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The extent and arrangement of land cover types on our planet directly affects biodiversity,
carbon storage, water quality, and many other critical social and ecological conditions at
virtually all scales. Given the fundamental importance of land cover, a key mandate for land
system scientists is to describe the mechanisms by which pertinent cover types spread and
shrink. Identifying causal drivers of change is challenging however, because land systems,
such as small-scale agricultural communities, do not lend themselves well to controlled ex-
perimentation for logistical and ethical reasons. Even natural experiments in these systems
can produce only limited causal inference as they often contain unobserved confounding
drivers of land cover change and complex feedbacks between drivers and outcomes. Land
system scientists commonly grapple with this complexity by using computer simulations
to explicitly delineate hypothesized causal pathways that could have resulted in observed
land cover change. Yet, land system science lacks a systematic method for comparing mul-
tiple hypothesized pathways and quantifying the probability that a given simulated causal
process was in fact responsible for the patterns observed. Here we use a case study of agricul-
tural expansion in Pemba, Tanzania to demonstrate how approximate Bayesian computation
(ABC) provides a straightforward solution to this methodological gap. Specifically, we pair
an individual-based simulation of land cover change in Pemba with ABC to probabilistically
estimate the likelihood that observed deforestation from 2018 to 2021 was driven by soil
degradation rather than external market forces. Using this approach, we can show not only
how well a specific hypothesized mechanism fits with empirical data on land cover change,
but we can also quantify the range of other mechanisms that could have reasonably produced
the same outcome (i.e. equifinality). While ABC was developed for use in population genet-
ics, we argue that it is particularly promising as a tool for causal inference for land system
science given the wealth of data available in the satellite record. Thus, this paper demon-
strates a robust process for identifying the emergent landscape-level signatures of complex
social-ecological mechanisms.
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1 - Introduction

The mosaic of land cover on the surface of our planet is a product of complex social-ecological
dynamics that make up the complete land system (B. L. Turner, Lambin, and Reenberg
2007; B. L. Turner, Lambin, and Verburg 2021). Changes in Earth’s terrestrial surface have
profound implications for ecosystem functioning and human wellbeing, and as such, are of
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critical importance to understand and predict (Steffen et al. 2006). A key challenge in un-
derstanding land cover change and designing effective policies is that there are often multiple
plausible, and even interacting mechanisms that can cause a switch in land cover from one
state to another (Lambin and Meyfroidt 2010). For example, in the case of agricultural
frontier expansion, depletion of soil fertility in existing plots often promotes the conversion
of nearby natural vegetation to new cropland, thus pushing the frontier outward (Casetti
and Gauthier 1977). Agricultural frontier expansion into forested lands is also observed
however, as a result of increased market value for crops and increased population pressure
(P. Meyfroidt et al. 2018).

When designing policies to limit the conversion of natural areas into more intensive
land use types such as rotational agriculture, it is important to determine the drivers of
conversion, because the impact of a given policy will depend on the dominant driver. The
introduction of new agricultural technologies, for instance, can have drastically different
effects on the landscape depending on the primary driver of frontier expansion in a given
system (see Kaimowitz et al. 1998 for a foundational review). If loss of soil fertility is the
primary driver, new technologies can limit forest conversion as they allow existing plots to
be farmed for longer periods of time, minimizing the need for agricultural operations to
change location. However, if market forces are the primary driver of frontier expansion, this
same intervention is likely to incentivize further forest conversion by increasing the returns
from any given agricultural plot (P. Meyfroidt et al. 2018). Despite the importance of
identifying causal processes in land cover change, actually doing so in any particular case
has often proven difficult given the inherent social-ecological complexity of land systems
(Patrick Meyfroidt 2016; B. Turner et al. 2020).

Land systems are complex adaptive systems characterized by feedbacks between the
human and ecological subsystems, where a change in the state of one affects ongoing processes
in the other and vice versa (Berkes, Folke, and Colding 2000; Le, Seidl, and Scholz 2012;
Folke 2007). The possible distribution of land cover types in any one area is also highly
path dependent, or constrained by past states and trajectories, sometimes further muddying
the relationship between actual drivers and outcomes (Liu et al. 2007). Standard statistical
tests fail to produce reliable inference in complex systems exhibiting feedbacks and path
dependence, given that it is generally impossible to specify likelihood functions for such
processes (Levin et al. 2013). Thus, while critical, identifying causal processes in land
systems and social-ecological systems generally has proven difficult.

