

1 Human-gut phages harbor sporulation genes

2

3 Schwartz DA¹, Rodríguez-Ramos J², Shaffer M², Flynn R², Daly R, Wrighton KC², Jay T.

4 Lennon¹

5

¹ Department of Biology, Indiana University, Bloomington, IN 47405

⁷ ² Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80521

8

⁹ * Corresponding authors: danschw@iu.edu and lennonj@iu.edu

10

11

12

13

ABSTRACT

14 Spore-forming bacteria are prevalent in mammalian guts and have implications for host
15 health and nutrition. The production of dormant spores is thought to play an important role in the
16 colonization, persistence, and transmission of these bacteria. Spore formation also modifies
17 interactions among microorganisms such as infection by phages. Recent studies suggest that
18 phages may counter dormancy-mediated defense through the expression of phage-encoded
19 sporulation genes during infection, which can alter the transitions between active and inactive
20 states. By mining genomes and gut-derived metagenomes, we identified sporulation genes that are
21 preferentially encoded by phages that infect spore-forming bacteria. These included genes
22 involved in chromosome partitioning, DNA damage repair, and cell wall-associated functions. In
23 addition, phages contained homologs of sporulation-specific transcription factors, notably *spo0A*,
24 the master regulator of sporulation, which could allow phages to control the complex genetic
25 network responsible for spore development. Our findings suggest that phages could influence the
26 formation of bacterial spores with implications for the health of the human gut microbiome, as
27 well as bacterial communities in other environments.

28

SIGNIFICANCE

29 Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance
30 their fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host
31 for nutrition or energy production. However, phage fitness is affected by all aspects of host
32 physiology, including decisions that reduce metabolic activity of the cell. Here we focus on
33 endosporulation, a complex and ancient form of dormancy found among the Bacillota that involves
34 hundreds of genes. By coupling homology searches with host classification, we identify 31 phage-
35 encoded homologs of sporulation genes that are mostly limited to phages infecting spore-forming
36 bacteria. Nearly one-third the homologs recovered were regulatory genes suggesting that phages
37 may manipulate host genetic networks by tapping into their control elements. Our findings also
38 suggest a mechanism by which phages can overcome the defensive strategy of dormancy, which
39 may be involved in coevolutionary dynamics of spore-forming bacteria.

40

MAIN TEXT

41 Microbiomes in the human gut are made up of a diverse community of bacteria, archaea,
42 and microeukaryotes, as well as well as viruses that infect these microorganisms (1). Members of
43 the phylum *Bacillota* (formerly Firmicutes) include many spore-forming lineages such as *Bacillus*
44 and *Clostridium*. These spore-forming members are dominant in healthy gut microbiomes, with
45 many strains within this group also considered common intestinal pathogens (2, 3). Sporulation is
46 a complex form of dormancy, involving hundreds of genes, that helps these bacteria contend with
47 spatial and temporal variation in environmental conditions in human guts and facilitate
48 transmission (2, 4).

49

50 Viruses of microbes, such as bacteriophages, play an important role in shaping gut
51 microbiomes (1). Phage fitness is thought to be enhanced through the encoding of bacterial-like
52 auxiliary metabolic genes (AMGs) that can reprogram and sustain host metabolism during
53 infection (5). The acquisition of other, non-metabolic genes may allow phages to alter other aspects
54 of bacterial physiology (6). One of the most important determinants of phage fitness is the
55 metabolic activity of the host cell (7, 8). Bacterial metabolism spans orders of magnitude, ranging
56 from exponential growth to being nearly inert when cells engage in certain types of dormancy such
57 as sporulation (9, 10). By entering a state of reduced metabolic activity, microorganisms can
58 defend themselves against phage attack (11, 12) altering selection in ways that could modify
59 coevolutionary dynamics.

60

61 Previous work has demonstrated that some phage isolates encode sporulation genes (e.g.
62 13, 14, 15). In one example, homologs of sporulation-specific sigma factors (*sigG* and *sigF*) were

63 identified in both lytic and lysogenic phages (13). These sigma factors are essential for the
64 developmental transition from vegetative cell to and endospore (16). When expressed in a host
65 (*Bacillus subtilis*), the phage-encoded sigma factors activate sporulation transcriptional pathways
66 and depress spore yield by up to 99% (13). To date, there has not been any systematic analysis of
67 the prevalence and distribution of sporulation genes in phages. Thus, it remains unknown whether
68 modification of host sporulation is a common phage strategy. In this study, we search for homologs
69 of sporulation genes in genomic and metagenomic data to determine whether phages employ this
70 strategy in human gut microbiomes.

