vector ���� � ������,… ,������
�

 contained � features based on 
the recordings of � neurons, such as the mean activity over all trials. We can fit parameters �� 
according to the class of function approximator (e.g., either by least squares or gradient 
descent) on the difference between reward ���, �� and prediction �̂�����, ��. The mapping can 
then be used to predict the resulting behavior based on neuronal spiking in different trial 
outcomes. 

Neuronal Decoding from Intrinsic Reward 920 
The parameters 2�  of �̂�4���, �� were fitted to represent immediate reward ���, �� and hence 
the underlying behavior of the rats as closely as possible. The resulting parameters could 

contribute to the generalization to any arbitrary neuronal spiking 5��� 
 65����, … , 5����8� 
which yields adjusted reward and action-values in each time step 	: 

�̂�5����, ��� 
 :65;����|2�8 and

�<
�5����, ��� 
 max
�

�� =1 �����
����

�̂�5�����, ����> . 

From the optimal Q-function �
�5���, ��  based on features 5��� , we infer the respective 
predicted action-probabilities by: 

�?6�|5���8 
 #��������,��
∑ #��������,�����

. 
To identify neurons with particular relevance for a specific type of response, we can modulate 
their neuronal activity by modifying the respective features 4����|� � �, and keeping all other 
features fixed. Thus, we can simulate the inhibition of certain neurons within the model and 
make predictions about the trial outcome and RTs. The change in behavior between the ground 930 
truth based on the recorded spiking and the predicted behavior based on the modulated 
features provided insight into the possible individual impact of these neurons on behavior. 

MDP Formulation 
We modelled the preparation-movement task as a Markovian decision process (MDP). The 
MDP was defined as a four-tuple @A, �, �, �B , where the set of states was defined by A 
C0.0s, 0.2s, … ,1.2sE F CBefore Cue, Cue, After Cue, After Cue1, After Cue2, …, Time to Release, 
Late ReleaseE F CSuccess,FailureE, discretizing the time into chunks of 0.2 s. In every state, the 
rat could pick an action from the action space � 
 Cstay,releaseE (Fig. 5). We defined the MDP 
to have deterministic transitions. In these experiments, we considered the reward function �: A G � H 
 to be unknown.  940 

We used NeuRL to make predictions about the rats’ behavior when inhibiting different sets of 
neurons: 1) the neurons projecting from RFA to CFA, including both preparation and movement 
subpopulations; 2) the preparation subpopulation projecting from RFA to CFA, and 3) the 
movement subpopulation projecting from RFA to CFA. For each set, we ran 3,000 simulations 
for control trials (no inhibition; 1,000 trials), inhibition during the preparation period (1,000 trials), 
and inhibition during the movement period (1,000 trials). We determined whether the simulated 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524944
http://creativecommons.org/licenses/by-nc-nd/4.0/


trial was early, correct, or late according to the discretized simulated release times. If the trial 
was correct or late, we used the release time to compute simulated RTs.   

