

1 **3D printed magneto-active microfiber scaffolds for remote stimulation of 3D**
2 ***in vitro* skeletal muscle models**

3 Gerardo Cedillo-Servin*¹, Ouafa Dahri*^{2,3}, João Meneses^{4,5}, Joost van Duijn¹, Fanny Sage^{2,3},
4 Joana Silva⁴, André Pereira⁴, Fernão D. Magalhães^{4,5}, Jos Malda^{1,6}, Niels Geijsen^{2,3}, Artur M.
5 Pinto^{4,5}, Miguel Castilho^{1,7,8}

6 ¹Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht
7 3584 CX, The Netherlands

8 ² Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333
9 ZC, The Netherlands

10 ³ The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The
11 Netherlands

12 ⁴LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade
13 do Porto, Rua Dr. Roberto Frias, Porto, Portugal

14 ⁵ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University
15 of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

16 ⁶Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University,
17 Utrecht 3508 GA, The Netherlands

18 ⁷Department of Biomedical Engineering, Eindhoven University of Technology, The
19 Netherlands.

20 ⁸Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven,
21 The Netherlands

22 **Email:** m.dias.castilho@tue.nl

23 **Abstract**

24 Tunable culture platforms that guide cellular organization and mechanically stimulate skeletal
25 muscle development are still unavailable due to limitations in biocompatibility and actuation
26 triggered without contact. This study reports the rational design and fabrication of magneto-
27 active microfiber meshes with controlled hexagonal microstructures via melt electrowriting
28 (MEW) of a thermoplastic/graphene/iron oxide composite. *In situ* deposition of iron oxide
29 nanoparticles on oxidized graphene yielded homogeneously dispersed magnetic particles with
30 sizes above 0.5 μm and low aspect ratio, preventing cellular internalization and toxicity. With
31 these fillers, homogeneous magnetic composites with very high magnetic filler content (up to
32 10 wt.%) were obtained and successfully processed in a solvent-free manner for the first time.
33 MEW of magnetic composites enabled the skeletal muscle-inspired design of hexagonal
34 scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of
35 magneto-active and nonactive material. Importantly, the hexagonal microstructures displayed
36 elastic deformability under tension, mitigating the mechanical limitations due to high filler
37 content. External magnetic fields below 300 mT were sufficient to trigger out-of-plane
38 reversible deformation leading to effective end-to-end length decrease up to 17%. Moreover,
39 C2C12 myoblast culture on 3D Matrigel/collagen/MEW scaffolds showed that the presence of
40 magnetic particles in the scaffolds did not significantly affect viability after 8 days with respect
41 to scaffolds without magnetic filler. Importantly, *in vitro* culture demonstrated that myoblasts
42 underwent differentiation at similar rates regardless of the presence of magnetic filler. Overall,

43 these innovative microfiber scaffolds were proven as a magnetically deformable platform
44 suitable for dynamic culture of skeletal muscle with potential for *in vitro* disease modeling.

45 **Keywords:** melt electrowriting, magnetic actuation, responsive biomaterials, skeletal muscle

46

47 1. Introduction

48 Skeletal muscle is the most abundant tissue in the human body (40–50 mass %) and is essential
49 for posture, locomotion, and physiological and metabolic processes [1]. Proper skeletal muscle
50 function is highly dependent on the synergy among three interconnecting structures separated
51 by extracellular matrix (ECM): the epimysium —surrounding the entire muscle bundle—, the
52 perimysium —surrounding multiple muscle fibers within a muscle—, and the endomysium,
53 which surrounds each muscle fiber individually [2]. This unique organization provides
54 mechanical support to the hierarchical muscle structures and transmits contractile forces from
55 the myocytes within the muscle bundle [3,4].

56
57 In the event of genetic defects in sarcolemmal, contractile, or ECM proteins, skeletal muscle
58 function is rapidly lost leading to muscular dystrophies (MD), such as facioscapulohumeral
59 dystrophy (FSHD) and Duchenne MD (DMD). MD are known to involve progressive weakness
60 that severely impacts patients' lives by causing disability and, ultimately, death due to cardiac
61 or respiratory failure. In particular, DMD is an X chromosome-linked condition affecting about
62 one in 5,000 males yearly, and most patients require assisted ventilation at around 20 years of
63 age [5,6]; meanwhile, about 10% of FSHD patients eventually become wheelchair dependent [7].

64
65 Current available approaches to study MD both *in vitro* and *in vivo* are limited [5,8].
66 Differentiation and functional maturation of skeletal muscle progenitor cells is commonly
67 achieved using growth factors and small molecules, and mechanical stimulation further
68 contributes to maintaining the structure of adult skeletal muscle [8]. For example, cyclical
69 mechanical stimulation of myoblasts alone has been shown to enhance expression of myogenic
70 differentiation markers [9]. Therefore, the efficacy of *in vitro* models of MD can greatly benefit
71 from 3D matrices that restore myofiber organization by introducing anisotropic mechanical
72 environments and, importantly, support and actively stimulate muscular contractile forces
73 during regeneration [10]. Moreover, engineered skeletal muscle for disease modeling of MD
74 would benefit from deformable matrices that resemble the native extracellular matrix. The
75 microenvironment of skeletal muscle is composed of a 3D network of hierarchically organized
76 fibers which are key in force generation and orientation by providing critical topographical cues
77 and spatial boundary conditions to the cells [8]. For instance, synthetic matrices produced by
78 additive manufacturing are able to guide myocyte alignment [11] and have been observed to
79 improve expression of myogenic genes and maturation [12].

80
81 Fiber-based scaffolds that mimic skeletal muscle structure and function have offered a
82 promising strategy to guide cell alignment and therefore cell organization. For instance, alginate
83 and gelatin hydrogel-coated millimeter-thick fibers produced by wet spinning have enabled the
84 fabrication of myocyte-laden constructs [13], while aligned electrospun poly(lactide-co-
85 glycolide) (PLGA) fiber scaffolds have been shown to promote the formation of myofiber
86 networks *in vivo* following implantation of a myoblast-seeded scaffold into a murine DMD
87 model [14]. However, existing fiber scaffolds produced by conventional fabrication strategies
88 fail to perform under physiological deformations and, importantly, cannot stimulate muscular
89 contractile forces. This has led to immaturity of transferred cells and limited contractility of
90 newly formed tissue, thus hampering potential clinical use of these strategies. The introduction
91 of fiber processing technologies that allow fabrication of well-organized fiber scaffolds has
92 provided new perspectives for muscle engineering both *in vitro* and *in vivo* [10].

93
94 Melt electrowriting (MEW) is a technology that combines additive manufacturing principles
95 with electrohydrodynamic printing, offering an alternative for highly controlled microfiber
96 deposition. 3D constructs often consisting of polycaprolactone (PCL) —the bioresorbable gold

97 standard for MEW— are fabricated by precise, successive fiber-by-fiber stacking *via*
98 continuous solvent-free deposition of fibers with path geometries that can mitigate the intrinsic
99 mechanical limitations of the printed materials. As shown previously with cardiac cells, PCL
100 MEW scaffolds with rectangular pores embedded in hydrogels can promote cell alignment
101 along the rectangle main axis [15]. Moreover, PCL MEW interconnected sinusoidal and
102 hexagonal meshes have also been designed to unlock even further anisotropic control of cardiac
103 cell orientation and support large reversible deformations due to their controlled fiber
104 geometries [10,16]. Despite their great potential, existing MEW scaffolds alone have not been
105 able to mechanically condition muscle cells in a responsive manner, so that active stimulation
106 accelerates or primes regeneration.

107 Diverse stimuli-responsive mechanisms have been established in soft robotics to mechanically
108 stimulate tissues, including electro-induced [17] and magnetothermal actuation [18]. In particular,
109 magnetically active biomaterials represent a contactless platform with no risks associated to
110 high electrical or heat leaks. Iron oxide nanoparticles (ION) are a magnetic filler that has been
111 incorporated into thermoplastics and hydrogels for producing magnetized scaffolds [19–22].
112 However, iron particles have shown cyto- and genotoxicity even at low concentrations ($\mu\text{g mL}^{-1}$)
113 and with surface coatings [19,23]. The small size of ION—in the order of tens of nanometers—
114 promotes nonspecific internalization and intracellular accumulation, so to avoid toxicity, ION-
115 based magnetoactive biomaterials are limited to low ION content and small magnetically
116 triggered deformations [19,22,24]. Thus, immobilization on other materials has been proposed to
117 decrease cellular internalization [25]. Graphene-based materials (GBM) are promising particles
118 with larger sizes—hundreds to thousands of nanometers—for reduced internalization, showing
119 good biocompatibility at high concentrations *in vitro* and *in vivo*, as well as biodegradation by
120 neutrophils or the human enzyme myeloperoxidase [26,27]. In particular, reduced graphene oxide
121 (rGO) is a popular GBM with greater hemocompatibility than graphene oxide [28,29] that has
122 been shown to promote myogenic differentiation with low reduction in cell viability [13].

124 Previously in the context of MEW, GBM and ION have only been composited with PCL
125 separately, and primarily with organic solvent-based methods, reaching up to 1% content of
126 rGO [28] or up to 0.3% of ION [30]. In these composite formation approaches, high particle
127 concentrations tend to have low processability due to particle aggregation and high mechanical
128 stiffening. Here we assess the use of rGO not as a mechanical reinforcement for PCL, but as a
129 platform for ION deposition that enables organic solvent-free blending and MEW of magneto-
130 active PCL. We hypothesized that ION deposited on rGO could yield magnetic particles that
131 can be processed by MEW after melt-blending with PCL, and that well-organized magnetic
132 PCL fiber scaffolds could be fabricated with a variety of designs for guiding myofiber
133 organization and supplying a remotely controlled platform for mechanical stimulation of
134 myocyte cultures *in vitro*. To test these hypotheses, we first investigated if Fe^{2+} cations in FeCl_2
135 could be oxidized by oxidized graphene nanoplatelets (GNP-ox), leading to the deposition of
136 ION *in situ* on the surface of self-reduced graphene nanoplatelets (rGNP) and yielding
137 microscale magnetized powders that bypass the biological toxicity of nanometer-sized
138 magnetic nanoparticles. Then the homogeneous dispersion of magnetic reduced GNP (rGNP@)
139 in a medical-grade thermoplastic PCL matrix was investigated by melt-blending. With this
140 approach, the fabrication of magnetized fiber meshes was investigated by MEW. Magnetic
141 moment changes after processing, printing accuracy, out-of-plane actuation, and mechanical
142 properties of printed scaffolds were rigorously assessed. Moreover, it was evaluated whether
143 MEW allowed for the controlled deposition of zonally distributed materials with customized
144 geometries, thus facilitating the skeletal muscle-inspired design of actuating scaffolds with
145 promise for recapitulating the organization of muscle tissue cells and ECM. Finally, to assess
146 the biological potential of these magnetoactive scaffolds, myoblasts were seeded and cultured

147 *in vitro* on scaffolds composed of magnetic MEW meshes embedded in collagen/Matrigel
148 hydrogels and assessed for viability and differentiation performance.

149

150 2. Materials and Methods

151

152 **Materials.** Granular medical-grade poly-(ϵ -caprolactone) (PCL) (Purasorb PC 12) was
153 purchased from Purac Biomaterials (the Netherlands). Graphene nanoplatelets (GNP) grade
154 C750 were acquired from XG Sciences (United States), with average thickness under 2 nm,
155 surface area of $750 \text{ m}^2 \text{ g}^{-1}$, and platelet length under 2 μm , according to the manufacturer. Iron
156 (II) chloride tetrahydrate ($\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$, 98.0%, Honeywell Fluka) and ammonium hydroxide
157 (NH_4OH , 28.0-30.0% NH_3 , Alfa Aesar) were purchased from ThermoFisher Scientific (United
158 States). Filters with 5-8/17-30 μm of pore size were acquired from Filtres Fioroni (France). All
159 materials were used as received unless otherwise stated.

160

161 **GNP oxidization and magnetization.** GNP were oxidized by the modified Hummers method
162 (MHM), as described elsewhere [31]. Briefly, 320 mL of H_2SO_4 and 80 mL of H_3PO_4 were added
163 to 8 g of GNP at room temperature and the solution cooled in an ice bath, followed by the
164 gradual addition of 48 g of KMnO_4 . Then 1200 mL of distilled water were gradually added,
165 followed by addition of H_2O_2 until oxygen release stopped. Oxidized GNP (GNP-ox) were
166 washed 5 times with distilled water by centrifugation at 4000 rpm for 15 min. Deposition of
167 iron oxide nanoparticles (ION) on GNP-ox was performed as described previously with some
168 modifications [32]. Briefly, water dispersions of $\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$ (40 mg mL^{-1}) and GNP-ox (2 mg
169 mL^{-1}) dispersions in water were mixed and sonicated for 10 min (Bandelin Sonorex R K512 H,
170 Germany). The pH was adjusted to 9 with NH_4OH , and the dispersion was kept under stirring
171 at 180 °C overnight. Then, excess iron was removed with 5 centrifugation cycles at 4000 rpm
172 for 15 min, and the final precipitate was washed by filtration using 5 L of water. Finally, the
173 magnetized particles retained in the filter (rGNP@) were further washed by centrifugation as
174 described above.

175

176 **Particle size and zeta potential.** GNP, GNP-ox, and rGNP@ particle size distributions were
177 determined with a LS230 laser particle analyzer (Coulter, United States). Data were collected
178 performing 3 scans of 60 s, including polarization intensity differential scattering using
179 Fraunhofer's model. Zeta potential measurements were performed in a Zetasizer Nano ZS
180 (Malvern Instruments, United Kingdom). Dispersions at 50 $\mu\text{g mL}^{-1}$ were used for both particle
181 size and zeta potential measurements.

182

183 **Preparation of PCL/rGNP@ composites.** PCL/rGNP@ composites were prepared by melt-
184 blending (Haake Polylab internal mixer, ThermoFisher Scientific, the Netherlands) with an
185 internal mixing volume of 60 cm^3 , at a temperature of 90 °C, rotor speed of 200 rpm, and mixing
186 time of 5 min. PCL/rGNP@ loads were of 2 and 10 wt.% rGNP@, for a total of 5 g per sample
187 (PCL + rGNP@). The resulting composites were labeled PCL/rGNP@-2% and PCL/rGNP@-
188 10%, respectively, and extruded as filaments with a maximum diameter of 3 mm.