To begin to build causal theory in complex land systems, researchers commonly use com-
puter simulations to abstract key phenomena and produce ‘what-if’ scenarios (Ahimbisibwe
et al. 2021; An et al. 2021). Simulations allow researchers to code complexities such as
feedbacks and path dependence directly into a model of the processes under examination, in
order to formally define a hypothesized causal mechanism and check the logical implications
and internal validity of their assumptions (Epstein 2008; Verburg 2006). While simulations
like this are important for theorizing about social-ecological systems, it can be difficult to
relate them back to empirical data and tell where exactly the real-world sits in the multi-
dimensional parameter space of the model (Ren et al. 2019). Without this information, we
are limited in our knowledge of how well a given simulation accurately distills the processes
we are hoping to examine, and how we might use such a model to infer important things
about the real-world.
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The biological sciences have largely led the development of methods for comparing sim-
ulated, theoretical causal processes to observed data. Ecological research in particular has
made considerable use of simulation modeling to theorize about how complex interactions
among individuals lead to observed patterns at the population level (i.e. individual-based
modeling) (Grimm 1999; DeAngelis and Grimm 2014; Grimm and Railsback 2013). Rel-
atively early on in the use of individual-based modeling in ecology, researchers developed
the general process of pattern-oriented modeling in which a given hypothesis is evaluated on
its ability to recreate an observed biological pattern at an appropriate temporal and spatial
scale (Wiegand et al. 2003; Grimm et al. 2005). This method allowed researchers to match
observed trends in population change with plausible rates for various demographic parame-
ters such as pre-breeding survival in woodpeckers, road mortality in lynx, and annual male
survival in amphibians, among many others Wiegand et al. (2003). While pattern-oriented
modeling provides a general structure for interrogating causal hypotheses of complex phe-
nomena with empirical data, it does not adequately account for stochasticity in the outcomes
of hypothesized mechanisms. In particular, this method fails to quantify the complete range
of model parameters that may reasonably reproduce observed patterns and the frequency in
which they do so.

Toward this aim, approximate Bayesian computation (ABC) has emerged as a formal
method of pattern-oriented modeling in which researchers run simulation models across many
parameter values and systematically accept or reject the outputs of each run as consistent
with observed data. All accepted parameter values are then aggregated into a probability
distribution of parameter values that are likely to produce the observed data (Hartig et al.
2011; Troost et al. 2022). ABC has proven effective for identifying the range of simulation
model parameters consistent with observed data across a wide breadth of biological fields
from ecology to epidemiology (Scranton, Knape, and Valpine 2014; Kosmala et al. 2016;
Vaart, Johnston, and Sibly 2016; Boult et al. 2018; Martínez et al. 2011; Cipriotti et
al. 2012). When different simulation parameters represent specific hypothesized causal
processes, ABC can then be used to estimate the probability that a given causal process
produced a given set of observed data. Importantly, ABC enables researchers to statistically
estimate model parameters even for generative models containing complex processes such as
the feedbacks and path dependence characteristic of social-ecological systems (Gallagher et
al. 2021).

In this paper we demonstrate the utility of ABC for generative inference in complex land
systems and social-ecological systems generally. Specifically, we simulate hypothesized pat-
terns of agricultural expansion in a small island system given two possible drivers, declining
soil fertility and external market forces. We then filter the range of possible model parame-
ters to just the inputs that produce land use patterns consistent with the observed time-series
of agricultural frontier expansion. We show that this method allows us to determine the pro-
portion of each of these drivers in causing the observed agricultural expansion in our study
system, Pemba Island, Tanzania. In this way, we provide a straightforward demonstration
for linking land system simulations with empirical data to draw causal inference in even very
complex systems involving feedbacks and path dependence.
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2 - Study system

2.1 - Pemba

The Indian Ocean archipelago of Zanzibar is a semi-autonomous jurisdiction lying off the
coast of Tanzania. Pemba, the northernmost island, is densely populated with 428 people
per square kilometer. While the island has a few main population centers (Wete, Chake
Chake, and Mkoani), the vast majority of the island’s 400,000 people live in small villages
scattered across some 120 wards (shehia), all of which are connected by a dense, relatively
modern road network (fig. 1). Based on the 2022 census, we estimate the average growth
rate between 2012 and 2022 to be about 2.1%, more than double the world average of 0.9%
per year.