Statistical tests  
Data are represented as mean +/- SEM. All statistical analyses were computed in MATLAB 950 
(Mathworks, version R2018b). In NeuRL simulations, we used a two-sample t-test and applied 
the post hoc Holm–Bonferroni method for multiple comparisons by adjusting the P-value 
correspondingly. The respective exact P-value is given in the Results section. For the 
comparison of distributions in error trial analysis, we used a two-sample Kolmogorov-Smirnov 
test. For optogenetics experiments and comparing firing rates across conditions, we used a 
repeated measure two-way ANOVA. A significant difference between two data sets was 
assumed when the Holm–Bonferroni-corrected P-value <0.05 (indicated by one asterisk in the 
figures).  
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Fig. 1: Preparation-movement task. a. Simplified illustration of the task. To initiate a trial, the 
freely moving rat had to move a lever horizontally and hold it. After a preparation period of 0.6 or 
1.6 s, the lever vibrated, which was the go cue. Following the go cue, the rat had to release the 
lever within a response window of 0.6 s to receive a reward; otherwise, the trial was considered 
a late trial. Releases during the preparation period were considered early trials. Correct trials 
were signaled with a click tone and the late trials were followed by a 1 s timeout and white 970 
noise. b. Rats learned to steadily hold the lever during the preparation period and to release the 
lever after the go cue. c. Behavioral performance in the last training session of each animal (n = 
11 rats, n = 114 sessions; correct responses in all trials: 82.6%, correct responses in trials with 
short delay: 78.0%, correct responses in trials with long delay: 89%). d. Reaction time 
distributions display a prominent peak after the go cue in both short (top) (N = 11 rats, n = 114 
sessions, n = 4,159 trials) and long (bottom) delay trials (N = 11 rats, nshort = 4,159 trials, nlong = 
3,825 trials), indicating that the rats attended to the cue. ***p<0.001, paired t-test; error bars: 
SEM. See also Extended Data Table 1. 
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Fig. 2: Activities of neuronal subpopulations in RFA and CFA. a. Reconstructed laminar silicon 
probes implantation sites in the RFA and CFA (N = 5 rats for each area). b. Raster and 
peristimulus time histogram (PSTH) of example neurons in RFA superficial (top) and deep 
layers (bottom). Neurons modulated during preparation (magenta) and movement (cyan) 
periods were observed in both superficial and deep layers. c. Same as b but in the CFA. d. 
Neurons were classified based on their mean firing rates during the preparation and movement 
periods. If a neuron had a positive task modulation index (TMI), it was classified as a movement 
neuron, otherwise, it was classified as a preparation neuron. The RFA contained similar 
proportions of preparation and movement neurons (i and ii). In contrast, the CFA had a strong 
bias towards movement neurons (iii and iv). e. Normalized firing rates (Z-score; methods) of all 990 
modulated neurons in RFA superficial layers (i), RFA deep layers (ii), CFA superficial layers (iii), 
and CFA deep layers (iv). dashed lines: go cue; magenta: preparation neurons, cyan: 
movement neurons; The shaded background shows SEM. Coronal sections in b and c adapted 
from77. See also Extended Data Fig. 1 and table 2. 
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Fig. 3: Firing rate peaks indicate a temporal hierarchy from RFA to CFA subpopulations. a. 
Normalized firing rates (z-score) and population distribution of peak activity during RFA and 
CFA preparation (i) and movement (ii) subpopulations in correct trials aligned to lever release. 
The activity of RFA subpopulations precedes those in the CFA in correct trials (iii). b and c. 
Same as a but for early and late trials, respectively. In contrast to correct trials, the temporal 1000 
hierarchy is altered in error trials with no temporal difference in early trials and a more 
pronounced temporal separation in late trials. d. Average population activity of the movement 
subpopulations in the RFA and CFA in correct and late trials. Mean normalized firing rate (z-
score) of RFA movement subpopulation aligned to go cue (i, left) and release (i, right). Mean 
normalized firing rate (z-score) of CFA movement subpopulation (ii). The go cue is encoded in 
the RFA movement subpopulation, and the motor command is encoded in the CFA movement 