189

190 **Chemical and thermal characterization.** Fourier-transform infrared (FTIR) spectra were
191 recorder using a Vertex 70 spectrometer (Bruker, Germany) in transmittance mode at 23 °C,
192 coupled with an A225/Q Platinum diamond single-reflection accessory for attenuated total
193 reflection (ATR). Spectra were recorded in the wavenumber range of 4000–400 cm^{-1} with an
194 average of 60 scans and a resolution of 4 cm^{-1} . Thermograms were recorded using a Polyma
195 214 differential scanning calorimeter (DSC; Netzsch, Germany) from samples weighing

196 between 6 and 10 mg. Heating and cooling cycles were performed twice in a nitrogen gas
197 atmosphere, heating from 23 to 150 °C at a rate of 10 °C min⁻¹, followed by cooling to -20 °C
198 at a rate of 10 °C min⁻¹. The degree of crystallinity (X_c) of PCL and PCL/rGNP@ composites
199 was determined as follows:

200

$$201 \quad X_c = \frac{\Delta H_m}{\Delta H_m^0 \times f_{polymer}} \quad (1)$$

202

203 where ΔH_m is the melting enthalpy or specific heat of fusion, ΔH_m^0 is the melting enthalpy of
204 100% crystalline PCL, and $f_{polymer}$ is the weight fraction of polymer in the sample. The ΔH_m^0 of
205 PCL was taken as 139.5 J g⁻¹^[33].

206

207 **Melt electrowriting.** PCL and PCL/rGNP@ composites were melt-electrowritten (MEW) using
208 an in-house built device. Briefly, PCL and PCL/rGNP@ composites were molten at
209 temperatures (T) between 90 and 120 °C in glass syringes with 27-G stainless steel nozzles
210 (inner diameter = 0.2 mm) and pneumatically extruded at a pressure range of P = 1–3 bar
211 (proportional pressure regulator, Festo, Germany), a positive applied voltage range of V = 5–7
212 kV (LNC 30000, Heinzinger Power Supplies, Germany), and a fixed collector distance of 4
213 mm. MEW jets were collected on a grounded aluminum collector plate driven by a triaxial
214 motor controller (Trio Motion Technology Ltd., United Kingdom). PCL and PCL/rGNP@
215 fibers were printed at a range of collection speeds (S = 2–10 mm s⁻¹), and the jets were
216 monitored during printing with a Dino-Lite digital microscope (AnMo Electronics, Taiwan).
217 The minimal speed at which the jet was deposited as a straight fiber was identified as the critical
218 translation speed (CTS) for the corresponding set of P , V , and T values. The sets of PCL and
219 PCL/rGNP@ fibers printed at different P , V , and T values were imaged with a stereomicroscope
220 (Olympus), and fiber diameter were measured using ImageJ software (version 1.53; National
221 Institutes of Health, United States). True (d_F) and apparent fiber diameters (d_F') were quantified
222 for straight and sinusoidal/coiled fibers, respectively. PCL and PCL/rGNP@ MEW scaffolds
223 were designed with hexagonal pores with a side length of 0.6 mm and a scaffold thickness of
224 0.4 mm, and fabricated with the P , V , and T values that targeted fiber diameters of about 20 µm,
225 as identified during diameter measurement of printed single fibers.

226

227 **Materials and printed scaffolds imaging.** GNP powders, extruded filaments (cross-sections
228 performed by cutting with a sharp blade), and MEW scaffolds were mounted on conductive
229 carbon strips for visualization. Scanning electron microscopy and energy dispersive x-ray
230 spectroscopy (SEM/EDS) analysis was performed using a FEI Quanta 400 FEG ESEM / EDAX
231 Genesis X4M (ThermoFisher Scientific, USA) at an acceleration voltage of 3 kV. Particle
232 diameter and aspect ratio of GNP, GNP-ox, and rGNP@ were determined by transmission
233 electron microscopy (TEM). To prepare samples for imaging, aqueous dispersions of GNP,
234 GNP-ox, and rGNP@ at a concentration of 50 µg mL⁻¹ were sonicated for 1 h in a Sonorex R
235 K512H ultrasound bath (Bandelin, Germany). Prior to imaging, dispersions were sonicated
236 again for 10 min, and 10 µL of each were deposited on a carbon-coated TEM grid; after 1 min,
237 excess material was removed using filter paper. TEM was performed at an acceleration voltage
238 of 80 kV using a JEM 1400 microscope (JEOL, Japan) coupled with a CCD digital camera
239 (Orious 1100 W; Hamamatsu Photonics, Japan). Images were processed using ImageJ.

240

241 **Printing accuracy assessment.** SEM micrographs of MEW scaffolds were processed with
242 threshold and segmentation analyzes using ImageJ software, and printed pore area was
243 quantified for PCL, PCL/rGNP@-2%, and PCL/rGNP@-10% scaffolds. Accuracy of printed

244 pores was assessed using the quality number (Q) as reported previously^[34], defined as the ratio
245 of printed pore area (A_{print}) to expected pore area (A_{exp}), as follows:

246

$$247 \quad Q = A_{print}/A_{exp} \quad (2)$$

248 In case of astray printed fibers deposited across a pore, the A_{print} value is reduced, thus always
249 leading to $A_{print} < A_{exp}$, with a maximal value of $Q = 1$ corresponding to a perfectly accurate
250 printed scaffold.

251

252 **Crystallographic and magnetic characterization.** X-ray diffraction (XRD) analyses were
253 obtained using a Smartlab diffractometer (Rigaku, United States) with a Bragg-Brentano
254 geometry over a range of $2\theta = 15\text{--}70^\circ$ at 23°C and a $\text{CuK}\alpha$ radiation beam ($\lambda = 1.540593\text{ \AA}$).
255 Magnetization (M) as a function of applied magnetic field (H) was measured using a
256 commercial superconducting quantum interference device (SQUID) magnetometer (Quantum
257 Design, Germany) at 310 K with a maximum magnetic field of 50 kOe .

258

259 **Tensile tests.** PCL, PCL/rGNP@-2%, and PCL/rGNP@-10% composites were evaluated under
260 monotonic uniaxial tension as extruded filaments (active length of 7 mm , diameter between
261 0.14 and 0.22 mm , $n = 5$) and MEW scaffolds (active area: width of 7 mm , length of 10 mm ,
262 thickness of 0.4 mm , pore size of 0.6 mm). Tests were performed using a 25-N force gauge in
263 a Multitest 2.5-dV mechanical tester (Mecmesin, United Kingdom) at a strain rate of 1 mm min^{-1}
264 at room temperature. MEW scaffolds were tested parallel to the main printing direction (x-
265 direction, $n = 3$) and perpendicular to the main printing direction (y-direction, $n = 3$). Force-
266 displacement curves were recorded using VectorPro software (Mecmesin), normalized to obtain
267 engineering stress-strain curves, and processed to calculate the elastic modulus (for filaments),
268 tangent modulus (for MEW scaffolds), yield strain, and elastic strain energy density (for
269 filaments and MEW scaffolds). Elastic and tangent moduli were determined from least square
270 fitting of the slope in the initial linear region of the engineering stress-strain curves for a
271 coefficient of determination $R^2 > 0.99$. Yield strain was established as the beginning of
272 nonlinear deformation, thus indicated by the upper limit value of the range used for moduli
273 calculations. Elastic strain energy density was determined as the integral of the engineering
274 stress-strain curves from the origin to the yield strain, approximated numerically by the
275 trapezoid method.

276

277 **Magnetic actuation experiments.** PCL/rGNP@-2% and PCL/rGNP@-10% MEW scaffolds
278 (thickness of 0.4 mm , pore size of 0.6 mm) were cut into strips (3 by 30 mm) and weighed.
279 Apparent density (ρ_{app}) was calculated from each MEW strip's length (L), width (w), thickness
280 (t), and weight (m) as follows:

281

$$282 \quad \rho_{app} = \frac{m}{L \times w \times t} \quad (3)$$

283

284 For testing, a strip was placed between an uncoated glass slide (1-mm thickness) and a custom-
285 made support with a window (constant width of $x = 15\text{ mm}$), as shown in Figure 4E. The main
286 plane of the strip was aligned to the gravitational force, so that its own weight did not alter the
287 observed deflection. A NdFeB permanent magnet (100-kg strength; Supermagnete, the
288 Netherlands) was placed at different distances from the strip, and the magnetic flux intensity
289 was measured at the strip's position with a magnetic field meter (MFM 3500; PCE Instruments,
290 the Netherlands). Strip deflection was monitored with an EOS Rebel T3i DSLR camera (Canon
291 Inc., Japan), and all tests were performed at room temperature. Magnetically triggered
292 deflection with respect to magnetic flux intensity was measured using ImageJ software in terms

293 of effective decrease in end-to-end length along the strip main axis ($\Delta L/x$) and maximum
294 protrusion from the main axis (d/x).
295

296 **Cell culture and construct assembly.** The C2C12 cell line was obtained from ATCC (ATCC®
297 CRL-1772™— Global Biosource Center, United States) and cultured in 10 cm dishes under
298 standard conditions with Dulbecco's Modified Eagle Medium (DMEM, Gibco™)
299 supplemented with 20% fetal bovine serum (FBS; Biowest, batch S00F9). At 80% confluence,
300 cells were harvested and counted to be used in the scaffolds. MEW scaffolds were cut into the
301 desired shape using 6-mm biopsy punches. Prior to use, scaffolds were UV-sterilized for 15
302 min on each side, coated with extracellular matrix (ECM Gel from Engelbreth-Holm-Swarm
303 murine sarcoma, Sigma) diluted at a 1:10 ratio in DMEM, and incubated for 30 min at 37 °C.
304 Cells were encapsulated in a Matrigel (Matrigel® hESC-Qualified Matrix, LDEV-free;
305 Corning, United States) / type-I collagen (Gibco™ collagen type I, rat tail, ThermoFisher)
306 matrix with a 1:1:2 volume ratio. Matrigel was thawed on ice. Type-I collagen gel (2 mg mL⁻¹)
307 was prepared according to manufacturer instructions. Briefly, type-I collagen was mixed with
308 10x phosphate buffered saline (PBS) and DMEM and was neutralized with 1N NaOH.
309 Encapsulation was done on ice. Cells and gels were mixed together thoroughly using a gel pipet.
310 MEW scaffolds were placed in a Teflon mold between equal volumes of cell/gel mixtures and
311 incubated for 30 min at 37°C to induce collagen gelation. The resulting constructs were cultured
312 in 48-well plates (Corning) with 800 µL of culture medium consisting of DMEM with 20% v/v
313 FBS. After 48 h, culture medium was replaced by differentiation medium consisting in DMEM
314 and 2% v/v horse serum (Gibco™) and samples were cultured for 6 more days without medium
315 replacement. For 2D differentiation, C2C12 cells were cultured under normal conditions on µ-
316 slides (Ibidi, Germany) coated with ECM (1:10 ratio in DMEM). At 80% confluence, culture
317 medium was replaced for differentiation medium and cultured for 6 more days.
318

319 **Live/dead staining and quantification.** ReadyProbes™ Cell Viability Imaging Kit, Blue/Green
320 (ThermoFisher, cat. R37609) was used to perform live/dead staining. Briefly, two drops of
321 NucBlue® Live reagent (Hoechst 33342) and two drops of NucGreen® Dead reagent were
322 added to 1 mL of medium. Samples were then incubated for 30 min at room temperature,
323 followed by fluorescence imaging. NucBlue® Live reagent was used to stain nuclei of all cells
324 and detected with a standard 4',6-diamidino-2-phenylindole (DAPI, blue) filter. NucGreen®
325 Dead reagent was used to stain only the nuclei of cells with compromised plasma membrane
326 integrity and was detected using a standard FITC (green) filter. Fiji/ImageJ software (Version
327 2.0.0-rc-69/1.52p) was used to quantify the total amount of cells and the total amount of dead
328 cells. Briefly, blue and green channels in the images were separated and converted to 8-bit.
329 Next, the function 'Find Maxima' was used to identify the cells. The output was used to
330 calculate the percentage of live cells.
331

332 **Fluorescence staining and confocal imaging.** Samples were fixed using 2% v/v
333 paraformaldehyde for 20 min at room temperature following three rinsing steps in PBS.
334 Samples were permeabilized and blocked in PBS, 0.1% v/v Triton-X-100, and 5% v/v goat
335 serum for 60 min. Samples were then incubated with the primary antibody MF-20 (DSHB
336 Biology) at a concentration of 1:60 in 5% v/v goat serum at 4 °C overnight followed by three
337 rinsing steps in PBS. Next, samples were incubated with Alexa Fluor® 488 Goat anti-Mouse
338 IgG (H+L) (Life Technologies, cat. A11001) in PBS at a concentration of 1:500 for 60 min at
339 room temperature. Finally, samples were rinsed three times with PBS of which the second step
340 is with DAPI at 1:5000 (Life Technologies, cat. D1306). For imaging, microscopy slides with
341 Press-To-Seal Silicone Isolators (Bio-Labs-JTR8S-1.0) were used. Samples were embedded in

