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Abstract

Developments in high-content phenotypic screening with single-cell read-out hold
the promise of revealing interactions and functional relationships between genes at the
genomic scale scale. However, the high-dimensionality and noisiness of gene expression
makes this endeavor highly challenging when treated as a conventional problem in
causal machine learning, both because of the statistical power required and because of
the limits on computational tractability. Here we take different tack, and propose a
deep-learning approach that finds low-dimensional representations of gene expression in
which the response to genetic perturbation is highly predictable. We demonstrate that
the interactions between genes that are cooperative in these representations are highly
consistent with known ground-truth in terms of causal ordering, functional relatedness,
and synergistic impact on cell growth and death. Our novel, statistical physics-inspired
approach provides a tractable means through which to examine the response the living
cell to perturbation, employing coarse graining that reduces data requirements and
focuses on identifying simple relationships between groups of genes.

Author summary

Understanding the causal relationships between genes and the functions of a cell’s molecular
components has long been a challenge in biology and biomedicine. With recent advancements
in technologies that manipulate and measure the activity of thousands of genes at once at
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the single-cell level, scientists are now afforded with the opportunity to interrogate such
relationships at scale. However, extracting useful information from the vast readouts of these
technologies is non-trivial, in part due to their many-dimensional and noisy nature. Here
we develop a machine learning model that allows for the interpretation of complex genetic
perturbations in terms of a simple set of causal relations. By analyzing cooperative groups
of genes identified by our model, we demonstrate the model can group genes accurately
based on their biological function, their relative ordering up- or downstream in the flow of
causation, and how their activities combine to affect cell growth and death. Our approach
complements existing machine learning methods in providing a simple way to interpret causal
mechanism governing genetic interactions and functional states of cells.

Introduction

The development of high-throughput-omics technologies has opened up a broad frontier of
new possibilities for characterizing and controlling biological systems at the molecular level.
Recent advances in both the measurement and manipulation of gene expression through
technologies such as scRNA-seq and CRISPR now provide the opportunity to treat the liv-
ing cell as a high-dimensional dynamical system, which not only can be described in detailed
quantitative terms, but also can be steered with controlled perturbations. This potent com-
bination of capabilities hold significant promise both for novel therapeutic approaches and for
a different way forward in understanding basic biology. Single-cell platforms such as Perturb-
seq [1—7], which enables simultaneous modulation of multiple genes with a full transcriptomic
read-out after perturbation, have already offered many new insights into the functional rela-
tionships of different proteins. Viewed as a predictive problem of mapping input to output,
however, the Perturb-seq scenario presents significant challenges. The combinatorial vast-
ness of the input space (with combined activations and repressions of tens of thousands of
genes to choose from) ensures that most experiments that are possible in principle cannot
be carried out. Meanwhile, the high-dimensionality, discreteness, and stochasticity of the
measured quantities of transcripts for each gene may hide biologically interesting patterns in
subtle, many-body correlations that are covered in a blanket of experimental and molecular
noise.

Machine learning has already been applied successfully to address some of these problems [8].
The use of autoencoders [9], UMAP [10, 11], and other methods of dimensionality reduc-
tion [12,13] have demonstrated that it is possible to discover relationships in statistical co-
variation of many genes that can be used, for example, to distinguish different cell types and
lineages [14], to predict mean gene expression under perturbation [15,16], to predict the inter-
actions between genes under combinatorial perturbations [1 7], and to generate counterfactual
predictions on single-cell response under new drug treatments [ &] or novel perturbations [19].
However, the greatest successes in the analysis and modeling of single-cell transcriptomes
have principally been restricted to mapping the manifold where the observed data distribu-
tion tends to fall, and have done less to show how to use perturbations to navigate across
it. Though it is possible in principle to learn causal relationships between individual genes
from data, most approaches to this task fail, whether for lack of sufficient samples or due to
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computational slow-down, when trying to handle thousands of genes at once. Additionally,
it remains an open question how easily system behavior can be predicted from even an accu-
rate map of so many complex relationships, particularly when strong perturbations lead to
non-linear, synergetic response. Thus, attempts at predicting the simultaneous changes in
expression of thousands of genes following new combinations of cellular perturbations have
so far met with difficulty.

In one sense, however, this difficulty is not a new one to quantitative science. More than a
century ago, it was appreciated that the task of exactly predicting the behaviors of all the
molecules in a gas or liquid was hopeless, but that there nonetheless were highly accurate
predictive laws that did govern the collective, macroscopic properties of these substances.
Thus, while it was not (and still is not!) feasible to keep track of what every molecule in
a fluid is doing, many-to-one functions of molecular coordinates such as temperature and
pressure have simple and reproducible relationships that grant tremendous predictive power.
Taking inspiration from this ‘statistical mechanical’ framework, we now ask a similar question
about where to find predictability in the cellular transcriptome. If individual genes are highly
variable and extremely numerous, could there perhaps be a set of quantities computed from
thousands of gene expression levels at once that comprise a low-dimensional space of simple,
predictable response to perturbation?

Specific examples of such relationships are already well-known to biology through the concept
of biochemical pathways. Whether in metabolism, the cell cycle, or regulation of programmed
death, the activation or inhibition of processes involving many proteins working in concert is
often a precisely regulated event, in which particular perturbations can trigger large collective
changes in gene expression. Historically, pathways have been discovered by building outward
from initial biochemical discoveries, until a web of functional relationships is uncovered.
Alternatively, genes have long been clustered and grouped according to observed correlations
in their expression or other measures of relatedness. While the first of these approaches is
painstaking and incomplete, the second often does not imply a clear prediction about how a
cell is expected to respond when a gene or group of genes is targeted. Yet, the past successes
of pathway identification through biochemical experimentation and clustering suggest an
opportunity to capture what is predictable about cellular response to perturbation in a
unified framework that can be learned from panoramic data.

Results

We develop Lowdeepredict, a deep learning model for single-cell gene expression under per-
turbation. It maps perturb-seq single-cell RNA sequencing data to a low-dimensional rep-
resentation in which the response to single and multiple genetic perturbations is highly
predictable. Since this is a neural network-based model, we devise an efficient procedure to
impute causal relationship between genes (through a forward pass) and use that to generate
hypotheses regarding genetic interactions and functional relatedness. We also demonstrate
a Monte Carlo approach to identify novel gene sets with high synergistic interactions. We
further show that the causal interactions between genes in these sets are preserved through
a benchmarking scheme.
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Lowdeepredict learns a low-dimensional representation in which
causal relationships between genes can be robustly detected

Uncovering the causal relationships between genes from single-cell RNA sequencing data from
perturbation screens is a daunting task, due to long-standing challenges in causal inference
for high-dimensional data [20-21]. Deep learning approaches present a possible way forward
because they excel at projecting such data into low-dimensional spaces where relationships
between the projected variables are easier to uncover and sometimes more interpretable [25].
We propose a novel deep learning model that identifies such low-dimensional representations
in a perturbation-response setting. Unlike existing methods that focus on, for example,
predicting the expression patterns for unseen perturbations [15-19] (see [3] for a summary
of these methods), our approach stipulates a low-dimensional set of causal relationships and
then requires neural networks to find new representations of gene expression that respect
these relationships. Doing so allows us to robustly detect and predict changes of state in
this low-dimensional space that result from perturbations.

In Fig. 1, we illustrate the ideas behind this scheme. Consider the expression of three dis-
joint gene groups {b1,by,--- ,by,} (blue), {g1,92,- - ,gn,} (green), {ri,re,--- ,ry,} (red),
and neural networks Fj, F,, and F, that map them to real numbers z, z,, and z,, re-
spectively. Different transcriptional states define points on the level hypersurfaces de-
scribed by z, = Fy(bi, be, - -+ ,by,) in RM* by 2z = Fy(g1,92,- -+ ,gn,) in RNt and by
2, = Fu(ry,re, -+ ,ry,) in RV In Fig. 1, we assume that without any perturbation, the
state of a cell is given by (zp, 24, 2,) = (0,0,0) and that the imposed causal order is such
that z;, causes z, and z, causes z.. When gene b; is perturbed, e.g., being CRISPR acti-
vated to the expression level of b} (i.e. expression is quenched to the value b;), the cell state
moves along the blue surface to where z, takes value zj = Fy(by,--- 0}, -+ ,by,) (i.e. the
“height” of the surface is 2}, see Fig. 1b). Since z, is upstream of z, and z,, this response
to perturbation is sequentially propagated to z, — 2z then z, — 25, thereby causing the cell
state to move on the green and red surface to where the “height” is z;. Instead, if gene 7y
is perturbed with its value quenched to r, the cell state moves on the red surface to where
the “height” is 2} (Fig. 1c). Since z, is the most downstream of all, this response is not
propagated in the low-dimensional space. However, in the expression space quenching ry
very likely incurs changes in the expression of genes in the blue and green group, but since
their low-dimensional representations 2, and z, remain the same (at 0), the initial cell state
traverses a constant-valued contour on the blue and green surfaces. Once such a representa-
tion is learned, the perturbation-response behavior of gene expression has been reduced to
a small set of effective variables that respect the requirements of a specific causal graph.

Neural networks that distinguish between different stages of per-
turbation enables a learning scheme consistent with an imposed
causal graph.

Training Lowdeepredict begins by randomly partitioning all genes into several large groups
of hundreds or thousands of genes, each one of which will correspond to a single node in
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Figure 1: Learning a low-dimensional representation of gene expression that
enables accurate prediction of perturbation response. Shown here is an exam-
ple where the expression of three disjoint (high-dimensional) gene groups {b1, b2, - , by, }
(blue), {g1,92,--- ,9n,} (green), and {ry,r9,--- ,7n,} (red) are mapped to three real num-
bers, 2,2z, and z,, via neural networks Fy, F;, and F,, respectively. These expressions
define three surfaces in RM*L (blue), R ™! (green), and R *! (red) through z, =
Fy(by, by, -+ ,bn,), 29 = Fg(g1,62,--- ,9n,) and z. = F.(ry,r,--- ,7ry,). Here we stipu-
late a causal order between 2,2, and z, by imposing a causal graph: z, causes z, and
zg causes z,. a: Prior to perturbations, the transcriptional state of a cell defines the lo-
cations on these surfaces (indicated by the open star). We assume that neural networks
map this state to (2, 24, 2,) = (0,0,0) for simplicity. b: Perturbing the k-th gene in the
blue group by setting its expression by — b} changes the value of z, to z; (i.e., the value
of z, is quenched to z}). Due to the stipulated causal order, this effect is propagated se-
quentially to z, then z,. Assuming no attenuation in the propagated effect, we have that
(26, 29, 2r) © (0,0,0) = (24,0,0) = (25,25,0) = (2,2, 2). In the expression space, such
perturbation brings a cell to a new state defined by new locations on all three surfaces (in-
dicated by the yellow star).
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Figure 1: continued from the previous page

c: When the k-th gene in the red group is perturbed (ry — 77), the state of z, is quenched
to 2. Since z, is the terminal node in the causal graph, such effect is not propagated, i.e.,
(26, 2g, 2r) + (0,0,0) = (0,0, z7). In the expression space, the new cell state differs from prior
to perturbation only in terms of its location on the red surface.

a causal graph. The implicit assumption in doing this is that as long as each node has a
sufficient number and diversity of genes associated with it, the genes in the node will have
the potential to capture whatever biological relationships the model fixates on. For example,
the dataset we use in this work consists of single-cell RNA-seq expression matrix of roughly
84k cells x 14k genes [5]. A random partitioning into 3 groups (Fig. 2b) yields ~ 4.6k genes
per group which well-samples a diverse set of biological pathways (e.g. KEGG [20]). We
then associate each group a with a neural network F,, that maps the expression pattern to
a low-dimensional space. To capture the complex dynamics of expression throughout the
course of perturbations, F, takes in a 3-dimensional input for every gene in group « which
we explain below.

