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Abstract 

Variation in the rate at which humans age may be rooted in early life events acting through 

genomic regions that are influenced by such events and subsequently are related to health 

phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes 

regions either enriched for genetically controlled imprinting effects (the typical type of POE) 

or atypical POE introduced by environmental effects associated with parents. This part of the 

methylome is heavily influenced by early life events, making it a potential route connecting 

early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the 

association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early 

and later environmental exposures and subsequently with health-related phenotypes and adult 

aging phenotypes. We do this by performing phenome-wide association analyses of the POE-

influenced methylome using a large family-based population cohort (GS:SFHS, 

Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs 

with phenotypic variation were identified and replicated. Most of the associations were 

contributed by POE-CpGs belonging to the atypical class and the most strongly enriched 

associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) 

smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs 

formed co-methylation networks (modules) which are associated with these phenotypes, with 

one of the aging-associated modules displaying increased internal module connectivity 

(strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs 

also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information 

loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These 

results identified associations between the atypical-POE-influenced methylome and aging 

and provided new evidence for the “early development of origin” hypothesis for aging in 

humans. 
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Introduction 

Aging is a multi-system process manifesting as a progressive decline of physiological 

integrity, impaired functions and increased risk of adult onset diseases and death(1). 

Although everyone ages chronologically, the actual biological state, namely biological age, 

varies even among individuals of the same chronological age(2, 3). The increased or delayed 

biological aging after accounting for chronological age has been defined as “age 

acceleration”, which can be estimated by biomarkers such as DNA methylation(4-7). 

Identification of risk factors and biomarkers is crucial for the understanding of aging(2). 

Genetic studies have reported large numbers of genomic loci associated with biological 

aging(8). Biological aging explained by DNA sequences, however, only accounts for 

influences from predisposing and unchangeable risk factors. Environment-involved effects 

such as epigenetic changes in response to life events, on the other hand, are flexible and 

reversible, representing a different collection of factors which could potentially better fit the 

dynamic nature of aging process across the lifespan.  

 

Among all environmental factors, early and developmental exposures are of particular 

interest. In 1994, Barker proposed a hypothesis that late-onset disease can be profoundly 

influenced by early life experiences(9). Since then, a number of studies have provided “early 

development of origin” evidence for adult-onset diseases such as schizophrenia and 

dementia(10, 11). Aging, which is the biggest risk factor for many late onset diseases, has 

been found to be associated with adulthood environmental factors such as smoke and sun 

exposures(12, 13). When it comes to early effects, a few studies reported association between 

early exposures and age acceleration in newborns and children, but not in adults (not  

tested)(13, 14). The association between early events/exposures and adulthood aging, and the 

molecular paths mediating any such associations, have been largely unexplored.  
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Parent-of-origin effects (POEs) are found in a subset of genomic regions that are highly 

sensitive to early-life events and associated with health outcomes at both early and late life 

stages(15-17). At the level of DNA methylation, typical POE-influenced methylation sites 

manifest as imbalanced methylation similarity between nuclear family members of the same 

genetic distance (mother-offspring, father-offspring, sibling-sibling pairs) and differentiated 

allelic effect on methylation levels depending on the parent of origin of the regulatory SNPs 

(POE-mQTLs)(16, 18). This type of POE is mainly introduced by genomic imprinting, which 

is established at early developmental stages and needs to be well maintained/regulated 

throughout the life(16). The epigenomic features influenced by typical POEs has been found 

to be sensitive to prenatal and postnatal environmental stimuli, such as maternal nutrition 

during pregnancy and stress accompanied with assisted reproductive technologies(15, 19-22). 

In addition to the methylation sites influenced by the typical POE, a different set of 

methylation sites also display imbalanced methylation similarity between nuclear family 

members of the same genetic distance, but without regulatory POE-mQTLs being detected, 

and are not enriched in known imprinted regions. These sites should, therefore, be regarded 

as “atypical POE-CpGs”(18). Since dominance effects have been ruled out for the majority of 

these atypical POE-CpGs(18), the potential explanations for the atypical POE pattern are 

either small POE-mQTL (imprinting) effect not yet detected due to the lack of power, or 

early familial environmental effects introduced by the parents(18).  In any case, both typical 

and atypical POE-CpGs represented classes of CpGs where methylation levels are heavily 

influenced by early life events. Once involved in physiological functions in later life, they 

can be pivotal to the interplay between early-life experiences, epigenome, and adulthood 

health(15, 23). 
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The early-life-event-sensitive nature of the POE-regulated methylome renders it a plausible 

mechanism for the “early development of origin” hypothesis of adult aging. The link between 

POE and aging has been suggested by a few animal studies including one showing that the 

knockout of imprinted gene RasGrf1 promoted longevity(24); and further two showing that 

early-life adversity caused imprinting deregulation of gene Cdkn1c, resulting in interrupted 

expression which influences aging-associated obesity(25, 26).  Human studies on association 

between POE and aging, however, are very limited. POE studies in humans mostly targeted 

rare developmental diseases (mainly imprinted disorders) caused by genetic mutation, other 

studies mainly examined genetic effects that influence complex traits in a parent-of-origin 

way(27-29). These included studies focused on late-onset disease such as Alzheimer’s 

disease(30), but few have studied aging phenotypes (such as age acceleration) themselves. 

Moreover, even to examine aging phenotypes in future studies, the genotype-based strategies 

which the majority of existing human studies rely on do not account for the environment-

sensitive and dynamic features of POE-influenced genomic regions, which may lead to 

underestimation of the effects from these regions. Methylation studies, on the contrary, 

capture effects from both genetic background and environmental exposures, offering unique 

advantages in this context. To date, only one human study reported the association between 

methylation levels of POE-influenced genes and the change of brain structures overtime, but 

with a relatively small sample size (N=485) and only investigated a small proportion of POE-

influenced genes (13 imprinted locations) (31). Therefore, a well-powered systematic 

examination of associations between POE-regulated methylome and adult aging is warranted. 

