

3

4 Yue Wang^{1,2 #}, Weiyi Liu^{1,2 #}, Youwei Xu¹, Qingning Yuan¹, Xinheng He^{1,2}, Ping Luo¹,
5 Wenjia Fan^{1,3}, Jinpeng Zhu¹, Xinyue Zhang¹, Xi Cheng^{1,2}, Yi Jiang^{1,4}, H. Eric Xu^{1,2,5*},
6 Youwen Zhuang^{1*}

7

⁸ ¹The CAS Key Laboratory of Receptor Research, Center for Structure and Function
⁹ of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,
¹⁰ Shanghai 201203, China.

11 ²University of Chinese Academy of Sciences, Beijing 100049, China.

¹² ³School of Chinese Materia Medica, Nanjing University of Chinese Medicine,
¹³ Nanjing 210046, China.

14 ⁴Lingang Laboratory, Shanghai 200031, China

⁵School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.

¹⁷ #These authors contribute equally to this paper.

*Corresponding author. Email: H. Eric Xu (eric.xu@simm.ac.cn), Youwen Zhuang (zhuangyouwen@simm.ac.cn)

20

22 **The complement receptors C3aR and C5aR, whose signaling are selectively**
23 **activated by anaphylatoxins C3a and C5a, are important regulators of both**
24 **innate and adaptive immune responses. Dysregulations of C3aR and C5aR**
25 **signaling lead to multiple inflammatory disorders, including sepsis, asthma, and**
26 **acute respiratory distress syndrome (ARDS). The mechanism underlying**
27 **endogenous anaphylatoxin recognition and activation of C3aR and C5aR**
28 **remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-**
29 **bound C5aR1 as well as an apo C3aR structure. These structures, combined with**
30 **mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins**
31 **to the complement receptors that is different from chemokine receptors, unique**
32 **pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a**
33 **common mechanism of receptor activation. These results provide crucial insights**
34 **into the molecular understandings of C3aR and C5aR1 signaling and structural**
35 **templates for rational drug design for treating inflammation disorders.**

36
37 The complement system represents a major part of innate immunity that plays critical
38 role in host defense through cooperating with phagocytes and fluid antibodies to
39 recognize and remove invading pathogens or damaged tissues, thus restoring the body
40 homeostasis ¹⁻³. In addition to innate response in vertebrates, the complement system
41 also participates in opsonization and enhancement of adaptive immunity ^{4,5}.
42 Activation of the complement proteolytic cleavage cascades not only forms the
43 membrane-attack complex (MAC) to directly kill pathogenic microorganisms, but
44 also generates bioactive basic peptides with pro-inflammatory properties, including
45 C3a and C5a, known as anaphylatoxins ^{6,7}. Production of anaphylatoxins stimulate the
46 activation of immune cells such as mast cells and basophilic leukocytes to release
47 inflammation agents, like cytokines, chemokines, and histamine, which promote
48 inflammation development. Anaphylatoxins also act as potent chemo-attractants for
49 the migration of macrophages and neutrophils to the inflamed tissues, resulting in
50 neutralization of the inflammatory triggers by multiple ways, such as phagocytosis

51 and generation of reactive oxidants^{6,8-10}. The anaphylatoxins-induced local
52 inflammation is essential for control of infection, nevertheless, upregulation of
53 anaphylatoxin signaling also contributes to the development of many inflammatory
54 disorders and autoimmune diseases, involving sepsis, acute respiratory distress
55 syndrome (ARDS), allergic asthma, systemic lupus erythematosus (SLE), rheumatoid
56 arthritis (RA), Alzheimer's disease and even cancers^{6,8,11-13}. Regulation of
57 anaphylatoxin signaling offer great potential in treating these pathological disorders.

58

59 C3a and C5a are two anaphylatoxin polypeptides with 77 and 74 amino acids,
60 respectively, and they share 36% sequence similarity. Both C3a and C5a adopt a fold
61 of four α -helices stabilized by three pairs of disulfide bonds^{14,15}. Despite the
62 similarities in sequence and structure, C3a and C5a exert their functions by
63 specifically binding to and activating different complement receptors, C3aR and
64 C5aR, which belong to class A G protein-coupled receptors (GPCRs)¹⁶⁻¹⁹. C5aR
65 includes two subtypes, C5aR1 (CD88) and C5aR2 (C5L2 or GPR77), both show
66 nanomolar affinity to C5a^{6,17,18}. As typical GPCRs, C3aR and C5aR1 primarily signal
67 through G_{i/o} and conduct both G protein and arrestin signaling²⁰⁻²².

68

69 Due to the fundamental role of C3a-C3aR and C5a-C5aR signaling axes in innate and
70 adaptive immunities, intensive efforts have been made to explore the binding and
71 signaling properties of C3a and C5a to their respective receptors. Previous studies
72 indicated that both C3a and C5a engaged the receptors by a “two-site” binding
73 paradigm, involving the interactions with the transmembrane bundles and the
74 extracellular regions, mainly including ECL2²³⁻²⁵. It was suggested that the C-
75 terminus of C3a and C5a, especially the C-terminal arginine, are critical for receptor
76 activation^{26,27}. Moreover, the N-terminal loop of C5aR1, but not that of C3aR, was
77 necessary for efficient recognition with their respective anaphylatoxin ligands^{25,28}.
78 Significant progresses were also achieved in structural studies on C5aR1, including
79 crystal structures of C5aR1 bound to peptidomimetic antagonist PMX53 and allosteric

80 antagonists avacopan and NDT9513727^{29,30}. However, no structure of C3aR has been
81 reported so far. The structural mechanisms of how C3a and C5a specifically bind and
82 activate the complement receptors and downstream signaling transducer have long
83 been sought after without success, which largely impeded our understanding about
84 anaphylatoxin-complement receptor signal axis and drug development targeting these
85 important biological processes. Here, we reported cryo-EM structures of C3aR-G_i and
86 C5aR1-G_i complexes bound to C3a and C5a, respectively, as well as the structure of
87 C3aR-G_i complex in its apo state. These structures revealed the unique binding modes
88 of C3a and C5a to their respective complement receptors, and the potential activation
89 mechanism of C3aR and C5aR1, which may facilitate the rational design of anti-
90 inflammation drugs targeting these receptors.

91

92 **Structure determination of C3aR-G_i and C5aR1-G_i complexes**

93 To obtain the anaphylatoxin ligands C3a and C5a for assembling signaling complexes,
94 we recombinantly expressed C3a and C5a in Sf9 insect cells and purified the proteins
95 by Ni-NTA affinity chromatography. In this study, C3a and C5a were prepared as
96 fusion proteins with a SUMOstar tag inserted onto the N terminus to facilitate
97 expression and proper folding (Extended Data Fig. 1a,b)^{31,32}. To confirm whether the
98 recombinant C3a and C5a are biologically functional, we performed cyclic AMP
99 (cAMP) inhibition assays to test their capabilities in activating G_i signaling through
100 C3aR and C5aR1 (Extended Data Fig. 1c). In our assays, both C3a and C5a could
101 suppress cAMP accumulation in dose-dependent manners through C3aR and C5aR1
102 with EC₅₀ values at 1.0 nM and 0.1 nM, respectively (Extended Data Fig. 1c). While
103 C3a and C5a showed over 1000-fold selectivity to their respective receptors, C3a
104 activated C5aR1 with relative lower efficacy than C5a (~30% of Emax of C5a) (Fig.
105 1b). Our results are consistent with previous investigation on the selective activities of
106 C3a and C5a^{28,33}. We then assembled the C3aR-G_i and C5aR1-G_i complexes in
107 membrane by co-expressing the receptor with G_i heterotrimer and determined the
108 structures by cryo-EM (Fig. 1c-1e and Extended Data Fig. 1d-f). The single chain

109 antibody scFv16 was added to stabilize the whole complexes. The structures of apo
110 state C3aR-G_i, C3a-bound C3aR-G_i, and C5a-bound C5aR1-G_i complexes were
111 determined at the resolution of 3.2 Å, 2.9 Å, and 3.0 Å, individually (Extended Data
112 Fig. 2). The density maps allowed clear definition and modeling of most portions of
113 the receptors, the anaphylatoxin ligands, scFv16 antibody, and G_i heterotrimer without
114 the flexible alpha-helix domain of G_{αi} (Extended Data Fig. 3). In the structures, both
115 C3a and C5a comprised a core of four α helices stabilized by three disulfide bonds,
116 agreed well with their crystal structures ^{14,34} (Extended Data Fig. 4a, b). Compared to
117 other anaphylatoxin receptors, C3aR contains an extra-large second extracellular loop
118 (ECL2, about 172 amino acids), in which only the first 16 residues of ECL2 (V159 to
119 K175) were resolved, indicating the extremely dynamic property of ECL2 in C3aR,
120 possibly due to the lack of interaction with C3a ligand.

121

122 **Recognition of C3a by C3aR**

123 C3a recognizes and activates C3aR with nanomolar affinity ³⁵. The whole C3a
124 molecule occupied an amphipathic pocket with a size of 1297 Å³, which is composed
125 by residues from TM2, TM3, TM5-7, ECL2 and ECL3 from the extracellular half of
126 C3aR. It was shown that the C terminal pentapeptide ‘LGLAR’ contains the active-
127 site of C3a, which is indispensable for C3aR activation ^{36,37}. Consistently, in our
128 structure, this pentapeptide of C3a occupied the orthosteric pocket in the
129 transmembrane domain (TMD) in a C-terminus-inside mode. Binding of C3a to C3aR
130 is mainly mediated by two independent regions, namely C3aS1 and C3aS2 (Fig. 2a),
131 which together contributes to the high potency of C3a to C3aR.

132

133 In C3aS1, the terminal residues ‘LGLAR’ adopts a ‘hook’ conformation with the last
134 arginine residue pointing toward a negatively charged sub-pocket containing D417^{7,35}
135 (Fig. 2b) (receptor residues are noted with superscript based on Ballesteros-Weinstein
136 numbering method ³⁸ and residues of C3a and C5a are noted without superscript),
137 fixing the C3a molecule into the receptor TMD core. In addition to ionic interactions

138 with D417^{7.35}, the side chain of R77 also forms *cation-π* interaction with Y393^{6.51}
139 while its main chain carboxylate forms hydrogen bonds with the side chains of
140 Y174^{ECL2} and R340^{5.42} (Fig. 2c, d). Mutations of D417^{7.35}, Y174^{ECL2}, R340^{5.42} and
141 Y393^{6.51} to alanine or deletion of R77 from C3a greatly decreased G_i activation by
142 C3aR (Fig. 2e, f and Supplementary Table 2). The extensive interactions of R77 with
143 C3aR are consistent well with previous results, which indicated that R77 is a critical
144 determinant for C3aR activation ²⁶. The main chain of H72, G74 and L75 also formed
145 hydrogen-bonds with H418^{7.36} and R161^{ECL2}, respectively (Fig. 2d). Consistently,
146 mutation of H418^{7.36}A diminished the efficacy of C3a while R161^{ECL2}A decreased the
147 potency of C3a to C3aR by over 100 folds (Fig. 2f). In addition to polar interactions,
148 L73, L75 and A76 in C-terminal hook of C3a made hydrophobic contacts with nearby
149 residues I98^{3.28}, P99^{3.29}, I102^{3.32}, Y174^{ECL2} and I421^{7.39} within the orthosteric binding
150 pocket (OBP) (Fig. 2d, f), and mutations in these pocket residues also resulted in
151 decrease of C3a-mediated C3aR activation (Fig. 2f, h and Supplementary Table 2).

152
153 Engagement of C3a with C3aR was further enhanced by binding in C3aS2, which
154 located in the extracellular vestibular of C3aR (Fig. 2a). The C3aS2 comprised
155 interaction between ECL2 and α4 helix of C3a, as well as interactions of ECL3 with
156 the α4 helix and α3-α4 loop of C3a. It was worth noting that D404^{ECL3} and E406^{ECL3}
157 inserted into a positively charged cavity near α4 helix and α3-α4 loop regions of C3a,
158 forming close salt bridges with R33 and R65 (Fig. 2g). Nevertheless, the mutagenesis
159 data showed that mutations of C3aS2 residues had less significant effects on C3a
160 activity compared to those in C3aS1 (Fig. 2h), consistent with the relatively poor
161 resolved density of C3a in the region outside of the C-terminal hook and α4 helix.

162
163 **Conservation and divergency in C3a and C5a binding modes**
164 C5a shared the conserved C-terminal pentapeptide sequence with C3a (Fig. 1b),
165 implying the potential conserved molecular patterns in recognition of C3a and C5a to
166 their receptors. Likewise, in our structure, C5a also bound to the cognate receptor

167 C5aR1 in C-terminus-inside mode (Fig. 3a). All the residues of the C-terminal loop
168 contributed to the potent recognition of C3a and C5a to their cognate receptors.
169 Computational simulations indicated that both C3a and C5a stably bound to the OBPs
170 of their cognate receptors, with RMSD values of the poses in cryo-EM structures
171 ranging from 1 Å to 2 Å (Extended Data Fig. 4c). The C-terminal pentapeptide
172 ‘MQLGR’ of C5a occupied a ‘hook’ shaped configuration, similar to ‘LGLAR’ of
173 C3a in C3aR. Structural alignment revealed that C3a and C5a overlaid well in the C-
174 terminal hook (Fig. 3b), with R74 of C5a engaging a conserved negatively charged
175 sub-pocket in C5aR1 as that occupied by R77 of C3a in C3aR. Despite the
176 similarities, remarkable differences were observed in C5a binding mode. Compared to
177 C3a in C3aR, the C-terminal loop of C5a was longer with five additional residues
178 (decapeptide), which is stretched and formed broader interactions with the ligand
179 pocket of C5aR1 (Fig. 3c). Additionally, unlike C3aR, the N-terminal loop of C5aR1
180 made direct interactions with C5a, consequently, the α -helix core of C5a adopted a
181 clockwise rotation of $\sim 84^\circ$ toward the N-terminal loop of C5aR1 (as measured by the
182 relative conformation of α 4 helix of C3a and C5a) (Fig. 3b).