Before any perturbation is applied, cells are at the basal state characterized by their reference
expression which we denote by grr. Note that we follow the data processing procedure in [5]
so that all cells have the same reference expression, which explains the missing cell and
gene index in g.f. Now consider a perturbation on gene j (in group «) that “quenches” its
value to g;;, where i is the cell index. We call this the quenched expression as this is what
we would have measured at the onset of perturbations. Following this, the perturbation
effect is propagated throughout the unknown genetic network that involves d > 1 genes,
after which the expression of gene j relaxes to a steady-state g;q’js (which we call the steady-
state expression, see Fig. 2a). There are a few things to note before we describe how our
proposed neural network utilizes these data to impose causal order. First, in addition to
gene expression, every cell ¢ in group « (with size d,,) is associated with a one-hot encoding
vector p; € {0,1}% that indicates which genes in « are perturbed in cell i. For the dataset
in [5], these are the barcodes that cells carry about which gene or pair of genes are perturbed
in the CRISPRa experiment (see Fig. S1 for the perturbation coverage). Second, although
quenched expression is never measured, it can nonetheless be computed as g; = e+ i * 14,
where A; € R9% is the perturbation weight vector (to be learned by the model) that represents
the strength of the applied perturbation and g, € R% is the reference expression of genes
in group «a .Throughout this work, we assume that there is one single perturbation weight
parameter A across all cells and all perturbed genes to reduce the number of learnable
parameters, i.e. g = wf + AM;. Doing so reduces the number of trainable parameters (d,
the number of genes) and helps with convergence.

Our proposed neural network F, maps the steady-state expression g € R quenched
expression g; € R% and reference expression gy € R% of genes in group a to a tuple of
three real numbers Z,, = (F,(g5°), Fu(8i), Fa(8rer)) which we use to indicate the state of each
group (Fig. 2b). We then stipulate causal relationships between Z,’s. In Fig. 2c, we have
that both Z; and Z, cause Zsz, namely, they form a v-structure (i.e. “collider” ) directed
acyclic graph (DAG). The intuition is that perturbations of genes in group 1 (2) should only
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affect the state of Zy (Zy) and Z3 but not of Zs (Z;). In addition, perturbations of genes
in group 3 should only affect the state of Z3 since Zj3 is the leaf node of the causal graph
(i.e. it has not child). When genes in group 1 and 2 are perturbed, we require the effect to
propagate linearly to the affect the state of Z3 (Fig. 2d). To enforce this mathematically,
we first define the quenched response for node (i.e. gene group) « as the difference between
the quenched and reference state,

Aa(i) = Fa(g) - Fa(gref)a (1)

as well as the observed response as the difference between the steady-state and reference
state

ngs(i> = Fa(ggs) - Fa(gref)' (2)

We then add up the quenched response of upstream nodes and propagate it to match the
observed response of nodes downstream. Concretely, let A be the adjacency matrix of
the low-dimensional causal graph, where A,3 = 1 if and only if node @« — node 8. The
propagated predicted response that node « receives is given by

> [A¥5a5(0) (3)

0 B=1

=

TT

where K is the smallest positive integer for which AX = 0, assuming A corresponds to a
directed acyclic graph (DAG). Note that A® = T (the identity matrix.) Neural networks F,’s
are trained such that we can use the predicted response )/5 (1) to accurately approximate the
observed response X% (i) through their mean squared difference (see Methods: Causal loss
function for details). A simple example is shown in Fig. 2d where genes in group 1 and 2
are perturbed. In this case, the quenched responses of these nodes are added up to match
the observed response of z3: X3(i) = Aq(i) + Ag(i) &~ X$*(i). In Fig. S2, we enumerate all
other possibilities of perturbation for the causal graph in Fig. 2c pictorially. We also list
the mathematical expression of causal loss for all these conditions in Table S1. Note that
additional loss terms are added to the causal loss to avoid trivial solutions and to improve
training performance and interpretability, see Methods for details.

Overall, we propose a neural network scheme that takes in gene expression from different
stages of a typical CRISPR perturbation event. The neural networks are trained by min-
imizing a causal loss function that enforces causal order between the low-dimensional rep-
resentations of genes. This results in a model that maps high-dimensional gene expression
to a low-dimensional space where the causal order is consistent with the biological response
between genes subjected to perturbations.

Extensive search in the space of causal graph and gene assignment
schemes reveals models with high predictive success

Our modeling approach proceeds by fixing a choice of causal graph by assumption and then
training arbitrary functions of gene expression represented by neural networks in order that
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Figure 2: Causal order is imposed in the low-dimensional space learned by neu-
ral networks that distinguish between different stages of perturbations. a: Our
model distinguishes between three expression values: g.r is the expression level prior to
perturbation, g; is the value immediately after perturbation (i.e. the value of expression is
“quenched” to the level of perturbation), and g® is the steady-state value. For the CRISPRa
Perturb-seq data in [5], the steady-state value is processed so that the expression level of
perturbed cells is z-normalized with respect to the expression of unperturbed cells (which
effectively sets the reference expression to zero for all cell indexed by i.) The quenched state
is to be learned by our model. b: Shown here is an example where three disjoint gene groups
a =1,2,3 are mapped to their corresponding low-dimensional representations z,’s via neu-
ral networks F,’s. F, maps the steady-state expression g*, quenched expression g;, and
reference expression g,.f of genes in group « to three real numbers (i.e. low-dimensional em-
beddings): F,(g®), Fu(8:), and F, (&), respectively. We use markers to distinguish these
values: O := F,(g), A := F,(g;) and O := F,(gwt). ¢ A 3-node v-structure DAG is
imposed: both group 1 and group 2 cause group 3. We use colors to distinguish between
groups: blue for a = 1, green for a = 2, and yellow for « = 3. Markers are as defined in
b. d: When genes in groups a = 1,2 are perturbed, their respective quenched response,
defined as F,(g;) — Fu(grer) (i.e. blue/green A— blue/green O) are summed together and
propagated downstream to match the observed response of z3 (i.e. F3(g%®) — F3(grer), yellow
O— yellow O). In Fig. S2, we enumerate all possible cases of perturbation to illustrate the
mechanism behind the imposition of causal order. Definitions of all quantities are given in
Table S2. The mathematical expression of the propagation of causal influence in given in
the main text.
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Figure 3: Searches in the space of causal graph and gene assignments selects a
causal graph that is highly trainable and with good test performance. We train,
in total, 169 models with different DAG topologies, each with 3-4 random gene bucket-
ing/assignment schemes. The search in the DAG space consists of all possible 2-node and
3-node weakly-connected DAGs (2 + 18), 2 (out of 543) 4-node DAGs, 3 (out of 3,781,503)
6-node DAGs, and 3 (out of ~ 7.8 x 10'") 8-node DAGs, see Fig. S3 for their topology. All
weakly-connected 3-node DAGs fall into one of the followings: Cascade, v-structure, common
parent, and feedforward loop. a: Shown here are the node-averaged Pearson’s correlations
between the predicted response and observed response computed using the validation data
stratified by graph topology. Members in each topology is given in Fig. S3. Graph structure
of the best performing model (indicted by red circle) is shown in the inset. b: Observed
response is plotted against the predicted response for the best performing model. Color
indicates density estimated with Gaussian kernels. Columns are labeled by node number
corresponding to the graph in the inset of a. Top row shows the result for training data,
the middle row shows that for the validation data, and the bottom shows that for the test
data. Node-wise Pearson’s correlation magnitude |p| is indicated for each node and data
type (train, validation, or test).


https://doi.org/10.1101/2023.01.18.524617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524617; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

their outputs obey the rules of that graph. This procedure of course raises the question:
which causal graph should be chosen? Though more advanced techniques might be used
in future, here we train separate models for a diverse range of small graphs, with genes
assigned to each node of the graph by random assortment. The search is restricted to the
space of directed acyclic graphs (DAGs) in order that the resulting models will admit a
simple causal interpretation. Note that although this greatly reduces the space of graphs
to perform search on, the number of DAGs with m nodes, G(m), is still super-exponential
in m, eg., G(2) = 3,G(3) = 25,G(4) = 543,G(5) = 29,281,G(6) = 3,781,503 etc. [22].
For this reason, we elect to consider 28 graphs consisting of all possible 2-node and 3-node
weakly-connected DAGs (2 + 18 graphs), 2 (out of ~ 500) 4-node weakly-connected DAGs, 3
(out of ~3M) 6-node weakly-connected DAGs, and 3 (out of ~ 7.8 x 10") 8-node DAGs, see
Fig. S3 for their topology. For each graph, we partition genes randomly using 3-4 different
random seeds, which yields 169 models trained and each optimized to select the combination
of hyper-parameters (using Optuna [27])that yields the best validation node-average Pearson
correlation between the predicted and observed response.

In Fig.3a, we show the node-averaged Pearson correlation for models we trained and opti-
mized as described. For 3-node DAGs, we stratify the results according to graph topology:
v-structure, cascade, common parent, and feedforward loop. The best performing model
from this analysis is a three-node v-structure graph attaining 0.86 node-average validation
Pearson correlation p between predicted and observed perturbation response of the graph
nodes. We use its magnitude |p| as a metric to gauge model performance, as it quantifies the
correlation between the response (in the low-dimensional space) expected by the model and
what was measured in the experiments. In Fig. 3b, we plot the joint density of the observed
response, Equation (2), and the predicted response, Equation (3), for this model and show
the Pearson correlation between them for each node and across training, validation, and test
data (80-10-10 split). Note that this model achieves 0.84 node-averaged Pearson correlation
with test dataset. These results combined to show that our training procedure that aims to
enforce causal order through a pre-specified causal graph can produce low-dimensional rep-
resentation of genes in which the measured perturbation response in highly consistent with
what the model predicts. Note that as a negative control, we train 400 models on graphs
with zero connectivity (i.e., disconnected graphs). We find that models as such are hard to
train (with averaged performance |p| ~ 0.5), see Fig. S19. We speculate that the diminished
performance is due to the lack of constraint in the loss landscape from the connectivity of
the imposed causal graph.

It should be noted, however, that such a model should not be thought of as a uniquely
predictable low-dimensionality in the data; it is very reasonable to suppose that there could
be more than one way of projecting high-dimensional gene expression into a few quantities
for which a certain causal graph relation is obeyed. Indeed, our results showed a number
different causal graphs that could be satisfied with relatively high correlation, particularly
with different random assignment of genes to nodes. Nonetheless, what the model training
discovers in the data is a robust rule for predicting the downstream, low-dimensional effects
of CRISPR activation across a range of different perturbations of gene singles and pairs.
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Figure 4: Group perturbation response accurately differentiates between the path-
way from the non-pathway genes. a: Design of causal benchmark experiment. We select
704 genes from a set of KEGG pathways that are related to cell growth/death, signaling,
and general transcriptional pathways (see Table S4). These genes are called pathway genes.
As described in Methods, they are assigned to two groups depending on their upstreamness,
defined in Equation (21): those with positive upstreamness are in the upstream node 0
(Pathway group) while those with zero upstreamness are assigned to the downstream node
1 (Downstream (pathway) group). To maximally utilize the data in [5], we assign all the
remaining (i.e. after the pathway gene assignment) 28 genes that were experimentally per-
turbed to the upstream node. These upstream non-pathway perturbed genes are validated
to not cause any genes in the downstream node and any of the upstream pathway genes (blue
box) using causal ground-truth [28]. In this benchmark experiment, we also assign to the
upstream node 98 randomly sampled genes that are validated to not cause any genes in the
downstream node. These 98 genes and the 28 perturbed non-pathway gene constitute the

Random group (orange box). A breakdown of gene composition for each node is summarized
in Table 1.
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Figure 4: continued from previous page

b: Model performance for the benchmark ensemble. c: Shown here are the response magni-
tude curves ]Qg))()\)] plotted against the total perturbation weight A from a Lowdeepredict
model trained according to a. Blue curves refer to S = pathway group and orange curves
refer to S = random group. The left panel uses all genes in each group, the middle panel
focuses only on the perturbed genes in each group, and the right panel considers only the
unperturbed genes in each group. In all panels, |Qg))()\)| is plotted in units of learned
perturbation weight \* (= 1.6511 for this model). Dashed lines correspond to one unit of
A*. The gap between the pathway and random group, A*, as defined in Equation(7), is
indicated. d: Distribution of the normalized response gap. The normalization amounts to
rescaling the response gap, A*, by the geometric mean of gaps across the 10 experiments in
the ensemble. The x-axis indicates the basis of comparison: compare between all genes in
each group (blue), only the perturbed gene in each group (orange), or only the unperturbed
genes (green) in each group. Note that all the gaps are positive. e: We perform the one-
sided Mann-Whitney U test with the null hypothesis that genes in the pathway group are
stochastically equal in their gradient magnitude than those in the random group. A p-value
< 0.05 favors the alternative hypothesis that pathway genes are stochastically higher in score
than genes in the random group. Results from a similar test comparing the perturbed genes
against the unperturbed genes are shown as well. In conducting the test, we focus only on
the top-k (k = 10, 20, 28) genes in terms of single perturbation response magnitude. Dashed
line indicates p-value = 0.05. Note that the y-axis is —log,,(p).