 

In this study, we aimed to investigate POE-influenced methylome to collect evidence for the 

“early development of origin” hypothesis for aging in humans (Figure 1). At both single CpG 

and co-methylation network levels, the associations between 943 POE-CpGs (Ntypical=560 , 
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Natypical=383) and 142 phenotypes were tested and replicated using two subsets of GS:SFHS 

(Generation Scotland: Scottish Family Health Study. Ndiscovery=5,081, Nreplication=4,445), a 

large family-based population cohort with genome-wide DNA methylation data 

(Nsites=734,436), records of early to late life exposures and extensive health-related 

phenotypes available for participants(32, 33). The phenotypes included four aging 

measurements: two epigenetic-based acceleration variables - DNAmTL acceleration and 

PhenoAge acceleration, and parental lifespans. As aging is the underlying cause of many 

adulthood illnesses, we expected widespread associations between aging-associated POE-

CpGs with health-related phenotypes, therefore a phenome-wide scan was applied instead of 

only testing for a few aging phenotypes. Our primary results revealed strongly enriched 

associations of atypical type POE-CpGs with early and late life exposures and with aging-

related phenotypes at both single CpG and co-methylation network level. An aging-

associated atypical POE co-methylation module whose internal connectivity increased with 

age was further identified. These findings motivated two additional aging-focused analyses, 

which revealed high levels of methylation heterogeneity and epigenetic drift in atypical POE-

CpGs and intrinsic connections between atypical POE CpGs and clock CpGs (Figure 1). 
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Figure 1. An overview of the study design. 
 

Methods 

Ethics 

The ethical approval of GS:SFHS studies was obtained from the Tayside Research Ethics 

Committee (reference 05/S1401/89). Before any data or samples were collected, participants 

all gave written consent after having an opportunity to discuss the research.  

 

Population samples 

GS:SFHS is a family-based population cohort with extensive health-related phenotypes, 

records of environmental exposures, genome-wide genotypes collected for 19,994 Scottish 

participants(32, 34).  Genome-wide DNA methylation data (whole blood) was also available 

for 9,526 participants(33). The methylation data was produced and processed independently 

in two batches, for 5,081 participants in 2016-2017 (batch 1) and 4,445 participants in 2019 

(batch 2). All participants in batch 2 were genetically unrelated (relatedness < 0.05) to each 
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other and to the participants in batch 1. We used batch 1 as discovery dataset and batch 2 as 

replication dataset in downstream analyses.  

 

DNA methylation data 

The discovery and replication datasets were generated, processed and quality controlled in a 

similar way (35) based on a pipeline proposed previously (18, 36). In brief, methylation 

signals for 866,836 sites were measured using the Illumina Infinium MethylationEPIC array 

(http://support.illumina.com) for whole blood sample of each participant. The 

“estimateCellCounts” function in R package minfi was used to estimate the proportion of 

major blood cell types: B-lymphocytes, natural killer cells, monocytes, granulocytes, CD4+ 

T-lymphocytes and CD8+ T-lymphocytes (37). The R packages shinyMethyl and meffil were 

used for quality control (38, 39). The performance of control probes, signal intensity, and 

consistency between registered and predicted sex were used to identify outlier samples and 

probes. In addition, samples were removed if more than 0.5% of measured sites had a 

detection p-value > 0.01. Probes were removed if more than 1% of samples were missing or 

had a bead count £ 3, or if they had cross-hybridization or overlapped with any common SNP 

(MAF³0.01) in the European population (40). After quality control, normalization was 

performed using the “ssNoob” method in R package minfi (41). As described before(18), 

normalized M values were adjusted, using a linear mixed model, for technical variables 

including sentrix variables (id and position), processing batches, clinics, appointment 

variables for the blood extraction(date, weekday, and year), and 20 principal components 

calculated from the control probes (36). Resultant residuals were available for 734,436 

methylation sites which were used in downstream analyses.  

 

Collection of POE-influenced methylation sites 
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The list of 984 POE-CpGs (Natypical=398, Ntypical=586) was extracted from a previous 

study(18). After quality control for DNA methylation data (see above), 943 POE-CpGs 

(Natypical=383, Ntypical=560) were used in downstream analyses.  

 

Phenotype data 

Phenotypes in GS:SFHS consisted of 142 variables in 15 categories (Table s1). Among them, 

birth and maternity variables were obtained through data linkage with historic Scottish birth 

cohorts for a subset of GS:SFHS participants(42). The aging category comprised four 

variables, including mother’s/father’s lifespan and two epigenetic-based measurements for 

biological aging (PhenoAge acceleration and DNAmTL acceleration) (6, 7). The two 

acceleration measurements were calculated as the residuals from regressions of PhenoAge, an 

epigenetic clock designed to predict healthspan (phenotypic age) (6), and DNAmTL, an 

epigenetic clock designed to predict telomere length(7), on age and age2. Positive PhenoAge 

acceleration corresponds to excessive biological aging among individuals of the same 

chronological age, whereas positive DNAmTL acceleration corresponds to the additional 

(longer) telomere length after accounting for chronological age. The phenotypic correlation 

between the four aging measures is shown in Figure s1. Quantitative traits with a skewed 

distribution were log transformed with base 10. Measurements that fall outside of four 

standard deviations from the mean were identified as outliers and thus removed. More details 

of the phenotypes are provided in Table s1   

 

Phenome-wide association analyses for POE-influenced methylation sites  

Phenome-wide association analyses for individual POE-CpG sites were performed using 

MLM-based Omic association (MOA) models: 
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MOA model: yp = wm bm + ORM (random effect) 

 

As proposed by the Omic-data-based Complex trait Analysis software (OSCA)(43), MOA is 

a linear mixed modelling method that allows adjusting for the global correlation between 

probes which is likely introduced by unobserved confounders. This was realized by fitting an 

Omic-Relationship-Matrix (ORM) as a random effect jointly with the target CpG variable as 

a fixed effect in linear mixed models(43). The ORM represented the epigenetic relationships 

between samples, created by the “--make-orm” function in OSCA using genome-wide probes 

(N=734,436. M values were pre-adjusted for cell proportion, appointment variables, age, 

age2, sex, and smoking variables (smoking status and pack years). Age and age2 were not pre-

adjusted if PhenoAge acceleration or DNAmTL acceleration was the target phenotype; 

smoking variables were not pre-adjusted if smoking status was the target phenotype). yp was 

the target phenotype pre-adjusted for two random effects represented by the genomic 

relationship matrix (G) and the kinship relationship matrix (K) (accounting for the genetic 

structure in GS:SFHS), and clinic effect (as fixed effect), using genome-based restricted 

maximum likelihood (GREML) in GCTA(44). wm was the methylation level of the target 

CpG site after pre-adjusting for blood cell proportion, appointment variables, age, age2, sex 

and smoking variables as fixed effects (age and age2 were not pre-adjusted when PhenoAge 

acceleration or DNAmTL acceleration was the target phenotype; smoking variables were not 

pre-adjusted when smoking status was the target phenotype). bm was the target effect to be 

estimated. 