71

72 ***Identifying sporulation homologs in viral genomes and metagenomes*** — We identified
73 sporulation genes in viral genomes and metagenomic assembled genomes (vMAGS) using
74 DRAM-v (17) (Fig. S1 and supplementary text). Specifically, we targeted homologs of well
75 characterized sporulation genes found in *B. subtilis* and *Clostridioides difficile*. We reasoned that
76 phage-encoded genes can only affect sporulation if they are in phages that infect a spore-forming
77 host. We therefore designed an enrichment test to identify homologs of sporulation genes that were
78 preferentially found in phages that infect spore-forming hosts. We first evaluated our search
79 strategy by looking for sporulation genes in genomes of phage isolates, for which the host was
80 known. Next, we applied the same approach to vMAGs assembled from human gut environments
81 for which host predictions had been made (18, 19). To minimize potential for contamination by
82 bacterial sequences, we inspected the annotations of 6,542 gut-derived vMAGs in which
83 sporulation genes were detected, with an average of 117 vMAGs inspected per enriched
84 sporulation gene (Fig. S2).

85 **Phages encode structural genes required for sporulation** — Our search identified homologs of
86 31 phage-encoded homologs of sporulation genes (Table 1). These sporulation genes were
87 enriched in phages that infect spore-forming hosts (Fig. 1). Many of the phage-encoded homologs
88 were structural (i.e., non-regulatory) genes involved in an assortment of sporulation-related
89 processes such as chromosome partitioning, DNA damage repair, and cell wall-associated
90 functions (Table 1). The acquisition of these genes might allow phages to promote or impede
91 specific steps of spore development, or its eventual germination. For example, phages may use
92 chromosome segregation genes to increase the probability of entrapment (and survival) of the
93 phage genome in the spore during the asymmetric division separating the developing spore from
94 the mother cell (20). Alternatively, it is possible that some of these genes are used by phages for
95 functions other than sporulation. Chromosome segregation genes are known to be used by phages
96 that establish extrachromosomal, plasmid-like lysogeny (21). Likewise, cell wall hydrolases used
97 by the host to restructure the cell during sporulation (*cwlJ*, *sleB*, *spoIID*) could be repurposed as
98 endolysins to burst the host cell at the completion of the phage lytic cycle (22). Further
99 experimental investigation will be required to establish the phage functions of the sporulation gene
100 homologs that we have catalogued in this work.

101

102 **Phages also encode genes that regulate sporulation** — Nearly one-third of the sporulation
103 homologs (n = 9) identified in phage genomes and metagenomes are transcriptional regulators
104 (Table 1). This finding is different than most examples of AMGs, where the phages control a
105 metabolic process by phage-encoded enzymes, or by expression of modulators of host enzyme
106 activity (5). It may be that phages manipulate host sporulation by interfering with the tightly
107 regulated transcriptional program that is essential for this complex developmental process (2).

108 Such findings are consistent with recent experimental findings with sigma factors where the
109 ectopic expression of phage-encoded *sigG* and *sigF* homologs altered the transcriptional program
110 of *B. subtilis* resulting in reduced spore yield (13).

111

112 Most notable among phage-encoded regulators are homologs of *spo0A*, the master
113 regulator of sporulation initiation that is conserved among all spore-forming bacteria (4).
114 Interestingly, the homologs found in phages are truncated versions of *spo0A* that contain the DNA-
115 binding effector domain, but not the receiver domain (Fig. S3). The latter is responsible for
116 modifying the DNA-binding activity in response to environmental and physiological signals
117 received via the phosphorelay signal-transduction system (23). The truncation suggests that phage-
118 encoded *spo0A* may not require the normal host signals to activate or repress the initiation of host
119 sporulation (24). Beside transcriptional regulators, phage genes included other potential post-
120 transcriptional regulators (RNA binding *spoVG*, and translation-related genes *cca* and *smpB*).
121 Taken together, bioinformatic findings here and laboratory results (13) suggest some phages may
122 overcome dormancy defenses by targeting the regulation of sporulation. Compared to the use of
123 structural genes, this is likely to be a more efficient strategy for altering the course of a complex
124 cellular program.