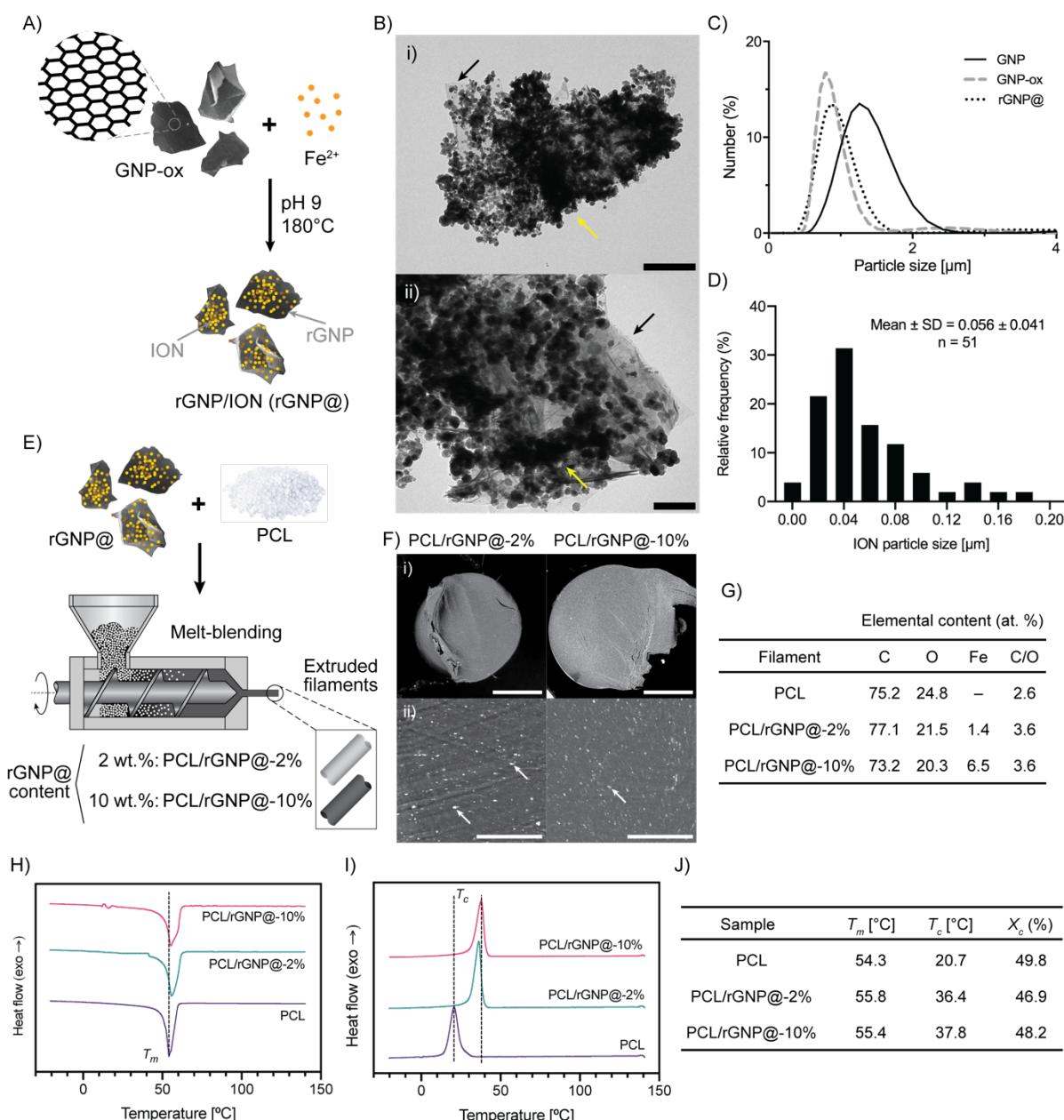
342 mounting media (50% v/v glycerol in PBS) and imaged on a Dragonfly200 confocal
343 microscope. Full scaffolds were imaged and processed for analysis.

344
345 **Quantification of cell fusion and differentiation.** Images from the whole scaffolds (acquired
346 using Dragonfly200) were quantified using a pipeline developed on open-source CellProfiler
347 software [35]. Briefly, nuclear staining and myotube staining images were loaded individually
348 into the same pipeline. For nuclei identification, pre-processing steps were applied to all images
349 to enhance image features and a median filter to reduce unspecific object identification. For
350 myotube identification, a Gaussian filter was applied to the images before object identification
351 was used to measure object morphology. Two filter steps were applied to myotube images to
352 reduce non-specific segmentation and Otsu thresholding method was used to separate
353 myotubes. A mask was applied to capture the nuclei within the myotubes, and the outputs were
354 related to each other. To assess the efficiency of differentiation, two parameters were evaluated.
355 Undifferentiated myoblasts contain one nucleus, and myotubes contain multiple nuclei. First,
356 the fusion index (FI) was calculated as the number of total nuclei within the sample divided by
357 the number of nuclei within myotubes. To further characterize differentiation, the number of
358 nuclei per individual myotube was determined and identified as the myoblast/myotube ratio.
359

360 **Statistics.** All statistical analysis was carried out using Prism 8 software (GraphPad Software,
361 United States). Statistical significance between groups was assessed as indicated in each case.
362 Differences were considered significant for $p < 0.05$ and labeled as * for $p < 0.05$, ** for $p <$
363 0.01, *** for $p < 0.001$, and **** for $p < 0.0001$. Data are plotted as mean \pm standard deviation.
364
365
366

367 **Results and discussion**

368 *1. Synthesis of magnetized particles and magnetic PCL composites*


369 In this study, a simultaneous reduction and magnetization of GNP-ox was successfully
370 performed to yield rGNP/ION (labeled as rGNP@). This powder was then melt-blended with
371 medical-grade PCL to yield highly magnetic PCL/rGNP@ composites (Figure 1). First, GNP
372 were oxidized by the modified Hummers method (MHM) to yield GNP-ox. Then, a redox
373 reaction involving FeCl_2 and GNP-ox allowed for ION deposition *in situ* onto self-reduced
374 graphene nanoplatelet surface to yield rGNP@. The reaction was successful, resulting in well-
375 dispersed ION at rGNP surface (Figure 1A,B). GNP, GNP-ox, and rGNP@ powders presented
376 distributions of particle size in the microscale, almost entirely below 2 μm for the three powders
377 (Figure 1C). In particular, rGNP@ showed a mean hydrodynamic particle size of 0.96 ± 0.50
378 μm , which was slightly greater than for GNP-ox ($0.89 \pm 0.34 \mu\text{m}$, Figure S1A), thus indicating
379 that hydrodynamic particle size did not significantly increase after ION deposition. Moreover,
380 the zeta potential of rGNP@ is lower than that of non-deposited ION, indicating that the former
381 have higher water stability (Figure S1B). Such features were preferred to ensure
382 biocompatibility, since poor water dispersability has been associated with a lack of
383 biodegradation, bioaccumulation, and toxicity of nanomaterials [36,37], while large particles
384 (above 200 nm) are more often phagocytosed than internalized [38].
385
386

387 Furthermore, particle morphology has been identified as a mechanism for ION cytotoxicity. For
388 instance, rod-shaped ION with aspect ratios between 5 and 10 have been found to undergo
389 nonspecific cellular internalization, leading to heightened inflammatory responses in
390 macrophages compared to spherical ION, potentially due to the greater contact area, sharper

392 features, and membrane penetrating capability of elongated particles [39]. Therefore, in addition
393 to analyzing hydrodynamic particle sizes, we investigated the particle size, aspect ratio, and
394 shape of GNP, GNP-ox, and rGNP@ powders by TEM. Individual ION deposited on GNP were
395 observed to have a wide monomodal particle size distribution (mean = 56 ± 41 nm; Figure 1D)
396 and an aspect ratio ranged from 1 to 2, while GNP, GNP-ox, and rGNP@ particle diameters
397 ranged from 0.5 to 2 μm (Figure S1C–D). Individual GNP can only be observed under TEM
398 after oxidation (GNP-ox); however, the magnetization process covers most of the graphene
399 surface area with generally globular ION (Figure S1E). In addition, microscale investigation of
400 elemental composition and spatial distribution by SEM-EDS revealed that rGNP@ contains a
401 homogeneous distribution of iron, amounting to a total iron content of 37 atomic % (= 69 weight
402 %; Figure S1F–G), thus confirming the potential of rGNP@ powder as a filler to introduce
403 magnetic properties into polymer composites.

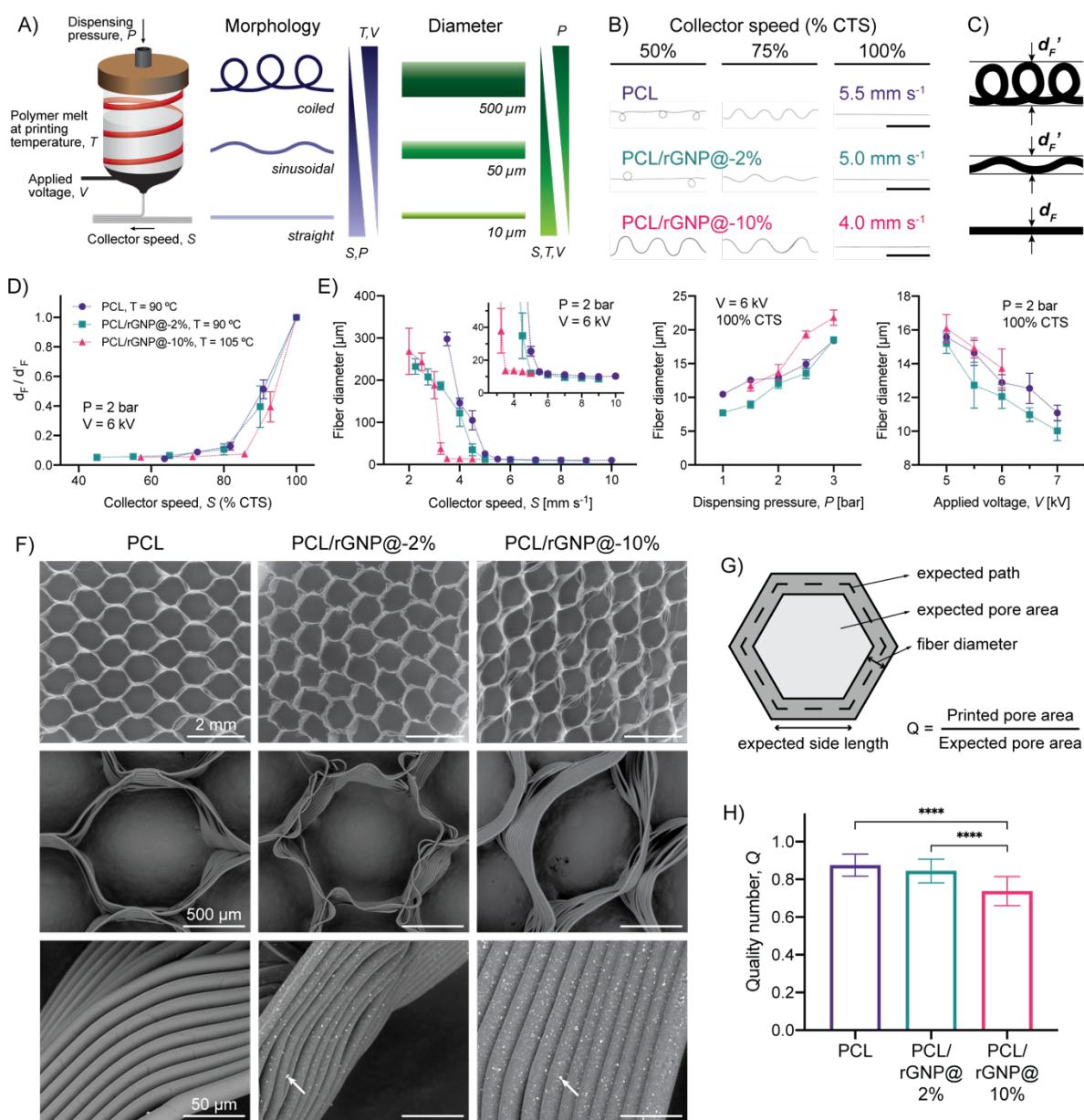
404
405 PCL is a thermoplastic and the gold standard material for MEW of synthetic scaffolds, due to
406 its biodegradability, high biocompatibility, low melting point (56–60 °C), and stable thermal
407 and rheological properties which facilitate processing in the molten state for hours [40]. Thus,
408 rGNP@ were incorporated into PCL by melt-blending in order to impart magnetic properties
409 to the polymer, while permitting controlled MEW processing of the composite due to low
410 rGNP@ agglomeration (Figure 1E). Melt-blending at 90 °C yielded filaments of PCL
411 compounded with 2 and 10 wt.% rGNP@ particles (PCL/rGNP@-2% and PCL/rGNP@-10%,
412 respectively, Figure S2). Under SEM, rGNP@ were observed in the composites throughout the
413 entire filament cross-sections as well-dispersed bright speckles due to the high conductivity of
414 reduced GNP (Figure 1F). In addition, elemental analysis confirmed successful loading of ION
415 within the PCL matrix (Figure 1G), while FTIR analysis confirmed the incorporation of
416 rGNP@, as indicated by the rGNP@ absorption band present in the PCL/rGNP@ composites
417 (broad band at 400–700 cm^{-1} ; Figure S2E). The addition of rGNP@ only slightly increased the
418 composite melting point (T_m) with respect to pristine PCL; however, the crystallization
419 temperature (T_c) increased considerably in proportion with rGNP@ content, from 20.7 °C for
420 PCL to up to 37.8 °C for PCL/rGNP@-10% (Figure 1H–J). This indicates that rGNP@
421 increases the crystallization rate of pristine PCL in a concentration-dependent monotonic
422 manner, suggesting that rGNP@ acts as a crystallization nucleating agent in the PCL matrix.
423 Nevertheless, PCL with rGNP@ loads of up to 10 wt.% were found to remain extrudable
424 (Figure 2). Also, a content of 10 wt.% rGNP@ represents the highest content of graphene-based
425 fillers embedded in PCL matrices that has been processed by MEW and reported thus far in the
426 literature. Previous reports have demonstrated MEW of PCL composites obtained by solution
427 mixing, which is an approach limited to yielding composites with low particle content,
428 including reduced graphene oxide content of up to 1 wt.% [28] and ION up to 0.3 wt.% [30].
429 Meanwhile, melt-blending has been reported to produce PCL/graphene composites with up to
430 9 wt.% graphene, processable by conventional fused deposition manufacturing, and able to
431 produce filaments with diameter above 0.3 mm [37,41], but these composites have not yet been
432 implemented in the context of microscale fibers, *i.e.* fibers with diameter below 0.3 mm.
433 However, in this work we report for the first time that melt-blending allows for the successful
434 incorporation of a very high content of rGNP/ION (up to 10 wt.%) in PCL matrices, yielding
435 highly homogeneous composites with appropriate processability for MEW.