 

The MOA approach was applied to each of the POE-CpG and phenotype pairs. Since the pre-

adjustment did not converge for 9 out of the 943 POE-CpGs, we only included the remaining 

934 POE-CpGs in this analysis. The false discovery rate (FDR) method was used to correct 
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for multiple testing in both discovery and replication stages (Ntests_discovery=934*142=132628, 

Ntests_in_replication=Nsignificant_pairs_in_discovery). For replicated results, we additionally used a 

classical linear regression model which avoids pre-adjustment of methylation-related 

variables to further validate the robustness of the MOA results: 

 

The CpG-outcome model: ym = wcovariatesbcovariates + wpbp  

 

In contrast to the MOA models, the CpG-outcome model is a linear fixed-effect regression 

model that takes methylation levels of the target CpG sites as the dependent variable and the 

target phenotype values as the independent variable, with methylation-related biological 

covariates being jointly fitted in the model to avoid having to pre-adjust for those covariates. 

ym was the methylation level of target CpG sites after pre-adjusting for the G and K 

components as random effects (to account for genetic structure) and clinic effect as a fixed 

effect using GREML(44).  wcovariates was a matrix for covariates including blood cell 

proportion, appointment variables, age, age2, sex and smoking variables (age and age2 were 

not fitted when PhenoAge acceleration or DNAmTL acceleration was the target phenotype; 

smoking variables were not fitted when smoking status was the target phenotype). bcovariates 

was the effects from covariates.  wp was the target phenotype and bp was the target effect to 

be estimated. We only considered the results that were statistically significant and replicated 

in both the MOA model and the CpG outcome model as high confidence results. 

 

Comparison of phenotypic associations with POE vs Non-POE methylome 

This analysis was to test whether for a given phenotype, its association with POE-CpGs was 

significantly stronger than its associations with the rest of methylome. In brief, methylome-

wide association studies (MWASs, NCpG=734,438) were performed using the same MOA 
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approach for phenotypes associated with at least one POE-CpG. The Wilcoxon Rank Sum 

Test was then applied to each phenotype to test whether the P values of POE-CpG-specific 

methylation-phenotype associations were ranked significantly differently from the P values 

of the rest of methylome. The Bonferroni method was applied to adjust for multiple testing 

correction. 

 

Identification of modules of co-methylated CpGs in the POE-influenced methylome 

Weighted gene correlation network analysis(WGCNA) was applied to identify modules of 

co-methylated POE-CpGs (45). Before constructing modules, methylation levels of POE-

CpGs were pre-corrected by cell proportions, appointment variables, age, age2, sex and 

smoking variables.  

 

Given the differentiated features of typical and atypical POE-CpGs, co-methylation modules 

were constructed for typical-type (N=560) and atypical-type (N=383) POE-CpGs separately, 

and for discovery (only unrelated samples (relatedness < 0.05) were used in network 

construction, N=2,583) and replication datasets separately. The “soft thresholding power” 

parameter was optimized to allow identification of both tightly-connected CpG clusters such 

as those in cis (for example, CpGs from the same island) and modestly-connected CpG 

clusters such as those in trans (for example CpGs in different chromosomes). In detail, a 

recursive process was applied as following: 1) all typical/atypical POE-CpGs were used to fit 

the “PickSoftThreshold” function and construct networks. In this step the picked threshold 

was high and only tightly connected CpGs could be assigned to modules. 2) For each module 

identified by step 1, only one hub CpG displaying the highest correlation with other CpGs 

was retained in every 10 kb window. 3) Step 1 and 2 were repeated until no more 

typical/atypical POE-CpGs were removed. 4)The retained set of typical/atypical POE-CpGs 
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was used to re-fit the PickSoftThreshold function. At this stage, the optimised soft 

thresholding power could be estimated.  5) We used this optimised parameter (equal to three) 

to construct full networks using all typical/atypical POE-CpGs. The smallest number of CpGs 

for a module was set to 8. Other parameters were set to the default ones. 

 
Matching POE co-methylation modules across discovery and replication datasets 

Since POE co-methylation modules were identified independently in discovery and 

replication datasets, we matched modules in the two datasets using following steps: 1) for any 

two modules, one from the discovery dataset and one from the replication dataset, the overlap 

rate was calculated as the number of CpGs in the intersection divided by the number of CpGs 

in the union. 2) All discovery-replication module pairs were ranked by overlap rate in 

descending order. Starting from the top pair, if the overlap rate was higher than 60%, 

modules across datasets were successfully matched. 3) For modules identified in the 

replication dataset but not matched with any module in the discovery dataset yet, we 

calculated the secondary overlap rate with each discovery module, defined as the number of 

CpGs in the interaction divided by the number of CpGs in the replication module. The 

replication module could be matched to the discovery module (that is, to allow more than one 

replication modules to be matched to one discovery module) if the secondary overlap rate is 

higher than 90%. 4) Matched modules were labeled as “consistent modules”, with shared 

CpGs labeled as constituent CpGs which were used in downstream analyses.  

 

Phenome-wide association analyses for POE co-methylation modules 

Identification of principal components for POE co-methylation modules 

To quantify POE co-methylation modules, we performed principal component analysis 

(PCA) for methylation levels of constituent CpGs for each “consistent module” using 

unrelated samples (relatedness < 0.05) from discovery dataset (N=2,583). The estimated 
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formula was then projected to the entire cohort to calculate module PCs for all discovery and 

replication samples. This was done by the R package “psych” (https://CRAN.R-

project.org/package=psych). In downstream analyses, we only used module PCs that 

explained >5% of the methylation variation of the corresponding module. Similar to the 

single-CpG based analyses, analyses for phenotypes such as the two age acceleration 

phenotypes and smoking status required a modified list of covariates. We therefore prepared 

three sets of PCs by using methylation levels pre-corrected for different sets of covariates:  

PC set 1:  pre-corrected for cell proportions, appointment variables, smoking 

variables, age, age2, sex.  