125

126 ***Phage-encoded sporulation genes occur in diverse environments*** — The recovery of phage-
127 encoded sporulation genes is not restricted to the human gut. We identified sporulation genes in
128 vMAGs originating from diverse environments (Table S1). Of the 30 sporulation genes identified
129 in gut-derived vMAGs we found 23 that also occur in phages from terrestrial and aquatic

130 environments (Fig S4). Thus, phage manipulation of sporulation may be a common phenomenon
131 in environments where spore-forming bacteria are found.

132

133 ***Implications and future directions*** — Sporulation is an ancient, complex, and important trait that
134 contributes to the persistence and transmission of beneficial and pathogenic members of the
135 mammalian gut microbiome. While sporulation can reduce virus infection, our analysis supports
136 the view that phages may use host-like genes to overcome host defense mechanisms (25).
137 Specifically, our study provides genomic and metagenomic evidence that phages encode multiple
138 homologs of sporulation genes, which may influence the transition of bacteria between active and
139 dormant states in host-associated and environmental ecosystems. The evolutionary drivers and
140 ecological consequences of phage-encoded sporulation genes remain to be investigated (15). Our
141 work demonstrates how partitioning phages by a specific host trait (e.g., sporulation) can be used
142 to identify genes used by phages to influence the same host trait.

143

144 **CODE AND DATA AVAILABILITY**

145 All code and data used in this study are available at https://github.com/LennonLab/spore_amg. In
146 addition, prior to publication, all data and code will be made available on Zenodo.

147

148 **ACKNOWLEDGEMENTS**

149 Research was supported by the National Science Foundation (DEB-1934554 JTL and DAS, DBI-
150 2022049 JTL, EAR-1847684 KCW), US Army Research Office Grant (W911NF-14-1-0411 JTL
151 and W911NF-22-1-0014), the National Aeronautics and Space Administration (80NSSC20K0618
152 JTL).

153

REFERENCES

154

- 155 1. Shkoporov AN, Hill C. 2019. Bacteriophages of the human gut: the “known unknown” of
156 the microbiome. *Cell Host & Microbe* 25:195-209.
- 157 2. Koopman N, Remijas L, Seppen J, Setlow P, Brul S. 2022. Mechanisms and applications
158 of bacterial sporulation and germination in the entestine. *International Journal of
159 Molecular Sciences* 23:3405.
- 160 3. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D,
161 Lawley TD. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and
162 extensive sporulation. *Nature* 533:543-546.
- 163 4. Galperin MY, Yutin N, Wolf YI, Vera Alvarez R, Koonin EV. 2022. Conservation and
164 evolution of the sporulation gene set in diverse members of the Firmicutes. *Journal of
165 Bacteriology*:e00079-22.
- 166 5. Jacobson TB, Callaghan MM, Amador-Noguez D. 2021. Hostile takeover: How viruses
167 reprogram prokaryotic metabolism. *Annual Review of Microbiology* 75:515-539.
- 168 6. Hargreaves KR, Kropinski AM, Clokie MR. 2014. Bacteriophage behavioral ecology:
169 How phages alter their bacterial host's habits. *Bacteriophage* 4:e29866.
- 170 7. Nabergoj D, Modic P, Podgornik A. 2018. Effect of bacterial growth rate on
171 bacteriophage population growth rate. *MicrobiologyOpen* 7:e00558.
- 172 8. Igler C. 2022. Phenotypic flux: The role of physiology in explaining the conundrum of
173 bacterial persistence amid phage attack. *Virus Evolution* 8:veac086.

174 9. Weissman JL, Hou S, Fuhrman JA. 2021. Estimating maximal microbial growth rates
175 from cultures, metagenomes, and single cells via codon usage patterns. Proceedings of
176 the National Academy of Sciences 118:e2016810118.

177 10. Ghosh S, Korza G, Maciejewski M, Setlow P. 2015. Analysis of metabolism in dormant
178 spores of *Bacillus* species by ^{31}P nuclear magnetic resonance analysis of low-molecular-
179 weight compounds. Journal of bacteriology 197:992-1001.

180 11. Meeske AJ, Nakandakari-Higa S, Marraffini LA. 2019. Cas13-induced cellular dormancy
181 prevents the rise of CRISPR-resistant bacteriophage. Nature 570:241-245.

182 12. Makarova KS, Anantharaman V, Aravind L, Koonin EV. 2012. Live virus-free or die:
183 coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes.
184 Biology Direct 7:7-40.

185 13. Schwartz D, Lehmkuhl B, Lennon J. 2022. Phage-encoded sigma factors alter bacterial
186 dormancy. mSphere:e00297-22.