The rural economy of Pemba is primarily subsistence (farming, fishing, and livestock),
with a single important cash crop, cloves. Cloves were introduced to the island in the
early 19th century and have come to dominate the economy of the island’s western half due
to the region’s highly productive soils (see below). In contrast, the island’s eastern side,
characterized by poor, shallow soil, has lower human population density, is less developed,
and is generally less economically productive. For example, in an extensive household survey
focused on economic production carried out in 2017, we find that the average household
income from the sale of crops (excluding cloves) in the east is approximately $25, compared
with an estimated $80 in the highly productive western half.

Nevertheless, there is considerable pressure in the east for new farmland. Some 30%
of All eastern households surveyed stated that they had cleared forested land to expand
their farming operations in the past 7 years. On average, households report clearing ap-
proximately 0.91 acres, primarily to plant staple crops such as cassava. And while cassava
is almost exclusively a subsistence crop in Pemba, there has been considerable pressure to
develop the Pemban economy in the past decade, as it has lagged behind the rest of Tan-
zania and Zanzibar. New development initiatives, particularly in agriculture, are a constant
of government programming, and new crops such as watermelon and tomatoes are being
experimented with on the once underutilized eastern soils. However, Pemba has historically
struggled to develop its own internal market for agricultural goods, and the impact that
these new cash crops are having on the eastern landscape is unknown.

2.2 - Coral rag vegetation and rotational agriculture

Pemba is a narrow island, in many places just 15 kilometers wide, yet most of the envi-
ronmental variation exists across the narrow east/west span. This is owed to three distinct
soil types that run the length of the island and can generally be thought of as going from
deep and fertile in the west, to shallow and nutrient poor in the east (Stockley 1928). The
easternmost topography is characterized by jagged, fossilized coral beds covered with a shal-
low soil layer and scrubby vegetation ranging from approximately 1 to 5 meters in height
(i.e. coral rag forest) (Burgess and Clarke 2000; Burrows et al. 2018). This forest type has
traditionally been overlooked by conservation efforts in Pemba, and Zanzibar generally, yet
it is critical habitat for a variety of plant and animal species such as the endemic Pemba
flying fox (Pteropus voeltzkowi) (Kingdon 1988).
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Figure 1: Inset map showing the location of Pemba island relative to the Tanzanian mainland (upper left)
and the dense Pemban road network (main figure).
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Figure 2: Panels A, B, C, and D show the process of coral rag forest conversion to agriculture in Pemba
in four distinct stages. Panel A shows the cutting of coral rag vegetation, which is then left to dry before
burning. Panel B shows a freshly burned plot before planting. Panel C shows a productive agricultural field.
Panel D shows a fallow agricultural field.
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The shallow soils atop porous coral rag geology characteristic to eastern Pemba cannot
be productively farmed for long, continuous periods. Farmers in this region thus typically
rely on rotational swidden agriculture where primary forest is cleared and the land is farmed
for a short period, then left to recharge for a number of years (fig 2). While this process
could potentially be interrupted by regenerative agricultural practices or the introduction of
rainwater catchment systems, currently farmers in this region lack resources to escape the
cycle of ecologically costly, short-term resource extraction (Wild et al. 2020; Biazin et al.
2012; Garrity et al. 2010). Thus, in this system, there are considerable feedbacks between
the condition of the environment, decisions made by farmers to clear and farm a forested
area, and the state of the environment in future time periods. Further, as any one forested
area is cleared, it opens new patches to potential clearing through frontier expansion. Hence,
specific patches available in any one time period are highly dependent on social-ecological
events in previous time steps. Thus, this system displays both the feedbacks and path
dependence characteristic of complex social-ecological systems.