PC set 2: same as PC set 1 except without pre-correcting for smoking variables. 

PC set 3: same as PC set 1 except without pre-correcting for age and age2. 

 

Phenome-wide association tests for POE co-methylation module PCs 

Linear regression was used to regress module PCs on the phenotype: 

 

yp = wmodule_i_pc_jbmodule_i_pc_j 

 

 Similar to single-CpG-based tests, yp represented target phenotypes pre-adjusted for G and K 

components as random effects and clinic as fixed effect. wmodule_i_pc_j was the the top ith PC in 

module j. bmodule_i_pc_j was the tested effect from the ith PC of module j. Since methylation-

related covariates have been pre-adjusted when generating the PCs (described above), we did 

not re-adjust for covariates at this step. The module PC set 1 (described above) was used for 

most association tests, except for the tests targeting smoking status (the module PC set 2 was 

used), and the tests targeting age acceleration phenotypes (the module PC set 3 was used).   
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Analyses of the dynamics of internal methylation connectivity for aging-associated POE 

co-methylation modules across age-stratified groups 

We stratified samples into six subgroups according to their chronological age (Table s2). For 

each aging-associated POE co-methylation module, connectivity among constituent CpGs 

was measured using pairwise Pearson correlation of methylation levels pre-adjusted for cell 

proportion, sex, appointment variables and smoking variables. The overall distribution of 

connectivity across age groups was tested by the Kruskal–Wallis method using R function 

“kruskal.test”, the connectivity difference between any two age groups was tested by the 

Wilcoxon Rank Sum Test using R function wilcox.test, and the variance of connectivity 

across age groups were tested by the Levene's test using function “levenetest” in R package 

“car”(46). Based on age-dependent connectivity trajectories, sub clusters within the module 

of interest were identified using hierarchical clustering. Cytoscape was used to calculate the 

node centrality and visualize the results(47). 

 

OMIC- and Summary-data-based Mendelian Randomization (SMR) analysis 

SMR was applied to identify pleiotropic associations between methylation levels of target 

CpG and mRNA expression levels of nearby genes(48). Brain cis-mQTL summary statistics 

were from Qi et al., 2018(49), brain cis-eQTL summary statistics were from Qi et al., 2022 

(unpublished, the data (BrainMeta v2) was accessed through the software SMR(48)). In this 

analysis, methylation was treated as the exposure and mRNA expression was treated as the 

outcome. The Bonferroni method was applied to correct for multiple testing in SMR 

analyses. HEIDI test was applied to distinguish pleiotropy from linkage, with a PHELDI > 0.05 

(unadjusted) indicating that the association was not due to linkage(48). 

 

Permutation tests for the connectivity between clock CpGs and POE-CpGs 
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The lists of CpGs used in the construction of two first-generation epigenetic clocks, Hannum 

and Horvath clocks, and two second-generation epigenetic clocks, PhenoAge and DNAmTL, 

were downloaded from the original publications, respectively(4-7). Circular permutation over 

the methylome was used to generate 10,000 random CpG sets of the same size as the 

typical/atypical POE-CpGs, keeping the overall correlation structure of the true POE-CpG set 

in the generated random sets(50). For each clock, the average connectivity between clock 

CpGs and POE-CpGs (the true set and the permuted sets) was calculated as the mean of 

absolute values of pairwise methylation correlation (Pearson method). Permutation P values 

were calculated by ranking the average connectivity of permuted sets in descending order and 

determining the position of the true average connectivity in the ranked list.  

 

Calculation of methylation Shannon entropy 

For DNA methylation, the Shannon entropy measures the level of methylation uncertainty 

(methylation heterogeneity)(5, 51, 52). The following formula was used to calculate the 

Shannon entropy for a given CpG in a given sample(52): 

 

Entropy(CpGij) = -mij*log2mij-(1-mij)*log2(1-mij) 

 

Where mi is the Beta value of a given CpG i for a given sample j.   

 

Annotation and visualization 

Functional annotations for CpGs and genes were performed using ANNOVAR(53). The R 

packages ggplot2(54),ggpubr(55), ComplexHeatmap(56) and visNetwork(57) were used in 

the visualization of the presented results. 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.18.524653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524653
http://creativecommons.org/licenses/by-nc/4.0/


Results 

Phenome-wide association analyses identified strong and enriched associations of atypical 

POE-CpGs with aging, intelligence and early/late environmental exposures. 

The MOA method was applied to test the association between each POE-CpG and each 

phenotype (NCpG=934, Nphenotype=142). At the discovery stage (Nsample=5,081), a total of 115 

POE-CpG-phenotype pairs exceeded the phenome-wide significant threshold (FDR < 0.05). 

At the replication stage (Nsample=4,445), 85.2% (N=98) of the POE-CpG-phenotype 

associations were statistically replicated (FDR < 0.05) (Table s3). The CpG-outcome model 

further validated the robustness of 94% (N=92) of the replicated associations reported by the 

MOA method (Table s3), we considered this set as “high confidence associations” (Table s4).   

 

The 92 high confidence associations involved 38 POE-CpGs and 24 phenotypes, revealing 

widespread associations of POE-CpGs with multiple phenotype-categories (Figure 2). The 

majority of the associations (79.3%) was contributed by atypical POE-CpGs (Table s4), 

despite the fact that the atypical group only accounted for 40.6% of the total POE-CpGs. The 

phenotypic categories contributed the largest number of associations were parental smoking 

exposure, lifestyle, intelligence and aging (Figure 3a). Conditional analyses suggested that 

the associations with parental smoking were mainly driven by maternal smoking (Table s5). 