Group perturbation response accurately identifies related gene groups

In the above, we have trained a model to find functions that map high-dimensional gene
expression to a small set of node variables that obey a simple, known causal structure. Such
a model will only be useful, however, if the low-dimensional predictability it uncovers can
be employed to reveal biological relationships that can be understood and acted upon. A
large number of genes’ expression levels may contribute in principle to the value of a function
2o = F,(g), but after model training, one might think that only specific combinations of
expression changes from a subset of these genes will actually determine the value of node
a. In Figure S14b we show the distribution of gradient magnitudes of the functions F,
with respect to all of their gene arguments. Based on the gradient magnitude, we select the
top-ranking genes and annotate them with KEGG pathways based on functional enrichment
analysis through DAVID [29]. It turns out, except for nodes where we explicitly assign
KEGG pathway genes to (e.g., node 0 in Figure S14a that consists entirely of genes from
selected KEGG pathways), we do not get meaningful and significantly enriched annotations,
see Figure S14d.

Since basic, single-gene measures of feature importance do not turn out to have obvious
meaning in the model, we must consider a more novel approach. We note that the model is
trained to detect predictable patterns in response to perturbation, and also that it does so
by computing quantities that integrate information from the expression levels of many genes
at once. We therefore now ask which groups of genes are predicted by the model to have a
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particularly strong response in the causally downstream node variable(s) when perturbed.
Since the model is aimed at integrating information from the expression levels of many genes
simultaneously, it stands to reason that part of the predictability in the data may be good
at identifying may require examining collective, multi-gene properties. We stress that our
attempt is to interrogate the potentially nonlinear interactions between genes that explain
the high predictability in the projected low-dimensional space, rather than predicting the
single-cell transcriptional state under multi-gene perturbation which is technical difficult in
experiments. Therefore, the notion of “group perturbation response” presented here should
be construed as a means by which meaningful interactions are revealed instead of an in silico
tool to impute the cellular response to experimentally infeasible multi-gene perturbation [19].

To examine this possibility, we develop the concept of a group perturbation response. To
simplify notation, we use [d,] = {1,2,--- ,d,} to index all the genes in node . Let S C [d,]
be the index set for the genes of intereset. Similar to how we define one-hot encoding vectors,
let pg € {0,1}% be the binary vector whose elements are zero except for those indexed by
S. We define the group perturbation response of gene set S (whose members are in node
«) under perturbation of strength X as:

() = Fo(ret + Mrg) — Fa(8ret). (4)

where g is the reference expression of genes. Note that this definition mimics the finite
difference version of directional derivative of F}, in the direction of v = g evaluated at g
with step A (without the normalization by A). The motivation for this definition is that it
is possible to ask the trained model for any group of chosen genes in the upstream nodes of
the causal graph how strongly their simultaneous perturbation is predicted by the change
in the node variable value at the perturbed node, such that this change is expected to be
communicated to a corresponding change in the downstream node. In the data set employed
here, perturbations were all single- and double- CRISPR activations, but only ~ 300 per-
turbations were actually performed. The trained model, however, can make mathematical
predictions about any arbitrary set of combined perturbations

Due to the non-linearity of the functions of gene expression learned by our model, we note
that cooperativity between genes may have the chance to play an important role in contribut-
ing to the predictive success in capturing the structure of biological pathways. We therefore
hypothesize that the group perturbation response measure may correlate with different kinds
of ground truth relating groups of genes to each other in the cell.

To investigate this question, we design a benchmark experiment that consists of a pre-selected
sets of pathway genes and random genes (see Methods and Table S4 for details). Each gene is
assigned to one of the two nodes in a simple causal graph Hyowdeepredict (Fig. 4a), depending
on their degree of upstreamness (defined in Equation (21)) in source of ground-truth for
causal order [28] — genes with non-zero upstreamness (labeled Pathway group in Fig. 4a),
meaning they are the causal parents of some other genes, are placed in the upstream node
0 while those with zero upstreamness (labeled Dowstream (pathway) group), meaning they
are the leaf nodes in the ground-truth gene-gene interaction network, are placed in the
downstream node 1. The upstreamness of a gene is determined based on a set of “ground-
truth” derived from MetaBase (Clarivate) by filtering the overall transcriptional regulation
for “causal” only interactions [28].
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In addition to these pathway genes, we randomly sample genes that are not in the selected
pathways and assign them to the upstream node (labeled Random group). The number
of random genes is chosen such that the perturbed and unperturbed populations (in the
experiments conducted in [5]) are almost identical across the pathway group and random
group (see Fig. 4a and Table 1). Ultimately, we want to assess if, conditioned on the
perturbation status or not, genes in the pathway group tend to have high group response
compared to those in the random group.

Since this benchmark experiment requires random sampling, we construct an ensemble of
10 experiments as described above, except that the random seed used for the sampling are
different across experiments. For each experiment, we train a Lowdeepredict model with
Hiowdeepredict @s the imposed causal graph and perform hyperparameter optimization [27].
Overall, the ensemble achieves around 0.8 Pearson correlation on average (Fig. 4b). For
each trained model, we apply in silico perturbation of strength A to genes in the pathway
group (S, with N, genes) and the random group (S, with N, genes) in the upstream node
0 and measure their respective response magnitude (c.f. Equation (4)):

QYN = |Fo(gret + Mas,.) — Folgrer)| (5)
QU = | Fo(@eet + Mrs,,) — Foler)], (6)

where the subscript P and R indicate the pathway and random group, respectively. We
then vary the perturbation strength A to trace out the response curves. As an example, in
Fig. 4c, we compare the curve for the pathway group (blue) against that for the random
group (orange), conditioned on gene perturbation status (middle and right) as well as un-
conditionally (i.e. using all genes in each group; left panel). In all cases, we observe that
pathway group has higher response than the random group. To facilitate comparison across
experiments in the ensemble, we define a scalar metric called the response gap to quantify
the difference in the group response at the perturbation weight learned by the model, A\*:

A =1QP ()] — QT (V). (7)

The response gap for each experiment (A}) is then normalized by the geometric mean (GM)
of all gaps across the ensemble: Zf = A¥/pu,, where p, = GM({A}) = (TT12, A)Y'°. Such
normalization ensures that gaps from different experiments (as scale factors) are compared
on an equal footing. Note that A¥ > 0 across the 10 experiments, which makes their GM well-
defined. This also means that pathway genes consistently have higher response magnitude
than the random genes. In Fig. 4d, we show the distribution of the normalized gap.

To assess if the pathway genes and random genes can be distinguished under simpler interac-
tion score (as opposed to multi-gene perturbation described above), we compute the average
gradient of each gene (as described previously). We then conduct one-sided Mann-Whitney
U tests to compute a p-value under the null hypothesis that both groups are stochastically
indistinguishable. This test stipulates an alternative hypothesis that the pathway group is
stochastically higher in score than the random group. Since empirically the group distribu-
tions have fat tails, we opted to compute the p-values with only the top-k (k = 10,20, 28,
number of perturbed genes in the random group) genes within each group. For cases where
the p-value is smaller than, e.g. 0.05, we say that the the null hypothesis is rejected and the
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alternative is favored. The results are summarized in Fig. 4e (colored green). We observe
that only around 30% of the ensemble have pathway genes stochastically scored higher than
random genes with p < 0.05 (in terms of their gradient magnitude). We also conduct the
same U test to distinguish between perturbed genes and unperturbed genes (Fig. 4e; colored
red). It turns out ~ 20% of the ensemble have the perturbed genes stochastically scored
higher than the unperturbed genes with p < 0.05. This suggests that single-gene gradient
magnitude does not reliably reproduce the distinguishablity between the pathway and ran-
dom genes, nor does it consistently differentiate between genes with different perturbation
state. Note that in the case of multi-gene group response (Fig. 4c,d), the distinguishability
between the pathway and random genes is independent of the perturbation state. To re-
cap, we design an ensemble of benchmark experiments using known causal ground-truth to
show that group perturbation response accurately distinguishes between functionally related
pathway gene groups from randomly assembled gene groups.

The discovery of particular examples where genes of related function show a highly cooper-
ative response in the low-dimensional space learned by the model suggests a more general
principle may be at play, whereby functional relatedness implies such cooperativity. To test
this possibility, we now ask if groups of genes selected to maximize the predicted response
are generally enriched for genes that are functionally related. Since the search space of
groups of such genes is large, we devise a Monte Carlo (MC) approach to identify gene sets
whose group perturbation response, i.e., the change in the magnitude of the low-dimensional
variable under the simultaneous perturbation of all genes in the group, is maximized. In
Methods, we describe the details of our MC algorithm that identifies a gene set S where the
magnitude of Equation (4) is maximized (see also Algorithm 1).

To start, we allow the Metropolis algorithm (a type of MC algorithms) to build a gene set
from ground-up, meaning that it starts with a randomly sampled seed gene and builds up
the whole set one at a time based on if the acceptance of a gene increases the group response
(see Algorithm 1 for details). The algorithm stops if the gene set grows to a targeted size
(set to be 100), or it reaches the maximum MC steps allowed (10°). The choice for the
ground-up algorithm is due to faster convergence for smaller search space of the benchmark
model (Fig. 4a).

We applied this algorithm to the ensemble study described in Fig. 4a. There are 10 ex-
periments in this ensemble representing 10 unique realizations of random genes placement
in upstream node 0. For each experiment, we apply Algorithm 1 with 10 different random
seeds to identity gene sets with target size 100. Note that the size of identified sets varies,
due to the stochasticity in the MC.. In total, we have 10 (experiments) x 10 (random seeds
in MC) = 100 identified gene sets, each of which is analyzed to uncover enriched functional
pathways through DAVID [29]. These pathways (enrichment calls) are furthered examined
based on the Benjamini adjusted p-value at threshold 0.05. A pathway with p < 0.05 is called
significantly enriched and the number of gene sets calling this pathway as such is counted.
This count, when normalized by the number of gene sets (= 100, called mazimum count), is
called the frequency (of significant enrichment). Note that any given pathway can be called
significantly enriched for at most 100 times. In this case, every identified gene set would
have called this pathway significantly enriched and the frequency of significant enrichment
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Figure 5: Monte Carlo approach that maximizes group response magnitude out-
performs baseline methods in correctly identifying genes that are functionally
related. As described in Fig. 4a and in the main text, the ensemble study consists of 10
realizations of random gene samplings. a: We perform 10 indepdent Monte Carlo runs, each
with a unique random seed, to identify genes whose group response magnitude is maximized,
see Methods and Algorithm 1 for details. Overall, the ensemble study produces 100 gene
sets (10 realizations of random gene sampling x 10 MC runs). For each gene set, we then
perform functional enrichment analysis through DAVID [29] to report the enriched KEGG
pathways. A pathway with Benjamini p-value < 0.05 is called significantly enriched and the
number of gene sets calling this pathway as such is recorded (i.e. count). Note that a KEGG
pathway can have at most 100 significant enrichment calls (i.e. maz count). In this case, the
frequency is 1 (or 100 %). Here we show the frequency of (significant) enrichment calls of
KEGG pathways based on gene sets identified by MC. These results are compared against
baselines such as pure random sampling (i.e. randomly sample gene sets with size fixed to
that of the MC results) and expression clusters using unperturbed cells (with and without
applying PCA to the normalized expression matrix before clustering). In the legend: PC
20 (keep only the top-20 principal components), MC (Monte Carlo), random: randomly
sampled gene sets. Note that the missing of bars indicates zero frequency. b: Maximum
count for various methods are shown. Note that for cluster the maximum count is equal to
the number of clusters identified (based on expression correlation). c: Size distribution of
gene sets identified by various methods is shown.
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is 1 (or 100%).