3 - Methods

3.1 - Data

3.1.1 - Land cover classification

We produced 20 m land cover maps using top of atmosphere Sentinel-2 time series imagery
and ancillary datasets in a data fusion approach using Google Earth Engine (GEE) (Gorelick
et al. 2017; Mondal et al. 2019). GEE is an open-access cloud computing platform that hosts
petabytes of freely available earth observation data, and is ideal for creating land cover maps
with built-in classification functions. For this study, we created annual median composite
images for conversion into thematic land cover maps. We filtered the time series by date,
and used the image metadata to further filter by estimated cloud cover, using a threshold
of <20%. We then used the ‘QA60’ quality band to remove any remaining clouds prior to
creating the composites of median values. Beyond the native Sentinel-2 spectral bands, we
calculated common normalized difference indices useful for distinguishing common land cover
types such as the Normalized Difference Vegetation Index (and red edge adaptations) and
the Normalized Difference Water Index (NDWI), as well as its modified version (MNDWI)
(DeFries and Townshend 1994; Schuster, Förster, and Kleinschmit 2012; Xu 2006; Gao 1996).
We also used synthetic aperture radar (SAR) backscatter from the corresponding Sentinel-1
ground range detected time series available in GEE. We used SAR scenes from ascending
paths only and incorporated both vertical-vertical and vertical-horizontal polarizations in our
analysis. SAR data are known to be influenced by varying incidence angles, so we normalized
these images by multiplying the backscatter by the incidence angle with the understanding
that greater incidence angles result in less backscatter returned to the instrument (Banks
et al. 2019; Kaplan et al. 2021). To reduce inherent speckle in the SAR images, we opted
for a time for space substitution by using a mean composite of all images for the given
year to maintain a 10 m spatial resolution. Lastly, we considered topographic covariates for
classification (elevation, slope, and aspect derived from the NASA Shuttle Radar Topography
Mission digital elevation model) that dictate locations of land covers of interest relative to
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sea level and topography (Table S1) (Farr et al. 2007).

Figure 3: Land cover estimates for the year 2018 in Pemba. The classification for each 20m pixel is distin-
guished by color, with the class of interest, coral rag vegetation, highlighted in pink. Black lines show each
of the 19 shehia included in this study.

From each composite image, we collected representative training samples for all classes of
interest (mangrove, high forest, agriculture, urban, bare, coral rag, other woody vegetation,
and water). We trained a random forest classifier using training samples from 2018, 2019,
& 2021 to account for potentially varying atmospheric and illumination conditions among
images (Breiman 2001). The random forest we used for classification had 100 trees, and
utilized four variables per split (the square root of the number of covariates), consistent with
other remote sensing applications (Belgiu and Drăguţ 2016). Due to relative class imbalances,
we chose to use a stratified random sampling design to assess the accuracy of our outputs, and
computed area adjusted accuracy metrics (Olofsson et al. 2013; Stehman and Foody 2019).
An expert hand labeled these stratified points based on high resolution median composite
PlanetScope images with 20 points from each mapped class. Results show estimated overall
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accuracies of 92.86% (+/-4.21%) and 95.93% (+/- 2.95%) for 2018 and 2021, respectively
(Table S2, Table S3). Much of the confusion and sources of error in the maps is found among
upland woody vegetation classes (high forest, mangrove, and other woody vegetation) that
share similar spectral and physical characteristics. Other mentionable errors occur among
urban and agriculture in 2018, and bare and agriculture in 2021, leading to relatively high
uncertainty for area estimates and producer’s accuracies in the rare urban and bare classes
in 2018 and 2021, respectively (Table S4, Table S5).

3.1.1 - Interview data

In July 2021, we conducted informal interviews with staff of Community Forests Pemba, a
nonprofit aimed at building conservation capacity on the island, and farmers in four shehia
with coral rag forests in the east of the island. Researchers asked farmers about how they
make decisions regarding when and how long to farm and fallow agricultural plots, as well
as how they decide to clear forest vegetation to establish new cropland. There was broad
consensus among non-profit staff and farmers that agricultural plots in these areas are typ-
ically farmed for two years and then left fallow for three years. Clearing forested land is
labor intensive and thus, forested land is only cleared when nearby productive plots reach
their two-year limit and no other previously-cleared adjacent plots are available.