183
184 EM density map was clearly defined across the whole C5a molecule in the C5a-
185 C5aR1 complex structure. Compared to C3a in C3aR, C5a possessed in a much wider
186 amphipathic pocket in C5aR1 with a size of 1744 \AA^3 , consistent with 10-fold higher
187 potency of C5a than C3a to their cognate receptors (Fig. 1b and Extended Data Fig.
188 1c). The interaction interface of C5a in C5aR1 is consist of three separated sites:
189 namely C5aS1, C5aS2 and C5aS3, among which C5aS1 constituted the major binding
190 site for C5a (Fig. 3a). All the three binding sites appeared to be amphipathic. The C-
191 terminal octapeptide of C5a, which was identified as the smallest fragment for
192 reasonable C5aR1 binding³⁹, occupied C5aS1 site and interacted with residues from
193 TM2, TM3, TM5-7 and ECL1 of C5aR1 (Fig. 3c). In C5aS1, conformation of the C-
194 terminal octapeptide loop of C5a was stabilized by a widespread polar interaction
195 network, including the ionic patches formed by K68, D69 and R74 with residues

196 E199^{5.35}, K279^{7.32}, R206^{5.42} and D282^{7.35}, respectively, as well as a hydrogen bond
197 network formed by Q71, G73 and R74 with residues H100^{ECL1}, Y258^{6.51}, T261^{6.54},
198 and D282^{7.35} (Fig. 3c). Consistent with the binding pose in our structure, mutations of
199 individual residues in the polar network all showed compromised activity in G_i
200 activation, especially Y258^{6.51} and D282^{7.35} (Fig. 3d). To further verify the structural
201 findings, we generated residue-by-residue C-terminal truncations of C5a from R74 to
202 M70, and tested their effects on G_i signaling of C5aR1 (Fig. 3d). The data suggested
203 that these C5a truncations exhibited linearly decreased activities in inducing C5aR1
204 activation and truncation at L72 nearly eliminated C5aR1 signaling, supporting the
205 binding mode of C5a in C5aS1 (Fig. 3d). Our structural and mutagenesis data are
206 consistent with the previous result that the C-terminus of C5a, particularly R74, was
207 indispensable for effective C5aR1 activation by C5a^{24,40}, and mutations on E199^{5.35},
208 R206^{5.42} and D282^{7.35} significantly reduced C5a binding affinity to C5aR1⁴¹⁻⁴⁵. In
209 addition to the extensive polar contacts, the side chain of L72 extended toward the
210 cleft of TM2 and TM3, and inserted into a hydrophobic pocket formed by residues
211 I91^{2.59}, L92^{2.60}, W102^{ECL1}, P113^{3.29} and I116^{3.32} (Fig. 3c).

212
213 In our structure, clear densities of the complete ECL2 and the N-terminal loop from
214 L22^{N-terminus} to R34^{N-terminus} of C5aR1 were resolved, constituting the C5aS2 and
215 C5aS3 sites for C5a binding, respectively. The ECL2 of C5aR1 interacted broadly
216 with residues from α 1, α 2, α 2- α 3 loop, α 4 and part of C-terminal loop of C5a while
217 the N-terminal loop interacted with residues from α 2- α 4, α 2- α 3 loop and α 3- α 4 loop
218 of C5a (Fig. 3a). The N-terminal loop of C5aR1 was previously suggested to be the
219 second site for efficient C5a binding in addition to the TMD pocket engaged by C
220 terminus of C5a^{24,25,46-50}. In the structure, D27^{N-terminus} and R34^{N-terminus} of C5aR1
221 made salt bridge interactions with R37 in α 3 helix and D31 in α 2- α 3 loop of C5a,
222 respectively (Fig. 3f). Mutation of D27^{N-terminus} A and deletion of the N-terminal 33 or
223 34 residues in C5aR1 largely diminished or abolished the G_i activation by C5a (Fig.
224 3g and Supplementary Table 3), suggesting the indispensable role of D27^{N-terminus} in

225 C5a binding, which was in accordance with the structure as well as the previous
226 mutagenesis and NMR studies toward N-terminus of C5aR1⁴⁷⁻⁴⁹. However, no
227 obvious decrease of C5a activity was observed in R34^{N-terminus} A mutant of C5aR1,
228 indicating the limited influence of this residue in C5aR1 activation by C5a (Fig. 3g).
229 Apart from C5aS2, C5aS3 provided another independent anchoring site for C5a
230 binding and enrichment. In C5aS3, the main chain carbonyl of F182^{ECL2} with the side
231 chains of D191^{ECL2} and H194^{ECL2} formed hydrogen-bond interactions with R61, N64
232 and S66 of C5a (Fig. 3e). Furthermore, F182^{ECL2} and P183^{ECL2} formed extensive
233 hydrophobic interactions with nearby C5a residues, including Q3, I6, Y23 and C27
234 (Fig. 3e). Accordingly, mutations of the above residues in C5aS3 to alanine decreased
235 C5a activity (Fig. 3g).

236

237 **Distinct binding modes of C3a and C5a from chemokines**

238 Similar to chemokines, C3a and C5a belong to large macromolecular ligands of GPCRs
239 and behave as strong chemotaxis for immune cells. The molecular recognition of
240 chemokines to their cognate chemokine receptors were previously investigated⁵¹⁻⁵⁶.
241 Whereas recognitions of chemokines by chemokine receptors exhibit diversities in
242 binding modes such as differences in the depth of the chemokine N-termini into the
243 TMD pockets, they share the conserved “two site” model, with the N-terminal loop of
244 the chemokine insert into the orthosteric TMD pocket while the globular core region
245 interacts with the N-terminal segments of the chemokine receptors. In contrast to the
246 N-terminus-inside mode of chemokines to their receptors, both C3a and C5a recognize
247 the TMD pockets of their receptors in the C-terminus-inside mode. Structural
248 comparison of C3a-C3aR or C5a-C5aR1 with chemokine-bound receptors revealed that
249 the C-terminal loops of C3a and C5a insert into the orthosteric TMD pockets, with
250 similar depth as the N-termini of CCL2, CCL3 and CCL15 into their cognate
251 chemokine receptors⁵⁴⁻⁵⁶ (Extended Data Fig. 5a, b). In our structures, the last C-
252 terminal arginine of C3a and C5a occupied a negatively charged sub-pocket in the
253 bottom of the OBP in part composed by D^{7,35}, which is only conserved among

254 anaphylatoxin receptors but not in chemokine receptors. Correspondingly, the first N-
255 terminal residues of chemokines are not conserved and fit into an amphipathic or a
256 hydrophobic sub-pocket in the bottom of OBPs of chemokine receptors (Extended Data
257 Fig. 5c).

258

259 **Ligand induced activation mechanisms of C3aR and C5aR1**

260 The crystal structure of C5aR1 bound to peptidomimetic antagonist PMX53 was
261 previously reported^{29,30}. Structural alignment of C5a and PMX53 bound C5aR1
262 structures revealed important conformational changes of C5aR1 activation induced by
263 C5a binding. Compared to PMX53, C5a bound ~6Å deeper into the OBP of C5aR1
264 when measured at the C α of the C-terminal arginine (Fig. 4a, b). As a result, the side
265 chain of Y393^{6.51} of C5aR1 adopted an obviously downward shift related to the
266 PMX53 bound state, facilitated by the close *cation-π* interaction with R74 of C5a
267 (Fig. 4b). Conformational change of Y393^{6.51} was accompanied by the downward
268 rotated movement of the toggle switch residue W390^{6.48} and F251^{6.44} of the
269 P^{5.50}I^{3.40}F^{6.44} core triad (Fig. 4b and Extended Data Fig. 6a). C5a binding also induced
270 twist and outward movement of TM3, mainly due to the outwardly stretched
271 hydrophobic side chain of L72 of C5a into the cleft of TM2 and TM3 (Fig. 4c), which
272 is accompanied by an inward movement of TM7 (Extended Data Fig. 6c). The above
273 conformational changes subsequently caused rearrangement of the P^{5.50}I^{3.40}F^{6.44} triad,
274 the outward kink of intracellular region of TM6, the collapse of Na⁺ pocket and the
275 alteration of DR^{3.50}F motif and conserved NPxxY motif (Fig. 4c and Extended Data
276 Fig. 6), which ultimately lead to the opening of the intracellular cavity to
277 accommodate G protein (Extended Data Fig. 6g). Helix 8 from the inactive C5aR1
278 structure was shown to maintain a reversed orientation toward the intracellular center
279 of the TM bundles, restricting the engagement of G protein to C5aR1. In our
280 structure, we observed that the side chain of Y300^{7.53} adopted a down shifted
281 conformation, which rearranges helix 8 out of C5aR1 intracellular center (Extended
282 Data Fig. 6h), thus releasing the space in intracellular cavity for G protein coupling.

283 Conformation of Y300^{7.53} was stabilized by hydrophobic packing with F75^{2.43} and
284 hydrogen bond interaction with R310^{C-terminus} (Extended Data Fig. 6c).
285
286 Structure of C3aR shared high similarity with C5aR1, with RMSD of 0.763 Å when
287 measured at the C α atoms of the TMD region. Superposition of the C3a-bound active
288 C3aR and PMX53-bound inactive C5aR1 structures revealed similar sets of
289 conformational changes in C3aR activation as compared to those of C5aR1 (Fig. 4e),
290 including the toggle switch and outward kink of TM6 (Fig. 4f), the variation of polar
291 interaction network beneath the OBP, as well as the rearrangement of the PV(I)F
292 motif and DRX motif (Extended Data Fig. 6d-f). Together, these conformational
293 changes indicated that C3aR may share conserved activation mechanism as C5aR1
294 (Extended Data Fig. 6i). We also obtained a structure of apo C3aR coupled with G_i
295 heterotrimer. Despite the noticeable differences in the extracellular vestibules due to
296 C3a binding, structures of C3a-bound and apo C3aR highly resembled each other in
297 the TMD core and intracellular part (Extended Data Fig. 8a). Structural superposition
298 of C3aR in its active and apo states revealed the potential structural determinants
299 responsible for the constitutive activity of C3aR. In the apo-C3aR structure, due to the
300 absence of interaction with ligand, the polar side chain of R340^{5.42} shifted toward
301 TM6 and formed close hydrogen bond interaction with Y393^{6.51}, which is critical for
302 the receptor activation (Extended Data Fig. 8d and Supplementary Table 2). The polar
303 connection of R340^{5.42} and Y393^{6.51} stabilizes the conformation of Y393^{6.51} in its
304 active state, which is consistent with the high level of constitutive activation of C3aR
305 (Extended Data Fig. 8e).
306
307

G_i coupling of C3aR and C5aR1

308 Structural alignment of C3aR-G_i and C5aR1-G_i complexes indicated that the G_i
309 coupling interfaces of C3aR and C5aR1 quite resemble each other (Extended Data Fig.
310 9a). The overall conformation of G_i coupling to C3aR and C5aR1 were suggested to be
311 in the canonical states as observed in most of the GPCR-G_i complex structures reported,

312 in contrast to the non-canonical states observed in structures of NTSR1 or GHSR
313 complexed with G_i heterotrimer^{57,58}. In spite of the conformational similarity, subtle
314 structural difference could be seen in the G_i coupling interface, with the α 5 of G_{ai}
315 subunit inserting deeper into C3aR intracellular cavity and shifting toward TM6 at
316 about 1.5 \AA compared to those in C5aR1 (Extended Data Fig. 9b). The structural
317 difference in G_i was possibly due to the anaphylatoxin ligand induced subtle
318 conformational variation of the extracellular regions of C3aR and C5aR1, specifically,
319 a more outward movement at about 2 \AA of TM6 extracellular end of C3aR relative to
320 C5aR1 (Extended Data Fig. 9c). The G_i binding interfaces of C3aR and C5aR1 mainly
321 include interactions of residues from TM3, TM5, TM6, ICL2, and ICL3 of the receptors
322 and residues in β 2- β 3 loop, β 6, and α 5 helix of G_{ai} subunit (Extended Data Fig. 9). The
323 ICL3 of C3aR and C5aR1 showed clear divergencies in structural topologies and
324 interaction mode with G_i, with the ICL3 of C3aR adopted broader interaction with the
325 β 6 and α 5 helix of G_{ai} (Extended Data Fig. 9f and 9i).

326

327 **Summary**

328 Signal transductions mediated by anaphylatoxins C3a and C5a, and their receptors
329 constitute an essential part of immune responses for generating local inflammation
330 and resolving infection. The C3a-C5a signaling axis has long been served as
331 important targets for multiple inflammation disorders. In this paper, we reported the
332 relatively high-resolution structures of C3aR and C5aR1 either in the apo or in the
333 C3a and C5a bound states. These structures provide insight into the unique C-
334 terminus inside binding modes of C3a and C5a to their receptors, in contrast to the N-
335 terminus inside mode occupied by other chemoattractant peptides, such as formyl-
336 peptides⁵⁹⁻⁶¹ and chemokines⁵¹⁻⁵⁶. Like many chemokine- bound to their receptors,
337 the N-terminal loop of C5aR1, rather than that of C3aR, serves as important
338 anchoring site for high affinity binding to C5a. The structures, together with
339 mutational data, also revealed the highly conserved recognition pattern of C3a and
340 C5a in the C3aR and C5aR1 binding pockets, with the last C-terminal arginine residue

341 occupying the bottom negatively charged pocket, which is formed by residues
342 including conserved residues R^{5.42}, Y^{6.51}, and D^{7.35}. Our results provide
343 comprehensive structural basis of the pharmacology and signaling of complement
344 receptors C3aR and C5aR1 signaling and multiple structural templates for rational
345 drug development targeting the complement system.