In Fig. 5a, we show only pathways with frequency greater than 10%. We compare the
MC results (blue) to those based on randomly assembled gene sets (with size fixed to that
of the MC set; colored red) and gene expression clusters (with or without PCA prior to
clustering; colored orange and green, respectively, see Supplementary Methods for details).
We find that MC identifies gene sets with functional annotations consistent with the the
biology of the genes we assign to node 0, e.g., the prevalence of significant enrichment calls
for transcriptional pathways and signaling pathways (see Table S4). Number of gene sets
(i.e. number of enrichment analyses conducted) that produces the result in a as well as the
distribution of their sizes are given in Fig. 5b,c. To summarize, through the ensemble of
benchmark experiments and gene set enrichment analysis, we show that compared to baseline
methods such as expression clustering and random sampling, Monte Carlo algorithm that
optimizes group perturbation response identifies genes whose functional annotations are more
often aligned with the pathway biology present in the benchmark experiment.

Monte Carlo algorithm optimizing group perturbation response
identifies gene sets with pairwise interaction consistent with the
imposed causal order

In the previous section, we show that our Monte Carlo approach maximizing group per-
turbation response more often identifies genes with functional annotations consitent with
the pathway biology present in a small benchmark experiment. Since this benchmark ex-
periment is designed to be causal, meaning genes with non-zero upstreamness are upstream
of genes with zero upstreamness, see Equation (21), we ask if this optimization scheme
could identify genes with the right causal order in a setting where causality is not put in
in the node assignment of genes. To do so, we select 6 KEGG pathways [20] related to cell
growth and death and intersect the corresponding genes with those available in the CRISPRa
dataset [5]. We then place the overlapping genes (326 in total) in the downstream node 0
of the v-structure DAG in Fig. 6a. The remaining genes in the CRISPRa dataset are then
partitioned randomly and evenly into two groups (6, 846 genes each), which are then placed
in the two upstream nodes (node 1 and node 2). Since the downstream biology is fixed,
our model should be forced to learn functions, particularly for the upstream nodes, that,
upon receiving perturbation, accurately predict the response of genes related to cell growth
and death. In Fig. 6a, we show the model predictive performance in terms of node-wise
Pearson correlation (averaged to p = 0.84 using validation dataset) after training and hyper-
parameter optimization as outlined in Methods (see also Fig. S5 for detailed performance
breakdown and joint density between predicted and observed response.) Note that the pre-
dicted performance for the downstream node 0 (p = 0.77) is slightly worse than that of the
upstream nodes (p = 0.88,0.86). This is due to that the causal loss for the downstream
node comes from two sources — the effect of self-perturbation (i.e. when genes assigned to
downstream node is perturbed) and that propagated from the upstream nodes through per-
turbing genes in these nodes. The upstream nodes, on the other hand, have to deal with
only the self-perturbation effect since they do not have causal parents.
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Figure 6: Optimizing group perturbation response with Monte Carlo identifies
novel gene sets whose pairwise interactions among constituent genes respect the
imposed causal order. a: Here we train Lowdeepredict on a 3-node v-structure DAG.
Gene placement is such that the downstream node (0) consists purely of genes that are
related to cell growth and death, see Table S3 for a list of associated pathways, while the
remaining genes are equally and randomly partitioned into the upstream nodes (1 and 2).
We use a Monte Carlo (MC) approach (c.f. Algorithm 2) to identify, for each node a, a
set of genes Si(a), where 7 is the index for independent MC runs, whose group perturbation
response magnitude is maximized. Shown on the right is an example of such gene sets. In
this figure, we show results for |Si(°‘)\ = 20 for 20 MC runs (i.e. i = 1,2,---,20), namely,
MC identifies 20 sets of 20 genes for each node.
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Figure 6: continued from the previous page

b: Tllustration on how causal (forward) ®*, anti-causal (backward) ®~, and (normalized)
net flux " for any pair of (upstream, downstream) genes are computed. c: Joint density of
forward and backward flux for both the MC gene set (red) and randomly sampled gene sets
(blue). For every edge e, = o — [ in a, we first select the top-50 frequently identified genes
for node a, 8 from {S\*} and {S”)}, respectively. We then apply the procedure outline in
b to compute the fluxes with simple path length d = 1. Results across all edges e,p are
aggregated to generate the densitgz plot. The density for the random gene set is produced
similarly, except that Si(a) and SZ-( are sampled randomly and uniformly from genes in node
a, 3, respectively (with size 50). d: Shown here is the fraction of gene pairs with &+ > &~
for both the MC gene set and random gene sets of varying sample sizes (i.e. how many times
we sample 50 genes randomly). MC-pwy20: MC set generated according to a, random-X:
randomly sample 50 genes X number of times.

We then apply our MC scheme (Algorithm 2) to identify gene sets with large group pertur-
bation response in each node. In Fig. 6a, we show example gene sets Si(a)’s, where o = 0, 1, 2
corresponds to nodes in the graph shown on the left and ¢ is the index for different inde-
pendent MC runs. We perform MC with 20 different random seeds (i.e. ¢ = 1,2,---,20)
and ask the algorithm to identify, for each run, 20 genes (i.e. |Si(a)\ = 20) whose collective
response in the low-dimensional space is maximized. Note that in this setting, one can have
at most min(number of genes in node a, 20%) unique genes among all the Monte Carlo sets
{SZ»(O‘),Z' = 1,---,20}. It turns out that gene sets discovered by MC have large overlaps,
especially for node 1 and 2 (i.e. those of ~ 6.8k random genes, see Table S5). Analyzing the
co-occurrence pattern of genes in these sets reveals that certain subsets tend to be selected
by MC more often than others (see Fig. S6, S7, S8, S9.) It’s worth noting choosing genes
whose expressions are highly correlated (i.e. co-expression clusters) does not necessitate high
response upon their perturbation (see Fig. S13 for details.)

Armed with this discovery, we then ask if the interactions between the most-frequently
identified genes contained in these sets are consistent with known literature. To answer
that we employ a set of “ground-truth” transcriptional gene-gene interactions as described
previously [28] (which we denote as Gy and dub causal ground-truth from here on). We
further develop an approach to compute, for every directed edge e, = o — 8 in the model-
imposed causal graph (e.g. Fig.6 a), the degree of causal consistency between genes in « and
those in 8 with respect to known interactions in Gg¢. In Fig.6b, we illustrate this approach.
In short, for every pair of genes (z;,y;), where z; € a and y; € §, we compute the forward
(causal) flux T (x;,y;) as the number of simple paths (of length 1) from x; to y; based on the
known causal interactions in Gy. Similarly, we can also compute the backward (anti-causal)
flur @~ (x;,y;) as the number of simple paths of length d from y; to x; with respect to Gy.
Intuitively, ®*(®~) quantifies the amount of causal (anti-causal) flow for this gene pair.
In Fig.6c, we show the joint density for ®* and &~ for MC discovered gene sets (red) as
well as randomly sampled gene sets (blue, sampled 10000 times). These densities come from
the aggregating the fluxes for all edges e,s in the graph shown in Fig.6a. Fraction of pairs
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(i.e. integrated density) that lie above the 45-degree line, namely, those with ®* > &
are indicated (0.84 for MC gene sets and 0.32 for random gene sets). This result shows
that ~ 84% of gene pairs identified by MC have interactions consistent with known ground-
truth as opposed to ~ 31% for the random gene sets. In Fig.6d, we show such fraction for
various sampling sizes (100, 1k, 10k). Consistently, the MC-optimized gene sets have the
highest fraction of gene pairs whose causal interactions are compatible with those know in
literature. These results combined to show that our MC approach optimizing the magnitude
of group perturbation response identifies genes whose pairwise interactions strongly agree
with the causal order of the deep-learned low-dimensional DAG model with known causal
ground truth. Indeed, when examining gene-gene edges for the top few genes that recur
in MC-optimization, we even observe perfect, edge-by-edge agreement between the ground
truth and the causal order of our DAG model (see Fig. S10).

a b c
coarse-grained causal Using the top-50 genes in each node Using the top-30 genes in each node
raph H Fraction of edges not obeying H: Fraction of edges not obeying H:
3 0
— =0.15 —=0
20 10
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Figure 7: Causal graph constructed from MC genes is highly consistent with
known gene-gene directed interaction network. a: Imposed causal order for the setup
discussed in Fig.6a. Here we name it the coarse-grained causal graph H. b: We use the top-50
frequently identified genes for each node in a to construct a subgraph based on the ground-
truth causal network Gg. Details of graph construction is given in Methods. The resulting
graph contains genes (as nodes) from the top-50 MC set and edges that indicate direct
transcriptional interactions found in Gg. Genes are colored according to their assignment in
H. In this graph, there are 3 edges not consistent with H (colored red): TP73 (node 0) —
GDF15 (node 1), TP73 (node 0) — CEBPA (node 1), and TP73 (node 0) — EGR1 (node
1). The fraction of edges not obeying H is indicated in the middle. c: Results for using
top-30 genes. In Fig.S10, we vary top-k and compare these results with randomly generated
graphs.
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Gene-gene interaction networks constructed with MC gene sets
contain high proportion of known causal interactions.

In the previous section, we demonstrate that our MC-based approach optimizing group
perturbation response identifies genes whose interactions are highly causal. Here we ask if
the directional gene-gene interaction networks constructed with these genes are consistent
with the known ground-truth. First, we use the top-k frequently identified genes from
the MC gene set to build an interaction network out of the causal ground-truth Gy (i.e.
a directional gene-gene interaction network based on known interactions, see Methods for
details). This network, denoted as Gypown, 18 then examined for its consistency with the
model imposed causal graph H (Fig. 6a). This can be done by, for example, counting the
interactions between genes (or edges i — j, where i, are genes) in Gyyown DOt consistent
with H. An edge i — j, where i € a and j € 8 (i.e., gene i/j is assigned to node a/f in
H) is said to be not consistent with H if « — f is not in H. In Fig. 7b, we show these
graphs for the top-50 genes from the MC set. In this case, Gxpown contains 3 edges (colored
red) not consistent with H (Fig. 7a). These are the edges that correspond to node 0 —
node 1, which is not present in H. After pruning these edges from Gy,own One arrives at a
graph G,, that fully respects the model mandated causal order. To quantify the degree of
causal inconsistency, we use the fraction of edges in Gypown n0t aligned with H (3/20 = 0.15,
labeled in Fig. 7b). Note that this fraction becomes zero when we used only the top-30
genes to construct Gypown (Fig. 7c). In Fig. S10, we vary the gene set size k (as in top-k)
and compute the corresponding fraction of inconsistency. These results are compared against
that based on random sampling (1,000 times, each of size k). Across the board, the MC gene
sets have at most 0.18% inconsistency (or at least 0.82 consistent, when k = 60) compared
to ~ 0.66 inconsistent (or 0.34 consistent) for the random gene sets. In Fig. S12, we use a
variety of causal discovery metrics (e.g. directed/undirected precision and recall, structural
hamming distance, graph p-values etc., see Supplementary Methods for details) to compare
the agreement /disagreement between Gypown and Gy,,. Again, all these metrics show that the
directional interactions among the MC causal graph are highly consistent with those known
in literature.

Model imputed synergy is consistent with previously reported fit-
ness measure

In the above, the most basic version of Monte Carlo optimization for generation of strongly
cooperative gene groups has been shown to agree significantly with ground truth pertaining
both to functional annotation and to causal order. However, the same procedure for nucle-
ating gene-specific groups can also be modified to produce a predicted measure of synergy
between two different genes being perturbed simultaneously (Algorithm S1). By comparing
the predicted downstream response for scenario in which two genes are perturbed, versus
one where only one member of the pair is perturbed, one may construct a quantity, Equation
(S.27) in Supplementary Information, which measures the degree to which one gene strongly
impacts the ability of the other gene’s perturbation to cause a large downstream impact.
Fortunately, in the same experimental data set with which our deep, low-dimensional causal

21


https://doi.org/10.1101/2023.01.18.524617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524617; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

model is trained [5], there is also an associated cell fitness score, called Genetic Interaction
(GI) score in [5], that was measured at the time the perturbation experiment was performed
in the same cell population, see Fig. 8a, S16. We therefore now devise a comparison of the
model-predicted gene pair synergy score (whose derivation only has access to information
from experimental gene expression changes) to the corresponding GI measured for the same
pair in the same Perturb-seq experiments. To do so, we make use of the v-graph model
mentioned above (Fig. 6a), which was trained with a selected set of genes involved in cell
growth and death in the downstream node. GI scores for the experiment quantify the degree
to which the impact of double CRISPRa perturbations deviates from the linear combination
of fitness scores measured for the individual single-gene perturbations making up the pair.
It therefore is reasonable to ask whether the model’s predicted measure of gene-pair synergy
tracks with this experimentally observed non-linearity in impact of the double-perturbation
on fitness.