After accounting for the baseline number of POE-CpGs in the atypical group and that of 

POE-CpGs in the typical group as well as the correlation of methylation levels between POE-

CpGs, lifestyle and aging were the most associated phenotypic categories for POE-CpGs, in 

particular for the atypical POE-CpG group (Figure 3b). Smoking status and DNAmTL 

acceleration were the most associated phenotypes (Figure 3c). After annotating POE-CpGs 

onto functional regions, a significant enrichment was detected for maternal-smoking-

exposure-associated atypical POE-CpGs in CpG islands (Figure s2, Table s6). In 
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comparisons between each phenotype’s association with POE-CpGs and its association with 

the rest of the methylome (non-POE-CpGs), a strong “atypical POE” enrichment was 

detected for multiple intelligence, aging, parental smoking exposure and lifestyle phenotypes, 

with verbal intelligence (Mill Hill vocabulary test score) and DNAmTL acceleration 

displaying the strongest enrichment (Figure 4, Table s7); in contrast, for “typical POE”, only 

weak enrichments were detected in a few phenotypes (alcohol consumption and maternal 

smoking exposure)(Figure 4, Table s7). 
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Figure 2. The overall significance of POE-methylation associations for each of the 24 phenotypes associated with at least one POE-CpG. Height of the 

bar: the average of minus log transformed P values of associations between all POE-CpGs and the given phenotype.
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Figure 3. The count of POE-CpGs significantly associated with each phenotype and the category it belonged to. a. Raw counts. b,c: the raw counts were 
normalized by the total number of POE-CpGs in the atypical or typical group, and the correlation between POE-CpGs(a correlated POE-CpG cluster only 
counts once). b: normalized counts at categorical level; c: normalized counts at phenotypic level. 
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Figure 4. Wilcox test results for comparisons between the methylation association signals from POE regions and the signals from non-POE regions 
for each of the 24 phenotypes associated with at least one POE-CpG. . *: significant "POE" enrichment was detected on the phenotype (adjusted P < 0.05) 
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The 92 high confidence associations included cases where a single POE-CpG was associated 

with phenotypes from multiple trait categories (Figure 5, Table s4). For example, 

hypermethylation of cg14391737, a POE-CpG located in a CpG shore and an intron of gene 

PRSS23(Serine Protease 23), was simultaneously associated with decreased smoking 

exposure(self), higher DNAmTL acceleration (longer age-adjusted DNAm telomere length), 

higher education, higher forced expiratory flow (better lung function) and higher Scottish 

index of multiple deprivation score (SIMD) (better socioeconomic status). For three POE-

CpGs (cg04180046, cg19089201, and cg12803068) in gene MYO1G (Myosin IG), 

hypermethylation was associated with increased maternal smoking exposure, increased 

smoking exposure(self), and lower intellectual/educational level. There were also cases 

where a single POE-CpG was associated with multiple phenotypes within a same phenotypic 

category (Figure 5, Table s4). Multiple POE-CpGs in gene PRR25 were associated with both 

maternal and paternal ages when the offspring was born. A POE-CpG in gene DNTBP1 was 

associated with anthropometric traits (body fat composition, body mass index, weight and 

waist). Seven POE-CpGs in gene CYP1A1/CYP1A2 and one POE-CpG in gene FRMD4A 

were associated with maternal smoking exposures (both current and before pregnancy).  

Conditional analyses indicated that the multiple associations of these POE-CpGs were not 

driven by the socioeconomic status (measured as SIMD)(Table s8).  
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Figure 5. The 92 high confidence associations between POE-CpGs and phenotypes. Red circles: 
phenotypic categories. Yellow circles: POE-CpG. Each lines represents a significant pair, with red 
and blue lines representing negative and positive correlation, respectively; the two red dotted lines 
represent that although statistically significant the associations between cg18092474/cg19089201 
with mother’s lifespan were likely to be introduced by association between maternal smoking and 
mother's lifespan.  
 

Atypical POE-CpGs synchronized as co-methylation modules which were associated with 

aging 

We next hypothesized that POE-CpGs could be associated with phenotypes through co-

methylation networks. To test this, we identified co-methylation modules for atypical and 

typical POE-CpG groups, respectively. Co-methylation modules were initially constructed in 

discovery and replication datasets independently, after which “consistent modules” across 

datasets were identified (methods). The results showed that co-methylation networks were 
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highly reproducible across discovery and replication datasets (Figure s3, Table s9). Six and 

eight “consistent modules” were identified for atypical and typical POE-CpG groups, 

respectively (Table s10), and these were used in downstream association tests. 

 

PCs of constituent CpGs’ methylation level were calculated for each “consistent module” for 

each participant and were used in phenome-wide association tests (methods). Using the 

discovery dataset, 30 and 2 significant module-PC-phenotype associations were identified 

(FDR < 0.05) for atypical and typical POE-CpG modules, respectively. Using the replication 

dataset, 23 (77%) and 2 (100%) of the significant associations were statistically replicated for 

atypical and typical POE-CpG groups, respectively (Table s11, Figure 6). For the atypical 

POE group, multiple co-methylation modules were associated with aging phenotypes 

(DNAmTL acceleration and PhenoAge acceleration) and smoking status; other associations 

involved intelligence/education traits and maternal smoking exposures (Figure 6). For the 

typical POE group, weak associations were detected with intelligence/education phenotypes 

(Figure 6). 

 

 

Figure 6. Associations between POE co-methylation module PCs and phenotypes. Only 
phenotypes with at least one significant result are shown. *: replicated associations. 
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An aging-associated atypical POE co-methylation network (module) whose internal 

methylation connectivity increased with age 

POE co-methylation modules’ association with aging implicated that POE-CpGs could 

associate with aging in an inter-connected and synchronized way. Would the internal 

methylation connectivity within aging-associated modules alter during aging? To address 

this, we stratified samples into different age groups (Table s2). For each aging-associated 

POE co-methylation module, the mean of the methylation connectivity across constituent 

CpGs was calculated in each age group and compared across groups. The results revealed 

that the mean of the methylation connectivity of atypical POE module 3 progressively 

increased with age (Figure 7a, Table s12). The variance of the connectivity of the same 

module also increased with age, suggesting existence of subgroups (Figure 7a, Table s13). 