436
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

Figure 1. Production of magnetic particles and magnetic PCL composites. A) Schematic of synthesis of magnetized graphene nanoplatelets (rGNP@) by deposition of iron oxide nanoparticles (ION) on oxidized graphene nanoplatelets (GNP-ox) *in situ*. B) TEM images of rGNP@ particles; yellow arrows indicate ION, and black arrows indicate GNP-ox particles. Scale bars: i) 500 nm, ii) 200 nm. C) Particle size distribution of graphene nanoplatelets (G), GNP-ox, and rGNP@ as determined by DLS; polydispersity indices (PDI) for each individual particle population are shown. D) ION particle size distribution as determined from TEM. E) Schematic of preparation of magnetic composites from poly-(ϵ -caprolactone) (PCL) and rGNP@ at 2, and 10 wt%. F) SEM images of PCL/rGNP@-2% and PCL/rGNP@-10% filaments, showing the distribution of rGNP@ particles (white dots indicated by white arrows) in the PCL matrix (gray); scale bars: i) 500 μm , ii) 50 μm . G) Elemental composition of PCL/rGNP@ composites from EDS analysis. H) DSC second heating and I) second cooling cycle curves of PCL and PCL/rGNP@ composites, showing peak melting and peak crystallization temperatures (T_m , T_c). J) Transition temperature and degree of crystallinity (X_c) data of PCL and PCL/rGNP@ composites, as obtained from DSC.

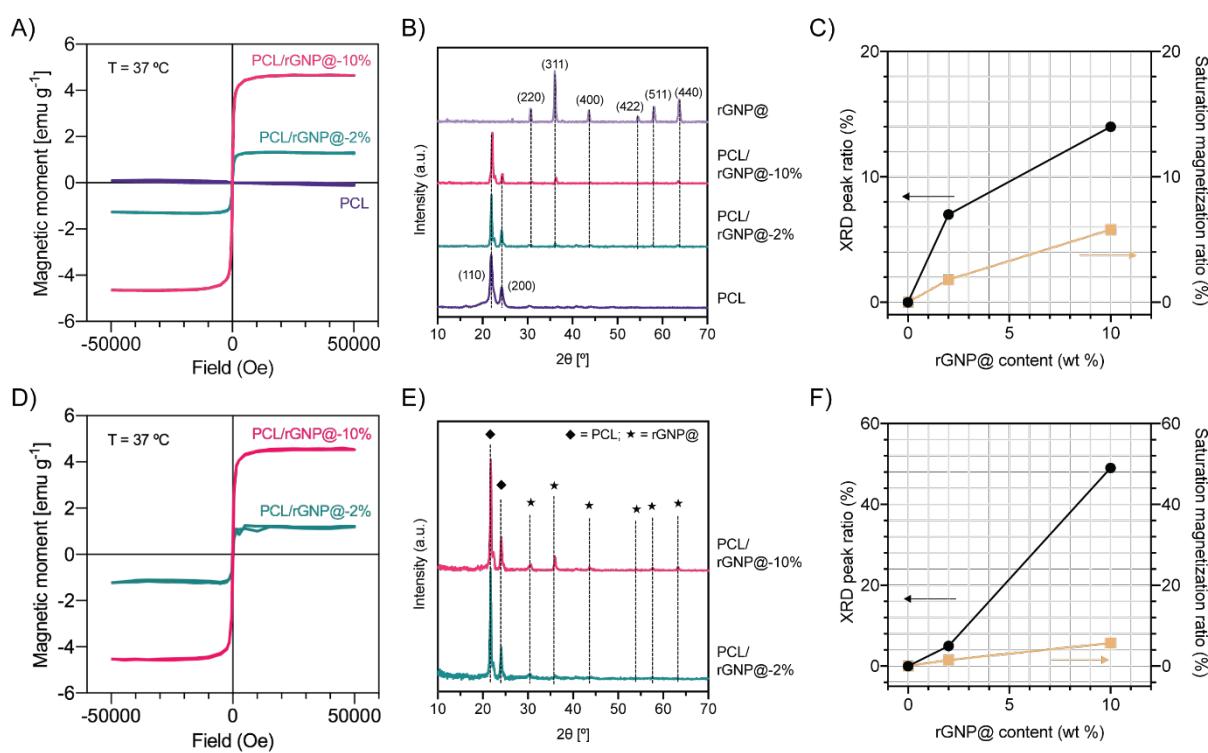
453 2. MEW of magnetic PCL/rGNP@ composites and integration into multi-material well-
454 organized fibrous scaffolds


455

456 A wide range of printing parameters determine the morphology and diameter of a MEW fiber.
457 Here, we assessed the effect of key instrument parameters, *i.e.* dispensing pressure (P), printing
458 temperature (T), applied voltage (V), and collector speed (S) on the morphology and diameter
459 of PCL and PCL/rGNP@ single fibers (Figure 2A). Given a fixed set of P , T , and V parameters,
460 S was varied to determine the lowest value at which the printed fiber has a straight morphology,
461 thus identified as the critical translation speed (CTS), which generally decreased with
462 increasing rGNP@ content (Figures 2B and S3), in agreement with the greater loss factor of
463 high-rGNP@ composites (Figure 1J). To quantitatively assess the influence of printing
464 parameters on fiber morphology, the true-to-apparent diameter ratio (d_F/d_F') was measured for
465 single MEW fibers, considering a value of $d_F/d_F' = 1$ for a perfectly straight fiber (Figure 2C).
466 Due to the significant rheological differences across PCL/rGNP@ composites, fibers were
467 printed at different T in order to tune P and V values within the operational range of the MEW
468 device (0–6 bar and 1–10 kV, respectively); PCL and PCL/rGNP@-2% were printed at 90 °C
469 and PCL/rGNP@-10% at 105 °C. With fixed values of P (= 2 bar) and V (= 6 kV) for all
470 compositions, S values were normalized as a fraction of the CTS; this allowed to observe a
471 consistent trend in d_F/d_F' values regardless of composition. Values of d_F/d_F' showed an
472 asymptotic-like increase with S at low collector speeds and a sharp increase at S above 85%
473 CTS (Figure 2D). Importantly, d_F/d_F' values showed high variability (relative error below 25%)
474 only in the S range of 85–100% CTS (Figure 2D), which is ascribed to the variability of MEW
475 fibers with sinusoidal morphology close to straight morphology, since small local
476 heterogeneities in jet temperature and viscosity can severely alter the amplitude of sinusoidal
477 fibers. Additionally, we assessed the effect of S , P , and V on fiber diameter; when a parameter
478 was varied, the others were kept at P = 2 bar, V = 6 kV, and S = 100% CTS (Figure 2E). At low
479 S values under the CTS, the apparent fiber diameter decreases with increasing speed due to the
480 coiled-to-straight transition. Meanwhile, above the CTS, fibers of all compositions have straight
481 morphology, and at high S values, diameters approach the range of 8–13 μm with relatively low
482 dependence on S , as reported previously [42]. Overall, for PCL, PCL/rGNP@-2%, and
483 PCL/rGNP@-10% samples, P and V can be adjusted to modulate MEW fiber diameter, for
484 instance, from 8 to 20 μm (Figure 2E).

485 PCL and PCL/rGNP@ composites were successfully processed into MEW scaffolds with a
486 hexagonal microstructure (Figure 2F–H). This hexagonal geometry was selected since we have
487 previously described to display elastic deformability under tensile loading and scaffold moduli
488 values about 50 to 80% lower than for rudimentary linear microstructures, generally with
489 square or rectangle geometries [10], thus facilitating deformation under low forces, as is the case
490 in remote stimulation of *in vitro* tissue models. Moreover, conventional square, or rectangular,
491 crosshatch microstructures fail at relatively low strains (~5%) [15] and therefore are not
492 compatible with physiological strains experienced by skeletal muscle. For these overall reasons,
493 linear microstructures like square or rectangular MEW geometries were not considered for this
494 study. SEM imaging revealed that MEW of PCL and PCL/rGNP@-2% enabled more accurate
495 fiber stacking in scaffolds with thickness up to 0.4 mm and hexagonal side length of 0.6 mm,
496 whereas PCL/rGNP@-10% presented greater pore size variation and higher incidence of fiber
497 misplacement and fiber wall slanting (Figure 2F). These printing defects in high-rGNP@
498 composites cumulatively reduce the average pore size and pore homogeneity. To quantitatively

499 evaluate the printing accuracy of PCL composites with different rGNP@ content, the quality
500 number Q was defined as the ratio between printed and expected pore area (Figure 2G), as
501 reported previously for similar electrowritten fiber scaffolds [34]. In agreement with SEM
502 observations, printing accuracy decreased with increasing rGNP@ content, and Q values were
503 lower for PCL/rGNP@-10% (mean of 0.74) than for PCL and PCL/rGNP@-2%, and
504 PCL/rGNP@-10% (mean of 0.88 and 0.84, respectively; Figure 2H). This can be ascribed to
505 the decreasing processability of composites with increasing rGNP@ content above 10 wt.%.
506 Despite this limitation, MEW provided an overall robust approach for processing composites
507 with high filler content up to 10% into scaffolds with controlled organization and geometry.


508 In order to assess whether the MEW process altered the magnetic and crystallographic
509 properties of PCL/rGNP@ composites, magnetometry and XRD studies were performed on
510 GNP powders and melt-extruded filaments and compared to MEW scaffolds (Figure 3, S4).
511 The H-M hysteresis curves of GNP, GNP-ox, and rGNP@ were in agreement with typical
512 ferromagnetic behavior (Figure S4A). Importantly, rGNP@ showed a high saturation
513 magnetization (M_s) value of 79.2 emu g⁻¹ despite the presence of GNP, which has very low M_s
514 (Figure S4B). The magnetization of rGNP@ was found to be superior to those of other reported
515 GBM/magnetic fillers, such as ION-decorated carbon nanotubes, with M_s ranging from 25 to
516 40 emu g⁻¹ [43]. In contrast to carbon nanotubes, GNP have a larger surface area that increases
517 the amount of deposited ION. In addition, melt-blended composite filaments showed *H-M*
518 curves with typical ferromagnetic behavior and M_s values of 1.4 and 4.6 emu g⁻¹ for
519 PCL/rGNP@-2% and PCL/rGNP@-10%, respectively, while the MEW scaffolds showed M_s
520 values of 1.2 and 4.5 emu g⁻¹ for PCL/rGNP@-2%, and PCL/rGNP@-10%, respectively
521 (Figure 3A,D). These M_s values are comparable to those of previously reported PCL/ION
522 composites lacking graphene-based materials, which range from 1 to 3 emu g⁻¹ for filler
523 contents from 5 to 10 wt.% [44]. Moreover, XRD analysis confirmed the oxidation of GNP into
524 GNP-ox, since in the GNP-ox pattern the characteristic (002) reflection peak of graphite
525 disappears ($2\theta = 26.5^\circ$) and a broad (001) peak ascribed to graphene oxide emerges (centered
526 at $2\theta = 12^\circ$; Figure S4C) [45]. The absence of this broad graphene oxide peak in the rGNP@
527 pattern confirms the partial reduction of GNP-ox during the ION deposition reaction (Figure
528 3B). Additionally, the XRD reflection peaks of rGNP@ were associated to the cubic spinel
529 structure with *Fd3m* symmetry, typical of ferrites (Figure 3B). Moreover, rGNP@ presented a
530 calculated lattice parameter of $a = 8.364$ Å, which lies between the parameters of magnetite
531 Fe_3O_4 ($a = 8.396$ Å, JCPDS #19-0629) [46] and maghemite Fe_2O_3 ($a = 8.346$ Å, JCPDS #39-
532 1346) [47], thus suggesting that the ION in rGNP@ consist of a mixture of both ferrites. The
533 PCL pattern presented the characteristic peaks of the orthorhombic (110) and (200) crystalline
534 planes at $2\theta = 21.8$ and 24.2° , respectively [48]. Overall, the XRD patterns of the PCL/rGNP@
535 composites showed the overlaying peaks of PCL and rGNP@, with their intensities varying in
536 relation to rGNP@ content as expected and no significant shifts, for both as-extruded and MEW
537 composites (Figure 3B,E). The M_s ratios between rGO@ and PCL/rGO@ and the XRD peak
538 intensity ratios between PCL and rGO@ were related to the nominal rGO@ content of
539 composites, showing similar trends and values for both as-extruded and MEW composites
540 (Figure 3C,F). This confirms that the thermal and electrical conditions involved in the MEW
541 process do not cause substantial decreases in magnetization or changes in crystalline phases of
542 the ION components, thus validating MEW as a microfiber fabrication technique that preserves
543 the magnetic properties of magneto-active thermoplastic composites.