3.2 - Individual-based simulation

Our individual-based model incorporates two mechanisms of land conversion from coral rag
vegetation to productive agricultural land. The first follows the decision rules described
during the farmer interviews where coral rag vegetation is converted in response to soil
degradation and space limitations following the fallowing of cropland. Under this mechanism,
each pixel (20m area) is autonomous and follows the following basic set of decision rules
also described visually in figure 4. Each pixel classified as agriculture in the study shehia is
initialized randomly as either productive or fallow. Each productive agricultural pixel is then
randomly assigned to either the first or second year of agricultural production. Each fallow
agricultural pixel is randomly assigned as in the first, second, or third year of fallow time.
When transitioning to the next year, agricultural pixels in their second year of production go
fallow and the lost agricultural production is relocated as follows. If there is an adjacent (8
directional) fallow pixel in the final (third) year, the crop production moves there. If there is
no adjacent third year fallow pixel available and there is adjacent coral rag vegetation, that
coral rag pixel is converted to first year productive agriculture for the next year. All other
land cover types (e.g. water, urban, mangrove, etc.) are left alone.

The second mechanism of land conversion from coral rag vegetation to productive agricul-
tural land represents all other factors driving land conversion outside of the soil degradation
process. In our system, the most prominent other factors include a rapidly growing popu-
lation and the increasing market value for crops. Under this mechanism, some additional
percentage of coral rag vegetation is converted to first year agriculture each year, represent-
ing a yearly rate of forest loss caused by factors other than soil degradation. Coral rag pixels
allocated to conversion are those that are adjacent to the greatest number of agricultural
pixels. When coral rag pixels are adjacent to an equal number of agricultural pixels, then
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Figure 4: Visual representation of the individual-based simulation used to model coral rag vegetation con-
version to agriculture in each of the 19 shehia included in this study. The top two boxes show the competing
causal forces driving land conversion. The bottom portion of the figure shows how those forces affect the
pixel-based land cover in each time step.
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the coral rag pixels closest to a road are selected for conversion to first year agricultural land.
A visual representation of this simulation can be found in figure 4.

For each run of this simulation, the observed land cover on Pemba Island in 2018 (fig. 3)
is used as the starting year and the model is run for three time steps to yield a predicted
land cover for 2021, given a set rate of externally driven agricultural expansion. By then
comparing this predicted land cover in 2021 to the observed land cover in 2018, we can
produce a predicted number of coral rag pixels to be converted to agriculture under different
rates of externally driven land conversion.

3.3 - Approximate Bayesian computation (ABC)

As described in the introduction, simulation modeling allows researchers to formally express
complex, hypothesized causal mechanisms in land system science. The primary limitation
for the use of simulation modeling to enhance our understanding of real-world causality,
however, is the absence of a straightforward statistical process for relating simulations to
empirical data. Approximate Bayesian computation is one way to produce such generative
inference (Kandler and Powell 2018). In this framework, researchers run a simulation model
under a wide range of parameter combinations, representing alternative hypotheses, to pro-
duce many simulated datasets for which all parameters and outcomes of interest are known.
All simulated datasets are then systematically accepted or rejected as consistent with the
observed data, and the combination of model parameters that provides the best fit is esti-
mated probabilistically (Vaart et al. 2015; Beaumont, Zhang, and Balding 2002). Hence,
ABC allows researchers to quantitatively compare the likelihoods of competing hypothesized
causal mechanisms in complex land systems.

In this study we vary just one model parameter, the externally driven rate of coral rag
vegetation conversion to rotational agriculture. We first specify a prior distribution that we
believe will capture all possible values of this parameter of interest (fig. 5). This prior is
based on a combination of calibration with earlier models, and a priori understanding of the
system from working with local conservation organizations and farmers.