346

347

348 **References**

349

- 350 1 Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive immune
351 responses. *Cell research* **20**, 34-50, doi:10.1038/cr.2009.139 (2010).
- 352 2 Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement System
353 Part I - Molecular Mechanisms of Activation and Regulation. *Front Immunol* **6**, 262,
354 doi:10.3389/fimmu.2015.00262 (2015).
- 355 3 Nesargikar, P. N., Spiller, B. & Chavez, R. The complement system: history, pathways,
356 cascade and inhibitors. *Eur J Microbiol Immunol (Bp)* **2**, 103-111,
357 doi:10.1556/EuJMI.2.2012.2.2 (2012).
- 358 4 Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for
359 immune surveillance and homeostasis. *Nature immunology* **11**, 785-797,
360 doi:10.1038/ni.1923 (2010).
- 361 5 Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T.
362 Complement System Part II: Role in Immunity. *Front Immunol* **6**, 257,
363 doi:10.3389/fimmu.2015.00257 (2015).
- 364 6 Klos, A., Wende, E., Wareham, K. J. & Monk, P. N. International Union of Basic and Clinical
365 Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors.
366 *Pharmacological reviews* **65**, 500-543, doi:10.1124/pr.111.005223 (2013).
- 367 7 Noris, M. & Remuzzi, G. Overview of complement activation and regulation. *Semin
368 Nephrol* **33**, 479-492, doi:10.1016/j.semnephrol.2013.08.001 (2013).
- 369 8 Klos, A. *et al.* The role of the anaphylatoxins in health and disease. *Mol Immunol* **46**, 2753-
370 2766, doi:10.1016/j.molimm.2009.04.027 (2009).
- 371 9 Vandendriessche, S., Cambier, S., Proost, P. & Marques, P. E. Complement Receptors and
372 Their Role in Leukocyte Recruitment and Phagocytosis. *Front Cell Dev Biol* **9**, 624025,
373 doi:10.3389/fcell.2021.624025 (2021).
- 374 10 Zhou, W. The new face of anaphylatoxins in immune regulation. *Immunobiology* **217**,
375 225-234, doi:10.1016/j.imbio.2011.07.016 (2012).
- 376 11 Guo, R. F. & Ward, P. A. Role of C5a in inflammatory responses. *Annu Rev Immunol* **23**,
377 821-852, doi:10.1146/annurev.immunol.23.021704.115835 (2005).
- 378 12 Garred, P., Tenner, A. J. & Mollnes, T. E. Therapeutic Targeting of the Complement System:
379 From Rare Diseases to Pandemics. *Pharmacological reviews* **73**, 792-827,
380 doi:10.1124/pharmrev.120.000072 (2021).
- 381 13 Ajona, D., Ortiz-Espinosa, S. & Pio, R. Complement anaphylatoxins C3a and C5a: Emerging

- 382 roles in cancer progression and treatment. *Semin Cell Dev Biol* **85**, 153-163,
383 doi:10.1016/j.semcdb.2017.11.023 (2019).
- 384 14 Bajic, G., Yatime, L., Klos, A. & Andersen, G. R. Human C3a and C3a desArg anaphylatoxins
385 have conserved structures, in contrast to C5a and C5a desArg. *Protein science : a*
386 *publication of the Protein Society* **22**, 204-212, doi:10.1002/pro.2200 (2013).
- 387 15 Hugli, T. E. Structure and function of the anaphylatoxins. *Springer Semin Immunopathol*
388 **7**, 193-219, doi:10.1007/BF01893020 (1984).
- 389 16 Ames, R. S. *et al.* Molecular cloning and characterization of the human anaphylatoxin C3a
390 receptor. *The Journal of biological chemistry* **271**, 20231-20234,
391 doi:10.1074/jbc.271.34.20231 (1996).
- 392 17 Gasque, P. *et al.* Identification and characterization of the complement C5a anaphylatoxin
393 receptor on human astrocytes. *J Immunol* **155**, 4882-4889 (1995).
- 394 18 Gavrilyuk, V. *et al.* Identification of complement 5a-like receptor (C5L2) from astrocytes:
395 characterization of anti-inflammatory properties. *J Neurochem* **92**, 1140-1149,
396 doi:10.1111/j.1471-4159.2004.02942.x (2005).
- 397 19 Barnum, S. R. C4a: An Anaphylatoxin in Name Only. *J Innate Immun* **7**, 333-339,
398 doi:10.1159/000371423 (2015).
- 399 20 Li, R., Coulthard, L. G., Wu, M. C., Taylor, S. M. & Woodruff, T. M. C5L2: a controversial
400 receptor of complement anaphylatoxin, C5a. *FASEB J* **27**, 855-864, doi:10.1096/fj.12-
401 220509 (2013).
- 402 21 Pandey, S. *et al.* Intrinsic bias at non-canonical, beta-arrestin-coupled seven
403 transmembrane receptors. *Molecular cell* **81**, 4605-4621 e4611,
404 doi:10.1016/j.molcel.2021.09.007 (2021).
- 405 22 Pandey, S., Maharana, J., Li, X. X., Woodruff, T. M. & Shukla, A. K. Emerging Insights into
406 the Structure and Function of Complement C5a Receptors. *Trends Biochem Sci* **45**, 693-
407 705, doi:10.1016/j.tibs.2020.04.004 (2020).
- 408 23 Chao, T. H. *et al.* Role of the second extracellular loop of human C3a receptor in agonist
409 binding and receptor function. *The Journal of biological chemistry* **274**, 9721-9728,
410 doi:10.1074/jbc.274.14.9721 (1999).
- 411 24 Siciliano, S. J. *et al.* Two-site binding of C5a by its receptor: an alternative binding
412 paradigm for G protein-coupled receptors. *Proceedings of the National Academy of*
413 *Sciences of the United States of America* **91**, 1214-1218, doi:10.1073/pnas.91.4.1214
414 (1994).
- 415 25 Das, A., Behera, L. M. & Rana, S. Interaction of Human C5a with the Major Peptide
416 Fragments of C5aR1: Direct Evidence in Support of "Two-Site" Binding Paradigm. *ACS*
417 *Omega* **6**, 22876-22887, doi:10.1021/acsomega.1c03400 (2021).
- 418 26 Wilken, H.-C., Götze, O., Werfel, T. & Zwirner, J. C3a (desArg) does not bind to and signal
419 through the human C3a receptor. *Immunology letters* **67**, 141-145 (1999).
- 420 27 Cain, S. A. & Monk, P. N. The orphan receptor C5L2 has high affinity binding sites for
421 complement fragments C5a and C5a des-Arg(74). *The Journal of biological chemistry* **277**,
422 7165-7169, doi:10.1074/jbc.C100714200 (2002).
- 423 28 Crass, T. *et al.* Chimeric receptors of the human C3a receptor and C5a receptor (CD88).
424 *The Journal of biological chemistry* **274**, 8367-8370, doi:10.1074/jbc.274.13.8367 (1999).
- 425 29 Robertson, N. *et al.* Structure of the complement C5a receptor bound to the extra-helical

- 426 antagonist NDT9513727. *Nature* **553**, 111-114, doi:10.1038/nature25025 (2018).
- 427 30 Liu, H. *et al.* Orthosteric and allosteric action of the C5a receptor antagonists. *Nature structural & molecular biology* **25**, 472-481, doi:10.1038/s41594-018-0067-z (2018).
- 428 31 Liu, L., Spurrier, J., Butt, T. R. & Strickler, J. E. Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. *Protein expression and purification* **62**, 21-28, doi:10.1016/j.pep.2008.07.010 (2008).
- 429 32 Peroutka, R. J., Elshourbagy, N., Piech, T. & Butt, T. R. Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. *Protein science : a publication of the Protein Society* **17**, 1586-1595, doi:10.1110/ps.035576.108 (2008).
- 430 33 Scully, C. C. *et al.* Selective hexapeptide agonists and antagonists for human complement C3a receptor. *J Med Chem* **53**, 4938-4948, doi:10.1021/jm1003705 (2010).
- 431 34 Schatz-Jakobsen, J. A. *et al.* Structural and functional characterization of human and murine C5a anaphylatoxins. *Acta Crystallographica Section D Biological Crystallography* **70**, 1704-1717, doi:10.1107/s139900471400844x (2014).
- 432 35 Crass, T. *et al.* Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. *Eur J Immunol* **26**, 1944-1950, doi:10.1002/eji.1830260840 (1996).
- 433 36 Caporale, L. H., Tippett, P. S., Erickson, B. W. & Hugli, T. E. The active site of C3a anaphylatoxin. *Journal of Biological Chemistry* **255**, 10758-10763, doi:10.1016/s0021-9258(19)70372-x (1980).
- 434 37 Unson, C. G., Erickson, B. W. & Hugli, T. E. Active site of C3a anaphylatoxin: contributions of the lipophilic and orienting residues. *Biochemistry* **23**, 585-589, doi:10.1021/bi00299a001 (1984).
- 435 38 Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. *Methods in Neurosciences* **25**, 366-428, doi:[https://doi.org/10.1016/S1043-9471\(05\)80049-7](https://doi.org/10.1016/S1043-9471(05)80049-7) (1995).
- 436 39 Kawai, M. *et al.* Identification and synthesis of a receptor binding site of human anaphylatoxin C5a. *J Med Chem* **34**, 2068-2071, doi:10.1021/jm00111a022 (1991).
- 437 40 Mollison, K. W. *et al.* Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. *Proceedings of the National Academy of Sciences of the United States of America* **86**, 292-296, doi:10.1073/pnas.86.1.292 (1989).
- 438 41 Monk, P. N., Barker, M. D., Partridge, L. J. & Pease, J. E. Mutation of glutamate 199 of the human C5a receptor defines a binding site for ligand distinct from the receptor N terminus. *The Journal of biological chemistry* **270**, 16625-16629, doi:10.1074/jbc.270.28.16625 (1995).
- 439 42 Crass, T., Bautsch, W., Cain, S. A., Pease, J. E. & Monk, P. N. Receptor activation by human C5a des Arg74 but not intact C5a is dependent on an interaction between Glu199 of the receptor and Lys68 of the ligand. *Biochemistry* **38**, 9712-9717, doi:10.1021/bi990139q (1999).
- 440 43 DeMartino, J. A. *et al.* Arginine 206 of the C5a receptor is critical for ligand recognition and receptor activation by C-terminal hexapeptide analogs. *The Journal of biological*

- 470 *chemistry* **270**, 15966-15969, doi:10.1074/jbc.270.27.15966 (1995).
- 471 44 Raffetseder, U. *et al.* Site-directed mutagenesis of conserved charged residues in the
472 helical region of the human C5a receptor. Arg2O6 determines high-affinity binding sites
473 of C5a receptor. *Eur J Biochem* **235**, 82-90, doi:10.1111/j.1432-1033.1996.00082.x (1996).
- 474 45 Cain, S. A., Coughlan, T. & Monk, P. N. Mapping the ligand-binding site on the C5a
475 receptor: arginine74 of C5a contacts aspartate282 of the C5a receptor. *Biochemistry* **40**,
476 14047-14052, doi:10.1021/bi011055w (2001).
- 477 46 Mery, L. & Boulay, F. Evidence that the extracellular N-terminal domain of C5aR contains
478 amino-acid residues crucial for C5a binding. *J European journal of haematology* **51**, 282-
479 287 (1993).
- 480 47 DeMartino, J. A. *et al.* The amino terminus of the human C5a receptor is required for high
481 affinity C5a binding and for receptor activation by C5a but not C5a analogs. *Journal of
482 Biological Chemistry* **269**, 14446-14450, doi:10.1016/s0021-9258(17)36643-7 (1994).
- 483 48 Mery, L. & Boulay, F. The NH2-terminal region of C5aR but not that of FPR is critical for
484 both protein transport and ligand binding. *Journal of Biological Chemistry* **269**, 3457-
485 3463, doi:10.1016/s0021-9258(17)41884-9 (1994).
- 486 49 Chen, Z. *et al.* Residues 21-30 within the extracellular N-terminal region of the C5a
487 receptor represent a binding domain for the C5a anaphylatoxin. *Journal of Biological
488 Chemistry* **273**, 10411-10419 (1998).
- 489 50 Dumitru, A. C. *et al.* Submolecular probing of the complement C5a receptor-ligand
490 binding reveals a cooperative two-site binding mechanism. *Commun Biol* **3**, 786,
491 doi:10.1038/s42003-020-01518-8 (2020).
- 492 51 Wasilko, D. J. *et al.* Structural basis for chemokine receptor CCR6 activation by the
493 endogenous protein ligand CCL20. *Nature communications* **11**, 3031,
494 doi:10.1038/s41467-020-16820-6 (2020).
- 495 52 Liu, K. *et al.* Structural basis of CXC chemokine receptor 2 activation and signalling. *Nature*
496 **585**, 135-140, doi:10.1038/s41586-020-2492-5 (2020).
- 497 53 Isaikina, P. *et al.* Structural basis of the activation of the CC chemokine receptor 5 by a
498 chemokine agonist. *Sci Adv* **7**, doi:10.1126/sciadv.abg8685 (2021).
- 499 54 Zhang, H. *et al.* Structural basis for chemokine recognition and receptor activation of
500 chemokine receptor CCR5. *Nature communications* **12**, 4151, doi:10.1038/s41467-021-
501 24438-5 (2021).
- 502 55 Shao, Z. *et al.* Identification and mechanism of G protein-biased ligands for chemokine
503 receptor CCR1. *Nat Chem Biol* **18**, 264-271, doi:10.1038/s41589-021-00918-z (2022).
- 504 56 Shao, Z. *et al.* Molecular insights into ligand recognition and activation of chemokine
505 receptors CCR2 and CCR3. *Cell Discov* **8**, 44, doi:10.1038/s41421-022-00403-4 (2022).
- 506 57 Kato, H. E. *et al.* Conformational transitions of a neuropeptidin receptor 1-Gi1 complex.
507 *Nature* **572**, 80-85, doi:10.1038/s41586-019-1337-6 (2019).
- 508 58 Liu, H. *et al.* Structural basis of human ghrelin receptor signaling by ghrelin and the
509 synthetic agonist ibutamoren. *Nature communications* **12**, 6410, doi:10.1038/s41467-
510 021-26735-5 (2021).
- 511 59 Zhuang, Y. *et al.* Molecular recognition of formylpeptides and diverse agonists by the
512 formylpeptide receptors FPR1 and FPR2. *Nat Commun* **13**, 1054, doi:10.1038/s41467-
513 022-28586-0 (2022).