 

Indeed, based on the longitudinal trajectory of within-module methylation connectivity, our 

clustering analyses revealed that co-methylated CpG pairs within this module could be 

further divided into three clusters: a relatively flat cluster(c1), a modestly increasing cluster 

(c2), and a sharply increasing cluster (c3) (Figure 7b). Within the sharply increasing cluster 

(c3), five hub CpGs (cg01331772, cg09639152, cg14391148, cg07274898, cg11464189) 

were identified for displaying the highest centrality, connecting with the largest number of 

CpGs (Table s14). Also in the sharply increasing cluster (c3), the strength of methylation 

connectivity, in particular for connections radiating from the five hub CpGs, progressively 

increased during aging, with the strongest connectivity reached at the oldest (66y-94y) age 

group (Figure 7c, Table s15). In contrast, none of other constituent CpGs of this module 

displayed such significant alteration of connectivity strength with age (Table s15). These 

results revealed the central role of the five hub CpGs in driving the increased methylation 
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connectivity pattern of atypical POE module 3 during aging, suggesting the increased 

importance of the module and the five hub CpGs at old age groups.  

 

Figure 7. Atypical POE module 3, the module whose internal connectivity increased with age. a. 
Pairwise between-CpG correlation of constituent CpGs of atypical POE module 3 across different age 
groups; vertical line: the mean of the methylation correlation across all age groups.  b.Three sub-
clusters identified within atypical POE module 3 based on longitudinal trajectory of module 
connectivity; each line connected the methylation correlation value of a pair of POE-CpGs in different 
age groups; the color of the line corresponded to the rank of the standard deviation based on the 
connectivity of POE-CpG pairs across different age groups. c. Methylation connectivity of POE-CpG 
pairs belonging to the ‘sharp increasing cluster’ in each age group; Orange nodes represented POE-
CpGs, the size of orange nodes was scaled by degree centrality (the IDs of the top 5 hub CpGs are 
shown), the width of edges was scaled by pairwise correlation in samples from each age group, only 
edges connecting CpGs pairs with an absolute value of correlation larger than 0.4 are shown.  
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Although the five hub CpGs are in different chromosomes (Figure s4), they are all located 

within functional regulatory regions as reported by the Roadmap Epigenomics project (58): 

cg01331772 and cg07274898 are located in promoters (active TSS); cg09639152, 

cg14391148 and cg11464189 are located in enhancers (mostly bivalent enhancers)(Figure s4, 

Table s16), implicating the potential of their methylation variation in influencing the 

expression of nearby genes. Intriguingly, four of the five hub CpGs (Table s16) are located 

within or nearby a gene encoding a protein that physically interacts with the amyloid beta 

(A4) precursor protein (APP) in vitro (6.3 fold enrichment, Pfisher= 5.6x10-4)(59).  

 

Among the four hub CpGs located within/near the APP-interactive genes, cg01331772 

displayed the highest centrality (Figure 7c, Table s14) and the strongest elevation of 

methylation connectivity in the sharply increasing cluster (c3) in the comparison between 

youngest and oldest age groups (Table s15). This CpG is located in a promoter, and is 987 bp 

downstream of gene CCDC115 (Coiled-Coil Domain Containing 115) and 4791 bp upstream 

of gene IMP4 (IMP U3 Small Nucleolar Ribonucleoprotein 4) (Figure s4). In blood, the 

methylation level of this CpG was positively associated with the mRNA expression of IMP4 

(PeQTM=9.7*10-7), as reported by a recent eQTM (expression quantitative trait methylation) 

study(60). In brain, the methylation levels of cg01331772 and the mRNA expression of IMP4 

were genetically positively correlated in our OMIC-based SMR analysis (BetaSMR=0.35, 

PSMR_adjusted=8.4x10-4, PHEIDI_unadjusted=0.1). For this CpG, the brain-blood methylation 

correlation was relatively high (Rho=0.54, P=0.01, Figure s5)(61), suggesting that 

methylation of cg01331772 in blood could be indicative for expression of IMP4 in brain 

tissues. Notably, IMP4’s mRNA expression decreased significantly in Alzheimer's disease 

(AD) patients as compared to controls in both temporal cortex (P=0.003) and prefrontal 

cortex (P=2.6x10-6), the two most relevant brain regions for AD pathogenesis (Figure s6)(62-
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64). Putting these observations together, increased methylation of the hub CpG cg01331772 

in blood may imply higher expression of IMP4 in AD-susceptible brain tissues, which can be 

protective for AD. 

 

Interestingly, the associations between the hub CpG cg01331772 and aging dramatically 

changed cross different life stages. The PC1 of the atypical POE module 3, explaining 28.7% 

of the methylation variance within that module and having a positive loading from 

cg01331772 (Table s17), displayed a similar association pattern with aging. In brief, using 

samples from the full age spectrum in GS:SFHS (18-94y), at single-CpG level, the 

hypermethylation of cg01331772 was associated with older chronological age (Table s18) 

and longer age-adjusted DNAmTL (higher DNAmTL acceleration. Table s4); at modular 

level, the PC1 of atypical POE module 3 displayed similar association patterns (Table s11). 

Why would the methylation of cg01331772 and the PC1 of atypical POE module 3 increase 

with chronological age while displaying a positive association with DNAmTL acceleration at 

the same time? The seemingly contradictory observations were disentangled by our age-

stratified analyses. We found that starting with the youngest adult years (18-27y), the 

methylation of cg01331772 significantly increased with age, but the slope decreased to an 

insignificant level after the middle age was reached (Figure 8). In contrast, no association 

between cg01331772 and DNAm-predicted telomere length was observed until middle age, 

after which a positive association started to arise and became much stronger in older age 

groups (Figure 8). As a consequence, a significant interactive effect between chronological 

age and cg01331772’s methylation effect on DNAmTL acceleration was detected 

(Pinteraction=2.2 x 10-8), whereby the methylation of this CpG only manifesting significant 

positive association with DNAmTL acceleration in old age groups (Figure 8). Similar 

association patterns were observed at the PC1 of atypical POE module 3 (Figure 8).  These 
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combined results revealed the importance and the complexity of the role of POE co-

methylation networks and their hub POE-CpGs in human aging. 