In order to make this comparison, we divide the number of gene pairs assayed in the experi-
ments in strongly negative, neutral, and strongly positive categories of GI score (Fig. 8b,c).
For these three groups, we then generate histograms of the model-predicted synergy scores.
As can be observed in Fig. 8e, a statistically significant difference in the high-synergy tails
of these distributions is observed, whereby the neutral or non-interacting group of gene pairs
has a less predicted synergy. Of course, the large variability in the synergy score predicted
from the model in all three groups indicates that these predictions cannot be used to predict
GI scores for individual pairs with high accuracy. It should be remembered, however, that
the model itself only is being used to produce a prediction about the impact on the node
function value for of a large number of genes involved with growth and death, and has not
been trained on any labels containing direct experimental measures of cell fitness. Thus, the
general trend of being able to detect bias towards higher synergy in the strong GI pairs is an
encouraging indication that the causal model has detected some signal of relevant biology
ab initio.

Discussion

In this study, we have demonstrated it is possible to extract predictable patterns systemati-
cally from single-cell Perturb seq data. By training a neural network to map transcriptomes
into a low-dimensional, directed acyclic graph, we demonstrate that the impact of a range
of perturbations can be represented predictably in terms of a simple set of causal, linear-
response relations. By analyzing the strongly cooperative gene groups identified by the
trained model, we have moreover demonstrated agreement with sources of biological ground
truth for functional annotation, causal ordering, and synergistic impacts on cell growth and
death. In all of these cases, the level of agreement with ground truth was highly statisti-
cally significant, but not consonant enough to serve as a replacement for the ground truth.
However, what makes this level of agreement striking is that the model was never being
trained to discover gene groups of common function or to promote impact on cell death: the
gene groups identified through Monte Carlo optimization here have been selected only for
the cooperativity and downstream predictability of their combined perturbation. The model
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Figure 8: Distribution of GI score and the computation of synergistic response.
a: Distribution of GI scores. This histogram is compiled from 1483 gene pairs from the GI
map shown in Fig. S16 after filtering out pairs whose members belong to different nodes and
pairs belong to downstream node 0 in the Lowdeepredict causal graph shown in Fig. 6a. b:
602 GI pairs are first stratified based on their GI type then sampled from the histogram in
a for each stratum. Colors indicate GI types (i.e. strata): positive: those with GI > 2.25,
negative: those with GI < —2.0, and zero: those with |GI| < 0.3. Number of pairs for
each type is shown in c. d: An example where gene j is treated as the query gene in the
computation of synergistic response (SR). ‘Sample genes’ k, ¢ # j are highlighted. For gene ¢,
since the average cooperativity between the pair (¢, j) and the genes they nucleate is greater
than that between ¢ and the genes it nucleates, their average synergistic response (sy;) > 0.
For sample gene k, we have (s;;) < 0. e: Distribution of the synergistic response magnitude
defined in Equation (S.28). Color indicates the GI type. f: Synergistic response magnitude
averaged across all pairs of the same GI type (i.e. mean of histograms in d).
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training did include an explicit sense of causal order in the architecture, and this is perhaps
the reason that the agreement with causal ground truth was the strongest; nonetheless, the
sense of causal order discovered by the model had to be learned entirely from data without
any causal attribution in the labels.

It has been more common in past approaches to causal discovery in functional genomics data
to seek to map relationships between individual genes. Traditional approaches to such a
challenge in the full transcriptome case have run aground on the computational complexity
of handling so many variables simultaneously, although recent work employing low-rank
and sparsity assumptions has demonstrated an efficient means to generate such gene-level
graphs [30-32]. Though useful, such highly granular graphs with many interconnected nodes
still pose the risk of exhibiting complex and unpredictable behavior at the gene level. We
therefore have tried here to articulate a complementary approach that focuses by construction
on finding that which is most predictable in the collective behavior of many genes. Our model
begins with the stipulation of a low-dimensional causal order and the specification of gene
group assignment before training. Guided by the causal loss function, neural networks are
optimized towards learning a low-dimensional representation in which gene groups respect
the imposed causal order. Due to the high-dimensional nature of gene expression, one should
not expect the learned representation to be unique, meaning that there are conceivably many
representations of gene expression that achieve the same predictive performance (e.g. the
Pearson correlation between the predicted and observed response). Regardless of the non-
uniqueness, gene sets identified by our Monte Carlo scheme seem to be highly consistent
among models trained with different random seeds that are used to initialize and optimize
neural networks but under the same architecture and gene set assignment (see Fig. S15).
However, since the MC search space is constrained to genes that are assigned to the same
node, a new gene-to-node assignment might reveal hidden associations that are absent in we
presented in the main text.

Despite being assembled out of highly diverse and constantly fluctuating types and numbers
of molecular components, living things exhibit many predictable behaviors. Traditionally, the
characterization of the molecular basis for this predictability has begun by taking a behavior
of interest (like cell division) and gradually uncovering groups of genes (such as cyclins) that
play key roles in the instantiation of that behavior. High-dimensional biological data present
the temptation to run things in the opposite direction by beginning with a panoramic view of
many molecular components as they covary under the same conditions and then identifying
the groups of genes whose coordinated action is predictable. Such an approach is difficult
because it is less anchored in what is already known, but has the potential to discover many
new kinds of biological predictability that were previously not identified.

Much still remains to be understood about what the cooperative gene groups identified in
this low-dimensional causal model mean, and how knowledge of them might be used to design
better future experiments or develop therapeutic strategies. A follow-up set of perturbation
experiments that empirically tests whether the multi-gene cooperativity predicted by the
model bears out in reality would serve as a natural starting point, as well as a more general
attempt to establish with the co-nucleated gene groups can be demonstrated to be involved
in some of the same functional tasks. Lastly, a wider range of models can be developed as
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larger panoramic perturbation-response data sets arrive, and as specific research objectives
guide the assignment of genes to nodes in the causal graph in a way that could help to reveal
relationships between selected gene groups of interest.

Methods

Causal loss function

The idea is to causally propagate perturbation response without using the measured steady-
state expression. Such information is only used in the subsequent step to construct the loss
function. Algorithmically, this procedure consists of two steps:

For (sample/cell index) i =1,2,--- /N

1. Compute the quenched response: Compute the quenched response A, (i) = F,(g;)—
F,(gef), c.f. Eq.(1). Note that this quantity is zero if no genes in node o were directly
pertutbed in experiment for sample <.

2. Compute the predicted response by summing up the contributions from the propa-
gated the quenched response:

=

> [A¥galg(i) (8)

0 =1

£
I

where K is the smallest positive integer for which A¥ = 0, assuming DAGness. Note
that A? = I, the identity matrix. In matrix notation, this translates into

K-1

X(i) =Y (AT)FA(>), 9)

k=0
where both X (i) and A (i) are in RM (M is the number of nodes in the imposed DAG.)

3. Compute the loss for this sample, defined as the square difference between the ob-
served response (c.f. Equation (2))

ngs(i) = Fa(gfs) - Fa(gref)a (10)

and the predicted response Eq.(3)(9):

M
b= |XP(0) = X5 = Y (X(0) = Xa(i)® (11)
a=1
The overall causal graph loss is computed by summing over all (mini-batch) samples
M A~
Loapn = > b= Y Y (X(0) - Xa(D))*. (12)

i€Emini-batch i€mini-batch a=1
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Empirically, we observed that samples receiving no perturbation (neither directly from ex-
periment nor indirectly through parental influence) are given less emphasis throughout
training. To mitigate that, we introduce a hyper-parameter ¢ > 0 that places a positive
weight when evaluating the causal graph loss on such samples. Concretely, for sample 1,
let NI(i) C {1,2,---, M} be the set of nodes not receiving any kind of input perturbation
(direct or indirect). The modified causal graph loss becomes:

‘Cgraph, modified — Z Z XObS - )?Oc (Z))z + ‘Cgraph (13)

i€mini-batch aeNI(7)

Variance loss and perturbation strength loss

Based on the causal graph loss, one can easily identify trivial solutions where F,’s are
constant functions. In this case, the causal graph loss Lgapn achieves the global minimum
(zero!) To avoid trivial solutions as such, we impose the following variance loss:

‘Cvariance = —Var [{ngs(i)> Aa<2)} (14)

a€e{l,2,--,M}, i€mini-batch | ’

which is the negative variance computed based on the collection of the observed response
and quenched response across all the DAG nodes and mini-batch samples, as well as the
perturbation strength loss:

M
/Cperturbation strength — — Z Z Aa (Z)2 . ( 15)

i€mini-batch a=1

Intuitively, Eq.(14) encourages F,, to be non-constant while Eq.(15) favors distinguishability
between the quenched state and reference state (which also implies non-constancy of F,.)
Regularization

L2 regularization is imposed:

M
L= 6. (16)
a=1

along with dropout.

Putting all loss terms together

The loss function (to be minimized) is given by, c.f. Eq.(13)(14)(15)(16)

Etotal - Egraph, modified T ﬂvarianeeﬁvariance

+ ﬁperturbation strengthﬁperturbation strength + 6L2£L2a (17)

where Byariance, Bperturbation strength @0d Jr2 are positive real-valued regularization constants
(treated as hyper-parameters).
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Projecting gene expression down to a group subspace

In Table S2, we defined F, : R% — R as the neural network that maps the expression
of genes in group « to a 1-dimensional real number, see Fig. S18 for an illustration. The
reduction of dimensionality from d to d, is done by projecting the expression data onto the
gene group subspace.

Let V, € {0,1}%9= be a matrix that projects g; to a subspace spanned by genes in group
a through
g+ Vogi, (18)

where g; is a d X 1 expression vector for sample i. To construct such matrix, first notice that
randomly partitioning d genes into M blocks of size dy,ds, - - - , dys, respectively, is the same
as randomly permuting the index vector u through

u = Pu, (19)
where
u=(1,---,1,2,---,2,--- ,M,--- M) (20)
——— N — N——
d1 do dur

and P denotes random permutation. Armed with this observation, we define the projection
matrix as V,[k, j] = 1 only when j, k are such that the j-th element of M, is k, where M,
is the solution set defined as M, = arg{u = a}.

Monte Carlo approach to identify gene sets with optimized group
response

Monte Carlo (MC) methods are a class of computational algorithms that involves doing some
kind of random walk in the space of “configurations” (e.g., of spins or of some microscopic
states) [33]. They are particularly useful for problems where analytic solutions are notori-
ously hard to find. A canonical example in statistical physics is concerned with finding the
spin configurations that yield the lowest energy for Ising model. In spatial dimension d > 3,
such problem is known to be analytically intractable, and one standard approach is to resort
to computational methods like Monte Carlo. Here we rephrase the problem of finding a set
of genes S that maximizes the group response magnitude ]Q(Sa)\ as finding the spin configu-
ration that minimizes energy. In particular, we implement the Metropolis algorithm which
is a special case of a more general Metropolis—Hastings algorithm by assuming symmetric
random walk proposal density and Boltzmann distribution for the marginal density. For a
detailed discussion, we refer the readers to [31].

We implement two versions of Metropolis algorithm: with replacement (Algorithm 2) and
from ground-up (Algorithm 1). For the former (used in Fig. 6, 7), one starts by assuming
a set of random genes (of the target size) and incrementally replaces genes in this set (one
at a time) with candidates that, upon their replacement, increases the magnitude of group
perturbation response. The gene in the set to be replaced, called candidate for removal,
is chosen at random. The gene to replace the candidate for revmoal is drawn at random

27


https://doi.org/10.1101/2023.01.18.524617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524617; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and accepted if its replacement increases the response magnitude (c.f. lowering the energy).
However, in cases where the solution landscape is glassy (i.e. rugged and full of metastable
local minima), one would allow for the acceptance of a gene swap (with probability e #2E
where 3 is the inverse temperature and AFE is the energy difference, see Algorithm 2 for
its definition) even if it does not lower the energy (or increase the response magnitude). In
this case, this algorithm is dubbed finite temperature Metropolis. In the zero temperature
limit (i.e.  — o0), a gene swap is accepted only if it lowers the energy (or increases the
magnitude).