187 14. Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. 2019. Characteristics of
188 wetting-induced bacteriophage blooms in biological soil crust. Mbio 10:e02287-19.

189 15. Butala M, Dragoš A. 2022. Unique relationships between phages and endospore-forming
190 hosts. Trends in Microbiology doi:<https://doi.org/10.1016/j.tim.2022.11.009>.

191 16. Fimlaid KA, Shen A. 2015. Diverse mechanisms regulate sporulation sigma factor
192 activity in the Firmicutes. Current Opinion in Microbiology 24:88-95.

193 17. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Soden LM, Liu P,
194 Narro AB, Rodríguez-Ramos J, Bolduc B. 2020. DRAM for distilling microbial
195 metabolism to automate the curation of microbiome function. Nucleic Acids Research
196 48:8883-8900.

197 18. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. 2021.
198 Massive expansion of human gut bacteriophage diversity. *Cell* 184:1098-1109. e9.

199 19. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. 2020. The gut
200 virome database reveals age-dependent patterns of virome diversity in the human gut.
201 *Cell Host & Microbe* 28:724-740. e8.

202 20. Sonenshein AL. 1970. Trapping of unreplicated phage DNA into spores of *Bacillus*
203 *subtilis* and its stabilization against damage by ³²P decay. *Virology* 42:488-95.

204 21. Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera
205 D, Russell DA, Hatfull GF. 2016. Function, expression, specificity, diversity and
206 incompatibility of actinobacteriophage *parABS* systems. *Molecular Microbiology*
207 101:625-644.

208 22. Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S. 1997. Three *Bacillus*
209 *cereus* bacteriophage endolysins are unrelated but reveal high homology to cell wall
210 hydrolases from different bacilli. *Journal of Bacteriology* 179:2845-2851.

211 23. Grimsley JK, Tjalkens RB, Strauch MA, Bird TH, Spiegelman GB, Hostomsky Z,
212 Whiteley JM, Hoch JA. 1994. Subunit composition and domain structure of the *Spo0A*
213 sporulation transcription factor of *Bacillus subtilis*. *Journal of Biological Chemistry*
214 269:16977-16982.

215 24. Ireton K, Rudner DZ, Siranosian KJ, Grossman AD. 1993. Integration of multiple
216 developmental signals in *Bacillus subtilis* through the *Spo0A* transcription factor. *Genes*
217 & Development

218 25. Seed KD, Lazinski DW, Calderwood SB, Camilli A. 2013. A bacteriophage encodes its
219 own CRISPR/Cas adaptive response to evade host innate immunity. *Nature* 494:489-491.

220

221

TABLES

222 **Table 1.** Sporulation genes detected in viral genomes and metagenomes. These genes were
223 enriched in phages of spore-forming hosts and were validated to have a viral origin by manual
224 inspection of annotations. KO represents the KEGG ortholog identifier. ‘Locus no.’ and ‘Gene’
225 refer to the gene locus number and name of sporulation gene(s) associated with a KO. ‘BSU’ loci
226 are from *Bacillus subtilis* (KEGG taxon T00010) and CD630 loci are from *Clostridioides*
227 *difficile* (KEGG taxon T00487). Locus ‘Type’ reflects whether a KO is a regulatory gene (R),
228 structural gene (S), or a hypothetical of uncharacterized function (U). The ‘Function’ column
229 provides a description of the KO from Subtiwiki for *B. subtilis* or KEGG for *C. difficile*.

KO	Locus no.	Gene	Type	Function
K01356	BSU_17850	<i>lexA</i>	R	lexA repressor
K03086	BSU_25200	<i>sigA</i>	R	RNA polymerase sigma factor RpoD
K03091	BSU_00980	<i>sigH</i>	R	RNA polymerase sigma-H factor
	BSU_15320	<i>sigE</i>		RNA polymerase sigma-E factor
	BSU_15330	<i>sigG</i>		RNA polymerase sigma-G factor
	BSU_23450	<i>sigF</i>		RNA polymerase sigma-F factor
	CD630_07720	<i>sigF</i>		RNA polymerase sigma-F factor
K04769	CD630_12300	<i>sigK</i>	R	RNA polymerase sigma-K factor
	CD630_26420	<i>sigG</i>		RNA polymerase sigma-G factor
	CD630_26430	<i>sigE</i>		RNA polymerase sigma-E factor
	BSU_560	<i>spoVT</i>	R	stage V sporulation protein T
K06283	CD630_34990	<i>spoVT</i>	R	Stage V sporulation protein T
	BSU_36420	<i>spoIID</i>	R	Stage III sporulation protein D
K06284	CD630_1260	<i>spoIID</i>	R	Stage III sporulation protein D
	BSU_370	<i>abrB</i>	R	transition state regulatory protein AbrB
	BSU_24220	<i>spo0A</i>	R	stage 0 sporulation protein A
K07699	CD630_12140	<i>spo0A</i>	R	Stage 0 sporulation protein A