- 514 60 Zhu, Y. *et al.* Structural basis of FPR2 in recognition of Abeta42 and neuroprotection by
515 humanin. *Nature communications* **13**, 1775, doi:10.1038/s41467-022-29361-x (2022).
- 516 61 Chen, G. *et al.* Structural basis for recognition of N-formyl peptides as pathogen-
517 associated molecular patterns. *Nature communications* **13**, 5232, doi:10.1038/s41467-
518 022-32822-y (2022).
- 519 62 Liu, P. *et al.* The structural basis of the dominant negative phenotype of the
520 Galphai1beta1gamma2 G203A/A326S heterotrimer. *Acta Pharmacol Sin* **37**, 1259-1272,
521 doi:10.1038/aps.2016.69 (2016).
- 522 63 Koehl, A. *et al.* Structure of the micro-opioid receptor-Gi protein complex. *Nature* **558**,
523 547-552, doi:10.1038/s41586-018-0219-7 (2018).
- 524 64 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
525 improved cryo-electron microscopy. *Nature methods* **14**, 331-332,
526 doi:10.1038/nmeth.4193 (2017).
- 527 65 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron
528 micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).
- 529 66 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
530 determination in RELION-3. *eLife* **7**, doi:10.7554/eLife.42166 (2018).
- 531 67 Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated
532 cryo-EM single-particle analysis in RELION-4.0. *The Biochemical journal* **478**, 4169-4185,
533 doi:10.1042/BCJ20210708 (2021).
- 534 68 Zhuang, Y. *et al.* Structure of formylpeptide receptor 2-Gi complex reveals insights into
535 ligand recognition and signaling. *Nature communications* **11**, 885, doi:10.1038/s41467-
536 020-14728-9 (2020).
- 537 69 Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM volume
538 post-processing. *Communications Biology* **4**, 874, doi:10.1038/s42003-021-02399-1
539 (2021).
- 540 70 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
541 583-589, doi:10.1038/s41586-021-03819-2 (2021).
- 542 71 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
543 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 544 72 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
545 crystallographica. Section D, Biological crystallography* **60**, 2126-2132,
546 doi:10.1107/S0907444904019158 (2004).
- 547 73 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
548 structure solution. *Acta crystallographica. Section D, Biological crystallography* **66**, 213-
549 221, doi:10.1107/S0907444909052925 (2010).
- 550 74 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
551 crystallography. *Acta crystallographica. Section D, Biological crystallography* **66**, 12-21,
552 doi:10.1107/S0907444909042073 (2010).
- 553

554 **Materials and Methods**

555 **Generation of recombinant C3a and C5a**

556 The recombinant wild-type C3a, C5a and a series of C3a/C5a mutants were generated
557 in similar methods. The coding sequence of human C3a (residues 1-77) was modified
558 with a glycoprotein 67 (gp67) signal peptide followed by His6-tag and SUMOstar-tag
559 in the N-terminus. The coding sequence of human C5a (residues 1-74) was cloned in
560 the same strategy. C3a and C5a constructs were all cloned into pFastbac1 vector
561 (ThermoFisher) and expressed in Sf9 insect cells as secreted proteins using
562 baculovirus infection system. The media was harvested after infection at 48 hours.
563 The pH of supernatant was balanced by adding 1M HEPES (pH 7.4). For quenching
564 the chelates, 1 mM nickel chloride and 5 mM calcium chloride were added and stirred
565 for 1 hour at 4°C. Resulting precipitates were removed by centrifugation at 8,000 rpm
566 (JA-10) and the supernatant was loaded onto Ni-NTA and incubated overnight. The
567 Nickel resin was washed with buffer containing 20 mM HEPES pH 7.4, 100 mM
568 NaCl and 40mM imidazole for 10 column volumes and then eluted in the above
569 buffer containing 300mM imidazole. The eluted C3a/C5a were concentrated and
570 purified over a size exclusion chromatography using a Hiload 16/600 superdex 75pg
571 column. C3a/C5a peak fractions were pooled, concentrated and fast-frozen by liquid
572 nitrogen and stored at -80 °C for further usage.

573

574 **Preparation of apo/C3a-C3aR-G_i and C5a-C5aR1-G_i complex**

575 The full length human C3aR (residues 1-482) and C5aR1 (residues 1-350) was used
576 to obtain C3a and C5a bound G_i complex, respectively. For apo state of C3aR-G_i
577 complex, the C3aR was truncated to residues 1-476. The N-terminus of both C3aR
578 and C5aR1 were modified with prolactin precursor sequence as a signal peptide,
579 followed by FLAG-tag and fragment of β₂AR N-terminal tail region (BN, hereafter)
580 as fusion protein to increase the protein expression. The C-terminus of C3aR and
581 C5aR1 were fused with His⁸ tag. A dominant-negative bovine G_{αi1} (G_{αi1}_2M) with
582 two mutations (G203A and A326S⁶²) was generated by site-directed mutagenesis to

583 decrease the affinity of nucleotide binding and limit G protein dissociation for stable
584 receptor-G_i complex. The N-terminus of rat G_{β1} was fused with a His⁸ tag for two-
585 step purification. All of the components of G_i heterotrimer, G_{αi1}_2M, His8-G_{β1} and
586 bovine G_{γ2}, were cloned into pFastbac1, respectively.

587

588 The single chain antibody scFv16 was applied to improve the stability of the protein
589 complex through enhancing the interface between G_{αi1} and G_{β1}. The scFv16 antibody
590 was prepared based on the method as previously reported⁶³. Briefly, secreted scFv16
591 was purified from expression media of baculovirus-infected Sf9 insect cells culture
592 using Ni-NTA and size exclusion chromatography. After removing the chelates by
593 Ni²⁺ and Ca²⁺, the supernatant from 2-liter culture was collected and loaded onto a
594 gravity column with 5mL Ni-NTA resin. The nickel resin was first washed with
595 20mM HEPES pH 7.2, 100mM NaCl, 50mM imidazole for 10 column volumes and
596 then eluted in buffer containing 300mM imidazole. The elution was concentrated to
597 2mL using centrifugal filters with a 30 kDa molecular weight cut-off (ThermoFisher)
598 and applied to a HiLoad Superdex 200, 10/60 column (GE Healthcare). The
599 monomeric peak fractions were collected, concentrated and fast-frozen by liquid
600 nitrogen as stocks for further usage.

601

602 For C5a-C5aR1-G_i complex, SUMOstar-C5a, C5aR1, G_{αi1}_2M, His8-G_{β1} and G_{γ2}
603 were co-expressed in Sf9 insect cells at a ratio of 1:1:1:1:1 when the cell density
604 reached to 4×10⁶ cells/mL. For C3aR-G_i complex, C3aR, G_{αi1}_2M, His8-G_{β1} and G_{γ2}
605 were co-expressed for preparation of the apo or C3a bound C3aR-G_i complex in the
606 same infection virus ratio and cell density as C5a-C5aR1-G_i complex. After infection
607 at about 48 hr, the cells were collected by centrifugation at 2000 g (ThermoFisher,
608 H12000) for 20 min and the pellets were stored at -80°C for further purification. In
609 preparation and formation of the C3a-bound C3aR-G_i complex, the SUMOstar-C3a
610 was added during the protein purification.

611

612 For the purification of C3a-C3aR-G_i complex, cell pellets from 1-liter culture were
613 thawed at room temperature and suspended in the buffer containing 20 mM HEPES
614 pH 7.3, 50 mM NaCl, 5 mM CaCl₂, 5 mM MgCl₂ with 100× concentrated EDTA-free
615 protease inhibitor cocktail (Bimake). The suspensions were treated with French Press
616 and added with 5 μM His8-SUMOstar-C3a (homemade) and 25 mU/ml apyrase
617 (Sigma), followed by incubation for 1.5 hours at room temperature. After incubation,
618 the complex was extracted from the membrane with 0.5% (w/v) lauryl maltose
619 neopentylglycol (LMNG, Anatrace) and 0.1% (w/v) cholesteryl hemisuccinate (CHS,
620 Anatrace) for 3 h at 4°C. The supernatant was further isolated by centrifugation at
621 100,000 g for 45 min and then incubated with pre-equilibrated Nickel-NTA resin
622 (20 mM HEPES pH 7.3, 100 mM NaCl) overnight at 4 °C. The nickel resin was
623 loaded onto a gravity column manually. The resin was firstly washed with 15 column
624 volumes of 20 mM HEPES, pH 7.3, 100 mM NaCl, 30 mM imidazole, 1 μM His8-
625 SUMOstar-C3a, 0.01% LMNG (w/v), 0.002% CHS (w/v) and 0.1% digitonin (w/v,
626 Anatrace), and then eluted with the same buffer with 300 mM imidazole in addition
627 for 6 column volumes. The eluted protein was further incubated with M1 anti-FLAG
628 affinity resin (Smart-Lifesciences) with 2 mg scFv16 (homemade) added for 2 h at
629 4 °C. After incubation, the M1 anti-FLAG affinity resin was washed with 10 column
630 volumes of 20 mM HEPES, pH 7.3, 100 mM NaCl, 1 μM His8-SUMOstar-C3a,
631 0.01% (w/v) LMNG, 0.01% GDN and 0.002% (w/v) CHS, 0.05% digitonin (w/v) and
632 then eluted with 5 column volumes of the same buffer plus 0.2 mg/mL FLAG peptide.
633 The eluted protein was concentrated to 500μL with a 100 kDa molecular weight cut-
634 off concentrator (ThermoFisher). Concentrated C3a-C3aR-G_i complex was loaded
635 onto a Superdex 200 increase 10/300 GL column (GE Healthcare) with running buffer
636 containing 20mM HEPES pH 7.3, 100mM NaCl, 0.00075% LMNG, 0.00025% GDN,
637 0.0002% CHS, 0.05% digitonin. The fractions for monomeric complex were collected,
638 evaluated by SDS-PAGE and concentrated to 11.4 mg/mL for cryo-EM experiments.
639 For apo-C3a-G_i complex, the same steps were performed without addition of His6-
640 SUMOstar-C3a, the final sample was concentrated to 16 mg/mL for cryo-EM

641 experiments.

642

643 For the purification of C5a-C5aR1-G_i complex, no additional C5a ligand was added
644 during the purification of C5a-C5aR1-G_i complex. The purify methods were similar to
645 the method of apo-C3a-Gi complex. And the final monomeric C5a-C5aR-G_i sample
646 was concentrated to 12 mg/mL for cryo-EM experiments.

647

648 **Cryo-EM grid preparation and data collection**

649 For the cryo-EM grids preparation, 3 μ L of the purified protein complex were applied
650 individually onto EM grids and blotted in a Vitrobot chamber (FEI Vitrobot Mark IV)
651 of 100% humidity at 4 °C. For apo-C3aR-G_i and C5a-C5aR1-G_i complexes, holey
652 carbon grids (Quantifoil, 300 mesh Au R0.6/1) glow-discharged for 50 seconds were
653 used for EM grids preparation. For C3a-C3aR-G_i complex, we used the Au grids
654 (Quantifoil, 300 mesh Au R1.2/1.3) pretreated by glow-discharging and cysteine.
655 Briefly, the Au grids were glow-discharged for 10 seconds. Subsequently, the grids
656 were then transferred to 0.5M cysteine solution for incubation at 30 minutes and
657 washed by ddH₂O and anhydrous ethanol, respectively. The treated Au grids were
658 placed in room temperature for 3 minutes before EM grid preparation. The samples
659 were blotted for 2 s and vitrified by plunging into liquid ethane. Grids were stored in
660 liquid nitrogen for condition screening and further data collection.

661

662 For the apo-C3aR-G_i complex, automatic cryo-EM movie stacks were collected by a
663 Titan Krios G4 at 300KV accelerating voltage equipped with Falcon4 detector in
664 Advanced Center for Electron Microscopy, Shanghai Institute of Materia Medica,
665 Chinese Academy of Sciences (Shanghai, China). The movie stacks were collected
666 automatically with a nominal magnification of 75,000 \times in counting mode at a pixel
667 size of 0.52 Å. Each movie stack was dose-fractionated in 160 frames with 50 total
668 doses (e/ Å²) and collected within a defocus ranging from -0.5 to -2.0 μm. A total of
669 4,240 movies for the dataset of apo-C3aR-G_i complex were collected. Data collection

670 was performed using EPU with one exposure per hole on the grid squares.

671

672 For the C3a-C3aR-G_i and C5a-C5aR1-G_i complex, automatic cryo-EM movie stacks
673 were collected on an FEI Titan Krios microscope operated at 300kV in Advanced
674 Center for Electron Microscopy, Shanghai Institute of Materia Medica, Chinese
675 Academy of Sciences (Shanghai, China). The microscope was equipped with a Gatan
676 Quantum energy filter. The movie stacks were collected automatically using a Gatan
677 K3 direct electron detector with a nominal magnification of 105,000 \times in super-
678 resolution counting mode at a pixel size of 0.412 Å. The energy filter was operated
679 with a slit width of 20 eV. Each movie stack was dose-fractionated in 36 frames with
680 a dose of 1.39 electrons per frame and collected within a defocus ranging from -0.8 to
681 -1.8 μm. The total exposure time was 2.35 s. A total of 6,762 movies was collected for
682 C3a-C3aR-G_i complex. A total of 5,006 movies was collected for C5a-C5aR1-G_i
683 complex. Data collection was performed using EPU with one exposure per hole on the
684 grid squares.

685

686 **Data processing and 3D reconstruction**

687 Movie stacks were subjected to beam-induced motion correction using MotionCor 2.1
688⁶⁴. Contrast transfer function (CTF) parameters for each non-dose-weighted
689 micrograph were determined by Ctffind4⁶⁵. Automated particle selection and data
690 processing were performed using RELION-3.1 beta2⁶⁶ or RELION-4.0 beta⁶⁷.

691

692 For the datasets of apo-C3aR-G_i complex, the movie stack was aligned, dose
693 weighted, and binned by 2 to 1.6 Å per pixel. The micrographs with resolution worse
694 than 4.0 Å and micrographs imaged within the carbon area of grid squares were
695 abandoned, producing 4,221 micrographs to do further data processing. Template-
696 based particle selection yielded 4,404,753 particles which were subjected to
697 reference-free 2D classifications to discard bad particles. The map of WKYVMV-
698 FPR2-G_i-scFv16 complex (EMDB: EMD-20126)⁶⁸ low-pass filtered to 60 Å was

699 used as a reference model for two rounds of maximum-likelihood-based 3D
700 classifications and produced 275,847 particles. These particles were subsequently
701 subjected to 3D refinement, CTF refinement, Bayesian polishing and DeepEMhancer
702 ⁶⁹, which generated a density map with an indicated global resolution of 3.2 Å at a
703 Fourier shell correlation of 0.143.

704
705 For the datasets of C3a-C3aR-G_i and C5a-C5aR1-G_i complex, the movie stack was
706 aligned, dose weighted and binned by 2 to 0.84 Å per pixel. The micrographs with
707 resolution worse than 4.0 Å and micrographs imaged within the carbon area of grid
708 squares were abandoned, producing 4,847 micrographs for C5a-C5aR1-G_i complex to
709 do further data processing. For the C3a-C3aR-G_i complex, template-based particle
710 selection yielded 5,864,752 particles which were subjected to reference-free 2D
711 classifications to discard bad particles. The map of apo-C3aR-G_i low-pass filtered to
712 40 Å was used as a reference model for five rounds of maximum-likelihood-based 3D
713 classifications. Further 3D classification focusing on the receptor produced 246,827
714 particles. These particles were subsequently subjected to 3D refinement, CTF
715 refinement, Bayesian polishing and DeepEMhancer which generated a density map
716 with an indicated global resolution of 2.9 Å at a Fourier shell correlation of 0.143. For
717 C5a-C5aR1-G_i complex, template-based particle selection yielded 4,236,350 particles
718 which were subjected to reference-free 2D classifications to discard bad particles. The
719 map of C3a-C3aR-G_i complex low-pass filtered to 60 Å was used as a reference
720 model for three rounds of maximum-likelihood-based 3D classifications and 3D
721 classification focused on receptor resulting in final subset with 406,559 particles.
722 These particles were subsequently subjected to 3D refinement with scFv16 masked,
723 CTF refinement, Bayesian polishing and DeepEMhancer, which generated a density
724 map with an indicated global resolution of 3.0 Å at a Fourier shell correlation of
725 0.143.