The ground-up version (Algorithm 1, used in Fig.5) follows the same logic— the only difference
is that instead of starting with a gene set of the target size, one attempts to build a gene set
starting from a smaller seed set and incrementally include new genes (one at a time) into
the set if such inclusion increases the group perturbation response. At finite temperature,
inclusion is accepted (with probability e #2F) even if not increasing the response.

Causal benchmarking scheme for Fig. 4 and 5

Here we describe the design of the benchmark experiment used in Fig. 4 and 5. The design
consists of the following steps:

Step 1: Constructing the pathway causal graph (Gpathway)

First, we collect genes from KEGG pathways that are related to cell cycle/growth, apoptosis,
signaling and generic transcription (see Table S4 for details.) We then filter them to keep
only those in the CRISPRa dataset [5]. These genes, called pathway genes in Fig. 4 and
5, are then taken as nodes to construct a directed gene-gene interaction network using the
ground-truth causal graph [28]. This graph, denoted as Gpathway, contains 704 nodes and
3,068 edges. Note that Gpathway covers 66 (out of a total of 94) perturbed genes in the
CRISPRa dataset.

Step 2: Computing upstreamness

To quantify how upstream a given gene/node is, we define the upstreamness u(s) for a node
s as the average of the longest simple path length from s to every other nodes in the graph.
Formally, let G = (V, ) be the directed graph of interest with node set V and edge set £.
Recall that a simple path is a path with no repeated nodes. For every pair of nodes (s, 1),
where s,t € V, denote the set of longest simple paths from s to t by Ps_;. Let ,_,; be the
length of such paths. Note that P,_; could be (). For each (source) node s € V, we define
T, as the set of (target) nodes t € V \ s such that Ps_; # 0 (i.e., descendants of s). The
upstreamness of s is defined as:

1 .
u(s) = {|73| ZtETS loye [Tl >0 -

0 if [7;] =0

Step 3: Constructing causal graph for Lowdeepredict (Hyowdeepredict)

Based on Equation (21), we can break the nodes in Gpathway into two groups: 126 with
nonzero upstreamness (29 of which were perturbed) and 578 with zero upstreamness (28 of
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Algorithm 1 Pathway identification with Metropolis algorithm from ground-up

Require:
1: U # 0: set of genes indexed by [d] = {1,2,---,d}
2: I # (): set of initial (seed) genes
3: M € [d]: desired pathway size
4: € R{: inverse temperature
5: Npmax = 10%: Maximum Monte Carlo steps
6: A* € R: Learned perturbation weight
7. F:R? — R, function that coarse-grains expression
Ensure: S # () consists of genes whose collective response is optimized

8 S« 1

9: VU > Set of candidate genes
10: n 1 > Monte Carlo step count
11: while |S| < M and n < Ny, and |[V| > 0 do

12: Sample a gene ¢ € V' \ S uniformly at random

13: Compute AE = [Qs| — |Qsugiy|, where

QS - F<gref + )‘*NS) - F(gref)

14: if AF <0 then

15: S+ Su{i} > Accept due to lowering energy
16: V «— V\{i}

17: else

18: a ~ Uniform|0, 1]

19: if a < e #AF then

20: S+ Su{i} > Accept with probability e #2F
21: V «— V\{i}

22: end if

23: end if

24: n<n+1
25: end while
26: return S
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Algorithm 2 Pathway identification with Metropolis algorithm with replacement

Require:
1: U # (): set of genes indexed by [d] = {1,2,--- ,d}
2: [ # (): set of initial (seed) genes
3: M € [d]: desired pathway size
4: € R{: inverse temperature
5: Npmax = 10%: Maximum Monte Carlo steps
6: A\* € R: Learned perturbation weight
7. F: RY — R, function that coarse-grains expression
Ensure: S # () consists of genes whose collective response is optimized
8: S < Sample M genes from U uniformly at random

9: V«U\S > Pool of candidate genes
10: ¢+ 1 > Monte Carlo step count
11: while n < N, do
12: Sample a gene ¢ € S uniformly at random > Candidate for removal
13: Sample a gene ¢ € V' uniformly at random > Candidate to replace ¢
14: S« (S\{¢})u{i} > Stochastic swap

15: Compute AE = |Qg| — |Qg|, where

QS = F(gref + )\*H'S) - F(gref)
Qg = F(8ret + N 11g) — F(8rer)

16: if AE <0 then

17: S+ S > Accept the stochastic swap due to lowering energy
18: Vi (V\{i}) u{t} > Update the candidate pool
19: else

20: a ~ Uniform|0, 1]

21: if a < e‘EAE then

22: S+ S > Accept the stochastic swap with probability e #2F
23: Vi (V\ {i})u{¢} > Update the candidate pool
24: end if

25: end if

26: n+<n+1
27: end while
28: return S
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’ Node ‘ Type ‘ N, ‘ H Node ‘ Type ‘ N,

@ Perturbed 29 @ Perturbed 37 0
@ Unperturbed 97 @ Unperturbed 541 0
(0) |An 126 (1) | An 578 | 0

Table 1: Gene composition of the benchmark experiment described in Fig. 4 and
5. Shown here are the number of genes in the pathway group (N,), random group (V,), and
the non-pathway group (IV,,) for the benchmark experiment. Node refers to the graph in
Fig. 4a.

which were perturbed). Genes in the first group are then placed in the upstream node @
while those in the second group are placed in the downstream node @ of Lowdeepredict
causal graph Hpowdeepredict depicted in Fig. 4a.

Step 4: Placing the non-pathway perturbed genes in (Hyowdeepredict)

As we previously mentioned, at this stage there are still 94 — 66 = 28 perturbed genes in
the CRISPRa dataset [5] that are not in Gpathway (called non-pathway perturbed genes.) We
eventually assign these genes to @ of Hiowdeepredict after validating that none of them are

e causal ancestors of pathway genes in @ of Hiowdeepredict

e causal ancestors of pathway genes in @ of Hiowdeepredict s

using the causal graph constructed with all entries in the causal ground-truth [28] (which
gave rise to a graph G,y of 9,945 nodes and 39,553 edges). This is to ensure that the causal
order among the pathway group uncovered by our model comes entirely from this group
(to the best knowledge of the causal ground-truth in MetaBase) rather than from these
additional genes. Note that the presence of the additional genes is necessary to make the
full use of the entire CRISPRa dataset. Note also that Gpathway 1 just a subgraph of Gy.

Step 5: Randomly sample genes to place in the upstream node of Hiwdeepredict

At the end of step 4, we placed 28 non-pathway perturbed genes in @ To ensure the equality
of group size between the pathway and non-pathway, we randomly sample 126 — 28 = 98
genes from those remaining in the CRISPRa dataset to place in @ which we call non-
pathway random (unperturbed) genes. Gene composition of this benchmark experiment is
summarized in Table 1.

Data availability

Upon publication, our code will be made available at https://github.com/GSK-Al/lowdeepredict.
Data used for training is accessible at NCBI Gene Expression Omnibus (GSE133344).
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Supplementary Material

Supplementary Methods
Co-occurrence frequency of genes

Here we define the co-occurrence matrix C € RP*P of genes discussed in the main text (see
also FIG.S7, S8, S9). At the end of Ng independent Monte Carlo runs, each uncovering, say,
q genes, we record only the unique genes. Let p < Ng X ¢ be the number of unique genes.
We then construct a matrix C € RP*? with index 7, j running over genes in the unique set.
The off-diagonal element Cj; is defined as the fraction of gene sets containing both gene 4
and gene j while the diagonal Cj; is defined as the fraction of gene sets containing gene .
C;; = 1 means that both gene ¢ and j appear together in all Ng sets.

Constructing the causal graphs in Fig. 7

Here we describe how we construct causal graphs from the top-k frequently identified genes
from the MC set. Following the notation in Fig. 7a, for every edge e, in the coarse-grained
graph H (i.e. the causal order in the low-dimensional space imposed by the model), we
build a subgraph out of Gy (i.e. causal graph of directional gene-gene interactions based
on MetaBase) by keeping only genes and interactions pertaining to the top-k genes in node
a, B € Vi, where Vy is the set of nodes in H. Call this edge subgraph G,—3. Next we prune
the edges of intra-node interaction in G,_,3, namely, removing ¢ — j whenever 7, j € o (both
in node «) or ,j € B (both in node /). The removal of edges as such is necessary since the
imposed causal graph H only considers inter-node interactions. This procedure is repeated
for every edge e,s in H, and the resulting edge subgraphs are composed to form Gynown
(shown in Fig. 7b,c). In Fig. 7b,c, we color edges i — j in Gynown that are not consistent
with H red, meaning those for which (a« — ) ¢ €y (edges of H), for i € a and j € S.

p-value for the causal subgraph constructed by Monte Carlo

Let S, be the set of unique genes in node « identified by Monte Carlo (MC). We first
construct a causal subgraph Gie = (Vine, Eme), where V. is the set of genes that are in both
the MC set, U,S,, and the causal ground-truth [28] while &, is the set of directed edges
concerning Vp,. that are found in the causal ground-truth [28], see Table S5 for a summary.
We then compute the size of the largest connected component of Gy,.. Let sy be its size.
To estimate the distribution of the size of the largest connected component, we sample
|Vine| genes from all genes in the dataset, build the corresponding causal subgraph [28], and
compute the size of its largest connected component 5. We repeat this procedure 10° times
and record $ to construct a histogram as a proxy to the distribution P(s). The p-value for
Gme is defined as the survival function P($ > s,,.), namely, the probability of observing a
graph with connectivity at least as large as sp.. The results are given in FIG. S11.
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Clustering the unperturbed expression

We utilize the control cells (i.e. unperturbed cells) from the same CRISPRa dataset [5]. The
raw expression matrix of the control population was filtered to keep only cells with at least
200 genes expressed and only genes that are expressed in at least 3 cells. We then rescaled
this matrix so that each cell has a total count equal to the median of total counts for cells
before normalization. Finally, we “logarithmize” it by adding pseudo-count 1 then taking
the natural logarithm. This yields a matrix of 7644 cells x 17538 genes. For a given subset
of genes, their expression profiles were clustered using the HDBSCAN python package [35]
with the following parameters: correlation distance as the distance metric between two
expression profiles, minimum cluster size: 4, minimum samples to call a cluster: 1, cluster
selection method: Excess of Mass (EOM).

Comparing the correlatedness of expression

Let C € RP*? be the correlation matrix (or variance-covariance matrix) of variables X, - -+ , X,
with elements ¥ x
cov(X;, X;
Oz'j = COI‘I‘(XZ‘,X]‘) = M (822)
0;0;

Note that the correlation matrix is related to the covariance matrix 3 by

C =diag(X)™? ¥ diag(Z) V2, (S.23)
where
Ufl
diag(3)~V?% = : (S.24)
O'p_l

Equivalently, the correlation matrix can be seen as the covariance matrix of standardized
variables X;/0;. To summarize the correlatedness of X, ---, X, we defined the collective
correlated coefficient 7 as

n=1-—|detC|. (S.25)

Note that for any correlation matrix Cgxg, 0 < det C < 1, and that all its eigenvalues lie
in [0,d]. Geometrically, the determinant of C is the “volume” of the space occupied by the
swarm of data points in the space of X;/0;. When these variables are uncorrelated, this
space is a hyper-sphere with a volume of 1. When they are correlated, the space occupied
becomes a hyper-ellipsoid with volume less than 1. In defining 1, we compute the difference
between 1 and this volume so that higher correlation implies larger 1. In general, one can
take p-th root of n to compare between correlation matrices of different dimension, but here
we simply use 7 since all matrices we're comparing are of the same dimension.