K07738	CD630_26400	<i>nrdR</i>	R	Transcriptional regulator, repressor NrdR family
K03496	BSU_40970	<i>parA</i>	R+S	sporulation initiation inhibitor protein Soj
	CD630_36720	<i>soj</i>	R+S	Transcriptional regulator, sporulation initiation inhibitor, chromosome partitioning protein
K00390	BSU_10930	<i>yitB</i>	S	phosphoadenosine phosphosulfate reductase
K00640	CD630_15950	<i>cysE</i>	S	Serine acetyltransferase (SAT)
K00820	CD630_1200	<i>glmS</i>	S	Glucosamine--fructose-6-phosphate aminotransferase [isomerizing]
K00974	BSU_22450	<i>cca</i>	S	CCA-adding enzyme
K01142	BSU_40880	<i>exoA</i>	S	Exodeoxyribonuclease, repair of oxidative DNA damage in spores
K01449	BSU_02600	<i>cwlJ</i>	S	cell wall hydrolase CwlJ
	BSU_22930	<i>sleB</i>		spore cortex-lytic enzyme
	CD630_35630	<i>NA</i>	S	putative spore cortex-lytic hydrolase
K02049	BSU_30610	<i>ytIC</i>	S	ABC transporter ATP-binding protein
K02343	CD630_160	<i>dnaX</i>	S	DNA polymerase III subunits gamma and tau
K03466	BSU_16800	<i>spoIIIE</i>	S	spore DNA translocase
K03497	BSU_40960	<i>parB</i>	S	stage 0 sporulation protein J
	CD630_36710	<i>spo0J</i>	S	Stage 0 sporulation protein J, site-specific DNA-binding protein
K03657	CD630_7490	<i>NA</i>	S	putative DNA helicase, UvrD/REP type
K03664	BSU_33600	<i>smpB</i>	S	SsrA-binding protein
K03698	BSU_9930	<i>yhaM</i>	S	3'-5' exoribonuclease yhaM
K06381	BSU_36750	<i>spoIID</i>	S	stage II sporulation protein D
	CD630_1240	<i>spoIID</i>	S	Stage II sporulation protein D
K06412	BSU_490	<i>spoVG</i>	S	septation protein SpoVG
	CD630_35160	<i>spoVG</i>	S	Regulator required for spore cortex synthesis
K07171	CD630_34610	<i>EndoA</i>	S	Endoribonuclease toxin
K10716	BSU_31322	<i>yugO</i>	S	potassium channel protein YugO
K10979	BSU_13410	<i>ykoV</i>	S	DNA repair protein YkoV
K01448 ⁷	BSU_17410	<i>cwlC</i>	S	mother cell lysis
	BSU_01530	<i>cwlD</i>		spore cortex peptidoglycan synthesis

K02647	BSU_28670	<i>ysfB</i>	U	hypothetical protein; similar to carbohydrate diacid transcriptional activator
K03469	BSU_21970	<i>ypeP</i>	U	hypothetical protein; similar to RNase HI
K07175	BSU_14810	<i>ylaK</i>	U	hypothetical protein; similar to PhoH

230

231

232

FIGURE LEGENDS

233

234 **Fig. 1.** Sporulation genes enriched in phages that infect spore-forming bacteria. Homologs of
235 sporulation and non-sporulation genes were identified in RefSeq isolate phage genomes and in
236 published gut viromes (18, 19) using DRAM-v. A hypergeometric enrichment test was
237 performed for each gene to evaluate if it was found in phages that infect spore-forming hosts
238 more than the random expectation given the total number of phages. The enrichment result ($-\log_{10}(\text{hypergeometric } P \text{ value})$) on y-axis) is plotted as a function of the number of homologs
239 detected (x-axis). Purple points represent enriched genes with an adjusted P -value $< 10^{-6}$
240 (horizontal dashed line) and a sample size > 30 (vertical dashes line). Representative names of *B.*
241 *subtilis* sporulation genes are provided for genes that were enriched and of viral origin.
242

243

244 **Fig. 1**

245