726
727 **Model building, structure refinement, and figure preparation**

728 The G_i structure of μOR-TRV130-G_i complex (PDB: 8EFB) was used for the model
729 building of this study. The starting models of C3aR and C5aR1 was generated by
730 AlphaFold2 ⁷⁰. The start model of C3a and C5a was referenced of previous crystal
731 structures (C3a PDB: 4HW5) (C5a PDB: 5B4P). The structural model was firstly
732 docked as a rigid body into the cryo-EM density maps using UCSF Chimera ⁷¹.
733 Models were then manually rebuilt and/or adjusted in COOT ⁷². Real space and
734 Rosetta refinements were performed using Phenix ⁷³. The model statistics were
735 validated using MolProbity ⁷⁴. Structural figures were prepared in Chimera and
736 PyMOL (<https://pymol.org/2/>). The final refinement statistics are provided in table S1.
737 The maximum distance cutoffs for polar hydrogen-bond interactions and hydrophobic
738 interactions were set at 3.5 Å and 4.5 Å, respectively.

739

740 **GloSensor cAMP assay**

741 The N-terminus of full-length C3aR and C5aR1 was fused with HA signal peptide and
742 FLAG epitope. The constructs were cloned into pcDNA3.0 vector for HEK293T
743 system. Before transfection, HEK293T cells were plated onto 6-well plate with
744 density of 2×10^5 cells/mL. After 16 hours, cells were transfected with 1.5 μg receptor
745 and 1 μg GloSensor-22F (Promega). After 24 hours, transfected cells were digested
746 and transferred onto 96-well plate with 50 μL suspension with density of 5×10^5
747 cells/ml. After another 16 hours, cells were starved by 50 μL Hank's balanced salt
748 solution for 30 min and then incubated in 50 μL CO₂-independent media containing
749 2% GloSensor cAMP Reagent (Promega) for 1 hour. After incubation, 5.5 μL test
750 ligands with various concentrations were added and incubated for 10 min at room
751 temperature. Then 5.5 μL Forskolin were added to the cells in the final concentration
752 of 1 μM. All luminescence signals are tested by EnVision multi-plate reader according
753 to the manufacturer's instructions. All data were analyzed using Prism 9 (GraphPad)
754 and presented as means \pm S.E.M. from at least three independent experiments in
755 technical duplicates or triplicates. The top value was normalized to 0% and the bottom
756 value was normalized to 100% for the final presentation. Non-linear curve fit was

757 performed using a three-parameter logistic equation [log (agonist vs response)]. The
758 significance was determined with two-side, one-way ANOVA followed by Fisher's
759 LSD test compared with WT. *P<0.05; **P<0.01 and ***P<0.001 were considered as
760 statistically significant.

761

762 **Acknowledgements**

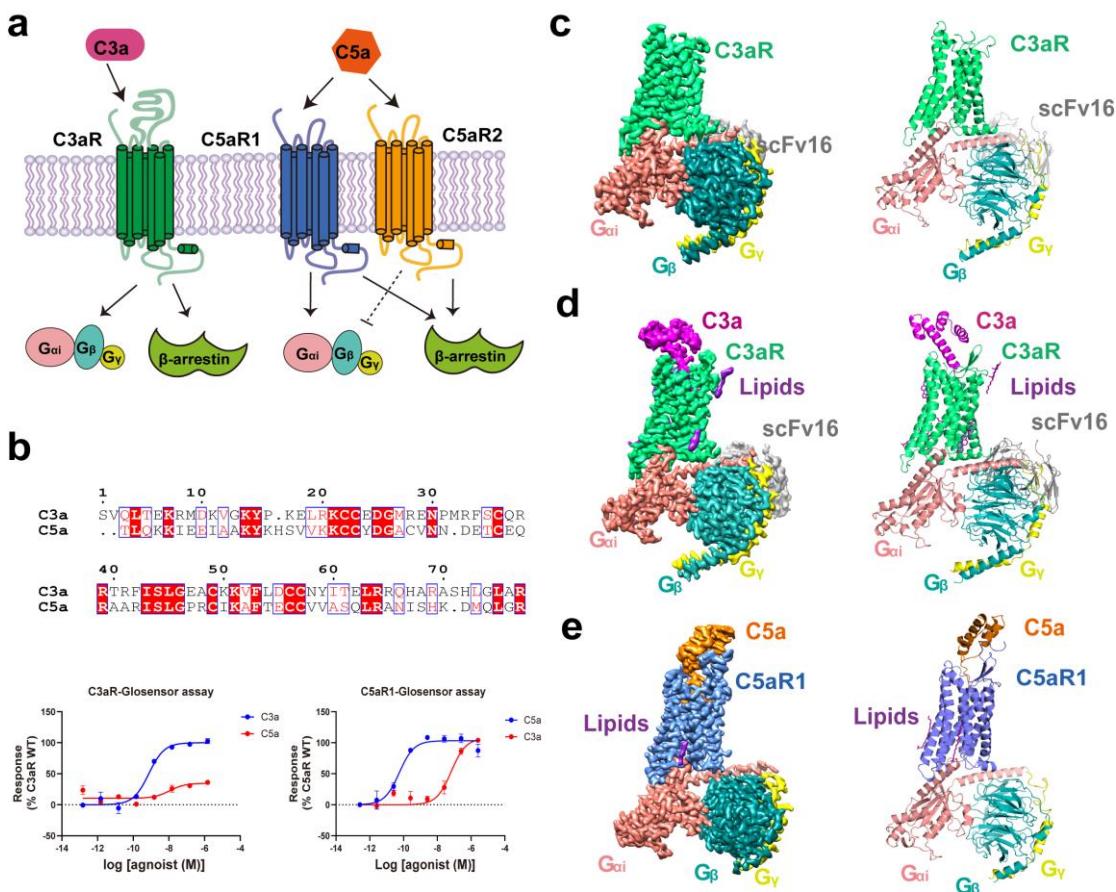
763 The cryo-EM data were collected at the Advanced Center for Electron Microscopy,
764 Shanghai Institute of Materia Medica (SIMM). We sincerely thank all the staffs at the
765 institution for their assistance in cryo-EM data collection. This work was partially
766 supported by grants from the Ministry of Science and Technology (China) grants
767 (2018YFA0507002 to H.E.X.); the National Natural Science Foundation of China
768 (82121005 to H.E.X.), the Shanghai Municipal Science and Technology Major Project
769 (2019SHZDZX02 to H.E.X.); the CAS Strategic Priority Research Program
770 (XDB08020303 to H.E.X.); the Special Research Assistant Project of Chinese
771 Academy of Sciences (to Y.W.Z.).

772

773 **Authors Contributions**

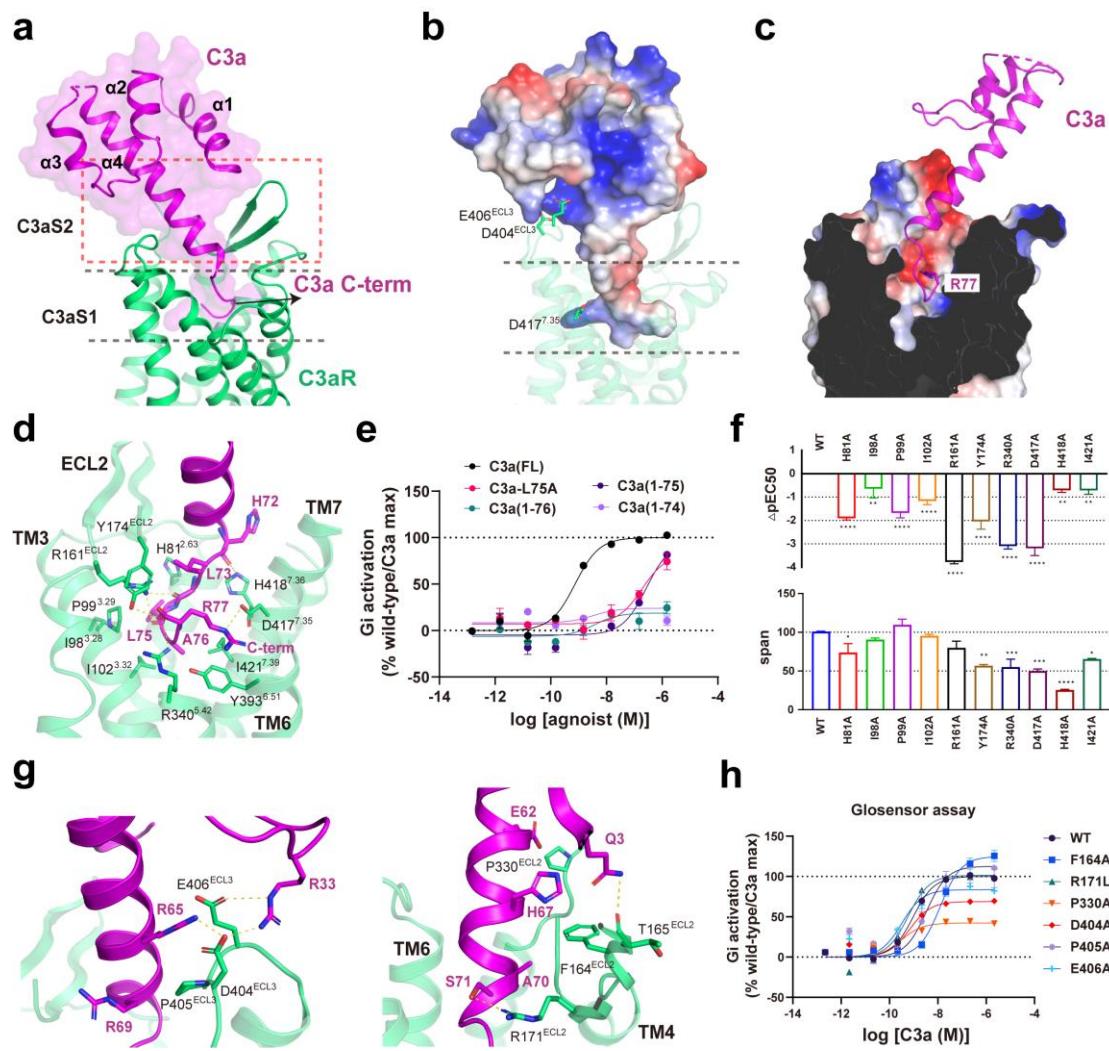
774 Y.W. designed the expression constructs of C3aR and C5aR1, performed data
775 acquisition and structure determination of C5a-C5aR1-G_i-scFv16, performed cAMP
776 assays, and participated in figure preparation and manuscript editing. W.Y.L.
777 optimized the purification conditions of protein complexes and prepared protein
778 samples of apo-C3aR-G_i-scFv16, C3a-C3aR-G_i-scFv16, and C5a-C5aR-G_i complexes
779 for cryo-EM grid making and data collection and participated in method preparation.
780 Y.W.Z. performed data acquisition and structure determination of apo and C3a-bound
781 C3aR-G_i-scFv16 complex. Y.W.X., Q.N.Y. and Y.W.Z. built the models and refined
782 the structures. X.H.H. performed the molecular dynamic simulation and homology
783 modeling work. P.L., W.J.F., J.P.Z. and X.Y.Z. assisted in cloning construction and
784 protein sample preparation. X.C. supervised X.H.H. in the computational analysis.
785 Y.J. supervised Y.W. and W.Y.L. Y.W.Z. and H.E.X. conceived and supervised the

786 project and wrote the manuscript. Y.W.Z. prepared the draft of the manuscript with the
787 inputs from Y.W. and W.Y.L.