544

545 **Figure 2. MEW of magnetic PCL composites into fibers and assembly into 3D hexagonal scaffolds.** A)
546 Representation of the effect of MEW printing parameters on fiber morphology and diameter. B)
547 Representative micrographs of MEW fibers showing the dependence of morphology on composition and
548 collector speed; the collector speed identified as critical translation speed (CTS) is shown. Scale bars: 1 mm.
549 C) Schematic showing the definition of observed fiber diameter in straight (true diameter d_F), sinusoidal, or
550 coiled fibers (apparent diameter d_F'). D) True-to-apparent diameter ratio (d_F/d_F') between straight and coiled
551 or sinusoidal fibers, indicating the dependence of morphology on collector speed. E) Effect of composition,
552 collector speed, dispensing pressure, and applied voltage on MEW fiber diameter. F) SEM micrographs of
553 PCL and PCL/rGNP@ composite MEW scaffolds (rGNP@ particles indicated by white arrows). G)
554 Schematic of the expected features in the MEW scaffold design and the definition of the quality number, Q ,
555 as indicator of print fidelity. H) Effect of rGNP@ content on the quality number of MEW scaffolds (Kruskal-
556 Wallis test with Dunn's multiple comparisons).
557

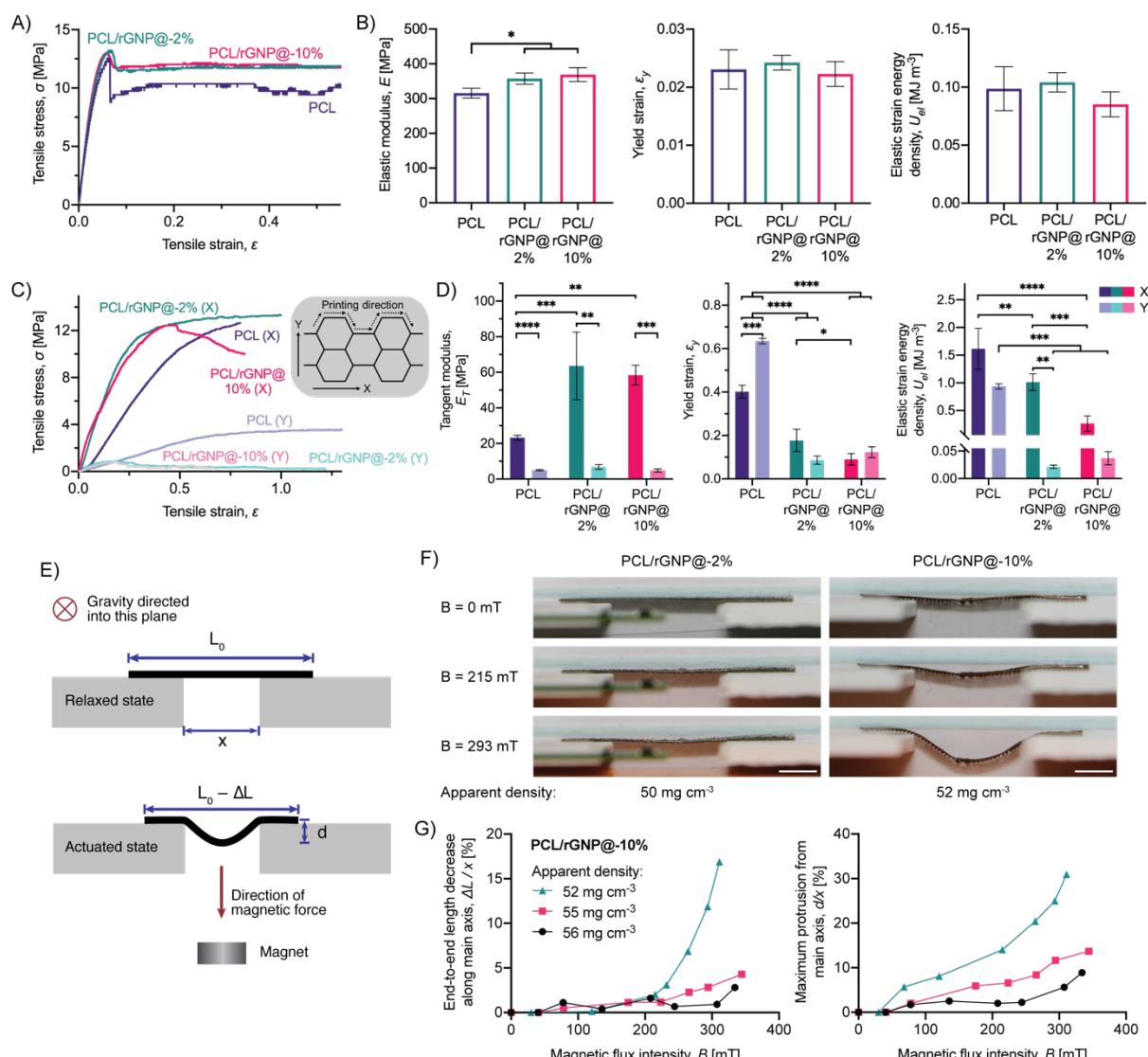
558

559

560 **Figure 3. Crystallographic and magnetic properties of melt-extruded filaments and melt-**
 561 **electrowritten scaffolds.** A) Magnetic hysteresis curves, B) x-ray diffractograms, and C) correlation
 562 between magnetic and crystallographic parameters of melt-blended PCL and PCL/rGNP@ filaments. D)
 563 Magnetic hysteresis curves, E) x-ray diffractograms, and F) correlation between magnetic and
 564 crystallographic parameters of PCL and PCL/rGNP@ melt-electrowritten scaffolds.

565

566 *3. Mechanical behavior and magnetic actuation of PCL and PCL/rGNP@ MEW scaffolds*

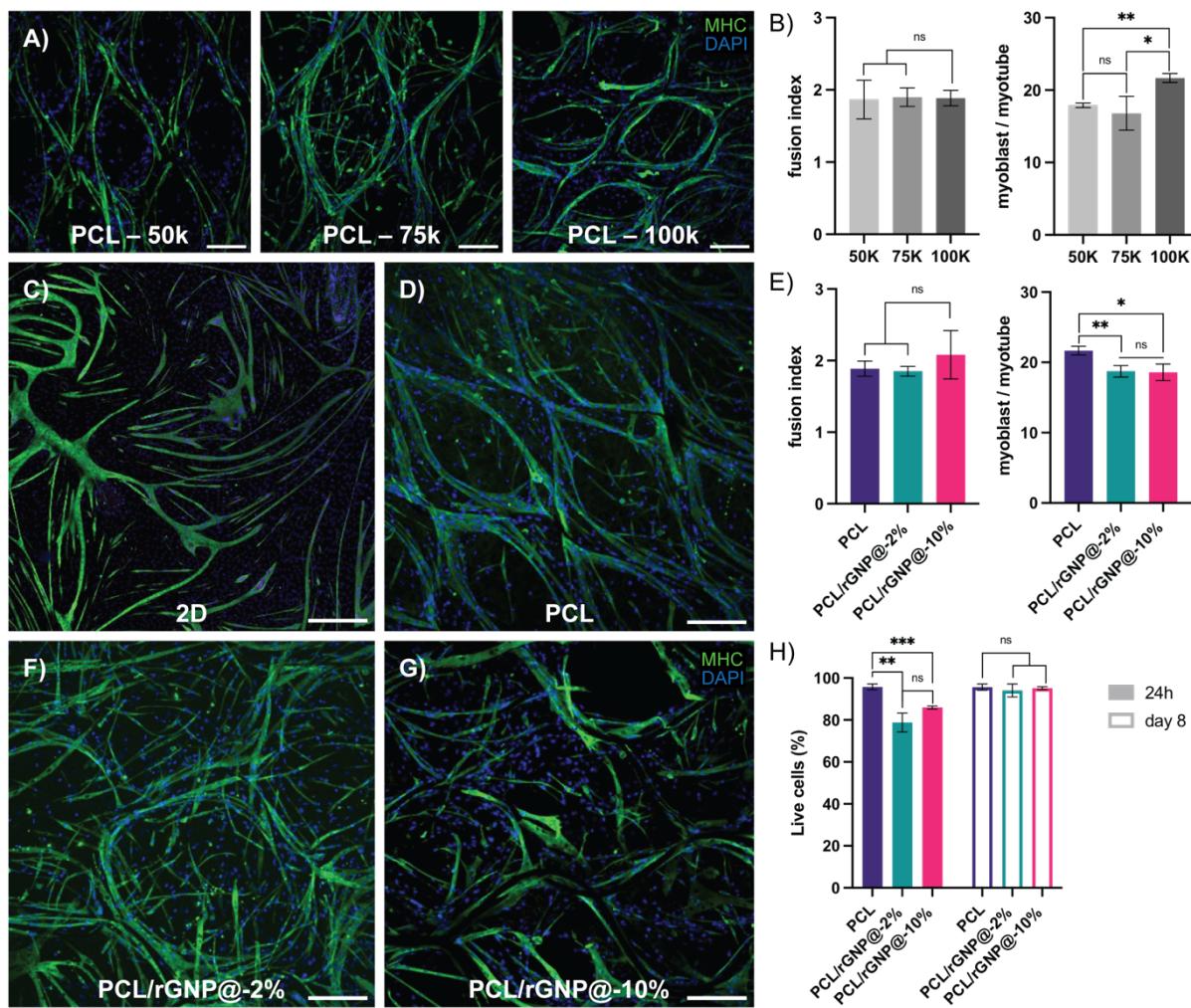

567 Uniaxial tensile testing of melt-extruded filaments with diameters between 0.14 and 0.22 mm
568 was performed to evaluate the influence of rGNP@ incorporation and the extrusion process on
569 PCL bulk material properties (Figure 4A–B). PCL/rGNP@-2% and PCL/rGNP@-10%
570 filaments showed significantly higher elastic moduli, 357 ± 16 and 369 ± 20 MPa, respectively,
571 when compared to PCL filaments, 316 ± 14 MPa (Figure 4B). This increase in the elastic
572 modulus can be attributed to the filler incorporation in good agreement with previous studies.
573 For instance, rGO has been reported to increase the elastic modulus of PCL composites with
574 rGO content of 0.1 wt. %, both for melt-cast and melt-electrowritten composite fibers, when
575 compared to pristine PCL [28]. Similarly, ION incorporation increases the elastic modulus of
576 PCL matrices, as observed in electrospun composite fibers [49]. In general, stiff particles such
577 as ceramics and metals, when included in a PCL matrix, can act as anchor points that hinder the
578 reversible PCL chain sliding that leads to elastic strain. In addition, the elastic modulus of melt-
579 extruded pristine PCL filaments was observed to be considerably higher than that of melt-cast
580 PCL with a similar molecular weight (about 130 MPa), as reported by Somszor *et al.* [28]. This
581 observation is expected, since all extrusion processes—including melt-blending during
582 rGNP@ incorporation and printing—cause shear-induced alignment of the PCL chains and
583 overall strengthening of the polymer matrix. Interestingly, no significant difference in elastic
584 modulus, yield strain, and elastic strain energy density was observed among filaments with 2%
585 and 10% rGNP@. This can potentially be explained by the fact that both rGNP@ concentrations
586 allowed for uniform dispersion and interaction with the PCL matrix, without the introduction
587 of defects. Moreover, there was no significant difference among the yield strain and elastic
588 strain energy density values of all compositions tested (Figure 4B), showing that the
589 incorporation of rGNP@ into PCL does not significantly alter the range of the elastic regime
590 and only slightly increases the material's intrinsic stiffness.

591 The microfiber fabrication process via MEW introduced composition-dependent variations in
592 scaffold mechanics that are not observed in the melt-extruded materials themselves (Figure 4C–
593 D). In general, across all compositions, the values of tangent modulus, yield strain, and elastic
594 strain energy density were significantly greater for scaffolds tested along the main printing
595 direction (labeled as x-direction) than in the perpendicular direction (labeled as y-direction;
596 Figure 4C–D), which is ascribed to two main reasons. First, the orientation of the printed
597 hexagon edges determines that the x-direction is completely aligned to one pair of edges and
598 partially aligned to two pairs, while the y-direction is only partially aligned to two pairs. Second,
599 fibers are deposited continuously along the x-direction, whereas fusion between newly
600 deposited and solidified fibers is achieved only partially, as can be observed from SEM
601 micrographs (Figure 2F). Altogether, this leads to a greater degree of fiber bending and more
602 potential for fiber delamination under tension along the y-direction. These observations are in
603 good agreement with previous works on melt-electrowritten PCL hexagonal scaffolds [10].
604 Regarding the effect of composition, the incorporation of rGNP@ significantly increases the
605 tangent modulus values of 2% and 10% filler-containing scaffolds with respect to PCL along
606 the x-direction, while there is no such significant change along the y-direction (Figure 4D).
607 Additionally, the yield strain and elastic energy density are significantly reduced for composite
608 scaffolds with respect to PCL scaffolds, indicating a greater component of irreversible
609 deformation for composite scaffolds (Figure 4D), as observed previously in polymer/graphene
610 composites with very high filler content [31,37]. Overall, this can be explained considering that,
611 in composite fibers, deformation causes the movement and reorientation of filler particles and

612 PCL chain sliding around particles, both of which lead to a permanent loss of elastic energy.
613 Nevertheless, the elastic behavior of the 2% and 10% filler-containing scaffolds was within the
614 range observed in skeletal muscle, for instance, in the diaphragm of a mouse model of early-
615 onset muscular dystrophy with myositis [50] and the tibialis anterior muscle of healthy adult
616 Wistar rats [51].

617 To assess the capability for magnetically triggered deformation, composite MEW scaffolds
618 were subjected to different magnetic field intensities in unconstrained conditions. The setup
619 allowed to monitor scaffold out-of-plane bending through a window of constant width (x),
620 which led to an effective decrease in end-to-end length along the scaffold main axis ($\Delta L/x$) and
621 maximum protrusion away from the main axis (d/x) in the actuated state (Figure 4E). Even at a
622 magnetic flux intensity $B = 293$ mT, PCL/rGNP@-2% scaffolds did not perceive sufficient
623 magnetic force to undergo observable bending; however, magnetic forces in PCL/rGNP@-10%
624 scaffolds at $B = 293$ mT were high enough (Figure 4F). For this composition, magnetically
625 triggered deformation was reversible and was found to increase gradually with the magnetic
626 flux intensity (Figure S5). Importantly, a dependence of scaffold deformation on fiber density
627 was observed; to assess this, scaffolds with different fiber densities, and thus different apparent
628 densities, were tested. Both the effective main-axis length decrease and maximum protrusion
629 values were observed to increase more notably for scaffolds with lower apparent density (Figure
630 4G), while at higher apparent density, scaffolds possess greater out-of-plane stiffness that
631 restrains bending. Greater deformation was found for PCL/rGNP@-10% scaffolds with
632 apparent density of 52 mg cm⁻³, showing effective main-axis length decrease of 17% and
633 maximum protrusion of 31% at $B = 293$ mT (Figure 4G). Interestingly, reversible actuation of
634 PCL/rGNP@-10% scaffolds required only a magnet with 100-kg strength and maximum
635 magnetic field intensity of about 300 mT. On the other hand, previously reported magneto-
636 active scaffolds are often based on hydrogels or ceramics and require much higher magnetic
637 field intensities to achieve deformation. For example, a hydroxyapatite sponge was reported to
638 undergo contraction of up to 25% in close proximity to an electromagnet with 200-kg strength
639 [25]. Additionally, Spangenberg *et al.* reported that 3D-printed reticulated scaffolds based on
640 ION-loaded alginate/methyl cellulose hydrogels were capable of contraction up to 4%, which
641 occurred due to filament collapse under a magnetic field intensity of up to 200 mT [52]. These
642 hydrogel and ceramic scaffolds cannot undergo large magnetically triggered deformations, as
643 they lack the wide elastic range of PCL and other thermoplastics, which can act as a reinforcing
644 platform for stimulation. Although the development of thermoplastic/ION composites for
645 cellular scaffolds has been addressed previously [30,44,53–55], efforts have focused on magnetic
646 hyperthermia, imaging, and other applications of ION, without proper evaluation of the
647 actuation potential of these composites. In the face of this issue, the results here presented
648 confirm the potential of PCL/rGNP@ MEW scaffolds as tunable platforms for controlled out-
649 of-plane actuation and magnetically induced mechanical stimulation.