subpopulation (iii). Blue: early trials, black: correct trials, red: late trials; the dashed black line 
refers to the go cue or release onset. Two-sample Kolmogorov-Smirnov tests were used for 
peak distributions in a–c. Two-way ANOVAs were used in d for repeated measures; the top 
gray bar indicates significant differences (p<0.05). The shaded background shows SEM. See 1010 
also Extended Data Fig. 2,3 and table 3. 
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Fig. 4: RFA to CFA projection conveys both preparation and movement information. A. 
Schematic of the phototagging experiment. The RFAs of rats (N = 3) were injected with AAV5-
hSyn-ChR2-eYFP. A laminar silicon probe was also implanted in RFA and an optical fiber was 
emplaced in their CFAs. At the end of the session, each rat was stimulated with 1 ms light 
pulses delivered to their CFA via the optical fiber. The light pulses induced antidromic spikes by 
activating ChR2 in RFA axonal terminals in CFA (light blue waveforms). B. Coronal section 1050 
through the RFA with cells expressing AAV5-hSyn-ChR2-eYFP; white circles: estimated 
electrode positions in RFA; scale bar = 500 µm (left). Examples of RFA neurons expressing 
AAV5-hSyn-ChR2-eYFP; scale bar 20 = µm (right). c. Coronal section of the CFA with RFA 
axons expressing eYFP in CFA; dashed white rectangle, optical fiber position in CFA; scale bar 
= 500 µm (left). Examples of CFA neurons labelled with DAPI (blue) close to RFA axons; scale 
bar = 5 µm (right). d. Raster and PSTH of a tagged neuron projecting from RFA to CFA (top). 
Inset: mean waveform of simultaneous spikes (black) and antidromically-induced spikes (light 
blue). Latency of the first spike after the light pulse (Bottom). e. Raster and PSTH of an example 
preparation (top) and movement neuron (bottom) projecting from RFA to CFA. f. Task 
modulation index (TMI) for RFA neurons projecting to the CFA (top). F. Normalized firing rates 1060 
(z-score) of all preparation (bottom left, N = 3 rats, n = 11 neurons) and movement neurons 
(bottom right, N = 3 rats, n = 10 neurons) projecting from RFA to CFA. The shaded background 
shows SEM. See also Extended Data Fig. 4 and table 4. 
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Fig. 5: Q-learning workflow. a. The inverse Q-learning framework used the rats’ behavior (lever 
release times) and neuronal activity (1), consisting of the mean firing rates of RFA neurons in 
single trials, to assign functions to different neuronal subpopulations (N = 3 rats). Recordings 
from neurons identified as projecting from RFA to CFA were used to predict the trial outcomes 1070 
and RTs. b. Training the network: a reward value was estimated from actions (hold referring to 
action b and release referring to action a) and states (success or failure) over 0.2 s bins for each 
trial. During the preparation period (0 to 1.6 s; blue circles), a state was termed ‘success’ if the 
action was hold and ‘failure’ when the action was release (2). In the movement period, a state 
was termed ‘success’ if the action was release, and after the movement period, a state was 
termed ‘failure’ regardless of the action. Based on the actions and states, a reward value was 
extracted via inverse Q-learning. This reward value was mapped onto a feature matrix 
reconstructed from the mean firing rate for each RFA neuron in 200 ms bins, giving each neuron 
a weight that contributed to the computed reward. c. Testing the network: based on the 
extracted rewards, different weights were assigned to the neurons in the behavioral task (3). 1080 
Perturbation of different neurons in the feature matrix (4) produced a new perturbed reward 
value that was computed via forward Q-learning and then used to predict the perturbed behavior 
(5). For detailed mathematical equations see Methods and Extended Data Fig. 5. 
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Fig. 6: RFA to CFA-projecting neurons promote action but the two projecting subpopulations 
play opposing roles. a. Schematic for the inhibition experiments. We inhibited RFA to CFA-
projecting neurons during either the preparation or movement periods in silico (N = 3 rats, 1,000 
simulations for each rat), using NeuRL, or in vivo (N = 4 rats) (i). Schematic illustration of the 
different subpopulations (ii). b. Effect of inhibiting all RFA to CFA-projecting neurons in silico (n 
= 21 neurons) during the preparation period on error rate and RT. Neuronal inhibition 1110 