In what situation would 7 attain value 17 One can understand this in terms of PCA. Note
that there are two ways to perform PCA: doing eigen-decomposition on the covariance matrix
3 or on the correlation matrix C (for an extensive discussion, see [30,37].) Here we stick
to the latter. First note that the eigenvalue of the correlation matrix \; is related to the
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singular value of the data design matrix, s; via \; = s7/(n — 1), where n is the sample size.
Therefore, choosing the importance of principal components using the singular value s; is the
same as using the eigenvalues of the correlation matrix \;. Since the determinant of a matrix
can be expressed as a product of its eigenvalues: det C = [[}_; A;, one finds n = 1 whenever
there’s a zero eigenvalue \;. The physical intuition is that perfect collective correlatedness
is achieved whenever there’s at least one redundant feature (i.e. one that can be expressed
as a linear combination of other features).

Definitions of causal graph identification metrics used in Fig. S12

In the following, we use GG, and G, to indicate the predicted and reference graphs, respec-
tively. Given the adjacency matrix of a directed graph, say, Ay, its undirected counterpart
is computed by removing its orientations through A, +— Ay + A then setting [A,]as = 1,
for [Au]ap > 1.

e SHD: Structural Hamming Distance. It counts the number of differences between the
adjacency matrix of G, and of G,; additional edges, missing edges, and misdirected
edges are added up.

e Binary neighborhood: The binary neighborhood of two nodes «, 8 in a graph G
indicates the number of paths of length 2 between o and § in G.

e Undirected p-value: This concerns the problem of guessing where edges should be,
regardless of orientation. It is given a p-value by Fisher’s exact test over the edge-
noedge confusion matrix, where the preserved marginals mean that the comparison is
against a random selection of the same number of edges.

e Directed p-value: This concerns the problem of correctly guessing which orientation
edges are, having been provided the informatoin that they are indeed edges. It is given
a p-value by inspection of the CDF of the relevant binomial distribution, with success
corresponding to correctly-oriented edges as a subset of the correct undirected edges
chosen previously

A Monte Carlo scheme to identify genes that are highly cooperative with user-
provided genes of interest

In the main text, we discussed a Monte Carlo scheme to identify genes (collected in a set .S)
whose group response in the low-dimensional space learned by Lowdeepredict, namely,

Q) (A = | Fulret + A prs) — Fa(grer)] (S.26)

is maximized. Here we assume that genes in S are assigned to node « in the Lowdeepredict
causal graph, e.g., Fig. 6d. We also use A* to denote the perturbation weight learned by the
model. Intuitively, A\* is the “amount of perturbation” that is applied to the genes in the
dataset that best explains the observed changes in gene expression under the constraint of
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low-dimensional causal graph. In Fig. 5, we showed that genes in .S tend to be functionally
related. Here we explore another use case for identification scheme of this sort.

One interesting application lies in finding genes that are associated with particular genes
of interest where the association is defined according to the phenotypic effect (e.g. cell
death) of their collective intervention (e.g. knockout or overexpression). Since the notion
of association concerns the interaction between genes, here we extend the original search
algorithm in the main text to allow for the identification of genes that (i) highly cooperates
with genes of interest and (ii) produce a strong response in affecting genes related to a given
downstream biology upon their perturbation, see Algorithm S1 for details. This new scheme
starts with a user specified set of genes I and stochastically “nucleates” other genes, say, set
O, such that O — O~* is the set that maximally cooperates with I. Let S = I UO. The
cooperativity of the fized initial gene set I with O is defined as (c.f. Equation (S.26))

c(O|I) = |Qour| — |Qo| = |Qs| — [Qs\1], (5.27)

namely, the importance of I in producing a response when coupled with O. Note that
c(O|lI) > 0 = |Qourl > |Qol|, meaning that I cooperates with O since they couple to
produce a larger response than O along.

Cooperativity-based synergistic response

Here we describe how we compute the synergistic response (SR). Following the definition
in Equation (S.27), let C; = ¢(Of|{i}) be the optimized cooperativity of gene i with other
genes it nucleates (which we call OF). Consider gene j as the query gene. For every gene
i # j (treated as sample genes), we first compute the corresponding optimized cooperativity
C;. We then compute their pair cooperativity Cy; = c¢(Oj;|{i, j}), where O}; is the gene set
nucleated by gene pair (i,j). The synergistic response for the (sample, query) pair (i, j)
is defined as s;; = C;; — C}, i.e., the difference between the pair and singleton cooperativ-
ity. Finally, these quantities are averaged across MC realizations and the (sample, query)
and (query, sample) synergistic response for each pair is averaged to obtain a symmetric
synergistic response (SR) matrix with elements

ij ji G Cj

SR(Z,]):<SJ>+<SJ>:<CZ>—< >+< J>
2 2

Note that (C;;) = (C};) since they both correspond to nucleating genes with the same pair.

In Fig. 8c, we show an example where gene j is treated as the query gene.

(S.28)

Assessing the significance of increased synergistic response for non-zero GI pairs

In Fig. 8f, we show that non-zero GI pairs tend to have high synergistic response. Here
we develop a statistical procedure to assess its significance. Since we’re dealing with finite
observations (i.e. histograms in Fig. 8e), this procedure begins by estimating the true
density of synergistic response from empirical observations. It then performs Monte Carlo
sampling to compute the probability of observing an synergistic response magnitude greater
than a given threshold, which defines a p-value.
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To set the notation straight, let @ and @, be the empirical distribution of SR magnitude
for the positive and negative GI pairs, respectively (i.e. blue and green histograms in Fig.
8e). For a given threshold on the SR magnitude ¢, define t¥ = Q(|SR| > ¢€). Let P, be
the empirical distribution of SR magnitude for the zero GI pairs. With a slight abuse of
notation, we denote the observed SR magnitude for these pairs (i.e. orange histograms in
Fig. 8e) as X1.Xy, -+, X,, ~ P, where P is the unknown true distribution. Define a statistic
T. = g(X1, Xo, -+, Xyje) = %2?21 1x,sc (i.e., fraction of zero GI pairs with SR magnitude

greater than €). Note that T, = T.(P) is a statistical functional. With these quantities
defined, we compute the p-values as follows:

1. Estimate P with P, through resampling (e.g. bootstrapping or uniform sampling
pushed through the inverse cumulative distribution of P,). Denote the estimated
distribution as P.

2. From P, estimate the distribution of 7} through Monte Carlo. Call this distribution
Pr.

€

3. Compute the p-value for the positive and negative GI pairs: p* = Pr (T. > t*). This
is the probability of observing positive/negative GI pairs with SR magnitude at least
as large as e.

Fig. S17 summarizes the findings based on this procedure.
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Algorithm S1 Pathway identification optimizing cooperativity with seed genes

Require:
1: U # (: set of genes indexed by [d] = {1,2,--- ,d}
2: M € [d]: desired pathway size
3: T #£0,|I| < M: set of seed genes that is never removed throughout the optimization
4: T#0,|I| = M —|I|,IN1T = (: set of randomly sampled initial genes
5. 8 € R{: inverse temperature
6: Npmax = 10%: Maximum Monte Carlo steps
7. \* € R: Learned perturbation weight
8: F': R - R, function that coarse-grains expression
Ensure: S # () consists of genes including I and I highly cooperates with S\ [

9: S« ITUI
10 VU > Set of candidate genes
11: n+ 1 > Monte Carlo step

12: while n < N, do
13: Compute the cooperativity ¢, = |Qg| — |@g\r|, where

QS - F(gref+ A*II’S) - F(gref)
QS\I = F(gref + )\*lJ'S\I) - F(gref>

14: Sample a gene ¢ € S\ I uniformly at random > Candidate for removal
15: Sample a gene ¢ € V' uniformly at random > Candidate to replace ¢
16: S (S\{})u{i} > Stochastic swap

17: Compute the cooperativity after swap ¢, = |Qz| — |Q§\1|
18: Compute the energy difference AF = ¢, — ¢,
19: if AE <0 then

20: S+ S > Accept the stochastic swap due to lowering energy
21: V+— (V\{i})u{} > Update the candidate pool
22: else

23: a ~ Uniform|0, 1]

24: if a < e”P2F then

25: S« S > Accept the stochastic swap with probability e #2F
26: V+— (V\{i})u{} > Update the candidate pool
27: end if

28: end if

29: n+<n+1

30: end while
31: return S
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Supplementary Figures and Tables

gemgroup

UMAP2

Cell count

Summing all pixels =83k cells .

UMAP1

Figure S1: CRISPRa perturbation screen data used in this paper. Dataset is taken
from [5] where single-cell RNA-sequencing pooled CRISPR activation screens were used to
interrogate the combinatorial expression of genes. Due to technical limitations [5], only 155
single- and 132 double-CRISPRa transcriptional readouts were obtained across ~ 83,000
cells. a: Combinatorial perturbation indicator matrix. Color indicates cell count (i.e.,
number of cells under specific perturbation condition). b: UMAP of single-cell expression
profiles colored by gemgroup (i.e. corresponding to batches in the 10x experiment). Mixing
of the colors indicates minimal batch effect in the dataset.
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Figure S2: Imposition of causal order: perturbation propagation. Based on Fig.2,
here we enumerate all possible cases of perturbation to illustrate the the imposition of

causal order. When upstream nodes are perturbed, their quenched responses, defined as
the difference between their quenched and reference low-dimensional values of expression

(iie. A —O = Fu(g) — Fua(gret), for a = 1,2) are summed together and propagated to
match the observed response of the downstream node (i.e. O — O = F3(g®) — F3(8rer) )

For nodes receiving neither direct perturbation in experiments (indicated by the lightening
marker) nor through propagated response from their upstream nodes (indicated by arrow),

we require their observed response to be zero. Nodes that are subjected to this requirement
are indicated by red curly brackets.
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Figure S3: DAGs analyzed in this paper. We enumerate all possible weakly connected
2-node and 3-node DAGs and randomly survey a few representative 4-node, 6-node, and
8-node DAGs. These graphs are used to train multiple Lowdeepredict models with various
random gene placement schemes. Results are summarized in Fig.3. Note that 4-node and
6-node graphs shown here are chosen at random.

2-node DAGs 3-node DAGs 4-node DAGs 6-node DAGs 8-node DAGs

A
{_x_\ [ = =

graph_type = Four arash ype = Sin oraph.type = Eigt

Figure S4: Node-wise validation predictive performance for the best model in
each category. Shown here is the node-wise performance breakdown of the best model in
each graph category in Fig.3. For all panels, columns indicate graph topology while rows
represent random gene bucketing/placement.
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Figure S5: Predicted performance of the model analyzed in 6. a: Causal graph
of the model analyzed in FIG. 6. b: Observed response is plotted against the predicted
response for this model. Color indicates density estimated with Gaussian kernels. Columns
are labeled by block/node number corresponding to the graph in the inset of a. Top row
shows the result for training data, the middle row shows that for the validation data, and
the bottom shows that for the test data. Node-wise Pearson’s correlation magnitude |p| is
indicated for each node and data type (train or validation).
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Figure S6: Frequently identified genes by Monte Carlo. As described in FIG. 6, here
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we list the top-50 frequently identified genes for each node using Monte Carlo (MC). Note

that each gene can at most be identified 20 times (since there are 20 independent MC runs),
S0 a gene attaining frequency 100% means it is identified in all 20 MC runs. Genes of higher

frequency are those imputed to be important by our model to affect cell growth and death,