 

Figure 8. The atypical POE module 3 and its hub POE-CpG cg01331772's association with age, 
DNAmTL and DNAmTL acceleration in different age groups.  
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High levels of methylation heterogeneity and increased epigenetic drift (information loss 

with age) of atypical POE-CpGs 

As mentioned above, both single-CpG- and network-based analyses supported the special 

link between POE-CpGs (atypical group in particular) and aging. We next examined whether 

those CpGs manifested additional aging-related features. In the DNA methylation context, 

Shannon entropy measures the level of methylation heterogeneity: the higher the Shannon 

entropy is, the higher the heterogeneity is, the less predictable the methylation condition in a 

cell population is (52, 65, 66). Shannon entropy is maximized at intermediate methylation 

levels (Beta=0.5) and minimized in extreme methylation levels (Beta=0 or 1). It has been 

known that aging was accompanied with an increased epigenetic drift (the loss of information 

stored in the epigenome), reflected as the age-related increment of average methylation 

Shannon entropy in the epigenome as a whole, or in a few aging-related functional CpG sets 

with a faster drift rate(52, 65, 66). Here, we compared the Shannon entropy for POE-CpGs, 

in particular for those belonging to the atypical group, to epigenetic clock CpGs and the rest 

of epigenome.  

 

The results showed that taking POE-CpGs as a whole, their Shannon entropy was 

significantly higher than the global level of the methylome, higher than Horvath clock CpGs 

and Hannum clock CpGs and slightly lower than DNAmTL clock CpGs (Figure 9a, Table 

s19). After we stratified POE-CpGs into subgroups, the atypical POE group’s Shannon 

entropy was significantly higher than that of the typical group; the aging-associated POE-

CpGs displayed higher Shannon entropy than the POE-CpGs without an association with 

aging (Figure 9a, Table s19). In terms of epigenetic drift (information loss) with age, 

Shannon entropy of all CpGs groups significantly increased with age, with the atypical POE-
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CpG group displaying faster information loss with age as compared to the typical POE-CpG 

group and the global methylome (Figure 9b, Table s20).  

 

 

Figure 9. Shannon entropy of POE-CpGs and CpGs from other categories. 
 

 

Intrinsic connection between clock CpGs and atypical POE-CpGs 

Given the shared high Shannon entropy feature between POE-CpGs and clock CpGs, we 

wondered whether the POE-CpGs and clock CpGs are intrinsically connected. To address 

this, circular permutation was applied to test whether atypical/typical POE-CpGs were more 

correlated with clock CpGs compared against randomly selected CpG sets of the same size 

from the methylome. The results revealed a significantly higher correlation between atypical 

POE-CpGs and constituent CpGs of all of the four popular clocks when compared to the 

random CpG sets, whereas this was not observed in the typical POE-CpG group (Figure 10).  
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Figure 10. Permuted (the distribution) and observed correlation (the vertical line) between 
POE-CpGs and constituent CpGs of epigenetic clocks.  

 

 

Discussion 

In this study, we systematically examined associations of POE-influenced methylome (POE-

CpGs) with adult aging, early/late environmental exposures, and health-related phenotypes. 

Single-CpG-based analyses revealed replicated and enriched methylation associations with 

lifestyle (smoking status), aging (DNAmTL acceleration), parental (maternal) smoking 

exposure, and intelligence phenotypes in atypical POE-influenced regions. Co-methylation 

analyses indicated that at least a proportion of atypical POE-CpGs were associated with these 

phenotypes in a modularized way. We additionally reported the age-related increment of 

internal connectivity in an aging-associated atypical POE co-methylation module. For that 
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module, we identified the hub POE-CpGs that likely drive the increment of connectivity, and 

uncovered dynamic aging-association patterns of the module and its top hub CpG across 

different life stages. Finally, compared to the rest of methylome, atypical POE-CpGs 

displayed high levels of methylation heterogeneity, fast information loss with age, and high 

methylation correlation with clock CpGs, which further provided evidence for the special link 

between atypical-POE-influenced methylome and human aging.  

  

At single-CpG level, we found that atypical POE-influenced methylome was sensitive to both 

early life factors such as maternal smoking exposure and parental age when the offspring was 

born, and later life exposures such as smoking and alcohol consumption. Meanwhile, atypical 

POE-CpGs were also strongly associated with aging and health-related phenotypes such as 

intelligence in adulthood (Figure 3, Figure 4). Importantly, we detected cases where the same 

single POE-CpG was simultaneously associated with both environmental exposure (such as 

maternal smoking exposure or lifestyle), adult aging and/or with health-related phenotypes 

(such as intelligence). Our observation of the associations between cg14391737, an intronic 

POE-CpG located of gene PRSS23, with smoking status and forced expiratory flow (Figure 

5), was in line with previous MWAS papers that identified cg14391737 as a smoking- and 

lung cancer-associated CpG (67, 68). Here, we uncovered its additional associations with 

education, socioeconomic status and DNAmTL acceleration. Our observation that multiple 

CpGs within the gene MYO1G were associated with maternal smoking exposure, smoking 

status and the highest educational qualification, was consistent with previous studies (69-71). 

Importantly, we uncovered the new associations of those early and late-environmental-

sensitive CpGs in MYO1G with multiple intelligence measurements in adults (Table s4). 

These results supported well our hypothesis that POE-influenced epigenome could act as a 

hub position in the interplay of early/late life exposures, adult health and adult aging.  
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At network level, we found that the methylation levels of a proportion of POE-CpGs 

fluctuated jointly as co-methylation modules (both in cis and trans). Consistent with results 

from single-CpG-based analyses, module-level methylation-phenotype associations revealed 

the association of the shared methylation variation of multiple atypical POE-CpGs with 

aging, smoking, maternal smoking exposure, and intelligence. These results suggested that 

early and late environment may influence atypical POE-CpGs in groups rather than 

individually, and that aging-associated atypical POE-CpGs can function a modularized way.  

 

The aging-associated POE co-methylation networks were not stable throughout the life. We 

found that atypical POE module 3, one of the aging-associated POE-co-methylation modules, 

displayed increased connectivity when humans get older (Figure 7). Five hub POE-CpGs 

were identified for their central role in driving this change, and intriguingly, the majority of 

the hub POE-CpGs appeared to link to APP-interacting proteins. In particular, the module 

centrality and aging-associated connectivity change were most prominent in cg01331772, a 

promoter CpG that was likely capable of regulating expression of IMP4, the gene both 

interacting with APP and displaying significant downregulation in AD patients in two AD-

relevant brain regions (Figure s6). These findings coincided with a previous finding 

suggesting that at methylome-wide level, the aging-associated co-methylation module was 

enriched for promoter CpGs located nearby genes downregulated in early disease stage of 

AD(72). Our results suggested the central role of IMP4’s regulatory CpG cg01331772 in 

POE-related modularized methylation alteration during the aging process.  