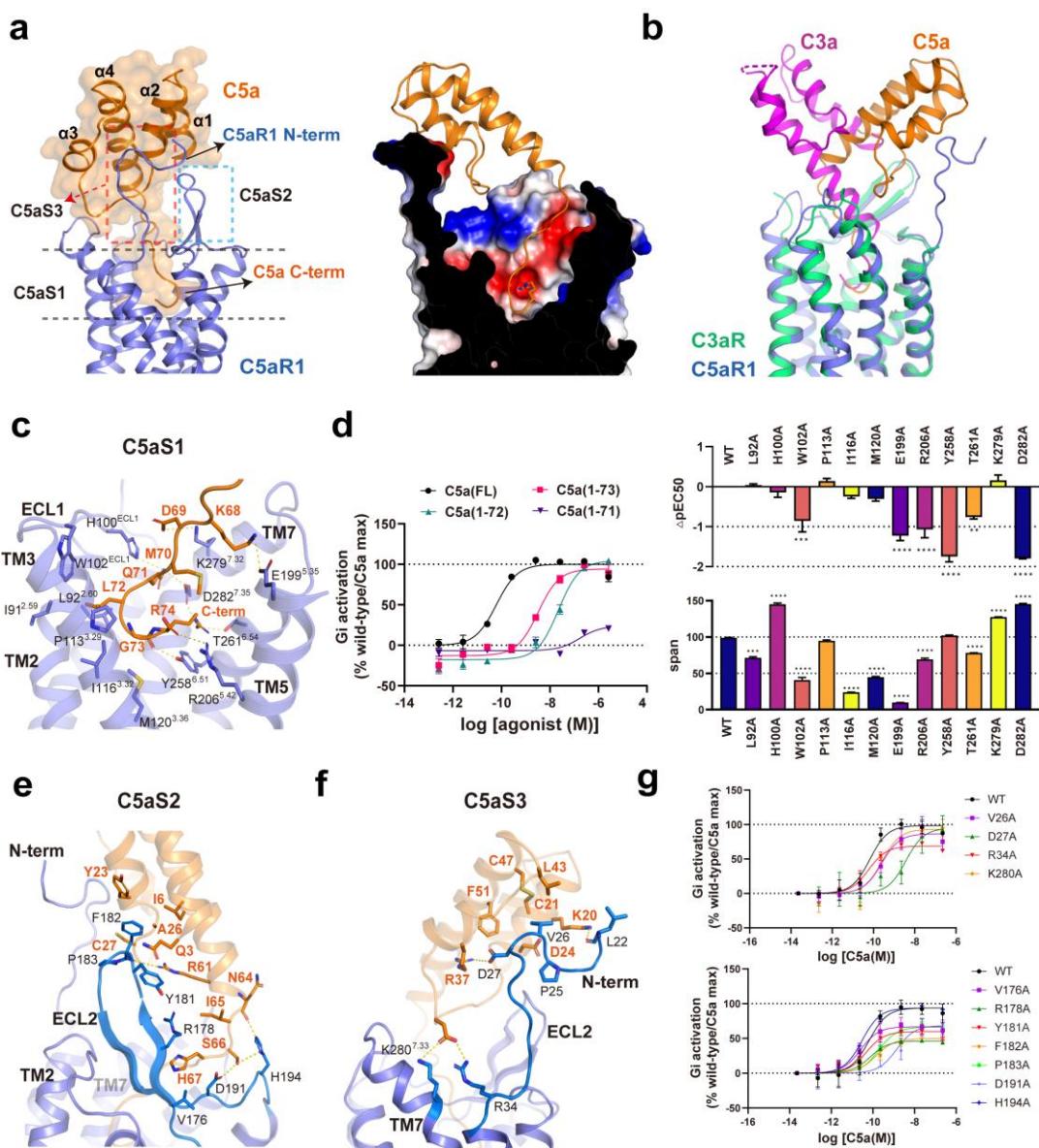

788

789 **Competing interests**

790 The authors declare no competing interests.


791

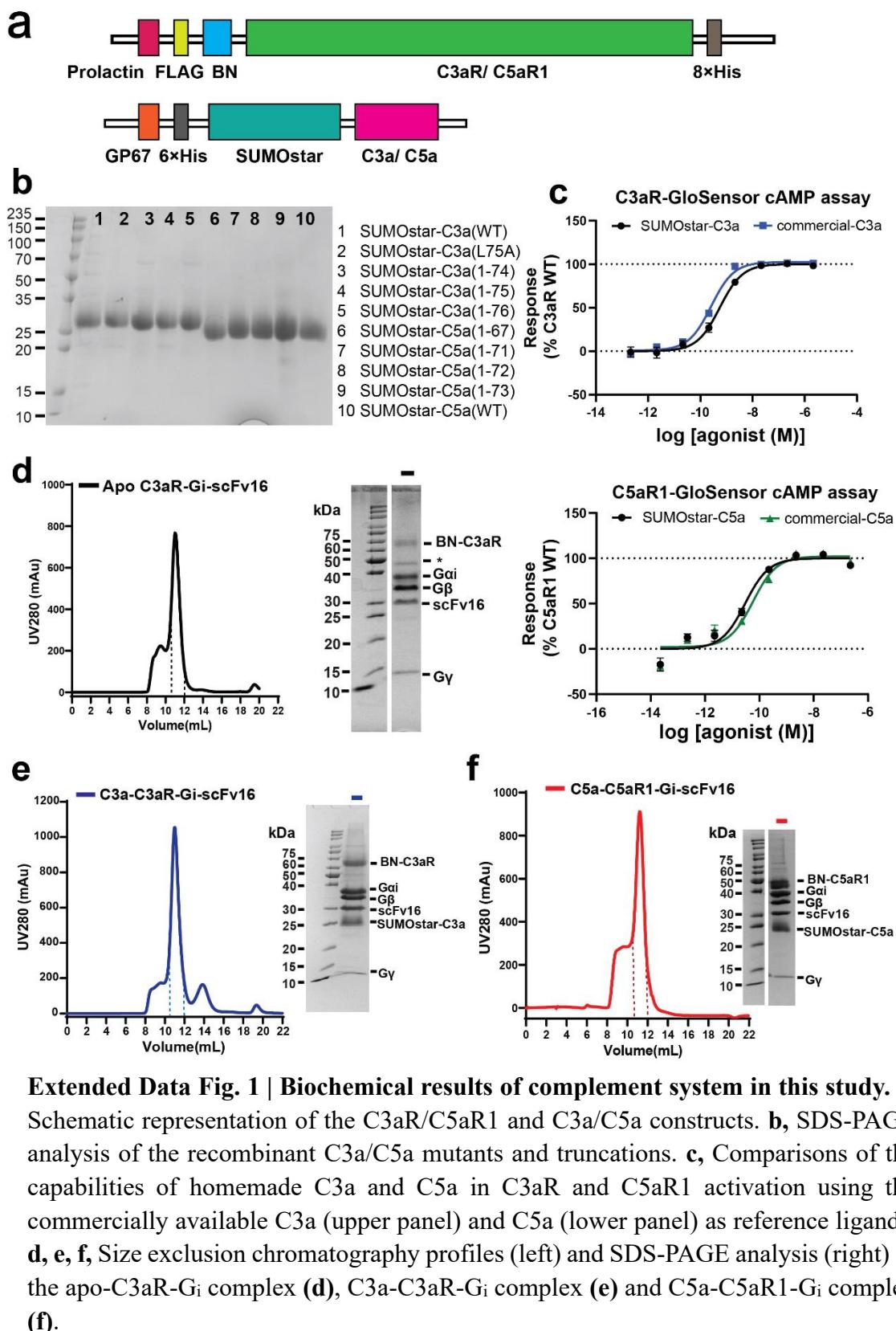
792

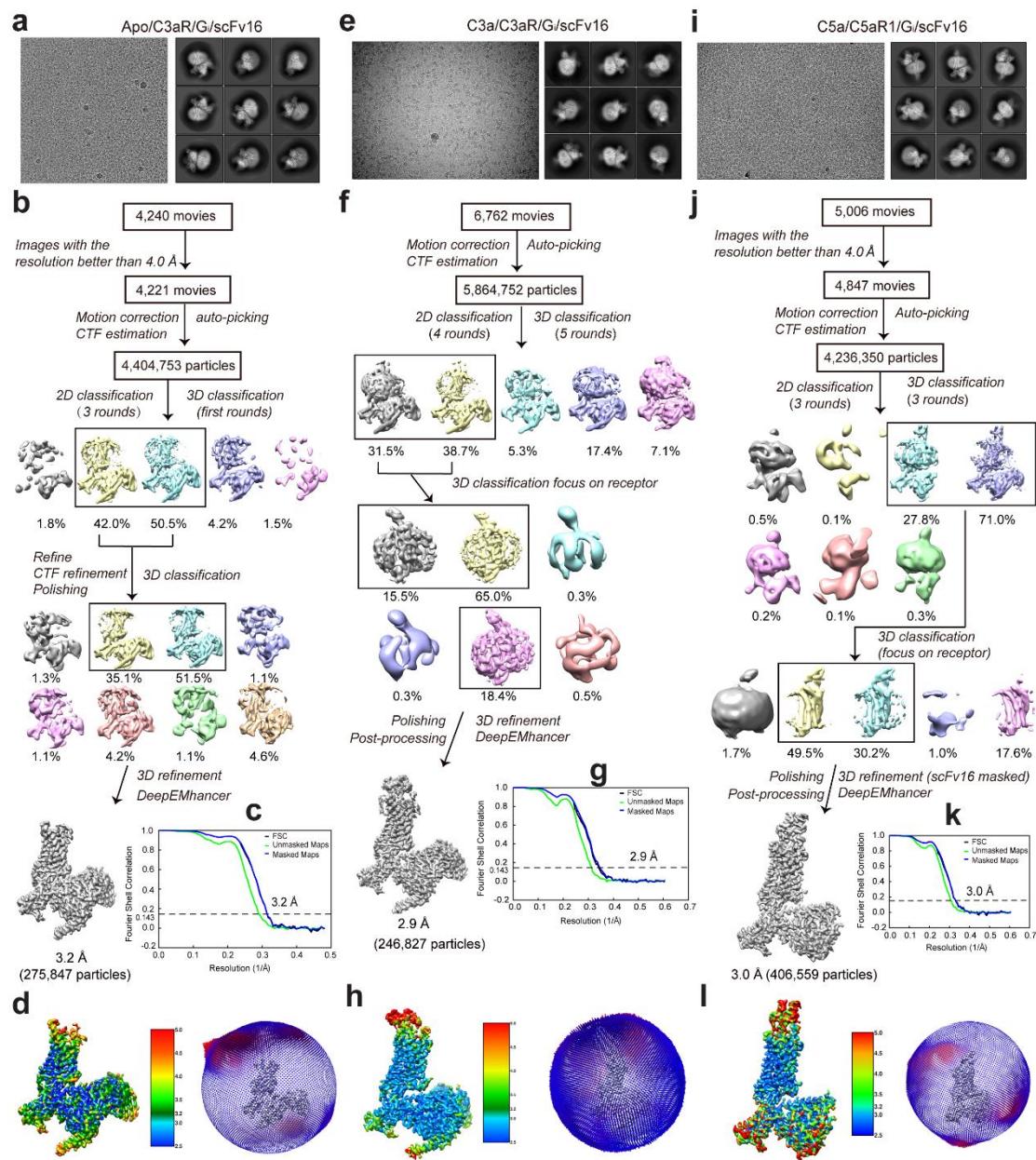


793
794


795 **Fig. 1 | Overall structures of the C3aR-G_i and C5aR1-G_i complexes.** **a**, Cartoon
796 presentation of C3aR and C5aR signaling pathway mediated by C3a and C5a. **b**, Activities of C3aR and C5aR1 induced G_i signaling by C3a and C5a. Upper panel:
797 sequence alignment of human C3a and C5a. Lower panel: the dose-dependent response
798 curves of C3aR and C5aR1 activated by C3a and C5a using GloSensor cAMP assays.
799 Data shown are means \pm S.E.M. from three independent experiments performed in
800 technical duplicate. **c, d, e**, Orthogonal views of the cryo-EM maps (left panels) and
801 models (right panels) of the apo-C3aR-G_i complex (**c**), C3a-C3aR-G_i complex (**d**) and
802 C5a-C5aR1-G_i complex (**e**).

804
805 **Fig. 2 | Recognition of C3a by C3aR.** **a**, Two-site binding regions of C3a in C3aR. **b**,
806 Electrostatic surface representation of C3a. **c**, Cross-section of C3a binding pocket, R77
807 of C3a is shown as stick. **d**, Interactions between “HLGLAR” of C3a and C3aS1 of
808 C3aR. **e**, The dose-dependent response curves of C3aR induced by different length of
809 C3a measured by GloSensor cAMP assay. Data shown are means \pm S.E.M. from three
810 independent experiments performed in technical duplicate. **f**, Effects of mutants in the
811 C3aS1 induced by C3a on cAMP response. Data are presented as means \pm S.E.M. of
812 three independent experiments performed in technical duplicate. All data were analyzed
813 by two-side, one-way ANOVA by Fisher’s LSD test compared with WT. *P<0.05;
814 **P<0.01 and ***P<0.001 were considered as statistically significant. **g**, Interaction of
815 the C3a core region with C3aR. Left panel: the polar interactions between C3a and
816 ECL3 of C3aR. Right panel: interactions between C3a and ECL2 of C3aR. Yellow dash
817 indicates the hydrogen bonds. **h**, The dose-dependent response curves of mutants in
818 C3aS2 of C3aR induced by C3a measured by GloSensor cAMP assay. Data shown are
819 means \pm S.E.M. from three independent experiments performed in technical duplicate.

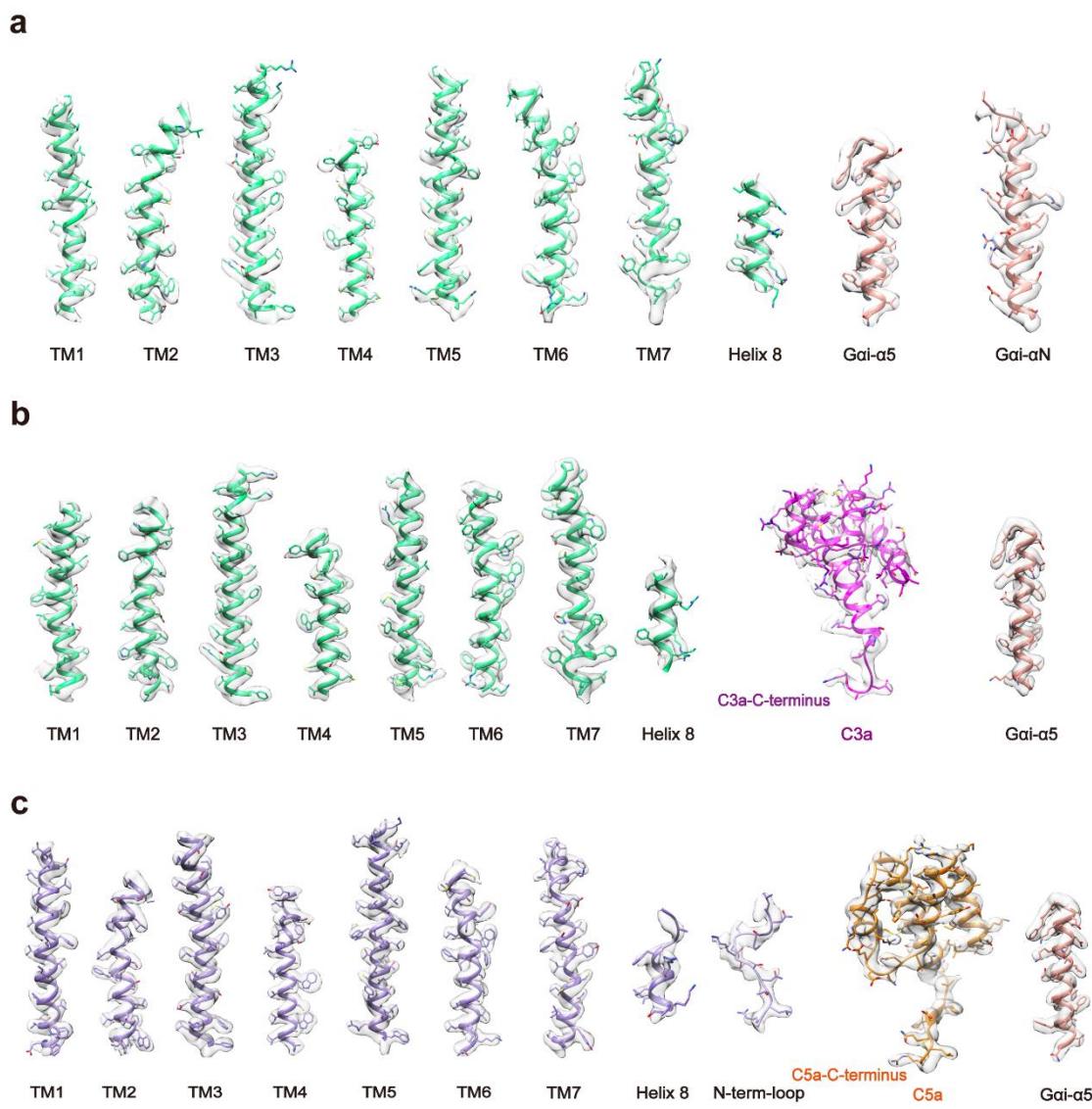

821 **Fig. 3 | Recognition of C5a by C5aR1.** **a**, Interactions between C5a and C5aR1. Left panel: three-site binding regions of C5a in C5aR1. Right panel: cross-section of C5a binding pocket, R74 of C5a is shown as stick. **b**, Structural superposition of C3a-bound C3aR and C5a-bound C5aR1. **c**, Interactions between C-terminal loop "KDMQLGR" segment of C5a and C5aS1 of C5aR1. **d**, Left panel: effects of C-terminal residue truncation of C5a on downstream signaling of C5aR1. Right panel: Effects of mutants in the C5aS1 induced by C5a on cAMP response. Data are presented as means \pm S.E.M. of three independent experiments performed in technical duplicate. All data were analyzed by two-side, one-way ANOVA by Fisher's LSD test compared with WT. *P<0.05; **P<0.01 and ***P<0.001 were considered as statistically significant. **e**, Interactions between C5a with C5aS2 of C5aR1. **f**, Interactions between C5a with C5aS3 of C5aR1. **g**, The dose-dependent response curves of mutants in C5aS2 (upper panel) of C5aR1 and mutants in C5aS3 (lower panel) of C5aR1 induced by C5a measured by GloSensor cAMP assay. Data shown are means \pm S.E.M. from three independent experiments performed in technical duplicate.