significantly decreased early trials (left) and significantly shortened RT while inhibition during the 
movement period significantly increased late trials and increased RT (right). c. Same metrics as 
in b but relating to inhibition of the RFA to CFA preparation subpopulation (n = 10 neurons) in 
silico. We predicted significantly more early trials upon inhibition during the preparation periods 
(left). Further, we predicted shorter RT when inhibiting during the preparation or the movement 
period (right). d. We predicted that inhibiting the RFA to CFA-projecting movement 
subpopulation (n = 10 neurons) in silico during the preparation period would cause significantly 
fewer early trials and more late trials when inhibited during the movement period (left). Further, 
we predicted longer RTs when inhibiting during the movement period (right). e. Validating Q-
learning with optogenetics. AAV-D-eNpHr-eYPF was injected bilaterally into the RFA and a 1120 
retrograde viral vector carrying cre recombinase was injected into the CFA (i). Optical fibers 
were implanted bilaterally into the RFA. Inhibiting all RFA to CFA-projecting neurons 
significantly decreased early trials when inhibiting during the preparation period and significantly 
increased RT during the movement period (ii). Separated lines represent individual animals; * 
p<0.05, **p<0.01, *** p<0.001, unpaired t-test for NeuRL simulations (b–d), repeated measure 
two-way ANOVA for optogenetics (e). Coronal sections in e (i) adapted from77. See also 
Extended Data table 5. 
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Fig. 7: Neurons projecting from RFA to CFA modulate CFA neurons bidirectionally involving 
inhibitory interneurons. a. Schematic of injection and illumination scheme (upper panel). A 
subpopulation of neurons in the CFA (N = 3 rats, n = 10 neurons) was activated (light blue) 1140 
while another was suppressed (light red) upon the inhibition of the RFA to CFA projection 
neurons outside the task (bottom left). Normalized firing rate (z-score) of all neurons modulated 
by the inhibition of neurons projecting from RFA to CFA (bottom right, one session each). b. The 
proportion of neurons in the superficial and deep layers activated and suppressed by inhibiting 
neurons projecting from RFA to CFA (top). Raster and PSTH example of a neuron activated and 
suppressed by inhibiting RFA to CFA projection neurons outside the task (bottom). c. RFA 
projects to excitatory as well as inhibitory neurons in CFA. Confocal image of coronal section 
through the CFA with AAV-DIO-eNpHr-eYFP expressing EYFP in RFA axons (i, left panel). 
Electron microscopy (EM) image in the CFA showing an RFA axonal terminal contacting a 
dendritic spine in CFA (i, right panel). Example of a PV interneuron in the CFA targeted by 1150 
axons from RFA. Confocal image of a coronal section through the CFA expressing EYFP in 
RFA axons projecting to CFA. Neurons were labelled with an antibody against parvalbumin 
(PV). Confocal image example of coronal section (ii, left). EM image in the CFA showing an 
RFA axonal terminal contacting a spine of a PV+ interneuron in the CFA (ii, right). d. Counts of 
synapses with EYFP and synapses with EYFP and PV (i; N = 1 rat, n = 6 arbitrary lines). Ratio 
of RFA pre-synapses targeting PV+ interneuron post-synapses to total RFA EYFP+ pre-
synapses in the CFA for different arbitrary lines (ii), note that line 1 and 2 have the same ratio. 
Scale bar in confocal images = 20 µm, scale bar in EM images = 100 nm; white arrow: PV+ 
interneurons; green arrows in EM: Immunogold staining against EYFP particles in RFA pre-
synaptic terminal, red arrows: Immunogold staining against PV in CFA post-synapse, black 1160 
asterisk: pre-synapse, black arrow: synaptic cleft, white circle: post-synapse; the shaded 
background shows SEM; * p < 0.05, *** p < 0.001, paired t test compared to 0.5 s baseline 
before laser onset.  See also Extended Data Table. 5. 
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Fig. 8: RFA to CFA projections affect CFA neuronal activity in a task phase and cortical layer 
dependent manner. a. Schematic of experimental strategy. AAV-Dio-eNpHr-eYFP was injected 
bilaterally into the RFA and a retrograde viral vector carrying cre recombinase (retroAAV-cre) 
was injected into the CFA. Optical fibers were implanted bilaterally into the RFA and a laminar 1170 
silicon probe was implanted into the CFA (n= 3 rats). b. The proportion of CFA neurons 