 

The complexity of the role of atypical POE module 3 and its hub CpG cg01331772 in human 

aging can be further revealed by integrating existing evidence with our single-CpG- and 
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network-based results. Previous studies have recognized that methylation of cg01331772 

persistently increased at early life stage (age £10y)(73-75). Our stratification analyses 

covered a wide age spectrum of human adults (18-94y) and showed that the age-associated 

elevation of methylation in this CpG continued until one’s middle age. At older age groups, 

this CpG was no longer associated with chronological age, but surprisingly, shifted to be 

associated with increased DNAm-predicted telomere length (DNAmTL) and age-adjusted 

DNAmTL (DNAmTL acceleration), with the strongest association appearing in the oldest 

age group (66-94y) (Figure 8). The PC1 of atypical POE module 3 where cg01331772 has a 

positive loading also followed this pattern (Figure 8). Previously, IMP4 has been reported as 

a component of telomerase whose function was to maintain/elongate telomere(76, 77). Here, 

we found that hypermethylation of cg01331772, a likely-regulatory POE-CpG for IMP4, was 

associated with longer predicted-telomere-length at old age groups. Importantly, since 

cg01331772 acted as a hub CpG for an aging-associated co-methylation module that become 

highly self-connected at old age, this effect has the potential to propagate through the co-

methylation network. These observations not only unveiled new targets (cg01331772 and 

other constituent CpGs of atypical POE module 3) for future biomarker and intervention 

studies of aging, but also highlighted that, in order to comprehensively evaluate the multiplex 

role of functional CpGs such as POE-CpGs in human aging, it is necessary to consider the 

effects both when they act as individual sites and act as constituent members in a network, 

consider the dynamic association patterns in stratified age groups, and consider both the 

mean difference and the connectivity difference in the methylation network. 

 

POE-CpGs also manifested other aging-related features such as a high degree of methylation 

heterogeneity, a fast epigenetic drift with age and a strong methylation correlation (the 

atypical POE group) with constituent CpGs of four epigenetic clocks. As the clock CpGs 
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were well known for the associations with aging, here, they were used to compare with POE-

CpGs to benchmark the aging-related features of those CpGs. Previous studies have reported 

the general genome-wide trend of loss of methylation information content (manifested as 

increased entropy) with age (5, 52), the high entropy in epigenetic clock CpGs compared to 

the rest of genome(51), and the positive association between methylation entropy and age 

acceleration(5). Here, our study showed that as a specialized group of CpGs, POE-CpGs 

(atypical group) not only lost methylation information with age in a rate that was faster than 

the rest of global methylome, but also displayed unusually high methylation heterogeneity 

(entropy) that was even higher than the constituent CpGs of three popular epigenetic clocks 

(Horvath, Hannum, PhenoAge). POE-CpGs’ entropy was only slightly lower than that of 

DNAmTL CpGs, but was higher when only considering aging-associated POE-CpGs. The 

high entropy feature shared between POE-CpGs and clock CpGs inspired us to hypothesize 

that POE-CpGs and clock CpGs were intrinsically interconnected, given their shared 

association with aging. Indeed, although there were only 10 CpGs labeled as both POE-CpGs 

and clock CpGs, we found a much higher correlation between atypical POE-CpGs and clock 

CpGs for all of the four clocks tested compared to the correlation with the rest of the 

methylome (Figure 10). This was not observed in typical POE-CpG group, consistent with 

our observation that the atypical POE-CpG group displayed much stronger and enriched 

associations with aging phenotypes compared to typical POE-CpGs (Figure 3, Figure 4). It is 

noteworthy that clock CpGs have been known for their ability to predict aging, whereas POE-

CpGs were identified for the special heritable pattern introduced by early life events 

(imprinting or early environmental effect); the shared features between the two classes of 

CpGs further supported the association between atypical POE-CpGs and aging.  
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There are limitations in this study. First, the associations we reported were discovered and 

replicated in a Scottish population, future studies are needed to replicate our findings in other 

populations.  Second, survival bias could influence the estimates of the methylation 

connectivity for the atypical POE module 3 in old age groups, given the cross-sectional 

feature of our samples. Although the methylation connectivity of that module has already 

started to increase at young age (Figure 7), which suggests that the overall increment trend is 

less likely to suffer from the survival bias issue, future longitudinal data will help to validate 

our findings in old age groups. Third, aging-associated methylation dynamics can be 

confounded by varied cell proportions of rare cell types. Although we accounted for cell 

count effects by pre-adjusting or jointly fitting estimated proportion of major blood cell types 

as covariates, the proportions of rare cell types can vary substantially across age groups but 

are difficult to estimate, this could confound methylation analyses using data generated from 

bulk tissues like ours. Fourth, our analyses on effects from early environmental exposures on 

POE-CpGs were largely limited to parental smoking. Future analyses using samples with 

richer and higher resolution records of early environmental exposures would allow a more 

comprehensive evaluation of effects from early environmental exposures and lifetime 

consequences. Finally, although longer telomere (and higher telomere length acceleration) in 

non-tumor tissues is usually considered protective, there is also evidence suggesting that 

longer telomeres can be associated with higher risk of cancer (78). We suggest that 

conclusions regarding longevity from our DNAmTL acceleration analyses should be made 

with caution, future studies that investigating the association between POE-CpGs and 

longevity directly are warranted.  

 

In conclusion, our phenome-wide human methylation analyses identified strong and enriched 

association between the atypical-POE-influenced methylome and adult aging, and between 
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atypical-POE-influenced methylome and early/late exposures at both single-CpG and 

network levels.  The shared high epigenetic drift features and the intrinsic connections 

between atypical POE-CpGs and clock CpGs were also revealed. The identified single POE-

CpGs and POE co-methylation modules provided new targets for future biomarker and 

intervention studies and added novel supporting evidence for the “early development of 

origin” hypothesis for adult aging.   
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