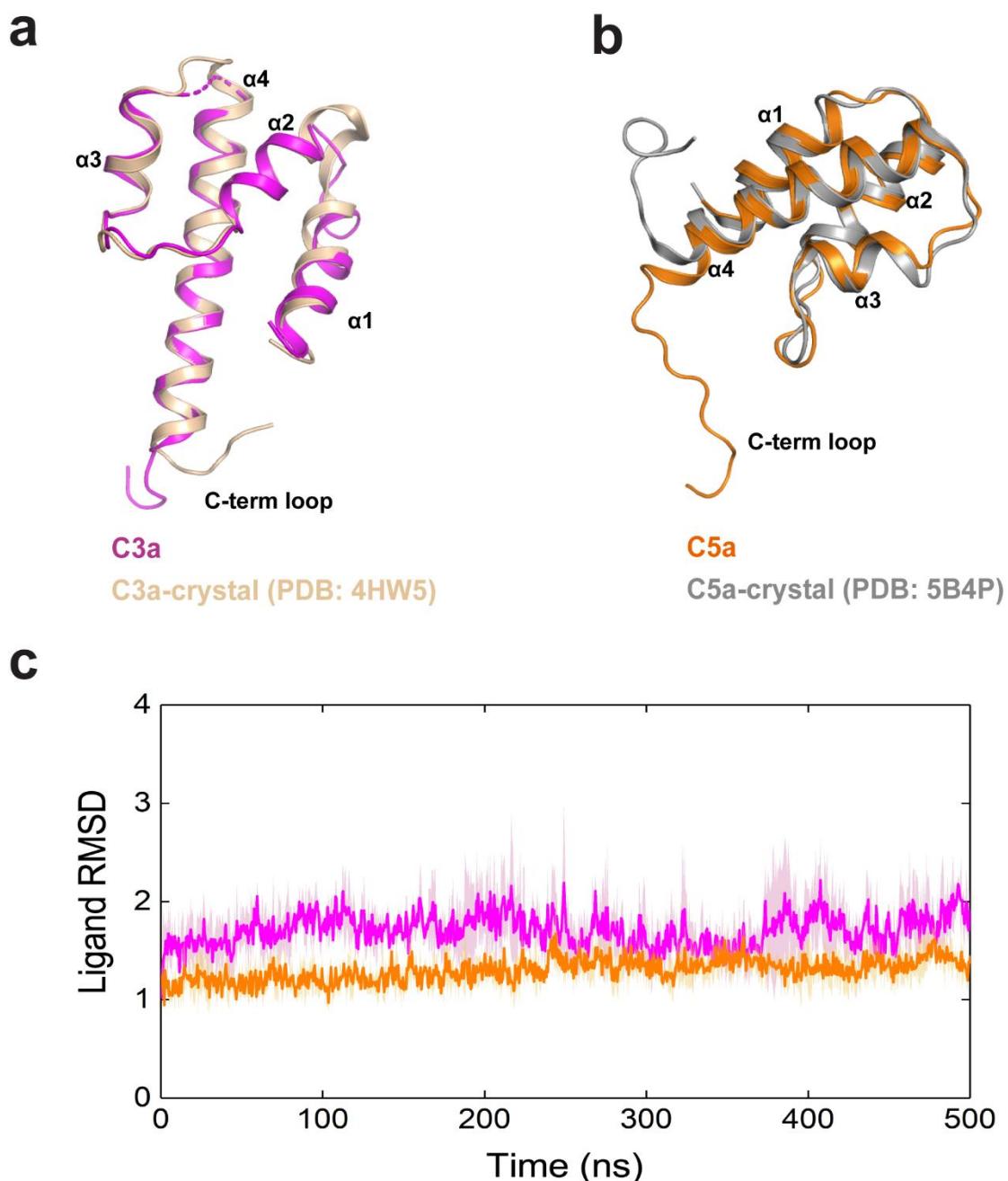
837

838 **Fig. 4 | Ligand induced activation mechanisms of C3aR and C5aR1.** **a**, Structural
839 superposition of C5a-bound C5aR1 and PMX53-bound C5aR1 (PDB: 6C1R). **b,c,d**,
840 Conformational changes upon C5aR1 activated by C5a. **(b)** Toggle switch; **(c)** rotation of TM3;
841 **(d)** collapse of sodium pocket. The conformational changes of residues are
842 shown as red arrows upon receptor activation. **e**, Structural superposition of C3a-bound
843 C3aR and PMX53-bound C5aR1 (PDB: 6C1R). **f, g**, Conformational changes upon
844 C3aR activated by C3a. **(f)** Toggle switch; **(g)** rotation of TM3. **h**, The similar polar
845 center within the sodium pocket formed by activated C3aR and C5aR1.

846



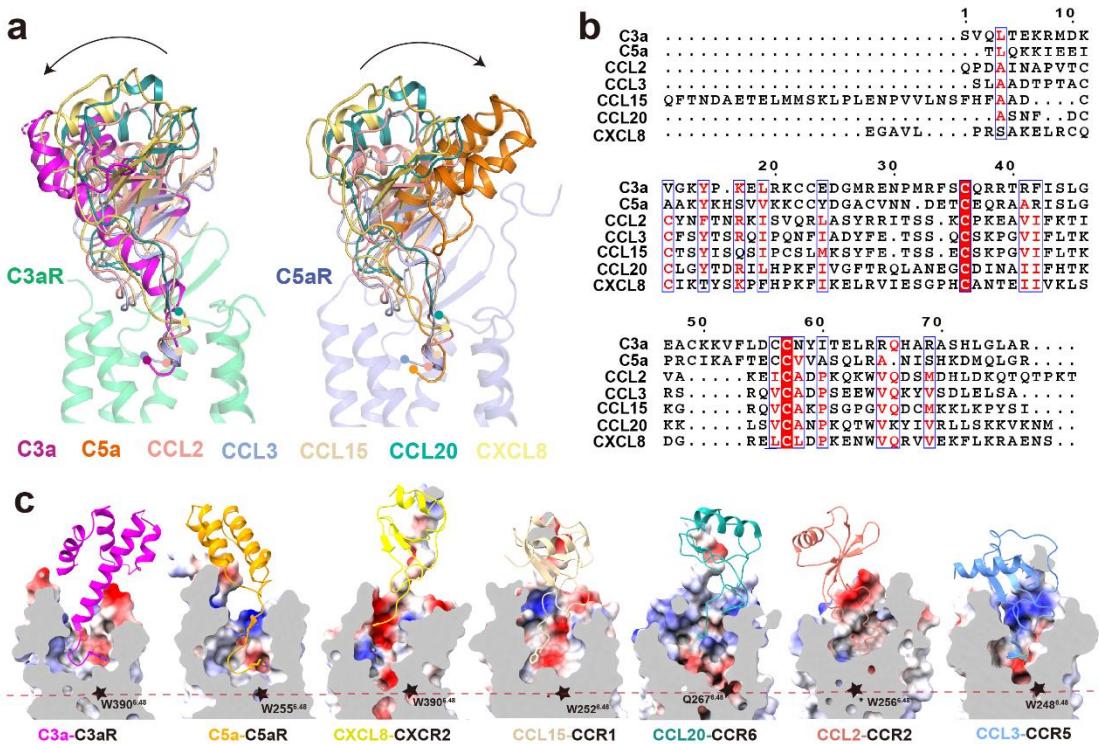
856
 857 **Extended Fig. 2 | Structure determination of the apo/C3a-C3aR-G_i, and C5a-
 858 C5aR1-G_i complex.** **a**, Representative cryo-EM raw image and 2D classification
 859 averages of the apo-C3aR-G_i complex. **b**, Cryo-EM data processing flowchart of the
 860 apo-C3aR-G_i complex. **c**, The Fourier shell correlation (FSC) curves of the apo-C3aR-
 861 G_i complex. The global resolution of the final processed density map estimated at the
 862 FSC=0.143 is 3.2 Å. **d**, Local resolution and angle distribution map of the apo-C3aR-
 863 G_i complex. The density map is shown at 0.08 threshold. **e**, Representative cryo-EM
 864 image and 2D classification averages of the C3a-C3aR-G_i complex. **f**, Cryo-EM data
 865 processing work-flow of the C3a -C3aR-G_i complex. **g**, The Fourier shell correlation
 866 (FSC) curves of the apo-C3aR-G_i complex. The global resolution of the final processed
 867 density map estimated at the FSC=0.143 is 2.9 Å. **h**, Local resolution and angle
 868 distribution map of the C5a-C5aR1-G_i complex. The density map is shown at 0.25

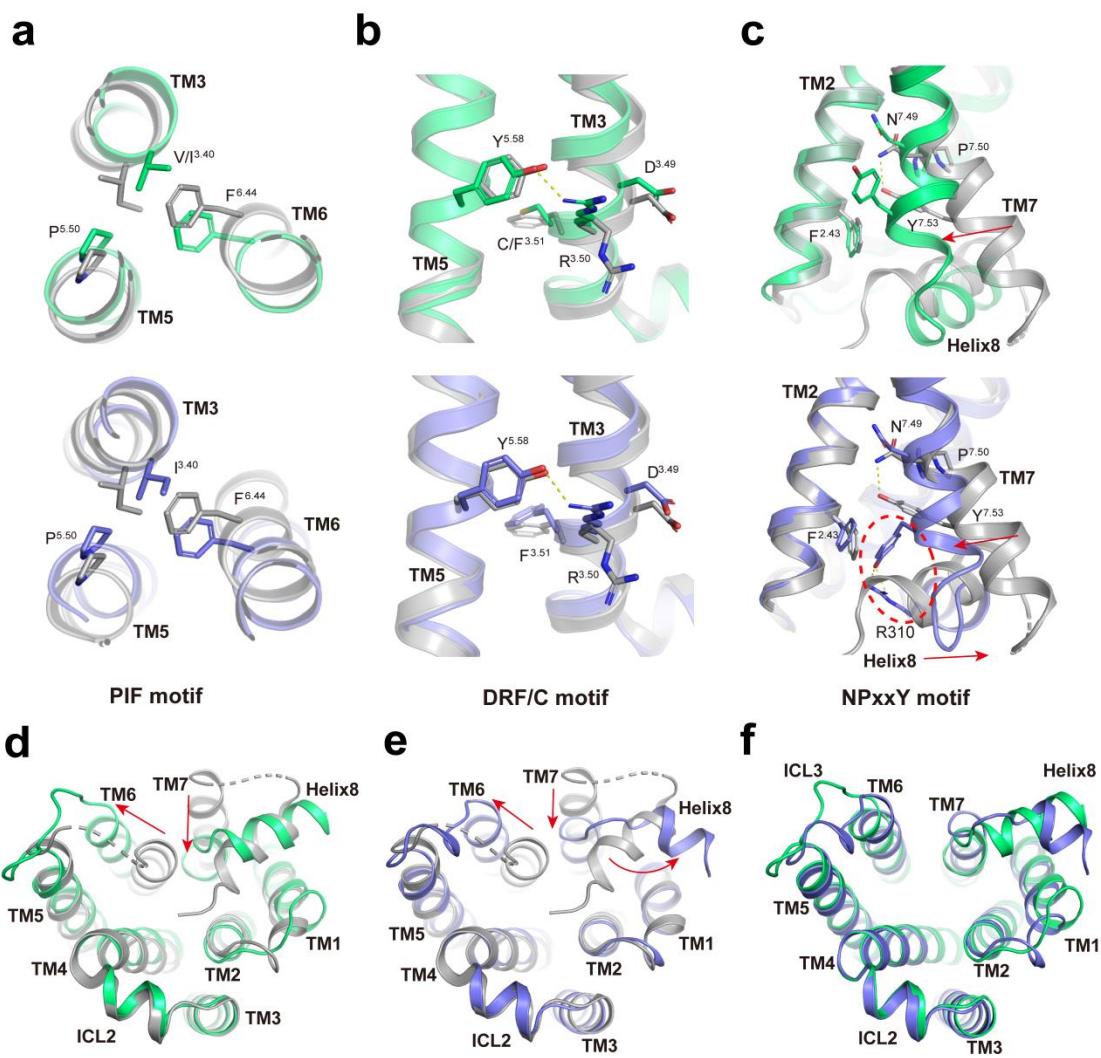

869 threshold. **i**, Representative cryo-EM image and 2D classification averages of the C5a-
870 C5aR1-G_i complex. **j**, Cryo-EM data processing flowcharts of the C5a-C5aR1-G_i
871 complex. **k**, The Fourier shell correlation (FSC) curves of the C5a-C5aR1-G_i complex.
872 The global resolution of the final processed density map estimated at the FSC=0.143 is
873 3.0 Å. **l**, Local resolution and angle distribution map of the C5a-C5aR1-G_i complex.
874 The density map is shown at 0.11 threshold.