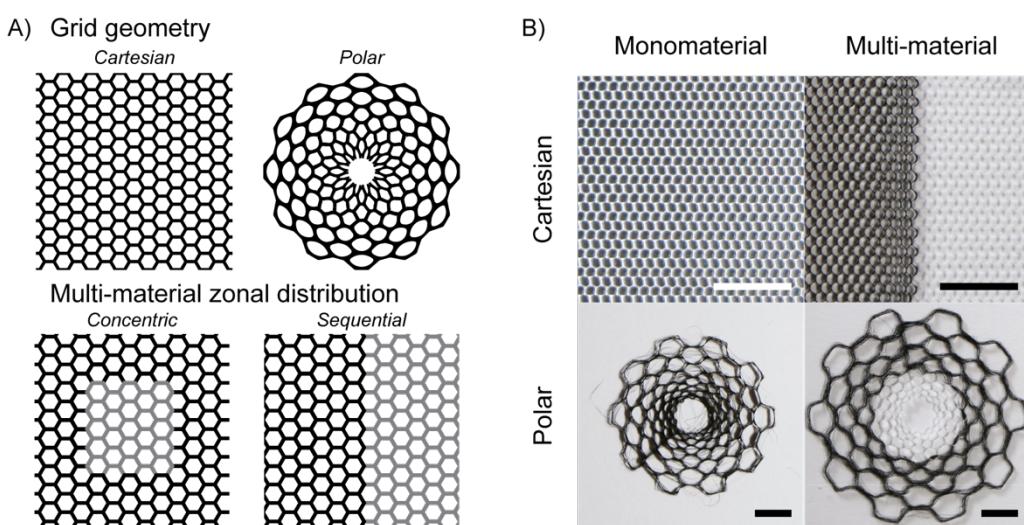
650


651
652 **Figure 4. Mechanical behavior and actuation of magnetically deformable MEW scaffolds.** A)
653 Representative uniaxial stress-strain curves and B) mechanical parameters of PCL and PCL/rGNP@ extruded
654 filaments (Kruskal-Wallis test with Dunn's multiple comparisons). C) Representative uniaxial stress-strain
655 curves and D) mechanical parameters of PCL and PCL/rGNP@ MEW scaffolds (two-way ANOVA with
656 Sidak's multiple comparisons test for groups with same direction; multiple unpaired t tests with Holm-Sidak
657 multiple comparison correction for groups with same composition). E) Setup for assessing magnetic actuation
658 on PCL/rGNP@ MEW scaffolds. F) Snapshots from magnetic actuation experiments on PCL/rGNP@
659 scaffolds; scale bars: 5 mm. G) Magnetic flux intensity (B)-deformation curves for PCL/rGNP@-10%
660 scaffolds: end-to-end length decrease along the main axis (left), and protrusion away from the main axis
661 (right).
662

663 4. Biological evaluation of PCL and PCL/rGNP@ MEW scaffolds

664 The biological potential of magnetic PCL for skeletal muscle engineering was assessed using
665 C2C12 myoblasts. First, C2C12 cells were cultured on PCL scaffolds to identify an appropriate
666 cell density. A cell number titration experiment was performed in which three starting
667 concentrations of cells (50000, 75000, and 100000 per scaffold) were assessed. All three cell
668 concentrations show cellular alignment along the scaffold fibers (Figure 5A). As a measure of
669 differentiation efficiency, the fusion index was calculated. No significant difference of fusion
670 index was observed between the three conditions (Figure 5B). However, a starting
671 concentration of 100000 cells per scaffold showed a significant difference in differentiation
672 efficiency, *i.e.* myoblast-to-myotube fusion, indicating that longer myotubes were formed.
673 Therefore, this concentration was used in the remainder of the study.

674 Compared to 2D cultures (Figure 5C), cells grown on PCL, PCL/rGNP@-2%, and
675 PCL/rGNP@-10% scaffolds embedded in Matrigel/collagen constructs show highly organized
676 myotubes that align along the shape of the MEW scaffolds (Figures 5D,F,G and S6). All three
677 scaffold compositions performed equally well in terms of differentiation (Figure 5E). However,
678 PCL scaffolds performed significantly better for myoblast-to-myotube fusion and showed
679 highly organized myotube alignment compared to the magnetized PCL scaffolds. It needs to be
680 considered that all these experiments have been performed under static conditions. To evaluate
681 the effects of dynamic cultures in response to a magnetic field, further experiments need to be
682 performed. Furthermore, to assess scaffold biocompatibility, a viability assay was performed.
683 A significant difference 24 h after seeding in cell viability was found between PCL,
684 PCL/rGNP@-2%, and PCL/rGNP@-10%. On the contrary, no significant difference in cell
685 viability after 24 h was found between PCL/rGNP@-2% and PCL/rGNP@-10%. The C2C12
686 cells were differentiated for 6 days amounting to a total culture time of 8 days. No significant
687 difference in cell viability after 8 days of culture was found between PCL, PCL/rGNP@-2%,
688 and PCL/rGNP@-10% scaffolds. Our results show that, although the PCL/rGNP@ scaffolds
689 initially show a lower cell viability, long-term culture for a total of 8 days does not show a
690 significant difference in cell viability compared to C2C12 cells in PCL scaffolds. Overall, both
691 PCL/rGNP@-2% and PCL/rGNP@-10% scaffolds showed similar performance and can
692 therefore be used for future studies. Moreover, C2C12 myoblast-laden MEW/Matrigel/collagen
693 constructs with PCL/rGNP@-10% composition were able to successfully undergo reversible
694 bending while immersed in culture medium under cyclical magnetic field loading (Video S1).
695 Altogether, these observations suggest that these magneto-active constructs can allow for
696 cyclical mechanical stimulation and guide cell orientation with high viability.


697 Importantly, to date, relatively few methods exist for recapitulating the fiber anatomy of skeletal
698 muscle. Differentiation protocols of myoblasts such as C2C12 in 2D culture are relatively
699 effective on gene expression level. However, morphologically, C2C12 cells differentiated in
700 2D do not represent physiological myotubes. Here, we demonstrated that, in a MEW
701 fiber/hydrogel platform, C2C12 cells can be guided to organize themselves along scaffolds. In
702 addition, compared to 2D, C2C12 cells were able to form myotubes that more closely resemble
703 those *in vivo*. Furthermore, the positive effects of magnetic stimulation on myoblasts have been
704 shown in multiple studies both *in vitro* and *in vivo*, as summarized recently by Mueller *et al.*
705 [56]. While most studies focus on uniaxial alignment, our approach is innovative as MEW
706 provides flexibility to create complex architectures that allow for highly organized constructs
707 in which alignment is multi-directional.

722 5. Future perspectives on integration of multi-material scaffolds towards complex macroscale
723 geometries

724 The flexibility here described for fiber deposition *via* MEW was leveraged for the future
725 development of scaffolds that tailor the mechanical and responsive properties of cellular
726 constructs to mimic those of live tissues, especially skeletal muscle. Here, we showed the design
727 potential of MEW PCL/rGNP@ scaffolds based on grid geometry and zonal distribution of
728 active/nonactive materials (Figure 6). Firstly, the choice of grid geometry might allow to
729 approximate diverse cell orientations, for instance, based on a cartesian grid for linear
730 orientation profiles or a polar grid for circular orientations. These complex geometries could
731 help emulating the wide range of cellular configurations found across diverse skeletal muscle
732 types, e.g. parallel and circular muscle. Second, fibers composed of diverse materials can be
733 differentially deposited stepwise *via* MEW, in order to generate scaffolds with active and
734 nonactive zones that mimic tissue regions with different fiber stiffness and different magneto-
735 responsive deformation. The adjacent deposition of PCL/rGNP@ and PCL yielded hybrid
736 scaffolds consisting of magnetically active and inactive regions, which could be used as
737 scaffolds with location-dependent deformation, for instance, as observed in muscle insertions.
738 Overall, the design considerations here described for MEW of PCL and PCL/rGNP@
739 composites expand the current fabrication possibilities for mimicking the diverse structural
740 configurations of skeletal muscle. Importantly, the newly developed magnetically deformable
741 microfiber scaffolds will provide a platform for the further study of the role of magnetic fields
742 on skeletal muscle *in vitro*. In particular, the use of patient induced pluripotent stem cell (iPSC)-
743 derived skeletal muscle under dynamic stimulation triggered by magnetic fields remains
744 relatively unexplored. Our platform opens new possibilities for disease modeling to better
745 understand the effect of mechanical stimulation on muscle differentiation, as well as a disease
746 modeling system for DMD and FSHD.

747

748
749 **Figure 6. Integration of magneto-active MEW scaffolds based on multiple materials with complex fiber**
750 **orientations.** A) Design considerations for the integration of geometrically complex, differentially active
751 MEW scaffolds (PCL/rGNP@ in black; PCL in grey). B) Scaffold grid geometry and zonal distribution of
752 active material for introducing active/nonactive interfaces and complex magneto-triggered deformation
753 profiles that recapitulate the diverse mechanical microenvironments (PCL/rGNP@-10% in black; PCL in
754 white). Scale bars: 5 mm.

755

756 **Conclusion**

757

758 In summary, we showed the fabrication of magnetically deformable microfiber meshes with
759 controlled hexagonal architectures via melt electrowriting of a cytocompatible material
760 composite. When combined with Matrigel/collagen gels, these microstructured scaffolds were
761 capable of undergoing reversible bending triggered by cyclical application of external magnetic
762 fields. Moreover, these magneto-active constructs generated 3D culture environments that
763 guided cell alignment along scaffold microfibers. We envision our novel approach as an
764 innovative platform for the rational design of bio-inspired scaffolds that provide remote
765 stimulation, thus advancing the *in vitro* modeling of disease and regeneration in skeletal muscle
766 and other soft tissues.

767

768 **Acknowledgments**

769

770 GC, JM, and MC acknowledge financial support from the Netherlands Organization for
771 Scientific Research (NWO) through the Gravitation Program “Materials Driven Regeneration”
772 (024.003.013) and the European Union Horizon 2020 program through project BRAV3
773 (874827). MC acknowledges the financial support from the NWO through project RePrint
774 (OCENW.XS5.161). OD, FGS, and NG acknowledge the financial support from the Novo
775 Nordisk Foundation (NNF21CC0073729), FSHDglobal, and the Stichting Utrecht Singelstim.
776 JM, FDM, and AMP acknowledge financial support from the Portuguese Foundation for
777 Science and Technology (FCT) / Ministry for Science, Technology, and Higher Education
778 (MCTES PIDDAC) through projects ALiCE (LA/P/0045/2020) and LEPABE
779 (UIDB/00511/2020 and UIDP/00511/2020) and the Institute for Research and Innovation in
780 Health i3S (UIDB/04293/2020); through the UT Austin PT Program (project UTAP-
781 EXPL/NPN/0044/2021); from FEDER funds through the COMPETE 2020–Operational
782 Programme for Competitiveness and Internationalisation, Portugal; and from the Norte Portugal
783 Regional Operational Programme (NORTE) within the Portugal 2020 Partnership Agreement
784 of the European Regional Development Fund through project 2SMART (NORTE-01-0145-
785 FEDER-000054). AMP acknowledges financial support from the FCT through the Scientific
786 Employment Stimulus (Individual Call, CECIND/03908/2017).