significantly modulated by inhibiting RFA to CFA-projecting neurons. c. Fractions of CFA 
neurons modulated by optogenetic inhibition of RFA projection neurons during the different task 
periods. The task period refers to the laser on time. Neuronal modulation was tested during 
laser on. d. Effect of inhibiting RFA to CFA projection on CFA neurons. Example of modulated 
neurons that increased activity (left panel) and decreased activity (right panel) during the 
preparation period, respectively. The proportion of neurons that increased and decreased 
activity during the preparation period and their distribution in superficial and deep layers (middle 
panel). e. Same as d but when inhibiting the RFA to CFA projection during the movement 
period. Most modulated neurons decreased their activity during the movement period when 1180 
inhibiting RFA to CFA projection. f. Neurons react differentially to the inhibition of RFA to CFA 
projection depending on whether the inhibition happened outside the task or during the 
preparation period or movement periods of the task. For instance, the activity of neuron #2 
decreased by the manipulation outside the task (i, left panel), increased by the manipulation 
during the preparation period (I, middle panel), and remained unaffected by the manipulation 
during the movement period (I, right panel). In contrast, the activity of neuron #3 consistently 
decreased by the manipulation outside the preparation-movement task (i, left panel), as well as 
during the task (ii, middle and right panels). g. Summary of all neurons modulated outside the 
task and their response within the task (neurons # 1 to 10) (light blue bar: increased activity, 
light red bar: decreased activity, dashed bar: modulated after laser offset, black bar: not 1190 
affected). Yellow bar: laser illumination. Gray shaded area: p<0.05, two-way ANOVA for 
repeated measure. Black: Trials without laser illumination, light red: neurons significantly 
decreased their activity by inhibiting RFA to CFA-projecting neurons, light blue, neurons 
significantly increased their activity by inhibiting RFA to CFA-projecting neurons, orange bar: 
time of laser illumination, grey bar: time bins significantly different than control; statistical tests 
were ANOVA for repeated measures for two curves comparison, gray shaded areas: p<0.05, 
paired t test for comparison to baseline outside the task, * p <  0.05; the shaded backgrounds 
shows SEM. See also Extended Data Fig. 7 and Table. 5. 
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Fig. 9: Schematic interpretation of the context- and layer-dependent impact of RFA on CFA. 
RFA (green circles) projection to CFA (green lines) impacts at least two different subpopulations 
in the CFA. The RFA targets both excitatory (blue circles) and inhibitory neurons (red circles) in 
the CFA. Depending on the layer and context, RFA input had different impacts on the CFA. The 
RFA did not impact CFA superficial layer activity during rest. During the preparation and 
movement periods, RFA input led to a net excitation in the CFA, amplifying CFA local circuits in 1220 
the superficial layers. The RFA input to the CFA was mainly excitatory in its deep layers during 
rest, allowing a wide range of spontaneous movements. During the preparation period, the RFA 
input was predominantly inhibitory in the deep layers of CFA via the preferential activation of 
inhibitory neurons, and hence suppressed movements. During the movement period, the RFA 
bidirectionally modulated the CFA in the deep layers, leading to activation of one neuronal 
subpopulation and the suppression of another. Please note that the impact of RFA on excitatory 
or inhibitory CFA neurons refer to net effects, not to the targeting of individual neurons. 
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Extended Data Fig. 1: Raster and PSTH of neuron examples with extreme Task 
Modulation Indices (TMI). Related to Fig.2 a. Example of an RFA preparation neuron with a 
TMI = -1. b. Example of an RFA neuron with a TMI close to zero. c. Example of a CFA 
movement neuron with a TMI = +1. The shaded background shows SEM. 
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Extended Data Fig. 2: Similar FR patterns in deep-layer subpopulations compared to an 
analysis of pooled superficial and deep subpopulations (Fig. 3). Related to Fig. 3. The 1240 
shaded background shows SEM. 