We then run our simulation model 2,000 times using draws from this prior distribution
as the parameter of interest — the externally driven rate of coral rag forest conversion. For
each run, the model then produces a synthetic dataset including the number of expected
agricultural conversions for each shehia in our study. Each of these synthetic datasets is
then accepted or rejected as consistent with the observed changes in land cover as measured
through our 20m land cover classification map for 2021. We use an acceptance criteria
of predicted agricultural conversions within 10% of the observed conversions. Finally, the
parameter value for the extrinsic growth rate in each synthetic dataset that is accepted as
consistent with the observed data is saved as one “draw” from the posterior for the estimated
real-world parameter value.
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Figure 5: Two thousand draws from the prior distribution of the rate of externally driven coral rag vegetation
conversion to agriculture. These draws were used to produce the prior distribution of the expected number
of coral rag vegetation pixels to be converted to agriculture from 2018 - 2021 for each shehia.

4 - Results

4.1 - Parameter estimation

As described in the methods, for each shehia we ran 2,000 simulations, using each draw from
the prior distribution of externally driven coral rag forest conversion for each simulation (fig-
ure 5). Each of these simulations converted some number of coral rag vegetation pixels to
agriculture in each of the 19 shehia from 2018 to 2021 (fig. 6). An average of 231 of these es-
timates per shehia were within 10% of the observed number of converted coral rag vegetation
pixels (Sunnåker et al. 2013). Keeping only these synthetic datasets consistent within the
10% error bound, we observe the distribution of externally driven growth parameter values
that, based on our model, are likely to have produced the observed 2021 land cover (fig. 7).
The median parameter values consistent with the observed data (parameter estimates) for
each shehia range from 0.0% to 3.9% for yearly coral rag forest cover loss due to external
forces (fig. 7). For four of the study shehia, the observed number of coral rag forest pixels
converted to agriculture was fewer than predicted by the cycles of soil degradation built
into our model alone. These four shehia all generally exhibited overall low rates of observed
coral rag forest conversion to agriculture observed through the satellite imagery. We discuss
contextual factors that may be influencing these trends in the discussion.

The width of the posterior parameter estimates shown in figure 7 are indicative of how
much information about causal processes we can infer from the observed land cover change
from 2018 to 2021. Wider estimates indicate a greater degree of equifinality, where a wide
range of externally driven deforestation rates could have produced the observed data. Con-
versely, narrow parameter estimates indicate that only a small range of externally driven
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Figure 6: Black histograms represent the expected number of coral rag vegetation pixels to be converted to
agriculture for each draw from the prior for each shehia from 2018 to 2021. Red lines show the observed
number of conversions for each shehia from 2018 to 2021.

deforestation rates could have produced the observed number of coral rag vegetation pix-
els converted to agriculture from 2018 to 2021. Thus, when parameter estimates are more
narrow, the data carry a stronger underlying causal signature. The width of the posterior
parameter estimates can then be thought of as the range of processes that could have rea-
sonably produced the observed data (Kandler and Powell 2018). Across shehia, we observe
relatively narrow parameter estimates, with an average range of 1.47%; the most narrow
being 0.46% and the widest being 2.24% (fig. 7). We can conclude then that based on our
model, on average, less than a 1% increase or decrease in the externally driven deforestation
rate from the median model estimate is likely is result in the observed land cover change in
each shehia.

4.2 - Estimating the contribution of each process

With the observed rates of coral rag vegetation conversion from 2018 to 2021 and estimates
for the externally driven agricultural expansion (deforestation) rate for each shehia in hand,
we can assess the proportion of total loss driven by soil degradation versus external influences
such as market integration and population growth. We subtract the median estimate of the
contribution of external forces from the total satellite-observed rates of conversion to yield
the point estimates shown in figure 8.

On average, we observe a 5.1% yearly rate of total coral rag forest conversion to agri-
culture from 2018 to 2021. Between study shehia this rate of total conversion ranges from
1.1% to 9.8%. We estimate that the percent of coral rag vegetation converted to agriculture
in each shehia driven by soil degradation was between 1.0% and 7.6% per year, with an
average rate of 4.0%. By comparison, a relatively small proportion of coral rag vegetation in
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Figure 7: Black histograms show the prior distribution of externally driven deforestation rates for coral rag
vegetation in Pemba. The prior values are identical for each shehia. Purple density plots show the density
of draws from the prior in which the prior value resulted in a deforestation rate within 10% of the observed
rate for that shehia. Shading in the density plots shows the tail probability that a particular value from the
prior will result in the observed land cover based on our model.

each shehia is converted to agriculture each year as a result of external forces. We estimate
that the average rate of externally driven conversion is 1.1% of total coral rag forest cover,
ranging from 0.0% to 3.9% between shehia.