see Fig. 6 a.
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Figure S7: Co-occurrence frequency matrix of gene sets identified by Monte Carlo
for node 0. The 20 sets of 20 genes identified by Monte Carlo, see Fig. 6, are pooled together
to keep only the unique genes. The unperturbed expression of genes in each node are used to
compute the frequency of pair-wise co-occurrence (see Methods for details). A pair of gene
attaining frequency 1 means both genes are present in all of the 20 gene sets. Based on the
frequency of co-occurrence matrix, genes are clustered using correlation as distance metric.
Shown here is the cluster heat map for node 0. Color indicates correlation.
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Figure S8: Co-occurrence frequency matrix of gene sets identified by Monte Carlo
for node 1. Similar to FIG. S7, shown here are the co-occurrence frequency matrix and
cluster heat map for node 1.
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Figure S9: Co-occurrence frequency matrix of gene sets identified by Monte Carlo
for node 2. Similar to FIG. S7, shown here are the co-occurrence frequency matrix and
cluster heat map for node 2.
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Figure S10: Fraction of anti-causal edges. Similar to Fig. 7, here we show the fraction
anti-causal edges in (1) Gnown (i-€. gene-gene interaction network constructed using the top-
k MC genes, labeled MC-pwy20) and (ii) random graphs (random-1000). For each panel
(i.e. k as in top-k), we generate an ensemble of 1,000 graphs, each with k& nodes sampled
from all the genes in the CRISPRa dataset. The construction of random graphs from these
genes is as described in Methods.
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Figure S11: Computing the p-value for causal subgraphs to gauge their connec-
tivity compared to random graphs. a: As described in Methods, here we show the
distribution of the largest connected component size § (left) and the p-value for having a
graph with largest connected component larger than § (i.e. Pr(s > §), or the survival func-
tion, shown on the right), estimated based on randomly sampling 100k graphs of 267 genes
(i.e., number of nodes in Gy, for pathway size 20, see Methods and Table S5) from the
those available in the CRISPRa dataset [5]. In the right panel, p-value threshold of 0.05 is
indicated by the horizontal dashed line. The vertical dotted line shows the largest connected
component size for G, Sme. b: Similar to a, except that the sampling is done node-wise.
Sme for each node is indicated by the vertical dashed lines and labeled.
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Figure S12: Causal graph identification performance using the top-k MC genes
described in Fig. 7. These performance metrics are evaluated by taking the reconstructed
graph (e.g. those in Fig. 7) as the “predicted graph” and the pruned graph (i.e. those in
Fig. 7 with the red edges removed) as the “reference graph”. SHD: structurally hamming
distance, P2: binary neighborhood. For the definition of directed and undirected p-value,
see Supplementary Methods for details.
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Node(s) perturbed A X Causal loss ¢;
A A (Fi(g?) — I( )’
1 0 0 +(F(g]°) — Fa(grer))”
0 Ay +(F3(8) — Fa(grer) — A1)?
0 0 (F1(g) — Filgret)”
2 Ay AV +(Fy(g) — B (2))°
0 A +(F3(85°) — Fs(gret) — Ay)°
0 0 (F1(g5°) — F1(gret))’
3 0 0 H(Fy(g®) — Fa(grer))?
As As +(Fs(gP) — Fs(8))° ‘
Ay A (Fi(g?) — 1(8)”
1,2 Ay A, +(Fa(g) — Fa(&))°
0 Art B2/ | +(F(g) — Falgrer) — AL — Ay)”
A A (Fi(g?) — Fu(gi)
1,3 0 0 +H(F(g5) — Fa(grer))?
As AL+ As +(F(g) — Fs(gi) — Ay)?
0 0 (F1(g7) — Fi(grer)”
2,3 AV Ay +(Fy(gF) — B (2))°
A Ao+ Ay +(F3(87) — F3(g) — An)?

Table S1: Evaluation of causal loss for the example in Fig. 2c,d and S2. Queched
response A, predicted response X, and the causal loss function are defined in the main text

and in Table S2.

Symbol Space/Value Meaning/Definition
N ~ Tbk Number of samples (cell), indexed by @
d ~ 14k Number of genes
M <10 Number of groups to disjointly partition the genes into, indexed
by Greek letters «, 3, - --. This is also the number of nodes in the
imposed DAG.
deo ~ a few ks Number of genes in group «
A R Perturbation parameter in the model.
n {0,1}4 Indicator vector of perturbation state (1 for perturbed and 0 oth-
erwise).
Ky {0,1}¢ Binary vector with nonzero elements at those indexed by the the
index set S C [d], where [d] = {1,2,---,d}
Sref R? Reference expression. Due to data preprocessing, all cells have
the same reference state expression, which explains the missing
subscript .
g R? Quenched expression of sample : g; = Zrer + AL,

S17



https://doi.org/10.1101/2023.01.18.524617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524617; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

g® R4 (Observed) Steady-state expression of sample 1.
a o« — eural network that maps the expression of genes in group « to
F, R4 R N 1 k th h i f i
a 1-dimensional real number.
0, Depending on F, | Neural network parameters for F,.
A RMxM Binary adjacency matrix of the imposed DAG .The convention is
such that A,p =1 if and only if &« — Jis in A.
A, (i) R Quenched response of node « in the DAG (i.e. gene group «)
evaluated with sample i:
Au(i) = Fo(8i) — Ful8ret) (S.29)
1 served response of node « in the i.e. gene group «
X005 (4 R Ob d f nod in the DAG (i
evaluated with sample .
XP(1) = Fa(gF) — Falgrer) (5.30)
X (1) R Predicted response of node « in the DAG (i.e. gene group «)
evaluated with sample 7, defined as
K—-1 M
U PWANA()) (S.31)
k=0 5:1
where K is the smallest positive integer for which AX = 0.
roup perturbation response of node o upon perturbing all genes
QY (A R G bati f nod bing all
in set S (a subset of group «) at once with overall magnitude A.
Q57 (N) = F(gror + N hs) = F(gre), (5:32)
A (S, V) R Response gap between gene group S and V' (both are subset of
group «) evaluated at the learned perturbation parameter \*.
A ‘Q(a) /\* ‘Q(a) /\* (SS?))

Table S2: Table summarizing the notation used in the main text.
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Figure S13: MC identifies gene sets that are distinct from co-expression clusters.
a: Causal graph and gene assignment based on the discussion in Fig. 6. b: Group response
magnitude and collecitve correlation of gene sets identified by MC or co-expression clustering.
Markers indicate node in the causal graph in a while colors correspond to identification
method (blue for MC and green for co-expression clustering). c¢: Procedure to cluster genes
based on their expression. Co-expression clusters identified are then sampled to compute
their collective correlation coefficient, n = 1 — | det(C;)| and the group response magnitude.
See Supplementary Methods for a discssion on 7.
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Figure S14: Gradients of the learned function F, and the KEGG functional en-
richment analysis of genes selected based on high gradients. a: Causal graph of
the model analyzed in Figure 6. b: Distribution of the average gradient magnitude for each
node. The gradient of function F, for gene j in node a evaluated on the steady-state ex-
pression of cell 7 is defined as 0F,(g;®)/dg;;. The average is taken over the validation data
(1 € Validation) c: Top-25 genes in each node based on the average gradient magnitude

<‘8F )/ 093 ‘>Z€Vah dution @i The top-25 genes for each node shown in ¢ are used
to perform functlonal enrichment ananlysis. Significantly enriched KEGG pathways (with
Benjamini p-value < 0.05) are shown for each node. For simplicity, we only show results with
5 smallest p-values (all below the 0.05 threshold). Note the absence of significantly enriched
pathways for node 1. For node 2, only 1 pathway has p < 0.05.
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Figure S15: Gene sets identified by Monte Carlo using models with similar perfor-
mance under the same neural network architecture and gene group assignment
schemes shows good consistency. a: Pearson correlation between the predicted and ob-
served response for each node in the causal graph shown in b as well as their average. Model
seed indicates the random seed used to initialize the optimize neural networks. Main text:
model presented in Fig. 6 and 7. c: Overlap frequency between the top-50 genes identified
by different models.
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Figure S16: GI map from [5]. Shown here is the genetic interaction (GI) map from the

CRISPRa Perturb-seq screen reported in [7]
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Figure S17: Gene sets nucleated with high GI pairs tend to have high synergisitc
response. a Empirical survival function of synergistic response magnitude, t= = Q*(|SR| >
€) (blue and green). For convenience, we also show such distribution for zero GI pairs
(orange). Note that at e = 0.6, ¢+ = 0.13 and ¢t~ = 0.12. b: On the left shows the distribution
of the statistic 7. for the zero GI pairs estimated with Monte Carlo sampling. Blue dashed
line indicates ¢ at € = 0.6 for positive GI pairs. On the right shows the survival function
for T.: P(T. > t). At t = t* = 0.13, we have a p-value of p* = Pr. (T, > t*) = 0.0003.
c: Similar to b except that the green dashed line on the left indicates ¢~ = 0.12 at ¢ = 0.6
for negative GI pairs. The corresponding p-value is p~ = Pr (T, > t~) = 0.0019. In b,c,
we resample from the SR distribution for zero GI pairs (orange histogram in Fig. 8e) to
generate 500 samples. These samples are used to compute Ty (i.e. fraction exceeding 0.6).
We repeat this procedure 50,000 times to estimate Pr .
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Figure S18: Explicit neural network architecture for models trained with the v-
structed graph. Notations are defined in the main text and summarized in Table S2.

KEGG identifier Pathway
hsa04110 Cell cycle
hsa04210 Apoptosis
hsa04216 ferroptosis
hsa04217 necroptosis
hsa04115 p53 signaling pathway
hsa04218 Cellular senescence

Table S3: KEGG pathways associated with downstream node 0 in Fig. 6a. All
genes in this node are from the pathways listed in this table.

References

[1] Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, et al. Dissecting
immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell.
2016;167(7):1883-1896.

[2] Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY, Bogdanoff D, et al. Mapping
the genetic landscape of human cells. Cell. 2018;174(4):953-967.

[3] Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq: dissecting
molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell.

524


https://doi.org/10.1101/2023.01.18.524617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524617; this version posted January 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b
Top-performing model for
each seed
. . - \\ \\\ \\
Disconnecting the v-structure graph in Fig. 6a. ‘e P L4
Gene-to-node assignment is the same as Fig. 6a 0.5 oo
g LN ]
6, 846 random genes 6, 846 random genes v L)
c
o 0.4
m oo
@ @ Train Lowdeepredict g
models o
he]
[ $ 03
o
©
|
]
>
@ {Iu
326 genes related to cell growth and death .8 0.2
(based on KEGG terms**) §
L d
LN
0.1 ™
fo 790 791 792
Random model seed
Top-performing model for each seed
random_model_seed = 790 random_model_seed = 791 random_model_seed = 792
L
0.7
L]
.06
S L ]
o L]
c L ]
@05 L e o
© L ]
&
L]
0.4 .
0.3 —
avg node 0 node 1 node 2 avg node 0 node 1 node 2 avg node 0 node 1 node 2

Figure S19: Predicted performance for models trained on disconnected v-structure
graph. a: Causal graph is obtained by removing edges in the graph shown in Fig. 6a. Gene-
to-node assignment is the same as in Fig. 6a. b: We train 400 Lowdeepredict models with the
causal graph and gene assignment scheme described in a. We conduct 20 Optuna studies [27]
(each containing 20 trials/models) for hyper-parameter optimization, and the node-averaged
Pearson’s correlation for the best performing model for each study is shown. These results
are stratified by the random seed we used to initialize neural networks (i.e. random model
seed). The top-performing model under each random model seed is highlighted by a red
arrow. c¢: The node-wise performance for the top-performing models highlighted in b is
shown.
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KEGG identifier Pathway
hsa04110 Cell cycle
hsa04210 Apoptosis
hsa04216 ferroptosis
hsa04217 necroptosis
hsa04115 pH3 signaling pathway
hsa04218 Cellular senescence
hsa04330 Notch signaling pathway
hsa05202 Transcriptional misregulation
hsa04012 ErbB signaling pathways
hsa04071 Sphingolipid signaling
hsa05165 Human papillomavirus infection
hsa04514 Cell adhesion molecules
hsa04966 Collecting duct acid secretion
hsa04714 Thermogenesis
hsa00010 Glycolysis / Gluconeogenesis

Table S4: KEGG pathways associated with pathway genes in Fig. 4a and 5. All
pathway genes referenced in these figures are from the pathways listed in this table. These
pathways are selected by performing functional enrichement analysis with DAVID [29] using
all the perturbed genes in [5].

MC pathway size, s | Num. unique genes | Causal subgraph G,,. | Size of largest c.c., Sy
(Max unique genes)

20 node 0: 231 (326) | 273 genes 162
node 1: 75 (400) 358 edges
node 2: 63 (400)

Table S5: Size of causal subgraph based on gene sets identified by Monte Carlo.
As described in FIG. 6, we apply Monte Carlo algorithm to identify 20 sets of genes (with
size indicated by the MC pathway size column. These gene sets are first filtered to keep
only the unique elements. In the Num. unique genes column, we list the number of unique
genes for each node in the graph (Fig. 6a) along with the maximum number of unique
genes. Note that for MC pathways of size s, the maximum number of unique genes is given
by min(num. genes in each node, 20 x s). We then apply the causal ground-truth [2%] to
construct a causal subgraph G, using only the unique genes (Causal subgraph column).
The size of the largest connected component of the causal subgraph is listed in the last
column.
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