787 **Supplementary Materials**

788

789

790

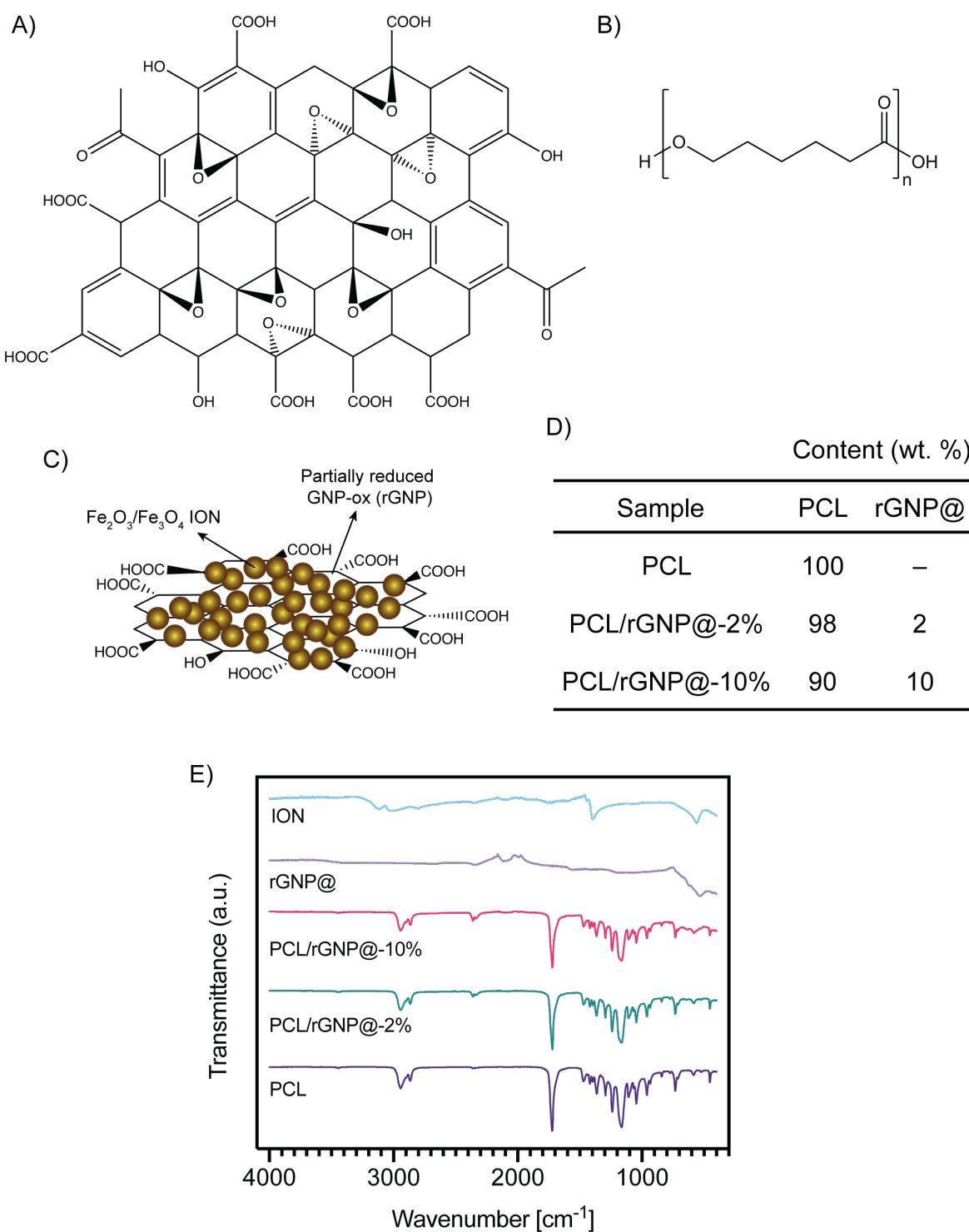
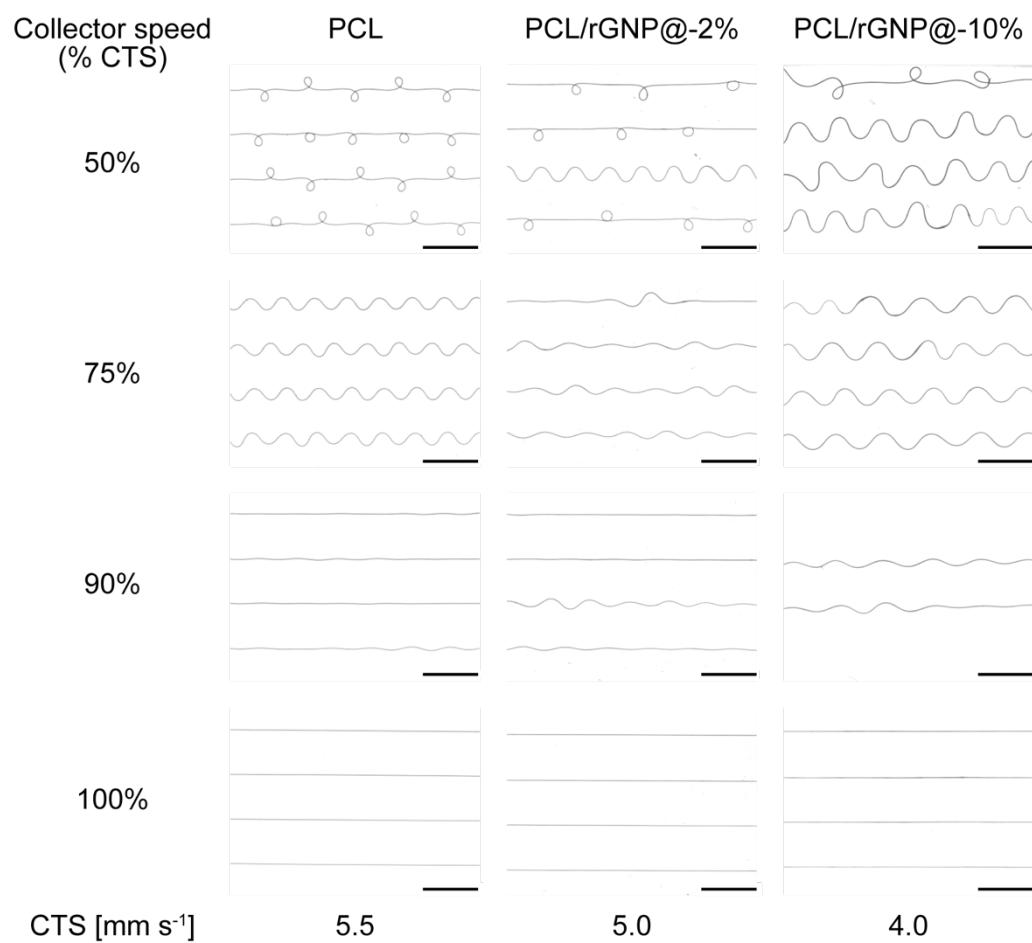

791

Figure S1. Morphology, particle size, and composition of graphene-derived and magnetized particles.
 A) Particle size distribution for GNP, GNP-ox, and rGNP@, as obtained by number-weighted DLS; mean, standard deviation (SD), and polydispersity index (PDI, calculated as $\text{mean}^2/\text{SD}^2$). B) Zeta potential of

792 graphene-derived and ION particles (one-way ANOVA with Tukey multiple comparisons). C) ION particle
793 aspect ratio as determined from TEM. D) i) Schematic of a particle showing its major (M) and minor (m)
794 axes; ii) Particle size distribution as determined from TEM, showing mean \pm SD. E) i) TEM and ii) SEM
795 images of magnetized particles; scale bars: 200 nm. F) SEM-EDS images of magnetized particles showing
796 elemental distribution; scale bars: 5 μ m. G) Elemental composition of graphene-derived and magnetized
797 particles obtained from EDS quantification.

798

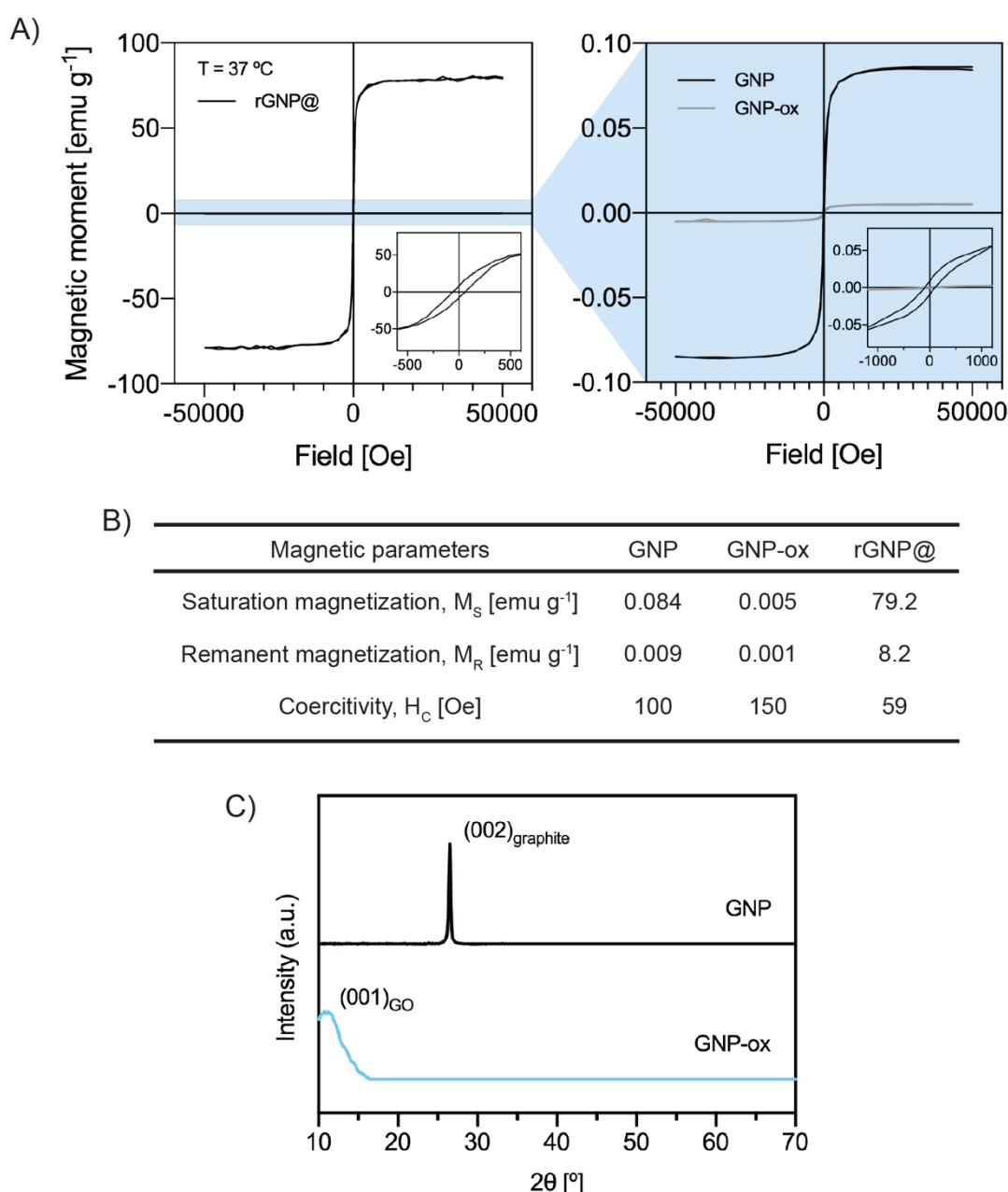
799


800

801 **Figure S2. Composition of the PCL/rGNP@ composite.** Chemical structures of A) oxidized graphene
 802 (GNP-ox) and B) poly-(ε-caprolactone) (PCL). C) Schematic structure of magnetic reduced graphene
 803 nanoplatelets (rGNP@), which consists of iron oxide nanoparticles (ION) obtained as a mixture of magnetite
 804 and maghemite deposited on partially reduced GNP-ox nanoplatelets. D) Nominal compositions of all PCL
 805 and PCL/rGNP@ composite samples. E) FTIR spectra of PCL, PCL/rGNP@ composites, and magnetic
 806 particles.

807

808


809

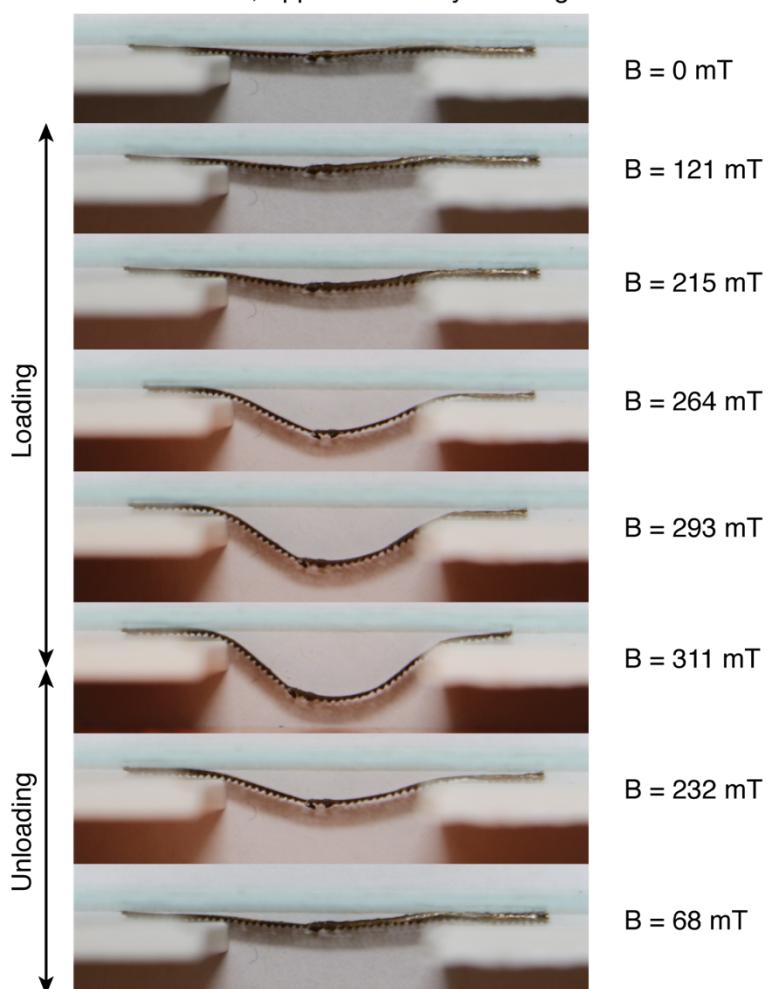
810
811 **Figure S3. Effect of composition and collector speed on MEW fiber morphology.** Scale bars: 1 mm.

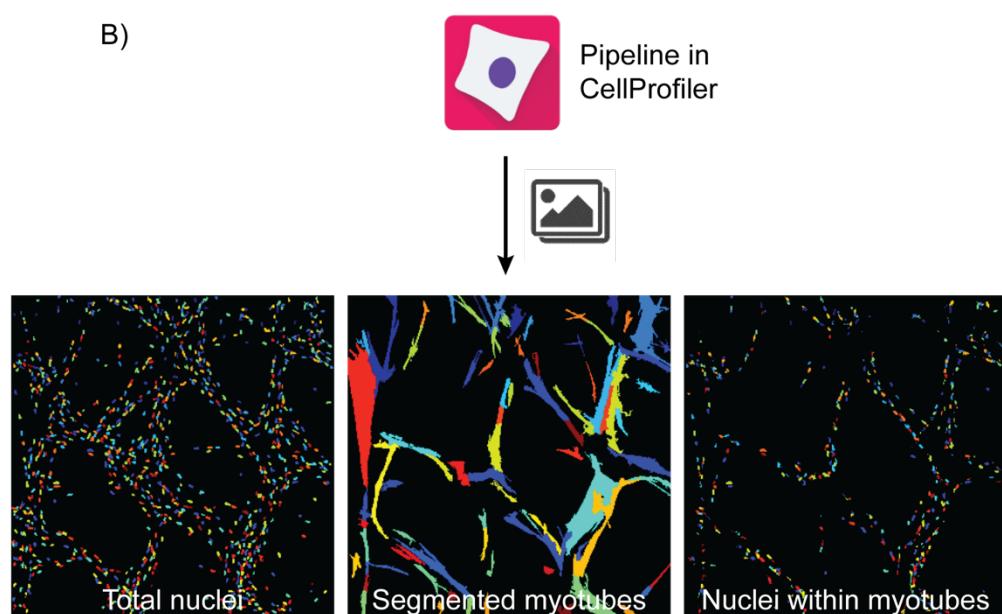
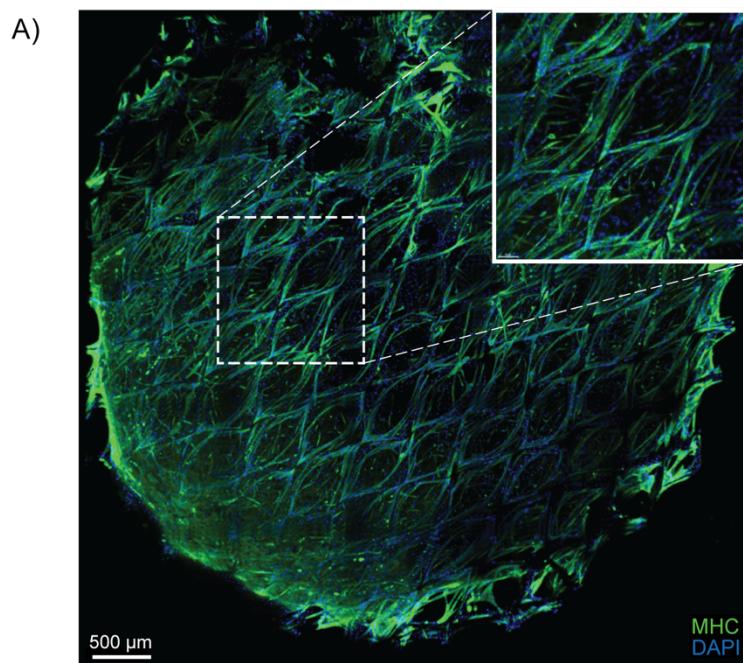
812

813

814

815


816



817

818

Figure S4. Magnetic and crystallographic properties of graphene-derived and magnetized rGNP@ powders. A) Magnetic hysteresis curves and B) magnetic parameters of magnetized powders at $37\text{ }^{\circ}\text{C}$. C) X-ray diffractograms of GNP and GNP-ox powders.