While there is considerable variability in both the total rate of coral rag vegetation loss
and in the contribution from external drivers between shehia, a general and intuitive trend
is that shehia with a greater proportion of loss caused by external drivers show greater coral
rag vegetation loss overall. The four shehia that showed a total number of observed coral
rag pixels lost below that which is expected from soil degradation alone in figure 5, also show
relatively little vegetation loss as a percentage of total coral rag cover from 2018 to 2021.
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Figure 8: Barbell plot showing the median estimates of the influence of soil degradation on the observed
coral rag vegetation loss in each shehia. Blue points show the total loss of coral rag vegetation as measured
using satellite imagery. Black points show the median model estimates for the contribution of soil fertility
loss to the observed deforestation.

5 - Discussion

5.1 - Pemba specific implications

Across the shehia in our study, we observe a 5.1% yearly rate of coral rag vegetation con-
version to agriculture. We show here that reported farmer behavior in response to soil
degradation, paired with the topography of the study shehia, should account for an esti-
mated 4.0% yearly rate of conversion on average. Thus, while variable, we can conclude that
on average a relatively small proportion of the observed coral rag vegetation conversion to
agriculture in the study shehia is driven by external forces such as increasing demand driven
by increasing subsistence needs or market forces. This finding matches our theoretical ex-
pectations given that farmers in this region generally clear land in order to plant low value
staple crops such as cassava (P. Meyfroidt et al. 2018). This suggests that regenerative
agriculture programs, along with rainwater catchment systems may considerably reduce the
long-term loss of coral rag forest in Pemba, Tanzania. These programs will also ease the
strain that clearing forested land puts on farmers, and may potentially help farmers break
free of the cycle of environmentally damaging agricultural practices in pursuit of short term
gains.

While the 1.1% average estimated yearly conversion rate of coral rag vegetation to agri-
culture in the study shehia driven by external forces is relatively small compared to the rate
of loss driven by soil degradation, it is not negligible. Further, this value could reasonably
increase as a result of continued market integration and population growth in Pemba. As
the impact of external forces on land conversion increases, theory tells us that the effect of

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.20.524853doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524853
http://creativecommons.org/licenses/by-nc-nd/4.0/


improved agricultural technologies on mitigating forest loss may be reduced or even reversed
(Kaimowitz and Angelsen 1998). Top-down interventions such as designating one or more
coral rag forest reserves on the island may help to slow the conversion of primary forest
in some areas, but may also be subject to leakage, attenuating their overall efficacy (P.
Meyfroidt et al. 2020; Bastos Lima, Persson, and Meyfroidt 2019). Instead, interventions
focused on the introduction and establishment of value chains for alternative income sources,
aside from rotational agriculture, may have greater success (Akyoo and Lazaro 2007).

5.2 - Implications for land system science and social-ecological systems

Social-ecological systems, and therefore land systems, are inherently very complex. They
commonly exhibit feedbacks between system components and past and future states. Be-
cause of this complexity, researchers generally describe phenomena of interest qualitatively,
or they break the components of a given causal pathway down into many sub components
(Patrick Meyfroidt 2016; B. Turner et al. 2020). Nevertheless, inference from limited time
series data is difficult due to issues of equifinality, simultaneous causation, and unobserved
complexity(Barrett 2021; Cumming et al. 2020). We echo the argument of Schlüter and
others (2019) that agent/individual-based modeling can allow inference about causality in
social-ecological systems and emphasize that this approach is especially powerful when com-
bined with empirical data, as presented here, in order to increase validity and interpretability.