875

877
878 **Extended Fig. 3 | Local electron densities of C3aR-G_i and C5aR1-G_i complexes. a,**
879 **b, c, EM density maps of transmembrane helices TM1-TM7 and helix 8 of C3aR or**
880 **C5aR1, α N or α 5 helices of G_i, and ligands C3a and C5a in the apo-C3aR-G_i complex**
881 **(a), the C3a-C3aR-G_i complex (b), and the C5a-C5aR1-G_i complex(c). The density**
882 **maps were shown at the thresholds of 0.08, 0.15 and 0.08 for apo-C3aR-G_i complex,**
883 **the C3a-C3aR-G_i complex, and the C5a-C5aR1-G_i complex, respectively.**

884

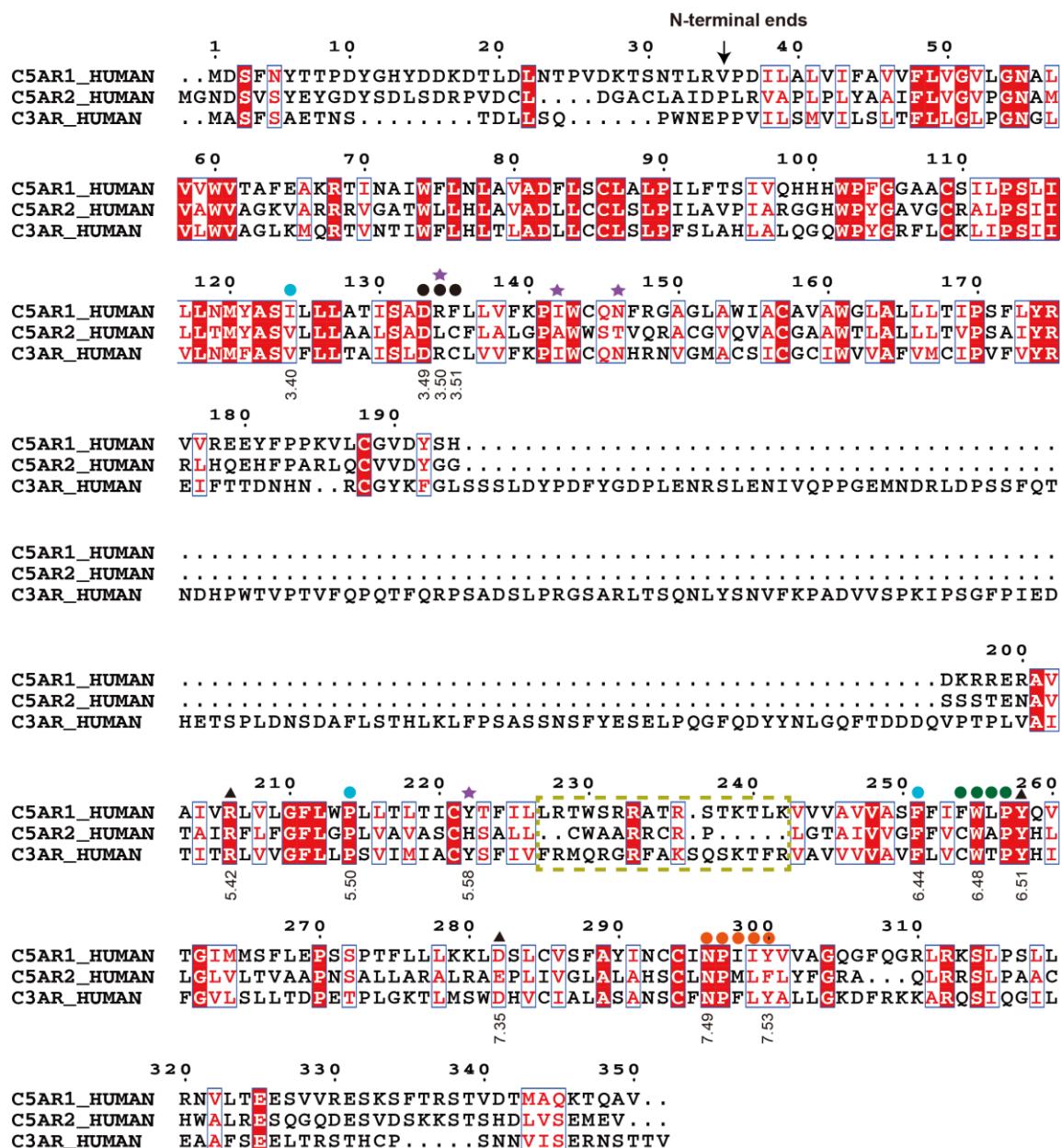



885

886 **Extended Fig. 4 | Molecular dynamic simulations of C3a and C5a binding poses.**

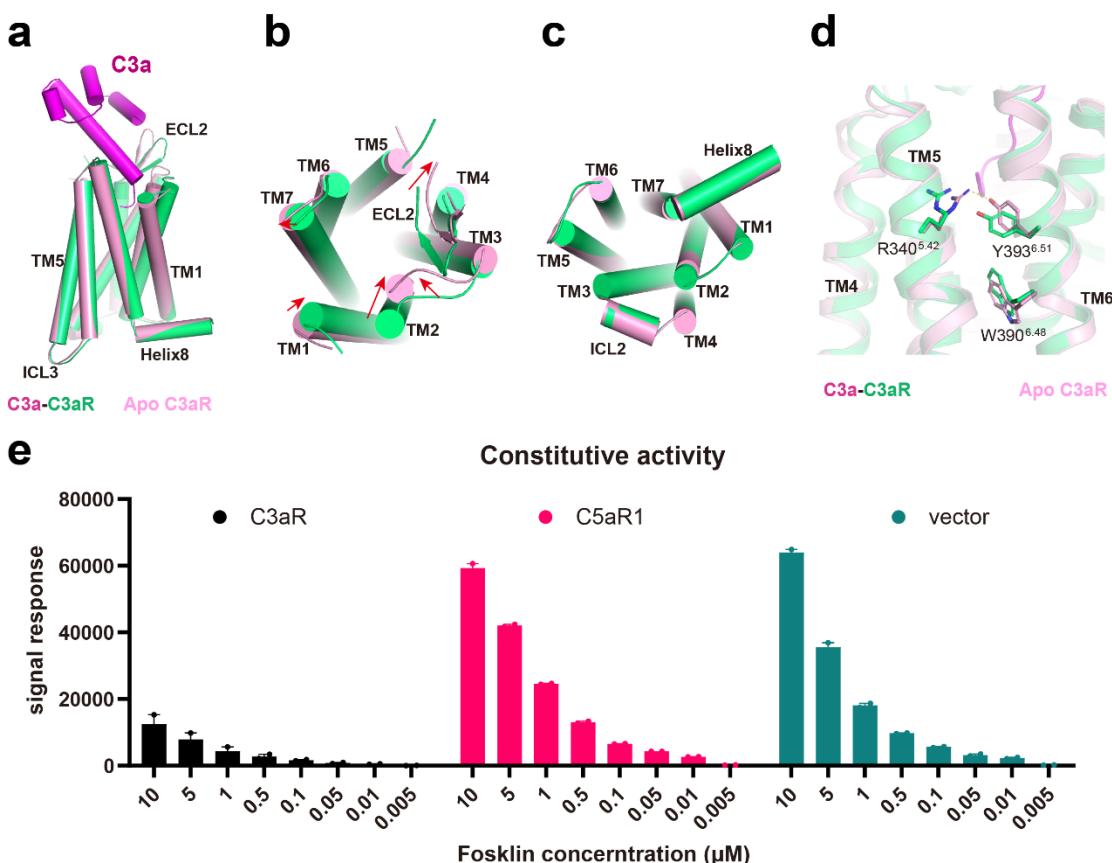
887 **a**, Superposition of C3a structure determined by cryo-EM in this study and crystal
888 structure of C3a (PDB: 4HW5). **b**, Superposition of C5a structure determined by cryo-
889 EM in this study and crystal structure of C5a (PDB: 5B4P). **c**, Molecular dynamics
890 simulations of C3a and C5a bound to C3aR and C5aR1, respectively.

891



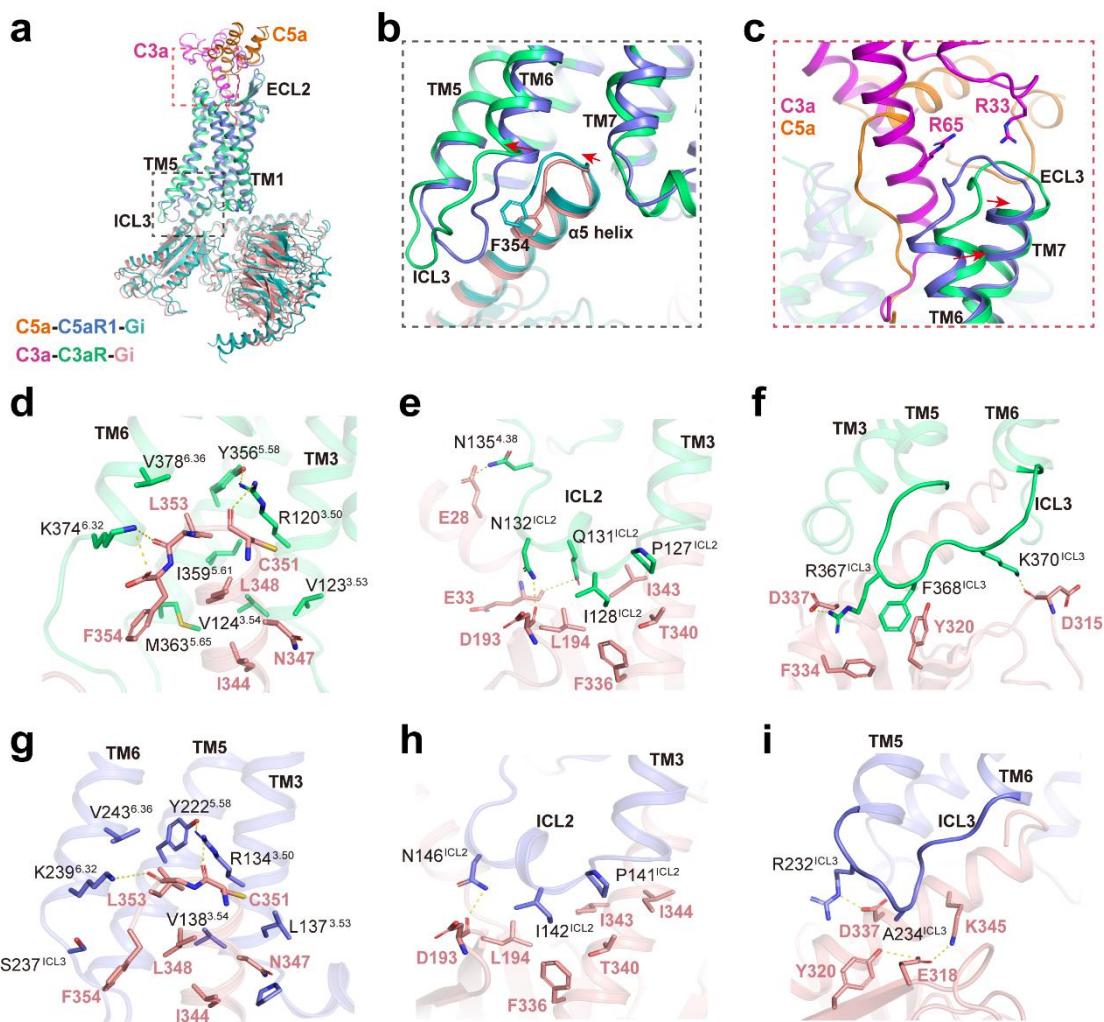
902

903


904 **Extended Fig. 6 | Conformational changes of C3aR and C5aR1 activation. a, b, c,**
905 Conformational changes upon activation of C5aR1 induced by C5a, including
906 rearrangement of PIF motif (a), alteration of DRF/C motif (b) and NPxxY motif (c). **d,**
907 **e, f**, Conformational changes upon activation of C3aR induced by C3a, including
908 rearrangement of PIF motif (d), alteration of DRC motif (e) and NPxxY motif (f). **g,**
909 **h, i**, Intracellular region conformation changes when super-positioned C3a bound
910 C3aR with inactive C5aR1 (g), C5a bound C5aR1 with inactive C5aR1 (h) and C3a
911 bound C5aR1 with C5a bound C3aR (i).

- PIF motif
- DRF/C motif
- CWxP motif
- NPxxY motif
- ▲ constitutive activity determinants
- ★ unconserved residues for G protein coupling
- ICL3

912
913


914 **Extended Fig. 7 | Sequence alignment of the anaphylatoxin receptors.** The sequences
915 shown are those for human C3aR, C5aR1 and C5aR2 which was created using Clustalw
916 and ESPript 3.0 servers.

917

918

919 **Extended Fig. 8 | Constitutive activity determinants of C3aR.** **a, b, c,** Structural
920 superposition of the C3a-C3aR with the apo-C3aR in orthogonal view (**a**),
921 extracellular view (**b**) and intracellular view (**c**). Helixes are shown as rods. **d**,
922 Constitutive determinant residues of C3aR. In apo-C3aR, residue R340^{5.42} forms
923 direct hydrogen bond with Y393^{6.51} and keeps it in active conformation. **e**, Histogram
924 of constitutive activity of C3aR and C5aR1, controlled as pcDNA3.0 vector. Cells
925 were treated with decreasing dose of Fosklin. It can be seen that C3aR has high basal
926 activity whereas C5aR1 has no basal activities and behaves like the control.

927

928

929 Extended Fig. 9 | G_i coupling of C3aR and C5aR1. a, Overall structural
930 superposition of the C3a-C3aR-G_i complex with the C5a-C5aR1-G_i complex. b,
931 Subtle differences of α5 helix of G_i subunit inserted into C3aR and C5aR1. c,
932 C3a/C5a induced the extracellular region movement between C3aR and C5aR1. d, e,
933 f, Interactions between C3aR and G_i subunit, (d) intracellular cavity of C3aR with α5
934 helix of G_i subunit, (e) ICL2 of C3aR with G_i subunit, (f) ICL3 of C3aR with G_i
935 subunit. g, h, i, Interactions between C5aR1 and G_i subunit, (g) intracellular cavity of
936 C5aR1 with α5 helix of G_i subunit, (h) ICL2 of C5aR1 with G_i subunit, (i) ICL3 of
937 C5aR1 with G_i subunit.