PCL/rGNP@-10%, Apparent density = 52 mg cm⁻³

824

825

Figure S6. A) Confocal imaging of C2C12 cells cultured on whole MEW/Matrigel/collagen constructs; 826 myosin heavy chain (MHC) = green; DAPI = blue. B) Workflow of image analysis for C2C12 cultures on 827 whole constructs.

828

829

830

Video S1. Real-time cyclical bending of a C2C12 cell-laden MEW/Matrigel/collagen construct containing a 831 PCL/rGNP@-10% scaffold, performed at 23 °C inside DMEM with an electromagnet that generated cycles 832 of magnetic loading and unloading.

833

834

835

836 References

837 [1] L. G. Karagounis, J. A. Hawley, *Int. J. Biochem. Cell Biol.* **2010**, *42*, 1376.

838 [2] V. Kovanen, *Exerc. Sport Sci. Rev.* **2002**, *30*, 20.

839 [3] A. R. Gillies, M. A. Chapman, E. A. Bushong, T. J. Deerinck, M. H. Ellisman, R. L.
840 Lieber, *J. Physiol.* **2017**, *595*, 1159.

841 [4] T. W. Kragstrup, M. Kjaer, A. L. Mackey, *Scand. J. Med. Sci. Sport.* **2011**, *21*, 749.

842 [5] E. Mercuri, C. G. Bönnemann, F. Muntoni, *Lancet* **2019**, *394*, 2025.

843 [6] K. T. Nozoe, R. T. Akamine, D. R. Mazzotti, D. N. Polesel, L. F. Grossklauss, S.
844 Tufik, M. L. Andersen, G. A. Moreira, *Sleep Sci.* **2016**, *9*, 129.

845 [7] S. Pandya, W. M. King, R. Tawil, *Phys. Ther.* **2008**, *88*, 105.

846 [8] F. Iberite, E. Gruppioni, L. Ricotti, *npj Regen. Med.* **2022**, *7*, 23.

847 [9] P. Heher, B. Maleiner, J. Prüller, A. H. Teuschl, J. Kollmitzer, X. Monforte, S.
848 Wolbank, H. Redl, D. Rünzler, C. Fuchs, *Acta Biomater.* **2015**, *24*, 251.

849 [10] M. Castilho, A. van Mil, M. Maher, C. H. G. Metz, G. Hochleitner, J. Groll, P. A.
850 Doevendans, K. Ito, J. P. G. Sluijter, J. Malda, *Adv. Funct. Mater.* **2018**, *28*, 1803151.

851 [11] H.-W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, A. Atala, *Nat. Biotechnol.* **2016**,
852 *34*, 312.

853 [12] S. H. Ku, S. H. Lee, C. B. Park, *Biomaterials* **2012**, *33*, 6098.

854 [13] A. Fallahi, I. K. Yazdi, L. Serex, E. Lesha, N. Faramarzi, F. Tarlan, H. Avci, R. Costa-
855 Almeida, F. Sharifi, C. Rinoldi, M. E. Gomes, S. R. Shin, A. Khademhosseini, M.
856 Akbari, A. Tamayol, *ACS Biomater. Sci. Eng.* **2020**, *6*, 1112.

857 [14] N. Narayanan, C. Jiang, C. Wang, G. Uzunalli, N. Whittern, D. Chen, O. G. Jones, S.
858 Kuang, M. Deng, *Front. Bioeng. Biotechnol.* **2020**, *8*, DOI 10.3389/fbioe.2020.00203.

859 [15] M. Castilho, D. Feyen, M. Flandes-Iparraguirre, G. Hochleitner, J. Groll, P. A. F.
860 Doevendans, T. Vermonden, K. Ito, J. P. G. Sluijter, J. Malda, *Adv. Healthc. Mater.*
861 **2017**, *1700311*, 1.

862 [16] N. T. Saidy, F. Wolf, O. Bas, H. Keijdener, D. W. Hutmacher, P. Mela, E. M. De-Juan-
863 Pardo, *Small* **2019**, *15*, 1900873.

864 [17] D. Kongahage, A. Ruhparwar, J. Foroughi, *Adv. Mater. Technol.* **2021**, *6*, 2000894.

865 [18] S. M. Mirvakili, D. Sim, I. W. Hunter, R. Langer, *Sci. Robot.* **2020**, *5*, DOI
866 10.1126/scirobotics.aaz4239.

867 [19] H. L. Hiraki, D. L. Matera, M. J. Rose, R. N. Kent, C. W. Todd, M. E. Stout, A. E.
868 Wank, M. C. Schiavone, S. J. DePalma, A. A. Zarouk, B. M. Baker, *Front. Bioeng.*

869 *Biotechnol.* **2021**, *9*, DOI 10.3389/fbioe.2021.679165.

870 [20] W.-Y. Lee, W.-Y. Cheng, Y.-C. Yeh, C.-H. Lai, S.-M. Hwang, C.-W. Hsiao, C.-W.
871 Huang, M.-C. Chen, H.-W. Sung, *Tissue Eng. Part C Methods* **2011**, *17*, 651.

872 [21] A. Jedlovszky-Hajdu, K. Molnar, P. M. Nagy, K. Sinko, M. Zrinyi, *Colloids Surfaces A*
873 *Physicochem. Eng. Asp.* **2016**, *503*, 79.

874 [22] P. Ghaderinejad, N. Najmoddin, Z. Bagher, M. Saeed, S. Karimi, S. Simorgh, M.
875 Pezeshki-Modaress, *Chem. Eng. J.* **2021**, *420*, 130465.

876 [23] S. Ghosh, I. Ghosh, M. Chakrabarti, A. Mukherjee, *Food Chem. Toxicol.* **2020**, *136*,
877 110989.

878 [24] M. Antman-Passig, O. Shefi, *Nano Lett.* **2016**, *16*, 2567.

879 [25] Y. Zhang, J. Li, P. Habibovic, *Bioact. Mater.* **2022**, DOI
880 10.1016/j.bioactmat.2022.02.028.

881 [26] S. Azevedo, R. Costa-Almeida, S. G. Santos, F. D. Magalhães, A. M. Pinto, *Appl.*
882 *Mater. Today* **2022**, *27*, 101397.

883 [27] S. I. Amaral, R. Costa-Almeida, I. C. Gonçalves, F. D. Magalhães, A. M. Pinto,
884 *Carbon N. Y.* **2022**, *190*, 194.

885 [28] K. Somszor, O. Bas, F. Karimi, T. Shabab, N. T. Saidy, A. J. O'Connor, A. V. Ellis, D.
886 Hutmacher, D. E. Heath, *ACS Macro Lett.* **2020**, *9*, 1732.

887 [29] Kenry, K. P. Loh, C. T. Lim, *Small* **2015**, *11*, 5105.

888 [30] K. M. A. Mueller, G. J. Topping, S. P. Schwaminger, Y. Zou, D. M. Rojas-González,
889 E. M. De-Juan-Pardo, S. Berensmeier, F. Schilling, P. Mela, *Biomater. Sci.* **2021**, *9*,
890 4607.

891 [31] A. M. Pinto, J. Cabral, D. A. P. Tanaka, A. M. Mendes, F. D. Magalhães, *Polym. Int.*
892 **2013**, DOI 10.1002/pi.4290.

893 [32] Y. Xue, H. Chen, D. Yu, S. Wang, M. Yardeni, Q. Dai, M. Guo, Y. Liu, F. Lu, J. Qu,
894 L. Dai, *Chem. Commun.* **2011**, *47*, 11689.

895 [33] E. Kuzelova Kostakova, L. Meszaros, G. Maskova, L. Blazkova, T. Turcsan, D. Lukas,
896 *J. Nanomater.* **2017**, *2017*, 1.

897 [34] M. Castilho, R. Levato, P. N. Bernal, M. de Ruijter, C. Y. Sheng, J. van Duijn, S.
898 Piluso, K. Ito, J. Malda, *Biomacromolecules* **2021**, *22*, 855.

899 [35] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A.
900 Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, D. M. Sabatini, *Genome*
901 *Biol.* **2006**, *7*, DOI 10.1186/gb-2006-7-10-r100.

902 [36] L. S. Pires, F. D. Magalhães, A. M. Pinto, *Polymers (Basel)*. **2022**, *14*, 1464.

903 [37] J. Meneses, T. van de Kemp, R. Costa-Almeida, R. Pereira, F. D. Magalhães, M.

904 Castilho, A. M. Pinto, *Polymers (Basel)*. **2022**, *14*, 1038.

905 [38] V. Frantellizzi, M. Conte, M. Pontico, A. Pani, R. Pani, G. De Vincentis, *Nucl. Med. Mol. Imaging (2010)*. **2020**, *54*, 65.

906

907 [39] J. H. Lee, J. E. Ju, B. Il Kim, P. J. Pak, E.-K. Choi, H.-S. Lee, N. Chung, *Environ. Toxicol. Chem.* **2014**, *33*, 2759.

908

909 [40] J. C. Kade, P. D. Dalton, *Adv. Healthc. Mater.* **2021**, *10*, 2001232.

910 [41] Y. Hou, W. Wang, P. Bárto, *3D Print. Addit. Manuf.* **2020**, *7*, 222.

911 [42] A. Hrynevich, B. Ş. Elçi, J. N. Haigh, R. McMaster, A. Youssef, C. Blum, T. Blunk, G. Hochleitner, J. Groll, P. D. Dalton, *Small* **2018**, *14*, 1800232.

912

913 [43] M. Świętek, A. Broż, J. Tarasiuk, S. Wroński, W. Tokarz, A. Kozieł, M. Błażewicz, L. Baćáková, *Mater. Sci. Eng. C* **2019**, *104*, 109913.

914

915 [44] R. K. Singh, K. D. Patel, J. H. Lee, E.-J. Lee, J.-H. Kim, T.-H. Kim, H.-W. Kim, *PLoS One* **2014**, *9*, e91584.

916

917 [45] M. Hu, Z. Yao, X. Wang, *AIMS Mater. Sci.* **2017**, *4*, 755.

918 [46] S. A. Kostyuchenko, G. G. Ziborov, M. S. Dmitrieva, A. I. Dmitriev, *J. Phys. Conf. Ser.* **2019**, *1199*, 012026.

919

920 [47] R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, N. H. De Leeuw, *J. Phys. Condens. Matter* **2010**, *22*, 255401.

921

922 [48] C. Baptista, A. Azagury, H. Shin, C. M. Baker, E. Ly, R. Lee, E. Mathiowitz, *Polymer (Guildf)*. **2020**, *191*, 122227.

923

924 [49] V. Rezaei, E. Mirzaei, S.-M. Taghizadeh, A. Berenjian, A. Ebrahiminezhad, *Processes* **2021**, *9*, 1559.

925

926 [50] M. A. Lopez, P. S. Pardo, G. A. Cox, A. M. Boriek, *Am. J. Physiol. Physiol.* **2008**, *295*, C1092.

927

928 [51] B. Calvo, A. Ramírez, A. Alonso, J. Grasa, F. Soteras, R. Osta, M. J. Muñoz, *J. Biomech.* **2010**, *43*, 318.

929

930 [52] J. Spangenberg, D. Kilian, C. Czichy, T. Ahlfeld, A. Lode, S. Günther, S. Odenbach, M. Gelinsky, *ACS Biomater. Sci. Eng.* **2021**, *7*, 648.

931

932 [53] A. Gloria, T. Russo, U. D'Amora, S. Zeppetelli, T. D'Alessandro, M. Sandri, M. Bañobre-López, Y. Piñeiro-Redondo, M. Uhlarz, A. Tampieri, J. Rivas, T. Herrmannsdörfer, V. A. Dediu, L. Ambrosio, R. De Santis, *J. R. Soc. Interface* **2013**, *10*, 20120833.

933

934

935

936 [54] M. Szczęch, D. Orsi, N. Łopuszyńska, L. Cristofolini, K. Jasiński, W. P. Węglarz, F. Albertini, S. Kereiche, K. Szczepanowicz, *RSC Adv.* **2020**, *10*, 43607.

937

938 [55] Y. Yang, C. Tong, J. Zhong, R. Huang, W. Tan, Z. Tan, *J. Biomed. Mater. Res. Part B*

939

939 *Appl. Biomater.* **2018**, *106*, 1827.

940 [56] C. Mueller, M. Trujillo-Miranda, M. Maier, D. E. Heath, A. J. O'Connor, S. Salehi,
941 *Adv. Mater. Interfaces* **2021**, *8*, 2001167.

942