We argue here that individual-based models will be of the greatest utility for land sys-
tem science when they are combined with a standard, systematic framework for comparing
synthetic data to real-world observations. Approximate Bayesian computation may fill this
niche as it is relatively straightforward and allows for parameter estimation given even very
complex generative models. A key advantage of this method is that it allows modelers to
explicitly confront equifinality in a given simulation and to some extent a given empirical
system. By explicitly quantifying the range of causal processes that are likely to produce an
outcome of interest, researchers will greatly increase the applicability of simulation models
to real-world policy decisions (Williams et al. 2020).

5.3 - Limitations and future work

A limitation of any process model is that they assume that researchers know and can ac-
curately represent causal processes in silico. In the case of models like the individual-based
simulation presented here, researchers must abstract down to only key phenomena of inter-
est, eliminating much contextual nuance and again, assuming that we know what matters
and what does not. This is a big assumption in social-ecological systems considering that
emergent and often unexpected phenomena are a defining feature of the field. This limita-
tion is exemplified by the four shehia (Fundo, Muambe, Jombwe, and Shamiani) that showed
fewer coral rag forest pixels converted to agriculture than expected by the model even under
no externally driven forest conversion pressure. We know through our in-person observations
and interviews with Community Forests Pemba staff that these four shehia have been the
focus of considerable tree planting, particularly of Casuarina spp. in woodlots. We are likely
observing both some confusion between native coral rag vegetation and woodlot vegetation
in our satellite observations, as well as a reduction in coral rag deforestation for fuelwood.
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Approximately 95% of Pemban households rely on cutting fuelwood for daily cooking activ-
ities. Hence, the introduction of woodlots, which we do not account for in our simulation,
likely reduces the overall rates of coral rag deforestation and conversion to rotational agri-
culture. Further, Fundo and Shamiani are both islets of Pemba and are both home to luxury
resorts. The limited connection between these islets and the main population centers of
Pemba likely limits the effect of market forces driving agricultural expansion in these two
areas. Also, our anecdotal experience is that the resort operators intentionally limit local
development nearby the properties, possibly reducing the rate of agricultural development
below what we expect as a result of soil degradation.

Another contextual limitation of our specific model for drawing inference about agricul-
tural expansion in Pemba Island is that we do not account for the long-term processes of soil
degradation that lead to complete land abandonment and eventually the recovery of coral
rag vegetation. While the two year farm and three year fallow cycle is standard in the coral
rag geological areas of Pemba, some agricultural areas are completely abandoned when crop
yields are consistently low even after a fallow period. Additionally, the agricultural units
themselves are independent 20m pixels which is considerably smaller than many agricultural
operations. Clumping these pixels to better match realistic farm sizes may produce different
and more accurate inference than presented here.

Lastly, our model does not allow for heterogeneity or evolution in human behavior. All
agricultural pixels follow the same scheduling process. While this scheduling process is
standard in the study shehia, an interesting exercise would be to allow for the diffusion of
regenerative agricultural practices across farm units to examine direct feedbacks between
environmental and cultural change.

6 - Conclusion

Computer simulations are critical to theoretical development in land system science as they
allow us to formally define and scrutinize hypothesized mechanisms driving phenomena of
interest. When we develop competing plausible mechanisms however, it can be difficult
to identify the contribution of each hypothesized mechanism in the real world. Recent
advances in ABC, primarily in population genetics, but also cultural evolution, have provided
a structured process to begin to overcome this challenge in other fields (Hartig et al. 2011;
Kandler and Powell 2018). Until now however, ABC has yet to be applied to land system
science. In this paper we show how ABC can be used to better leverage the wealth of
available satellite data in combination with individual-based models of land system change
in order to assess the importance of competing mechanisms.

In particular, we develop an individual-based simulation of agricultural expansion in
Pemba, Tanzania under two different mechanisms: soil degradation and external forces such
as population growth and increasing market integration. We use ABC to systematically
compare runs from this model with observed land cover change in 19 shehia in Pemba
from 2018 to 2021. This process allows us to estimate the likelihood that various rates of
externally driven agricultural expansion are responsible for the observed land cover change
in each shehia. Importantly, this process also allows us to directly estimate the range of
externally driven expansion rates that could have also reasonably resulted in the observed
data, or the degree to which the system is equifinal.
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All supplemental materials can be found in the GoogleSheet here: https://docs.google.com/
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