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Extended Data Fig. 3: Similar Peak FR latency in RFA in correct and late trials. Related to 
Fig. 3. a. Probability of the peak firing rate of RFA neurons in correct trials. b. Same as a but in 
late trials.  
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Extended Data Fig. 4: First spike latency of tagged neurons is not affected by laser 
intensity. Related to Fig. 4. a. Population latency response with a laser intensity of 1 mW. b, c, 1250 
and d same as a but for intensities at 2, r, and 8 mW respectively. 
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Extended Data Fig. 5: Equations and their relation to the Q-learning flow. Related to Fig. 5 
a. The inverse Q-learning framework used the rats’ behavior (lever release times) and neuronal 
activity, consisting of the mean firing rates of RFA neurons in single trials, to assign functions to 
different neuronal subpopulations (N = 3 rats). Recordings from neurons identified as projecting 
from RFA to CFA were used to predict the trial outcomes and RTs. b. Training the network: a 
reward value was estimated from actions (hold referring to action b and release referring to 
action a) and states (success or failure) over 0.2 s bins for each trial. During the preparation 1260 
period (0 to 1.6 s; blue circles), a state was termed ‘success’ if the action was hold and ‘failure’ 
when the action was release. In the movement period, a state was termed ‘success’ if the action 
was release, and after the movement period, a state was termed ‘failure’ regardless of the 
action. Based on the actions and states, a reward value was extracted via inverse Q-learning. 
An inverse Action-value iteration (IAVI) is used to compute the immediate reward of action a in 
state S can be expressed by the immediate reward of some other action b   (1), returning an 
intrinsic reward function that encoded the behavior of the rats as an intermediate result that 
serve as a supervised signal to learn a mapping from the neuronal signals. Here we used these 
reward values to map onto a feature matrix reconstructed from the mean firing rate for each 
RFA neuron in 200 ms bins, giving each neuron a weight that contributed to the computed 1270 
reward (2). c. Testing the network: based on the extracted rewards, different weights were 
assigned to the neurons in the behavioral task. Perturbation of different neurons in the feature 
matrix produced a new perturbed reward value that was computed via forward Q-learning (3) 
and then used to predict the perturbed behavior.    
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Extended Data Fig. 6: The RFA predominantly forms asymmetric synapses in both 
superficial and deep layers of the CFA. Related to Fig. 7. a. Examples of asymmetric (i) and 
symmetric synapses (ii). The vast majority of RFA axons form asymmetric synapses in the CFA 
(97/100, 97%), suggesting that the input from the RFA was dominantly excitatory. b. RFA axons 
target CFA spines in both the superficial (i) and (ii) deep layers. Scale bar in a = 100 nm, scale 1280 
bar in b = 200 nm, black asterisk: pre-synapse, black arrow: synaptic cleft, white circle: post-
synapse. 
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Extended Data Fig. 7: Delayed optogenetic effect on CFA neurons. Related to Fig. 8. a. 
Proportions of preparation neurons (left) and movement neurons (right) modulated by inhibiting 
neurons projecting from RFA to CFA in different task periods along with fractions of neurons 
modulated during laser on time, after laser offset, or both. b. Raster and PSTH of example 
neurons with significantly increased activity after the laser offset. Laser was on during 
preparation period (left) or movement period (right). c. Same as b but for neurons with 
significantly decreased activity after laser offset.   1290 
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Extended Data Table 1: RTs and performance were similar in short- and long-delay trials.  

 

Extended Data Table 2: Coordinates of silicon probe implantation sites in the RFA and CFA. 
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Extended Data Table 3: Similar peak firing rates in superficial and deep subpopulations. 
 
 

 1300 
Extended Data Table 4: Injection coordinates in phototagging experiments. 
 
 

 
Extended Data Table 5: Injection coordinates, silicon probes, and optical fiber implantation 
areas for inhibition experiments. 
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